WorldWideScience

Sample records for samarium sulfides

  1. Europium and samarium doped calcium sulfide thin films grown by PLD

    International Nuclear Information System (INIS)

    Christoulakis, S.; Suchea, M; Katsarakis, N.; Koudoumas, E

    2007-01-01

    Europium and samarium doped calcium sulfide thin films (CaS:Eu,Sm) with different thickness were prepared by the pulsed laser deposition technique using sintered targets. A typical homemade deposition chamber and XeCl excimer laser (308 nm) were employed and the films were deposited in helium atmosphere onto silicon and corning glass substrates. Structural investigations carried out by X-ray diffraction and atomic force microscopy showed a strong influence of the deposition parameters on the film properties. The films grown had an amorphous or polycrystalline structure depending on growth temperature and the number of pulses used, the same parameters affecting the film roughness, the grain shape and dimensions, the film thickness and the optical transmittance. This work indicates that pulsed laser deposition can be a suitable technique for the preparation of CaS:Eu,Sm thin films, the film characteristics being controlled by the growth conditions

  2. The dynamics of the laser-induced metal-semiconductor phase transition of samarium sulfide (SmS)

    International Nuclear Information System (INIS)

    Kaempfer, Tino

    2009-01-01

    The present thesis is dedicated to the experimental study of the metal-semiconductor phase transition of samarium sulfide (SmS): Temperature- and time-resolved experiments on the characterization of the phase transition of mixed-valence SmS samples (M-SmS) are presented. The measurement of the dynamics of the laser-induced phase transition pursues via time-resolved ultrashort-time microscopy and by X-ray diffraction with sub-picosecond time resolution. The electronic and structural processes, which follow an excitation of M-SmS with infrared femtosecond laser pulses, are physically interpreted on the base of the results obtained in this thesis and model imaginations. [de

  3. Conductometric investigations on samarium soaps

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Chauhan, Mithlesh; Shukla, R.K.

    1989-01-01

    The critical micelle concentration (CMC), degree of dissociation and dissociation constant of samarium soaps (valerate, caproate, caprylate and caprate) in a mixture of 60 per cent benzene and 40 per cent methanol were determined by using conductometric measurements. The soaps behaved as simple electrolyte in dilute solutions and the CMC was found to decrease with increasing chainlength of the fatty acid constituent of the soap. (author). 7 refs., 2 tabs

  4. Labeling fish with an activable element through their diet. [samarium

    Energy Technology Data Exchange (ETDEWEB)

    Michibata, Hitoshi (Toyama Univ. (Japan). Faculty of Science)

    1981-10-01

    Stable samarium, one of the rare earth elements, was fed to medaka (Oryzias latipes) and goldfish (Carassius auratus). The concentration of samarium in the labeled fish was determined by neutron activation analysis. In O. latipes, samarium was detectable even 1 yr after the labeled diet was eaten. In C. auratus, samarium was retained in the fifth brachial arch, scales, and gills.

  5. Implementation of an analytical technique for Samarium

    International Nuclear Information System (INIS)

    Garcia G, N.

    2004-01-01

    Since the Samarium presents the same chemical properties that the plutonium, it has been used as homologous in studies that allow us to know the behavior that the plutonium presents in solution, with the advantage of working with an inactive and not very dangerous element. At the moment studies of sorption of plutonium or samarium are made on some mineral matrices that present certain surface properties. Due to the low concentrations that are used in the studies of sorption of samarium on those reagent substrates, their detection becomes very difficult for the conventional analysis media. The luminescence is a technique that can detect lower concentrations, smaller at 1 X 10 - 2 M, but when fluorofors are used this limit of detection increases in several orders of magnitude. In this work it has been used the arsenazo-III as fluorofor agent since it reacts in a specific way with the samarium, forming a complex that presents a proportional luminescence to the concentration of the present samarium. The advantage of making the quantification of samarium by luminescence is that it can use the same instrumental equipment to determine the speciation of the samarium sipped in the zircon. (Author)

  6. Laser spectroscopy of atomic samarium

    International Nuclear Information System (INIS)

    Barkov, L.M.; Melik-Pashaev, D.A.; Zolotorev, M.S.

    1988-01-01

    Samarium spectrum was studied with a purpose to find transitions to be used in experiments on parity nonconservation. Macaluso-Corbino effect - Faraday rotation near resonance was used for the search and study of spectral lines. We have identified previously unknown energy levels belonging to the 4f 5 6s 2 5 D term: 15914.55(3) cm -4 (J=1), 17864.29(3) cm -4 (J=2), 20195.76(3) cm -4 (J=3). M1-transitions to these levels from the levels of the ground 4f 5 6s 2 7 F term were observed. There are several peculiarities of these transitions which are due to the fact that they occut within an inner 4f 5 -shell, particularly, a very small presuure broadening by inert gases. 44 refs.; 17 figs.; 7 tabs

  7. Synthesis of Samarium Cobalt Nanoblades

    Energy Technology Data Exchange (ETDEWEB)

    Darren M. Steele

    2010-08-25

    As new portable particle acceleration technologies become feasible the need for small high performance permanent magnets becomes critical. With particle accelerating cavities of a few microns, the photonic crystal fiber (PCF) candidate demands magnets of comparable size. To address this need, samarium cobalt (SmCo) nanoblades were attempted to be synthesized using the polyol process. Since it is preferable to have blades of 1-2 {micro}m in length, key parameters affecting size and morphology including method of stirring, reaction temperature, reaction time and addition of hydroxide were examined. Nanoparticles consisting of 70-200 nm spherical clusters with a 3-5 nm polyvinylpyrrolidone (PVP) coating were synthesized at 285 C and found to be ferromagnetic. Nanoblades of 25nm in length were observed at the surface of the nanoclusters and appeared to suggest agglomeration was occurring even with PVP employed. Morphology and size were characterized using a transmission electron microscope (TEM). Powder X-Ray Diffraction (XRD) analysis was conducted to determine composition but no supportive evidence for any particular SmCo phase has yet been observed.

  8. A NOVEL SAMARIUM COMPLEX WITH INTERESTING ...

    African Journals Online (AJOL)

    delocalized π-electrons of the pyridyl rings obtains increasing attention in ... BaSO4 plate was used as a reference (100% reflectance), on which the finely ground .... several are samarium-containing complex with bipy [41-45]. Figure 2.

  9. Optical isotope shifts for unstable samarium isotopes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Walker, P.M.; Griffith, J.A.R.; Evans, D.E.; Grant, I.S.; England, J.G.; Fawcett, M.J.

    1984-01-01

    Using a tunable dye laser beam intersecting a thermal atomic beam, optical isotope shifts and hyperfine splittings have been measured for the four unstable samarium isotopes between 144 Sm and 154 Sm, covering the well known transition region from spherical to deformed shapes. (orig.)

  10. Nonlinear Faraday rotation in samarium vapor

    International Nuclear Information System (INIS)

    Barkov, L.M.; Melik-Pashaev, D.A.; Zolotorev, M.S.

    1988-01-01

    Experiments on nonlinear magnetic optical (Faraday) rotation on resonance transitions of atomic samarium are described. Measurements were carried out on transitions with different angular momenta of upper and lower states: 1→0, 0→1 and 1→1. Qualitative explanations of observed phenomena are given

  11. Selenium Sulfide

    Science.gov (United States)

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  12. Thermal diffusivity of samarium-gadolinium zirconate solid solutions

    International Nuclear Information System (INIS)

    Pan, W.; Wan, C.L.; Xu, Q.; Wang, J.D.; Qu, Z.X.

    2007-01-01

    We synthesized samarium-gadolinium zirconate solid solutions and determined their thermal diffusivities, Young's moduli and thermal expansion coefficients, which are very important for their application in thermal barrier coatings. Samarium-gadolinium zirconate solid solutions have extremely low thermal diffusivity between 20 and 600 deg. C. The solid solutions have lower Young's moduli and higher thermal expansion coefficients than those of pure samarium and gadolinium zirconates. This combination of characteristics is promising for the application of samarium and gadolinium zirconates in gas turbines. The mechanism of phonon scattering by point defects is discussed

  13. Investigation of samarium solubility in the magnesium based solid solution

    International Nuclear Information System (INIS)

    Rokhlin, L.L.; Padezhnova, E.M.; Guzej, L.S.

    1976-01-01

    Electric resistance measurements and microscopic analysis were used to investigate the solubility of samarium in a magnesium-based solid solution. The constitutional diagram Mg-Sm on the magnesium side is of an eutectic type with the temperature of the eutectic transformation of 542 deg C. Samarium is partly soluble in solid magnesium, the less so, the lower is the temperature. The maximum solubility of samarium in magnesium (at the eutectic transformation point) is 5.8 % by mass (0.99 at. %). At 200 deg C, the solubility of samarium in magnesium is 0.4 % by mass (0.063 at. %)

  14. Anodic dissolution of samarium in acetonitrile solution of acetylacetone

    International Nuclear Information System (INIS)

    Kostyuk, N.N.; Dik, T.A.; Trebnikov, A.G.; Shirokij, V.L.

    2003-01-01

    Electrochemical dissolution of metal samarium in acetonitrile medium in the presence of 0.1 M tetraethylammoniumbromide and 0.9 M acetylacetone (HAA) in argon atmosphere under a voltage of 3 V was considered for studying feasibility of electrochemical synthesis of samarium β-diketonates. Using IR and mass spectrometry, thermal and elementary analyses it was ascertained that, depending on cathode and anode areas ratio, anodic dissolution of samarium can give rise to formation of complexes of bi- and trivalent samarium featuring the composition Sm 4 (AA) 8 · 3HAA, Sm(AA) 3 · HAA and Sm(AA) 3 · 4HAA [ru

  15. Crystallization of Yttrium and Samarium Aluminosilicate Glasses

    OpenAIRE

    Lago, Diana Carolina; Prado, Miguel Oscar

    2016-01-01

    Aluminosilicate glasses containing samarium and yttrium (SmAS and YAS glasses) exhibit high glass transition temperatures, corrosion resistance, and glass stability on heating which make them useful for technological applications. Yttrium aluminosilicate glass microspheres are currently being used for internal selective radiotherapy of liver cancer. During the preparation process, crystallization needs to be totally or partially avoided depending on the final application. Thus knowing the cry...

  16. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--cobalt permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high-temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating cobalt--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--cobalt magnets, sprayed from samarium-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million gauss-oersteds and coercive forces of approximately 6000 oersteds. Bar magnet arrays were constructed by depositing magnets on ceramic substrates. (auth)

  17. Synthesis of samarium, europium and ytterbium acetylenides

    International Nuclear Information System (INIS)

    Bochkarev, M.N.; Fedorova, E.A.; Glushkova, N.V.; Protchenko, A.V.; Druzhkov , O.N.; Khorshev, S.Ya.

    1995-01-01

    Ethynyl complexes of samarium, europium and ytterbium were prepared by interaction of naphthalinides of metals with acetylene in tetrahydrofuran. The compounds are isolated in the form of dark-coloured pyrophore powders. Data of magnetic measurements suggest that in the course of the reaction Sm(2) is oxidized completely to Sm(3), Yb(2) transforms into Yb(3) partially, whereas europium preserves its initial bivalent state. Hydrolysis of the compounds prepared provides acetylene, ethylene, ethane and hydrogen which indicates the presence of acethylenide Ln 2 C 2 and hydride LnH groupings (Ln = Sm, Eu, Yb). 9 refs., 2 tabs

  18. High purity samarium oxide from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos A. da S.; Seneda, Jose A.; Vasconcellos, Mari E. de; Pedreira Filho, Walter dos R.

    2013-01-01

    A simple and economical chemical process for the production of highly pure samarium oxides is discussed. The raw material, which was used in the form of rare earth carbonates was produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography was performed using a strong cationic resin that is typically employed in water treatment processes to fractionate rare earth elements (REE) without the use of retention ions. Under these conditions, 99.9% pure Sm 2 O 3 was eluted using the ammonium salt of ethylenediaminetetraacetic acid (EDTA) at a controlled pH. The EDTA-samarium complex was separated from EDTA and then precipitated as oxalate and fired to samarium oxide. Molecular absorption spectrophotometry was used to monitor the samarium content during the proposed process, and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the samarium oxide. Typical samarium oxide obtained from the proposed procedure contained the following contaminants in micrograms per gram: Sc (20.90); Y (11.80); La (8.4); Ce (4.3); Pr (2.5); Nd (5.1); Eu (94); Gd (114); Tb (3.6); Dy (2.5), Ho (2.3); Er (3.0); Tm (2.3); Yb (38,2); Lu (25.6). The high-purity samarium oxides produced in the present study can be used as an alternative to imported products in research and development applications. (author)

  19. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--Co permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating Co--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--Co magnets, sprayed from Sm-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million G-Oe and coercive forces of approximately 6000 Oe. Bar magnet arrays were constructed by depositing magnets on ceramic substrates

  20. Physico-chemical studies on samarium soaps in solid state

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Chauhan, M.; Shukla, R.K.

    1989-01-01

    The physico-chemical characteristics of samarium soaps (caproate and caprate) in solid state were investigated by IR, X-ray diffraction and TGA measurements. The IR results revealed that the fatty acids exist in dimeric state through hydrogen bonding and samarium soaps possess partial ionic character. The X-ray diffraction measurements were used to calculate the long spacings and the results confirmed the double layer structure of samarium soaps. The decomposition reaction was found kinetically of zero order and the values of energy of activation for the decomposition process for caproate and caprate were found to be 8,0 and 7,8 kcal mol -1 , respectively. (Authors)

  1. The ion-exchange obtaining of high purity samarium oxide

    International Nuclear Information System (INIS)

    Brzyska, W.; Soltysiak, I.; Cygan, J.

    1987-01-01

    The use of lactic acid - EDTA mixture as an eluent for the obtaining of high purity samarium oxide was studied. The studies were carried out at room temperature on cation exchange resin Wofatit KPS X 8. The best results were obtained for lactic acid (0,26 mol/dm 3 ) - EDTA (0,013 mol/dm 3 ) mixture at pH 3,3. As the result of 57% samarium concentrate elution with column load 1:3 and flow rate 0,4 cm/min, over 99% pure samarium oxide with 73% yield has been obtained. The yield of spectrally pure Sm 2 O 3 exceeded 45%. (author)

  2. Yellow-green electroluminescence of samarium complexes of 8-hydroxyquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Sara Karimi; Najafi, Ezzatollah [Department of Chemistry Shahid Beheshti University G.C., Tehran 1983963113 (Iran, Islamic Republic of); Amini, Mostafa M., E-mail: m-pouramini@sbu.ac.ir [Department of Chemistry Shahid Beheshti University G.C., Tehran 1983963113 (Iran, Islamic Republic of); Janghouri, Mohammad; Mohajerani, Ezeddin [Laser Research Institute Shahid Beheshti University G.C., Tehran 1983963113 (Iran, Islamic Republic of); Ng, Seik Weng [Department of Chemistry, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-12-15

    Four novel samarium complexes were prepared by reacting samarium(III) nitrate with 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline, and 1,10-phenanthroline and utilized as emitting materials in the electroluminescence device. All complexes were characterized by elemental analysis, infrared, UV–vis and {sup 1}H NMR spectroscopes and the molecular structure of a representative complex, [Sm{sub 2}(Me-HQ){sub 4}(NO{sub 3}){sub 6}] (1), was determined by single-crystal X-ray diffraction. Utilization of a π-conjugated (phenanthroline) ligand as a second ligand in the structure of the samarium complexes resulted in red shifts in both absorption and fluorescence spectra of complexes and moderately enhanced the photoluminescence intensity and the fluorescence quantum yield. The maximum emission peaks showed that a good correlation exists between the nature of the substituent group on the 8-hydroxyquinoline and the addition of the π-conjugated ligand in the structure of samarium complexes and emission wavelength. Devices with samarium(III) complexes with structure of ITO/PEDOT:PSS (90 nm)/PVK:PBD:Sm(III) complexes (75 nm)/Al (180 nm) were fabricated. In the electroluminescence (EL) spectra of the devices, a strong ligand-centered emission and narrow bands arising from the {sup 4}G{sub 5/2}→{sup 6}H{sub J} transitions (J=7/2, 9/2, and 11/2) of the samarium ion were observed for the complexes. The electroluminescent spectra of the samarium complexes were red-shifted as compared with the PVK:PBD blend. We believe that the electroluminescence performance of OLED devices based on samarium complexes relies on overlaps between the absorption of the samarium compounds and the emission of PVK:PBD. This revealed that it is possible to evaluate the electroluminescence performance of the samarium compounds-doped OLED devices based on the emission of PVK:PBD and the absorption of the dopants. - Highlights: • Four novel photoluminescence samarium complexes have been synthesized.

  3. Role of samarium additions on the shape memory behavior of iron based alloys

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad; Kang, Kisuk

    2011-01-01

    Research highlights: → The effect of samarium contents on shape memory behavior has been studied. → Addition of samarium increases the strength, c/a ratio and ε (hcp martensite). → Addition of samarium retards the nucleation of α (bcc martensite). → Improvement in shape memory effect with the increase in samarium contents. - Abstract: The effect of samarium contents on shape memory behavior of iron based shape memory alloys has been studied. It is found that the strength of the alloys increases with the increase in samarium contents. This effect can be attributed to the solid solution strengthening of austenite by samarium addition. It is also noticed that the shape memory effect increases with the increase in samarium contents. This improvement in shape memory effect presumably can be regarded as the effect of improvement in strength, increase in c/a ratio and obstruction of nucleation of α in the microstructure.

  4. Samarium ion exchanged montmorillonite for high temperature cumene cracking reaction

    International Nuclear Information System (INIS)

    Binitha, N.N.

    2009-01-01

    Full text: Nano material Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using TPD of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Bronsted acidity is confirmed from high selectivity to benzene. (author)

  5. Basis for developing samarium AMS for fuel cycle analysis

    International Nuclear Information System (INIS)

    Buchholz, Bruce A.; Biegalski, Steven R.; Whitney, Scott M.; Tumey, Scott J.; Jordan Weaver, C.

    2010-01-01

    Modeling of nuclear reactor fuel burnup indicates that the production of samarium isotopes can vary significantly with reactor type and fuel cycle. The isotopic concentrations of 146 Sm, 149 Sm, and 151 Sm are potential signatures of fuel reprocessing, if analytical techniques can overcome the inherent challenges of lanthanide chemistry, isobaric interferences, and mass/charge interferences. We review the current limitations in measurement of the target samarium isotopes and describe potential approaches for developing Sm-AMS. AMS sample form and preparation chemistry will be discussed as well as possible spectrometer operating conditions.

  6. 4f and 5d magnetism in samarium

    International Nuclear Information System (INIS)

    Stunault, A.; Bernhoeft, N.; Vettier, C.; Dumesnil, K.; Dufour, C.

    2001-01-01

    We report on resonant magnetic X-ray scattering studies of a samarium epitaxial film at the samarium L 3 edge. We observe one quadrupolar resonance below the edge, reflecting the polarization of the 4f electrons, and two dipolar resonances above the edge, related to the polarization of the 5d band. We demonstrate, by following the thermal evolution of resonant magnetic intensities of both types, that the polarization of the 4f and 5d electrons present exactly the same temperature dependence, even very close to the ordering temperature, in agreement with the RKKY model for long-range magnetic order in rare earths

  7. Behavior of Samarium III during the sorption process

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia G, N.; Garcia R, G.

    2004-01-01

    In this work the results of the behavior of samarium in solution are presented, in front of a fine powder of zirconium silicate (zircon). For that which is necessary to characterize the zircon, studying the crystallinity, the morphology, the surface area and the isoelectric point. The behavior of samarium in solution is studied by means of the elaboration of isotherm of sorption, using the technique by lots. One observes that to pH values of nearer to the isoelectric point (pH = 7.23) the process of sorption of the samarium begins, reaching a maximum to near pH at 9. The technique of luminescence is used to determine the concentration of the sipped samarium (phosphorescence) and also to make the speciation of the species formed in the surface of the zircon (phosphorescence). The results can be extrapolated with the plutonium when making the modeling of the migration of alpha emitting coming from the repositories of radioactive waste since both they have similar chemical properties (they are homologous). (Author)

  8. Studies on ultrasonic velocity and electrical conductivity of samarium soaps in non-aqueous medium

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Chauhan, M.; Shukla, R.K.

    1990-01-01

    The ultrasonic velocity of solutions of samarium soaps in non-aqueous medium has been measured at a constant temperature and the results have been used to evaluate the various acoustic parameters. The pre-micellar association and the formation of micelles in samarium soap solutions have been determined by conductometric measurements. The molar conductance at infinite dilution, degree of ionisation and ionisation constant have been evaluated. The results show that samarium soaps behave as weak electrolyte in dilute solutions. (Authors)

  9. Solubility isotherms in ternary systems of samarium nitrate, water and nitrates of amidopyrine, benzotriazole

    International Nuclear Information System (INIS)

    Starikova, L.I.

    1991-01-01

    Solubility in the system of samarium nitrate-amidopyrine nitrate-water at 25 and 50 deg C was studied. Solubility isotherms consist of three branches, corresponding to crystallization of samarium nitrate tetrahydrate, amidopyrine nitrate and congruently soluble compounds of Sm(NO 3 ) 3 · 2C 13 H 17 ON 3 ·HNO 3 composition. Its thermal behaviour was studied. The system of samarium nitrate-benzotriazole nitrate-water is referred to eutonic type

  10. Dependence of samarium-soil interaction on samarium concentration: Implications for environmental risk assessment.

    Science.gov (United States)

    Ramírez-Guinart, Oriol; Salaberria, Aitor; Vidal, Miquel; Rigol, Anna

    2018-03-01

    The sorption and desorption behaviour of samarium (Sm), an emerging contaminant, was examined in soil samples at varying Sm concentrations. The obtained sorption and desorption parameters revealed that soil possessed a high Sm retention capacity (sorption was higher than 99% and desorption lower than 2%) at low Sm concentrations, whereas at high Sm concentrations, the sorption-desorption behaviour varied among the soil samples tested. The fractionation of the Sm sorbed in soils, obtained by sequential extractions, allowed to suggest the soil properties (pH and organic matter solubility) and phases (organic matter, carbonates and clay minerals) governing the Sm-soil interaction. The sorption models constructed in the present work along with the sorption behaviour of Sm explained in terms of soil main characteristics will allow properly assessing the Sm-soil interaction depending on the contamination scenario under study. Moreover, the sorption and desorption K d values of radiosamarium in soils were strongly correlated with those of stable Sm at low concentrations (r = 0.98); indicating that the mobility of Sm radioisotopes and, thus, the risk of radioactive Sm contamination can be predicted using data from low concentrations of stable Sm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Optical properties of zinc–vanadium glasses doped with samarium ...

    Indian Academy of Sciences (India)

    Abstract. Zinc–vanadium glasses doped with samarium oxide having the chemical composition Sm2O3(x). ZnO(40−x)V2O5(60)(where x = 0·1–0·5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been ...

  12. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    Science.gov (United States)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  13. SULFIDE MINERALS IN SEDIMENTS

    Science.gov (United States)

    The formation processes of metal sulfides in sediments, especially iron sulfides, have been the subjects of intense scientific research because of linkages to the global biogeochemical cycles of iron, sulfur, carbon, and oxygen. Transition metal sulfides (e.g., NiS, CuS, ZnS, Cd...

  14. Separation of lanthanum (3) and samarium (3) extraction with tributylphosphate in the solvent presence of solid phase

    International Nuclear Information System (INIS)

    Korotkevich, I.B.; Kolesnikov, A.A.; Bomshtejn, V.E.

    1990-01-01

    Lanthanum (3) and samarium (3) extraction from nitric acid solutions by tributylphosphate in the presence of solid phase has been investigated. An increase in samarium α-nitrate distribution factor in the presence of solid phase with a decrease in its concentration in the initial solution and with lanthanum nitrate concentration increase is detected. The greatest effect of separation is observed in samarium nitrate microregion. The method of quantitative extraction of samarium from lanthanum nitrate solutions with samarium-lanthanum separation factor exceeding 50 has been suggested

  15. Lanthanum (samarium) nitrate-4-aminoantipyrine nitrate-water systems

    International Nuclear Information System (INIS)

    Starikova, L.I.; Zhuravlev, E.F.

    1985-01-01

    Using the isothermal method of cross-sections at 50 deg C systems lanthanum nitrate-4-aminoantipyrine nitrate-water (1), samarium nitrate-4-aminoantipyrine nitrate-water (2), are studied. Isotherms of system 1 consist of two crystallization branches of initial salt components. In system 2 formation of congruently soluble compounds of the composition Sm(No) 3 ) 3 xC 11 H 13 ON 3 xHNO 3 is established. Analytical, X-ray phase and thermogravimetric analysis of the isolated binary salt are carried out

  16. Implementation of an analytical technique for Samarium; Implementacion de una tecnica analitica para Samario

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)

    2004-07-01

    Since the Samarium presents the same chemical properties that the plutonium, it has been used as homologous in studies that allow us to know the behavior that the plutonium presents in solution, with the advantage of working with an inactive and not very dangerous element. At the moment studies of sorption of plutonium or samarium are made on some mineral matrices that present certain surface properties. Due to the low concentrations that are used in the studies of sorption of samarium on those reagent substrates, their detection becomes very difficult for the conventional analysis media. The luminescence is a technique that can detect lower concentrations, smaller at 1 X 10{sup -} {sup 2} M, but when fluorofors are used this limit of detection increases in several orders of magnitude. In this work it has been used the arsenazo-III as fluorofor agent since it reacts in a specific way with the samarium, forming a complex that presents a proportional luminescence to the concentration of the present samarium. The advantage of making the quantification of samarium by luminescence is that it can use the same instrumental equipment to determine the speciation of the samarium sipped in the zircon. (Author)

  17. Synthesis of samarium binding bleomycin - a possible NCT radiosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, B.M., E-mail: bmm@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Mendes, T.M.; Campos, T.P.R., E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Bleomycin (BLM) is a drug that has attractive features for the development of a new radiopharmaceutical, particularly with regard to neutron capture therapy (NCT) sensitized by Sm-149. It has the ability to chelate many metal ions. In vitro studies have shown that up to 78% of BLM present in a cell is accumulated inside the nucleus or in the nuclear membrane. In addition, this drug has higher affinity for tumor tissues than for normal tissues. Radioactive isotopes carried by this antibiotic would be taken preferentially to one important cellular targets DNA. Besides, BLM displays intrinsic anti-tumor activity - it is a chemotherapic antibiotic clinically used against some cancers. This study aimed to obtain bleomycin molecules bound to samarium (BLM-Sm) for NCT studies in vitro and in vivo. The binding technique employed in this work has great simplicity and low cost. Thin layer chromatography, high performance liquid chromatography, fast protein liquid chromatography and analysis by ICP-AES were applied to verify the binding molecule. ICP-AES results showed the presence of samarium in the sample peaks related to BLM-Sm. However, efficiency and stability of this bond needs to be investigated. (author)

  18. Synthesis of samarium binding bleomycin - a possible NCT radiosensitizer

    International Nuclear Information System (INIS)

    Mendes, B.M.; Mendes, T.M.; Campos, T.P.R.

    2011-01-01

    Bleomycin (BLM) is a drug that has attractive features for the development of a new radiopharmaceutical, particularly with regard to neutron capture therapy (NCT) sensitized by Sm-149. It has the ability to chelate many metal ions. In vitro studies have shown that up to 78% of BLM present in a cell is accumulated inside the nucleus or in the nuclear membrane. In addition, this drug has higher affinity for tumor tissues than for normal tissues. Radioactive isotopes carried by this antibiotic would be taken preferentially to one important cellular targets DNA. Besides, BLM displays intrinsic anti-tumor activity - it is a chemotherapic antibiotic clinically used against some cancers. This study aimed to obtain bleomycin molecules bound to samarium (BLM-Sm) for NCT studies in vitro and in vivo. The binding technique employed in this work has great simplicity and low cost. Thin layer chromatography, high performance liquid chromatography, fast protein liquid chromatography and analysis by ICP-AES were applied to verify the binding molecule. ICP-AES results showed the presence of samarium in the sample peaks related to BLM-Sm. However, efficiency and stability of this bond needs to be investigated. (author)

  19. Preparation and examination of properties of samarium-153-EDTMP complex

    International Nuclear Information System (INIS)

    Nowak, M.; Garnuszek, P.; Lukasiewicz, A.; Wozniak, I.; Zulczyk, W.; Licinska, I.

    1995-01-01

    Preparation and properties of ethylenediaminetetramethylenephosphonic acid (EDTMP) as well as some properties of 153 Sm-EDTMP chelate have been examined. The chelate formed by samarium-153 (46.3 h, β - -decay) with EDTMP exhibits high bone uptake and can be used for treatment of disseminated, painful skeletal metastases. The purity and stability of solutions of 153 Sm-EDTMP chelate were examined in a broad range of samarium concentration and 153 Sm specific activity. The complex under study was examined by radio-TLC, -electrophoresis and radio-HPLC. The results obtained suggest the small size of molecules of 153 Sm-EDTMP chelate as compared with molecules of ''free''EDTMP. The results of biodistribution of 153 Sm-EDTMP determined in rats indicate the quick blood clearance, high deposition of radioactivity in bone and quick excretion of radioactivity into urine. No specific uptake of 153 Sm-EDTMP in extra-skeletal organs was found. (author). 42 refs, 13 figs, 22 tabs

  20. Influence of tellurite on lifetime for samarium doped lanthanum lead borate glass

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Samarium substituted tellurium lanthanum lead borate glass is prepared using melt quenching technique. Luminescence spectra have been recorded upon excitation with 402 nm various transitions from 4G5/2 level, for samarium doped tellurite glasses are studied and also lifetime for all the samples exhibit single exponential behaviour of decay curve. Luminescence spectra of present glasses show quenching effect due to cross-relation channels of samarium ions. The lifetime of glass samples decrease as the tellurite concentration is decreased. So, it evidences that to attain longer lifetime for lasing material one can tune the host by selecting concentration of tellurite.

  1. Purification of hydrogen sulfide

    International Nuclear Information System (INIS)

    Tsao, U.

    1978-01-01

    A process is described for purifying a hydrogen sulfide gas stream containing carbon dioxide, comprising (a) passing the gas stream through a bed of solid hydrated lime to form calcium hydrosulfide and calcium carbonate and (b) regenerating hydrogen sulfide from said calcium hydrosulfide by reacting the calcium hydrosulfide with additional carbon dioxide. The process is especially applicable for use in a heavy water recovery process wherein deuterium is concentrated from a feed water containing carbon dioxide by absorption and stripping using hydrogen sulfide as a circulating medium, and the hydrogen sulfide absorbs a small quantity of carbon dioxide along with deuterium in each circulation

  2. Resonances of coherent population trapping in samarium vapours

    International Nuclear Information System (INIS)

    Kolachevsky, Nikolai N; Akimov, A V; Kiselev, N A; Papchenko, A A; Sorokin, Vadim N; Kanorskii, S I

    2001-01-01

    Resonances of coherent population trapping were detected in atomic vapours of the rare-earth element samarium. The coherent population trapping was produced by two external-cavity diode lasers (672 and 686 nm) in a Λ-system formed by the three levels of 154 Sm: the 4f 6 6s 2 ( 7 F 0 ) ground state, the first fine-structure 4f 6 6s 2 ( 7 F 1 ) sublevel of the ground state and the 4f 6 ( 7 F)6s6p( 3 P o ) 9 F o 1 upper level. The dependence of the spectral shapes and resonance contrasts on the polarisation of the laser beams and the direction of the applied magnetic field was studied. The obtained results were analysed. (nonlinear optical phenomena)

  3. Optical and physical properties of samarium doped lithium diborate glasses

    Science.gov (United States)

    Hanumantharaju, N.; Sardarpasha, K. R.; Gowda, V. C. Veeranna

    2018-05-01

    Sm3+ doped lithium di-borate glasses with composition 30Li2O-60B2O3-(10-x) PbO, (where 0 molar volume with samarium ion content indicates the openness of the glass structure. The gradual increase in average separation of boron-boron atoms with VmB clearly indicates deterioration of borate glass network, which in turn leads to decrease in the oxygen packing density. The replacements of Sm2O3 for PbO depolymerise the chain structure and that would increase the concentration of non-bridging oxygens. The marginal increase of optical band gap energy after 1.0 mol.% of Sm2O3 is explained by considering the structural modification in lead-borate. The influence of Sm3+ ion on physical and optical properties in lithium-lead-borate glasses is investigated and the results were discussed in view of the structure of borate glass network.

  4. Magnetic behavior study of samarium nitride using density functional theory

    Science.gov (United States)

    Som, Narayan N.; Mankad, Venu H.; Dabhi, Shweta D.; Patel, Anjali; Jha, Prafulla K.

    2018-02-01

    In this work, the state-of-art density functional theory is employed to study the structural, electronic and magnetic properties of samarium nitride (SmN). We have performed calculation for both ferromagnetic and antiferromagnetic states in rock-salt phase. The calculated results of optimized lattice parameter and magnetic moment agree well with the available experimental and theoretical values. From energy band diagram and electronic density of states, we observe a half-metallic behaviour in FM phase of rock salt SmN in while metallicity in AFM I and AFM III phases. We present and discuss our current understanding of the possible half-metallicity together with the magnetic ordering in SmN. The calculated phonon dispersion curves shows dynamical stability of the considered structures. The phonon density of states and Eliashberg functional have also been analysed to understand the superconductivity in SmN.

  5. New reduced variant in gadolinium and samarium monoxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bist, B M.S.; Kumar, J; Srivastava, O N [Banaras Hindu Univ. (India). Dept. of Physics

    1977-01-01

    A new reduced phase has been observed in the thin films of gadolinium and samarium monoxides. This phase results on imparting an annealing treatment to the monoxides and is formed as a result of the creation and ordering of vacancies in the oxygen sublattice. The new phase has been analysed to possess a rhombohedral unit cell with lattice parameters a/sub R/ = a/sub 0/ square root of (3/2) and c/sub R/ = a/sub 0/ square root of 3 (based on hexagonal axes, a/sub 0/ being the lattice parameter of the fundamental zinc blende type unit cell of the monoxide). Based on the proposed structure, the new phase can be assigned the solid state chemical formula RO/sub x/ where R = Gd, Sm and x = 0.66.

  6. Biodistribution study of 153Sm-EDTMP produced by irradiation of natural and enriched Samarium, in rats

    International Nuclear Information System (INIS)

    Meftahi, M.; Bahrami Samani, A.; Babaei, M. H.; Shamsaei Zafarghandi, M.; Ghannadi Maragheh, M.

    2010-01-01

    ''1 53 Sm-EDTMP is one of the well known radiopharmaceuticals for pain palliation of bone metastases. Despite that, it is used just in a few countries. It is due to some reasons like being costly enriched samarium that usually used as target for irradiation and short half-life of 153 Sm. In this investigation, certain amounts of radiopharmaceuticals prepared by irradiation of enriched and natural samarium were injected to some normal rats. Then, the rodents were sacrificed and some of their organs were removed. All of the mentioned stages were performed in order to consider the possibility of exploiting natural samarium instead of enriched samarium by study of biodistribution of both radiopharmaceuticals in various organs especially in bone as the target tissue. At the end, the acceptable results were obtained using natural samarium in comparison with the enriched samarium from the point of view of the biodistribution studies.

  7. Samarium-153-EDTMP in the metastatic bone pain treatment

    International Nuclear Information System (INIS)

    Lins Filho, M.L.M.; Santos, A.O.; Nappi, A.P.B.; Meirelles, M.B.; Arouca, P.T.; Ramos, C.D.; Etchebehere, E.C.S.C.; Teixeira, L.C.; Netto Junior, N.R.; D'Ancona Cal; Camargo, E.E.

    1997-01-01

    Full text: Bone metastasis is the most reason of pain in prostate and mammary cancer patients. The Samarium-153-EDTMP has been showed as an alternative to the treatment of the metastasis bone pain. With the objective to evaluate the use of the Sm-153-EDTMP as a systemic therapy for the metastasis bone pain, 30 patients (19 male, 11 female, average age of 64,5 years) were studied. 19 patients with prostate cancer and 11 with mammary cancer. All the patients presented previous bone scintiscanning with multiple metastasis; interruption of the chemotherapy or radiotherapy for two or more weeks and leukocyte count higher than 2,000 leukocytes/mm 3 and platelets higher than 80,000/mm 3 . The patients were classified previously to the radioisotope therapy, as far the intensity of the pain in a scale from 0 to 10 is concerned. All the patients received 37 MBq/kg (1m Ci/kg) of weight of Sm-153-EDTMP by venous via. The evaluation 6 weeks after the therapy showed complete or partial pain relief in 22 patients (73,3%). Complete or partial pain relief has been obtained in 91,0% (10 in 11) of the patients with mammary cancer and in 62,2% (12 in 19) of the patients with prostate cancer. Transitory leukopenia (lower than 2,000 leukocytes/mm 3 ) and platelet count (lower than 80,000/mm 3 ) occurred in 33,3% of the patients. 8 patients (26,7%) did not responded to the therapy. The therapy with Samarium-153-EDTMP is a simple, safe and efficient method in the treatment of the bone pain caused by metastasis

  8. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes

    International Nuclear Information System (INIS)

    Castrillejo, Y.; Fernandez, P.; Medina, J.; Hernandez, P.; Barrado, E.

    2011-01-01

    This work concerns the electrochemical extraction of samarium from molten chlorides. In this way, the electrochemical behaviour of samarium ions has been investigated in the eutectic LiCl-KCl at the surface of tungsten, aluminium and aluminium coated tungsten electrodes. On a W inert electrode the electro-reduction of Sm(III) takes place in only one soluble-soluble electrochemical step Sm(III)/Sm(II). The electrochemical system Sm(II)/Sm(0) has not been observed within the electrochemical window, because of the prior reduction of Li(I) ions from the solvent, which inhibits the electro-extraction of Sm species from the salt on such a substrate. Sm metal in contact with the melt react to give Li(0) according to the reaction: Sm(0) + 2Li(I) ↔ Sm(II) + 2Li(0). On the contrary, on reactive Al electrodes the electrochemical system Sm(II)/Sm(0) was observed within the electroactive range. The potential shift of the redox couple is caused by the decrease of Sm activity in the metal phase due to the formation of Sm-Al alloys at the interface. The formation mechanism of the intermetallic compounds was studied in a melt containing: (i) both Sm(III) and Al(III) ions, using W and Al coated tungsten electrodes, and (ii) Sm(III) ions using an Al electrode. Analysis of the samples after potentiostatic electrolysis by X-ray diffraction and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), allowed the identification of Al 3 Sm and Al 2 Sm.

  9. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Castrillejo, Y., E-mail: ycastril@qa.uva.es [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Fernandez, P. [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Medina, J. [Dept Fisica Materia Condensada Cristalografia y Mineralogia, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Hernandez, P. [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42076 Pachuca, Hidalgo (Mexico); Barrado, E. [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain)

    2011-10-01

    This work concerns the electrochemical extraction of samarium from molten chlorides. In this way, the electrochemical behaviour of samarium ions has been investigated in the eutectic LiCl-KCl at the surface of tungsten, aluminium and aluminium coated tungsten electrodes. On a W inert electrode the electro-reduction of Sm(III) takes place in only one soluble-soluble electrochemical step Sm(III)/Sm(II). The electrochemical system Sm(II)/Sm(0) has not been observed within the electrochemical window, because of the prior reduction of Li(I) ions from the solvent, which inhibits the electro-extraction of Sm species from the salt on such a substrate. Sm metal in contact with the melt react to give Li(0) according to the reaction: Sm(0) + 2Li(I) {r_reversible} Sm(II) + 2Li(0). On the contrary, on reactive Al electrodes the electrochemical system Sm(II)/Sm(0) was observed within the electroactive range. The potential shift of the redox couple is caused by the decrease of Sm activity in the metal phase due to the formation of Sm-Al alloys at the interface. The formation mechanism of the intermetallic compounds was studied in a melt containing: (i) both Sm(III) and Al(III) ions, using W and Al coated tungsten electrodes, and (ii) Sm(III) ions using an Al electrode. Analysis of the samples after potentiostatic electrolysis by X-ray diffraction and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), allowed the identification of Al{sub 3}Sm and Al{sub 2}Sm.

  10. Australian manufacture of QuadrametTM (Samarium-153 EDTMP)

    International Nuclear Information System (INIS)

    Wood, N.R.; Whitwell, J.

    1997-01-01

    Quadramet T (Samarium-153 EDTMP) has been shown overseas to be potentially useful in the palliation of painful osteoblastic skeletal metastases and has been approved this year for general marketing in the USA. Australian Radioisotopes (ARI) has licensed this product from the Australian patent holders, Dow Chemical. Within the facilities of ARI, a hot cell has been dedicated to this product and fitted out to manufacture it weekly on a cycle related to the operating cycle of the Australian reactor HIFAR. Due to neutron flux limitations of HIFAR, the local formulation has an elemental Samarium content up to 200μg/mL whereas the overseas formulation has a level of 20-46μg/mL. All other specifications of the two products are essentially the same. In 1995 and 1996 a small clinical trial with 19 patients was held which demonstrated that the pharmacokinetic behaviour was also essentially the same by measuring blood clearance rates and skeletal uptake dynamics. Soft tissue uptake was also qualitatively determined. The ARI version is now the subject of an application for general marketing within Australia. Some useful characteristics of this agent are: almost complete excretion or fixation in the skeleton within 6 hours, rapid onset of clinical effect, applicability in most cases where an abnormal diagnostic bone scan correlates with painful sites, dosage can be tailored to individual patient uptake due to easy dose measurement and retreatment is quite possible. The use of this class of agents in pain palliation continues to increase. Australian manufacture of Quadramet TM provides a further option in the management of these difficult cases

  11. Fluorimetric determination of samarium(III) and europium(III) in neodymium oxide by separation with a resin column

    Energy Technology Data Exchange (ETDEWEB)

    Shaorong Liu; Jian Meng (Beijing Research Institute of Chemical Engineering and Metallurgy (China)); Wenhua Liu (General Research Institute for Non-Ferrous Metals (China))

    1992-08-24

    When thenoyltrifluoroacetone-phenanthroline-Triton X-100 is used to determine samarium(III) and europium(III) fluorimetrically, only a limited amount of neodymium(III) can be tolerated. By using an on- line separation which can partially separate neodymium(III) from samarium(III), a practical and convenient method was developed to detect samarium(III) at concentrations >0.05% and europium(III) at concentrations >0.005% in neodymium oxide. (author). 7 refs.; 4 figs.; 3 tabs.

  12. Fluorimetric determination of samarium(III) and europium(III) in neodymium oxide by separation with a resin column

    International Nuclear Information System (INIS)

    Shaorong Liu; Jian Meng; Wenhua Liu

    1992-01-01

    When thenoyltrifluoroacetone-phenanthroline-Triton X-100 is used to determine samarium(III) and europium(III) fluorimetrically, only a limited amount of neodymium(III) can be tolerated. By using an on- line separation which can partially separate neodymium(III) from samarium(III), a practical and convenient method was developed to detect samarium(III) at concentrations >0.05% and europium(III) at concentrations >0.005% in neodymium oxide. (author). 7 refs.; 4 figs.; 3 tabs

  13. Sorption-desorption of samarium in Febex bentonite

    International Nuclear Information System (INIS)

    Ramirez-Guinart, O.; Rigol, A.; Vidal, M.; Fernandez-Poyatos, P.; Alba, M. D.

    2012-01-01

    Document available in extended abstract form only. The chemical and physical nature of the clay is a key issue in the design of engineered barriers. The FEBEX bentonite is one of the clays candidates to be used in engineered barriers in deep geology repositories (DGR). Here, its performance was tested with respect to the sorption-desorption of samarium, which is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in high level radioactive waste in the form of the radioactive isotope 151 Sm. FEBEX bentonite was used in this study. This is a di-octahedral smectite, with isomorphic substitutions in tetrahedral and octahedral sheets. Its theoretical cation exchange capacity value is 1500 meq kg -1 . Sorption isotherms were obtained for Sm in the range of initial concentrations of 0.01 and 9 meq l -1 . Tests were carried out in deionized water and in a medium simulating the composition of interstitial water. Sorption tests were performed equilibrating 30 ml of the Sm solution with 0.2 g of clay. After a contact time of 24 hours, supernatants were decanted off after centrifugation. The quantification of the concentration of Sm in the initial and final solutions allowed us to quantify the Sm equilibrium concentration (C eq ), the fraction sorbed in the FEBEX bentonite (C sorb ) and to derive the sorption K d data. Desorption tests were applied to determine the desorption K d and the percentage of Sm reversibly sorbed. Desorption tests were performed with the bentonite residue from the sorption step, under the same experimental conditions, but without Sm. Powder X-ray diffractograms were obtained from 3 to 70 deg. 2θ with a step of 0.05 deg. and a counting time of 3 s. The crystalline phases were identified using the computer program X'Pert HighScore. The morphology of the samples was analyzed by SEM at 20 kV. An EDX system was fitted to the SEM equipment to perform chemical analyses of the samples using a Si/Li detector

  14. Mesostructured metal germanium sulfides

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, M.J.; Coombs, N.; Bedard, R.L.; White, S.; Thompson, L.K.; Ozin, G.A.

    1999-12-29

    A new class of mesostructured metal germanium sulfide materials has been prepared and characterized. The synthesis, via supramolecular assembly of well-defined germanium sulfide anionic cluster precursors and transition-metal cations in formamide, represents a new strategy for the formation of this class of solids. A variety of techniques were employed to examine the structure and composition of the materials. Structurally, the material is best described as a periodic mesostructured metal sulfide-based coordination framework akin to periodic hexagonal mesoporous silica, MCM-41. At the molecular scale, the materials strongly resemble microstructured metal germanium sulfides, in which the structure of the [Ge{sub 4}S{sub 10}]{sup 4{minus}} cluster building-blocks are intact and linked via {mu}-S-M-S bonds. Evidence for a metal-metal bond in mesostructured Cu/Ge{sub 4}S{sub 10} is also provided.

  15. Determination of 0.01–0.1% of samarium in 40–100 mg of lead chloride

    NARCIS (Netherlands)

    Agterdenbos, J.; Jütte, B.A.H.G.; Schuring, J.

    1971-01-01

    A method is described for the determination of 5–25 μg of samarium in about 40 mg of lead chloride, based on the removal of the lead by electrolysis and determination of the samarium by extraction with PAN and measurement of the extinction of the complex at 552 nm.

  16. Samarium (III Selective Membrane Sensor Based on Tin (IV Boratophosphate

    Directory of Open Access Journals (Sweden)

    Ashok S. K. Kumar

    2004-08-01

    Full Text Available Abstract: A number of Sm (III selective membranes of varying compositions using tin (IV boratophosphate as electroactive material were prepared. Polyvinyl chloride, polystyrene and epoxy resin were used as binding materials. Membrane having composition of 40% exchanger and 60% epoxy resin exhibited best performance. This membrane worked well over a wide concentration range of 1x10-5M to 1x10-1 M of samarium ions with a Super-Nernstian slope of 40 mV/decade. It has a fast response time of less than 10 seconds and can be used for at least six months without any considerable divergence in potentials. The proposed sensor revealed good selectivities with respect to alkali, alkaline earth, some transition and rare earth metal ions and can be used in the pH range of 4.0-10.0. It was used as an indicator electrode in the potentiometric titration of Sm (III ions against EDTA. Effect of internal solution was studied and the electrode was successfully used in non-aqueous media, too.

  17. Structural phase transition and electronic properties in samarium chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Y. S., E-mail: yspanwar2011@gmail.com [Department of Physics, Govt. New Science College Dewas-455001 (India); Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore, 466001 (India); Pataiya, J.; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.

  18. Magnetoresistance of samarium in the 4.2-300 K range

    International Nuclear Information System (INIS)

    Trubitsyn, V.A.; Shalashov, V.F.

    1980-01-01

    Electric conductivity, transverse and longitudinal magnetoresistance of polycrystalline samarium with the purity of 99.9% in the 4.2-300 K temperature range and in magnetic fields up to 50 ke, are measured. The constituent of specific electric conductivity caused by spin disorder is 30.7 μOhmxcm, m*/m=2.6, the exchange parameter is G=3.1 eVxA 3 . Both transverse and longitudinal magnetoresistance are positive at 4.2 K; and the increase of temperature reveals a number of anomalies, evidently conditioned by the alteration of samarium magnetic structure

  19. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  20. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen

    2012-01-01

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  1. Titanocene sulfide chemistry

    Czech Academy of Sciences Publication Activity Database

    Horáček, Michal

    2016-01-01

    Roč. 314, MAY 2016 (2016), s. 83-102 ISSN 0010-8545 R&D Projects: GA ČR(CZ) GAP207/12/2368 Institutional support: RVO:61388955 Keywords : titanocene sulfide chemistry * photolysis * titanocene hydrosulfides Ti-(SH)n Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.324, year: 2016

  2. Electron transfer to sulfides:

    International Nuclear Information System (INIS)

    Meneses, Ana Belen; Antonello, Sabrina; Arevalo, Maria Carmen; Maran, Flavio

    2005-01-01

    The problem of characterizing the steps associated with the dissociative reduction of sulfides has been addressed. The electrochemical reduction of diphenylmethyl para-methoxyphenyl sulfide in N,N-dimethylformamide, on both glassy carbon and mercury electrodes, was chosen as a test system. The electrode process involves the slow heterogeneous outer-sphere electron transfer to the sulfide, the fast cleavage of the C-S bond, the reduction of the ensuing carbon radical, and the self-protonation triggered by the generation of the strong base Ph 2 CH - . The latter reaction is rather slow, in agreement with the large intrinsic barriers characterizing proton transfers between CH-acids and carbon bases. The dissociative reduction was studied in the presence of an exogenous acid. The results, obtained by convolution analysis, point to a stepwise DET mechanism in which the ET step is accompanied by rather large reorganization energy. Similar results were obtained on both electrode materials. Analysis of the heterogeneous electron transfer and associated C-S bond cleavage indicate that the reduction of this and other sulfides lies between the stepwise dissociative electron transfers leading to the formation of stiff π* radical anions and those going through the intermediacy of loose σ* radical anions

  3. Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles

    CSIR Research Space (South Africa)

    Mandiwana, V

    2015-09-01

    Full Text Available the biodistribution of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([(sup153)Sm]Sm(sub2)O(sub3)) in vivo to prove that orally administered nanoparticles alter the biodistribution of a drug. These were then activated in a nuclear...

  4. Expedient Method for Samarium(II) Iodide Preparation Utilizing a Flow Approach

    Czech Academy of Sciences Publication Activity Database

    Voltrová, Svatava; Šrogl, Jiří

    2013-01-01

    Roč. 24, č. 3 (2013), s. 394-396 ISSN 0936-5214 R&D Projects: GA MŠk LH12013 Institutional support: RVO:61388963 Keywords : flow * samarium * iodide * reduction Subject RIV: CC - Organic Chemistry Impact factor: 2.463, year: 2013

  5. Collective effects in even-mass samarium isotopes by polarized-proton scattering

    NARCIS (Netherlands)

    Petit, R.M.A.L.; Hall, van P.J.; Klein, S.S.; Moonen, W.H.L.; Nijgh, G.J.; Overveld, van C.W.A.M.; Poppema, O.J.

    1993-01-01

    The even-mass samarium isotopes 148,...,152Sm have been investigated by polarized proton scattering at 20.4 MeV beam energy. The data have been analysed with an 'extended' optical model, where the intensities of the first maxima of the main inelastic channels are fitted in a coupled-channels

  6. Identification of the lines in the L emission spectrum of cerium and samarium

    International Nuclear Information System (INIS)

    Shrivastava, B.D.; Singh, D.

    1992-01-01

    The occurrence of a line at 2.1556 A in the L emission spectrum of cerium and two lines at 1.6679 and 1.8379 A in the L emission spectrum of samarium, reported many years ago, has remained a puzzle. These have now been identified as EXAFS minima occurring at the L absorption edges of the respective elements. (author)

  7. ppt level detection of samarium(III) with a coated graphite sensor based on an antibiotic.

    Science.gov (United States)

    Ganjali, Mohammad Reza; Rezapour, Morteza; Pourjavid, Mohammad Reza; Haghgoo, Soheila

    2004-07-01

    N-[2-[4-[[[(Cyclohexylamino)carbonyl]amino]sulfonyl]phenyl]ethyl]-5-methyl pyrazine carboxamide (glipizid) was explored as an electro-active material for preparing a polymeric membrane-based sensor selective to samarium ions. The membrane incorporated 30% poly(vinyl chloride) (PVC), 53% benzyl acetate (BA), 11% glipizid and 6% sodium tetraphenyl borate. When coated on the surface of a graphite electrode, it exhibits Nernstian responses in the concentration range of 1.0 x 10(-5) to 1.0 x 10(-10) M, with a detection limit of 8.0 x 10(-11)M samarium. The electrode shows high selectivity towards samarium over several cations (alkali, alkaline earth, transition and heavy metal ions), and specially lanthanide ions. The proposed sensor has a very short response time (pH range for at least ten weeks. It was used as an indicator electrode in potentiometric titration of Sm(III) ions with an EDTA solution, and for determination of samarium in binary and ternary mixtures.

  8. Diffusion of samarium into cobalt in the reduction-diffusion process

    International Nuclear Information System (INIS)

    Freitas Nogueira, P. de; Neto, F.B.; Landgraf, F.J.G.

    1998-01-01

    The presence of metallic cobalt in samarium-cobalt powders is a major cause for low magnetic properties in magnets. This paper intends to investigate the effect of time and temperature in the microstructure of powders produced by reduction-diffusion. This process, developed for the production of rare earth-transition metal alloys, consists on the reduction of the rare earth oxide with metallic calcium (or calcium hydride) and its subsequent diffusion into the cobalt particle. In the present work, a mixture of samarium oxide, cobalt powder and metallic calcium was heated to 1100 or 1200 C for 2 or 4 hours in a tubular furnace under one atmosphere of purified argon. The material thereof obtained, a sintered mass is disintegrated by aqueous crepitation. The powder was evaluated in terms of its chemical composition, its samarium yield and the intermetallic compounds present. The samarium, oxygen and calcium content of the powders produced were adequate for magnet production. However, despite the massive formation of the SmCo 5 compound after 2 hours at 1100 C, final homogeneity is attained only after 4 hours at 1200 C, with the presence of SmCo 5 and Sm 2 Co 7 and the absence of the Sm 5 Co 19 compound. Also, metallic cobalt and Sm 2 Co 17 were observed in the materials produced after 2 hours at 1100 or 1200 C. (orig.)

  9. Pressure and irradiation effects on transport properties of samarium compounds with instable valence

    International Nuclear Information System (INIS)

    Morillo, J.

    1981-01-01

    Electron transport properties in samarium compounds with instable valence are studied in this thesis: from SmS in its integer valence phases at common pressure to SmB 6 compound IV at common pressure through SmSsub(1-x)Psub(x) (x 6 is presented [fr

  10. Adsorption and the initial stages of samarium condensation on iridium coated by graphite monolayer

    International Nuclear Information System (INIS)

    Abdullaev, R.M.; Tontegode, A.Ya.; Yusifov, F.K.

    1978-01-01

    Adsorption and the initial stages of vacuum samarium condensation on iridium coated by graphite monolayer (valent-saturated neutral substrate) were studied by the thermodesorption mass-spectrometry and thermoemission methods, and were compared with samarium adsorption and condensation on iridium. Desorption heat of samarium atoms with thin coating of Ir-C, equal to E approximately 1.9 eV has been determined. For desorption with Ir E is approximately 6 eV. Such a great difference in desorption heats is connected with the reduction of covalent constituent of adsorption bond in a neutral substrate. Samarium on Ir-C is found to be condensated in two states: loosely bound and tightly bound which sharply differ in properties. The tightly bound state is characterized by abnormally low vapour pressure. Possible nature of this state is discussed. Double effect on the condensation of the substrate valent saturation is noted. On the one hand, the reduction of the particle bond with the substrate decreases their concentration on the surface, preventing condensation. On the other hand, the release of the valent eloctrons of adatous brings about strong lateral interaction between them, which in its turn, promotes condensation during eased migration on the neutral substrate

  11. Samarium-153 Oksabifor in the treatment of metastatic bone disease

    International Nuclear Information System (INIS)

    Solodyannikova, O.; Voit, N.; Sukach, G.; Sagan, D.

    2015-01-01

    patients - reducing the number of foci and the level of radiopharmaceutical uptake in them. Conclusions: radionuclide therapy in patients with BM can effectively suppress pain and significantly reduce the number of analgesics. Post-treatment patients, life quality statistically significantly improved. Samarium-153 has the ability to reduce BM number and intensity of radiopharmaceutical accumulation in spots in the control study. (authors)

  12. The samarium Grignard reaction. In situ formation and reactions of primary and secondary alkylsamarium(III) reagents

    Energy Technology Data Exchange (ETDEWEB)

    Curran, D.P.; Totleben, M.J. [Univ. of Pittsburgh, PA (United States)

    1992-07-15

    This work shows that primary and secondary radicals are rapidly reduced in THF/HMPA to form primary- and secondary-alkylsamarium reagents. The primary- and secondary-radicals can be formed either by direct SmI{sup 2} reductions of primary- and secondary-halides or by a previous rapid radical cyclization. The samarium reagents have moderate stability in solution, and they react with a variety of typical electrophiles, including aldehydes and ketones. The work further shows that organosamarium intermediates can be involved in the traditional samarium Barbier reaction of aldehydes and ketones conducted in THF/HMPA. A new procedure called the {open_quotes}samarium Grignard{close_quotes} method is introduced, and it is suggested that this new procedure will have considerably more scope and generality than the samarium Barbier reaction. 37 refs., 4 tabs.

  13. Influence of pretreatment temperature cycling on the radiating defect formation in silicon doped by samarium

    International Nuclear Information System (INIS)

    Abdurakhmanov, K.P.; Nazyrov, D.E.

    2006-01-01

    Full text: The raise of thermal and radiation stability as it is known, is one of actual problems of physics semiconductors. Recently it is established, that the rare-earth elements (REE) raise a stability of silicon to exterior action. In this connection the investigation of silicon doped REE by samarium and influence on its properties of heat treatments and radiation exposure is important. In sectional operation the outcomes of investigations of influence of samarium on thermal (600 degree C are reduced; 600 deg. + 900 deg. C; 900 deg. C; 900 deg. C + 600 deg. C; 1100 deg. C; 600 deg. C + 900 deg. C + 1100 deg. C; 900 deg. C + 600 deg. C + 1100 deg. C) thermal defect formation and radiation defect formation (exposure of γ-quanta 60 Co) both in beforehand wrought, and in thermally unfinished samples. After each cycle of heat treatments samples cool fast (throwing off in oil) or slowly (together with the furnace). Doping n-silicon REE by gadolinium and samarium was carried out during cultivation. The concentration of gadolinium and samarium in silicon, on sectional of a neutron-activation analysis was equaled 10 14 - 10 18 cm -3 . As control is model monocrystal silicon such as KEP-15/50. Para-meters of deep levels originating in control and doped REE samples, both past heat treatment or temperature cycling, and irradiated by the γ-quanta are defined by methods of a capacity spectroscopy: DLTS and IRC. The obtained outcomes have shown, that in irradiated with the γ-quanta 60 Co deep levels samples are formed with energies: E C -0,17 eV, E C -0,32 eV, EC-0,41 eV. Thus the parameters of deep levels vary depending on requirements of prestress heat treatment. For example heat treatment at 600 deg. C essentially increments a velocity of introduction of and centre (deep level of E C -0,17 eV), in comparison with a velocity of introduction of this level in samples with prestress heat treatment at 900 deg. C. In samples n-Si doped by samarium effectiveness of formation

  14. Solar nebula heterogeneity in p-process samarium and neodymium isotopes.

    Science.gov (United States)

    Andreasen, Rasmus; Sharma, Mukul

    2006-11-03

    Bulk carbonaceous chondrites display a deficit of approximately 100 parts per million (ppm) in 144Sm with respect to other meteorites and terrestrial standards, leading to a decrease in their 142Nd/144Nd ratios by approximately 11 ppm. The data require that samarium and neodymium isotopes produced by the p process associated with photodisintegration reactions in supernovae were heterogeneously distributed in the solar nebula. Other samarium and neodymium isotopes produced by rapid neutron capture (r process) in supernovae and by slow neutron capture (s process) in red giants were homogeneously distributed. The supernovae sources supplying the p- and r-process nuclides to the solar nebula were thus disconnected or only weakly connected.

  15. Ultrasonic and viscosimetric studies of samarium laurate in benzene-dimethylsulfoxide mixtures

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Anis, M.

    1995-01-01

    Ultrasonic and viscosity measurements of samarium laurate in benzene-DMSO mixtures of different compositions (7:3 and 1:1 V/V) have been used to determine the critical micelle concentration (CMC), soap-solvent interaction, and various acoustic parameters of the system. The values of critical micelle concentration increase with increasing amount of DMSO in the solvent mixtures. The viscosity results have been explained on the basis of equations proposed by Einstein, Vand. Moulik, and Jones-Dole. The values of CMC for samarium laurate obtained from the viscosity measurements are in agreement with the results obtained from ultrasonic measurements. The results show that the soap molecules do not aggregate appreciably below CMC there is a marked change in the aggregation behaviour at CMC. (author)

  16. Removal of trivalent samarium from aqueous solutions by activated biochar derived from cactus fibres

    Institute of Scientific and Technical Information of China (English)

    Loukia Hadjittofi; Styliana Charalambous; Ioannis Pashalidis

    2016-01-01

    The efficiency of activated biochar fibres obtained fromOpuntia Ficus Indica regarding the sorption of trivalent samarium (Sm(III)) from aqueous solutions was investigated by batch experiments. The effect of various physicochemical parameters (e.g. pH, initial metal concentration, ionic strength, temperature and contact time) on the Sm(III) adsorption was studied and the surface species were characterized by FTIR spectroscopy prior to and after the lanthanide sorption. The experimental results showed that the acti-vated biochar fibres possessed extraordinary sorption capacity for Sm(III) in acidic solutions (qmax=90 g/kg, pH 3.0) and near neutral solutions (qmax=350 g/kg, pH 6.5). This was attributed to the formation of samarium complexes with the surface carboxylic moieties, available in high density on the lamellar structures of the bio-sorbent.

  17. Enhanced electron-lattice coupling under uniaxial stress in layered double hydroxides intercalated with samarium complexes

    International Nuclear Information System (INIS)

    Park, Ta-Ryeong

    2004-01-01

    We have applied uniaxial stress to samarium complexes by intercalating them into the gallery of a layered material and by using a diamond-anvil cell at 28 K. Although uniaxial stress reduces symmetry and removes degeneracy, the overall number of photoluminescence (PL) peaks evidently decreased with the application of uniaxial stress. This contradictory observation is explained by an increased electron-lattice coupling strength under uniaxial stress. This behavior is also confirmed by time-resolved PL data.

  18. Synthesis of samarium complexes with the derivative binder of Schiff Quinolinic base. Characterization and photophysical study

    International Nuclear Information System (INIS)

    Lucas H, J.

    2016-01-01

    In this work we determined the metal: binder stoichiometry of the species formed during the UV/Vis spectrophotometric titration of the derivative binder of Schiff quinolinic base, L1 with the samarium nitrate pentahydrate in methanol. Statistical analysis of the data allowed proposing the metal: binder stoichiometry for the synthesis of the complexes which was one mole of samarium salt by 2.5 moles of binder and thus favor the formation of complexes with 1M: 1L and 1M: 2L stoichiometries. They were synthesized in aqueous-organic medium (water-ethanol), isolated and purified two complexes with stoichiometry 1 Sm: 1 L1, complex 1 and 1 Sm: 2 L1, complex 2. The overall yield of the reaction was 76%. The characterization of the formed complexes was performed by visible ultraviolet spectrometry (UV/Vis), nuclear magnetic resonance, X-ray photoelectron spectroscopy (XP S), thermal gravimetric analysis with differential scanning calorimetry (TGA/DSC), and radial distribution function. These complexes were studied by fluorescence and emission phosphorescence at variable temperature. Spectroscopic techniques used in both solution and solid demonstrated the formation and stability of these complexes. In addition XP S indicated that in both complexes the samarium retains its oxidation state 3+. Luminescence studies indicated that there is intra-binding charge transfer which decreases the transfer of light energy from the binder to the samarium. Based on the experimental results, L1 binder molecules and complexes 1 and 2 were modeled that demonstrated the proposed Nc for each complex, as well as allowed to visualize the structural arrangement of the molecules, complexes and binder. (Author)

  19. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems

    International Nuclear Information System (INIS)

    Diaz F, J.C.

    2006-01-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  20. Impact of educational strategies in positioning Samarium-153 EDTMP as a treatment for metastatic bone pain

    International Nuclear Information System (INIS)

    Seminario, C.; Morales, R.; Castro, M.; Cano, R.A.; Mendoza, G.

    2005-01-01

    To educate is a difficult task but its results make efforts worthwhile. Many patients in Peru suffer from intractable bone pain due to metastases. Since 1993 radionuclides were used to palliate bone pain due to metastases in Peru. First, with the help of the IAEA, Peru participated in a clinical trial using Phosphorus 32 and Strontium 89. Then, efforts were performed to produce Samarium 153 EDMTP locally, which was achieved in 1995. Nevertheless, years passed and Samarium use did not increase proportionally to the needs of people with cancer and bone pain, mainly the poor. Educational strategies have been proven useful for delivering solutions to many health problems in other diseases and also in cancer. Health education makes patients and their relatives assume responsible care of their problems. The purpose of this work was to increase Samarium EDTMP use as palliative treatment in patients with bone pain due to metastases, using educational strategies as means to change attitudes towards this health problem. In September 2003, a task group conducted studies in order to apply several methods to achieve the goal of increasing Samarium EDTMP use. Educational strategies employed were performed to provide verbal and written information to patients, physicians, medical students, residents, pain specialists, oncologists and neurologists, as well as general public. Verbal information included radio interviews, television spots and a phone number (in charge of two secretaries, prepared for answering and if not possible, a physician was in charge of attending patient consultation), e-mail and a web page for consultation. Written material was delivered to several newspapers, including clinical use of Samarium, possibilities of being elected for treatment, benefits and risks and a photography of the product. Politics of the institution producing Samarium changed, in order to achieve minimum cost of the product and it was delivered to all publics at the lowest cost for a year

  1. Sulfide Mineral Surfaces

    International Nuclear Information System (INIS)

    Rosso, Kevin M.; Vaughan, David J.

    2006-01-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by structure type

  2. Sulfide Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, Kevin M.; Vaughan, David J.

    2006-08-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by

  3. Inductively coupled plasma optical emission spectrometry analysis of lanthanum, samarium and gadolinium oxides for rare earths impurities

    International Nuclear Information System (INIS)

    Reino, L.C.P.; Lordello, A.R.

    1990-09-01

    An inductively coupled plasma optical emission spectrometry method is described for the determination of Sm, Eu, La, Gd, Dy, Pr, Ho, Nd, Tb and Y in purified oxides of lanthanum, samarium and gadolinium. The method enables a simple, precise and readily available determination. Dissolution of the samples is achieved with diluted hydrochloric acid (1:1). The solutions are diluted to volume for a concentration of 1mg/ml. The lowest determination limit is 0,01% for most elements and 0,05 or 0,1% for a few rare earths in samarium and gadolinium matrices. Lanthanum, Samarium and Gadolinium concentrates with purity grade of 99,9%, 99,6% and 99,8%, respectively, can be analysed by this procedure. (author)

  4. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  5. Synthesis and structure of unprecedented samarium complex with bulky bis-iminopyrrolyl ligand via intramolecular C=N bond activation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Suman; Anga, Srinivas; Harinath, Adimulam; Panda, Tarun K. [Department of Chemistry, Indian Institute of Technology, Hyderabad (India); Pada Nayek, Hari [Department of Applied Chemistry, Indian Institute of Technology, (ISM) Dhanbad, Jharkhand (India)

    2017-12-29

    An unprecedentate samarium complex of the molecular composition [{κ"3-{(Ph_2CH)N=CH}{sub 2}C{sub 4}H{sub 2}N}{κ"3-{(Ph_2CHN=CH)(Ph_2CHNCH)C_4H_2N}Sm}{sub 2}] (2), which was isolated by the reaction of a potassium salt of 2,5-bis{N-(diphenylmethyl)-iminomethyl}pyrrolyl ligand [K(THF){sub 2}{(Ph_2CH)N=CH}{sub 2}C{sub 4}H{sub 2}N] (1) with anhydrous samarium diiodide in THF at 60 C through the in situ reduction of imine bond is presented. The homoleptic samarium complex [[κ{sup 3}-{(Ph_2CH)-N=CH}{sub 2}C{sub 4}H{sub 2}N]{sub 3}Sm] (3) can also be obtained from the reaction of compound 1 with anhydrous samarium triiodide (SmI{sub 3}) in THF at 60 C. The molecular structures of complexes 2 and 3 were established by single-crystal X-ray diffraction analysis. The molecular structure of complex 2 reveals the formation of a C-C bond in the 2,5-bis{N-(diphenylmethyl)iminomethyl}pyrrole ligand moiety (Ph{sub 2}Py{sup -}). However, complex 3 is a homoleptic samarium complex of three bis-iminopyrrolyl ligands. In complex 2, the samarium ion adopts an octahedral arrangement, whereas in complex 3, a distorted three face-centered trigonal prismatic mode of nine coordination is observed around the metal ion. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  7. X-ray spectrum in the range (6-12) A emitted by laser-produced plasma of samarium

    International Nuclear Information System (INIS)

    Louzon, Einat; Henis, Zohar; Levi, Izhak; Hurvitz, Gilad; Ehrlich, Yosi; Fraenkel, Moshe; Maman, Shlomo; Mandelbaum, Pinchas

    2009-01-01

    A detailed analysis of the x-ray spectrum emitted by laser-produced plasma of samarium (6-12 A) is presented, using ab initio calculations with the HULLAC relativistic code and isoelectronic considerations. Resonance 3d-nf (n=4 to 7), 3p-4d, 3d-4p, and 3p-4s transitions in Ni samarium ions and in neighboring ionization states (from Mn to Zn ions) were identified. The experiment results show changes in the fine details of the plasma spectrum for different laser intensities.

  8. Peculiarities of electronic, phonon and magnon subsystems of lanthanum and samarium tetraborides

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, V.V., E-mail: vvnovikov@mail.ru; Mitroshenkov, N.V.; Matovnikov, A.V.

    2015-10-15

    Experimental research was carried out to study the temperature dependences of heat capacity C{sub p}(T = 2–300 K), lattice parameters a(T), and ≿(T), (5–300 K) of lanthanum and samarium tetraborides. A comparison with data obtained previously for LuB{sub 4} reveals the peculiar influence of lanthanide contraction and the rare-earths mass on the thermodynamic properties of rare earth tetraborides at low and high temperatures. Sharp anomalies were found in the heat capacity and thermal expansion for SmB{sub 4} at T{sub N} = 25.1 K, conditioned by the phase transition into antiferromagnetic state. The more poorly defined heat capacity anomaly around 7 K is referred to the quadrupole orbital fluctuation of the atomic magnetic moments for Sm{sup 3+} ions. The electronic, lattice, and magnetic contributions to the heat capacity and thermal expansion of samarium tetraboride were defined. Our approach makes it possible to adequately approximate the lattice components of heat capacity and thermal expansion by combining the Debye and Einstein contributions, which are based on the joint analysis of calorimetric and X-ray data. The influence of the frustration of the atomic magnetic moment system for Sm{sup 3+} ions on the thermodynamic characteristics of the samarium tetraboride magnetic phase transition was revealed. - Highlights: • The heat capacity and lattice parameters for LaB{sub 4} and SmB{sub 4} were determined at 2–300 K. • The anomalies of C{sub p}(T), a(T), c(T) for SmB{sub 4} due to the phase transition are revealed. • The lattice contributions to the thermal properties of LaB{sub 4} and SmB{sub 4} are analyzed.

  9. Separation of lanthanum from samarium on solid aluminum electrode in LiCl-KCl eutectic melts

    International Nuclear Information System (INIS)

    De-Bin Ji; Mi-Lin Zhang; Xing Li; Xiao-Yan Jing; Wei Han; Yong-De Yan; Yun Xue; Zhi-Jian Zhang; Harbin Engineering University, Harbin

    2015-01-01

    This paper presents an electrochemical study on the separation of lanthanum from samarium on aluminum electrode at 773 K. The results from different electrochemical methods showed that Sm(III) and La(III) formed Al-Sm and Al-La intermetallic compounds on an aluminum electrode at electrode potential around -1.67 and -1.46 V, respectively. The electrochemical separation of lanthanum was carried out in LiCl-KCl-LaCl 3 -SmCl 3 melts on solid aluminum electrodes at 773 K by potentiostatic electrolysis at -1.45 V for 40 h and the separation efficiency was 99.1 %. (author)

  10. Determination of micro amounts of samarium and europium by analogue derivative spectrophotometry

    International Nuclear Information System (INIS)

    Ishii, H.; Satoh, K.

    1982-01-01

    Derivative spectrophotometry using the analogue differentiation circuit was applied to the determination of samarium and europium at ppm levels. By measuring the second or the fourth derivative spectra of the characteristic absorption bands of both the rare earth ions around 400 nm, they can be determined directly and selectively in the presence of large amounts of most other rare earths without any prior separation. Further, aptly selecting conditions for the measurement of the derivative spectra, the simultaneous determination of both the rare earth elements was feasible. The principle and the characteristics of analogue derivative spectrophotometry are also described. (orig.) [de

  11. Evaluation of samarium-153 and holmium-166-EDTMP in the normal baboon model

    Energy Technology Data Exchange (ETDEWEB)

    Louw, W.K.A.; Dormehl, I.C.; Rensburg, A.J. van; Hugo, N.; Alberts, A.S.; Forsyth, O.E.; Beverley, G.; Sweetlove, M.A.; Marais, J.; Loetter, M.G.; Aswegen, A. van

    1996-11-01

    Bone-seeking radiopharmaceuticals such as ethylenediaminetetramethylene phosphonate (EDTMP) complexes of samarium-153 and holmium-166 are receiving considerable attention for therapeutic treatment of bone metastases. In this study, using the baboon experimental model, multicompartmental analysis revealed that with regard to pharmacokinetics, biodistribution, and skeletal localisation, {sup 166}Ho-EDTMP was significantly inferior to {sup 153}Sm-EDTMP and {sup 99m}Tc-MDP. A more suitable {sup 166}Ho-bone-seeking agent should thus be sought for closer similarity to {sup 153}Sm-EDTMP to exploit fully the therapeutic potential of its shorter half-life and more energetic beta radiation.

  12. Body composition analysis by DEXA by using dynamically changing samarium filtration

    DEFF Research Database (Denmark)

    Gotfredsen, Arne; Baeksgaard, L; Hilsted, J

    1997-01-01

    Dual-energy X-ray absorptiometry (DEXA) has a high accuracy for body composition analysis but is influenced by beam hardening and other error sources in the extremes of measurement. To compensate for beam hardening, the Norland XR-36 introduces a dynamically changing samarium filtration system......). Scans of six healthy volunteers covered with combinations of beef and lard (approximately 5-15 kg) showed a good agreement (r = 0.99) between reference and DEXA values of added soft tissue mass and fat percentage. We conclude that the DEXA method (and, in particular, the Norland XR-36 using dynamic...

  13. Performance analysis of samarium cobalt P.M. synchronous motor fed from PWM inverters

    International Nuclear Information System (INIS)

    Rahman, M.A.; Choudhury, M.A.

    1985-01-01

    This paper presents an analysis and performance of samarium cobalt permanent magnet (P.M.) synchronous motors fed from two types of voltage source pulse width modulated (PWM) inverters. The analysis and test results on the steady state performance of a P.M. motor fed from PWM inverters are presented. PWM inverters are used in variable voltage variable frequency applications to avoid a double conversion process of ordinary inverters. In drives, they are used for voltage and speed regulation of motors. Use of modulation technique in inverters also allow to eliminate or minimize selected harmonics from the inverter output voltage

  14. Production of SmCo5 alloy by calciothermic reduction of samarium oxide

    International Nuclear Information System (INIS)

    Krishnan, T.S.; Gupta, C.K.

    1988-01-01

    Among the established permanent magnets, SmCo 5 magnet occupies the foremost position as it offers a unique combination of high energy product, coercivity and curie temperature. The SmCo 5 magnets are thus extensively used for high field applications. These are also best suited for use in environments where high demagnetizing field and high temperature are operative. Also, for applications where high performance and miniaturization are the over-riding considerations, the choice again falls on SmCo 5 magnets. The main deterrent to the widespread use of SmCo 5 magnet is its high cost. Both samarium and cobalt metals are high priced, and the magnets prepared from their directly melted alloy are thus naturally very expensive. An alternate process involving calcium reduction of their oxide intermediates has, therefore, been studied and the alloy prepared by this process has been evaluated and found satisfactory for magnet production. The process essentially involves compaction of the charge mix containing samarium oxide, cobalt oxide (or metal) and calcium metal and reduction of the charge compact at 1000-1300 degrees C in hydrogen atmosphere, followed by water and acid leaching, drying and classification

  15. Polypyrrole-coated samarium oxide nanobelts: fabrication, characterization, and application in supercapacitors

    Science.gov (United States)

    Liu, Peng; Wang, Yunjiao; Wang, Xue; Yang, Chao; Yi, Yanfeng

    2012-11-01

    Polypyrrole-coated samarium oxide nanobelts were synthesized by the in situ chemical oxidative surface polymerization technique based on the self-assembly of pyrrole on the surface of the amine-functionalized Sm2O3 nanobelts. The morphologies of the polypyrrole/samarium oxide (PPy/Sm2O3) nanocomposites were characterized using transmission electron microscope. The UV-vis absorbance of these samples was also investigated, and the remarkable enhancement was clearly observed. The electrochemical behaviors of the PPy/Sm2O3 composites were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge. The results indicated that the PPy/Sm2O3 composite electrode was fully reversible and achieved a very fast Faradaic reaction. After being corrected into the weight percentage of the PPy/Sm2O3 composite at a current density of 20 mA cm-2 in a 1.0 M NaNO3 electrolyte solution, a maximum discharge capacity of 771 F g-1 was achieved in a half-cell setup configuration for the PPy/Sm2O3 composites electrode with the potential application to electrode materials for electrochemical capacitors.

  16. Ekstraksi Pemisahan Neodimium dari Samarium, Itrium dan Praseodimium Memakai Tri Butil Fosfat

    Directory of Open Access Journals (Sweden)

    Maria Veronica Purwani

    2017-05-01

    Full Text Available The extraction of Nd(OH3 (neodymium hydroxide concentrate containing Y (yttrium, Sm (samarium and Pr (praseodymium as product of monazite processed has been done. The purpose of this study is to determine the separation of Nd from Y, Pr and Nd Sm in Nd concentrate. The aqueous phase was concentrated Nd (OH3 in HNO3 and extractant while organic phase was Tri Butyl Phosphate (TBP in kerosene. Parameters studied were pH and concentration feed, concentration of TBP in kerosene, extraction time and stirring speed. The result showed that the optimization of separation extraction neodymium from samarium, yttrium and praseodymium in Nd(OH3 concentrated with TBP, obtained the optimum condition of pH = 0.2, concentration of feed 100 g /L, concentration of TBP in kerosene 5%, extraction time 15 minutes and stirring speed 150 rpm. With the conditions, Separation Factor (SF obtained for Nd-Y, Nd-Pr, Nd-Sm are 2.242, 4.811, 4.002 respectively, while D and extraction efficiency of Nd are 0.236 and 19.07%.

  17. Thermomechanical behavior of Fe-Mn-Si-Cr-Ni shape memory alloys modified with samarium

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad

    2009-01-01

    The deformation and training behavior of Fe-14Mn-3Si-10Cr-5Ni (wt.%) shape memory alloys containing samarium addition has been studied in the iron-based shape memory alloys. It is noticed that thermomechanical treatment (training) has significant influence on proof stress, critical stress and shape memory behavior of the alloys. The improvement in shape memory behavior can be attributed to the decrease in the proof stress and critical stress which facilitates the formation of ε (hcp martensite). It is also observed that alloy 2 containing samarium undergoes less softening as compared to alloy 1 with training which inhibits the formation of α (bcc martensite) and thus enhances the shape memory behavior. The excessive thermomechanical treatment with increase in the training cycle has led to the formation of α (bcc martensite) along with ε (hcp martensite) in the alloy 1 which appeared to have decline in the shape memory effect. This has been demonstrated by the examination of microstructure and identification of α (bcc martensite) martensite in the alloy 1 as compared to alloy 2

  18. Phase Composition of Samarium Niobate and Tantalate Thin Films Prepared by Sol-Gel Method

    Science.gov (United States)

    Bruncková, H.; Medvecký, Ľ.; Múdra, E.; Kovalčiková, A.; Ďurišin, J.; Šebek, M.; Girman, V.

    2017-12-01

    Samarium niobate SmNbO4 (SNO) and tantalate SmTaO4 (STO) thin films ( 100 nm) were prepared by sol-gel/spin-coating process on alumina substrates with PZT interlayer and annealing at 1000°C. The precursors of films were synthesized using Nb or Ta tartrate complexes. The improvement of the crystallinity of monoclinic M'-SmTaO4 phase via heating was observed through the coexistence of small amounts of tetragonal T-SmTa7O19 phase in STO precursor at 1000°C. The XRD results of SNO and STO films confirmed monoclinic M-SmNbO4 and M'-SmTaO4 phases, respectively, with traces of orthorhombic O-SmNbO4 (in SNO). In STO film, the single monoclinic M'-SmTaO4 phase was revealed. The surface morphology and topography of thin films were investigated by SEM and AFM analysis. STO film was smoother with roughness 3.2 nm in comparison with SNO (6.3 nm). In the microstructure of SNO film, small spherical ( 50 nm) and larger cuboidal particles ( 100 nm) of the SmNbO4 phase were observed. In STO, compact clusters composed of fine spherical SmTaO4 particles ( 20-50 nm) were found. Effect of samarium can contribute to the formation different polymorphs of these films for the application to environmental electrolytic thin film devices.

  19. Polypyrrole-coated samarium oxide nanobelts: fabrication, characterization, and application in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu Peng, E-mail: pliu@lzu.edu.cn; Wang Yunjiao; Wang Xue; Yang Chao; Yi Yanfeng [College of Chemistry and Chemical Engineering, Lanzhou University, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry (China)

    2012-11-15

    Polypyrrole-coated samarium oxide nanobelts were synthesized by the in situ chemical oxidative surface polymerization technique based on the self-assembly of pyrrole on the surface of the amine-functionalized Sm{sub 2}O{sub 3} nanobelts. The morphologies of the polypyrrole/samarium oxide (PPy/Sm{sub 2}O{sub 3}) nanocomposites were characterized using transmission electron microscope. The UV-vis absorbance of these samples was also investigated, and the remarkable enhancement was clearly observed. The electrochemical behaviors of the PPy/Sm{sub 2}O{sub 3} composites were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge. The results indicated that the PPy/Sm{sub 2}O{sub 3} composite electrode was fully reversible and achieved a very fast Faradaic reaction. After being corrected into the weight percentage of the PPy/Sm{sub 2}O{sub 3} composite at a current density of 20 mA cm{sup -2} in a 1.0 M NaNO{sub 3} electrolyte solution, a maximum discharge capacity of 771 F g{sup -1} was achieved in a half-cell setup configuration for the PPy/Sm{sub 2}O{sub 3} composites electrode with the potential application to electrode materials for electrochemical capacitors.

  20. Pemisahan Unsur Samarium dan Yttrium dari Mineral Tanah Jarang dengan Teknik Membran Cair Berpendukung (Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Amri Amin

    2009-06-01

    Full Text Available he increasing use of rare earth elements in high technology industries needs to be supported by developmental work for the separation of elements. The research objective is fiercely attracting and challenging considering the similarity of bath physical and chemical properties among these elements. The rate separation of samarium and yttrium elements using supported liquid membrane has been studied. Polytetrafluoroethylene (PTFE with pore size of 0.45 µm has been used as the membrane and di(2-ethylhexyl phosphate (D2EHP in hexane has been used as a carrier and nitric acid solution has been used as receiving phase. Result of experiments showed that the best separation rate of samarium and yttrium elements could be obtained at feeding phase of pH 3.0, di(2-ethylhexyl phosphate (D2EHP concentration of 0.3 M, agitation rate of 700 rpm, agitation time of 2 hours, and nitric acid and its solution concentrations of 1.0 M and 0.1 M, respectively. At this condition, separation rates of samarium and yttrium were 64.4 and 67.6%, respectively.   Keywords: liquid membrane, rare earth elements, samarium, yttrium

  1. Behavior of Samarium III during the sorption process; Comportamiento del Samario-III durante el proceso de sorcion

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E.; Garcia G, N.; Garcia R, G. [ININ, Carr. Mexico-Toluca Km 36.5, Salazar, Estado de Mexico (Mexico)]. e-mail: edo@nuclear.inin.mx

    2004-07-01

    In this work the results of the behavior of samarium in solution are presented, in front of a fine powder of zirconium silicate (zircon). For that which is necessary to characterize the zircon, studying the crystallinity, the morphology, the surface area and the isoelectric point. The behavior of samarium in solution is studied by means of the elaboration of isotherm of sorption, using the technique by lots. One observes that to pH values of nearer to the isoelectric point (pH = 7.23) the process of sorption of the samarium begins, reaching a maximum to near pH at 9. The technique of luminescence is used to determine the concentration of the sipped samarium (phosphorescence) and also to make the speciation of the species formed in the surface of the zircon (phosphorescence). The results can be extrapolated with the plutonium when making the modeling of the migration of alpha emitting coming from the repositories of radioactive waste since both they have similar chemical properties (they are homologous). (Author)

  2. A Reaction Involving Oxygen and Metal Sulfides.

    Science.gov (United States)

    Hill, William D. Jr.

    1986-01-01

    Describes a procedure for oxygen generation by thermal decomposition of potassium chlorate in presence of manganese dioxide, reacted with various sulfides. Provides a table of sample product yields for various sulfides. (JM)

  3. Sulfide-conducting solid electrolytes

    International Nuclear Information System (INIS)

    Kalinina, L.A.; Shirokova, G.I.; Murin, I.V.; Ushakova, Yu.N.; Fominykh, E.G.; Lyalina, M.Yu.

    2000-01-01

    Feasibility of sulfide transfer in phases on the basis of BaZrS 3 and MLn 2 S 4 ( M = Ca, Ba; Ln = La, Y, Tm, Nd, Sm, Pr) is considered. Solid solution regions on the basis of ternary compounds are determined. Systematic study of the phases is carried out making use of the methods of conductometry, emf in chemical concentration chains without/with transfer, potentiostatic chronoamperometry. Possible mechanism of defect formation during successive alloying of ternary sulfides by binary ones in suggested [ru

  4. Nanostructured metal sulfides for energy storage

    Science.gov (United States)

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-08-01

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  5. 30 CFR 250.504 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  6. 30 CFR 250.808 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S...

  7. 30 CFR 250.604 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  8. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium

    International Nuclear Information System (INIS)

    Leinweber, G.; Burke, J.A.; Knox, H.D.; Drindak, N.J.; Mesh, D.W.; Haines, W.T.; Ballad, R.V.; Block, R.C.; Slovacek, R.E.; Werner, C.J.; Trbovich, M.J.; Barry, D.P.; Sato, T.

    2001-01-01

    The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is 149 Sm, which has a large neutron absorption cross section at thermal energies and is a 235 U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with 6 Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D 2 O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in 149 Sm, present measurements agree within estimated uncertainties with En

  9. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  10. The systems cerium(3) (samarium) nitrate-quinoline nitrate-water

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Zhuravlev, E.F.; Semenova, Eh.B.

    1982-01-01

    Using the method of cross sections at 25 and 50 deg C the solubility in the systems cerium (3) nitrate-quinoline nitrate-water and samarium nitrate-quinoline nitrate-water has been studied. It is established that in the systems during chemical interaction of components congruently melting compounds of the composition: Ce(NO 3 ) 2 x2[C 9 H 7 NxHNO 3 ]x6H 2 O and Sm(NO 3 ) 3 x2[C 9 H 7 NxHNO 3 ]x2H 2 O are formed. New solid phases are separated preparatively and are subjected to chemical, differential thermal and IR spectroscopic analyses. The investigation results are compared with similar ones for nitrates of other representatives of lanthanide group

  11. The systems lanthanum (cerium, samarium) nitrate-tetramethyl-ammonium nitrate-water

    International Nuclear Information System (INIS)

    Zhuravlev, E.F.; Khisaeva, D.A.; Semenova, Eh.B.

    1984-01-01

    The method of cross sections at 25 and 50 deg C has been applied to study solubility in the systems lanthanum nitrate-tetramethyl ammonium nitrate-water (1), cesium (3) nitrate-tetramethyl ammonium nitrate-water (2) and samarium nitrate-tetramethyl ammonium nitrate-water (3). Crystallization fields of congruently dissolving compounds with 1:3 ratio of salt components (in system 1) and 1:2 ratio (in systems 2 and 3) are found in the systems. New solid phases are separated preparatively and subjected to chemical, differential thermal and IR spectroscopic analyses. Compositions of formed compounds are compared with the compositions known for nitrates of other representatives of light lanthanides

  12. Preparation and biological behaviour of samarium-153-hydroxyapatite particles for radiation synovectomy

    International Nuclear Information System (INIS)

    Agrueelles, M.G.; Luppi Berlanga, I.S.; Torres, E.A.; Rutty Sola, G.A.; Rimoldi, G.

    1998-01-01

    The preparation and labelling procedures of 153 Sm-hydroxyapatite ( 153 Sm-HA) are described in this paper. Hydroxyapatite (HA) was prepared and studied as a radiosynovectomy agent. HA particles were prepared from the reaction of calcium nitrate and ammonia phosphate at high pH Samarium-153 labelling was done in two steps with citric acid. A serie of experimental conditions, such as specific activity, citric acid mass, radioactive solution volume, in-vitro stability, have been carried out. Radiolabelling efficiency was greater than 95%. In vitro studies showed high stability (≥99%). Animal studies showed a good retention in the synovium, with a very low extra-articular leakage over 6 days after administration. (author)

  13. Efficacy and toxicity of Samarium-153-EDTMP locally produced in the treatment of painful skeletal metastases

    International Nuclear Information System (INIS)

    Olea, E.; Quintana, J.C.; Nagel, J.; Arenas, L.; Tomicic, M.; Gil, M.C.; Araya, G.

    2001-01-01

    Samarium-153 emits medium-energy beta particles an a gamma photon with a physical half-life of 46,3 hours. When chelated to ethylenediaminetetramethylenephosphonic acid (EDTMP), it is remarkably stable in vitro and in vivo. In this study we administered randomly 0,5 and 1,0 mCi/Kg body weight (two groups), to 30 patients with painful metastatic bone cancer. Slight and spontaneously reversible myelotoxicity was observed. A bigger leukocyte and platelet suppression was obtained with 1,0 mCi/kg than 0,5 mCi/Kg dose. Pain palliation was obtained in 66% of the treated patients. Our preliminary results indicate that 153 Sm-EDTMP is a promising radiotherapeutic agent for palliative treatment of metastatic bone cancer pain where a reactor is available and at a very affordable cost. (author)

  14. Studies on the structural, optical and dielectric properties of samarium coordinated with salicylic acid single crystal

    Science.gov (United States)

    Singh, Harjinder; Slathia, Goldy; Gupta, Rashmi; Bamzai, K. K.

    2018-04-01

    Samarium coordinated with salicylic acid was successfully grown as a single crystal by low temperature solution technique using mixed solvent of methanol and water in equal ratio. Structural characterization was carried out by single crystal X-ray diffraction analysis and it crystallizes in centrosymmetric space group P121/c1. FTIR and UV-Vis-NIR spectroscopy confirmed the compound formation and help to determine the mode of binding of the ligand to the rare earth-metal ion. Dielectric constant and dielectric loss have been measured over the frequency range 100 Hz - 30MHz. The decrease in dielectric constant with increases in frequency is due to the transition from interfacial polarization to dipolar polarization. The small value of dielectric constant at higher frequency ensures that the crystal is good candidate for NLO devices. Dielectric loss represents the resistive nature of the material.

  15. Use of dispersive liquid-liquid microextraction for simultaneous preconcentration of samarium, europium, gadolinium and dysprosium

    International Nuclear Information System (INIS)

    Mallah, M.H.; Atomic Energy Organization of Iran, Tehran; Shemirani, F.; Ghannadi Maragheh, M.

    2008-01-01

    A new preconcentration method of dispersive liquid-liquid microextraction (DLLME) was developed for simultaneous preconcentration of samarium, europium, gadolinium and dysprosium. DLLME technique was successfully used as a sample preparation method. In this preconcentration method, an appropriate mixture of extraction solvent, disperser solvent was injected rapidly into an aqueous solution containing Sm, Eu, Gd and Dy after complex formation using chelating reagent of the 1-(2-pyridylazo)-2-naphthol (PAN). After phase separation, 0.5 mL of the settled phase containing enriched analytes was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The main factors affected the preconcentration of Sm, Eu, Gd and Dy were extraction and dispersive solvent type and their volume, extraction time, volume of chelating agent (PAN), centrifuge speed and drying temperature of the samples. Under the best operating condition simultaneous preconcentration factors of 80, 100, 103 and 78 were obtained for Sm, Eu, Gd and Dy, respectively. (author)

  16. Effect of samarium in corrosion and microstructure of Al-5Zn-0.5Cu as low driving voltage sacrificial anode

    Science.gov (United States)

    Pratesa, Yudha; Ferdian, Deni; Ramadhan, Fajar Yusya; Maulana, Bramuda

    2018-05-01

    Sacrificial Anode Low voltage is the latest generation of the sacrificial anode that can prevent the occurrence of Hydrogen Cracking (HIC) due to overprotection. The Al-5n-0.5Cu alloy showed the potential to be developed as the new sacrificial anode. However, the main problem is copper made Al2Cu intermetallic in grain boundary. Samarium is added to modify the shape of the intermetallic to make it finer and make the corrosion uniform. Several characterizations were conducted to analyze the effect of Samarium. Scanning electron microscope (SEM) and Energy dispersive spectroscopy was used to analyzed the microstructure of the alloy. Metallography preparation was prepared for SEM analysis. Corrosion behavior was characterized by cyclic polarization in 3.5% NaCl solution. The results show samarium can change the shape of intermetallic and refine the grains. In addition, samarium makes better pitting resistance and exhibits a tendency for uniform corrosion. It is indicated by the loop reduction (ΔEpit-prot). Current density increased as an effect of samarium addition from 6x10-5 Ampere (Al-5Zn-0.5Cu) to 2.5x10-4 Ampere (Al-5Zn-0.5Cu-0.5Sm). Steel potential protection increased after addition of samarium which is an indication the possibility of Al-Zn-Cu-Sm to be used as low voltage sacrificial anode.

  17. Myelotoxicity of Samarium Sm153 lexidronam in patients with painful bony metastases

    International Nuclear Information System (INIS)

    Ben Ghachem, T.; Mhiri, A.; Slim, I.; Bahloul, A.; Yeddes, I.; Elbez, I.; Meddeb, I.; Ben Slimene, M.F.

    2015-01-01

    Full text of publication follows. Introduction: the management of bone pain includes analgesia, radiation, hormones, radiofrequency (RF) ablation, chemotherapy, and surgery. Bone pain palliation therapy with radiopharmaceuticals is a cost-effective systemic therapy to relieve pain from skeletal metastases with a consequent decrease in morbidity and an improvement in quality of life. The aim of our study is to evaluate the effect of myelotoxicity of samarium lexidronam (Sm 153 ) in patients with painful bony metastasis. Methods: we reviewed 116 patients aged from 14 to 87 years old, 91 males (78%) and 25 females (22%), having received 1 to 4 treatments of Sm 153 (37 MBq/kg) for painful bony metastases from different primitive tumors: 67 cases of prostate cancer (57.7%), 22 cases of breast cancer (18.9%), 10 cases of pulmonary cancer (8.6%) and others in 14.6% of cases. Clinical follow-up was available for 159 treatments, consisting on blood count each week over at least two months, in order to evaluate myelotoxicity according to WHO classification. Results: no patients had grade 4 toxicity after its cures. A grade 2-3 myelotoxicity was observed after 52 treatments (34%) during the second week and after 50 treatments (32.6%) during the fourth week with a satisfactory reversibility. At 10 weeks of treatment, myelotoxicity was reclassified from 0 to 2 for 139 cures (90,8%). Moreover, we found that prior treatment with radiotherapy or chemotherapy did not affect the rates of myelotoxicity. Conclusion: multiple treatments with samarium Sm 153 lexidronam had no significant effect on myelotoxicity. Patients with bone predominant metastatic disease may survive for extended periods of time and may safely be treated with multiple modalities of therapy. (authors)

  18. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  19. Chemical dissolution of sulfide minerals

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1977-01-01

    Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.

  20. Potentiometric study of samarium oxides formation from its chloride in a molten eutectic mixture of sodium and cesium chlorides

    International Nuclear Information System (INIS)

    Smolenskij, V.V.; Bove, A.L.; Del'mukhamedov, R.D.; Borodina, N.P.; Gavrilov, A.G.

    1997-01-01

    Interaction of trivalent samarium cations with oxide-ions in NaCl-2CsCl melt at 973 K has been studied by potentiometric method using electrochemical cell with two platinum-oxygen electrodes with a solid electrolyte membrane. The mechanism of the interaction and composition of the reaction products, depending on the medium oxyacidity, have been considered. Certain thermodynamic characteristics of the process have been calculated

  1. Sulfide intrusion and detoxification in seagrasses ecosystems

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    Sulfide intrusion in seagrasses represents a global threat to seagrasses and thereby an important parameter in resilience of seagrass ecosystems. In contrast seegrasses colonize and grow in hostile sediments, where they are constantly exposed to invasion of toxic gaseous sulfide. Remarkably little...... strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1...... not present in terrestrial plants at that level. Sulfide is not necessarily toxic but used as sulfur nutrition, presupposing healthy seagrass ecosystems that can support detoxification mechanisms. Presence or absence of those mechanisms determines susceptibility of seagrass ecosystems to sediment sulfide...

  2. Neutron diffraction investigations of the superionic conductors lithium sulfide and sodium sulfide

    International Nuclear Information System (INIS)

    Altorfer, F.

    1990-03-01

    Statics and dynamics of the superionic conductors lithium sulfide and sodium sulfide were investigated using the following experimental methods: elastic scattering on sodium sulfide powder in the temperature range 20 - 1000 C, elastic scattering on a lithium sulfide single crystal in the temperature range 20 - 700 C, inelastic scattering on a 7 Li 2 S single crystal at 10 K. 34 figs., 2 tabs., 10 refs

  3. Sulfidation behavior of Fe20Cr alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    2001-01-01

    Alloys for use in high temperature environments rely on the formation of an oxide layer for their protection. Normally, these protective oxides are Cr 2 O 3 , Al 2 O 3 and, some times, SiO 2 . Many industrial gaseous environments contain sulfur. Sulfides, formed in the presence of sulfur are thermodynamically less stable, have lower melting points and deviate much more stoichiometrically, compared to the corresponding oxides. The mechanism of sulfidation of various metals is as yet not clear, in spite of the concerted efforts during the last decade. To help address this situation, the sulfidation behavior of Fe20Cr has been studied as a function of compositional modifications and surface state of the alloy. The alloys Fe20Cr, Fe20Cr0.7Y, Fe20Cr5Al and Fe20Cr5Al0.6Y were prepared and three sets of sulfidation tests were carried out. In the first set, the alloys were sulfidized at 700 deg C and 800 deg C for 10h. In the second set, the alloys were pre-oxidized at 1000 deg C and then sulfidized at 800 deg C for up to 45h. In the third set of tests, the initial stages of sulfidation of the alloys was studied. All the tests were carried out in a thermobalance, in flowing H 2 /2%H 2 S, and the sulfidation behavior determined as mass change per unit area. Scanning electron microscopy coupled to energy dispersive spectroscopy and X-ray diffraction analysis were used to characterize the reaction products. The addition of Y and Al increased sulfidation resistance of Fe20Cr. The addition of Y altered the species that diffused predominantly during sulfide growth. It changed from predominant cationic diffusion to predominant anionic diffusion. The addition of Al caused an even greater increase in sulfidation resistance of Fe20Cr, with the parabolic rate constant decreasing by three orders of magnitude. Y addition to the FeCrAl alloy did not cause any appreciable alteration in sulfidation resistance. Pre-oxidation of the FeCrAl and FeCrAlY alloys resulted in an extended

  4. Structural and luminescence properties of samarium doped lead alumino borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Kaur, Simranpreet; Singh, D. P.; Kaur, Puneet

    2017-11-01

    The study reports the effect of samarium concentration on the physical, structural and spectroscopic characteristics of samarium doped lead alumino borate glasses having composition 20PbO-(10-x)Al2O3-70B2O3-xSm2O3; x = 0.1, 0.5, 1.0 and 2.0 mol %. The glasses were fabricated by conventional melt-quenching technique and then characterized by XRD, FTIR, optical absorption and fluorescence spectra. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. FTIR spectra indicate the presence of BO3, BO4, AlO6 and a few other structural groups. Various physical properties such as density, molar volume, refractive index, rare earth ion concentration, boron-boron distance and polarizability etc. were determined using conventional methods and standard formulae. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The value of Ω2 was found to be highest for glass with 1 mol% Sm2O3 and attributed to the asymmetry of the ligand field at the rare earth ion site and the rare earth oxygen (Sm-O) covalency. The calculated intensity parameters and fluorescence spectra were further used to predict the radiative transition probability (A), radiative lifetime (τR), branching ratio (βR), peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σ) for the characteristic 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 transitions of the Sm3+ ion. Concentration quenching was observed for 2 mol% concentration of Sm2O3 and ascribed to energy transfer through various cross-relaxation channels between Sm3+ ions. Reasonably high values of branching ratios and stimulated emission cross-section for the prepared glasses points towards their utility in the development of visible lasers emitting in the reddish-orange spectral region. However, the glass with 1 mol% Sm2O3 was found to show better radiative properties.

  5. Fluorometric determination of samarium and europium in rare earth minerals with. beta. -diketoneternary complex

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H; Hiraki, K; Nishikawa, Y [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1981-07-01

    This communication reported the optimum conditions for the fluorometric determination of these ions, and the method was adopted in the simultaneous determination of samarium and europium in xenotime and monazite minerals. From the experimental results on the effect of diverse ions and the extraction pH of the aqueous phase, it became clear that TTA-TOPO hexane method was the best system for the determination of samarium and europium because of the highest fluorescence sensitivity of the ternary complex, and also because the lower extraction pH eliminated the effect of diverse ions. Moreover, the very high detection limit (2 ppb) of Sm was achieved by the use of a red sensitive photomultiplier. Which was used at 644 nm, and that of Eu (0.02 ppb) at 614 nm. The procedure was established as follows: The rare earth minerals (xenotime, monazite) sample was treated with hot conc. H/sub 2/SO/sub 4/ and twice precipitated with 0.5 mol dm/sup -3/ oxalic acid (pH was adjusted to 2.0 -- 2.2). Then the precipitate was filtered and ignited to give the rare earth oxide. Fifty milligrams of the oxide was dissolved in HCl and diluted with water in order to obtain the solution containing 5 ..mu..g cm/sup -3/ rare earth oxide. An aliquot of the solution ((1.0 -- 3.0) cm/sup 3/) was adjusted to pH 5.5 with sodium acetate and shaken with 1 x 10/sup -4/ mol dm/sup -3/ TTA- 2 x 10/sup -2/ mol dm/sup -3/ TOPO hexane solution. Then the fluorescence intensity of the organic layer was measured at 644 nm for Sm and 614 nm for Eu. In this procedure, the recovery of Sm and Eu was found to be about 96%. Xenotime contained 0.70% of Sm and 0.004% of Eu, and monazite contained 1.84% of Sm and 0.003% of Eu.

  6. Cross sections for d-{sup 3}H neutron interactions with samarium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Junhua; He, Long [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; Wu, Chunlei; Jiang, Li [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2016-11-01

    The cross sections for (n,x) reactions on samarium isotopes were measured at (d-T) neutron energies of 13.5 and 14.8 MeV with the activation technique. Samples were activated along with Nb and Al monitor foils to determine the incident neutron flux. Theoretical calculations of excitation functions were performed using the nuclear model codes TALYS-1.6 and EMPIRE-3.2 Malta with default parameters, at neutron energies varying from the reaction threshold to 20 MeV. The results were discussed and compared with experimental data found in the literature. At neutron energies 13.5 and 14.8 MeV, the cross sections of the {sup 149}Sm(n,p){sup 149}Pm reaction are reported for the first time. The cross sections of the {sup 150}Sm(n,p){sup 150}Pm, {sup 144}Sm(n,p){sup 144}Pm, {sup 152}Sm(n,α){sup 149}Nd and {sup 144}Sm(n,α){sup 141}Nd reactions at different neutron energies reported in the present work can be added as new data in the nuclear databases.

  7. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  8. Charge and transition densities of samarium isotopes in the interacting Boson model

    International Nuclear Information System (INIS)

    Moinester, M.A.; Alster, J.; Dieperink, A.E.L.

    1982-01-01

    The interacting boson approximation (IBA) model has been used to interpret the ground-state charge distributions and lowest 2 + transition charge densities of the even samarium isotopes for A = 144-154. Phenomenological boson transition densities associated with the nucleons comprising the s-and d-bosons of the IBA were determined via a least squares fit analysis of charge and transition densities in the Sm isotopes. The application of these boson trasition densities to higher excited 0 + and 2 + states of Sm, and to 0 + and 2 + transitions in neighboring nuclei, such as Nd and Gd, is described. IBA predictions for the transition densities of the three lowest 2 + levels of 154 Gd are given and compared to theoretical transition densities based on Hartree-Fock calculations. The deduced quadrupole boson transition densities are in fair agreement with densities derived previously from 150 Nd data. It is also shown how certain moments of the best fit boson transition densities can simply and sucessfully describe rms radii, isomer shifts, B(E2) strengths, and transition radii for the Sm isotopes. (orig.)

  9. Development and evaluation of copper-67 and samarium-153 labeled conjugates for tumor radioimmunotherapy

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Mausner, L.F.; Mease, R.C.; Meinken, G.E.; Joshi, V.; Kolsky, K.; Sweet, M.; Steplewski, Z.

    1995-01-01

    The potential of utilizing receptor-specific agents such as monoclonal antibodies (MAb), and MAb-derived smaller molecules, as carriers of radionuclides for the selective destruction of tumors has stimulated much research activity. The success of such applications depends on many factors, especially the tumor binding properties of the antibody reagent, the efficiency of labeling and in-vivo stability of the radioconjugate and, on the careful choice of the radionuclide best suited to treat the tumor under consideration. The radiolabeled antibody technique for radioimmunotherapy (RIT), however, has experienced many limitations, and its success has not matched the expectations that were raised more than a decade ago. The problems that have been identified include: (i) degradation of antibody immunoreactivity resulting from chemical manipulations required for labeling; (ii) lack of suitable radioisotopes and methods for stable attachment of the radiolabel; (iii) in-vivo instability of the radioimmunoconjugates; (iv) excessive accumulation of activity in non-target locations; and (v) lack of radioimmunoconjugate accessibility to cells internal to a tumor mass. A careful choice of the radionuclide(s) best suited to treat the tumor under consideration is one of the most important requirements for successful radioimmunotherapy. This study evaluates copper 67 and samarium 153 for tumor radioimmunotherapy

  10. Enhancement of the fluorescence of the samarium (III) complex by gadolinium (III)

    International Nuclear Information System (INIS)

    Yun-Xiang, C.; Zhang-Hua, L.

    1988-01-01

    The increase in sensitivity and selectivity of reactions in which colored species are formed by the addition of different metal ions is an area of research that has recently been developed. This phenomenon, which is sometimes called cocolaration effect, has been explained by the formation of mixed metal complex. The authors found an analogous phenomenon of reactions forming fluorescent complexes. The complexes of Sm(III)-thenoyltrifluoroacetone (TTA)-phenanthroline (Phen)-Triton-X-100 (TX-100) and Gd(III) (or La(III), Lu(III) and Y(III))-TTA-Phen-TX-100 had practically no fluorescence separately. Instead, a fluorescence-enhancement phenomenon caused by adding Gd or La, Lu and Y ions to the system was observed for the first time. The intensity of the enhanced fluorescence of Sm(III) complex was increased in the following order: La< Y< Lu< Gd. By analogy with cocoloration effect, the authors call this new fluorescence-enhancement phenomenon the co-fluorescence effect. The object of this work was to study the enhancement effect of Gd(III) on the fluorescence of the Sm(III)-TTA-Phen-TX-100 system. The recommended fluorimetric method has been applied to the determination of trace amounts of samarium in ytterbium oxide with satisfactory results. A general reaction mechanism for the system studied was proposed

  11. Pharmacokinetics of labelled compounds with technetium-99m and samarium-153

    International Nuclear Information System (INIS)

    Borda O, L.B.; Torres L, M.N.

    1997-01-01

    The purpose of this investigation was to establish the different pharmacokinetics parameters of the main radiopharmaceuticals labeled with technetium-99m and samarium-153. These parameters could be subsequently used as reference to compare other products with the same use. Mathematical models and a computerized pharmacokinetic program were used to this purpose. A biodistribution study in quadruplicate and/or quintuplicate was conducted for each radiopharmaceutical, data was was obtained in injection dose percentages. The biodistribution study involved the injection of a predetermined dose of the radiopharmaceutical into animals (rats or mice), which were subsequently put away at different time intervals, removing the relevant organs. Activity in each organ was read by means of a well-type NaI scintillation counter, data obtained in activity counts was transformed into injection dose percentages. Based on these percentages, the mathematical model was constructed and the pharmacokinetic parameters were obtained using the computerized program Expo 2 v. 1, which is written in C language and works in windows. Analyzing the results obtained, we can conclude that the use of the Expo 2 v. 1 program for a bi compartmental analysis allowed us to obtain reliable pharmacokinetic parameters which describe what happens in the organism when the radiopharmaceutical passes from the central compartment to the peripheral one and vice versa

  12. Memory effect of calcined layered samarium hydroxy chlorides in aqueous solution

    International Nuclear Information System (INIS)

    Lee, Byung Il; Byeon, Song Ho

    2015-01-01

    The decomposition and recovery behavior of layered samarium hydroxychloride (Sm 2 (OH) 5 Cl·nH 2 O, LSmH) has been closely studied in various conditions. Although the heat treatment of LSmH at 700 °C completely collapsed typical layered structure, the calcined LSmH (c-LSmH) recovered its layered characteristics and consequently its ability to intercalate anions into the interlayer space when it was rehydroxylated and rehydrated in aqueous solutions containing organic and inorganic anions. This phenomenon is similar to the memory effect observed in classical layered double hydroxides (LDHs), where LDHs calcined to a mixture of metal oxides can recover their layered structures in aqueous solutions. In contrast, the recovery reaction of c-LSmH in water without any counter anions was unsuccessful and instead resulted in the formation of Sm(OH) 3 . Such a difference was interpreted on the basis of the salt effect on Sm 2 (OH) 5 Cl·nH 2 O–Sm(OH) 3 phase equilibria in water

  13. Characterization of luminescent samarium doped HfO2 coatings synthesized by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Chacon-Roa, C; Guzman-Mendoza, J; Aguilar-Frutis, M; Garcia-Hipolito, M; Alvarez-Fragoso, O; Falcony, C

    2008-01-01

    Trivalent samarium (Sm 3+ ) doped hafnium oxide (HfO 2 ) films were deposited using the spray pyrolysis deposition technique. The films were deposited on Corning glass substrates at temperatures ranging from 300 to 550 deg. C using chlorides as raw materials. Films, mostly amorphous, were obtained when deposition temperatures were below 350 deg. C. However, for temperatures higher than 400 deg. C, the films became polycrystalline, presenting the HfO 2 monoclinic phase. Scanning electron microscopy of the films revealed a rough surface morphology with spherical particles. Also, electron energy dispersive analysis was performed on these films. The photoluminescence and cathodoluminescence characteristics of the HfO 2 : SmCl 3 films, measured at room temperature, exhibited four main bands centred at 570, 610, 652 and 716 nm, which are due to the well-known intra-4f transitions of the Sm 3+ ion. It was found that the overall emission intensity rose as the deposition temperature was increased. Furthermore, a concentration quenching of the luminescence intensity was also observed

  14. Effect of Zinc Oxide Doping on Electroluminescence and Electrical Behavior of Metalloporphyrins-Doped Samarium Complex

    Science.gov (United States)

    Janghouri, Mohammad; Amini, Mostafa M.

    2018-02-01

    Samarium complex [(Sm(III)] as a new host material was used for preparation of red organic light-emitting diodes (OLEDs). Devices with configurations of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):(poly(styrenesulfonate) (PEDOT:PSS (50 nm)/polyvinyl carbazole (PVK):[zinc oxide (ZnO)] (50 nm)/[(Sm(III)]:[zinc(II) 2,3-tetrakis(dihydroxyphenyl)-porphyrin and Pt(II) 2,3-dimethoxyporphyrin] (60 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (15 nm)/Al (150 nm) have been fabricated and investigated. An electroplex occurring at the (PVK/Sm: Pt(II) 2,3-dimethoxyporphyrin) interface has been suggested when ZnO nanoparticles were doped in PVK. OLED studies have revealed that the photophysical characteristics and electrical behavior of devices with ZnO nanoparticles are much better than those of devices with pure PVK. The efficiency of devices based on [(Sm(III)] was superior than that of known aluminum tris(8-hydroxyquinoline) (Alq3) and also our earlier reports on red OLEDs under the same conditions.

  15. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  16. Detonation nanodiamond introduced into samarium doped ceria electrolyte improving performance of solid oxide fuel cell

    Science.gov (United States)

    Pei, Kai; Li, Hongdong; Zou, Guangtian; Yu, Richeng; Zhao, Haofei; Shen, Xi; Wang, Liying; Song, Yanpeng; Qiu, Dongchao

    2017-02-01

    A novel electrolyte materials of introducing detonation nanodiamond (DNDs) into samarium doped ceria (SDC) is reported here. 1%wt. DNDs doping SDC (named SDC/ND) can enlarge the electrotyle grain size and change the valence of partial ceria. DNDs provide the widen channel to accelerate the mobility of oxygen ions in electrolyte. Larger grain size means that oxygen ions move easier in electrolyte, it can also reduce the alternating current (AC) impedance spectra of internal grains. The lower valence of partial Ce provides more oxygen vacancies to enhance mobility rate of oxygen ions. Hence all of them enhance the transportation of oxygen ions in SDC/ND electrolyte and the OCV. Ultimately the power density of SOFC can reach 762 mw cm-2 at 800 °C (twice higher than pure SDC, which is 319 mw cm-2 at 800 °C), and it remains high power density in the intermediate temperature (600-800 °C). It is relatively high for the electrolyte supported (300 μm) cells.

  17. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  18. Retention capacity of samarium (III) in zircon for it possible use in retaining walls for confinement of nuclear residues

    International Nuclear Information System (INIS)

    Garcia G, N.

    2006-01-01

    Mexico, as country that produces part of its electric power by nuclear means, should put special emphasis in the development of technologies guided to the sure and long term confinement of the high level nuclear residuals. This work studies the capacity that has the natural zircon to retain to the samarium (III) in solution, by what due, firstly, to characterize the zircon for technical instrumental to determine the purity and characteristic of the mineral in study. The instrumental techniques that were used to carry out the physicochemical characterization were the neutron activation analysis (NAA), the infrared spectroscopy (IS), the thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), semiquantitative analysis, dispersive energy spectroscopy (EDS), X-ray diffraction (XRD) and luminescence technique. The characterization of the surface properties carries out by means of the determination of the surface area using the BET multipoint technique, acidity constants, hydration time, the determination of the point of null charge (pH PCN ) and density of surface sites (D s ). The luminescence techniques were useful to determine the optimal point hydration of the zircon and for the quantification of the samarium, for that here intends the development of both analysis techniques. With the adjustment of the titration curves in the FITEQL 4 package the constants of surface acidity in the solid/liquid interface were determined. To the finish of this study it was corroborated that the zircon is a mineral that presents appropriate characteristics to be proposed as a contention barrier for the deep geologic confinement. With regard to the study of adsorption that one carries out the samarium retention it is superior to 90% under the described conditions. This investigation could also be applicable in the confinement of dangerous industrial residuals. (Author)

  19. Determination of the nuclear electric charge distribution of samarium isotopes 144, 148, 150, 152, 154 by the muonic atom method

    International Nuclear Information System (INIS)

    Barreau, Pierre.

    1977-01-01

    The theory of the nucleus-negative muon system in the case of electrical interactions is discussed. The interactions of muons with the samarium isotopes 152, 154, 144, 148, 150 are investigated. After a description of the experimental device, from muon beam production to data acquisition (detection of the gamma spectra), the results are analyzed and the nuclear charge distribution parameters determined: for each isotope the absolute value of c (half-density radius) and t (skin thickness); for 152 Sm and 154 Sm the parameter β 2 (quadrupolar defomation). Nuclear polarization was accounted for throughout the analysis [fr

  20. Sulfidation/oxidation resistant alloys

    International Nuclear Information System (INIS)

    Smith, G.D.; Tassen, C.S.

    1989-01-01

    The patent describes a nickel-base, high chromium alloy. It is characterized by excellent resistance to sulfidation and oxidation at elevated temperatures as high as 2000 degrees F. (1093 degrees C.) and higher, a stress-rupture life of about 200 hours or more at a temperature at least as high as 1800 degrees F. (990:0083 degrees C.) and under a stress of 2000 psi, good tensile strength and good ductility both at room and elevated temperature. The alloy consists essentially of about 27 to 35% chromium, about 2.5 to 5% aluminum, about 2.5 to about 6% iron, 0.5 to 2.5% columbium, up to 0.1% carbon, up to 1% each of titanium and zirconium, up to 0.05% cerium, up to 0.05% yttrium, up to 1% silicon, up to 1% manganese, and the balance nickel

  1. Iron-sulfide crystals in probe deposits

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming

    1998-01-01

    Iron-sulfides were observed in deposits collected on a probe inserted at the top of the furnace of a coal-fired power station in Denmark. The chemical composition of the iron-sulfides is equivalent to pyrrhotite (FeS). The pyrrhotites are present as crystals and, based on the shape of the crystals......: (1) impact of low viscous droplets of iron sulfide; and (2) sulfur diffusion. Previous research on the influence of pyrite on slagging focused on the decomposition of pyrite into pyrrhotite and especially on the oxidation stage of this product during impact on the heat transfer surfaces...

  2. Microbial control of hydrogen sulfide production

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  3. Fabrication and properties of samarium doped calcium sulphate thin films using spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Reghima, Meriem [Université Tunis El Manar, Faculté des Sciences de Tunis, Département de Physique, LR99ES13 Laboratoire de Physique de la Matière Condensée (LPMC), 2092 Tunis, Tunisie (Tunisia); Institut d' Electronique et des systèmes, Unité Mixte de Recherche 5214 UM2-CNRS (ST2i) – Université Montpellier, 860 rue de Saint Priest, Bâtiment 5, 34097 Montpellier (France); Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021 (Tunisia); Guasch, Cathy [Institut d' Electronique et des systèmes, Unité Mixte de Recherche 5214 UM2-CNRS (ST2i) – Université Montpellier, 860 rue de Saint Priest, Bâtiment 5, 34097 Montpellier (France); Azzaza, Sonia; Alleg, Safia [Laboratoire de Magnétisme et Spectroscopie des Solides (LM2S), Département de Physique, Faculté des Sciences, Université Badji Mokhtar Annaba, B.P. 12, 23000 Annaba (Algeria); Kamoun-Turki, Najoua [Université Tunis El Manar, Faculté des Sciences de Tunis, Département de Physique, LR99ES13 Laboratoire de Physique de la Matière Condensée (LPMC), 2092 Tunis, Tunisie (Tunisia)

    2016-10-01

    Using low cost spray pyrolysis technique, polycrystalline CaSO{sub 4} thin films were successfully grown on a glass substrate with a thickness of about 1 μm. Samarium doping has been performed on CaSO{sub 4} thin films to explore luminescence properties. The characterizations of these films were carried out using X-ray diffraction, Scanning Electron Microscopy and optical measurements. The structural analyses reveal the existence of hexagonal CaSO{sub 4} phase with a (200) preferred orientation belonging to CaS compound for substrate temperatures below 350 °C. It is shown that the crystallinity of the sprayed thin films can be improved by increasing substrate temperature up to 250 °C. Warren-Averbach analysis has been applied on X-ray diffractogram to determine structural parameters involving the phase with its amount, the grain size and the lattice parameters using Maud software. The surface topography shows a rough surface covered by densely packed agglomerated clusters having faceted and hexagonal shapes. Energy dispersive microscopy measurements confirm the presence of calcium and sulfur in equal proportions as well as high percentage of oxygen. Photoluminescence at room temperature revealed that luminescence peaks are attributed to the intrinsic emission of pure CaSO{sub 4} phase. - Highlights: • Warren Averbach analysis reveal the presence of hcp structure of CaSO{sub 4} phase. • A mixture of CaSO{sub 4} and CaHO{sub 4.5}S phases has been detected for lower T{sub s}. • For increasing T{sub s}, the CaHO{sub 4.5}S phase has been disappeared. • The origin of PL peaks has been identified.

  4. Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mandiwana, Vusani, E-mail: VMandiwana@csir.co.za; Kalombo, Lonji, E-mail: LKalombo@csir.co.za [Centre of Polymers and Composites, CSIR (South Africa); Venter, Kobus, E-mail: Kobus.Venter@mrc.ac.za [South African Medical Research Council (South Africa); Sathekge, Mike, E-mail: Mike.Sathekge@up.ac.za [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine (South Africa); Grobler, Anne, E-mail: Anne.Grobler@nwu.ac.za; Zeevaart, Jan Rijn, E-mail: zeevaart@necsa.co.za [North-West University, DST/NWU Preclinical Drug Development Platform (South Africa)

    2015-09-15

    Developing nanoparticulate delivery systems that will allow easy movement and localization of a drug to the target tissue and provide more controlled release of the drug in vivo is a challenge in nanomedicine. The aim of this study was to evaluate the biodistribution of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([{sup 153}Sm]Sm{sub 2}O{sub 3}) in vivo to prove that orally administered nanoparticles alter the biodistribution of a drug. These were then activated in a nuclear reactor to produce radioactive {sup 153}Sm-loaded-PLGA nanoparticles. The nanoparticles were characterized for size, zeta potential, and morphology. The nanoparticles were orally and intravenously (IV) administered to rats in order to trace their uptake through imaging and biodistribution studies. The {sup 153}Sm-loaded-PLGA nanoparticles had an average size of 281 ± 6.3 nm and a PDI average of 0.22. The zeta potential ranged between 5 and 20 mV. The [{sup 153}Sm]Sm{sub 2}O{sub 3} loaded PLGA nanoparticles, orally administered were distributed to most organs at low levels, indicating that there was absorption of nanoparticles. While the IV injected [{sup 153}Sm]Sm{sub 2}O{sub 3}-loaded PLGA nanoparticles exhibited the highest localization of nanoparticles in the spleen (8.63 %ID/g) and liver (3.07 %ID/g), confirming that nanoparticles are rapidly removed from the blood by the RES, leading to rapid uptake in the liver and spleen. From the biodistribution data obtained, it is clear that polymeric nanoscale delivery systems would be suitable for improving permeability and thus the bioavailability of therapeutic compounds.

  5. Study of samarium modified lead zirconate titanate and nickel zinc ferrite composite system

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Rekha [Department of Physics, SD PG College, Panipat 132103 (India); School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Juneja, J.K., E-mail: jk_juneja@yahoo.com [Department of Physics, Hindu College, Sonepat 131001 (India); Singh, Sangeeta [Department of Physics, GVM Girls College, Sonepat 131001 (India); Raina, K.K. [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Prakash, Chandra [Solid State Physics Laboratory, Timarpur, Delhi 110054 (India)

    2015-03-15

    In the present work, composites of samarium substituted lead zirconate titanate and nickel zinc ferrite with compositional formula 0.95Pb{sub 1−3x/2} Sm{sub x}Zr{sub 0.65}Ti{sub 0.35}O{sub 3}–0.05Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (x=0, 0.01, 0.02 and 0.03) were prepared by the conventional solid state route. X-ray diffraction analysis was carried out to confirm the coexistence of individual phases. Microstructural study was done by using scanning electron microscope. Dielectric constant and loss were studied as a function of temperature and frequency. To study ferroelectric and magnetic properties of the composite samples, corresponding P–E and M–H hysteresis loops were recorded. Change in magnetic properties of electrically poled composite sample (x=0.02) was studied to confirm the magnetoelectric (ME) coupling. ME coefficient (dE/dH) of the samples (x=0 and 0.02) was measured as a function of DC magnetic field. - Highlights: • We are reporting the effect of Sm substitution on PZT–NiZn ferrite composites. • Observation of both P–E and M–H loops confirms ferroelectric and magnetic ordering. • With Sm substitution, significant improvement in properties was observed. • Increase in magnetization for electrically poled sample is evidence of ME coupling. • Electric polarization is generated by applying magnetic field.

  6. The effectiveness of samarium-153 (153Sm) lexidronam (EDTMP) in treatment of bone metastases

    International Nuclear Information System (INIS)

    Ma Yubo; Huang Gang; Liu Jianjun

    2004-01-01

    Objectives: To evaluate the effectiveness of samarium-153 (153Sm) lexidronam (EDTMP) in treatment of bone metastases. Methods: 380 patients with bone metastases were studied (221 men, 159 women; average age 65.3 y; ranged 27-91 y; average weight 59.3 kg, ranged 39-95 kg). The tumor types were prostate carcinoma (n=155), pulmonary carcinoma (n=92), breast cancer (n=57), gastric carcinoma (n=12), colorectal carcinoma (n=22), nasopharyngeal carcinoma (n=8), lymphoma (n=8), hepatic carcinoma (n=6), ovary carcinoma (n=4) and others (n=16). All patients were received 135Sm-EDTMP 0.8 or 1.0 mCi/kg during 1 to 7 course of treatment. Patients and physician evaluations were used to assess pain relief. Numbers of metastatic foci and activity of ROIs were used to observe post-therapy change in bone scanning. Results: In 380 patients, pain relief was observed in 257 patients (67.6%). Persistence of pain relief was seen through 2 to 24 weeks. The mean relief time is 5.8±3.4 weeks. KPS score was higher 10% than pre-therapy (71.2%±9.6% Vs 80.9%±10.3%, p<0.001). Numbers of metastatic foci (11.2+8.8 Vs 8.4±5.7, p<0.001) and activity of ROIs (3.28±2.04 Vs 2.15±0.94, p<0.01) were less than pre-therapy. Bone marrow suppression was mild and reversible (5.87±1.56 Vs 4.94±1.16 x 109/L). Conclusions: 153Sm-EDTMP provided relief of pain associated with bone metastases and inhibition of metastatic foci. As a relief drug of painful bone metastases, 153Sm-EDTMP is safe and effective. (authors)

  7. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field...... as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments....

  8. Crossett Hydrogen Sulfide Air Sampling Report

    Science.gov (United States)

    This report summarizes the results of the EPA’s hydrogen sulfide air monitoring conducted along Georgia Pacific’s wastewater treatment system and in surrounding Crossett, AR, neighborhoods in 2017.

  9. Air-water transfer of hydrogen sulfide

    DEFF Research Database (Denmark)

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.

    2004-01-01

    The emissions process of hydrogen sulfide was studied to quantify air–water transfer of hydrogen sulfide in sewer networks. Hydrogen sulfide transfer across the air–water interface was investigated at different turbulence levels (expressed in terms of the Froude number) and pH using batch...... experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...

  10. Graphite furnace atomic absorption spectrometry with a tantalum boat for the determination of yttrium, samarium, and dysprosium in a mish metal

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro; Tamura, Shohei

    1982-01-01

    The determination of yttrium, samarium, and dysprodium by means of graphite-furnace atomic absorption spectrometry (AAS) was studied by a tantalum boat inserted into a graphite tube atomizer. These elements could not be determined by the use of a commercial graphite tube, In the atomization from a tantalum boat, better analytical sensitivities and negligible memory effects for these rare earths are obtained. The analytical sensitivities of yttrium, samarium, and dysprodium with the tantalum boat were 0.60 ng, 0.86 ng, and 0.17 ng respectively. This method was applied for the determination of yttrium, samarium, and dysprosium in a mish metal. The measurements were performed with slightly acidified solutions (0.01 mol dm 3 HCI or HNO 3 ). The sensitivities and the precisions for these elements decreased with increasing acid concentration. An enhancement in the sensitivities of yttrium and dysprosium upon the addition of a large excess of lanthanum, neodymium, and praseodymium salts were observed. The yttrium, samarium, and dysprosium in a mish metal were determined with both analytical curves of standard solutions containing an excess of lanthanum, cerium, and neodymium ions and of the standard addition. The precisions for this work were in the 3 - 9.3% range. (author)

  11. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

    DEFF Research Database (Denmark)

    Pauly, N; Yubero, F; Espinós, J P

    2017-01-01

    Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 ke...

  12. An estimation of influence of humic acid and organic matter originated from bentonite on samarium solubility

    International Nuclear Information System (INIS)

    Kanaji, Mariko; Sato, Haruo; Sasahira, Akira

    1999-10-01

    Organic acids in groundwater are considered to form complexes and increase the solubility of radionuclides released from vitrified waste in a high-level radioactive waste (HLW) repository. To investigate whether the solubility of samarium (Sm) is influenced by organic substances, we measured Sm solubility in the presence of different organic substances and compared those values with results from thermodynamic predictions. Humic acid (Aldrich) is commercially available and soluble organic matter originated from bentonite were used as organic substances in this study. Consequently, the solubility of Sm showed a tendency to apparently increase with increasing the concentration of humic acid, but in the presence of carbonate, thermodynamic predictions suggested that the dominant species are carbonate complexes and that the effect of organic substances are less than that of carbonate. Based on total organic carbon (TOC), the increase of Sm solubility measured with humic acid (Aldrich) was more significant than that in the case with soluble organic matter originated from bentonite. Since bentonite is presumed to include also simple organic matters of which stability constant for forming complexes is low, the effect of soluble organic matter originated from bentonite on the solubility of Sm is considered to be less effective than that of humic acid (Aldrich). Experimental values were compared with model prediction, proposed by Kim, based on data measured in a low pH region. Tentatively we calculated the increase in Sm solubility assuming complexation with humic acid. Trial calculations were carried out on the premise that the complexation reaction of metal ion with humic acid is based on neutralization process by 1-1 complexation. In this process, it was assumed that one metal ion coordinates with one unit of complexation sites which number of proton exchange sites is equal to ionic charge. Consequently, Kim's model indicated that carbonate complexes should be dominant

  13. Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Dezfuli, Amin Shiralizadeh [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza, E-mail: ganjali@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Naderi, Hamid Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2017-04-30

    Highlights: • Samarium oxide nanoparticles have been anchored on the surface of reduced graphene oxide for the first time. • Sm{sub 2}O{sub 3}/RGO nanocomposite show high capacitance, good rate and cycling performance. • Sm{sub 2}O{sub 3}/RGO nanocomposite can serve as efficient electrode material for energy storage. • The best composite electrode exhibits specific capacitance of 321 F g{sup −1} in 2 mV s{sup −1}. - Abstract: We have synthesized Sm{sub 2}O{sub 3} nanoparticles (SmNs) and anchored them onto the surface of reduced graphene oxide (RGO) through a self-assembly thereof by utilizing a facile sonochemical procedure. The nanomaterials were characterized by means of powder X-ray diffraction (XRD), Field-emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FT-IR) spectra, and X-ray photoelectron spectroscopy (XPS). As the next step, the supercapacitive behavior of the resulting nanocomposites were investigated when used as electrode material, through with cyclic voltammetric (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques. The SmNs decorated RGO (SmN-RGO) nanocomposites were found to possess a specific capacitance (SC) of 321 F g{sup −1} when used in a 0.5 M Na{sub 2}SO{sub 4} solution as an electrolyte, in a scan rate of 2 mV s{sup −1}. The SC of the SmN-RGO based electrodes were also found to be 268 F g{sup −1} at a current density of 2 A g{sup −1} through galvanostatic charge-discharge tests. The outstanding properties of the SmN-RGOs were attributed to synergy of the high charge mobility of SmNs and the flexibility of the sheets of RGOs. Additionally, the nano-composite revealed a unique cycling durability (maintaining 99% of its SC even after 4000 cycles).

  14. Fluorescence properties of europium and samarium. beta. -diketonates and their use in fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H; Hiraki, K; Nishikawa, Y [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1981-01-01

    Several europium and samarium ..beta..-diketonates (tta, ntfa, bfa) complexed with 1, 10-phenanthroline, or with trioctylphosphine oxide (topo) were synthesized. The fluorescence properties of these compounds in benzene or hexane have been studied. Absorption and fluorescence spectra, fluorescence quantum yield, fluorescence sensitivity index (F.S.I.), and fluorescence lifetime were measured. From the measurement of fluorescence lifetime of the ..beta..-diketonates, the velocity of radiative process (k sub(f)/phi sub(f)) has almost the same value for benzene and hexane solvent. The red fluorescence (Em. max. : 619 nm) of Eu(III) in these chelates is attributed to transitions from /sup 5/D/sub 0/ ..-->.. /sup 7/F/sub 2/ levels of this ion, and the three-band spectrum (Em. max. : 569 nm, 606 nm, 650 nm) indicates the transitions from the /sup 4/G sub(5/2) ..-->.. /sup 6/H sub(5/2), /sup 4/G sub(5/2) ..-->.. /sup 6/H sub(7/2), and /sup 4/G sub(5/2) ..-->.. /sup 6/H sub(9/2) levels of Sm(III), respectively. These spectra are not changed by any solvents and ligands. From the results, the fluorescence of the ..beta..-diketonates in organic solvent has been attributed to m* ..-->.. m luminescence transition. The complexes of Eu(III) and Sm(III) show radiative transition within orbitals, composed exclusively of 4f orbitals of rare earth ions (m* ..-->.. m radiative transition). Fluorinated ligands show better sensitivity than unfluorinated ligands, and the best sensitivity is obtained with TTA-phen system, and/or TTA-topo system for the spectrofluorometric determination of the two metals. In the case of Eu determination, 619 nm emission wavelength is used (the determinable range : 0.2 -- 10 ppb Eu), and in the case of Sm determination, 650 nm emission wavelength is adopted (the determinable range : 0.1 -- 1 ppm Sm), because of much higher sensitivity than the other two peaks (569, 606 nm) without interference from europium complex.

  15. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  16. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors

    NARCIS (Netherlands)

    Villa Gomez, D.K.; Cassidy, J.; Keesman, K.J.; Sampaio, R.M.; Lens, P.N.L.

    2014-01-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4 2- ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing

  17. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase*

    Science.gov (United States)

    Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma

    2015-01-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  18. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    Science.gov (United States)

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Experimental simulations of sulfide formation in the solar nebula.

    Science.gov (United States)

    Lauretta, D S; Lodders, K; Fegley, B

    1997-07-18

    Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.

  20. Sulfide Precipitation in Wastewater at Short Timescales

    DEFF Research Database (Denmark)

    Kiilerich, Bruno; van de Ven, Wilbert; Nielsen, Asbjørn Haaning

    2017-01-01

    Abatement of sulfides in sewer systems using iron salts is a widely used strategy. When dosing at the end of a pumping main, the reaction kinetics of sulfide precipitation becomes important. Traditionally the reaction has been assumed to be rapid or even instantaneous. This work shows that this i......Abatement of sulfides in sewer systems using iron salts is a widely used strategy. When dosing at the end of a pumping main, the reaction kinetics of sulfide precipitation becomes important. Traditionally the reaction has been assumed to be rapid or even instantaneous. This work shows...... that this is not the case for sulfide precipitation by ferric iron. Instead, the reaction time was found to be on a timescale where it must be considered when performing end-of-pipe treatment. For real wastewaters at pH 7, a stoichiometric ratio around 14 mol Fe(II) (mol S(−II))−1 was obtained after 1.5 s, while the ratio...

  1. Functional consortium for denitrifying sulfide removal process.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-03-01

    Denitrifying sulfide removal (DSR) process simultaneously converts sulfide, nitrate, and chemical oxygen demand from industrial wastewaters to elemental sulfur, nitrogen gas, and carbon dioxide, respectively. This investigation utilizes a dilution-to-extinction approach at 10(-2) to 10(-6) dilutions to elucidate the correlation between the composition of the microbial community and the DSR performance. In the original suspension and in 10(-2) dilution, the strains Stenotrophomonas sp., Thauera sp., and Azoarcus sp. are the heterotrophic denitrifiers and the strains Paracoccus sp. and Pseudomonas sp. are the sulfide-oxidizing denitrifers. The 10(-4) dilution is identified as the functional consortium for the present DSR system, which comprises two functional strains, Stenotrophomonas sp. strain Paracoccus sp. At 10(-6) dilution, all DSR performance was lost. The functions of the constituent cells in the DSR granules were discussed based on data obtained using the dilution-to-extinction approach.

  2. Thermodynamics of coproportionation reactions of homogeneous samarium (3) and yttrium (3) nitrates solvates with neutral organic phosphorus compounds

    International Nuclear Information System (INIS)

    Pyartman, A.K.

    1995-01-01

    Reaction heats of homogeneous samarium (3) and yttrium (3) nitrate solvates coproportionation with neutral organophosphoric compounds (tri-n.-butylphosphate, diisooctylmethylphosphonate, diisoamylmethylphosphonate) at T=298.15 K in hexane have been measured by thermochemical method. It has been ascertained that enthalpies of coproportionation reactions practically do not depend on the nature, concentration of rare earth metal (3) nitrate solvates in hexane, nature of neutral organophosphoric compound and constitute 1.1±-.2 kJ/mol. The Gibbs free energy of coproportionation reactions is -5.43 kJ/mol, while entropy of the reactions in 14.5±0.7 J/mol·K. 8 refs., 1 tab

  3. On the effects of pressure and irradiation on the transport properties of samarium compounds with unstable valence

    International Nuclear Information System (INIS)

    Morillo, J.

    1983-06-01

    We present the first extensive study of electronic transport properties of ''quasi-stoichiometric'' SmS as a function of pressure P, temperature T, magnetic field B and defect concentration C. SmS which is a semiconductor, undergoes with increasing P a first order transition towards an homogeneous intermediate valence state. In the semiconducting phase (s.c.), the energie epsilon(f) necessary to delocalize a 4f electron increases greatly with T and is about 250meV at 300K. The phase diagram for the first order electronic transition Sm 2 + →Smsup(2+epsilon) with P has been determined for T 6 has been investigated by resistivity measurements under irradiation at 21K. The threshold energy Ed for displacement of Sm in SmS has been determined: Ed(Sm) = 20 +- 2 eV, and the observed effects of irradiation have been associated to samarium displacements (vacancies and interstitials) [fr

  4. Production and Preservation of Sulfide Layering in Mercury's Magma Ocean

    Science.gov (United States)

    Boukare, C.-E.; Parman, S. W.; Parmentier, E. M.; Anzures, B. A.

    2018-05-01

    Mercury's magma ocean (MMO) would have been sulfur-rich. At some point during MMO solidification, it likely became sulfide saturated. Here we present physiochemical models exploring sulfide layer formation and stability.

  5. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  6. Girdler-sulfide process physical properties

    International Nuclear Information System (INIS)

    Neuburg, H.J.; Atherley, J.F.; Walker, L.G.

    1977-05-01

    Physical properties of pure hydrogen sulfide and of gaseous and liquid solutions of the H 2 S-H 2 O system have been formulated. Tables for forty-nine different properties in the pressure and temperature range of interest to the Girdler-Sulfide (GS) process for heavy water production are given. All properties are presented in SI units. A computer program capable of calculating properties of the pure components as well as gaseous mixtures and liquid solutions at saturated and non-saturated conditions is included. (author)

  7. Sorption of samarium in soils: influence of soil properties and Sm concentration

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Guinart, Oriol; Salaberria, Aitor; Rigol, Anna; Vidal, Miquel [Analytical Chemistry department, Faculty of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028, Barcelona (Spain)

    2014-07-01

    Due to the fact that barriers of Deep Geological Repositories (DGR) may lose efficiency before the radioisotopes present in the High Level Radioactive Waste (HLRW) completely decay, it is possible that, in the long-term, radioactive leachates may escape from the DGR and reach the soil and water compartments in the biosphere. Therefore, it is required to examine the interaction and mobility of radionuclides present in the HLRW, or their chemical analogues, to predict the impact of their eventual incorporation in the biosphere and to assess the derived risk. Although relevant data have been recently obtained for a few radionuclides in soils, there are still some important gaps for some radionuclides, such us for samarium (Sm). Sm is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in HLRW in the form of the radioactive isotope {sup 151}Sm. The main objective of this work was to obtain sorption data (K{sub d}) of {sup 151}Sm gathered from a set of soil samples physicochemical fully-characterized (pH, texture, cationic exchange capacity, soil solution cationic composition, organic matter, carbonate and metallic oxides content, etc.). Additionally, as an alternative for testing sorption capacity of radionuclides in soils is the use of the corresponding stable isotope or a chemical analogue, the influence of Sm concentration was also checked. To evaluate {sup 151}Sm sorption, batch assays were carried out for each soil sample, which consisted in a pre-equilibration step of 2 g of each soil with 50 ml of double deionised water, and a subsequent equilibration step with the same solution, but labelled with {sup 151}Sm. The activity of {sup 151}Sm in initial and final solutions was measured by liquid scintillation and K{sub d} ({sup 151}Sm) data were calculated. The reversibly sorbed fraction was estimated by the application of a single extraction test, with double deionised water, to soil residues coming from the previous

  8. Use of biogenic sulfide for ZnS precipitation

    NARCIS (Netherlands)

    Esposito, G.; Veeken, A.; Weijma, J.; Lens, P.N.L.

    2006-01-01

    A 600 ml continuously stirred tank reactor was used to assess the performance of a zinc sulfide precipitation process using a biogenic sulfide solution (the effluent of a sulfate-reducing bioreactor) as sulfide source. In all experiments, a proportional-integral (PI) control algorithm was used to

  9. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco

    DEFF Research Database (Denmark)

    Vollertsen, Jes; Revilla, Nohemy; Hvitved-Jacobsen, Thorkild

    2015-01-01

    An extensive measuring campaign targeted on sewer odor problems was undertaken in San Francisco. It was assessed whether a conceptual sewer process model could reproduce the measured concentrations of total sulfide in the wastewater and H2S gas in the sewer atmosphere, and to which degree...... such simulations have potential for further improving odor and sulfide management. The campaign covered measurement of wastewater sulfide by grab sampling and diurnal sampling, and H2S gas in the sewer atmosphere was logged. The tested model was based on the Wastewater Aerobic/Anaerobic Transformations in Sewers...... (WATS) sewer process concept, which never had been calibrated to such an extensive dataset. The study showed that the model was capable of reproducing the general levels of wastewater sulfide, wastewater pH, and sewer H2S gas. It could also reproduce the general variability of these parameters, albeit...

  10. Reaction between Hydrogen Sulfide and Limestone Calcines

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Trnka, Otakar; Čermák, Jiří

    2002-01-01

    Roč. 41, č. 10 (2002), s. 2392-2398 ISSN 0888-5885 R&D Projects: GA AV ČR IAA4072711; GA AV ČR IAA4072801 Keywords : hydrogen sulfide * limestone calcines * desulfurization Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.247, year: 2002

  11. Microaeration reduces hydrogen sulfide in biogas

    Science.gov (United States)

    Although there are a variety of biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, all require some level of chemical or water inputs and maintenance. In practice, managing biogas H2S remains a significant challenge for agricultural digesters where labor and opera...

  12. Support Effect in Hydrodesulfurization over Ruthenium Sulfide

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Kaluža, Luděk; Vít, Zdeněk; Zdražil, Miroslav

    2009-01-01

    Roč. 51, č. 2 (2009), s. 146-149 ISSN 1337-7027 R&D Projects: GA ČR GA104/06/0705 Institutional research plan: CEZ:AV0Z40720504 Keywords : ruthenium sulfide * hydrodesulfurization * support effect Subject RIV: CC - Organic Chemistry

  13. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  14. Acid volatile sulfide (AVS)- a comment

    NARCIS (Netherlands)

    Meysman, F.J.R.; Middelburg, J.J.

    2005-01-01

    The review by Rickard and Morse (this volume) adequately summarizes our current understanding with respect to acid-volatile sulfides (AVS). At the same time, this review addresses some of the misunderstandings with regard to measurements and dynamics of this important sedimentary sulfur pool. In

  15. Carbon a support for sulfide catalysts

    NARCIS (Netherlands)

    Vissers, J.P.R.; Lensing, T.J.; Mercx, F.P.M.; Beer, de V.H.J.; Prins, R.

    1983-01-01

    Two types of carbon materials, carbon black composite and carbon covered alumina, were studied for-their use as support for sulfide catalysts. The following parameters were varied: type of carbon black, carbon coverage of the alumina and carbon pretreatment. Pore size distributions were determined

  16. Ferrites Ni0,5Zn0,5Fe2O4 doped with samarium: structural analysis, morphological and electromagnetic

    International Nuclear Information System (INIS)

    Costa, A.C.F.M.; Diniz, A.P.; Viana, K.M.S.; Cornejo, D.R.; Kiminami, R.H.G.A.

    2010-01-01

    This paper proposes to investigate the sintering at 1200 deg C/2h of Ni 0.5 Zn 0.5 Fe 2-x Sm x O 4 ferrite doped with 0.05; 0.075 e 0.1 mol of Sm synthesized by combustion reaction to evaluate the performance materials as absorbers of electromagnetic radiation. The influence of the concentration of samarium on the structure, morphology and electromagnetic properties of ferrites was studied. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), magnetic measurements and reflectivity measurements in the frequency range between 8-12 GHz. The results showed that increasing the concentration of samarium caused a decrease in particle size of the samples, encouraging, therefore, to obtain materials with better values of magnetization and reflectivity, allowing for use as absorbers in narrow-band frequency between 9-10 GHz. (author)

  17. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Refinement of thermodynamic data for trivalent actinoids and samarium

    International Nuclear Information System (INIS)

    Kitamura, Akira; Fujiwara, Kenso; Yui, Mikazu

    2010-01-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level radioactive and TRU wastes, the refinement of the thermodynamic data for the inorganic compounds and complexes of trivalent actinoids (actinium(III), plutonium(III), americium(III) and curium(III)) and samarium(III) was carried out. Refinement of thermodynamic data for these elements was based on the thermodynamic database for americium published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Based on the similarity of chemical properties among trivalent actinoids and samarium, complementary thermodynamic data for their species expected under the geological disposal conditions were selected to complete the thermodynamic data set for the performance assessment of geological disposal of radioactive wastes. (author)

  18. Study on the sulfidation behavior of smithsonite

    International Nuclear Information System (INIS)

    Wu, Dandan; Wen, Shuming; Deng, Jiushuai; Liu, Jian; Mao, Yingbo

    2015-01-01

    Highlights: • Zeta potential showed that the pH IEP of smithsonite decreased from 7.7 to 6. • ICP test showed the gradual reduction of C S in the solution. • SEM showed that the mineral surface was partially changed to ZnS film. • XPS indicated that the presence of a characteristic signal peak of sulfur ions. - Abstract: Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pH IEP of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, C S in the solution declined from 1000 × 10 −6 mol/L to 1.4 × 10 −6 mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S 2− and CO 3 2− ions

  19. Effective visible light-active nitrogen and samarium co-doped BiVO{sub 4} for the degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min; Niu, Chao [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China); Liu, Jun, E-mail: minwang62@msn.com [Shenyang Military General Hospital, Shenyang 110016 (China); Wang, Qianwu; Yang, Changxiu; Zheng, Haoyan [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China)

    2015-11-05

    Nitrogen and samarium co-doped BiVO{sub 4} (N–xSm–BiVO{sub 4}) nanoparticles were synthesized using a sol–gel method with a corn stem template. The physicochemical properties of the resultant N–xSm–BiVO{sub 4} particles were characterized using various methods: XPS, XRD, SEM, BET, and UV–Vis DRS analyses. The visible-light photocatalytic activity was successfully demonstrated by degrading a model dye, namely, methyl orange. The dopant content was optimized, and the nitrogen and samarium co-doped BiVO{sub 4} extended the light absorption spectrum toward the visible region, significantly enhancing the photodegradation of the model dye. The Sm and N co-doped BiVO{sub 4} exhibited the highest photocatalytic activity compared to materials with a single dopant or no dopant. The significantly enhanced photocatalytic activity of the N–Sm co-doped BiVO{sub 4} under visible-light irradiation can be attributed to the synergistic effects of the nitrogen and samarium. - Highlights: • The N–Sm codoped BiVO{sub 4} were synthesized using a sol–gel method with a corn stem template. • The N and Sm codoped BiVO{sub 4} has excellent photocatalytic activity of methyl orange degradation. • The maximum activity was observed when the molar ratio of Sm/Bi was 1.0. • The high photocatalytic activity was caused by the synergistic effects between N doping and Sm doping.

  20. Effective visible light-active nitrogen and samarium co-doped BiVO4 for the degradation of organic pollutants

    International Nuclear Information System (INIS)

    Wang, Min; Niu, Chao; Liu, Jun; Wang, Qianwu; Yang, Changxiu; Zheng, Haoyan

    2015-01-01

    Nitrogen and samarium co-doped BiVO 4 (N–xSm–BiVO 4 ) nanoparticles were synthesized using a sol–gel method with a corn stem template. The physicochemical properties of the resultant N–xSm–BiVO 4 particles were characterized using various methods: XPS, XRD, SEM, BET, and UV–Vis DRS analyses. The visible-light photocatalytic activity was successfully demonstrated by degrading a model dye, namely, methyl orange. The dopant content was optimized, and the nitrogen and samarium co-doped BiVO 4 extended the light absorption spectrum toward the visible region, significantly enhancing the photodegradation of the model dye. The Sm and N co-doped BiVO 4 exhibited the highest photocatalytic activity compared to materials with a single dopant or no dopant. The significantly enhanced photocatalytic activity of the N–Sm co-doped BiVO 4 under visible-light irradiation can be attributed to the synergistic effects of the nitrogen and samarium. - Highlights: • The N–Sm codoped BiVO 4 were synthesized using a sol–gel method with a corn stem template. • The N and Sm codoped BiVO 4 has excellent photocatalytic activity of methyl orange degradation. • The maximum activity was observed when the molar ratio of Sm/Bi was 1.0. • The high photocatalytic activity was caused by the synergistic effects between N doping and Sm doping

  1. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems; Sorcion de samario en fosfatos de hierro (II) y (III) en sistemas acuosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz F, J C

    2006-07-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  2. Results after therapy of pain from bone metastases with Samarium-153 in our centers in Lima, Peru

    International Nuclear Information System (INIS)

    Alvarado, N.; Eskenazi, S.; Valle, M.P.; Montoya, J.; Castro, M.; Montiel, L.; Velarde, V.; Jauregui, I.; Cueto, C.

    2004-01-01

    Full text: 105 patients with bone metastases from prostate and breast cancer; between 42 and 78 years age (median 61 years) were evaluated. Patients had intense pain that could not be managed with combinations of analgesic and anti tumoral drugs. All patients received 1.2 mCi/kg of Samarium-153 intravenously as treatment for pain due to bony metastases. The isotope obtained from atomic reactor placed in Lima - Peru, was provided by Peruvian Nuclear Energy Institute (IPEN). One week before therapy, all the patients had a bone scan study with Tc99m-MDP that showed the presence of multiple bone metastases with high blastic activity. Haematology and biochemical parameter checked were: Creatinine ( 150,000 mm3), Leukocytes (> 5,000 mm3), Red cells (>3,500,000 mm3). No problems were encountered during intravenous administration of the radioisotope. The side effects after treatment were: Primary effects: 16 cases of nausea, 2 of vomiting, 3 of headache, 28 had increment of pain, 6 had flushing. 50 patients did not have the primary symptoms. Secondary effects: 3 Patients showed drop in leukocyte count between 2nd and 3rd week of therapy. Red cells showed 10-15% decrease between 6th to 8th week. Platelets showed a decrease of about 15% with one peak between 1st and 2nd week post Samarium therapy. Data was analysed using an analogue visual scale of the pain with values from 0 - 10 (0-no pain; 10-maximum pain) and in the same way using the E.C.O.G. scale (Eastern Cooperative Oncology Group) in relationship with the Karnofsky index in order to establish functional recovery for each patient. The decrease of pain was seen between 4th-7th days (average 8 days). A second dose was given after 60 days in 12 patients and a third dose in 3 cases.11 patients died due to different causes between 30 - 60 days post treatment. The analgesic dose came down significantly in 80% of patients. We conclude that palliative therapy of metastatic bone pain in Peru is possible with radionuclides. It

  3. Hydrogen sulfide concentration in Beaver Dam Creek

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1979-01-01

    Concentration-time profiles calculated with LODIPS for various hypothetical releases of hydrogen sulfide from the heavy water extraction facility predict lethal conditions for swamp fish from releases as small as 568 kg discharged over a period of 30 minutes or from releases of 1818 kg discharged over a period of 6 hours or less. The necessary volatilization and oxidation coefficients for LODIPS were derived from field measurements following planned releases of H 2 S. Upsets in the operation of the wastewater strippers in the Girdler-Sulfide (GS) heavy water extraction facility in D Area have released significant amounts of dissolved H 2 S to Beaver Dam Creek. Because H 2 S is toxic to fish in concentrations as low as 1 mg/liter, the downstream environmental impact of H 2 S releases from D Area was evaluated

  4. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  5. Hydrogen sulfide prodrugs—a review

    Directory of Open Access Journals (Sweden)

    Yueqin Zheng

    2015-09-01

    Full Text Available Hydrogen sulfide (H2S is recognized as one of three gasotransmitters together with nitric oxide (NO and carbon monoxide (CO. As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.

  6. Samarium-modified vanadium phosphate catalyst for the selective oxidation of n-butane to maleic anhydride

    International Nuclear Information System (INIS)

    Wu, Hua-Yi; Wang, Hai-Bo; Liu, Xin-Hua; Li, Jian-Hui; Yang, Mei-Hua; Huang, Chuan-Jing; Weng, Wei-Zheng; Wan, Hui-Lin

    2015-01-01

    Graphical abstract: The addition of a small amount of Sm into VPO catalyst brought about great changes in its physicochemical properties such as surface area, surface morphology, phase composition and redox property, thus leading to a higher catalytic performance in the selective oxidation of n-butane to maleic anhydride, as compared to the undoped VPO catalyst. - Highlights: • The addition of Sm leads to great changes in the structure of VPO catalyst. • Sm improves performance of VPO for oxidation of n-butane to maleic anhydride. • Catalytic performance is closely related to structure of VPO catalyst. - Abstract: A series of samarium-modified vanadium phosphate catalysts were prepared and studied in selective oxidation of n-butane to maleic anhydride. The catalytic evaluation showed that Sm modification significantly increased the overall n-butane conversion and intrinsic activity. N 2 -adsorption, XRD, SEM, Raman, XPS, EPR and H 2 -TPR techniques were used to investigate the intrinsic difference among these catalysts. The results revealed that the addition of Sm to VPO catalyst can increase the surface area of the catalyst, lead to a significant change in catalyst morphology from plate-like structure into rosette-shape clusters, and largely promote the formation of (VO) 2 P 2 O 7 . All of these were related to the different catalytic performance of Sm-doped and undoped VPO catalysts. The roles of the different VOPO 4 phases and the influence of Sm were also described and discussed

  7. Study of unstable valences of cadmium and samarium by pulse radiolysis. Influence of complexation by some synthetical ionophores

    International Nuclear Information System (INIS)

    Lerat-Parizot, O.

    1992-01-01

    Instable valences of cations in solution are evidenced by pulse radiolysis, in spite of a lifetime often lower than a milli-second they participate to electron transfer reactions, owing to their redox potential. In this work are studied Cd + and Sm 2+ obtained respectively by reduction of Cd 2+ and Sm 3+ by a solvated electron. The reactivity of Cd + in a cryptand and in a coronand is studied; it is a powerful reducing agent (redox potential -2V) going back to the stable valence by electron transfer to an acceptor. Transfer kinetics is studied by reduction of organic molecules, effect of solvents and ligands is also examined. For samarium the reduction kinetics by hydrated electrons is increased when the ion is in a cryptand in agreement with electrochemical observations, showing that the valence 2+ is stabilized in respect to the valence 3+ for lanthanides. The difference of behaviour between Cd + and Sm 2+ is probably due to the fact that for Cd the transferred electron comes from the external layer and for Sm it is a f electron protected by the 5s and 5p orbitals

  8. Fabrication of samarium strontium aluminate ceramic and deposition of thermal barrier coatings by air plasma spray process

    Directory of Open Access Journals (Sweden)

    Baskaran T

    2018-01-01

    Full Text Available Thermal barrier coatings (TBC with the metallic NiCrAlY bond coat are often used in many aircraft engines to protect superalloy components from high-temperature corrosion thereby to improve the life of gas turbine components. The search for new TBC material has been intensified in recent years due to lack of thermo-physical properties of conventionally used Yttria stabilized Zirconia (YSZ TBCs. Recently, the rare earth containing Samarium Strontium Aluminate (SSA based ceramic was proposed as a new TBC material due to its matching thermo-physical properties with the substrate. The present work focused on the synthesis of SSA ceramics for TBCs application and its coatings development on Ni-based superalloy Inconel 718 substrate by air plasma spray process. The X-ray photoelectron spectroscopy (XPS result confirmed the formation of single phase SSA ceramic after synthesis. The surface morphology of SSA TBCs is mainly composed of melted splats, semi and un-melted particles. The cross-sectional SEM micrographs did not show any spallation at the interface which indicated good mechanical interlocking between the bond coat and ceramic top coat. The Young’s modulus and hardness of SSA TBCs were found to be 80 and 6.1 GPa, respectively. The load-depth curve of SSA TBC showed good elastic recovery about 47 %.

  9. Observation of near infrared and enhanced visible emissions from electroluminescent devices with organo samarium(III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Chu, B [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Li, W L [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Hong, Z R [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Zang, F X [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Wei, H Z [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Wang, D Y [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Li, M T [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16-Dong NanHu Road, Economic Development Area, Changchun, 130033 (China); Lee, C S [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Lee, S T [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China)

    2006-11-07

    Samarium (dibenzoylmethanato){sub 3} bathophenanthroline (Sm(DBM){sub 3} bath) was employed as an emitting and electron transport layer in organic light emitting diodes (OLEDs), and narrow electroluminescent (EL) emissions of a Sm{sup 3+} ion were observed in the visible and near infrared (NIR) region, differing from those of the same devices with Eu{sup 3+}- or Tb{sup 3+}-complex EL devices with the same structure. The EL emissions of the Sm{sup 3+}-devices originate from transitions from {sup 4}G{sub 5/2} to the lower respective levels of Sm{sup 3+} ions. A maximum luminance of 490 cd m{sup -2} at 15 V and an EL efficiency of 0.6% at 0.17 mA cm{sup -2} were obtained in the visible region, and the improved efficiency should be attributed to introducing a transitional layer between the N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) film and the Sm(DBM){sub 3} bath film and the avoidance of interfacial exciplex emission in devices. Sharp emissions of Sm{sup 3+} ions in the NIR region were also observed under a lower threshold value less than 4.5 V.

  10. Effects of increasing doses of samarium-153-ethylenediaminetetramethylene phosphonate on axial and appendicular skeletal growth in juvenile rabbits

    International Nuclear Information System (INIS)

    Essman, Stephanie C.; Lewis, Michael R.; Fox, Derek B.

    2008-01-01

    Introduction: Targeted radiotherapy using samarium-153-ethylenediaminetetramethylene phosphonate ( 153 Sm-EDTMP) is currently under investigation for treatment of osteosarcoma. Osteosarcoma often occurs in children, and previous studies on a juvenile rabbit model demonstrated that clinically significant damage to developing physeal cartilage may occur as a result of systemic 153 Sm-EDTMP therapy. The aim of this study was to evaluate the late effects of 153 Sm-EDTMP on skeletal structures during growth to maturity and to determine if there is a dose response of 153 Sm-EDTMP on growth of long bones. Methods: Female 8-week-old New Zealand white rabbits were divided into three treatment groups plus controls. Each rabbit was intravenously administered a predetermined dose of 153 Sm-EDTMP. Multiple bones of each rabbit were radiographed every 2 months until physeal closure, with subsequent measurements made to assess for abbreviated bone growth. Statistical analyses were performed to determine the differences in bone length between groups, with significance set at P 153 Sm-EDTMP. Further investigation regarding the effects of bone-seeking radiopharmaceuticals on bone growth and physeal cartilage is warranted

  11. Synthesis and characterization of samarium-doped ZnS nanoparticles: A novel visible light responsive photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hanifehpour, Younes, E-mail: y_hanifehpour@yu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Soltani, Behzad; Amani-Ghadim, Ali Reza; Hedayati, Behnam [Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of); Khomami, Bamin [Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Joo, Sang Woo, E-mail: swjoo1@gmail.com [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2016-04-15

    Highlights: • Sm-doped ZnS Nanomaterials were synthesized by hydrothermal method. • The as-prepared compounds were characterized by XRD, TEM, XPS, SEM and UV techniques. • The photocatalytic effect of compounds was determined by Reactive Red 43 degradation. • The degradation of RRed 43 followed the Langmuir–Hinshelwood kinetic model. - Abstract: We prepared pure and samarium-doped ZnS (Sm{sub x}Zn{sub 1−x}S{sub 1+0.5x}) nanoparticles via hydrothermal process at 160 °C for 24 h. XRD analysis shows that the particles were well crystallized and corresponds to a cubic sphalerite phase. SEM and TEM images indicate that the sizes of the particles were in the range of 20–60 nm. The photocatalytic activity of Sm-doped ZnS nanoparticles was evaluated by monitoring the decolorization of Reactive Red 43 in aqueous solution under visible light irradiation. The color removal efficiency of Sm{sub 0.04}Zn{sub 0.96}S and pure ZnS was 95.1% and 28.7% after 120 min of treatment, respectively. Among the different amounts of dopant agent used, 4% Sm-doped ZnS nanoparticles indicated the highest decolorization. We found that the presence of inorganic ions such as Cl{sup −}, CO{sub 3}{sup 2−} and other radical scavengers such as buthanol and isopropyl alcohol reduced the decolorization efficiency.

  12. Determination of the speciation and bioavailability of samarium to Chlamydomonas reinhardtii in the presence of natural organic matter.

    Science.gov (United States)

    Rowell, Justine-Anne; Fillion, Marc-Alexandre; Smith, Scott; Wilkinson, Kevin J

    2018-06-01

    As technological interest and environmental emissions of the rare earth elements increase, it is becoming more important to assess their potential environmental impact. Samarium (Sm) is a lanthanide of intermediate molar mass that is used in numerous high-technology applications including wind turbines, solar panels, and electric vehicles. The present study relates the speciation of Sm determined in the presence of natural organic matter (NOM) to its bioavailability to the unicellular green alga Chlamydomonas reinhardtii. The free ion concentration was determined using a cation exchange resin (ion exchange technique) in dynamic mode and compared with thermodynamic modeling. Short-term biouptake experiments were performed in the presence of 4 types of NOM: Suwannee River fulvic acids, Pahokee Peat fulvic acids, Suwannee River humic acids, and a Luther Marsh dissolved organic matter isolate (90-95% humic acids). It was clearly shown that even a small amount of NOM (0.5 mg C L -1 ) resulted in a significant decrease (10 times) in the Sm internalization fluxes. Furthermore, complexation with humic acids (and the corresponding reduction in Sm bioavailability) was stronger than that with fulvic acids. The results showed that the experimentally measured (free) Sm was a better predictor of Sm internalization than either the total concentrations or the free ion concentrations obtained using thermodynamic modeling. Environ Toxicol Chem 2018;37:1623-1631. © 2018 SETAC. © 2018 SETAC.

  13. Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling

    International Nuclear Information System (INIS)

    Wang Aijie; Liu Chunshuang; Ren Nanqi; Han Hongjun; Lee Duujong

    2010-01-01

    Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S 0 ), N 2 , and CO 2 , or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.5 1000 mg/L influent sulfide, however, the DSR system will break down.

  14. Microaeration for hydrogen sulfide removal in UASB reactor.

    Science.gov (United States)

    Krayzelova, Lucie; Bartacek, Jan; Kolesarova, Nina; Jenicek, Pavel

    2014-11-01

    The removal of hydrogen sulfide from biogas by microaeration was studied in Up-flow Anaerobic Sludge Blanket (UASB) reactors treating synthetic brewery wastewater. A fully anaerobic UASB reactor served as a control while air was dosed into a microaerobic UASB reactor (UMSB). After a year of operation, sulfur balance was described in both reactors. In UASB, sulfur was mainly presented in the effluent as sulfide (49%) and in biogas as hydrogen sulfide (34%). In UMSB, 74% of sulfur was detected in the effluent (41% being sulfide and 33% being elemental sulfur), 10% accumulated in headspace as elemental sulfur and 9% escaped in biogas as hydrogen sulfide. The efficiency of hydrogen sulfide removal in UMSB was on average 73%. Microaeration did not cause any decrease in COD removal or methanogenic activity in UMSB and the elemental sulfur produced by microaeration did not accumulate in granular sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Reduction of produced elementary sulfur in denitrifying sulfide removal process.

    Science.gov (United States)

    Zhou, Xu; Liu, Lihong; Chen, Chuan; Ren, Nanqi; Wang, Aijie; Lee, Duu-Jong

    2011-05-01

    Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.

  16. Study on the sulfidation behavior of smithsonite

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dandan; Wen, Shuming, E-mail: shmwen@126.com; Deng, Jiushuai, E-mail: dengshuai689@163.com; Liu, Jian; Mao, Yingbo

    2015-02-28

    Highlights: • Zeta potential showed that the pH{sub IEP} of smithsonite decreased from 7.7 to 6. • ICP test showed the gradual reduction of C{sub S} in the solution. • SEM showed that the mineral surface was partially changed to ZnS film. • XPS indicated that the presence of a characteristic signal peak of sulfur ions. - Abstract: Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pH{sub IEP} of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, C{sub S} in the solution declined from 1000 × 10{sup −6} mol/L to 1.4 × 10{sup −6} mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S{sup 2−} and CO{sub 3}{sup 2−} ions.

  17. Nanostructured silver sulfide: synthesis of various forms and their application

    Science.gov (United States)

    Sadovnikov, S. I.; Rempel, A. A.; Gusev, A. I.

    2018-04-01

    The results of experimental studies on nanostructured silver sulfide are analyzed and generalized. The influence of small particle size on nonstoichiometry of silver sulfide is discussed. Methods for the synthesis of various forms of nanostructured Ag2S including nanopowders, stable colloidal solutions, quantum dots, core–shell nanoparticles and heteronanostructures are described. The advantages and drawbacks of different synthetic procedures are analyzed. Main fields of application of nanostructured silver sulfide are considered. The bibliography includes 184 references.

  18. Carbon steel protection in G.S. (Girlder sulfide) plants. Iron sulfide scales formation conditions. Pt. 1

    International Nuclear Information System (INIS)

    Bruzzoni, P.; Burkart, A.L.; Garavaglia, R.N.

    1981-11-01

    An ASTM A 516 degree 60 carbon steel superficial protection technique submitted to a hydrogen-water sulfide corrosive medium at 2 MPa of pressure and 40-125 deg C forming on itself an iron sulfide layer was tested. Studies on pH influence, temperature, passivating mean characteristics and exposure time as well as the mechanical resistance of sulfide layers to erosion are included. (Author) [es

  19. 76 FR 64022 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-10-17

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen Sulfide. SUMMARY: EPA is announcing... (EPCRA) section 313 toxic chemical release reporting requirements for hydrogen sulfide (Chemical...

  20. Fabrication of a PVC membrane samarium(III) sensor based on N,N Prime ,N Double-Prime -tris(4-pyridyl)trimesic amide as a selectophore

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Naghavi-Reyabbi, Fatemeh [Resident of General Surgery, Endoscopic and Minimaly Invasive Surgery Research Center, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Faridbod, Farnoush [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Mohammadhosseini, Majid [Department of Chemistry, Faculty of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of); Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Tadjarodi, Azadeh; Rad, Maryam [Department of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-03-01

    A new ion-selective electrode for Sm{sup 3+} ion is described based on the incorporation of N,N Prime ,N Double-Prime -tris(4-pyridyl)trimesic amide (TPTA) in a poly(vinylchloride) (PVC) matrix. The membrane sensor comprises nitrobenzene (NB) as a plasticizer, and oleic acid (OA) as an anionic additive. The sensor with the optimized composition shows a Nernstian potential response of 19.8 {+-} 0.5 mV decade{sup -1} over a wide concentration range of 1.0 Multiplication-Sign 10{sup -2} and 1 Multiplication-Sign 10{sup -6} mol L{sup -1}, with a lower detection limit of 4.7 Multiplication-Sign 10{sup -7} mol L{sup -1} and satisfactor applicable pH range of 3.6-9.2. Having a short response time of less than 10 s and a very good selectivity towards the Sm{sup 3+} over a wide variety of interfering cations (e.g. alkali, alkaline earth, transition and heavy metal ions) the sensor seemed to be a promising analytical tool for determination of the Sm{sup 3+}. Hence, it was used as an indicator electrode in the potentiometric titration of samarium ion with EDTA. It was also applied to the direct samarium recovery in binary mixtures. - Highlights: Black-Right-Pointing-Pointer A new Sm{sup 3+}-PVC membrane sensor is introduced for determination of Sm{sup 3+} ions in the solutions. Black-Right-Pointing-Pointer N,N Prime ,N Double-Prime -tris(4-pyridyl)trimesic amide was used as a suitable selectophore for samarium sensor. Black-Right-Pointing-Pointer Detection limit of the sensor is 4.7 Multiplication-Sign 10{sup -7} mol L{sup -1} with a short response time of less than 10 s.

  1. Fabrication of a PVC membrane samarium(III) sensor based on N,N′,N″-tris(4-pyridyl)trimesic amide as a selectophore

    International Nuclear Information System (INIS)

    Zamani, Hassan Ali; Naghavi-Reyabbi, Fatemeh; Faridbod, Farnoush; Mohammadhosseini, Majid; Ganjali, Mohammad Reza; Tadjarodi, Azadeh; Rad, Maryam

    2013-01-01

    A new ion-selective electrode for Sm 3+ ion is described based on the incorporation of N,N′,N″-tris(4-pyridyl)trimesic amide (TPTA) in a poly(vinylchloride) (PVC) matrix. The membrane sensor comprises nitrobenzene (NB) as a plasticizer, and oleic acid (OA) as an anionic additive. The sensor with the optimized composition shows a Nernstian potential response of 19.8 ± 0.5 mV decade −1 over a wide concentration range of 1.0 × 10 −2 and 1 × 10 −6 mol L −1 , with a lower detection limit of 4.7 × 10 −7 mol L −1 and satisfactor applicable pH range of 3.6–9.2. Having a short response time of less than 10 s and a very good selectivity towards the Sm 3+ over a wide variety of interfering cations (e.g. alkali, alkaline earth, transition and heavy metal ions) the sensor seemed to be a promising analytical tool for determination of the Sm 3+ . Hence, it was used as an indicator electrode in the potentiometric titration of samarium ion with EDTA. It was also applied to the direct samarium recovery in binary mixtures. - Highlights: ► A new Sm 3+ -PVC membrane sensor is introduced for determination of Sm 3+ ions in the solutions. ► N,N′,N″-tris(4-pyridyl)trimesic amide was used as a suitable selectophore for samarium sensor. ► Detection limit of the sensor is 4.7 × 10 −7 mol L −1 with a short response time of less than 10 s.

  2. Iron sulfide crystal growth: a literature review

    International Nuclear Information System (INIS)

    Dewar, E.J.

    1977-04-01

    Iron pyrite (FeS 2 ) is often found on trays and in heat exchangers in Girdler-Sulfide (G.S.) plants used to extract D 2 O from fresh water. A critical review of the literature was made to find: (i) what is known about FeS 2 crystal growth; (ii) which techniques could be used to study FeS 2 crystal growth experimentally; (iii) potential chemical additives that could be used in trace amounts to poison FeS 2 crystals and reduce their growth rate in G.S. plants. (author)

  3. Sulfide geochronlogy along the Southwest Indian Ridge

    Science.gov (United States)

    Yang, W.; Tao, C.; Li, H.; Liang, J.; Liao, S.

    2017-12-01

    Dragon Flag and Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones in the ultraslow-spreading Southwest Indian Ridge (SWIR). Ten subsamples from active and inactive vents of Dragon Flag hydrothermal field and twenty-eight subsamples from Duanqiao hydrothermal field were dated using the 230Th/238U method. Four main episodes of hydrothermal activity of Duanqiao were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. And sulfide samples from the nearby Dragon Flag filed at the same time and the results show that the ages of most sulfides from Dragon Flag field range from 1.496(±0.176) to 5.416 (±0.116) kyrs with the oldest age estimated at 15.997 (±0.155) kyrs Münch et al. (2001) reconstructed the evolution history of Mt. Jourdanne hydrothermal field. The age dating results indicate activity in two episodes, at 70-40 and 27-13 kyrs. The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. All these results suggest that hydrothermal activity of Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. Mt. Jourdanne is situated on an axial volcanic ridge which has both volcanic and tectonic activity. This is necessary to develop the heat source and pathways for the fluid convection, which enables the hydrothermal circulation. Hydrothermal activity in Dragon Flag Field is located next to the detachment fault termination. The detachment fault system provides a pathway for hydrothermal convection. Such style of heat source can contribute to continuous hydrothermal activity for over 1000 years. Duanqiao field is located near the central volcano and there is a hot

  4. The theoretical basis and clinical methodology for stereotactic interstitial brain tumor irradiation using iododeoxyuridine as a radiation sensitizer and samarium-145 as a brachytherapy source

    International Nuclear Information System (INIS)

    Goodman, J.H.; Gahbauer, R.A.; Kanellitsas, C.; Clendenon, N.R.; Laster, B.H.; Fairchild, R.G.

    1989-01-01

    High grade astrocytomas have proven resistant to all conventional therapy. A technique to produce radiation enhancement during interstitial brain tumor irradiation by using a radiation sensitizer (IdUrd) and by stimulation of Auger electron cascades through absorption of low energy photons in iodine (Photon activation) is described. Clinical studies using IdUrd, 192 Ir as a brachytherapy source, and external radiation have produced promising results. Substituting samarium-145 for 192 Ir in this protocol is expected to produce enhanced results. 15 refs

  5. The properties of samarium-doped zinc oxide/phthalocyanine structure for optoelectronics prepared by pulsed laser deposition and organic molecular evaporation

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Marešová, Eva; Fitl, Přemysl; Vlček, Jan; Bergmann, M.; Vondráček, Martin; Yatskiv, Roman; Bulíř, Jiří; Hubík, Pavel; Hruška, Petr; Drahokoupil, Jan; Abdellaoui, N.; Vrňata, M.; Lančok, Ján

    2016-01-01

    Roč. 122, č. 3 (2016), 1-8, č. článku 225. ISSN 0947-8396 R&D Projects: GA MŠk(CZ) LG15050; GA ČR(CZ) GAP108/11/0958; GA MŠk(CZ) LM2011029; GA ČR(CZ) GA14-10279S; GA MŠk(CZ) 7AMB14FR010 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : samarium-doped zinc oxide zinc/phthalocyanine deposition * evaporation * pulsed laser deposition * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016

  6. Microbial selenium sulfide reduction for selenium recovery from wastewater

    NARCIS (Netherlands)

    Hageman, S.P.W.; Weijden, van der R.D.; Stams, A.J.M.; Cappellen, van P.; Buisman, C.J.N.

    2017-01-01

    Microbial reduction of selenium sulfide (SeS2) is a key step in a new treatment process to recover selenium from selenate and selenite streams. In this process, selenate is first reduced to selenite, and subsequently selenite is reduced by sulfide and precipitates from the solution as SeS2. The

  7. Recent findings on sinks for sulfide in gravity sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2006-01-01

    summarizes this newly obtained knowledge and emphasizes important implications of the findings. Model simulations of the in-sewer processes important for the sulfur cycle showed that sulfide oxidation in the wetted biofilm is typically the most important sink for dissolved sulfide in gravity sewers. However...

  8. Technetium behavior in sulfide and ferrous iron solutions

    International Nuclear Information System (INIS)

    Lee, S.Y.; Bondietti, E.A.

    1982-01-01

    Pertechnetate oxyanion ( 99 TcO 4- ), a potentially mobile species in leachate from a breached radioactive waste repository, was removed from a brine solution by precipitation with sulfide, iron, and ferrous sulfide at environmental pH's. Maghemite (ν-Fe 2 O 3 ) and geothite (α-FeOOH) were the dominant minerals in the precipitate obtained from the TcO 4- -ferrous iron reaction. The observation of small particle size and poor crystallinity of the minerals formed in the presence of Tc suggested that the Tc was incorporated into the mineral structure after reduction to a lower valence state. Amorphous ferrous sulfide, an initial phase precipitating in the TcO 4- -ferrous iron-sulfide reaction, was transformed to goethite and hematite (α-Fe 2 O 3 ) on aging. The black precipitate obtained from the TcO 4- -sulfide reaction was poorly crystallized technetium sulfide (Tc 2 S 7 ) which was insoluble in both acid and alkaline solution in the absence of strong oxidents. The results suggested that ferrous- and/or sulfide-bearing groundwaters and minerals in host rocks or backfill barriers could reduce the mobility of Tc through the formation of less-soluble Tc-bearing iron and/or sulfide minerals

  9. Sulfidation of carbon-supported iron oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Oers, van E.M.; Kraan, van der A.M.

    1989-01-01

    The sulfidation of carbon-supported iron oxide catalysts was studied by means of in-situ Mössbauer spectroscopy at temperatures down to 4.2 K. The catalysts were dried in two different ways and then sulfided in a flow of 10% H2S in H2 at temperatures between 293 and 773 K. Thiophene

  10. Effects of increasing doses of samarium-153-ethylenediaminetetramethylene phosphonate on axial and appendicular skeletal growth in juvenile rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Essman, Stephanie C. [Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211 (United States)], E-mail: essmans@missouri.edu; Lewis, Michael R. [Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211 (United States); Department of Radiology, University of Missouri-Columbia, Columbia, MO 65211 (United States); Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MO 65211 (United States); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Fox, Derek B. [Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211 (United States)

    2008-02-15

    Introduction: Targeted radiotherapy using samarium-153-ethylenediaminetetramethylene phosphonate ({sup 153}Sm-EDTMP) is currently under investigation for treatment of osteosarcoma. Osteosarcoma often occurs in children, and previous studies on a juvenile rabbit model demonstrated that clinically significant damage to developing physeal cartilage may occur as a result of systemic {sup 153}Sm-EDTMP therapy. The aim of this study was to evaluate the late effects of {sup 153}Sm-EDTMP on skeletal structures during growth to maturity and to determine if there is a dose response of {sup 153}Sm-EDTMP on growth of long bones. Methods: Female 8-week-old New Zealand white rabbits were divided into three treatment groups plus controls. Each rabbit was intravenously administered a predetermined dose of {sup 153}Sm-EDTMP. Multiple bones of each rabbit were radiographed every 2 months until physeal closure, with subsequent measurements made to assess for abbreviated bone growth. Statistical analyses were performed to determine the differences in bone length between groups, with significance set at P<.05. Results: Significant differences in lengths of multiple bones were detected between the high-dose group and other treatment groups and controls at each time interval. A significant difference in lengths of the tibias was also noted in the medium-treatment group, compared to controls. Mean reduction of bone length was first detected at 4 months and did not increase significantly over time. Conclusions: These data suggest that clinically significant bone shortening may occur as a result of high-dosage administration of {sup 153}Sm-EDTMP. Further investigation regarding the effects of bone-seeking radiopharmaceuticals on bone growth and physeal cartilage is warranted.

  11. Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7Mg alloys

    International Nuclear Information System (INIS)

    Qiu, Hongxu; Yan, Hong; Hu, Zhi

    2013-01-01

    Highlights: •Sm affected the secondary dendrite arm spacing of Al–7Si–0.7Mg alloy. •The coarse plate-like eutectic silicon was fully modified into a fine branched and particle structure when 0.6 wt.% Sm added. •The tensile properties were enhanced by the addition of Sm. •Sm has marked effects on eutectic temperature and the latent heat ΔH R on remelting behavior. •The morphology and chemical composition of Sm-rich intermetallics were studied. -- Abstract: The effects of samarium (Sm) additions (0–0.9 wt.%) on the microstructures and mechanical properties of Al–7Si–0.7Mg alloys have been studied in this article. The microstructures of the as-cast samples were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The experimental results indicated that the rare earth Sm affected the secondary dendrite arm spacing (SDAS) of Al–7Si–0.7Mg alloy. And it was found that Sm had great modification effects on the microstructures of eutectic silicon. When 0.6 wt.% Sm was added to the alloy, the coarse plate-like eutectic silicon was fully modified into a fine fibrous structure; the dendrites of Al–7Si–0.7Mg alloy was best refined. The mechanical properties were investigated by tensile test. The findings indicate that the tensile properties and elongation were improved by the addition of Sm. And a good combination of ultimate tensile strength (215 MPa) and elongation (3.3%) was obtained when the Sm addition was up to 0.6 wt.%. Furthermore the results of thermal analysis reveal that Sm addition had marked effects on eutectic temperature and the latent heat ΔH R on remelting behavior

  12. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.

    2015-12-01

    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  13. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  14. Oxidation and Precipitation of Sulfide in Sewer Networks

    DEFF Research Database (Denmark)

    Nielsen, A. H.

    risks and corrosion of concrete and metals. Most of the problems relate to the buildup of hydrogen sulfide in the atmosphere of sewer networks. In this respect, the processes of the sulfur cycle are of fundamental importance in ultimately determining the extent of such problems. This study focused...... calibrated and validated against field data. In the extension to the WATS model, sulfur transformations were described by six processes: 1. Sulfide production taking place in the biofilm and sediments covering the permanently wetted sewer walls; 2. Biological sulfide oxidation in the permanently wetted...... to the sewer atmosphere, potentially resulting in concrete corrosion. The extended WATS model represents a major improvement over previously developed models for prediction of sulfide buildup in sewer networks. Compared to such models, the major processes governing sulfide buildup in sewer networks...

  15. Kinetic Spectrophotometric Determination of Trace Amounts of Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Barzegar, Mohsen [Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Jabbari, Ali [K. N. Toosi University, Tehran (Iran, Islamic Republic of); Esmaeili, Majid [Razi University, Kermanshah (Iran, Islamic Republic of)

    2003-09-15

    A method for the determination of trace amount of sulfide based on the addition reaction of sulfide with methyl green at pH 7.5 and 25 .deg. C is described. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of the dyestuff at 637 nm by the initial rate and fixed time method. The calibration graph is linear in the range 30-1200 ppb. The theoretical limit of detection was 0.014 ppm. Seven replicate analysis of a sample solution containing 0.70 ppm sulfide gave a relative standard deviation of 1.5%. The interfering effects of various ions on sulfide determination have been reported and procedures for removal of interference have been described. The proposed method was applied successfully to the determination of sulfide in tap and wastewater samples.

  16. Kinetic Spectrophotometric Determination of Trace Amounts of Sulfide

    International Nuclear Information System (INIS)

    Barzegar, Mohsen; Jabbari, Ali; Esmaeili, Majid

    2003-01-01

    A method for the determination of trace amount of sulfide based on the addition reaction of sulfide with methyl green at pH 7.5 and 25 .deg. C is described. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of the dyestuff at 637 nm by the initial rate and fixed time method. The calibration graph is linear in the range 30-1200 ppb. The theoretical limit of detection was 0.014 ppm. Seven replicate analysis of a sample solution containing 0.70 ppm sulfide gave a relative standard deviation of 1.5%. The interfering effects of various ions on sulfide determination have been reported and procedures for removal of interference have been described. The proposed method was applied successfully to the determination of sulfide in tap and wastewater samples

  17. Anoxic sulfide biooxidation using nitrite as electron acceptor

    International Nuclear Information System (INIS)

    Mahmood, Qaisar; Zheng Ping; Cai Jing; Wu Donglei; Hu, Baolan; Li Jinye

    2007-01-01

    Biotechnology can be used to assess the well being of ecosystems, transform pollutants into benign substances, generate biodegradable materials from renewable sources, and develop environmentally safe manufacturing and disposal processes. Simultaneous elimination of sulfide and nitrite from synthetic wastewaters was investigated using a bioreactor. A laboratory scale anoxic sulfide-oxidizing (ASO) reactor was operated for 135 days to evaluate the potential for volumetric loading rates, effect of hydraulic retention time (HRT) and substrate concentration on the process performance. The maximal sulfide and nitrite removal rates were achieved to be 13.82 and 16.311 kg/(m 3 day), respectively, at 0.10 day HRT. The process can endure high sulfide concentrations, as the sulfide removal percentage always remained higher than 88.97% with influent concentration up to 1920 mg/L. Incomplete sulfide oxidation took place due to lower consumed nitrite to sulfide ratios of 0.93. It also tolerated high nitrite concentration up to 2265.25 mg/L. The potential achieved by decreasing HRT at fixed substrate concentration is higher than that by increasing substrate concentration at fixed HRT. The process can bear short HRT of 0.10 day but careful operation is needed. Nitrite conversion was more sensitive to HRT than sulfide conversion when HRT was decreased from 1.50 to 0.08 day. Stoichiometric analyses and results of batch experiments show that major part of sulfide (89-90%) was reduced by nitrite while some autooxidation (10-11%) was resulted from presence of small quantities of dissolved oxygen in the influent wastewater. There was ammonia amassing in considerably high amounts in the bioreactor when the influent nitrite concentration reached above 2265.25 mg/L. High ammonia concentrations (200-550 mg/L) in the bioreactor contributed towards the overall inhibition of the process. Present biotechnology exhibits practical value with a high potential for simultaneous removal of nitrite

  18. Carbon steel protection in G.S. (Girlder sulfide) plants. Pressure influence on iron sulfide scales formation. Pt. 5

    International Nuclear Information System (INIS)

    Delfino, C.A.; Lires, O.A.; Rojo, E.A.

    1987-01-01

    In order to protect carbon steel towers and piping of Girlder sulfide (G.S.) experimental heavy water plants against corrosion produced by the action of aqueous solutions of hydrogen sulfide, a method, previously published, was developed. Carbon steel, exposed to saturated aqueous solutions of hydrogen sulfide, forms iron sulfide scales. In oxygen free solutions evolution of corrosion follows the sequence: mackinawite → cubic ferrous sulfide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite-pyrite or pyrite are the most protective layers (these are obtained at 130 deg C, 2MPa, for periods of 14 days). Experiments, at 125 deg C and periods of 10-25 days, were performed in two different ways: 1- constant pressure operations at 0.5 and 1.1 MPa. 2- variable pressure operation between 0.3-1 MPa. In all cases pyrrotite-pyrite scales were obtained. (Author) [es

  19. Determination of trace amounts of rare earth elements in samarium, terbium and disprosium oxides by graphite furnace atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Dantas, E.S.K.

    1990-01-01

    A graphite furnace atomic-absorption spectrometry method for the determination of neodymium, europium, terbium, dysprosium and yttrium at trace level in samarium oxide; of samarium, europium, dysprosium, holmium, erbium and yttrium in terbium oxide and of europium, terbium, holmium, erbium and yttrium in dysprosium oxide was established. The best pyrolysis and atomization temperatures were determined for each lanthanide considered. Calibration curves were obtained for the pure elements, for binary mixtures formed by the matrix and each of the lanthanides studied and, finally, for the complex mixtures constituted by the matrix and all the other lanthanide of the group under scrutiny. This study has been carried out to examine the interference of the presence of one lanthanide on the behaviour of the other, since a lack of linearity on the calibration curves has been observed in some cases. Detection and determination limits have been determined as well. The detection limits encountered were within the range 0.002 to 0.3% for different elements. The precision of the method expressed as the relative standard deviation was calculated for each element present in each of the matrices studied. The conclusion arrived at is that the method can be applied for determining the above mentioned lanthanides present in the matrices studied with purity up to 99.50%. (author)

  20. Preparation and examination of properties of samarium-153-EDTMP complex; Otrzymywanie chelatu kwasu etylenodiaminotetrametylenofosfonowego (EDTMP) z samarem-153 i badanie jego wlasciwosci

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, M. [Institute of Atomic Energy, Otwock-Swierk (Poland); Garnuszek, P.; Lukasiewicz, A.; Wozniak, I.; Zulczyk, W. [Osrodek Badawczo-Rozwojowy Izotopow, Otwock-Swierk (Poland); Licinska, I. [Instytut Lekow, Warsaw (Poland)

    1995-12-31

    Preparation and properties of ethylenediaminetetramethylenephosphonic acid (EDTMP) as well as some properties of {sup 153}Sm-EDTMP chelate have been examined. The chelate formed by samarium-153 (46.3 h, {beta}{sup -}-decay) with EDTMP exhibits high bone uptake and can be used for treatment of disseminated, painful skeletal metastases. The purity and stability of solutions of {sup 153}Sm-EDTMP chelate were examined in a broad range of samarium concentration and {sup 153}Sm specific activity. The complex under study was examined by radio-TLC, -electrophoresis and radio-HPLC. The results obtained suggest the small size of molecules of {sup 153}Sm-EDTMP chelate as compared with molecules of ``free``EDTMP. The results of biodistribution of {sup 153}Sm-EDTMP determined in rats indicate the quick blood clearance, high deposition of radioactivity in bone and quick excretion of radioactivity into urine. No specific uptake of {sup 153}Sm-EDTMP in extra-skeletal organs was found. (author). 42 refs, 13 figs, 22 tabs.

  1. Occupational exposure to hydrogen sulfide: management of hydrogen sulfide exposure victims (Preprint No. SA-5)

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1989-04-01

    National Institute of Occupational Safety and Health, U.S.A. has listed 73 industries with potential exposure to hydrogen sulphide. Though the toxicity of hydrogen sulfide is known to mankind since the beginning of seventeenth century the exact mode of its toxicity and effective therapeutic regimen remains unclear as yet. This paper presents current thoughts on the toxicity of this substance and a discussion on the role of various antidotes used in H 2 S poisoning. (autho r)

  2. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: gbuitronm@ii.unam.mx [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)

    2013-04-15

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  3. Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wang Aijie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Liu Chunshuang; Ren Nanqi; Han Hongjun [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Lee Duujong [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2010-06-15

    Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S{sup 0}), N{sub 2}, and CO{sub 2}, or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.5 < C/S < 3.0 with influent sulfide concentration of 400-1000 mg/L. At >1000 mg/L influent sulfide, however, the DSR system will break down.

  4. Interactions among sulfide-oxidizing bacteria

    Science.gov (United States)

    Poplawski, R.

    1985-01-01

    The responses of different phototrophic bacteria in a competitive experimental system are studied, one in which primary factors such as H2S or light limited photometabolism. Two different types of bacteria shared one limited source of sulfide under specific conditions of light. The selection of a purple and a green sulfur bacteria and the cyanobacterium was based on their physiological similarity and also on the fact that they occur together in microbial mats. They all share anoxygenic photosynthesis, and are thus probably part of an evolutionary continuum of phototrophic organisms that runs from, strictly anaerobic physiology to the ability of some cyanobacteria to shift between anoxygenic bacterial style photosynthesis and the oxygenic kind typical of eukaryotes.

  5. Eelgrass fairy rings: sulfide as inhibiting agent

    DEFF Research Database (Denmark)

    Borum, Jens; Raun, Ane-Marie Løvendahl; Hasler-Sheetal, Harald

    2014-01-01

    specifically, for the apparent die- off of eelgrass shoots on the inner side of the rings. The fairy rings were up to 15 m in diameter consisting of 0.3- to 1-m-wide zones of sea grass shoots at densities of up to 1,200 shoots m−2 and rooted in an up to 10-cm-thick sediment layer. On the outer side, shoots...... expanded over the bare chalk plates. On the inner side, shoots were smaller, had lower absolute and specific leaf growth, shoot density was lower and the sediment eroded leaving the bare chalk with scattered boulders behind. Sediment organic matter and nutrients and tissue nutrient contents were...... substantial invasion of sulfide from the sediment. neither the clonal growth pattern of eelgrass, sediment burial of shoots, hydrodynamic forcing nor nutrient limitation could explain the ring-shaped pattern. We conclude that the most likely explanation must be found in invasion of eelgrass shoots by toxic...

  6. On the pelletizing of sulfide molybdenite concentrate

    International Nuclear Information System (INIS)

    Palant, A.A.

    2007-01-01

    Investigation results are discussed on the process of pelletizing with the use of various binders (water, syrup, sulfite-alcoholic residue and bentonite) for flotation sulfide molybdenite concentrate (∼84 % MoS 2 ) of the Mongolian deposit. It is established that with the use of syrup rather strong pellets (>300 g/p) of desired size (2-3 mm) can be obtained at a binder flowrate of 1 kg per 100 kg of concentrate. The main advantage of using syrup instead of bentonite lies in the fact that in this instance no depletion of a molybdenum calcine obtained by oxidizing roasting of raw ore takes place due to syrup complete burning out. This affects positively subsequent hydrometallurgical conversion because of decreasing molybdenum losses with waste cakes [ru

  7. Modulated structure calculated for superconducting hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Arnab; Tse, John S.; Yao, Yansun [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK (Canada)

    2017-09-11

    Compression of hydrogen sulfide using first principles metadynamics and molecular dynamics calculations revealed a modulated structure with high proton mobility which exhibits a diffraction pattern matching well with experiment. The structure consists of a sublattice of rectangular meandering SH{sup -} chains and molecular-like H{sub 3}S{sup +} stacked alternately in tetragonal and cubic slabs forming a long-period modulation. The novel structure offers a new perspective on the possible origin of the superconductivity at very high temperatures in which the conducting electrons in the SH chains are perturbed by the fluxional motions of the H{sub 3}S resulting in strong electron-phonon coupling. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Mechanism of hydrodenitrogenation on phosphides and sulfides.

    Science.gov (United States)

    Oyama, S Ted; Lee, Yong-Kul

    2005-02-17

    The mechanism of hydrodenitrogenation (HDN) of 2-methylpiperidine was studied over a silica-supported nickel phosphide catalyst (Ni2P/SiO2, Ni/P = 1/2) and a commercial Ni-Mo-S/Al2O3 catalyst in a three-phase trickle-bed reactor operated at 3.1 MPa and 450-600 K. Analysis of the product distribution as a function of contact time indicated that the reaction proceeded in both cases predominantly by a substitution mechanism, with a smaller contribution of an elimination mechanism. Fourier transform infrared spectroscopy (FTIR) of the 2-methylpiperidine indicated that at reaction conditions a piperidinium ion intermediate was formed on both the sulfide and the phosphide. It is concluded that the mechanism of HDN on nickel phosphide is very similar to that on sulfides. The mechanism on the nickel phosphide was also probed by comparing the reactivity of piperidine and several of its derivatives in the presence of 3000 ppm S. The relative elimination rates depended on the structure of the molecules, and followed the sequence: 4-methylpiperidine approximately piperidine > 3-methylpiperidine > 2,6-dimethylpiperidine > 2-methylpiperidine. [Chemical structure: see text] This order of reactivity was not dependent on the number of alpha-H or beta-H atoms in the molecules, ruling out their reaction through a single, simple mechanism. It is likely that the unhindered piperidine molecules reacted by an S(N)2 substitution process and the more hindered 2,6-dimethylpiperidine reacted by an E2 elimination process.

  9. New cyclic sulfides, garlicnins I2, M, N, and O, from Allium sativum.

    Science.gov (United States)

    Nohara, Toshihiro; Ono, Masateru; Nishioka, Naho; Masuda, Fuka; Fujiwara, Yukio; Ikeda, Tsuyoshi; Nakano, Daisuke; Kinjo, Junei

    2018-01-01

    One atypical thiolane-type sulfide, garlicnin I 2 (1), two 3,4-dimethylthiolane-type sulfides, garlicnins M (2) and N (3), and one thiabicyclic-type sulfide, garlicnin O (4), were isolated from the acetone extracts of Chinese garlic bulbs, Allium sativum and their structures were characterized. Hypothetical pathways for the production of the respective sulfides were discussed.

  10. Optimization of the superconducting phase of hydrogen sulfide

    Science.gov (United States)

    Degtyarenko, N. N.; Masur, E. A.

    2015-12-01

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH3 phase and the stable orthorhombic structure of hydrogen sulfide SH2, are calculated for the pressure interval 100-225 GPa. It is found that the I4/ mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH3 phase. Sequential stages for obtaining and conservation of the SH2 phase are proposed. The properties of two (SH2 and SH3) superconducting phases of hydrogen sulfide are compared.

  11. Process for scavenging hydrogen sulfide from hydrocarbon gases

    International Nuclear Information System (INIS)

    Fox, I.

    1981-01-01

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe 2 O 3 containing a crystalline phase of Fe 2 O 3 , Fe 3 O 4 and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected

  12. Sulfidization of an aluminocobaltomolybdenum catalyst using the 35S radioisotope

    International Nuclear Information System (INIS)

    Isagulyants, G.V.; Greish, A.A.; Kogan, V.M.

    1987-01-01

    It has been established that in aluminocobaltomolybdenum catalyst sulfidized with elemental sulfur there are two types of sulfur, free and bound. The maximum amount of bound sulfur in ACM catalyst is 6.6 wt. %, which corresponds to practically complete sulfidation of the ACM catalyst. In the presence of hydrogen an equilibrium distribution of bound sulfur is achieved in a granule of ACM catalyst irrespective of the temperature of sulfidation. In a nitrogen atmosphere it is primarily the surface layers of the catalyst that are sulfured

  13. Sulfide Oxidation in the Anoxic Black-Sea Chemocline

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; FOSSING, H.; WIRSEN, CO

    1991-01-01

    per day, occurred in anoxic water at the top of the sulfide zone concurrent with the highest rates of dark CO2 assimilation. The main soluble oxidized products of sulfide were thiosulfate (68-82%) and sulfate. Indirect evidence was presented for the formation of elemental sulfur which accumulated...... that the measured H2S oxidation rates were 4-fold higher than could be explained by the downward flux of organic carbon and too high to balance the availability of electron acceptors such as oxidized iron or manganese. A nitrate maximum at the lower boundary of the O2 zone did not extend down to the sulfide zone....

  14. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    International Nuclear Information System (INIS)

    Shapiro, E.; Danielson, L.R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 0 C. The nonstoichiometric lanthanum sulfides (LaS /SUB x/ , where 1.33 2 //rho/ can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of α 2 //rho/ should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides is presented, together with structural properties of these materials

  15. Denitrifying sulfide removal process on high-salinity wastewaters.

    Science.gov (United States)

    Liu, Chunshuang; Zhao, Chaocheng; Wang, Aijie; Guo, Yadong; Lee, Duu-Jong

    2015-08-01

    Denitrifying sulfide removal (DSR) process comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide, and acetate into nitrogen gas, elemental sulfur (S(0)), and carbon dioxide, respectively. Sulfide- and nitrate-laden wastewaters at 2-35 g/L NaCl were treated by DSR process. A C/N ratio of 3:1 was proposed to maintain high S(0) conversion rate. The granular sludge with a compact structure and smooth outer surface was formed. The microbial communities of DSR consortium via high-throughput sequencing method suggested that salinity shifts the predominating heterotrophic denitrifiers at 10 g/L NaCl.

  16. Use of sulfide-containing liquors for removing mercury from flue gases

    Science.gov (United States)

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  17. Remediation of Sulfidic Wastewater by Aeration in the Presence of Ultrasonic Vibration

    Directory of Open Access Journals (Sweden)

    F. Ahmad

    2018-06-01

    Full Text Available In the current study, the aerial oxidation of sodium sulfide in the presence of ultrasonic vibration is investigated. Sulfide analysis was carried out by the methylene blue method. Sodium sulfide is oxidized to elemental sulfur in the presence of ultrasonic vibration. The influence of air flow rate, initial sodium sulfide concentration and ultrasonic vibration intensity on the oxidation of sodium sulfide was investigated. The rate law equation regarding the oxidation of sulfide was determined from the experimental data. The order of reaction with respect to sulfide and oxygen was found to be 0.36 and 0.67 respectively. The overall reaction followed nearly first order kinetics.

  18. The effect of samarium doping on structure and enhanced thermionic emission properties of lanthanum hexaboride fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenlin; Hu, Qianglin [College of Mathematics and Physics, Jinggangshan University, Jian (China); Zhang, Jiuxing; Liu, Danmin [Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing (China); Huang, Qingzhen [NIST Center for Neutron Research, National Institute of Standards and Technology, MD (United States)

    2014-03-15

    Single-phase polycrystalline solid solutions (La{sub 1-x}Sm{sub x})B{sub 6} (x = 0, 0.2, 0.4, 0.8, 1) are fabricated by spark plasma sintering (SPS). This study demonstrates a systematic investigation of structure-property relationships in Sm-doped LaB{sub 6} ternary rare-earth hexaborides. The microstructure, crystallographic orientation, electrical resistivity, and thermionic emission performance of these compounds are investigated. Analysis of the results indicates that samarium (Sm) doping has a noticeable effect on the structure and performance of lanthanum hexaboride (LaB{sub 6}). The analytical investigation of the electron backscatter diffraction confirms that (La{sub 0.6}Sm{sub 0.4})B{sub 6} exhibits a clear (001) texture that results in a low work function. Work functions are determined by pulsed thermionic diode measurements at 1500-1873 K. The (La{sub 0.6}Sm{sub 0.4})B{sub 6} possesses improved thermionic emission properties compared to LaB{sub 6}. The current density of (La{sub 0.6}Sm{sub 0.4})B{sub 6} is 42.4 A cm{sup -2} at 1873 K, which is 17.5% larger than that of LaB{sub 6}. The values of Φ{sub R} for (La{sub 0.6}Sm{sub 0.4})B{sub 6} and LaB{sub 6} are 1.98 ± 0.03 and 1.67 ± 0.03 eV, respectively. Furthermore, the Sm substitution of lanthanum (La) effectively increases the electrical resistivity. These results reveal that Sm doping lead to significantly enhanced thermionic emission properties of LaB{sub 6}. The compound (La{sub 0.6}Sm{sub 0.4})B{sub 6} appears most promising as a future emitter material. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. The Level of Europium-154 Contaminating Samarium-153-EDTMP Activates the Radiation Alarm System at the US Homeland Security Checkpoints

    Directory of Open Access Journals (Sweden)

    Mohammed Najeeb Al Hallak

    2009-08-01

    Full Text Available 153Sm-EDTMP is a radiopharmaceutical composed of EDTMP (ethylenediamine-tetramethylenephosphonate and Samarium-153 [1]. 153Sm-EDTMP has an affinity for skeletal tissue and concentrates in areas with increased bone turnover; thus, it is successfully used in relieving pain related to diffuse bone metastases [1]. The manufacturing process of 153Sm-EDTMP leads to contamination with 154Eu (Europium-154 [2]. A previous study only alluded to the retention of 154Eu in the bones after receiving treatment with 153Sm-EDTMP [2]. Activation of the alarm at security checkpoints after 153Sm-EDTMP therapy has not been previously reported. Two out of 15 patients who received 153Sm-EDTMP at Roger Maris Cancer Center (Fargo, N. Dak., USA activated the radiation activity sensors while passing through checkpoints; one at a US airport and the other while crossing theAmerican-Canadian border. We assume that the 154Eu which remained in the patients’ bones activated the sensors. Methods: In order to investigate this hypothesis, we obtained the consent from 3 of our 15 patients who received 153Sm-EDTMP within the previous 4 months to 2 years, including the patient who had activated the radiation alarm at the airport. The patients were scanned with a handheld detector and a gamma camera for energies from 511 keV to 1.3 MeV. Results: All three patients exhibited identical spectral images, and further analysis showed that the observed spectra are the result of 154Eu emissions. Conclusion: Depending on the detection thresholds and windows used by local and federal authorities, the remaining activity of 154Eu retained in patients who received 153Sm-EDTMP could be sufficient enough to increase the count rates above background levels and activate the sensors. At Roger Maris Cancer Center, patients are now informed of the potential consequences of 153Sm-EDTMP therapy prior to initiating treatment. In addition, patients treated with 153Sm-EDTMP at Roger Maris Cancer Center

  20. Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator

    OpenAIRE

    Dandan Wu; Wenhui Ma; Yingbo Mao; Jiushuai Deng; Shuming Wen

    2017-01-01

    In this study, ammonium ion was used to enhance the sulfidation flotation of malachite. The effect of ammonium ion on the sulfidation flotation of malachite was investigated using microflotation test, inductively coupled plasma (ICP) analysis, zeta potential measurements, and scanning electron microscope analysis (SEM). The results of microflotation test show that the addition of sodium sulfide and ammonium sulfate resulted in better sulfidation than the addition of sodium sulfide alone. The ...

  1. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop small, low power instrumentation for the real-time direct measurement of carbonyl sulfide (OCS) in the atmosphere, especially...

  2. New sulfide catalysts for the hydroliquefaction of coal

    NARCIS (Netherlands)

    Vissers, J.P.R.; Oers, van E.M.; Beer, de V.H.J.; Prins, R.

    1987-01-01

    Possibilities for the preparation of new metal sulfide catalyst systems based on carbon carriers having favourable textural and surface properties have been explored, and attention has been given to the characterization (structure) and evaluation (hydrosulfurization activity) of these catalysts. Two

  3. Formation of Copper Sulfide Precipitate in Solid Iron

    Science.gov (United States)

    Urata, Kentaro; Kobayashi, Yoshinao

    The growth rate of copper sulfide precipitates has been measured in low carbon steel samples such as Fe-0.3mass%Cu-0.03mass%S-0.1mass%C and Fe-0.1mass%Cu-0.01mass%S- 0.1mass%C. Heat-treatment of the samples was conducted at 1273, 1423 and 1573 K for 100 s - 14.4 ks for precipitation of copper sulfides and then the samples were observed by a scanning electron microscope and a transmission electron microscope to measure the diameter of copper sulfides precipitated in the samples. The growth rate of copper sulfide has been found to be well described by the Ostwald growth model, as follows: R\

  4. Optimization of biological sulfide removal in a CSTR bioreactor.

    Science.gov (United States)

    Roosta, Aliakbar; Jahanmiri, Abdolhossein; Mowla, Dariush; Niazi, Ali; Sotoodeh, Hamidreza

    2012-08-01

    In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.

  5. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  6. Determination of Hydrogen Sulfide in Fermentation Broths Containing SO21

    Science.gov (United States)

    Acree, T. E.; Sonoff, Elisabeth P.; Splittstoesser, D. F.

    1971-01-01

    A procedure for the determination of hydrogen sulfide in fermentation broths containing up to 100 μg of SO2 per ml is described. The method involves the sparging of H2S from the broth into a cadmium hydroxide absorption solution, the formation of methylene blue from the absorbed sulfide, and the measuring of this color spectrophotometrically. The use of cadmium hydroxide instead of zinc acetate, the common absorbent, substantially reduced the interference of SO2 with the analysis. PMID:5111300

  7. Hydrogen sulfide oxidation without oxygen - oxidation products and pathways

    International Nuclear Information System (INIS)

    Fossing, H.

    1992-01-01

    Hydrogen sulfide oxidation was studied in anoxic marine sediments-both in undisturbed sediment cores and in sediment slurries. The turn over of hydrogen sulfide was followed using 35 S-radiolabeled hydrogen sulfide which was injected into the sediment. However, isotope exchange reactions between the reduced sulfur compounds, in particular between elemental sulfur and hydrogen sulfide, influenced on the specific radioactivity of these pools. It was, therefore, not possible to measure the turn over rates of the reduced sulfur pools by the radiotracer technique but merely to use the radioisotope to demonstrate some of the oxidation products. Thiosulfate was one important intermediate in the anoxic oxidation of hydrogen sulfide and was continuously turned over by reduction, oxidation and disproportionation. The author discusses the importance of isotope exchange and also presents the results from experiments in which both 35 S-radiolabeled elemental sulfur, radiolabeled hydrogen sulfide and radiolabeled thiosulfate were used to study the intermediates in the oxidative pathways of the sulfur cycle

  8. Bioavailability and stability of mercury sulfide in Armuchee (USA) soil

    International Nuclear Information System (INIS)

    Han, Fengxiang; Shiyab, Safwan; Su, Yi; Monts, David L.; Waggoner, Charles A.; Matta, Frank B.

    2007-01-01

    Because of the adverse effects of elemental mercury and mercury compounds upon human health, the U.S. Department of Energy (DOE) is engaged in an on-going effort to monitor and remediate mercury-contaminated DOE sites. In order to more cost effectively implement those extensive remediation efforts, it is necessary to obtain an improved understanding of the role that mercury and mercury compounds play in the ecosystem. We have conducted pilot scale experiments to study the bioavailability of mercury sulfide in an Armuchee (eastern US ) soil. The effects of plants and incubation time on chemical stability and bioavailability of HgS under simulated conditions of the ecosystem have been examined, as has the dynamics of the dissolution of mercury sulfide by various extractants. The results show that mercury sulfide in contaminated Armuchee soil was still to some extent bioavailable to plants. After planting, soil mercury sulfide is more easily dissolved by both 4 M and 12 M nitric acid than pure mercury sulfide reagent. Dissolution kinetics of soil mercury sulfide and pure chemical reagent by nitric acid are different. Mercury release by EDTA from HgS-contaminated soil increased with time of reaction and soil mercury level. Chelating chemicals increase the solubility and bioavailability of mercury in HgS-contaminated soil. (authors)

  9. Laser cleaning of sulfide scale on compressor impeller blade

    International Nuclear Information System (INIS)

    Tang, Q.H.; Zhou, D.; Wang, Y.L.; Liu, G.F.

    2015-01-01

    Highlights: • The effects of sulfide layers and fluence values on the mechanism of laser cleaning were experimentally established. • The specimen surface with sulfide scale becomes slightly smoother than that before laser cleaning. • The mechanism of laser cleaning the sulfide scale of stainless steel is spallation without oxidization. • It would avoid chemical waste and dust pollution using a fiber laser instead of using nitric acids or sandblasting. - Abstract: Sulfide scale on the surface of a compressor impeller blade can considerably reduce the impeller performance and its service life. To prepare for subsequent remanufacturing, such as plasma spraying, it needs to be removed completely. In the corrosion process on an FV(520)B stainless steel, sulfide scale is divided into two layers because of different outward diffusion rates of Cr, Ni and Fe. In this paper, the cleaning threshold values of the upper and inner layers and the damage threshold value of the substrate were investigated using a pulsed fiber laser. To obtain experimental evidence, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and 3D surface profilometry were employed to investigate the two kinds of sulfide layers on specimens before, during, and after laser cleaning.

  10. Hydrogen sulfide production from subgingival plaque samples.

    Science.gov (United States)

    Basic, A; Dahlén, G

    2015-10-01

    Periodontitis is a polymicrobial anaerobe infection. Little is known about the dysbiotic microbiota and the role of bacterial metabolites in the disease process. It is suggested that the production of certain waste products in the proteolytic metabolism may work as markers for disease severity. Hydrogen sulfide (H2S) is a gas produced by degradation of proteins in the subgingival pocket. It is highly toxic and believed to have pro-inflammatory properties. We aimed to study H2S production from subgingival plaque samples in relation to disease severity in subjects with natural development of the disease, using a colorimetric method based on bismuth precipitation. In remote areas of northern Thailand, adults with poor oral hygiene habits and a natural development of periodontal disease were examined for their oral health status. H2S production was measured with the bismuth method and subgingival plaque samples were analyzed for the presence of 20 bacterial species with the checkerboard DNA-DNA hybridization technique. In total, 43 subjects were examined (age 40-60 years, mean PI 95 ± 6.6%). Fifty-six percent had moderate periodontal breakdown (CAL > 3  7 mm) on at least one site. Parvimonas micra, Filifactor alocis, Porphyromonas endodontalis and Fusobacterium nucleatum were frequently detected. H2S production could not be correlated to periodontal disease severity (PPD or CAL at sampled sites) or to a specific bacterial composition. Site 21 had statistically lower production of H2S (p = 0.02) compared to 16 and 46. Betel nut chewers had statistically significant lower H2S production (p = 0.01) than non-chewers. Rapid detection and estimation of subgingival H2S production capacity was easily and reliably tested by the colorimetric bismuth sulfide precipitation method. H2S may be a valuable clinical marker for degradation of proteins in the subgingival pocket. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Physiological behavior of hydrogen sulfide in rice plant. Part 5. Effect of hydrogen sulfide on respiration of rice roots

    Energy Technology Data Exchange (ETDEWEB)

    Okajima, H; Takagi, S

    1955-01-01

    The inhibitory effects of hydrogen sulfide on the respiration of rice plant roots were investigated using Warburg's manometory technique. Hydrogen sulfide inhibited not only aerobic respiration but anaerobic respiration process of roots. Inhibitory action of hydrogen sulfide and potassium cyanide on the respiration were apparently reversible, but the style of recovery reaction from inhibition was somewhat different in each case. Oxygen consumption of roots was increased by addition of ammonium salts, but the same effects were not recognized by the addition of any other salt examined (except nitrate salts). There was close relationship between respiration of roots and assimilation of nitrogen by roots. The increased oxygen uptake by addition of ammonium salt was also inhibited by hydrogen sulfide. The reactivation of this reaction occurred with the recovery of endogenous respiration of roots. 19 references, 8 figures, 3 tables.

  12. Study for the determination of samarium, europium,terbium, dysprosium and yttrium in gadolinium oxide matrix by means of atomic absorption spectrophotometry using a graphite furnace

    International Nuclear Information System (INIS)

    Caires, A.C.F.

    1985-01-01

    A study for determination of samarium, europium, terbium, dysprosium and yttrium in a gadolinium oxide matrix by atomic absorption spectrophotometry using a graphite furnace is presented. The best charrring and atomization conditions were estabilished for each element, the most convenient ressonance lines being selected as well. The study was carried out for the mentioned lanthanides both when pure and when in binary mixtures with gadolinium, besides those where all for them were together with gadolinium. The determination limits for pure lanthanides were found to be between 1.3 and 9.6 ng assuming a 20% relative standard deviation as acceptable. The detection limits were in the range 0.51 and 7.5 ng, assuming as positive any answer higher than twofold the standard deviation. (author) [pt

  13. Biodistribution of samarium-153-EDTMP in rats treated with docetaxel Biodistribuição de EDTMP-153-samário em ratos tratados com docetaxel

    Directory of Open Access Journals (Sweden)

    Arthur Villarim Neto

    2009-02-01

    Full Text Available PURPOSE: Many patients with metastatic bone disease have to use radiopharmaceuticals associated with chemotherapy to relieve bone pain. The aim of this study was to assess the influence of docetaxel on the biodistribution of samarium-153-EDTMP in bones and other organs of rats. METHODS: Wistar male rats were randomly allocated into 2 groups of 6 rats each. The DS (docetaxel/samarium group received docetaxel (15 mg/kg intraperitoneally in two cycles 11 days apart. The S (samarium/control group rats were not treated with docetaxel. Nine days after chemotherapy, all the rats were injected with 0.1ml of samarium-153-EDTMP via orbital plexus (25µCi. After 2 hours, the animals were killed and samples of the brain, thyroid, lung, heart, stomach, colon, liver, kidney and both femurs were removed. The percentage radioactivity of each sample (% ATI/g was determined in an automatic gamma-counter (Wizard-1470, Perkin-Elmer, Finland. RESULTS: On the 9th day after the administration of the 2nd chemotherapy cycle, the rats had a significant weight loss (314.50±22.09g compared (pOBJETIVO: Muitos pacientes com metástases ósseas são tratados com radiofármacos associados com quimioterapia para alívio da dor óssea. O objetivo do trabalho foi estudar a influência do docetaxel na biodistribuição do EDTMP-153-samário nos ossos e outros órgãos de ratos. MÉTODOS: Ratos Wistar foram aleatoriamente alocados em 2 grupos de 6 animais cada. O grupo DS (docetaxel/samário recebeu docetaxel (15 mg/kg intraperitoneal em dois ciclos com 11 dias de intervalo. Os ratos do grupo S (samário/controle não foram tratados com docetaxel. Nove dias após a quimioterapia, todos os animais receberam 0,1ml de EDTMP-153-samário via plexo orbital (25µCi. Após 2 horas, os animais foram mortos e feitas biópsias de cérebro, tireóide, pulmão, coração, estômago, cólon, fígado, rim e fêmures. O percentual de radioatividade por grama (%ATI/g de tecido de cada bi

  14. Thiosulfate leaching of gold from sulfide wastes

    Energy Technology Data Exchange (ETDEWEB)

    Block-Bolten, A.; Torma, A.E.

    1986-07-01

    The kinetics of gold extraction from lead-zinc sulfide flotation tailings by thiosulfate leachants has been investigated. The order of reaction as well as the overall reaction rate constant were, with respect to thiosulfate concentration, calculated to be n=0.75 and k=1.05 x 10/sup -6/ mol/sup 1/4/ dm/sup 5/4/ min/sup -1/. The apparent activation energy was found to be ..delta..E/sub a/=48.53 kJ and the frequency factor A=7.5 x 10/sup 2/ mol dm/sup -3/ min/sup -1/. This activation energy value suggests chemical control of the reaction mechanism. Optimum leach temperature of 50/sup 0/C was established. Gold extractions as high as 99% have been realized in two step countercurrent leachings. Change in pH throughout the leaching process was found to be an excellent indicator for the progress of the extraction. A preliminary economic evaluation of the process is given.

  15. Luminescent sulfides of monovalent and trivalent cations

    International Nuclear Information System (INIS)

    1975-01-01

    The invention discloses a family of luminescent materials or phosphors having a rhombohedral crystal structure and consisting essentially of a mixed host sulfide of at least one monovalent host cation and at least one trivalent host cation, and containing, for each mole of phosphor, 0.0005 to 0.05 mole of at least one activating cation. The monovalent host cations may be Na, K or Rb and Cs. The trivalent host cations may be Gd, La, Lu, Sc and Y. The activating cations may be one or more of trivalent As, Bi, Ce, Dy, Er, Pr, Sb, Sm, Tb and Tm; divalent Lu, Mn, Pb and Sn; and monovalent Ag, Cu and Tl. The novel phosphors may be used in devices to convert electron-beam, ultraviolet or x-ray energy to light in the visible spectrum. Such energy conversion can be employed for example in fluoroscopic screens, and in viewing screens of cathode-ray tubes and other electron tubes

  16. Comparison of Carbon XANES Spectra from an Iron Sulfide from Comet Wild 2 with an Iron Sulfide Interplanetary Dust Particle

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Sanford, S. A.; Zolensky, M. E.; Messenger, Nakamura K.; Jacobsen, C.

    2008-01-01

    Among one of the first particles removed from the aerogel collector from the Stardust sample return mission was an approx. 5 micron sized iron sulfide. The majority of the spectra from 5 different sections of this particle suggests the presence of aliphatic compounds. Due to the heat of capture in the aerogel we initially assumed these aliphatic compounds were not cometary but after comparing these results to a heated iron sulfide interplanetary dust particle (IDP) we believe our initial interpretation of these spectra was not correct. It has been suggested that ice coating on iron sulfides leads to aqueous alteration in IDP clusters which can then lead to the formation of complex organic compounds from unprocessed organics in the IDPs similar to unprocessed organics found in comets [1]. Iron sulfides have been demonstrated to not only transform halogenated aliphatic hydrocarbons but also enhance the bonding of rubber to steel [2,3]. Bromfield and Coville (1997) demonstrated using Xray photoelectron spectroscopy that "the surface enhancement of segregated sulfur to the surface of sulfided precipitated iron catalysts facilitates the formation of a low-dimensional structure of extraordinary properties" [4]. It may be that the iron sulfide acts in some way to protect aliphatic compounds from alteration due to heat.

  17. Optimal Timing of Bisphosphonate Administration in Combination with Samarium-153 Oxabifore in the Treatment of Painful Metastatic Bone Disease

    International Nuclear Information System (INIS)

    Rasulova, Nigora; Lyubshin, Vladimir; Arybzhanov, Dauranbek; Sagdullaev, Sh.; Krylov, Valery; Khodjibekov, Marat

    2013-01-01

    While bisphosphonates are indicated for prevention of skeletal-related events, radionuclide therapy is widely used for treatment of painful bone metastases. Combined radionuclide therapy with bisphosphonates has demonstrated improved effectiveness in achieving bone pain palliation in comparison to mono therapy with radionuclides or bisphosphonates alone. However, there are conflicting reports as to whether bisphosphonates adversely influence skeletal uptake of the bone-seeking radiotracers used for therapy. Recent studies analyzing influence of Zoledronic acid on total bone uptake of Samarium-153 EDTMP (Sm-153 EDTMP) by measuring cumulative urinary activity of Sm-153 on baseline study, as well as in combination with bisphosphonates (administrated 48 hours prior to Sm-153) did not provide any statistically significant difference in urinary excretion of Sm-153 between the two groups. It may be noted that the exact temporal sequence of bisphosphonate administration vis a vis radionuclide therapy has not yet been studied. One of the side effects of bisphosphonates is transient flare effect on bone pain. Radionuclide therapy may also have similar side effect. Keeping in view the above the current study was designed with the main objective of determining the exact timing of bisphosphonate administration in patients receiving combined therapy so as to achieve optimal efficacy of bone pain palliation. Ninety-three patients suffering from metastatic bone pain who received combination therapy with Sm-153 oxabifore (an analog of Sm-153 EDTMP) and Zoledronic acid were divided into three groups according to the timing of Zoledronic acid administration: Group I: 39 patients who received Zoledronic acid 7 or more days prior to Sm-153 oxabifore treatment; Group II: 32 patients who received Zoledronic acid 48-72 hours prior to Sm-153 oxabifore treatment and Group III: 22 patients who received Zoledronic acid 7 days after Sm-153 oxabifore treatment. Sm-153 oxabifore was administered

  18. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    International Nuclear Information System (INIS)

    Feng, Qicheng; Wen, Shuming; Zhao, Wenjuan; Deng, Jiushuai; Xian, Yongjun

    2016-01-01

    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na_2S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na_2S, and the increase in the Na_2S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na_2S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na_2S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  19. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qicheng [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Wen, Shuming, E-mail: fqckmust@126.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Wenjuan [Kunming Metallurgical Research Institute, Kunming 650031 (China); Deng, Jiushuai; Xian, Yongjun [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-01-01

    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na{sub 2}S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na{sub 2}S, and the increase in the Na{sub 2}S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na{sub 2}S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na{sub 2}S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  20. Chemical and colloidal aspects of collectorless flotation behavior of sulfide and non-sulfide minerals.

    Science.gov (United States)

    Aghazadeh, Sajjad; Mousavinezhad, Seyed Kamal; Gharabaghi, Mahdi

    2015-11-01

    Flotation has been widely used for separation of valuable minerals from gangues based on their surface characterizations and differences in hydrophobicity on mineral surfaces. As hydrophobicity of minerals widely differs from each other, their separation by flotation will become easier. Collectors are chemical materials which are supposed to make selectively valuable minerals hydrophobic. In addition, there are some minerals which based on their surface and structural features are intrinsically hydrophobic. However, their hydrophobicities are not strong enough to be floatable in the flotation cell without collectors such as sulfide minerals, coal, stibnite, and so forth. To float these minerals in a flotation cell, their hydrophobicity should be increased in specific conditions. Various parameters including pH, Eh, size distribution, mill types, mineral types, ore characterization, and type of reaction in flotation cells affect the hydrophobicity of minerals. Surface analysis results show that when sulfide minerals experience specific flotation conditions, the reactions on the surface of these minerals increase the amount of sulfur on the surface. These phenomenons improve the hydrophobicity of these minerals due to strong hydrophobic feature of sulfurs. Collectorless flotation reduces chemical material consumption amount, increases flotation selectivity (grade increases), and affects the equipment quantities; however, it can also have negative effects. Some minerals with poor surface floatability can be increased by adding some ions to the flotation system. Depressing undesirable minerals in flotation is another application of collectorless flotation.

  1. Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas.

    Science.gov (United States)

    Chen, Rui; Nuhfer, Noel T; Moussa, Laura; Morris, Hannah R; Whitmore, Paul M

    2008-11-12

    A fast, simple procedure is described for obtaining an assembly of silver sulfide nanoparticles (Ag(2)S NPs) on a glass substrate through reaction of a template of an assembled layer of silver nanoparticles (Ag NPs) with hydrogen sulfide (H(2)S) gas. The Ag NP template was prepared by assembling a monolayer of spherical Ag NPs (mean diameter of 7.4 nm) on a polyethylenimine-treated glass substrate. Exposure to pure H(2)S for 10 min converted the Ag NPs of the template to Ag(2)S NPs. The resulting Ag(2)S NP assembly, which retains the template nanostructure and particle distribution, was characterized by optical absorption spectroscopy, atomic force microscopy, transmission electron microscopy (TEM), scanning high resolution TEM, energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The Ag(2)S NPs have a crystal structure of monoclinic acanthite, and while they retained the spherical shape of the original Ag NPs, their mean particle size increased to 8.4 nm due to changes to the crystal structure when the Ag NPs are converted into Ag(2)S NPs. The measured optical absorption edge of the Ag(2)S NP assembly indicated an indirect interband transition with a band gap energy of 1.71 eV. The Ag(2)S NP assembly absorbed light with wavelengths below 725 nm, and the absorbance increased monotonically toward the UV region.

  2. Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study

    Science.gov (United States)

    Wu, Dandan; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-07-01

    The activation mechanism of ammonium ions on the sulfidation of malachite (-201) was determined by density functional theory (DFT) calculations. Results of DFT calculations indicated that interlayer sulfidation occurs during the sulfidation process of malachite (-201). The absorption of both the ammonium ion and sulfide ion on the malachite (-201) surface is stronger than that of sulfur ion. After sulfidation was activated with ammonium ion, the Cu 3d orbital peak is closer to the Fermi level and characterized by a stronger peak value. Therefore, the addition of ammonium ions activated the sulfidation of malachite (-201), thereby improving the flotation performance.

  3. Cuprous sulfide as a film insulation for superconductors

    International Nuclear Information System (INIS)

    Wagner, G.R.; Uphoff, J.H.; Vecchio, P.D.

    1982-01-01

    The LCP test coil utilizes a conductor of forced-flow design having 486 strands of multifilametary Nb 3 Sn compacted in a stainless steel sheath. The impetus for the work reported here stemmed from the need for some form of insulation for those strands to prevent sintering during reaction and to reduce ac losses. The work reported here experimented with cuprous sulfide coatings at various coating rates and thicknesses. Two solenoids that were wound with cuprous sulfide-coated wires and heat-treated at 700 degrees C were found to demonstrate that the film is effective in providing turn-to-turn insulation for less than about 0.5V between turns. The sulfide layer provided a metal-semiconductor junction which became conducting at roughly 0.5V. Repeated cycling of the coil voltage in excess of that value produced no damage to the sulfide layer. The junction provided self-protection for the coil as long as the upper allowable current density in the sulfide was not exceeded. No training was apparent up to 6.4 T

  4. Sulfide Species Optical Monitoring by a Miniaturized Silicon Photomultiplier

    Directory of Open Access Journals (Sweden)

    Salvatore Petralia

    2018-02-01

    Full Text Available The monitoring of water-soluble pollutants is receiving a growing interest from the scientific community. In this context, sulfide anion species S2− and HS− are particularly relevant since they can cause acute and chronic toxicity including neurological effects and at high concentrations, even death. In this study, a new strategy for fast and sensitive optical detection of sulfide species in water samples is described. The method uses an integrated silicon photomultiplier (SiPM device coupled with the appropriate analytical strategy applied in a plastic microchip with dried reagents on board. More specifically, all sulfide species (H2S, HS− and S2− in water samples are detected by the fluorescence signal emitted upon the reaction with N,N-dimethyl-phenylenediamine sulfate in the presence of Fe3+, leading to the formation of the fluorescent methylene blue (MB species. It has been proven that the system herein proposed is able to measure sulfide concentration in a linear range from 0–10 mg L−1 with a sensitivity value of about 6.7 µA mg−1 L and a detection limit of 0.5 mg L−1. A comparison with conventional UV-Vis detection method has been also carried out. Data show a very good linear correlation (R2 = 0.98093, proving the effectiveness of the method. Results pave the way toward the development of portable and low-cost device systems for water-soluble sulfide pollutants.

  5. Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: Modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xijun; Chen, Chuan; Wang, Aijie; Guo, Wanqian; Zhou, Xu [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Lee, Duu-Jong, E-mail: djlee@ntu.edu.tw [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Ren, Nanqi, E-mail: rnq@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Chang, Jo-Shu [Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2014-01-15

    Graphical abstract: Model evaluation applied to case study 1: (A-G) S{sup 2−}, NO{sub 3}{sup −}-N, NO{sub 2}{sup −}-N, and Ac{sup −}-C profiles under initial sulfide concentrations of 156.2 (A), 539 (B), 964 (C), 1490 (D), 342.7 (E), 718 (F), and 1140.7 (G) mg L{sup −1}. The solid line represents simulated result and scatter represents experimental result. -- Highlights: • This work developed a mathematical model for DSR process. • Kinetics of sulfur–nitrogen–carbon and interactions between denitrifiers were studied. • Kinetic parameters of the model were estimated via data fitting. • The model described kinetic behaviors of DSR processes over wide parametric range. -- Abstract: Simultaneous removal of sulfide (S{sup 2−}), nitrate (NO{sub 3}{sup −}) and acetate (Ac{sup −}) under denitrifying sulfide removal process (DSR) is a novel biological wastewater treatment process. This work developed a mathematical model to describe the kinetic behavior of sulfur–nitrogen–carbon and interactions between autotrophic denitrifiers and heterotrophic denitrifiers. The kinetic parameters of the model were estimated via data fitting considering the effects of initial S{sup 2−} concentration, S{sup 2−}/NO{sub 3}{sup −}-N ratio and Ac{sup −}-C/NO{sub 3}{sup −}-N ratio. Simulation supported that the heterotrophic denitratation step (NO{sub 3}{sup −} reduction to NO{sub 2}{sup −}) was inhibited by S{sup 2−} compared with the denitritation step (NO{sub 2}{sup −} reduction to N{sub 2}). Also, the S{sup 2−} oxidation by autotrophic denitrifiers was shown two times lower in rate with NO{sub 2}{sup −} as electron acceptor than that with NO{sub 3}{sup −} as electron acceptor. NO{sub 3}{sup −} reduction by autotrophic denitrifiers occurs 3–10 times slower when S{sup 0} participates as final electron donor compared to the S{sup 2−}-driven pathway. Model simulation on continuous-flow DSR reactor suggested that the adjustment of

  6. Synthesis of samarium complexes with the derivative binder of Schiff Quinolinic base. Characterization and photophysical study; Sintesis de complejos de samario con el ligante derivado de base de Schiff Quinolinica. Caracterizacion y estudio fotofisico

    Energy Technology Data Exchange (ETDEWEB)

    Lucas H, J.

    2016-07-01

    In this work we determined the metal: binder stoichiometry of the species formed during the UV/Vis spectrophotometric titration of the derivative binder of Schiff quinolinic base, L1 with the samarium nitrate pentahydrate in methanol. Statistical analysis of the data allowed proposing the metal: binder stoichiometry for the synthesis of the complexes which was one mole of samarium salt by 2.5 moles of binder and thus favor the formation of complexes with 1M: 1L and 1M: 2L stoichiometries. They were synthesized in aqueous-organic medium (water-ethanol), isolated and purified two complexes with stoichiometry 1 Sm: 1 L1, complex 1 and 1 Sm: 2 L1, complex 2. The overall yield of the reaction was 76%. The characterization of the formed complexes was performed by visible ultraviolet spectrometry (UV/Vis), nuclear magnetic resonance, X-ray photoelectron spectroscopy (XP S), thermal gravimetric analysis with differential scanning calorimetry (TGA/DSC), and radial distribution function. These complexes were studied by fluorescence and emission phosphorescence at variable temperature. Spectroscopic techniques used in both solution and solid demonstrated the formation and stability of these complexes. In addition XP S indicated that in both complexes the samarium retains its oxidation state 3+. Luminescence studies indicated that there is intra-binding charge transfer which decreases the transfer of light energy from the binder to the samarium. Based on the experimental results, L1 binder molecules and complexes 1 and 2 were modeled that demonstrated the proposed Nc for each complex, as well as allowed to visualize the structural arrangement of the molecules, complexes and binder. (Author)

  7. Separation of platinum metals by theirs extraction as sulfides

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Ryabushko, O.P.; Ty Van Mak

    1978-01-01

    Separation of platinum metals by means of their sediment in the form of sulfides with subsequent extraction is studied. The optimum conditions of metal sulfide extraction are determined, the metal output dependence from acidness and aqueous phase composition and also the organic solvent nature are investigated. Ruthenium concentration was determined photometrically. Ruthenium sulfide is extracted by butyl spirit from 1-4 normal hydrochloric acid. The maximum extraction grade of 63% is reached in 3.2-normal acid. When the mixture of acetic and hydrochloric acids (2:1) is used for decomposition of ruthenium tiosalts, the grade of ruthenium extraction by amyl spirit or the mixture of anyl and butyl spirits (1:1) constitutes 100%

  8. Metal sulfide electrodes and energy storage devices thereof

    Science.gov (United States)

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  9. Preparation of transition metal sulfide nanoparticles via hydrothermal route

    International Nuclear Information System (INIS)

    Fei-Ling, P.; Chin-Hua, C.; Sarani Zakaria; Tze-Khong, L.; Mohd Ambar Yarmo; Nay-Ming, H.

    2010-01-01

    Nano sized copper sulfide, iron sulfide and molybdenum sulfide were successfully synthesised via a simple hydrothermal method. Sodium thiosulfate pentahydrate (Na 2 S 2 O 3 ·5H 2 O) and hydroxylamine sulfate ((H 3 NO) 2 ·H 2 SO 4 ) were used as the starting materials and reacted with the transition metal source at 200 degree Celsius for 90 min. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR). Spherical shape CuS and FeS 2 nanoparticles with high crystallinity were successfully produced. The transmission electron micrographs revealed the well-dispersibility of the produced nanoparticles. Scanning electron micrograph showed the MoS 2 nanoparticles possessed a spherical shape with sheet-like structure covering on the outer surface of the particles. (author)

  10. Conspicuous veils formed by vibrioid bacteria on sulfidic marine sediment

    DEFF Research Database (Denmark)

    Thar, Roland Matthias; Kühl, Michael

    2002-01-01

    , but the bacteria have so far not been isolated in pure culture, and a detailed characterization of their metabolism is still lacking. The bacteria are colorless, gram-negative, and vibrioid-shaped (1.3- to 2.5- by 4- to 10-µm) cells that multiply by binary division and contain several spherical inclusions of poly......We describe the morphology and behavior of a hitherto unknown bacterial species that forms conspicuous veils (typical dimensions, 30 by 30 mm) on sulfidic marine sediment. The new bacteria were enriched on complex sulfidic medium within a benthic gradient chamber in oxygen-sulfide countergradients......, forming a cohesive whitish veil at the oxic-anoxic interface. Bacteria attached to the veil kept rotating and adapted their stalk lengths dynamically to changing oxygen concentrations. The joint action of rotating bacteria on the veil induced a homogeneous water flow from the oxic water region toward...

  11. Study of radiation synovectomy using 188Re-sulfide

    International Nuclear Information System (INIS)

    Chen Gang; Li Peiyong; Jiang Xufeng; Zhang Liying; Wang Xuefeng; Sun Zhenming; Zhang Huan

    2002-01-01

    Objective: To study the radiation synovectomy with 188 Re-sulfide. Methods: Thirty cases were divided into 2 groups, the group with hemophilia and the group with rheumatoid arthritis (RA). Patients with joint synovitis were injected different doses of 188 Re-sulfide, 222 - 444 MBq intra-articular. MRI was taken before and 3 - 6 months after the radiation synovectomy to evaluate the treatment efficacy, and the symptoms were also evaluated. Results: MRI study showed that after the treatment the synovium became thiner and the edema was reduced in the lesioned joint. The symptoms were improved with the pain relieved and duration of intra-articular hemorrhage reduced. Conclusions: Radiation synovectomy using 188 Re-sulfide has effects on synovitis. It can be used clinically to improve the symptoms of joint synovitis and reduce the duration of intra-articular hemorrhage

  12. ELECTROCHEMICAL DETERMINATION OF HYDROGEN SULFIDE AT CARBON NANOTUBE MODIFIED ELECTRODES. (R830900)

    Science.gov (United States)

    Carbon nanotube (CNT) modified glassy carbon electrodes exhibiting a strong and stable electrocatalytic response towards sulfide are described. A substantial (400 mV) decrease in the overvoltage of the sulfide oxidation reaction (compared to ordinary carbon electrodes) is...

  13. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    Science.gov (United States)

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Experimental constraints on gold and silver solubility in iron sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Pal' yanova, Galina [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation); Mikhlin, Yuri [Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Kokh, Konstantin, E-mail: k.a.kokh@gmail.com [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation); Siberian Physical–Technical Institute of Tomsk State University, 1, Novosobornaya, Tomsk, 634050 (Russian Federation); Karmanov, Nick [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Seryotkin, Yurii [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation)

    2015-11-15

    Experiments were performed to determine crystallization of Fe,S-melts (pyriti≿ and troilitic with molar ratio S/Fe ratios of 2 and 1, respectively) containing traces of gold and silver at (Ag/Au){sub wt} ratios varying from 10 to 0.1. The solid products were studied by optical microscopy, scanning electron microscopy, X-ray powder diffraction (XRD), microprobe analysis, and X-ray photoelectron spectroscopy (XPS) in order to reveal the concentration limits of “invisible” gold and silver in magmatic iron sulfides, and to determine the influence of sulfur on forms of precious metals in the Fe–S system with different Ag/Au ratios. Au–Ag phases do not form inclusions but instead concentrate on the grain boundaries in the synthetic pyrrhotite and troilite, while pyrite comprises micro- (1–5 μm) and macroinclusions of Au–Ag alloys and Au–Ag sulfides. In “pyriti≿” systems, the fineness of alloys increases from 650 to 970‰ and the composition of sulfides changes from acanthite (Ag{sub 2}S) to uytenbogaardtite (Ag{sub 3}AuS{sub 2}) and petrovskaite (AgAuS) as the Ag/Au ratio decreases. The concentrations of “invisible” precious metals revealed in troilite were 0.040 ± 0.013 wt.% Au and 0.079 ± 0.016 wt.% Ag. Measured concentrations in pyrite and pyrrhotite were <0.024 wt.% Au and <0.030 wt.% Ag. The surface layers of iron sulfides probed with XPS were enriched in the precious metals, and in silver relative to gold, especially in the systems with Fe/S = 1, probably, due to depletion of the metallic alloy surfaces with gold. Au- and Ag-bearing iron sulfides crystallized primarily from melts may be the source of redeposited phases in hydrothermal and hypergene processes. - Highlights: • The samples of Fe–S–Au–Ag system were synthesized. • Coupled solubility of gold and silver in iron sulfides was specified. • Ag–Au inclusions on surfaces of iron sulfides are likely to be enriched in silver. • Au–Ag sulfides can exist along with

  15. A sulfidation-resistant nickel-base alloy

    International Nuclear Information System (INIS)

    Lai, G.Y.

    1989-01-01

    For applications in mildly to moderately sulfidizing environments, stainless steels, Fe-Ni-Cr alloys (e.g., alloys 800 and 330), and more recently Fe-Ni-Cr-Co alloys (e.g., alloy 556) are frequently used for construction of process equipment. However, for many highly sulfidizing environments, few existing commercial alloys have adequate performance. Thus, a new nickel-based alloy containing 27 wt.% Co, 28 wt.% Cr, 4 wt.% Fe, 2.75 wt.% Si, 0.5 wt.% Mn and 0.05 wt.% C (Haynes alloy HR-160) was developed

  16. Photoluminescence and spectroscopic dependence of fluorophosphate glasses on samarium ions concentration and the induced defects by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, M.A., E-mail: marzouk_nrc@yahoo.com [Glass Research Department, National Research Centre, 33 El Bohouth Street (former EL Tahrir), P.O. 12622, Dokki, Giza (Egypt); Hamdy, Y.M. [Spectroscopy Department, National Research Centre, 33 El Bohouth Street (former EL Tahrir), P.O. 12622, Dokki, Giza (Egypt); ElBatal, H.A. [Glass Research Department, National Research Centre, 33 El Bohouth Street (former EL Tahrir), P.O. 12622, Dokki, Giza (Egypt); Ezz ElDin, F.M. [National Institute for Radiation Research & Technology, Nasr City, Cairo (Egypt)

    2015-10-15

    /2} and {sup 6}H{sub 11/2}, respectively. The intensity of the emission spectra is observed to increase with the increase of Sm{sub 2}O{sub 3} content. The optical spectra within the visible–near IR region and photoluminescence spectra of Sm{sub 2}O{sub 3}-doped glasses are found to be stable and show almost no variations after gamma irradiation especially when rare-earth ions are present in noticeable contents (1–3%). FTIR spectra of all the studied glasses reveal repetitive and characteristic vibrational bands mainly due to phosphate groups with abundant of Q{sup 2} and Q{sup 3} groups due to the high content of P{sub 2}O{sub 5} (70 mol%). The introduction of 10% NaF and 20% AlF{sub 3} is observed to cause formation of mixed fluorophosphate groups (PO{sub 3}F){sup 2−}. The formation of (AlPO){sub 4} and/or (AlPO{sub 6}) groups needs further justification by combined techniques. The increase of Sm{sub 2}O{sub 3} content to 3% causes obvious increase of the IR absorption bands within the wavenumbers range of about 850–1400 cm{sup −1} due to suggested depolymerization effect. Gamma irradiation causes no distinct variations in the FTIR spectra due to suggested compactness through the formation of additional structural groups from AlF{sub 4} or AlF{sub 6}. - Highlights: • Samarium ions doped in host fluorophosphate glasses were prepared. • Optical and FT infrared absorption techniques were applied to study the spectral properties of the glasses. • Photoluminescence properties were measured. • Collective spectroscopic variations generated by gamma irradiation were investigated.

  17. The solubility of iron sulfides and their role in mass transport in Girdler-Sulfide heavy water plants

    International Nuclear Information System (INIS)

    Tewari, P.H.; Wallace, G.; Campbell, A.B.

    1978-04-01

    The solubilities of several iron sulfides, mackinawite FeSsub((1-x)), troilite FeS, pyrrhotite Fesub((1-x))S (monoclinic and hexagonal), and pyrite FeS 2 have been determined in aqueous H 2 S solution at 0.1 MPa and 1.8 MPa H 2 S pressures between 25 deg and 125 deg C. The dependence of solubility on the pH of the medium has also been studied. It is concluded that since mackinawite is the most soluble of the iron sulfides, and has the highest dissolution rate and the steepest decline in solubility with temperature, its prolonged formation during plant operation should be avoided to minimize iron transport from lower to higher temperature areas in Girdler-Sulfide (G.S.) heavy water plants. This can be achieved by a preconditioning of carbon steel surfaces to convert mackinawite to pyrrhotite and pyrite

  18. Is succession in wet calcareous dune slacks affected by free sulfide?

    NARCIS (Netherlands)

    Adema, EB; van Gemerden, H; Grootjans, AP; Adema, Erwin B.; Grootjans, Ab P.; Rapson, G.

    Consequences of sulfide toxicity on succession in wet calcareous dune slacks were investigated. Sulfide may exert an inhibitory effect on dune slack plants, but several pioneer species exhibit ROL (Radial Oxygen Loss) and thereby protect themselves against free sulfide. Under oxic conditions free

  19. Identifying the Prospective Area of Sulfide Groundwater within the Area of Palvantash Oil and Gas Deposit

    Directory of Open Access Journals (Sweden)

    M. R. Zhurayev

    2014-03-01

    Full Text Available This paper describes the methodology of prospecting for sulfide groundwater in the area of Palvantash oil fields. In result of study allowed determining the favorable conditions for the sulfide waters formation, and mapping the areas of different sulfide water concentration. The relatively permeable areas were established and the water borehole positions were recommended.

  20. 76 FR 69136 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-11-08

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen Sulfide; Correction. SUMMARY: The... Administrative Stay of the reporting requirements for hydrogen sulfide. The Office of the Federal Register...

  1. A real support effect on the hydrodeoxygenation of methyl oleate by sulfided NiMo catalysts

    NARCIS (Netherlands)

    Coumans, A.E.; Hensen, E.J.M.

    2017-01-01

    The effect of the support on the catalytic performance of sulfided NiMo in the hydrodeoxygenation of methyl oleate as a model compound for triglyceride upgrading to green diesel was investigated. NiMo sulfides were prepared by impregnation and sulfidation on activated carbon, silica, γ-alumina and

  2. Sulfide-iron interactions in domestic wastewater from a gravity sewer

    NARCIS (Netherlands)

    Nielsen, A.H.; Lens, P.N.L.; Vollertsen, J.; Hvitved-Jacobsen, Th.

    2005-01-01

    Interactions between iron and sulfide in domestic wastewater from a gravity sewer were investigated with particular emphasis on redox cycling of iron and iron sulfide formation. The concentration ranges of iron and total sulfide in the experiments were 0.4-5.4 mg Fe L-1 and 0-5.1 mg S L-1,

  3. Sulfidation of alumina-supported iron and iron-molybdenum oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Crajé, M.W.J.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Kraan, van der A.M.

    1990-01-01

    The transition of alumina-supported iron and iron-molybdenum catalysts from the oxidic precursor to the sulfided catalysts was systematically studied by means of in-situ Mössbauer spectroscopy at room temperature. This enabled the adjudgement of various sulfidic phases in the sulfided catalysts. The

  4. Red coloration by heat treatment of the coprecipitate of cadmium sulfide and mercury(II) sulfide prepared from the nitrates

    International Nuclear Information System (INIS)

    Nakahara, Fujiya

    1979-01-01

    The effects of starting salts on the color, particle size and crystal structure of mercury-cadmium-sulfide pigments were investigated. The coprecipitate (N-S) of cadmium sulfide and mercury (II) sulfide was prepared by adding sodium sulfide solution to a mixed cadmium-mercury (II) nitrate solution. The coprecipitate (C-S) of cadmium sulfide and mercury (II) sulfide was also prepared from the mixed solution of their chlorides by the same method as described above. The coprecipitated products were heat-treated (calcination or hydrothermal treatment) at 350 0 C for 2 hours and subsequent changes in powder properties of both products were compared from each other. The powder properties of N-S, C-S and their heat-treated products were investigated by spectral reflectance, electron microscopy, X-ray diffraction and specific surface area measurements. Sample (N-C) obtained by the calcination of N-S was brown, indicating no red coloration, but the calcined product (C-C) of C-S developed a red color. Cl - and hot water were found to be effective for the red color development of the pigment. The effectiveness was confirmed by calcining N-S in the presence of NaCl or by treating it hydrothermally. It was found that halides other than NaCl, (e.g., NH 4 Cl, KCl, KBr and KI), were also effective for the color development of the pigment. The red samples are solid solutions with a basically hexagonal CdS structure, and it appears that CdS takes up HgS without any apparent structural changes. The particle size of the red samples are larger than those of the non red samples. (author)

  5. An eco-friendly oxidation of sulfide compounds

    Indian Academy of Sciences (India)

    An improved green route has been developed for the oxidation of sulfide compounds. Albendazole is converted to ricobendazole or albendazole sulfone using H₂O₂ as an oxidant and H₂O as the solvent. High yields of the corresponding products were obtained by carrying out the reaction at room temperature.

  6. The Complex Resistivity Spectrum Characteristics About Stratabound Sulfide Deposits

    Science.gov (United States)

    Dong, P.; Sun, B.; Wang, L.; Chen, Z.; Dong, Z.; Wu, Y.

    2010-12-01

    Complex resistivity method has become the key technique of deep prospecting, and widely applied in stratabound sulfide deposits which often form massive ores. However, the complex resistivity spectrum characteristics of stratabound sulfide deposits remains unknown. Through studying variation problem of two-dimensional polarization medium, deducing the differential equations and calculating formula,we applied Cole-Cole model to deduce the spectrum of complex resistivity based on the model of three-node and four-node finite element method, and programmed homologous procedure. We utilized the Earth Model of Geological Layers which has accurate analytical solution to test rationality and accuracy of our modeling. We applied the layer structure provided by drilling results in Chenmenshan copper mine,which is typical strata-bound sulfide deposits in Jiangxi province,China, and calculated the spectra of complex resistivity, then made comparison between modeled and measured values. We find good corellation between them. Our studies may have imporved the interpretation of complex resistivity data, which help apply complex resistivity methods of propecting on stratabound sulfide deposites.

  7. Luminescence in Sulfides: A Rich History and a Bright Future

    Directory of Open Access Journals (Sweden)

    Philippe F. Smet

    2010-04-01

    Full Text Available Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs. The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  8. Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using ...

    African Journals Online (AJOL)

    Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus ... The process of extracellular and fast biosynthesis may help in the development of an easy and eco-friendly route for the synthesis of CdS nanoparticles.

  9. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Science.gov (United States)

    2010-04-01

    ... Components of Articles Intended for Repeated Use § 177.2490 Polyphenylene sulfide resins. Polyphenylene... coatings of articles intended for repeated use in contact with food, in accordance with the following... are available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and Drug...

  10. 40 CFR 425.04 - Applicability of sulfide pretreatment standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability of sulfide pretreatment standards. 425.04 Section 425.04 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY General Provisions...

  11. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sulfide analytical methods and applicability. 425.03 Section 425.03 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY General Provisions...

  12. Estimation of bacterial hydrogen sulfide production in vitro

    Directory of Open Access Journals (Sweden)

    Amina Basic

    2015-06-01

    Full Text Available Oral bacterial hydrogen sulfide (H2S production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways.

  13. Carbon-supported iron and iron-molybdenum sulfide catalysts

    International Nuclear Information System (INIS)

    Ramselaar, W.L.T.M.

    1988-01-01

    The main objective was to describe the relations between the characteristics (composition and dispersion) of the actual sulfide phase and the catalytic activity. Attention was also paid to the influence of preparational aspects on these characteristics. The catalysts were characterized using in-situ Moessbauer spectroscopy down to 2.0 K. 254 refs.; 47 figs.; 22 tabs

  14. Impact of Iron Sulfide Transformation on Trichloroethylene Degradation

    Science.gov (United States)

    Trichloroethylene (TCE) is one of the most common and persistent groundwater contaminants encountered at hazardous waste sites around the world. A growing body of evidence indicates that iron sulfides play an important role in degrading TCE in natural environments and in enginee...

  15. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  16. A physiologically based kinetic model for bacterial sulfide oxidation.

    Science.gov (United States)

    Klok, Johannes B M; de Graaff, Marco; van den Bosch, Pim L F; Boelee, Nadine C; Keesman, Karel J; Janssen, Albert J H

    2013-02-01

    In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concluded that the oxidation-reduction state of cytochrome c is a direct measure for the bacterial end-product formation. Given this physiological feature, incorporation of the oxidation state of cytochrome c in a mathematical model for the bacterial oxidation kinetics will yield a physiologically based model structure. This paper presents a physiologically based model, describing the dynamic formation of the various end-products in the biodesulfurization process. It consists of three elements: 1) Michaelis-Menten kinetics combined with 2) a cytochrome c driven mechanism describing 3) the rate determining enzymes of the respiratory system of haloalkaliphilic sulfide oxidizing bacteria. The proposed model is successfully validated against independent data obtained from biological respiration tests and bench scale gas-lift reactor experiments. The results demonstrate that the model is a powerful tool to describe product formation for haloalkaliphilic biomass under dynamic conditions. The model predicts a maximum S⁰ formation of about 98 mol%. A future challenge is the optimization of this bioprocess by improving the dissolved oxygen control strategy and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Thioamides as collectors at flotation of sulfide minerals

    International Nuclear Information System (INIS)

    Fomin, B.M.; Solozhenkin, P.M.; Rukhadze, E.G.; Lyubavina, L.L.

    1976-01-01

    The collective properties of thioamides at flotation of number of sulfide minerals are considered. It is defined that studied thioamides fix on the surface of minerals with formation of appropriate complexes. The spectres of copper thioamides are studied by means of electron paramagnetic resonance and infrared spectroscopy.

  18. Iridium Sulfide and Ir Promoted Mo Based Catalysts.

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk

    2007-01-01

    Roč. 322, - (2007), s. 142-151 ISSN 0926-860X R&D Projects: GA ČR(CZ) GA104/06/0870 Institutional research plan: CEZ:AV0Z40720504 Keywords : iridium sulfide * IrMo catalyst * hydrodesulfurization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2007

  19. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    Science.gov (United States)

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  20. Exploiting fields of gases containing hydrogen-sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Shevets, V.A.

    1980-01-01

    The anthology is devoted to problems of geology, hydrogeology, drilling, industrial development, and processing of gas and condensate at the Orenburg Gas-Chemical Complex. Reviews ways to develop the technology for further processing of hydrogen sulfide gas, as well as handling corrosion.

  1. Hydrogen sulfide release from dairy manure storages containing gypsum bedding

    Science.gov (United States)

    Recycled gypsum products can provide a cost-effective bedding alternative for dairy producers. Manufacturers report reduced odors, moisture and bacteria in the stall environment when compared to traditional bedding. Gypsum provides a sulfate source that can be converted to hydrogen sulfide under ana...

  2. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue; Wadia, Cyrus; Ma, Wanli; Sadtler, Bryce; Alivisatos, A.Paul

    2008-06-24

    We present the rational synthesis of colloidal copper(I) sulfide nanocrystals and demonstrate their application as an active light absorbing component in combination with CdS nanorods to make a solution-processed solar cell with 1.6percent power conversion efficiency on both conventional glass substrates and flexible plastic substrates with stability over a 4 month testing period.

  3. Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems

    Science.gov (United States)

    Gerbig, Chase A.; Kim, Christopher S.; Stegemeier, John P.; Ryan, Joseph N.; Aiken, George R.

    2011-01-01

    Direct determination of mercury (Hg) speciation in sulfide-containing environments is confounded by low mercury concentrations and poor analytical sensitivity. Here we report the results of experiments designed to assess mercury speciation at environmentally relevant ratios of mercury to dissolved organic matter (DOM) (i.e., structure (EXAFS) spectroscopy. Aqueous Hg(II) and a DOM isolate were equilibrated in the presence and absence of 100 μM total sulfide. In the absence of sulfide, mercury adsorption to the resin increased as the Hg:DOM ratio decreased and as the strength of Hg-DOM binding increased. EXAFS analysis indicated that in the absence of sulfide, mercury bonds with an average of 2.4 ± 0.2 sulfur atoms with a bond length typical of mercury-organic thiol ligands (2.35 Å). In the presence of sulfide, mercury showed greater affinity for the C18 resin, and its chromatographic behavior was independent of Hg:DOM ratio. EXAFS analysis showed mercury–sulfur bonds with a longer interatomic distance (2.51–2.53 Å) similar to the mercury–sulfur bond distance in metacinnabar (2.53 Å) regardless of the Hg:DOM ratio. For all samples containing sulfide, the sulfur coordination number was below the ideal four-coordinate structure of metacinnabar. At a low Hg:DOM ratio where strong binding DOM sites may control mercury speciation (1.9 nmol mg–1) mercury was coordinated by 2.3 ± 0.2 sulfur atoms, and the coordination number rose with increasing Hg:DOM ratio. The less-than-ideal coordination numbers indicate metacinnabar-like species on the nanometer scale, and the positive correlation between Hg:DOM ratio and sulfur coordination number suggests progressively increasing particle size or crystalline order with increasing abundance of mercury with respect to DOM. In DOM-containing sulfidic systems nanocolloidal metacinnabar-like species may form, and these species need to be considered when addressing mercury biogeochemistry.

  4. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment

    Science.gov (United States)

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R.; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland

    2012-01-01

    Volcanogenic massive sulfide deposits, also known as volcanic-hosted massive sulfide, volcanic-associated massive sulfide, or seafloor massive sulfide deposits, are important sources of copper, zinc, lead, gold, and silver (Cu, Zn, Pb, Au, and Ag). These deposits form at or near the seafloor where circulating hydrothermal fluids driven by magmatic heat are quenched through mixing with bottom waters or porewaters in near-seafloor lithologies. Massive sulfide lenses vary widely in shape and size and may be podlike or sheetlike. They are generally stratiform and may occur as multiple lenses.

  5. Solubility Measurements and Modeling of Zinc, Lead and Iron Sulfides at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    Solubility measurements of sulfides in aqueous solutions are necessary to understand the behaviour of these scaling minerals in geothermal and oil reservoirs. The low solubility levels of Zinc Sulfide (ZnS), Lead Sulfide (PbS) and Iron Sulfide (FeS) make the solubility measurements a challenging...... oxygen atmosphere to avoid the risk of oxidation of sulfide minerals. The solution is kept in an equilibrium cell at constant temperature and pressure with continuous stirring. The concentration of Zn2+, Pb2+, Fe2+ and S2- are measured using Inductively Coupled Plasma Optical Emission spectrometry (ICP...

  6. Hydrogen sulfide waste treatment by microwave plasma-chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J.B.L.; Doctor, R.D.

    1994-03-01

    A waste-treatment process that recovers both hydrogen and sulfur from industrial acid-gas waste streams is being developed to replace the Claus technology, which recovers only sulfur. The proposed process is derived from research reported in the Soviet technical literature and uses microwave (or radio-frequency) energy to initiate plasma-chemical reactions that dissociate hydrogen sulfide into elemental hydrogen and sulfur. This process has several advantages over the current Claus-plus-tail-gas-cleanup technology, which burns the hydrogen to water. The primary advantage of the proposal process is its potential for recovering and recycling hydrogen more cheaply than the direct production of hydrogen. Since unconverted hydrogen sulfide is recycled to the plasma reactor, the plasma-chemical process has the potential for sulfur recoveries in excess of 99% without the additional complexity of the tail-gas-cleanup processes associated with the Claus technology. There may also be some environmental advantages to the plasma-chemical process, because the process purge stream would primarily be the carbon dioxide and water contained in the acid-gas waste stream. Laboratory experiments with pure hydrogen sulfide have demonstrated the ability of the process to operate at or above atmospheric pressure with an acceptable hydrogen sulfide dissociation energy. Experiments with a wide range of acid-gas compositions have demonstrated that carbon dioxide and water are compatible with the plasma-chemical dissociation process and that they do not appear to create new waste-treatment problems. However, carbon dioxide does have negative impacts on the overall process. First, it decreases the hydrogen production, and second, it increases the hydrogen sulfide dissociation energy.

  7. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.

    Science.gov (United States)

    Yoshida, Akihiro; Yoshimura, Mamiko; Ohara, Naoya; Yoshimura, Shigeru; Nagashima, Shiori; Takehara, Tadamichi; Nakayama, Koji

    2009-11-01

    Hydrogen sulfide is one of the predominant volatile sulfur compounds (VSCs) produced by oral bacteria. This study developed and evaluated a system for detecting hydrogen sulfide production by oral bacteria. L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (METase) and beta carbon-sulfur (beta C-S) lyase were used to degrade homocysteine and cysteine, respectively, to produce hydrogen sulfide. Enzymatic reactions resulting in hydrogen sulfide production were assayed by reaction with bismuth trichloride, which forms a black precipitate when mixed with hydrogen sulfide. The enzymatic activities of various oral bacteria that result in hydrogen sulfide production and the capacity of bacteria from periodontal sites to form hydrogen sulfide in reaction mixtures containing L-cysteine or DL-homocysteine were assayed. With L-cysteine as the substrate, Streptococcus anginosus FW73 produced the most hydrogen sulfide, whereas Porphyromonas gingivalis American Type Culture Collection (ATCC) 33277 and W83 and Fusobacterium nucleatum ATCC 10953 produced approximately 35% of the amount produced by the P. gingivalis strains. Finally, the hydrogen sulfide found in subgingival plaque was analyzed. Using bismuth trichloride, the hydrogen sulfide produced by oral bacteria was visually detectable as a black precipitate. Hydrogen sulfide production by oral bacteria was easily analyzed using bismuth trichloride. However, further innovation is required for practical use.

  8. Adaptation of cyanobacteria to the sulfide-rich microenvironment of black band disease of coral.

    Science.gov (United States)

    Myers, Jamie L; Richardson, Laurie L

    2009-02-01

    Black band disease (BBD) is a cyanobacteria-dominated microbial mat that migrates across living coral colonies lysing coral tissue and leaving behind exposed coral skeleton. The mat is sulfide-rich due to the presence of sulfate-reducing bacteria, integral members of the BBD microbial community, and the sulfide they produce is lethal to corals. The effect of sulfide, normally toxic to cyanobacteria, on the photosynthetic capabilities of five BBD cyanobacterial isolates of the genera Geitlerinema (3), Leptolyngbya (1), and Oscillatoria (1) and six non-BBD cyanobacteria of the genera Leptolyngbya (3), Pseudanabaena (2), and Phormidium (1) was examined. Photosynthetic experiments were performed by measuring the photoincorporation of [(14)C] NaHCO(3) under the following conditions: (1) aerobic (no sulfide), (2) anaerobic with 0.5 mM sulfide, and (3) anaerobic with 0.5 mM sulfide and 10 microM 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU). All five BBD cyanobacterial isolates tolerated sulfide by conducting sulfide-resistant oxygenic photosynthesis. Five of the non-BBD cyanobacterial isolates did not tolerate sulfide, although one Pseudanabaena isolate continued to photosynthesize in the presence of sulfide at a considerably reduced rate. None of the isolates conducted anoxygenic photosynthesis with sulfide as an electron donor. This is the first report on the physiology of a culture of Oscillatoria sp. found globally in BBD.

  9. Enrichment and immobilization of sulfide removal microbiota applied for environmental biological remediation of aquaculture area

    International Nuclear Information System (INIS)

    Zhao, Yang-Guo; Zheng, Yu; Tian, Weijun; Bai, Jie; Feng, Gong; Guo, Liang; Gao, Mengchun

    2016-01-01

    To remove sulfide in the deteriorating aquaculture sediment and water, sulfide-oxidizing microbiota was enriched from Jiaozhou Bay, China, by using sulfide-rich medium. Composition and structure of microbial communities in the enrichments were investigated by 16S rDNA molecular biotechniques. Results showed that microbial community structure continuously shifted and the abundance of sulfate reducing bacteria, i.e., Desulfobacterium, Desulfococcus and Desulfobacca apparently declined. Several halophile genera, Vibrio, Marinobacter, Pseudomonas, Prochlorococcus, Pediococcus and Thiobacillus predominated finally in the microbiota. The enriched microbiota was capable of removing a maximum of 1000 mg/L sulfide within 12 h with 10% inoculum at pH 7.0, 20–30 °C. After immobilized, the microbiota presented excellent resistance to impact and could completely remove 600 mg/L sulfide in 12 h. Moreover, the immobilized microbiota recovered well even recycled for five times. In conclusion, the immobilized sulfide-removing microbiota showed a quite promising application for biological restoring of sulfide-rich aquaculture environment. - Highlights: • A sulfide-oxidizing microbiota successfully enriched from aquaculture sediment. • Microbiota dominated by Vibrio, Marinobacter, Pseudomonas and Thiobacillus spp. • Sulfide-oxidizing microbiota removed sulfide at an average rate of 100 mg/(L·h). • Immobilized microbiota removed over 85% of sulfide even recycled for five times.

  10. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  11. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration

    NARCIS (Netherlands)

    Peiffer, Stefan; Behrends, Thilo; Hellige, Katrin; Larese-Casanova, Philip; Wan, Moli; Pollok, Kilian

    2015-01-01

    The reaction of ferric (hydr)oxides with dissolved sulfide does not lead to the instantaneous production of thermodynamically stable products but can induce a variety of mineral transformations including the formation of metastable intermediates. The importance of the various transformation pathways

  12. Structural and superconducting properties of (Y,Gd)Ba2Cu3O7-δ grown by MOCVD on samarium zirconate buffered IBAD-MgO

    International Nuclear Information System (INIS)

    Stan, L; Holesinger, T G; Maiorov, B; Feldmann, D M; Usov, I O; DePaula, R F; Civale, L; Foltyn, S R; Jia, Q X; Chen, Y; Selvamanickam, V

    2008-01-01

    Textured samarium zirconate (SZO) films have been grown by reactive cosputtering directly on an ion beam assisted deposited (IBAD) MgO template, without an intermediate homoepitaxial MgO layer. The subsequent growth of 0.9 μm thick (Y,Gd)Ba 2 Cu 3 O 7-δ ((Y, Gd)BCO) films by metal organic chemical vapor deposition (MOCVD) yielded well textured films with a full width at half maximum of 1.9 0 and 3.4 0 for the out-of-plane and in-plane texture, respectively. Microstructural characterizations of the SZO buffered samples revealed clean interfaces. This indicates that the SZO not only provides a diffusion barrier, but also functions as a buffer for (Y, Gd)BCO grown by MOCVD. The achievement of self-field critical current densities (J c ) of over 2 MA cm -2 at 75.5 K is another proof of the effectiveness of SZO as a buffer on the IBAD-MgO template. The in-field measurements revealed an asymmetric angular dependence of J c and a shift of the ab-plane maxima due to the tilted nature of the template and (Y,Gd) 2 O 3 particles existing in the (Y, Gd)BCO matrix. The present results are especially important because they demonstrate that high temperature superconducting coated conductors with simpler architecture can be fabricated using commercially viable processes

  13. Pharmacokinetics of labelled compounds with technetium-99m and samarium-153; Farmacocinetica de compuestos marcados con tecnecio-99m y samario-153

    Energy Technology Data Exchange (ETDEWEB)

    Borda O, L B; Torres L, M N

    1997-07-01

    The purpose of this investigation was to establish the different pharmacokinetics parameters of the main radiopharmaceuticals labeled with technetium-99m and samarium-153. These parameters could be subsequently used as reference to compare other products with the same use. Mathematical models and a computerized pharmacokinetic program were used to this purpose. A biodistribution study in quadruplicate and/or quintuplicate was conducted for each radiopharmaceutical, data was was obtained in injection dose percentages. The biodistribution study involved the injection of a predetermined dose of the radiopharmaceutical into animals (rats or mice), which were subsequently put away at different time intervals, removing the relevant organs. Activity in each organ was read by means of a well-type NaI scintillation counter, data obtained in activity counts was transformed into injection dose percentages. Based on these percentages, the mathematical model was constructed and the pharmacokinetic parameters were obtained using the computerized program Expo 2 v. 1, which is written in C language and works in windows. Analyzing the results obtained, we can conclude that the use of the Expo 2 v. 1 program for a bi compartmental analysis allowed us to obtain reliable pharmacokinetic parameters which describe what happens in the organism when the radiopharmaceutical passes from the central compartment to the peripheral one and vice versa.

  14. Kinetic studies of sulfide mineral oxidation and xanthate adsorption

    Science.gov (United States)

    Mendiratta, Neeraj K.

    2000-10-01

    Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrhotite, are few of the most abundant minerals, yet economically insignificant. Their existence with other sulfide minerals leads to an inefficient separation process as well as environmental problems, such as acid mine drainage during mining and processing and SO 2 emissions during smelting process. A part of the present study is focused on understanding their behavior, which leads to undesired flotation and difficulties in separation. The major reasons for the undesired flotation are attributed to the collectorless hydrophobicity and the activation with heavy metal ions. To better understand the collectorless hydrophobicity of pyrite, Electrochemical Impedance Spectroscopy (EIS) of freshly fractured pyrite electrodes was used to study the oxidation and reduction of the mineral. The EIS results showed that the rate of reaction increases with oxidation and reduction. At moderate oxidizing potentials, the rate of reaction is too slow to replenish hydrophilic iron species leaving hydrophobic sulfur species on the surface. However, at higher potentials, iron species are replaced fast enough to depress its flotation. Effects of pH and polishing were also explored using EIS. Besides collectorless hydrophobicity, the activation of pyrrhotite with nickel ions and interaction with xanthate ions makes the separation more difficult. DETA and SO2 are commonly used as pyrrhotite depressants; however, the mechanism is not very well understood. Contact angle measurements, cyclic voltammetry and Tafel

  15. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part II. the regeneration of copper sulfide to copper oxide - An experimental study

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    Aim of this study was to investigate the possibilities for a selective and efficient method to convert copper(II) sulfide (CuS) into copper(II) oxide (CuO). The oxidation of copper sulfide has been studied experimentally using a thermogravimetric analyzer (TGA) at temperatures ranging from 450 to

  16. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers.

    Science.gov (United States)

    Nielsen, Asbjørn Haaning; Vollertsen, Jes; Jensen, Henriette Stokbro; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild

    2008-09-01

    Hydrogen sulfide oxidation on sewer pipe surfaces was investigated in a pilot scale experimental setup. The experiments were aimed at replicating conditions in a gravity sewer located immediately downstream of a force main where sulfide related concrete corrosion and odor is often observed. During the experiments, hydrogen sulfide gas was injected intermittently into the headspace of partially filled concrete and plastic (PVC and HDPE) sewer pipes in concentrations of approximately 1,000 ppm(v). Between each injection, the hydrogen sulfide concentration was monitored while it decreased because of adsorption and subsequent oxidation on the pipe surfaces. The experiments showed that the rate of hydrogen sulfide oxidation was approximately two orders of magnitude faster on the concrete pipe surfaces than on the plastic pipe surfaces. Removal of the layer of reaction (corrosion) products from the concrete pipes was found to reduce the rate of hydrogen sulfide oxidation significantly. However, the rate of sulfide oxidation was restored to its background level within 10-20 days. A similar treatment had no observable effect on hydrogen sulfide removal in the plastic pipe reactors. The experimental results were used to model hydrogen sulfide oxidation under field conditions. This showed that the gas-phase hydrogen sulfide concentration in concrete sewers would typically amount to a few percent of the equilibrium concentration calculated from Henry's law. In the plastic pipe sewers, significantly higher concentrations were predicted because of the slower adsorption and oxidation kinetics on such surfaces.

  17. Fabrication and applications of copper sulfide (CuS) nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Shamraiz, Umair, E-mail: umairshamraiz@gmail.com; Hussain, Raja Azadar, E-mail: hussainazadar@gamil.com; Badshah, Amin, E-mail: aminbadshah@yahoo.com

    2016-06-15

    This review article presents different fabrication procedures (under the headlines of solvothermal routes, aerosol methods, solution methods and thermolysis), and applications (photocatalytic degradation, ablation of cancer cells, electrode material in lithium ion batteries and in gas sensing, organic solar cells, field emission properties, super capacitor applications, photoelectrochemical performance of QDSCs, photocatalytic reduction of organic pollutants, electrochemical bio sensing, enhanced PEC characteristics of pre-annealed CuS film electrodes) of copper sulfide (Covellite). - Highlights: • This review article presents the synthesis and applications of copper sulfide. • CuS has been used over the years for different applications in nanoscience. • Different synthetic protocols are followed for their preparation which help in the possible modifications in the morphology of CuS.

  18. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  19. Optical and structural characteristics of lead sulfides thin films

    International Nuclear Information System (INIS)

    Karim Deraman; Bakar Ismail; Samsudi Sakrani; Gould, R.D.

    1992-01-01

    Tin sulfide films have been prepared by evaporation technique at 1x10 - 4 torr and at substrate temperatures between 100 to 300 0 C. The films thickness were 52 to 370 nm. From the absorption 1.47 eV and X-ray diffraction patent shows that the composition of films have changed from SnS 2 (at low temperature) to SnS (at higher temperature)

  20. Non-stoichiometry in sulfides produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Canulescu, Stela; Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt

    and the most volatile component in the film. A very well studied case in the one of oxides, for which the O2 or N2O background gases can reduce the loss of oxygen in the growing films. A much less studied case is the one of sulfides or selenides, such as the solar cell absorber layers of CIGS (Cu(Ga,In)Se2...

  1. Hydrogen sulfide metabolism regulates endothelial solute barrier function

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2016-10-01

    Full Text Available Hydrogen sulfide (H2S is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE, a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.

  2. Catalytic oxidation of sulfide in drinking water treatment: activated carbon as catalyst; Katalytische Oxidation von Sulfid bei der Trinkwasseraufbereitung: Aktivkohle als Katalysator

    Energy Technology Data Exchange (ETDEWEB)

    Hultsch, V; Grischek, T; Wolff, D; Worch, E [Technische Univ. Dresden (Germany). Inst. fuer Wasserchemie; Gun, J [Hebrew Univ. of Jerusalem (Israel). Div. of Environmental Sciences, Fredy and Nadine Herrmann School of Applied Science

    2001-07-01

    In regions with warm climate and limited water resources high sulfide concentrations in groundwater can cause problems during drinking water treatment. Aeration of the raw water is not always sufficient to ensure the hydrogen sulfide concentration below the odour threshold value for hydrogen sulfide. As an alternative, activated carbon can be used as a catalyst for sulfide oxidation of raw water. The use of different types of activated carbon was investigated in kinetic experiments. Both Catalytic Carbon from Calgon Carbon and granulated activated carbon from Norit showed high catalytic activities. The results of the experiments are discussed with regard to the practical use of activated carbon for the elimination of hydrogen sulfide during drinking water treatment. (orig.)

  3. Retention capacity of samarium (III) in zircon for it possible use in retaining walls for confinement of nuclear residues; Capacidad de retencion de samario (III) en circon para su posible uso en barreras de contencion para confinamiento de residuos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N

    2006-07-01

    Mexico, as country that produces part of its electric power by nuclear means, should put special emphasis in the development of technologies guided to the sure and long term confinement of the high level nuclear residuals. This work studies the capacity that has the natural zircon to retain to the samarium (III) in solution, by what due, firstly, to characterize the zircon for technical instrumental to determine the purity and characteristic of the mineral in study. The instrumental techniques that were used to carry out the physicochemical characterization were the neutron activation analysis (NAA), the infrared spectroscopy (IS), the thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), semiquantitative analysis, dispersive energy spectroscopy (EDS), X-ray diffraction (XRD) and luminescence technique. The characterization of the surface properties carries out by means of the determination of the surface area using the BET multipoint technique, acidity constants, hydration time, the determination of the point of null charge (pH{sub PCN}) and density of surface sites (D{sub s}). The luminescence techniques were useful to determine the optimal point hydration of the zircon and for the quantification of the samarium, for that here intends the development of both analysis techniques. With the adjustment of the titration curves in the FITEQL 4 package the constants of surface acidity in the solid/liquid interface were determined. To the finish of this study it was corroborated that the zircon is a mineral that presents appropriate characteristics to be proposed as a contention barrier for the deep geologic confinement. With regard to the study of adsorption that one carries out the samarium retention it is superior to 90% under the described conditions. This investigation could also be applicable in the confinement of dangerous industrial residuals. (Author)

  4. Benzothiazole sulfide compatibilized polypropylene/halloysite nanotubes composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Mingxian [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China); Guo Baochun, E-mail: psbcguo@scut.edu.cn [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China); Lei Yanda; Du Mingliang; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2009-02-15

    Clay-philic benzothiazole sulfide, capable of donating electrons, is grafted onto polypropylene (PP) backbones when N-cyclohexyl-2-benzothiazole sulfonamide (CBS), a commonly used accelerator in the tire industry, is included in the processing of PP/halloysite nanotubes (HNTs) composites. CBS decomposes at elevated temperature and yields benzothiazole sulfide radicals, which react with the PP polymeric free radicals generated during the processing of the composites. On the other hand, the benzothiazole group of CBS is reactive to HNTs via electron transferring. The compatibilization between HNTs and PP is thus realized via interfacial grafting and electron transferring mechanism. The interfacial interactions in the compatibilized systems were fully characterized. Compared with the control sample, the dispersion of HNTs and the interfacial bonding are enhanced substantially in the compatibilized composites. The significantly improved mechanical properties and thermal properties of benzothiazole sulfide compatibilized PP/HNTs composites are correlated to the enhanced interfacial property. The present work demonstrates a novel interfacial design via interfacial grafting/electron transferring for the compatibilization of PP/clay composites.

  5. Reduction kinetics of zinc and cadmium sulfides with hydrogen

    International Nuclear Information System (INIS)

    Turgenev, I.S.; Kabisov, I.Kh.; Zviadadze, G.N.; Vasil'eva, O.Yu.

    1985-01-01

    Kinetics of reduction processes of zinc sulfide in the temperature range 800-1100 deg C and of cadmium sulfide 600-900 deg C has been stodied. Activation energies and reaction order in terms of hydrogen are calculated. Thermodynamic processes of reduction depend on aggregate state of the metal formed. For vaporous zinc in the temperature range 1050-950 deq C activation energy constitutes 174 kJ/mol, for liquid in the range 900-850 deg - 151 kJ/mol and reaction order in terms of hydrogen is 1.0. For vaporous cadmium in the temperature range 900-700 deg C activation energy constitutes 144 kJ/mol and reaction order in terms of hydrogen is 0.86, for liquid in the range 675-600 deg C 127 kJ/mol and 0.8 respectively. The processes of zinc and cadmium sulfide reduction proceed in kinetic regime and are limited by the rate of chemical reaction

  6. Reaction between vanadium trichloride oxide and hydrogen sulfide

    International Nuclear Information System (INIS)

    Yajima, Akimasa; Matsuzaki, Ryoko; Saeki, Yuzo

    1978-01-01

    The details of the reaction between vanadium trichloride oxide and hydrogen sulfide were examined at 20 and 60 0 C. The main products by the reaction were vanadium dichloride oxide, sulfur, and hydrogen chloride. In addition to these products, small amounts of vanadium trichloride, vanadium tetrachloride, disulfur dichloride, and sulfur dioxide were formed. The formations of the above-mentioned reaction products can be explained as follows: The first stage is the reaction between vanadium trichloride oxide and hydrogen sulfide, 2VOCl 3 (l) + H 2 S(g)→2VOCl 2 (s) + S(s) + 2HCl(g). Then the resulting sulfur reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + 2S(s)→2VOCl 2 (s) + S 2 Cl 2 (l). The resulting disulfur dichloride subsequently reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + S 2 Cl 2 (l)→2VCl 4 (l) + S(s) + SO 2 (g). The resulting vanadium tetrachloride reacts with the sulfur formed during the reaction, 2VCl 4 (l) + 2S(s)→2VCl 3 (s) + S 2 Cl 2 (l), and also reacts with hydrogen sulfide, 2VCl 4 (l) + H 2 S(g)→2VCl 3 (s) + S(s) + 2HCl(g). (auth.)

  7. Protective Effects of Hydrogen Sulfide in the Ageing Kidney.

    Science.gov (United States)

    Hou, Cui-Lan; Wang, Ming-Jie; Sun, Chen; Huang, Yong; Jin, Sheng; Mu, Xue-Pan; Chen, Ying; Zhu, Yi-Chun

    2016-01-01

    Aims . The study aimed to examine whether hydrogen sulfide (H 2 S) generation changed in the kidney of the ageing mouse and its relationship with impaired kidney function. Results . H 2 S levels in the plasma, urine, and kidney decreased significantly in ageing mice. The expression of two known H 2 S-producing enzymes in kidney, cystathionine γ -lyase (CSE) and cystathionine- β -synthase (CBS), decreased significantly during ageing. Chronic H 2 S donor (NaHS, 50  μ mol/kg/day, 10 weeks) treatment could alleviate oxidative stress levels and renal tubular interstitial collagen deposition. These protective effects may relate to transcription factor Nrf2 activation and antioxidant proteins such as HO-1, SIRT1, SOD1, and SOD2 expression upregulation in the ageing kidney after NaHS treatment. Furthermore, the expression of H 2 S-producing enzymes changed with exogenous H 2 S administration and contributed to elevated H 2 S levels in the ageing kidney. Conclusions . Endogenous hydrogen sulfide production in the ageing kidney is insufficient. Exogenous H 2 S can partially rescue ageing-related kidney dysfunction by reducing oxidative stress, decreasing collagen deposition, and enhancing Nrf2 nuclear translocation. Recovery of endogenous hydrogen sulfide production may also contribute to the beneficial effects of NaHS treatment.

  8. Control of malodorous hydrogen sulfide compounds using microbial fuel cell.

    Science.gov (United States)

    Eaktasang, Numfon; Min, Hyeong-Sik; Kang, Christina; Kim, Han S

    2013-10-01

    In this study, a microbial fuel cell (MFC) was used to control malodorous hydrogen sulfide compounds generated from domestic wastewaters. The electricity production demonstrated a distinct pattern of a two-step increase during 170 h of system run: the first maximum current density was 118.6 ± 7.2 mA m⁻² followed by a rebound of current density increase, reaching the second maximum of 176.8 ± 9.4 mA m⁻². The behaviors of the redox potential and the sulfate level in the anode compartment indicated that the microbial production of hydrogen sulfide compounds was suppressed in the first stage, and the hydrogen sulfide compounds generated from the system were removed effectively as a result of their electrochemical oxidation, which contributed to the additional electricity production in the second stage. This was also directly supported by sulfur deposits formed on the anode surface, which was confirmed by analyses on those solids using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy as well as an elemental analyzer. To this end, the overall reduction efficiencies for HS⁻ and H₂S(g) were as high as 67.5 and 96.4 %, respectively. The correlations among current density, redox potential, and sulfate level supported the idea that the electricity signal generated in the MFC can be utilized as a potential indicator of malodor control for the domestic wastewater system.

  9. Evaluation of methods for monitoring air concentrations of hydrogen sulfide

    Directory of Open Access Journals (Sweden)

    Katarzyna Janoszka

    2013-06-01

    Full Text Available The development of different branches of industry and a growing fossil fuels mining results in a considerable emission of by-products. Major air pollutants are: CO, CO₂, SO₂, SO₃, H₂S, nitrogen oxides, as well as compounds of an organic origin. The main aspects of this paper is to review and evaluate methods used for monitoring of hydrogen sulfide in the air. Different instrumental techniques were discussed, electrochemical, chromatographic and spectrophotometric (wet and dry, to select the method most suitable for monitoring low levels of hydrogen sulfide, close to its odor threshold. Based on the literature review the method for H₂S determination in the air, involving absorption in aqueous zinc acetate and reaction with N,N-dimethylo-p-phenylodiamine and FeCl₃, has been selected and preliminary verified. The adopted method allows for routine measurements of low concentration of hydrogen sulfide, close to its odor threshold in workplaces and ambient air. Med Pr 2013;64(3:449–454

  10. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-12-18

    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  11. Effect of ambient hydrogen sulfide on the physical properties of vacuum evaporated thin films of zinc sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Beer Pal [Department of Physics, C.C.S. University, Meerut 250004 (India)], E-mail: drbeerpal@gmail.com; Singh, Virendra [Forensic Science Laboratory, Malviya Nagar, New Delhi 110017 (India); Tyagi, R.C.; Sharma, T.P. [Department of Physics, C.C.S. University, Meerut 250004 (India)

    2008-02-15

    Evaporated thin films of zinc sulfide (ZnS) have been deposited in a low ambient atmosphere of hydrogen sulfide (H{sub 2}S {approx}10{sup -4} Torr). The H{sub 2}S atmosphere was obtained by a controlled thermal decomposition of thiourea [CS(NH{sub 2}){sub 2}] inside the vacuum chamber. It has been observed that at elevated substrates temperature of about 200 deg. C helps eject any sulfur atoms deposited due to thermal decomposition of ZnS during evaporation. The zinc ions promptly recombine with H{sub 2}S to give better stoichiometry of the deposited films. Optical spectroscopy, X-ray diffraction patterns and scanning electron micrographs depict the better crystallites and uniformity of films deposited by this technique. These deposited films were found to be more adherent to the substrates and are pinhole free, which is a very vital factor in device fabrication.

  12. A recovery installation for sodium sulfates, thiosulfates and sulfides from waste water resulting from hydrogen sulfide fabrication

    International Nuclear Information System (INIS)

    Mazilu, Mihai; Costescu, Sanda

    2002-01-01

    An installation for recovery of sodium sulfate and sulfur suspensions from waste water was conceived. It consists from a preheater, vacuum evaporator and a refrigerating system with drum and scraper. This equipment concentration the solution by eliminating in the first stage the water in the vacuum evaporator. The water resulting at this stage is chemically pure and can be discharged in the sewage sludge system. The concentrated solution is then directed to the refrigerating system with drum and scrapper. Here the sodium sulfates, thiosulfates and sulfides get crystallized onto the drum surface. The resulting aqueous solution to be discharged in the sewage sludge system is previously analyzed as in case of the absent of the recovery installation, but the amount of pollutants will be much lower because sulfates, thiosulfates and sulfides were already recovered as scales from the drum. These solid scales can be used in detergent industry

  13. Influence of sulfide concentration on the corrosion behavior of pure copper in synthetic seawater

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kawasaki, Manabu

    2008-01-01

    Corrosion rate and stress corrosion cracking (SCC) behavior of pure copper under anaerobic conditions were studied by immersion tests and slow strain rate tests (SSRT) in synthetic seawater containing Na 2 S. The corrosion rate was increased with sulfide concentration both in simple saline solution and in bentnite-sand mixture. The results of SSRT showed that copper was susceptible to intergranular attack; selective dissolution at lower sulfide concentration (less than 0.005 M) and SCC at higher sulfide concentration (0.01 M). It was expected that if the sulfide concentration in groundwater is less than 0.001 M, pure copper is possible to exhibit superior corrosion resistance under anaerobic condition evident by very low corrosion rates and immunity to SCC. In such a low sulfide environment, copper overpack has the potential to achieve super-long lifetimes exceeding several tens of thousands years according to long-term simulations of corrosion based on diffusion of sulfide in buffer material

  14. Effect of Sulfide Concentration on Copper Corrosion in Anoxic Chloride-Containing Solutions

    Science.gov (United States)

    Kong, Decheng; Dong, Chaofang; Xu, Aoni; Man, Cheng; He, Chang; Li, Xiaogang

    2017-04-01

    The structure and property of passive film on copper are strongly dependent on the sulfide concentration; based on this, a series of electrochemical methods were applied to investigate the effect of sulfide concentration on copper corrosion in anaerobic chloride-containing solutions. The cyclic voltammetry and x-ray photoelectron spectroscopy analysis demonstrated that the corrosion products formed on copper in anaerobic sulfide solutions comprise Cu2S and CuS. And the corrosion resistance of copper decreased with increasing sulfide concentration and faster sulfide addition, owing to the various structures of the passive films observed by the atomic force microscope and scanning electron microscope. A p-type semiconductor character was obtained under all experimental conditions, and the defect concentration, which had a magnitude of 1022-1023 cm-3, increased with increasing sulfide concentration, resulting in a higher rate of both film growth and dissolution.

  15. Sulfide phase in the Fe-Ti-S and Fe-C-Ti-S alloys

    International Nuclear Information System (INIS)

    Malinochka, Ya.N.; Balakina, N.A.; Shmelev, Yu.S.

    1976-01-01

    The nature of the sulfide phases in Fe-Ti-S and Fe-C-Ti-S alloys was studied. The carbide and the sulfide phase were identified the aid of X-ray spectral microanalysis. It was established that for a small content of titanium and sulfur in ternary Fe-Ti-S alloys the solidification of the γ-solution on the boundaries of dendritic branches is accompanied, along with the precipitation of a sulfide rich in iron of the (Fe, Ti) S type where a small quantity of titanium is dissolved, by the formation of a titanium-bearing sulfide eutectic γ + TiS. The amount of the sulfide eutectic increases with the contents of titanium and sulfur until a purely eutectic alloy is formed. Both carbides and sulfides may be formed in the solidification of quaternary alloys Fe-C-Ti-S

  16. A method for measuring sulfide toxicity in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Livshits, Leonid; Gross, Einav

    2017-01-01

    Cysteine catabolism by gut microbiota produces high levels of sulfide. Excessive sulfide can interfere with colon function, and therefore may be involved in the etiology and risk of relapse of ulcerative colitis, an inflammatory bowel disease affecting millions of people worldwide. Therefore, it is crucial to understand how cells/animals regulate the detoxification of sulfide generated by bacterial cysteine catabolism in the gut. Here we describe a simple and cost-effective way to explore the mechanism of sulfide toxicity in the nematode Caenorhabditis elegans ( C. elegans ). •A rapid cost-effective method to quantify and study sulfide tolerance in C. elegans and other free-living nematodes.•A cost effective method to measure the concentration of sulfide in the inverted plate assay.

  17. When can Electrochemical Techniques give Reliable Corrosion Rates on Carbon Steel in Sulfide Media?

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, Tor; Nielsen, Lars Vendelbo

    2005-01-01

    in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Oxygen entering the system accelerates......Effects of film formation on carbon steel in hydrogen sulfide media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from hydrogen sulfide solutions, biological sulfide media and natural sulfide containing geothermal water have been collected and the process...... of film formation in sulfide solutions was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data resulting in unreliable corrosion rates measured by electrochemical techniques. The effect is strongly increased if biofilm...

  18. Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation

    Science.gov (United States)

    Alp, Ibrahim; Celep, Oktay; Deveci, Haci

    2010-11-01

    This paper presents the alkaline sulfide pretreatment of an antimonial refractory gold and silver ore. In the ore, gold occurs mainly as gold-silver alloys and as associated with quartz and framboidal pyrite grains, and, to a small extent, as the inclusions within antimonial sulfides. Silver is present extensively as antimonial sulfides such as andorite. Alkaline sulfide pretreatment was shown to allow the decomposition of the antimonial sulfide minerals (up to 98% Sb removal) and to remarkably improve the amenability of gold (e.g., from leaching. An increase in reagent concentration (1-4 mol/L Na2S or NaOH) and temperature (20-80°C), and a decrease in particle size seem to produce an enhancing effect on metal extraction. These findings suggest that alkaline sulfide leaching can be suitably used as a chemical pretreatment method prior to the conventional cyanidation for antimonial refractory gold and silver ores.

  19. Leaching of strontium sulfide from produced clinker in conversion furnace

    International Nuclear Information System (INIS)

    Ghorbanian, S. A.; Salehpour, A. R.; Radpour, S. R.

    2009-01-01

    Iran is rich in mineral resources one of which is mineral Celestine. Basing on current estimations, the capacity of mineral Celestine is over two million tons, 75-95% of which is strontium sulfate. However; in industries such as Color cathode Ray Tubes, pyrochemical processes, ceramics, paint production, zinc purification processes; strontium sulfate is not a direct feed, rather it is largely consumed in the form of strontium carbonate. Two conventional methods are used to produce strontium carbonate from the sulfate; that is direct reaction and black ash methods. Strontium sulfide, as an intermediate component has a key role in black ash process including strontium sulfate reduction by coke, hence producing and leaching the strontium sulfide by hot water. Finally the reaction of strontium sulfate with sodium carbonate lead to strontium carbonate. In this paper, a system was designed to analyze and optimize the process parameters of strontium sulfide production which is less expensive and available solvent in water. Fundamentally, when strontium sulfide becomes in contact with strontium sulfate; Sr(SH) 2 , and Sr(OH) 2 , are produced. The solubility of strontium sulfide depends on water temperature and the maximum solubility achieved at 90 d egree C . The results showed that in the experimental scale, at water to SrS ratio of 6; they sediment for 45 minutes at 95 d egree C in five operational stages; the separation of 95 and 97.1 percent of imported SrS is possible in effluent of fourth and fifth stages, respectively. Thus; four leaching stages could be recommended for pilot scale plants. Also, the results show that at water to SrS ratio of 8, 40 minutes sedimentation at 85-95 d egree C in one operational stage, the separation of 95 percent separation of inputted SrS, is possible. Solvent leaching process is continued till no smell of sulfur components is felt. It could be used as a key role to determine the number of leaching stages in experiments. Finally, the

  20. Antifoaming materials in G.S. (Girlder sulfide) heavy water plants. Thermical stability. Pt. 2

    International Nuclear Information System (INIS)

    Delfino, C.A.

    1986-01-01

    In Girlder sulfide (G.S.) heavy water plants hydrogen sulfide-water systems are inherentely foaming, so the adding of antifoaming materials is of great importance. These may be of high volatility, pyrolizable or chemically unstable in plant operation conditions (water and hydrogen sulfide at 2 MPa, up to 230 deg C). About twenty commercial surfactants were studied from the point of view of their thermical stability. (Author) [es

  1. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.; Slater, L.; Yee, N.; O' Brien, M.; Hubbard, S.

    2008-02-15

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  2. Effect of sulfide concentration on the location of the metal precipitates in inversed fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Gomez, D., E-mail: d.villagomez@unesco-ihe.org [Core Pollution Prevention and Control, UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft (Netherlands); Ababneh, H.; Papirio, S.; Rousseau, D.P.L.; Lens, P.N.L. [Core Pollution Prevention and Control, UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft (Netherlands)

    2011-08-15

    Highlights: {yields} Sulfide concentration governs the location of metal precipitates in sulfate reducing bioreactors. {yields} High dissolved sulfide induces metal precipitation in the bulk liquid as fines. {yields} Low dissolved sulfide concentrations yield local supersaturation and thus metal precipitation in the biofilm. -- Abstract: The effect of the sulfide concentration on the location of the metal precipitates within sulfate-reducing inversed fluidized bed (IFB) reactors was evaluated. Two mesophilic IFB reactors were operated for over 100 days at the same operational conditions, but with different chemical oxygen demand (COD) to SO{sub 4}{sup 2-} ratio (5 and 1, respectively). After a start up phase, 10 mg/L of Cu, Pb, Cd and Zn each were added to the influent. The sulfide concentration in one IFB reactor reached 648 mg/L, while it reached only 59 mg/L in the other one. In the high sulfide IFB reactor, the precipitated metals were mainly located in the bulk liquid (as fines), whereas in the low sulfide IFB reactor the metal preciptiates were mainly present in the biofilm. The latter can be explained by local supersaturation due to sulfide production in the biofilm. This paper demonstrates that the sulfide concentration needs to be controlled in sulfate reducing IFB reactors to steer the location of the metal precipitates for recovery.

  3. Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator.

    Science.gov (United States)

    Wu, Dandan; Ma, Wenhui; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-05-18

    In this study, ammonium ion was used to enhance the sulfidation flotation of malachite. The effect of ammonium ion on the sulfidation flotation of malachite was investigated using microflotation test, inductively coupled plasma (ICP) analysis, zeta potential measurements, and scanning electron microscope analysis (SEM). The results of microflotation test show that the addition of sodium sulfide and ammonium sulfate resulted in better sulfidation than the addition of sodium sulfide alone. The results of ICP analysis indicate that the dissolution of enhanced sulfurized malachite surface is significantly decreased. Zeta potential measurements indicate that a smaller isoelectric point value and a large number of copper-sulfide films formed on the malachite surface by enhancing sulfidation resulted in a large amount of sodium butyl xanthate absorbed onto the enhanced sulfurized malachite surface. EDS semi-quantitative analysis and XPS analysis show that malachite was easily sulfurized by sodium sulfide with ammonium ion. These results show that the addition of ammonium ion plays a significant role in the sulfidation of malachite and results in improved flotation performance.

  4. Microbial oxidation of soluble sulfide in produced water from the Bakkeen Sands

    Energy Technology Data Exchange (ETDEWEB)

    Gevertz, D.; Zimmerman, S. [Agouron Institute, La Jolla, CA (United States); Jenneman, G.E. [Phillips Petroleum Company, Bartlesville, OK (United States)] [and others

    1995-12-31

    The presence of soluble sulfide in produced water results in problems for the petroleum industry due to its toxicity, odor, corrosive nature, and potential for wellbore plugging. Sulfide oxidation by indigenous nitrate-reducing bacteria (NRB) present in brine collected from wells at the Coleville Unit (CVU) in Saskatchewan, Canada, was investigated. Sulfide oxidation took place readily when nitrate and phosphate were added to brine enrichment cultures, resulting in a decrease in sulfide levels of 99-165 ppm to nondetectable levels (< 3.3 ppm). Produced water collected from a number of producing wells was screened to determine the time required for complete sulfide oxidation, in order to select candidate wells for treatment. Three wells were chosen, based on sulfide removal in 48 hours or less. These wells were treated down the backside of the annulus with a solution containing 10 mM KNO{sub 3} and 100 {mu}M NaH{sub 2}PO{sub 4}. Following a 24- to 72-hour shut-in, reductions in pretreatment sulfide levels of greater than 90% were observed for two of the wells, as well as sustained sulfide reductions of 50% for at least two days following startup. NRB populations in the produced brine were observed to increase significantly following treatment, but no significant increases in sulfate-reducing bacteria were observed. These results demonstrate the technical feasibility of stimulating indigenous populations of NRB to remediate and control sulfide in produced brine.

  5. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-07-15

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed. 2010 Elsevier B.V. All rights reserved.

  6. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition

    International Nuclear Information System (INIS)

    Chen Chuan; Ren Nanqi; Wang Aijie; Liu Lihong; Lee, Duu-Jong

    2010-01-01

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed.

  7. Relative flotation response of zinc sulfide: Mineral and precipitate

    Energy Technology Data Exchange (ETDEWEB)

    Rao, S.R.; Finch, J.A. [McGill Univ., Montreal, Quebec (Canada). Dept. of Mining and Metallurgical Engineering; Zhou, Z.; Xu, Z. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Chemical and Materials Engineering

    1998-04-01

    Flotation continues to extend to nonmineral applications, including recycling of materials, soil remediation, and effluent treatment. A study has been conducted to compare the floatability of fine zinc sulfide (ZnS) precipitates and sphalerite particles. The floatability of the precipitates was significantly poorer compared to sphalerite particles when xanthate was used as the collector. The floatability was improved by using dodecylamine as the collector, and the difference in floatability between the precipitates was further improved significantly by incorporating a hydrodynamic cavitation tube in a conventional (mechanical) flotation cell. The improved kinetics was attributed to in-situ gas nucleation on the precipitates.

  8. Zinc sulfide in intestinal cell granules of Ancylostoma caninum adults

    Energy Technology Data Exchange (ETDEWEB)

    Gianotti, A.J.; Clark, D.T.; Dash, J. (Portland State Univ., OR (USA))

    1991-04-01

    A source of confusion has existed since the turn of the century about the reddish brown, weakly birefringent 'sphaerocrystals' located in the intestines of strongyle nematodes, Strongylus and Ancylostoma. X-ray diffraction and energy dispersive spectrometric analyses were used for accurate determination of the crystalline order and elemental composition of the granules in the canine hookworm Ancylostoma caninum. The composition of the intestinal pigmented granules was identified unequivocally as zinc sulfide. It seems most probable that the granules serve to detoxify high levels of metallic ions (specifically zinc) present due to the large intake of host blood.

  9. Synthesis of copper sulfide nanotube in the hydrogel system

    International Nuclear Information System (INIS)

    Tan Changhui; Zhu Yulan; Lu Ran; Xue Pengchong; Bao Chunyan; Liu Xinli; Fei Zhuping; Zhao Yingying

    2005-01-01

    This paper presents a novel method for the preparation of copper sulfide (CuS) nanotubes using hydrogel based on N-lauroylalanine as template under mild condition. The resulting samples are examined by transmission electron microscopy (TEM) FT-IR spectroscopy, X-ray powder diffraction (XRD), UV-vis absorption spectroscopy. It is found that the intermolecular hydrogen bonds play an important role on the formation of the hydrogel and the Cu 2+ coordination gel. The formation process of CuS nanotube is also discussed

  10. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    International Nuclear Information System (INIS)

    Chongad, L S; Sharma, A; Banerjee, M; Jain, A

    2016-01-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H 2 S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD. (paper)

  11. Microbial Oxidation of Iron Sulfides in Anaerobic Environments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka

    Abstract (shortened): Iron sulfides (FeSx), representing 0.04-10 % of Danish dry soil weight, oxidize in a presence of oxygen, releasing sulfuric acid and free iron. Environmental impact of FeSx oxidation is commonly seen on agricultural sites cultivated by drainage as acid sulfate soil formation....... MISON was found to count for about 1/3 of the net NO3- reduction in MISON active environments, despite the presence of alternative electron donor, organic carbon. The rate of MISON was found to be dependent on the available reactive surface area of FeSx and on the microorganism involved. The findings...

  12. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea

    DEFF Research Database (Denmark)

    Neretin, LN; Bottcher, ME; Jørgensen, BB

    2004-01-01

    Pyritization in late Pleistocene sediments of the Black Sea is driven by sulfide formed during anaerobic methane oxidation. A sulfidization front is formed by the opposing gradients of sulfide and dissolved iron. The sulfidization processes are controlled by the diffusion flux of sulfide from above...... and by the solid reactive iron content. Two processes of diffusion-limited pyrite formation were identified. The first process includes pyrite precipitation with the accumulation of iron sulfide precursors with the average chemical composition of FeSn (n = 1.10-1.29), including greigite. Elemental sulfur...... and polysulfides, formed from H,S by a reductive dissolution of Fe(Ill)-containing minerals, serve as intermediates to convert iron sulfides into pyrite. In the second process, a "direct" pyrite precipitation occurs through prolonged exposure of iron-containing minerals to dissolved sulfide. Methane-driven sulfate...

  13. An experimental study of Fe-Ni exchange between sulfide melt and olivine at upper mantle conditions: implications for mantle sulfide compositions and phase equilibria

    Science.gov (United States)

    Zhang, Zhou; von der Handt, Anette; Hirschmann, Marc M.

    2018-03-01

    The behavior of nickel in the Earth's mantle is controlled by sulfide melt-olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe-Ni composition of molten sulfide in the Earth's upper mantle via sulfide melt-olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt X_{{{Ni}}}^{{{Sulfide}}}={{Ni}}/{{Ni+{Fe}}} (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of {f_{{{O}2}}} on Fe-Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31-46, 1995), "zero time" experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0 ± 1.0 log units more reduced than the fayalite-magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ - 1 or more oxidized (suite 4). For the reduced (suites 1-3) experiments, Fe-Ni distribution coefficients K_{{D}}{}={(X_{{{Ni}}}^{{{sulfide}}}/X_{{{Fe}}}^{{{sulfide}}})}/{(X_{{{Ni}}^{{{olivine}}}/X_{{{Fe}}}^{{{olivine}}})}} are small, averaging 10.0 ± 5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of K D (21.1-25.2). Compared to previous determinations at 100 kPa, values of K D from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem

  14. New cyclic sulfides extracted from Allium sativum: garlicnins P, J2, and Q.

    Science.gov (United States)

    Nohara, Toshihiro; Ono, Masateru; Nishioka, Naho; Masuda, Fuka; Fujiwara, Yukio; Ikeda, Tsuyoshi; Nakano, Daisuke; Kinjo, Junei

    2018-01-01

    Two atypical cyclic-type sulfides, garlicnin P (1) and garlicnin J 2 (2), and one thiabicyclic-type sulfide, garlicnin Q (3), were isolated from the acetone extracts of garlic, Allium sativum, bulbs cultivated in the Kumamoto city area, and their structures characterized. Their production pathways are also discussed.

  15. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    International Nuclear Information System (INIS)

    Jensen, Henriette Stokbro; Lens, Piet N.L.; Nielsen, Jeppe L.; Bester, Kai; Nielsen, Asbjorn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-01-01

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d -1 and 1.33 d -1 as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  16. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    NARCIS (Netherlands)

    Rao, A.M.F.; Malkin, S.Y.; Hidalgo-Martinez, S.; Meysman, Filip

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly

  17. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples

    International Nuclear Information System (INIS)

    Thorson, Megan K.; Ung, Phuc; Leaver, Franklin M.; Corbin, Teresa S.; Tuck, Kellie L.; Graham, Bim; Barrios, Amy M.

    2015-01-01

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. - Highlights: • Lanthanide–azide based sulfide sensors were synthesized and characterized. • The probes have excitation and emission profiles compatible with sulfide-contaminated samples from the petrochemical industry. • A terbium-based probe was used to measure the sulfide concentration in oil refinery wastewater. • A europium-based probe had compatibility with partially refined crude oil samples.

  18. The Determination of Hydrogen Sulfide in Stack Gases, Iodometric Titration After Sulfite Removal.

    Science.gov (United States)

    Robles, E. G.

    The determination of hydrogen sulfide in effluents from coal-fired furnaces and incinerators is complicated by the presence of sulfur oxides (which form acids). Organic compounds also may interfere with or prevent the formation of the cadmium sulfide precipitate or give false positive results because of reaction with iodine. The report presents a…

  19. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment

    DEFF Research Database (Denmark)

    Preisler, André; de Beer, Dirk; Lichtschlag, Anna

    2007-01-01

    The ecological niche of nitrate-storing Beggiatoa, and their contribution to the removal of sulfide were investigated in coastal sediment. With microsensors a clear suboxic zone of 2-10 cm thick was identified, where neither oxygen nor free sulfide was detectable. In this zone most of the Beggiat...

  20. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation

    Science.gov (United States)

    Feng, Qicheng; Zhao, Wenjuan; Wen, Shuming

    2018-04-01

    Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22- and Sn2- relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.

  1. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples

    Energy Technology Data Exchange (ETDEWEB)

    Thorson, Megan K. [Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84108 (United States); Ung, Phuc [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Leaver, Franklin M. [Water & Energy Systems Technology, Inc., Kaysville, UT 84037 (United States); Corbin, Teresa S. [Quality Services Laboratory, Tesoro Refining and Marketing, Salt Lake City, UT 84103 (United States); Tuck, Kellie L., E-mail: kellie.tuck@monash.edu [School of Chemistry, Monash University, Victoria 3800 (Australia); Graham, Bim, E-mail: bim.graham@monash.edu [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Barrios, Amy M., E-mail: amy.barrios@utah.edu [Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84108 (United States)

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. - Highlights: • Lanthanide–azide based sulfide sensors were synthesized and characterized. • The probes have excitation and emission profiles compatible with sulfide-contaminated samples from the petrochemical industry. • A terbium-based probe was used to measure the sulfide concentration in oil refinery wastewater. • A europium-based probe had compatibility with partially refined crude oil samples.

  2. Effects of Wood Pollution on Pore-Water Sulfide Levels and Eelgrass Germination

    Science.gov (United States)

    Ekelem, C.

    2016-02-01

    Historically, sawmills released wood waste onto coastal shorelines throughout the Pacific Northwest of the USA, enriching marine sediments with organic material. The increase in organic carbon boosts the bacterial reduction of sulfate and results in the production of a toxic metabolite, hydrogen sulfide. Hydrogen sulfide is a phytotoxin and can decrease the growth and survival of eelgrass. This is a critical issue since eelgrass, Zostera marina, forms habitat for many species, stabilizes sediment, and plays a role in nutrient cycling and sediment chemistry. The objective of our study was to determine the effects of wood debris on sediment pore-water hydrogen sulfide concentrations and eelgrass germination. To test the impact of wood inputs on sulfide production and seed germination, we conducted a laboratory mesocosm experiment, adding sawdust to marine sediments and measuring the sulfide levels weekly. We subsequently planted seeds in the mesocosms and measured germination rates. Higher concentrations of sawdust led to higher levels of pore-water hydrogen sulfide and drastically slower eelgrass germination rates. Treatments with greater than 10% wood enrichment developed free sulfide concentrations of 0.815 (± 0.427) mM after 118 days, suggesting sediments with greater than 10% wood pollution may have threateningly high pore-water hydrogen sulfide levels. These results can be used to set thresholds for remediation efforts and guide seed distribution in wood polluted areas.

  3. Supramolecular binding and release of sulfide and hydrosulfide anions in water.

    Science.gov (United States)

    Vázquez, J; Sindelar, V

    2018-06-05

    Hydrogen sulfide (H2S) has become an important target for research due to its physiological properties as well as its potential applications in medicine. In this work, supramolecular binding of sulfide (S2-) and hydrosulfide (HS-) anions in water is presented for the first time. Bambusurils were used to slow down the release of these anions in water.

  4. The sampling of hydrogen sulfide in air with impregnated filter paper

    NARCIS (Netherlands)

    Huygen, C.

    1964-01-01

    A method is proposed for the quantitative collection of hydrogen sulfide in air on impregnated filter paper. An aqueous solution of potassium hydroxide, potassium zincate and glycerol is used as impregnating fluid. The stability of the collected sulfide and the efficiency of collection at different

  5. Isolation of Ochrobactrum sp.QZ2 from sulfide and nitrite treatment system

    International Nuclear Information System (INIS)

    Mahmood, Qaisar; Hu Baolan; Cai Jing; Zheng Ping; Azim, Muhammad Rashid; Jilani, Ghulam; Islam, Ejazul

    2009-01-01

    A bacterial strain QZ2 was isolated from sludge of anoxic sulfide-oxidizing (ASO) reactor. Based on 16S rDNA sequence analysis and morphology, the isolate was identified as Ochrobactrum sp. QZ2. The strain was facultative chemolithotroph, able of using sulfide to reduce nitrite anaerobically. It produced either elemental sulfur or sulfate as the product of sulfide oxidation, depending on the initial sulfide and nitrite concentrations. The optimum growth pH and temperature for Ochrobactrum sp. QZ2 were found as 6.5-7.0 and 30 deg. C, respectively. The specific growth rate (μ) was found as 0.06 h -1 with a doubling time of 19.75 h; the growth seemed more sensitive to highly alkaline pH. Ochrobactrum sp. QZ2 catalyzed sulfide oxidation to sulfate was more sensitive to sulfide compared with nitrite as indicated by IC 50 values for sulfide and nitrite utilization implying that isolate was relatively more tolerant to nitrite. The comparison of physiology of Ochrobactrum sp. QZ2 with those of other known sulfide-oxidizing bacteria suggested that the present isolate resembled to Ochrobactrum anthropi in its denitrification ability.

  6. Multicentre trial on the efficacy and toxicity of single-dose samarium-153-ethylene diamine tetramethylene phosphonate as a palliative treatment for painful skeletal metastases in China

    International Nuclear Information System (INIS)

    Tian Jia-he; Zhang Jin-ming; He Yi-jie; Hou Qing-tian; Oyang Qiao-hong; Wang Jian-min; Chuan Ling

    1999-01-01

    A multicentre trial was organized in China as part of an international coordinated research project to study the efficacy and toxicity of single-dose samarium-153 ethylene diamine tetramethylene phosphonate (EDTMP) as a palliative treatment for painful skeletal metastases. One hundred and five patients with painful bone metastases from various primaries were treated with 153 Sm-EDTMP at a dose of 37 MBq/kg(group I) or 18.5 MBq/kg (group II). The effects were evaluated according to change in daily analgesic consumption, pain score, sum of effect product (SEP), Physician's Global Assessment (PGA), blood counts, and organ function tests conducted regularly for 16 weeks. Fifty-eight of 70 patients in group I and 30 of 35 in group II had a positive response, with SEPs of 22.29±14.47 and 20.13±13.90 respectively. Of 72 patients who had been receiving analgesics, 63 reduced their consumption. PGA showed that the Karnofsky score (KS) increased from 58.54±25.90 to 71.67±26.53, indicating improved general condition, but the difference was not significant. Among subgroups of patients, only those with breast cancer showed a significant change in the Karnofsky score after treatment. Inter-group differences were found for net change in KS between patients with lung and patients with breast cancer, and between patients with lung and patients with oesophageal cancer. Seventeen patients showed no response. No serious side-effects were noted, except for falls in the white blood cell (nadir 1.5 x 10 9 /l) and platelet (nadir 6.0 x 10 10 /l) counts in 44/105 and 34/105 cases, respectively. Ten patients had an abnormal liver function test. Response and side-effects were both independent of dose. In conclusion, 153 Sm-EDTMP provided effective palliation in 83.8% of patients with painful bone metastases; the major toxicity was temporary myelosuppression. Further studies are needed to identify better ways of determining the appropriate dose in the individual case and the efficacy of

  7. Methodology for assessing thioarsenic formation potential in sulfidic landfill environments.

    Science.gov (United States)

    Zhang, Jianye; Kim, Hwidong; Townsend, Timothy

    2014-07-01

    Arsenic leaching and speciation in landfills, especially those with arsenic bearing waste and drywall disposal (such as construction and demolition (C&D) debris landfills), may be affected by high levels of sulfide through the formation of thioarsenic anions. A methodology using ion chromatography (IC) with a conductivity detector was developed for the assessment of thioarsenic formation potential in sulfidic landfill environments. Monothioarsenate (H2AsSO3(-)) and dithioarsenate (H2AsS2O2(-)) were confirmed in the IC fractions of thioarsenate synthesis mixture, consistent with previous literature results. However, the observation of AsSx(-) (x=5-8) in the supposed trithioarsenate (H2AsS3O(-)) and tetrathioarsenate (H2AsS4(-)) IC fractions suggested the presence of new arsenic polysulfide complexes. All thioarsenate anions, particularly trithioarsenate and tetrathioarsenate, were unstable upon air exposure. The method developed for thioarsenate analysis was validated and successfully used to analyze several landfill leachate samples. Thioarsenate anions were detected in the leachate of all of the C&D debris landfills tested, which accounted for approximately 8.5% of the total aqueous As in the leachate. Compared to arsenite or arsenate, thioarsenates have been reported in literature to have lower adsorption on iron oxide minerals. The presence of thioarsenates in C&D debris landfill leachate poses new concerns when evaluating the impact of arsenic mobilization in such environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hydrolysis of strained bridgehead bicyclic vinyl ethers and sulfides

    International Nuclear Information System (INIS)

    Chwang, W.K.; Kresge, A.J.; Wiseman, J.R.

    1979-01-01

    Rates of hydrolysis of the bridgehead bicyclic vinyl ether 9-oxabicyclo[3.3.1]non-1-ene(6) and its vinyl sulfide counterpart 9-thiabicyclo[3.3.1]non-1-ene(7), catalyzed by the hydronium ion, were measured in H 2 O and in D 2 O solution. These data give isotope effects, k/sub H//k/sub D/ = 2.4 and 1.9 respectively, which show that these reactions occur by the normal, rate-determining carbon protonation, mechanism. The vinyl ether 6 is less reactive than its olefin analogue, bicyclo[3.3.1]non-1-ene (relative rate 1:1/1400), as may have been expected for a constrained bicyclic system such as this, where stabilization of the bridgehead carbocation intermediate by conjugation with oxygen is severely impaired. The vinyl sulfide 7, however, is even less reactive than the vinyl ether (relative rates 1:1/140); this is a remarkable result in view of the fact that conjugation between the sulfur atom and the cationic center is presumably also strongly inhibited. 1 figure, 3 tables

  9. Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method

    Science.gov (United States)

    Muradov, Mustafa B.; Balayeva, Ofeliya O.; Azizov, Abdulsaid A.; Maharramov, Abel M.; Qahramanli, Lala R.; Eyvazova, Goncha M.; Aghamaliyev, Zohrab A.

    2018-03-01

    Convenient and environmentally friendly synthesis of Co9S8/PVA, CoxSy/EG and CoxSy/3-MPA nanocomposites were carried out in the presence of ultrasonic irradiation by the liquid phase synthesis of the sonochemical method. For the synthesis, cobalt acetate tetrahydrate [Co(CH3COO)2·4H2O] and sodium sulfide (Na2S·9H2O) were used as a cobalt and sulfur precursor, respectively. Polyvinyl alcohol (PVA), ethylene glycol (EG) and 3-mercaptopropionic acid (3-MPA) were used as a capping agent and surfactant. The structural, optical properties and morphology of nanocomposites were characterized using X-ray diffractometer (XRD), Ultraviolet/Visible Spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optical band gap of Co9S8/PVA is 1.81 eV and for CoxSy/EG is 2.42 eV, where the direct band gap of bulk cobalt sulfide is (0.78-0.9 eV). The wide band gap indicates that synthesised nanocomposites can be used in the fabrication of optical and photonic devices. The growth mechanisms of the Co9S8, CoS2 and Co3S4 nanoparticles were discussed by the reactions. The effects of sonication time and annealing temperature on the properties of the nanoparticles have been studied in detail.

  10. Modeling of Syngas Reactions and Hydrogen Generation Over Sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Klier; Jeffery A. Spirko; Michael L. Neiman

    2002-09-17

    The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. In this first year of study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The geometries and strengths of the adsorption sites are described and the methods used in the study are described. An exposed MO{sup IV} species modeled as a bent MoS{sub 2} molecule is capable of homopolar dissociative chemisorption of H{sub 2} into a dihydride S{sub 2}MoH{sub 2}. Among the periodic edge structures of hexagonal MoS{sub 2}, the (1{bar 2}11) edge is most stable but still capable of dissociating H{sub 2}, while the basal plane (0001) is not. A challenging task of theoretically accounting for weak bonding of MoS{sub 2} sheets across the Van der Waals gap has been addressed, resulting in a weak attraction of 0.028 eV/MoS{sub 2} unit, compared to the experimental value of 0.013 eV/MoS{sub 2} unit.

  11. Potential for Sulfide Mineral Deposits in Australian Waters

    Science.gov (United States)

    McConachy, Timothy F.

    The world is witnessing a paradigm shift in relation to marine mineral resources. High-value seafloor massive sulfides at active convergent plate boundaries are attracting serious commercial attention. Under the United Nations Convention on the Law of the Sea, maritime jurisdictional zones will increase by extending over continental margins and ocean basins. For Australia, this means a possible additional 3.37 million km2 of seabed. Australia's sovereign responsibility includes, amongst other roles, the management of the exploitation of nonliving resources and sea-bed mining. What, therefore, is the potential in Australia's marine jurisdiction for similar deposits to those currently attracting commercial attention in neighboring nations and for other types/styles of sulfide deposits? A preliminary review of opportunities suggests the following: (i) volcanogenic copper—lead—zinc—silver—gold mineralization in fossil arcs and back arcs in eastern waters Norfolk Ridge and the Three Kings Ridge; (ii) Mississippi Valley-type lead—zinc—silver mineralization in the NW Shelf area; (iii) ophiolite-hosted copper mineralization in the Macquarie Ridge Complex in the Southern Ocean; and (iv) submerged extensions of prospective land-based terranes, one example being offshore Gawler Craton for iron oxide—copper—gold deposits. These areas would benefit from pre-competitive surveys of detailed swath bathymetry mapping, geophysical surveys, and sampling to help build a strategic inventory of future seafloor mineral resources for Australia.

  12. SELF-ORGANIZATION OF LEAD SULFIDE QUANTUM DOTS INTO SUPERSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Elena V. Ushakova

    2014-11-01

    Full Text Available The method of X-ray structural analysis (X-ray scattering at small angles is used to show that the structures obtained by self-organization on a substrate of lead sulfide (PbS quantum dots are ordered arrays. Self-organization of quantum dots occurs at slow evaporation of solvent from a cuvette. The cuvette is a thin layer of mica with teflon ring on it. The positions of peaks in SAXS pattern are used to calculate crystal lattice of obtained ordered structures. Such structures have a primitive orthorhombic crystal lattice. Calculated lattice parameters are: a = 21,1 (nm; b = 36,2 (nm; c = 62,5 (nm. Dimensions of structures are tens of micrometers. The spectral properties of PbS QDs superstructures and kinetic parameters of their luminescence are investigated. Absorption band of superstructures is broadened as compared to the absorption band of the quantum dots in solution; the luminescence band is slightly shifted to the red region of the spectrum, while its bandwidth is not changed much. Luminescence lifetime of obtained structures has been significantly decreased in comparison with the isolated quantum dots in solution, but remained the same for the lead sulfide quantum dots close-packed ensembles. Such superstructures can be used to produce solar cells with improved characteristics.

  13. Hydrogen sulfide toxicity in a thermal spring: a fatal outcome.

    Science.gov (United States)

    Daldal, Hale; Beder, Bayram; Serin, Simay; Sungurtekin, Hulya

    2010-08-01

    Hydrogen sulfide (H(2)S) is a toxic gas with the smells of "rotten egg"; its toxic effects are due to the blocking of cellular respiratory enzymes leading to cell anoxia and cell damage. We report two cases with acute H(2)S intoxication caused by inhalation of H(2)S evaporated from the water of a thermal spring. Two victims were found in a hotel room were they could take a thermal bath. A 26-year-old male was found unconscious; he was resuscitated, received supportive treatment and survived. A 25-year-old female was found dead. Autopsy showed diffuse edema and pulmonary congestion. Toxicological blood analysis of the female revealed the following concentrations: 0.68 mg/L sulfide and 0.21 mmol/L thiosulfate. The urine thiosulfate concentration was normal. Forensic investigation established that the thermal water was coming from the hotel's own illegal well. The hotel was closed. This report highlights the danger of H(2)S toxicity not only for reservoir and sewer cleaners, but also for individuals bathing in thermal springs.

  14. Control of microbially generated hydrogen sulfide in produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Burger, E.D.; Vance, I.; Gammack, G.F.; Duncan, S.E.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technology for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.

  15. Detachment of particulate iron sulfide during shale-water interaction

    Science.gov (United States)

    Emmanuel, S.; Kreisserman, Y.

    2017-12-01

    Hydraulic fracturing, a commonly used technique to extract oil and gas from shales, is controversial in part because of the threat it poses to water resources. The technique involves the injection into the subsurface of large amounts of fluid, which can become contaminated by fluid-rock interaction. The dissolution of pyrite is thought to be a primary pathway for the contamination of fracturing fluids with toxic elements, such as arsenic and lead. In this study, we use direct observations with atomic force microscopy to show that the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment of embedded pyrite grains. To simulate the way fluid interacts with a fractured shale surface, we also reacted rock samples in a flow-through cell, and used environmental scanning electron microscopy to compare the surfaces before and after interaction with water. Crucially, our results show that the flux of particulate iron sulfide into the fluid may be orders of magnitude higher than the flux of pyrite from chemical dissolution. This result suggests that mechanical detachment of pyrite grains could be the dominant mode by which arsenic and other inorganic elements are mobilized in the subsurface. Thus, during hydraulic fracturing operations and in groundwater systems containing pyrite, the transport of many toxic species may be controlled by the transport of colloidal iron sulfide particles.

  16. Synthesis and structural studies of copper sulfide nanocrystals

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    Full Text Available We report the synthesis and structural studies of copper sulfide nanocrystals from copper(II dithiocarbamate single molecule precursors. The optical studies of the as-prepared copper sulfide nanoparticles were carried out using UV–Visible and photoluminescence spectroscopy. The absorption spectra show absorption band edges at 287 nm and exhibit considerable blue shift that could be ascribed to the quantum confinement effects as a result of the small crystallite sizes of the nanoparticles and the photoluminescence spectra show emission curves that are red shifted with respect to the absorption band edges. The structural studies were carried out using powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The XRD patterns revealed the formation of hexagonal structure of covellite CuS with estimated crystallite sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microsphere on the surfaces and EDS spectra confirmed the presence of CuS nanoparticles. Keywords: CuS, Dithiocarbamate, Nanoparticles, Electron microscopy, AFM

  17. Carbon steel protection in G.S. (Girlder sulfide) plants. CITROSOLV process influence. Pt. 6

    International Nuclear Information System (INIS)

    Lires, O.A.; Burkart, A.L.; Delfino, C.A.; Rojo, E.A.

    1988-01-01

    In order to protect carbon steel towers and piping of Girlder sulfide (G.S.) experimental heavy water plants against corrosion produced by the action of aqueous solutions of hydrogen sulfides, a method, previously published, was developed. Carbon steel, exposed to saturated aqueous solutions of hydrogen sulfide, forms iron sulfide scales. In oxygen free solutions evolution of corrosion follows the sequence: mackinawite → cubic ferrous sulfide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite-pyrite or pyrite are the most protective layers (these are obtained at 130 deg C, 2 MPa, for periods of 14 days). CITROSOLV Process (Pfizer) is used to descaling and passivating stainless steel plant's components. This process must be used in mixed (carbon steel - stainless steel) circuits and may cause the formation of magnetite scales over the carbon steel. The influence of magnetite in the pyrrotite-pyrite scales formation is studied in this work. (Author) [es

  18. Preparation and characterization of amorphous manganese sulfide thin films by SILAR method

    International Nuclear Information System (INIS)

    Pathan, H.M.; Kale, S.S.; Lokhande, C.D.; Han, Sung-Hwan; Joo, Oh-Shim

    2007-01-01

    Manganese sulfide thin films were deposited by a simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method using manganese acetate as a manganese and sodium sulfide as sulfide ion sources, respectively. Manganese sulfide films were characterized for their structural, surface morphological and optical properties by means of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques. The as-deposited film on glass substrate was amorphous. The optical band gap of the film was found to be thickness dependent. As thickness increases optical band gap was found to be increase. The water angle contact was found to be 34 o , suggesting hydrophilic nature of manganese sulfide thin films. The presence of Mn and S in thin film was confirmed by energy dispersive X-ray analysis

  19. What do we really know about the role of microorganisms in iron sulfide mineral formation?

    Science.gov (United States)

    Picard, Aude A.; Gartman, Amy; Girguis, Peter R.

    2016-01-01

    Iron sulfide mineralization in low-temperature systems is a result of biotic and abiotic processes, though the delineation between these two modes of formation is not always straightforward. Here we review the role of microorganisms in the precipitation of extracellular iron sulfide minerals. We summarize the evidence that links sulfur-metabolizing microorganisms and sulfide minerals in nature and we present a critical overview of laboratory-based studies of the nucleation and growth of iron sulfide minerals in microbial cultures. We discuss whether biologically derived minerals are distinguishable from abiotic minerals, possessing attributes that are uniquely diagnostic of biomineralization. These inquiries have revealed the need for additional thorough, mechanistic and high-resolution studies to understand microbially mediated formation of a variety of sulfide minerals across a range of natural environments.

  20. Reliability of Electrochemical Techniques for Determining Corrosion Rates on Carbon Steel in Sulfide Media

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, T.; Nielsen, Lars Vendelbo

    2007-01-01

    if the biofilm in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemicel impedance spectroscopy (EIS). Oxygen entering the system......Effects of film formation on carbon steel in hydrogen sulfide (H2S) media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from H2S solutions, biological sulfide media, and natural sulfide containing geothermal water have been collected, and the process...... of film formation in sulfide solutins was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data, resulting in unreliable corrosion rates measured using electrochemical techniques. The effect is strongly increased...

  1. Nano Transition Metal Sulfide Catalyst for Solvolysis Liquefaction of Soda Lignin

    International Nuclear Information System (INIS)

    Fei-Ling, P.; Chin-Hua, C.; Sarani Zakaria; Soon-Keong, N.; Tze-Khong, L.

    2011-01-01

    Solvolysis liquefaction of soda lignin in the presence of various transition metal sulfide catalysts was studied to investigate the catalyst effects on the oil and gas yields, conversion rate and higher heating value (HHV) of oil. Nano sized copper sulfide, iron sulfide and molybdenum sulfide were successfully synthesized via a simple hydrothermal method under reaction temperature 200 degree Celsius for 90 min. The addition of transition metal sulfide based catalysts (CuS, MoS 2 and FeS 2 ) enhanced both production of the oils and gas and the higher heating value (HHV) of oil products. A high oil and gas yields of 82.1 % and 2890 cm 3 was obtained with MoS 2 at 250 degree Celsius for 60 min. Elemental analyses for the oils revealed that the liquid products have much higher heating values than the crude soda lignin powder. (author)

  2. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Xin-juan Li

    2015-01-01

    Full Text Available The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.

  3. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy.

    Science.gov (United States)

    Colon, M; Todolí, J L; Hidalgo, M; Iglesias, M

    2008-02-25

    Two new, simple and accurate methods for the determination of sulfide (S(2-)) at low levels (microgL(-1)) in aqueous samples were developed. The generation of hydrogen sulfide (H(2)S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H(2)S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H(2)S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H(2)S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5microgL(-1) to 25mgL(-1) of sulfide. Detection limits of 5microgL(-1) and 6microgL(-1) were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters.

  4. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland

    DEFF Research Database (Denmark)

    Dahl, Tais W.; Anbar, Ariel D.; Gordon, Gwyneth W.

    2010-01-01

    scavenging of Mo when buried into sulfidic sediments. This paper contains the first complete suite of Mo isotope fractionation observations in a sulfidic water column and sediment system, the meromictic Lake Cadagno, Switzerland, a small alpine lake with a pronounced oxygen-sulfide transition reaching up...

  5. Effects of sulfide treatment on electronic transport of graphene/n-type Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jian-Jhou; Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw

    2014-05-01

    The present work reports the fabrication and detailed electrical properties of graphene/n-type Si Schottky diodes with and without sulfide treatment. The graphene/n-type Si Schottky diode without sulfide treatment shows a poor rectifying behavior with an ideality factor (η) of 4.2 and high leakage. η > 2 implies that the interfacial defects influence the electronic conduction through the device. However, the graphene/n-type Si Schottky diode with sulfide treatment for 5 min shows a good rectifying behavior with η of 1.8 and low leakage. Such an improvement indicates that a good passivation is formed at the interface as a result of the reduction of the defect density. These experimental demonstrations suggest that it may be possible to minimize the adverse effects of the interface states to obtain functional devices using sulfide treatment. In addition, the graphene/n-type Si Schottky diode with sulfide treatment for 10 min shows a poor rectifying behavior with η of 2.5 and high leakage. Note, a suitable sulfide treatment time is an important issue for improving the device performance. - Highlights: • Graphene/Si diodes with sulfide treatment for 5 min show a good rectifying behavior. • Graphene/Si diodes without sulfide treatment show a poor rectifying behavior. • The interfacial defects of Schottky diodes were controlled by sulfide treatment. • Such an improvement indicates that a good passivation is formed at the interface. • A suitable sulfide treatment time is an important issue for improving performances.

  6. Volcanic sulfur degassing and the role of sulfides in controlling volcanic metal emissions

    Science.gov (United States)

    Edmonds, M.; Liu, E.

    2017-12-01

    Volcanoes emit prodigious quantities of sulfur and metals, their behaviour inextricably linked through pre-eruptive sulfide systematics and through degassing and speciation in the volcanic plume. Fundamental differences exist in the metal output of ocean island versus arc volcanoes, with volcanoes in Hawaii and Iceland outgassing large fluxes of gaseous and particulate chalcophiles; and arc volcanoes' plumes, in contrast, enriched in Zn, Cu, Tl and Pb. Metals and metalloids partition into a magmatic vapor phase from silicate melt at crustal pressures. Their abundance in magmatic vapor is influenced strongly by sulfide saturation and by the composition of the magmatic vapor phase, particularly with respect to chloride. These factors are highly dependent on tectonic setting. Metal outgassing is controlled by magma water content and redox: deep saturation in vapor and minimal sulfide in arc basalts yields metal-rich vapor; shallow degassing and resorption of sulfides feeds the metal content of volcanic gas in ocean islands. We present a detailed study of the sulfide systematics of the products of the 2014-2015 Holuhraun basaltic fissure eruption (Bárðarbunga volcanic system, Iceland) to illustrate the interplay between late water and sulfur outgassing; sulfide saturation and breakdown; and metal partitioning into a vapor phase. Sulfide globules, representing quenched droplets of an immiscible sulfide liquid, are preserved within erupted tephra. Sulfide globules in rapidly quenched tephra are preserved within both matrix glass and as inclusions in crystals. The stereologically-corrected 3D size distribution of sulfide globules ranges from importance in supplying sulfur and metals to the atmosphere during eruption.

  7. Nanoporous gold-based microbial biosensor for direct determination of sulfide.

    Science.gov (United States)

    Liu, Zhuang; Ma, Hanyue; Sun, Huihui; Gao, Rui; Liu, Honglei; Wang, Xia; Xu, Ping; Xun, Luying

    2017-12-15

    Environmental pollution caused by sulfide compounds has become a major problem for public health. Hence, there is an urgent need to explore a sensitive, selective, and simple sulfide detection method for environmental monitoring and protection. Here, a novel microbial biosensor was developed using recombinant Escherichia coli BL21 (E. coli BL21) expressing sulfide:quinone oxidoreductase (SQR) for sulfide detection. As an important enzyme involved in the initial step of sulfide metabolism, SQR oxidizes sulfides to polysulfides and transfers electrons to the electron transport chain. Nanoporous gold (NPG) with its unique properties was selected for recombinant E. coli BL21 cells immobilization, and then glassy carbon electrode (GCE) was modified by the resulting E. coli/NPG biocomposites to construct an E. coli/NPG/GCE bioelectrode. Due to the catalytic oxidation properties of NPG for sulfide, the electrochemical reaction of the E. coli/NPG/GCE bioelectrode is attributed to the co-catalysis of SQR and NPG. For sulfide detection, the E. coli/NPG/GCE bioelectrode showed a good linear response ranging from 50μM to 5mM, with a high sensitivity of 18.35μAmM -1 cm -2 and a low detection limit of 2.55μM. The anti-interference ability of the E. coli/NPG/GCE bioelectrode is better than that of enzyme-based inhibitive biosensors. Further, the E. coli/NPG/GCE bioelectrode was successfully applied to the detection of sulfide in wastewater. These unique properties potentially make the E. coli/NPG/GCE bioelectrode an excellent choice for reliable sulfide detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Investigations on the role of hemoglobin in sulfide metabolism by intact human red blood cells.

    Science.gov (United States)

    Bianco, Christopher L; Savitsky, Anton; Feelisch, Martin; Cortese-Krott, Miriam M

    2018-03-01

    In addition to their role as oxygen transporters, red blood cells (RBCs) contribute to cardiovascular homeostasis by regulating nitric oxide (NO) metabolism via interaction of hemoglobin (Hb) with nitrite and NO itself. RBCs were proposed to also participate in sulfide metabolism. Although Hb is known to react with sulfide, sulfide metabolism by intact RBCs has not been characterized so far. Therefore we explored the role of Hb in sulfide metabolism in intact human RBCs. We find that upon exposure of washed RBCs to sulfide, no changes in oxy/deoxyhemoglobin (oxy/deoxyHb) are observed by UV-vis and EPR spectroscopy. However, sulfide reacts with methemoglobin (metHb), forming a methemoglobin-sulfide (metHb-SH) complex. Moreover, while metHb-SH is stable in cell-free systems even in the presence of biologically relevant thiols, it gradually decomposes to produce oxyHb, inorganic polysulfides and thiosulfate in intact cells, as detected by EPR and mass spectrometry. Taken together, our results demonstrate that under physiological conditions RBCs are able to metabolize sulfide via intermediate formation of a metHb-SH complex, which subsequently decomposes to oxyHb. We speculate that decomposition of metHb-SH is preceded by an inner-sphere electron transfer, forming reduced Hb (which binds oxygen to form oxyHb) and thiyl radical (a process we here define as "reductive sulfhydration"), which upon release, gives rise to the oxidized products, thiosulfate and polysulfides. Thus, not only is metHb an efficient scavenger and regulator of sulfide in blood, intracellular sulfide itself may play a role in keeping Hb in the reduced oxygen-binding form and, therefore, be involved in RBC physiology and function. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Effects of sulfide treatment on electronic transport of graphene/n-type Si Schottky diodes

    International Nuclear Information System (INIS)

    Zeng, Jian-Jhou; Lin, Yow-Jon

    2014-01-01

    The present work reports the fabrication and detailed electrical properties of graphene/n-type Si Schottky diodes with and without sulfide treatment. The graphene/n-type Si Schottky diode without sulfide treatment shows a poor rectifying behavior with an ideality factor (η) of 4.2 and high leakage. η > 2 implies that the interfacial defects influence the electronic conduction through the device. However, the graphene/n-type Si Schottky diode with sulfide treatment for 5 min shows a good rectifying behavior with η of 1.8 and low leakage. Such an improvement indicates that a good passivation is formed at the interface as a result of the reduction of the defect density. These experimental demonstrations suggest that it may be possible to minimize the adverse effects of the interface states to obtain functional devices using sulfide treatment. In addition, the graphene/n-type Si Schottky diode with sulfide treatment for 10 min shows a poor rectifying behavior with η of 2.5 and high leakage. Note, a suitable sulfide treatment time is an important issue for improving the device performance. - Highlights: • Graphene/Si diodes with sulfide treatment for 5 min show a good rectifying behavior. • Graphene/Si diodes without sulfide treatment show a poor rectifying behavior. • The interfacial defects of Schottky diodes were controlled by sulfide treatment. • Such an improvement indicates that a good passivation is formed at the interface. • A suitable sulfide treatment time is an important issue for improving performances

  10. Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity.

    Science.gov (United States)

    Li, Tongyu; Li, Erchao; Suo, Yantong; Xu, Zhixin; Jia, Yongyi; Qin, Jian G; Chen, Liqiao; Gu, Zhimin

    2017-02-01

    The toxicity and poisoning mechanisms of sulfide were studied in Litopenaeus vannamei from the perspective of energy metabolism and metabolomics. The lethal concentrations of sulfide in L. vannamei (LC50) at 24h, 48h, 72h, and 96h were determined. Sulfide at a concentration of 0, 1/10 (425.5μg/L), and 1/5 (851μg/L) of the LC 50 at 96h was used to test the metabolic responses of L. vannamei for 21days. The chronic exposure of shrimp to a higher sulfide concentration of 851μg/L decreased shrimp survival but did not affect weight gain or the hepatopancreas index. The glycogen content in the hepatopancreas and muscle and the activity of hepatopancreas cytochrome C oxidase of the shrimp exposed to all sulfide concentrations were significantly lower, and the serum glucose and lactic acid levels and lactic acid dehydrogenase activity were significantly lower than those in the control. Metabolomics assays showed that shrimp exposed to sulfide had lower amounts of serum pyruvic acid, succinic acid, glycine, alanine, and proline in the 425.5μg/L group and phosphate, succinic acid, beta-alanine, serine, and l-histidine in the 851μg/L group than in the control. Chronic sulfide exposure could disturb protein synthesis in shrimp but enhance gluconeogenesis and substrate absorption for ATP synthesis and tricarboxylic acid cycles to provide extra energy to cope with sulfide stress. Chronic sulfide exposure could adversely affect the health status of L. vannamei, as indicated by the high amounts of serum n-ethylmaleamic acid, pyroglutamic acid, aspartic acid and phenylalanine relative to the control. This study indicates that chronic exposure of shrimp to sulfide can decrease health and lower survival through functional changes in gluconeogenesis, protein synthesis and energy metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Hydrogen sulfide production and volatilization in a polymictic eutrophic saline lake, Salton Sea, California.

    Science.gov (United States)

    Reese, Brandi Kiel; Anderson, Michael A; Amrhein, Christopher

    2008-11-15

    The Salton Sea is a large shallow saline lake located in southern California that is noted for high sulfate concentrations, substantial algal productivity, and very warm water column temperatures. These conditions are well-suited for sulfide production, and sulfide has been implicated in summer fish kills, although no studies have been conducted to specifically understand hydrogen sulfide production and volatilization there. Despite polymictic mixing patterns and relatively short accumulation periods, the amount of sulfide produced is comparable to meromictic lakes. Sulfide levels in the Salton Sea reached concentrations of 1.2 mmol L(-1) of total free sulfide in the hypolimnion and 5.6 mmol L(-1) in the sediment pore water. Strong winds in late July mixed H2S into the surface water, where it depleted the entire water column of dissolved oxygen and reached a concentration of 0.1 mmol L(-1). Sulfide concentrations exceeded the toxicity threshold of tilapia (Oreochromis mossambicus) and combined with strong anoxia throughout the water column, resulted in a massive fish kill. The mixing of sulfide into the surface waters also increased atmospheric H2S concentrations, reaching 1.0 micromol m(-3). The flux of sulfide from the sediment into the water column was estimated to range from 2-3 mmol m(-2) day(-1) during the winter and up to 8 mmol m(-2) day(-1) during the summer. Application of the two-layer model for volatilization indicates that up to 19 mmol m(-2) day(-1) volatilized from the surface during the mixing event. We estimate that as much as 3400 Mg year(-1) or approximately 26% of sulfide that diffused into the water column from the deepest sediments may have been volatilized to the atmosphere.

  12. Er2S[SiO4]: An erbium sulfide ortho-oxosilicate with unusual sulfide anion coordination

    International Nuclear Information System (INIS)

    Hartenbach, Ingo; Lauxmann, Petra; Schleid, Thomas

    2004-01-01

    During the reaction of cadmium sulfide with erbium and sulfur in evacuated silica ampoules pink lath-shaped crystals of Er 2 S[SiO 4 ] occur as by-product which were characterized by X-ray single crystal structure analysis. The title compound crystallizes orthorhombically in the space group Cmce (a = 1070.02(8), b = 1235.48(9), c = 683.64(6) pm) with eight formula units per unit cell. Besides isolated ortho-oxosilicate units [SiO 4 ] 4- , the crystal structure contains two crystallographically independent Er 3+ cations which are both eightfold coordinated by six oxygen and two sulfur atoms. The sulfide anions are surrounded by four erbium cations each in the shape of very distorted tetrahedra. These excentric [SEr 4 ] 10+ tetrahedra build up layers according to 2 ∞ [SEr 4/2 ] 4+ by vertex- and edge-connection. They are piled parallel to (010) and separated by the isolated ortho-oxosilicate tetrahedra. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [de

  13. Reactive Precipitation of Anhydrous Alkali Sulfide Nanocrystals with Concomitant Abatement of Hydrogen Sulfide and Cogeneration of Hydrogen.

    Science.gov (United States)

    Li, Xuemin; Zhao, Yangzhi; Brennan, Alice; McCeig, Miranda; Wolden, Colin A; Yang, Yongan

    2017-07-21

    Anhydrous alkali sulfide (M 2 S, M=Li or Na) nanocrystals (NCs) are important materials central to the development of next generation cathodes and solid-state electrolytes for advanced batteries, but not commercially available at present. This work reports an innovative method to directly synthesize M 2 S NCs through alcohol-mediated reactions between alkali metals and hydrogen sulfide (H 2 S). In the first step, the alkali metal is complexed with alcohol in solution, forming metal alkoxide (ROM) and releasing hydrogen (H 2 ). Next, H 2 S is bubbled through the ROM solution, where both chemicals are completely consumed to produce phase-pure M 2 S NC precipitates and regenerate alcohol that can be recycled. The M 2 S NCs morphology may be tuned through the choice of the alcohol and solvent. Both synthetic steps are thermodynamically favorable (ΔG m o <-100 kJ mol -1 ), proceeding rapidly to completion at ambient temperature with almost 100 % atom efficiency. The net result, H 2 S+2 m→M 2 S+H 2 , makes good use of a hazardous chemical (H 2 S) and delivers two value-added products that naturally phase separate for easy recovery. This scalable approach provides an energy-efficient and environmentally benign solution to the production of nanostructured materials required in emerging battery technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Replacive sulfide formation in anhydrite chimneys from the Pacmanus hydrothermal field, Papua New Guinea

    Science.gov (United States)

    Los, Catharina; Bach, Wolfgang; Plümper, Oliver

    2016-04-01

    Hydrothermal flow within the oceanic crust is an important process for the exchange of energy and mass between the lithosphere, hydrosphere and biosphere. Infiltrated seawater heats up and interacts with wall rock, causing mineral replacement reactions. These play a large role in the formation of ore deposits; at the discharge zone, a hot, acidic and metal-rich potential ore fluid exits the crust. It mixes with seawater and forms chimneys, built up of sulfate minerals such as anhydrite (CaSO4), which are subsequently replaced by sulfide minerals. Sulfide formation is related to fluid pathways, defined by cracks and pores in the sulfate chimney. Over time, these systems might develop into massive sulfide deposits. The big question is then: how is sulfate-sulfide replacement related to the evolution of rock porosity? To address this question, sulfide-bearing anhydrite chimneys from the Pacmanus hydrothermal field (Manus Basin, Papua New Guinea) were studied using X-ray tomography, EMPA, FIB-SEM and -TEM. The apparently massive anhydrite turns out highly porous on the micro scale, with sulfide minerals in anhydrite cleavage planes and along grain boundaries. The size of the sulfide grains relates to the pores they grew into, suggesting a tight coupling between dissolution (porosity generation) and growth of replacive minerals. Some of the sulfide grains are hollow and apparently used the dissolving anhydrite as a substrate to start growth in a pore. Another mode of sulfide development is aggregates of euhedral pyrite cores surrounded by colloform chalcopyrite. This occurrence implies that fluid pathways have remained open for some time to allow several stages of precipitation during fluid evolution. To start the replacement and to keep it going, porosity generation is crucial. Our samples show that dissolution of anhydrite occurred along pathways where fluid could enter, such as cleavage planes and grain boundaries. It appears that fluids ascending within the inner

  15. Hydrogen sulfide-powered solid oxide fuel cells

    Science.gov (United States)

    Liu, Man

    2004-12-01

    The potential utilization of hydrogen sulfide as fuel in solid oxide fuel cells has been investigated using an oxide-ion conducting YSZ electrolyte and different kinds of anode catalysts at operating temperatures in the range of 700--900°C and at atmospheric pressure. This technology offers an economically attractive alternative to present methods for removing toxic and corrosive H2S gas from sour gas streams and a promising approach for cogenerating electrical energy and useful chemicals. The primary objective of the present research was to find active and stable anode materials. Fuel cell experimental results showed that platinum was a good electrocatalyst for the conversion of H2S, but the Pt/YSZ interface was physically unstable due to the reversible formation and decomposition of PtS in H 2S streams at elevated temperatures. Moreover, instability of the Pt/YSZ interface was accelerated significantly by electrochemical reactions, and ultimately led to the detachment of the Pt anode from the electrolyte. It has been shown that an interlayer of TiO2 stabilized the Pt anode on YSZ electrolyte, thereby prolonging cell lifetime. However, the current output for a fuel cell using Pt/TiO2 as anode was not improved compared to using Pt alone. It was therefore necessary to investigate novel anode systems for H 2S-air SOFCs. New anode catalysts comprising composite metal sulfides were developed. These catalysts exhibited good electrical conductivity and better catalytic activity than Pt. In contrast to MoS2 alone, composite catalysts (M-Mo-S, M = Fe, Co, Ni) were not volatile and had superior stability. However, when used for extended periods of time, detachment of Pt current collecting film from anodes comprising metal sulfides alone resulted in a large increase in contact resistance and reduction in cell performance. Consequently, a systematic investigation was conducted to identify alternative electronic conductors for use with M-Mo-S catalysts. Anode catalysts

  16. Remediation of Cd-contaminated soil around metal sulfide mines

    Science.gov (United States)

    Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan

    2017-04-01

    The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is

  17. Nitrogen release from forest soils containing sulfide-bearing sediments

    Science.gov (United States)

    Maileena Nieminen, Tiina; Merilä, Päivi; Ukonmaanaho, Liisa

    2014-05-01

    Soils containing sediments dominated by metal sulfides cause high acidity and release of heavy metals, when excavated or drained, as the aeration of these sediments causes formation of sulfuric acid. Consequent leaching of acidity and heavy metals can kill tree seedlings and animals such as fish, contaminate water, and corrode concrete and steel. These types of soils are called acid sulfate soils. Their metamorphic equivalents, such as sulfide rich black shales, pose a very similar risk of acidity and metal release to the environment. Until today the main focus in treatment of the acid sulfate soils has been to prevent acidification and metal toxicity to agricultural crop plants, and only limited attention has been paid to the environmental threat caused by the release of acidity and heavy metals to the surrounding water courses. Even less attention is paid on release of major nutrients, such as nitrogen, although these sediments are extremely rich in carbon and nitrogen and present a potentially high microbiological activity. In Europe, the largest cover of acid sulfate soils is found in coastal lowlands of Finland. Estimates of acid sulfate soils in agricultural use range from 1 300 to 3 000 km2, but the area in other land use classes, such as managed peatland forests, is presumably larger. In Finland, 49 500 km2 of peatlands have been drained for forestry, and most of these peatland forests will be at the regeneration stage within 10 to 30 years. As ditch network maintenance is often a prerequisite for a successful establishment of the following tree generation, the effects of maintenance operations on the quality of drainage water should be under special control in peatlands underlain by sulfide-bearing sediments. Therefore, identification of risk areas and effective prevention of acidity and metal release during drain maintenance related soil excavating are great challenges for forestry on coastal lowlands of Finland. The organic and inorganic nitrogen

  18. A paradox resolved: Sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy

    Science.gov (United States)

    Freytag, John K.; Girguis, Peter R.; Bergquist, Derk C.; Andras, Jason P.; Childress, James J.; Fisher, Charles R.

    2001-01-01

    Vestimentiferan tubeworms, symbiotic with sulfur-oxidizing chemoautotrophic bacteria, dominate many cold-seep sites in the Gulf of Mexico. The most abundant vestimentiferan species at these sites, Lamellibrachia cf. luymesi, grows quite slowly to lengths exceeding 2 meters and lives in excess of 170–250 years. L. cf. luymesi can grow a posterior extension of its tube and tissue, termed a “root,” down into sulfidic sediments below its point of original attachment. This extension can be longer than the anterior portion of the animal. Here we show, using methods optimized for detection of hydrogen sulfide down to 0.1 μM in seawater, that hydrogen sulfide was never detected around the plumes of large cold-seep vestimentiferans and rarely detectable only around the bases of mature aggregations. Respiration experiments, which exposed the root portions of L. cf. luymesi to sulfide concentrations between 51–561 μM, demonstrate that L. cf. luymesi use their roots as a respiratory surface to acquire sulfide at an average rate of 4.1 μmol⋅g−1⋅h−1. Net dissolved inorganic carbon uptake across the plume of the tubeworms was shown to occur in response to exposure of the posterior (root) portion of the worms to sulfide, demonstrating that sulfide acquisition by roots of the seep vestimentiferan L. cf. luymesi can be sufficient to fuel net autotrophic total dissolved inorganic carbon uptake. PMID:11687647

  19. Hydrogen sulfide generation in shipboard oily-water waste. Part 3. Ship factors

    Energy Technology Data Exchange (ETDEWEB)

    Hodgeman, D.K.; Fletcher, L.E.; Upsher, F.J.

    1995-04-01

    The chemical and microbiological composition of bilge-water in ships of the Royal Australian Navy has been investigated in relation to the formation of hydrogen sulfide by sulfate-reducing bacteria. Sulfate-reducing bacteria were found in most ships in populations up to 800,000 per mL. Sulfate in the wastes is provided by sea-water. Sea-water constitutes up to 60% (median 20%) of the wastes analysed. Evidence for generation of hydrogen sulfide in the ships was found directly as sulfide or indirectly as depressed sulfate concentrations. The low levels of sulfide found in bilge-water from machinery spaces suggested the ventilation systems were effectively removing the gas from the working area. The effect of storage of the wastes under conditions which simulated the oily- water holding tanks of ships were also investigated. Some wastes were found to produce large quantities of hydrogen sulfide on storage. The wastes that failed to produce hydrogen sulfide were investigated to identify any specific nutritional deficiencies. Some organic substances present in bilge-water, such as lactate or biodegradable cleaning agents, and phosphate strongly influenced the generation of hydrogen sulfide in stored oily-water wastes.

  20. Using a portable sulfide monitor as a motivational tool: a clinical study.

    Science.gov (United States)

    Uppal, Ranjit Singh; Malhotra, Ranjan; Grover, Vishakha; Grover, Deepak

    2012-01-01

    Bad breath has a significant impact on daily life of those who suffer from it. Oral malodor may rank only behind dental caries and periodontal disease as the cause of patient's visit to dentist. An aim of this study was to use a portable sulfide monitor as a motivational tool for encouraging the patients towards the better oral hygiene by correlating the plaque scores with sulfide monitor scores, and comparing the sulfide monitor scores before and after complete prophylaxis and 3 months after patient motivation. 30 patients with chronic periodontitis, having chief complaint of oral malodor participated in this study. At first visit, the plaque scores (P1) and sulfide monitor scores before (BCR1) and after complete oral prophylaxis (BCR2) were taken. Then the patients were motivated towards the better oral hygiene. After 3 months, plaque scores (P2) and sulfide monitor scores (BCR3) were recorded again. It was done using SPSS (student package software for statistical analysis). Paired sample test was performed. Statistically significant reduction in sulfide monitor scores was reported after the complete oral prophylaxis and 3 months after patient motivation. Plaque scores were significantly reduced after a period of 3 months. Plaque scores and breathchecker scores were positively correlated. An intensity of the oral malodor was positively correlated with the plaque scores. The portable sulfide monitor was efficacious in motivating the patients towards the better oral hygiene.

  1. In Vitro Antiparasitic and Apoptotic Effects of Antimony Sulfide Nanoparticles on Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Saied Soflaei

    2012-01-01

    Full Text Available Visceral leishmaniasis is one of the most important sever diseases in tropical and subtropical countries. In the present study the effects of antimony sulfide nanoparticles on Leishmania infantum in vitro were evaluated. Antimony sulfide NPs (Sb2S5 were synthesized by biological method from Serratia marcescens bacteria. Then the cytotoxicity effects of different concentrations (5, 10, 25, 50, and 100 μg/mL of this nanoparticle were assessed on promastigote and amastigote stages of L. infantum. MTT method was used for verification results of promastigote assay. Finally, the percentages of apoptotic, necrotic, and viable cells were determined by flow cytometry. The results indicated the positive effectiveness of antimony sulfide NPs on proliferation of promastigote form. The IC50 (50% inhibitory concentration of antimony sulfide NPs on promastigotes was calculated 50 μg/mL. The cytotoxicity effect was dose-dependent means by increasing the concentration of antimony sulfide NPs, the cytotoxicity curve was raised and the viability curve of the parasite dropped simultaneously. Moreover, the IC50 of antimony sulfide NPs on amastigote stage was calculated 25 μg/mL. On the other hand, however, antimony sulfide NPs have a low cytotoxicity effect on uninfected macrophages but it can induce apoptosis in promastigote stage at 3 of 4 concentrations.

  2. Indium sulfide buffer layers deposited by dry and wet methods

    International Nuclear Information System (INIS)

    Asenjo, B.; Sanz, C.; Guillen, C.; Chaparro, A.M.; Gutierrez, M.T.; Herrero, J.

    2007-01-01

    Indium sulfide (In 2 S 3 ) thin films have been deposited on amorphous glass, glass coated by tin oxide (TCO) and crystalline silicon substrates by two different methods: modulated flux deposition (MFD) and chemical bath deposition (CBD). Composition, morphology and optical characterization have been carried out with Scanning Electron Microscopy (SEM), IR-visible-UV Spectrophotometry, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectrometer. Different properties of the films have been obtained depending on the preparation techniques. With MFD, In 2 S 3 films present more compact and homogeneous surface than with CBD. Films deposited by CBD present also indium oxide in their composition and higher absorption edge values when deposited on glass

  3. Thermal decomposition study of manganese sulfide (MnS) nanoparticles

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.; Deshpande, M. P.

    2018-05-01

    The as-synthesized manganese sulfide (MnS) nanoparticles were used for the thermal study. The nanoparticles were synthesized by simple wet chemical route at ambient temperature. The photoelectron binding energy and chemical composition of MnS nanoparticles was analyzed by X-ray photoelectron spectroscopy (XPS). The thermogravimetric (TG), differential thermogravimetric (DTG) and differential thermal analysis (DTA) were carried out on the as-synthesized MnS nanoparticles. The thermocurves were recorded in inert N2 atmosphere in the temperature range of ambient to 1173 K. The heating rates employed were 5, 10, 15 and 20 K/min. The thermodynamic parameters like activation energy (Ea), enthalpy change (ΔH), entropy change (ΔS) and change in Gibbs free energy (ΔG) of as-synthesized MnS nanoparticles were determined using Kissinger method. The obtained XPS and thermal results are discussed.

  4. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

    2011-02-16

    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  5. New Findings in Hydrogen Sulfide Related Corrosion of Concrete Sewers

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Jensen, Henriette Stokbro; Hvitved-Jacobsen, Thorkild

    2009-01-01

    This paper summarizes major findings of a long-term study of hydrogen sulfide gas (H2S) adsorption and oxidation on concrete and plastic sewer pipe surfaces. The processes have been studied using a pilot-scale setup designed to replicate conditions in a gravity sewer located downstream of a force...... main. H2S related concrete corrosion and odor is often observed at such locations. The experiments showed that the rate of H2S oxidation was significantly faster on concrete pipe surfaces than on plastic pipe surfaces. Steady state calculations based on the kinetic data demonstrated that the gas phase...... H2S concentration in concrete sewers would typically amount to a few percent of the equilibrium concentration calculated from Henrys law. In plastic pipe sewers, significantly higher concentrations were predicted because of the slower adsorption and oxidation kinetics on these surfaces. Finally...

  6. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    International Nuclear Information System (INIS)

    Qiao, Wang; Chaoshu, Tang; Hongfang, Jin; Junbao, Du

    2010-01-01

    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H 2 S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H 2 S and inflammatory processes. The role of H 2 S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosis and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H 2 S in atherosclerosis.

  7. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    Science.gov (United States)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  8. Use of construction waste in the removal of Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Larissa Helena Rocha Meira

    2013-12-01

    Full Text Available The human being has been using the biodegradation principle into the effluent sewage treatment in order to achieve the standards of quality required for the release of effluent in the water bodies’ receivers. However, under anaerobic conditions, there is the formation of gaseous compounds such as carbon dioxide and methane, the damage happens when the effluent contains sulfur compounds, resulting in the formation of sulfide hydrogen, toxic gas, offensive and corrosive odor, requiring treatment. This paper presents an overview of the use of the construction waste, which should receive special attention in the management of solid waste, the removal of this gas, presenting a potential field of study, given the high rates and low efficiency obtained cost of implementation and operation.

  9. Kinetics of the conversion of copper sulfide to blister copper

    Directory of Open Access Journals (Sweden)

    Carrillo, F.

    2002-10-01

    Full Text Available The desulfurization of copper sulfide by air and oxygen has been studied in two laboratory reactors where the gas is blown onto the melt surface. Rates of oxidation in a vertical resistance furnace may be explained by the mass transfer control in the gas phase. However, results for a horizontal tube suggest that the chemical resistance is controlling.

    La desulfuración del sulfuro cuproso con aire y oxígeno se ha estudiado en dos reactores de laboratorio, en los cuales el gas se sopla sobre la superficie del fundido. La velocidad de reacción en un horno de resistencias verticales se puede explicar considerando como controlante la resistencia a la transferencia de materia de la fase gas. Sin embargo, los resultados del horno horizontal indican que la resistencia química es la controlante.

  10. Sulfide Formation And Its Impacts On A Developing Country

    DEFF Research Database (Denmark)

    Matias, Natércia; Mutuvúie, Raúl; Vollertsen, Jes

    2014-01-01

    Wastewater undergoes physical, chemical and biological changes while flowing along sewer systems. For the past decades, awareness of the effects of such changes on the performance of the sewer systems has steadily increased. For countries with high average temperatures and low per capita water...... consumption, such as Mozambique, these changes are particularly important due to the potential increase of sulphide formation and the consequent release of hydrogen sulphide and other malodorous or toxic gases to the atmosphere. A major expansion of the sewer systems in the main cities of Mozambique...... is expected in the near future, with the associated longer wastewater travel times and increasing problems of septicity and hydrogen sulfide gas impacts. In order to better understand the in-sewer processes under local conditions, evaluate risks and exemplify how to support general drainage systems planning...

  11. Solvothermal synthesis of copper sulfide semiconductor micro/nanostructures

    International Nuclear Information System (INIS)

    Liu, Jun; Xue, Dongfeng

    2010-01-01

    Covellite copper sulfide (CuS) micro/nanometer crystals in the shape of hierarchical doughnut-shaped, superstructured spheric-shaped and flowerlike architectures congregated from those nanoplates with the thickness of 20-100 nm have been prepared by a solvothermal method. The as-obtained CuS products were characterized by means of scanning electron microscopy (SEM), X-ray diffractometry (XRD) and energy-dispersive X-ray spectroscopy (EDS). A systematic investigation has been carried out to understand the factors influencing the evolution of CuS particle morphology which found to be predominant by solvent, surfactant, sulfur resource and copper salt. The possible formation mechanism for the nanostructure formation was also discussed. These CuS products show potential applications in solar cell, photothermal conversion and chemical sensor.

  12. Effect of Sodium Sulfide on Ni-Containing Carbon Monoxide Dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Jian Feng; Paul A. Lindahl

    2004-07-28

    OAK-B135 The structure of the active-site C-cluster in CO dehydrogenase from Carboxythermus hydrogenoformans includes a {mu}{sup 2}-sulfide ion bridged to the Ni and unique Fe, while the same cluster in enzymes from Rhodospirillum rubrum (CODH{sub Rr}) and Moorella thermoacetica (CODH{sub Mt}) lack this ion. This difference was investigated by exploring the effects of sodium sulfide on activity and spectral properties. Sulfide partially inhibited the CO oxidation activity of CODH{sub Rr} and generated a lag prior to steady-state. CODH{sub Mt} was inhibited similarly but without a lag. Adding sulfide to CODH{sub Mt} in the C{sub red1} state caused the g{sub av} = 1.82 EPR signal to decline and new features to appear, including one with g = 1.95, 1.85 and (1.70 or 1.62). Removing sulfide caused the g{sub av} = 1.82 signal to reappear and activity to recover. Sulfide did not affect the g{sub av} = 1.86 signal from the C{sub red2} state. A model was developed in which sulfide binds reversibly to C{sub red1}, inhibiting catalysis. Reducing this adduct causes sulfide to dissociate, C{sub red2} to develop, and activity to recover. Using this model, apparent K{sub I} values are 40 {+-} 10 nM for CODH{sub Rr} and 60 {+-} 30 {micro}M for CODH{sub Mt}. Effects of sulfide are analogous to those of other anions, including the substrate hydroxyl group, suggesting that these ions also bridge the Ni and unique Fe. This proposed arrangement raises the possibility that CO binding labilizes the bridging hydroxyl and increases its nucleophilic tendency towards attacking Ni-bound carbonyl.

  13. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate.

    Science.gov (United States)

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa J; Finster, Kai W; Schreiber, Lars

    2017-07-18

    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus , with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an

  14. Low-level hydrogen sulfide and central nervous system dysfunction.

    Science.gov (United States)

    Kilburn, Kaye H; Thrasher, Jack D; Gray, Michael R

    2010-08-01

    Forty-nine adults living in Lovington, Tatum, and Artesia, the sour gas/oil sector of Southeastern New Mexico, were tested for neurobehavioral impairment. Contributing hydrogen sulfide were (1) an anaerobic sewage plant; (2) two oil refineries; (3) natural gas/oil wells and (4) a cheese-manufacturing plant and its waste lagoons. Comparisons were to unexposed Wickenburg, Arizona, adults. Neurobehavioral functions were measured in 26 Lovington adults including 23 people from Tatum and Artesia, New Mexico, and 42 unexposed Arizona people. Participants completed questionnaires including chemical exposures, symptom frequencies and the Profile of Mood States. Measurements included balance, reaction time, color discrimination, blink reflex, visual fields, grip strength, hearing, vibration, problem solving, verbal recall, long-term memory, peg placement, trail making and fingertip number writing errors (FTNWE). Average numbers of abnormalities and test scores were adjusted for age, gender, educational level, height and weight, expressed as percent predicted (% pred) and compared by analysis of variance (ANOVA). Ages and educational attainment of the three groups were not statistically significantly different (ssd). Mean values of Lovington residents were ssd from the unexposed Arizona people for simple and choice reaction times, balance with eyes open and closed, visual field score, hearing and grip strength. Culture Fair, digit symbol substitution, vocabulary, verbal recall, peg placement, trail making A and B, FTNWE, information, picture completion and similarities were also ssd. The Lovington adults who averaged 11.8 abnormalities were ssd from, Tatum-Artesia adults who had 3.6 and from unexposed subjects with 2.0. Multiple source community hydrogen sulfide exposures impaired neurobehavioral functions.

  15. Purity and crystallinity of microwave synthesized antimony sulfide microrods

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Alonso, Claudia, E-mail: claudiamartinezalonso30@gmail.com [Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010 (Mexico); Olivos-Peralta, Eliot U. [Instituto de Energías Renovables, Universidad NacionalAutónoma de México, Temixco, Morelos, 62580 (Mexico); Sotelo-Lerma, Mérida [Universidad de Sonora, Hermosillo, Sonora, 83000 (Mexico); Sato-Berrú, Roberto Y. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, MéxicoD.F., 04510 (Mexico); Mayén-Hernández, S.A. [Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010 (Mexico); Hu, Hailin, E-mail: hzh@ier.unam.mx [Instituto de Energías Renovables, Universidad NacionalAutónoma de México, Temixco, Morelos, 62580 (Mexico)

    2017-01-15

    Antimony sulfide (Sb{sub 2}S{sub 3}) is a promising semiconductor material for solar cell applications. In this work, microrods of Sb{sub 2}S{sub 3} were synthesized by microwave heating with different sulfur sources, solvents, temperature, heating rate, power, and solution concentration. It was found that 90% of stoichiometric Sb{sub 2}S{sub 3} can be obtained with thiourea (TU) or thioacetamide (TA) as sulfur sources and that their optical band gap values were within the range of 1.59–1.60 eV. The most crystalline Sb{sub 2}S{sub 3} were obtained by using TU. The morphology of the Sb{sub 2}S{sub 3} with TU the individual rods were exhibited, whereas rods bundles appeared in TA-based products. The solvents were ethylene glycol (EG) and dimethylformamide (DMF). EG generates more heat than DMF during the microwave synthesis. As a result, the Sb{sub 2}S{sub 3} obtained with EG contained a larger percentage of oxygen and smaller crystal sizes compared to those from DMF. On the other hand, the length and diameter of Sb{sub 2}S{sub 3} microrods can be increased by applying higher heating power although the crystal size did not change at all. In summary, pure and highly crystalline Sb{sub 2}S{sub 3} microrods of 6–10 μm long and 330–850 nm in diameter can be obtained by the microwave method with a careful selection of chemical and thermodynamic parameters of the synthesis. - Highlights: • Purity up to 90% of crystalline Sb{sub 2}S{sub 3} nanorods can be obtained by microwave heating. • The combination of solvent and sulfide type affects crystallinity & purity of Sb2S3. • The high pressure generated in microwave heating helps to form Sb{sub 2}S{sub 3} nanorods.

  16. Hydrogen sulfide accelerates wound healing in diabetic rats.

    Science.gov (United States)

    Wang, Guoguang; Li, Wei; Chen, Qingying; Jiang, Yuxin; Lu, Xiaohua; Zhao, Xue

    2015-01-01

    The aim of this study was to explore the role of hydrogen sulfide on wound healing in diabetic rats. Experimental diabetes in rats was induced by intraperitoneal injection of streptozotocin (STZ) (in 0.1 mol/L citrate buffer, Ph 4.5) at dose of 70 mg/kg. Diabetic and age-matched non-diabetic rats were randomly assigned to three groups: untreated diabetic controls (UDC), treated diabetic administrations (TDA), and non-diabetic controls (NDC). Wound Healing Model was prepared by making a round incision (2.0 cm in diameter) in full thickness. Rats from TDA receive 2% sodium bisulfide ointment on wound, and animals from UDC and NDC receive control cream. After treatment of 21 days with sodium bisulfide, blood samples were collected for determination of vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule-1 (ICAM-1), antioxidant effects. Granulation tissues from the wound were processed for histological examination and analysis of western blot. The study indicated a significant increase in levels of VEGF and ICAM-1 and a decline in activity of coagulation in diabetic rats treated with sodium bisulfide. Sodium bisulfide treatment raised the activity of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) protein expression, and decreased tumor necrosis factor α (TNF-α) protein expression in diabetic rats. The findings in present study suggested that hydrogen sulfide accelerates the wound healing in rats with diabetes. The beneficial effect of H2S may be associated with formation of granulation, anti-inflammation, antioxidant, and the increased level of vascular endothelial growth factor (VEGF).

  17. Purity and crystallinity of microwave synthesized antimony sulfide microrods

    International Nuclear Information System (INIS)

    Martínez-Alonso, Claudia; Olivos-Peralta, Eliot U.; Sotelo-Lerma, Mérida; Sato-Berrú, Roberto Y.; Mayén-Hernández, S.A.; Hu, Hailin

    2017-01-01

    Antimony sulfide (Sb_2S_3) is a promising semiconductor material for solar cell applications. In this work, microrods of Sb_2S_3 were synthesized by microwave heating with different sulfur sources, solvents, temperature, heating rate, power, and solution concentration. It was found that 90% of stoichiometric Sb_2S_3 can be obtained with thiourea (TU) or thioacetamide (TA) as sulfur sources and that their optical band gap values were within the range of 1.59–1.60 eV. The most crystalline Sb_2S_3 were obtained by using TU. The morphology of the Sb_2S_3 with TU the individual rods were exhibited, whereas rods bundles appeared in TA-based products. The solvents were ethylene glycol (EG) and dimethylformamide (DMF). EG generates more heat than DMF during the microwave synthesis. As a result, the Sb_2S_3 obtained with EG contained a larger percentage of oxygen and smaller crystal sizes compared to those from DMF. On the other hand, the length and diameter of Sb_2S_3 microrods can be increased by applying higher heating power although the crystal size did not change at all. In summary, pure and highly crystalline Sb_2S_3 microrods of 6–10 μm long and 330–850 nm in diameter can be obtained by the microwave method with a careful selection of chemical and thermodynamic parameters of the synthesis. - Highlights: • Purity up to 90% of crystalline Sb_2S_3 nanorods can be obtained by microwave heating. • The combination of solvent and sulfide type affects crystallinity & purity of Sb2S3. • The high pressure generated in microwave heating helps to form Sb_2S_3 nanorods.

  18. The lithiation and acyl transfer reactions of phosphine oxides, sulfides and boranes in the synthesis of cyclopropanes

    DEFF Research Database (Denmark)

    Clarke, Celia; Fox, David J; Pedersen, Daniel Sejer

    2009-01-01

    Phosphine oxides are lithiated much faster than phosphine sulfides and phosphine boranes. Phosphine sulfides are in turn lithiated much more readily than phosphine boranes. It was possible to trap a phosphine sulfide THF in one case which upon treatment with t-BuOK gave cyclopropane, showing...... that phosphine sulfides readily undergo both phosphinoyl transfer and cyclopropane ring closure just like their phosphine oxide counterparts. The obtained data show that phosphine oxides are easily lithiated and undergo phosphoryl transfer much more readily and faster than phosphine sulfides and phosphine...... boranes. The observations suggest that it would be possible to perform reactions involving phosphine oxides in the presence of phosphine boranes or phosphine sulfides, potentially allowing regioselective alkylation of phosphine oxides in the presence of phosphine boranes or phosphine sulfides....

  19. Studies on the rare earth complexes with pyridine derivatives and their N-oxide(II) - Synthesis and properties of fluorescent solid complexes of samarium, europium, gadolium and terbium chlorides with 2,2'-bipyridine-N,N'-dioxide

    International Nuclear Information System (INIS)

    Minyu, T.; Ning, T.; Yingli, Z.; Jiyuan, B.

    1985-01-01

    The solid complexes of rare earth nitrates perchlorates and thiocyanates with 2,2'-bipyridine-N,N'-dioxide (bipyO/sub 2/) have been reported. However, the corresponding complexes of other rear earth chlorides have not been investigated except lanthanum, cerium and yttrium. As an extension of our previous work on the synthesis of complexes of praseodymium and neodymium chlorides wiht bipoyO/sub 2/, the authors have now prepared fluorescent solid complexes of samarium, europium, gadolium and terbium chlorides with biphyO/sub 2/, using methanol as a reaction medium. The new synthesized compounds have been identified by means of elemental analysis, infrared spectrometry, conductometry, differential thermal analysis (DTA), thermogravimetry (TG) and X-ray powder diffraction

  20. Interaction distances in oxides, sulfides and selenides with face-centered packing

    International Nuclear Information System (INIS)

    Kesler, Ya.A.

    1993-01-01

    Concept of characteristic distances (CD) was specified with account of the principle of topologically face-centered anion packing: calculation method was presented and boundary conditions of CD concept applicability were considered. Tables of CD in oxides, sulfides and selenides, obtained in result of self-consistent calculations on the basis of experimental crystallographic data, are presented. Pair correlations between CD in oxides, sulfides and selenides were considered, their relationship with cation electron structure was established. Peculiarities of chemical bond in oxides, sulfides and selenides with face-centered anion packing were discussed

  1. A kuroko-type polymetallic sulfide deposit in a submarine silicic caldera

    Science.gov (United States)

    Iizasa; Fiske; Ishizuka; Yuasa; Hashimoto; Ishibashi; Naka; Horii; Fujiwara; Imai; Koyama

    1999-02-12

    Manned submersible studies have delineated a large and actively growing Kuroko-type volcanogenic massive sulfide deposit 400 kilometers south of Tokyo in Myojin Knoll submarine caldera. The sulfide body is located on the caldera floor at a depth of 1210 to 1360 meters, has an area of 400 by 400 by 30 meters, and is notably rich in gold and silver. The discovery of a large Kuroko-type polymetallic sulfide deposit in this arc-front caldera raises the possibility that the numerous unexplored submarine silicic calderas elsewhere might have similar deposits.

  2. Sorption of chromium(III) and chromium(VI) on lead sulfide

    International Nuclear Information System (INIS)

    Music, S.

    1985-01-01

    The sorption of chromium(III) and chromium(VI) on lead sulfide was investigated in dependence on pH, time of sorption, and on the concnetrations of sorbate and sorbent. The mechanisms of the sorption of Crsup(3+) and CrOsub(4)sup(2-) traces on lead sulfide are discussed; a difference between CrOsub(4)sup(2-) sorption on PbS and α-Fesub(2)Osub(3) was found. Sulfates and molybdates affect the removal of chromates from aqueous solutions. Lead sulfide carrier prepared in this work was also used for the preconcentration of chromium(III) and chromium(VI) from tap water. (author)

  3. Evidence of molybdenum association with particulate organic matter under sulfidic conditions

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Chappaz, A.; Hoek, Joost

    2017-01-01

    , consisting of mainly Mo(IV)-sulfide compounds with molecular structures similar to Mo enzymes and to those found in natural euxinic sediments. Therefore, we propose that Mo removal in natural sulfidic waters can proceed via a non-Fe-assisted pathway that requires particulate organic matter (dead or living......The geochemical behavior of molybdenum (Mo) in the oceans is closely linked to the presence of sulfide species in anoxic environments, where Fe availability may play a key role in the Mo scavenging. Here, we show that Mo(VI) is reduced in the presence of particulate organic matter (represented...

  4. Disguised as a sulfate reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    DEFF Research Database (Denmark)

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa Jean Lehsau

    2017-01-01

    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D...... of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane......-anchored nitrite reductase....

  5. The composition of pyrite in volcanogenic massive sulfide deposits as determined with the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Sie, S.H.; Suter, G.F.; Ryan, C.G.

    1993-01-01

    Pixeprobe analysis of pyrite from Australian volcanogenic massive sulfide (VMS) deposits indicate significant levels of Cu, Zn, Pb, Ba, Ag, Sb, Bi (from inclusions), As, Tl, Mo, Au, In, Cd (from nonstoichiometric substitution), Co, Ni, Se and Te (from stoichiometric substitution). Pyrite in massive sulfide lenses is enriched in trace elements compared to that in the stringer zone owing to hydrothermal recrystallization. Metamorphic recrystallization also 'cleans' pyrite of trace elements. High Au values occur in pyrite with high As content. Pyrite in stringer zones is enriched in Se relative to the overlying massive sulfide lenses and the surrounding alteration zones. (orig.)

  6. Sythesis of metal sulfide nanomaerials via thermal decomposition of single-source percursors

    Energy Technology Data Exchange (ETDEWEB)

    Jen-La Plante, Ilan; Zeid, Tahani W.; Yang, Peidong; Mokari, Taleb

    2010-06-03

    In this report, we present a synthetic method for the formation of cuprous sulfide (Cu2S) and lead sulfide (PbS) nanomaterials directly on substrates from the thermolysis of single-source precursors. We find that the final morphology and arrangement of the nanomaterials may be controlled through the concentration of the dissolved precursors and choice of solvent. One-dimensional (1-D) morphologies may also be grown onto substrates with the addition of a metal catalyst layer through solution-liquid-solid (SLS) growth. These synthetic techniques may be expanded to other metal sulfide materials.

  7. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms

    Science.gov (United States)

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  8. Corrosion resistance of cement brick on an organo-mineral base in a hydrogen sulfide medium

    Energy Technology Data Exchange (ETDEWEB)

    Potapov, A G; Belousov, G A; Pustovalov, V I; Skorikov, B M

    1981-01-01

    Results are presented of strength tests of cement brick made of different types of cement as a function of the composition of the mixing liquid and storage conditions. It is established that cement brick made of cement on a cinder base mixed in hydrogen sulfide water possesses the highest corrosive resistance to hydrogen sulfide attack. A marked increase in corrosion resistance is observed in cement brick on an organo-mineral base. Results of industrial tests of organo-mineral grouting mortar in a hydrogen sulfide medium are demonstrated.

  9. Indium sulfide precipitation from hydrochloric acid solutions of calcium and sodium chlorides

    International Nuclear Information System (INIS)

    Kochetkova, N.V.; Bayandina, Yu.E.; Toptygina, G.M.; Shepot'ko, A.O.

    1988-01-01

    The effect of precipitation duration, acid concentration, indium complexing with chloride ions on the process of indium sulfide chemical precipitation in hydrochloric acid solutions, precipitate composition and dispersity are studied. It is established that indium sulfide solubility increases in solutions with acid concentration exceeding 0.40-0.45 mol/l. Calcium and indium chloride addition to diluted hydrochloric solutions greatly increases the solubility of indium sulfide. The effect of calcium chloride on In 2 S 3 solubility is higher than that of sodium chloride

  10. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms.

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    Full Text Available Nitrate decreases sulfide release in wastewater treatment plants (WWTP, but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm showed low sulfide production (0.31 μmol cm-3 h-1 and oxygen consumption rates (0.01 μmol cm-3 h-1. The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1. Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB. This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1 an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2 a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR

  11. Sulfide intrusion in seagrasses assessed by stable sulfur isotopes—a synthesis of current results

    DEFF Research Database (Denmark)

    Holmer, Marianne; Hasler-Sheetal, Harald

    2014-01-01

    of sedimentary sulfide in the plant increases, and accumulation of elemental sulfur (S0) inside the plant with δ34S values similar to the sedimentary sulfide suggests that S0 is an important reoxidation product of the sedimentary sulfide. The accumulation of S0 can, however, not account for the increase...... in sulfur in the tissue, and other sulfur containing compounds such as thiols, organic sulfur, and sulfate contribute to the accumulated sulfur pool. Experimental studies with seagrasses exposed to environmental and biological stressors show decreasing δ34S in the tissues along with reduction in growth...

  12. Band offset in zinc oxy-sulfide/cubic-tin sulfide interface from X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanal, K.C.; Nair, P.K.; Nair, M.T.S., E-mail: mtsn@ier.unam.mx

    2017-02-28

    Highlights: • Zinc oxy-sulfide thin films, 175–240 nm, deposited by rf-sputtering from targets of ZnO + ZnS. • Oxygen content in thin films is enhanced 3–4 times compared with that in ZnO:ZnS targets. • Thin film ZnO{sub x}S{sub 1−x} with x = 0.88–0.27 and optical band gap 2.8–3.2 eV is suitable for solar cells. • The conduction band offset with SnS of cubic structure studied by XPS are +0.41 to −0.28 eV. - Abstract: Zinc oxy-sulfide, ZnO{sub x}S{sub 1−x}, has been found to provide better band alignment in thin film solar cells of tin sulfide of orthorhombic crystalline structure. Here we examine ZnO{sub x}S{sub 1−x}/SnS-CUB interface, in which the ZnO{sub x}S{sub 1−x} thin film was deposited by radio frequency (rf) magnetron sputtering on SnS thin film of cubic (CUB) crystalline structure with a band gap (E{sub g}) of 1.72 eV, obtained via chemical deposition. X-ray photoelectron spectroscopy provides the valence band maxima of the materials and hence places the conduction band offset of 0.41 eV for SnS-CUB/ZnO{sub 0.27}S{sub 0.73} and −0.28 eV for SnS-CUB/ZnO{sub 0.88}S{sub 0.12} interfaces. Thin films of ZnO{sub x}S{sub 1−x} with 175–240 nm in thickness were deposited from targets prepared with different ZnO to ZnS molar ratios. With the target of molar ratio of 1:13.4, the thin films are of composition ZnO{sub 0.27}S{sub 0.73} with hexagonal crystalline structure and with that of 1:1.7 ratio, it is ZnO{sub 0.88}S{sub 0.12}. The optical band gap of the ZnO{sub x}S{sub 1−x} thin films varies from 2.90 eV to 3.21 eV as the sulfur to zinc ratio in the film increases from 0.12:1 to 0.73:1 as determined from X-ray diffraction patterns. Thus, band offsets sought for absorber materials and zinc oxy-sulfide in solar cells may be achieved through a choice of ZnO:ZnS ratio in the sputtering target.

  13. Sulfide mineralization in ultramafic rocks of the Faryab ophiolite complex, southern Kerman

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajabzadeh

    2015-10-01

    Full Text Available Introduction Worldwide, Ni-Cu and PGE magmatic sulfide deposits are confined to the lower parts of stratiform mafic and ultramafic complexes. However, ophiolite mafic and ultramafic complexes have been rarely explored for sulfide deposits despite the fact that they have been extensively explored and exploited for chromite. Sulfide saturation during magmatic evolution is necessary for sulfide mineralization, in which sulfide melts scavenge chalcophile metals from the parent magma and concentrate them in specific lithological zones. The lack of exploration for sulfides in this environment suggests that sulfide saturation is rarely attained in ophiolite-related magmas. Some ophiolites, however, contain sulfide deposits, such as at Acoje in Philippines, and Cliffs in Shetland, U.K. (Evans, 2000; Naldrett, 2004. The Faryab ophiolite complex in southern Kerman Province, the most important mining area for chromite deposits in Iran, is located in the southwest part of the Makran Zone. Evidence of sulfide mineralization has been reported there by some authors (e.g. Rajabzadeh and Moosavinasab, 2013. This paper discusses the genesis of sulfides in the Faryab ophiolite using mineral chemistry of the major mineral phases in different rocks of the ophiolite column in order to determine the possible lithological location of sulfide deposits. Materials and methods Seventy three rock samples from cumulate units were collected from surficial occurrences and drill core. The samples were studied using conventional microscopic methods and the mineralogy confirmed by x-ray diffraction. Electron microprobe analysis was carried out on different mineral phases in order to determine the chemistry of the minerals used in the interpretation of magma evolution in the Faryab ophiolite. Lithologically, the Faryab ophiolite complex is divided into two major parts: the northern part includes magmatic rocks and the southern part is comprised of rocks residual after partial

  14. Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors

    Science.gov (United States)

    Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun

    2013-12-01

    Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.

  15. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Colorless sulfur-oxidizing bacteria are ubiquitous in Indian waters and have the ability to oxidize sulfide under anaerobic conditions. These bacteria can not only mediate the sulfur cycle oxidatively but also the nitrogen cycle reductively without...

  16. Change of sulfide inclusions in steel microalloying with rare earth and alkaline-earth elements

    International Nuclear Information System (INIS)

    Averin, V.V.; Polonskaya, S.M.; Chistyakov, V.F.

    1977-01-01

    The conditions for the formation of sulfides in molten and solid iron were determined by considering the thermodynamics of the interaction of sulfur and of oxygen with various components. It was shown in casting of low-carbon steel under a blanket of slag-forming briquettes, calcium of the silicocalcium partly passes to iron and to the sulfide phase. The sulfide inclusions with calcium in rolling become lens-shaped and acquire a greater strength, proportional to the content of calcium, thus ensuring a lesser anisotropy of steel. The change in the shape and the composition of sulfide inclusions effects the fracture of the metal which changes in type from separation along lamellar inclusions to a plastic fracture, i.e., enhances resilience. It is thus noted that rare-earth and alkali-earth elements, in particular, cerium and calcium are promising agents for desulfurating molten iron

  17. Sulfur isotope study of a modern intertidal environment, and the interpretation of ancient sulfides

    International Nuclear Information System (INIS)

    Chambers, L.A.

    1982-01-01

    Extensive sulfur isotope distribution data for sulfides precipitated in an intertidal environment show no distinctive features when compared with isotope values for other marine, sedimentary sulfides. The fractionation ranges from α = 1.030 to α = 1.048. The pattern is characteristic for a system essentially open to sulfate, and isotope analyses of interstitial sulfates are corroborative. A population of sulfate-reducing bacteria of the order of 10 9 organisms per cc of interstitial water is indicated. Seasonal variation of the isotope distribution reflects a transient sulfide composition and a bacterial population in which the fractionation effect is indirectly controlled by temperature. The data presented for this modern shallow water environment are at variance with an earlier assessment of isotopic distributions in ancient sulfides which linked shallow water environments with limited fractionation (α =< 1.025) in a closed system. (author)

  18. Sulfur isotope study of a modern intertidal environment, and the interpretation of ancient sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, L.A. (Baas Becking Geobiological Lab., Canberra City (Australia))

    1982-05-01

    Extensive sulfur isotope distribution data for sulfides precipitated in an intertidal environment show no distinctive features when compared with isotope values for other marine, sedimentary sulfides. The fractionation ranges from ..cap alpha.. = 1.030 to ..cap alpha.. = 1.048. The pattern is characteristic for a system essentially open to sulfate, and isotope analyses of interstitial sulfates are corroborative. A population of sulfate-reducing bacteria of the order of 10/sup 9/ organisms per cc of interstitial water is indicated. Seasonal variation of the isotope distribution reflects a transient sulfide composition and a bacterial population in which the fractionation effect is indirectly controlled by temperature. The data presented for this modern shallow water environment are at variance with an earlier assessment of isotopic distributions in ancient sulfides which linked shallow water environments with limited fractionation (..cap alpha.. =< 1.025) in a closed system.

  19. Occupationally related hydrogen sulfide deaths in the United States from 1984 to 1994.

    Science.gov (United States)

    Fuller, D C; Suruda, A J

    2000-09-01

    Alice Hamilton described fatal work injuries from acute hydrogen sulfide poisonings in 1925 in her book Industrial Poisons in the United States. There is no unique code for H2S poisoning in the International Classification of Diseases, 9th Revision; therefore, these deaths cannot be identified easily from vital records. We reviewed US Occupational Safety and Health Administration (OSHA) investigation records for the period 1984 to 1994 for mention of hazardous substance 1480 (hydrogen sulfide). There were 80 fatalities from hydrogen sulfide in 57 incidents, with 19 fatalities and 36 injuries among coworkers attempting to rescue fallen workers. Only 17% of the deaths were at workplaces covered by collective bargaining agreements. OSHA issued citations for violation of respiratory protection and confined space standards in 60% of the fatalities. The use of hydrogen sulfide detection equipment, air-supplied respirators, and confined space safety training would have prevented most of the fatalities.

  20. New technology for sulfide reductions and increased oil recovery: Petroleum project fact sheet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-14

    This Fact Sheet is written for the Inventions and Innovations Program about a new technology for sulfide reduction and increased oil recovery. The new technology, called Bio-Competitive Exclusion (BCX), results in greater oil production and prevents the production of corrosive hydrogen sulfide in oil and gas reservoirs. This BCX process is initiated and maintained by a new product, called Max-Well 2000, in which nutrients are custom designed to stimulate targeted beneficial microorganisms that live in every oil and gas reservoir. Rapid growth of these microorganisms excludes activity of harmful sulfide-producing bacteria and produces by-products that serve as effective tertiary oil recovery agents and as sulfide degradation agents. Oil and gas production is both increased and sweetened.

  1. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Sherar, B.W.A. [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada); Power, I.M. [Department of Earth Sciences, University of Western Ontario, London, ON, N6A 5B7 (Canada); Keech, P.G.; Mitlin, S. [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada); Southam, G. [Department of Earth Sciences, University of Western Ontario, London, ON, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.c [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada)

    2011-03-15

    Research highlights: Compares inorganic sulfide and sulfate reducing bacteria (SRB) on steel corrosion. Mackinawite was the dominant iron sulfide phase. SRBs can form nanowires, presumably grown to acquire energy. - Abstract: This article compares the electrochemical effects induced by inorganic sulfide and sulfate reducing bacteria on the corrosion of carbon steel - a subject of concern for pipelines. Biological microcosms, containing varying concentrations of bioorganic content, were studied to investigate changes to the morphology of biofilms and corrosion product deposits. Raman analysis indicated mackinawite (FeS{sub 1-x}) was the dominant iron sulfide phase grown both abiotically and biotically. A fascinating feature of biological media, void of an organic electron donor, was the formation of putative nanowires that may be grown to acquire energy from carbon steel by promoting the measured cathodic reaction.

  2. Solvent-Free Synthesis of Quaternary Metal Sulfide Nanoparticles Derived from Thiourea

    KAUST Repository

    Bhunia, Manas Kumar; Abou-Hamad, Edy; Anjum, Dalaver H.; Gurinov, Andrei; Takanabe, Kazuhiro

    2017-01-01

    The synthesis of metal sulfide (MS) materials with sizes in the sub-10 nm regime often requires capping agents with long hydrocarbon chains that affect their structures and properties. Herein, this study presents a molten-state synthesis method

  3. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Colon, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, J.L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Hidalgo, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Iglesias, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain)], E-mail: monica.iglesias@udg.es

    2008-02-25

    Two new, simple and accurate methods for the determination of sulfide (S{sup 2-}) at low levels ({mu}g L{sup -1}) in aqueous samples were developed. The generation of hydrogen sulfide (H{sub 2}S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H{sub 2}S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669 nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H{sub 2}S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H{sub 2}S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5 {mu}g L{sup -1} to 25 mg L{sup -1} of sulfide. Detection limits of 5 {mu}g L{sup -1} and 6 {mu}g L{sup -1} were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters.

  4. Isotope effects associated with the anaerobic oxidation of sulfide by the purple photosynthetic bacterium, Chromatium vinosum

    International Nuclear Information System (INIS)

    Fry, B.; Gest, H.; Hayes, J.M.

    1984-01-01

    Small inverse isotope effects of 1-3 per thousand were consistently observed for the oxidation of sulfide to elemental sulfur during anaerobic photometabolism by Chromatium vinosum. The inverse fractionation can be accounted for by an equilibrium isotope effect between H 2 S and HS - , and may indicate that C. vinosum (and other photosynthetic bacteria) utilizes H 2 S rather than HS - as the substrate during sulfide oxidation. (Auth.)

  5. Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers.

    Science.gov (United States)

    Lin, Hui-Wen; Kustermans, Caroline; Vaiopoulou, Eleni; Prévoteau, Antonin; Rabaey, Korneel; Yuan, Zhiguo; Pikaar, Ilje

    2017-07-01

    The addition of iron salts is one of the most commonly used dosing strategies for sulfide control in sewers. However, iron salts decrease the sewage pH which not only reduces the effectiveness of sulfide precipitation but also enhances the release of residual sulfide to the sewer atmosphere. Equally important, concentrated iron salt solutions are corrosive and their frequent transport, handling, and on-site storage often come with Occupational Health and Safety (OH&S) concerns. Here, we experimentally demonstrated a novel sulfide control approach using electrochemical systems with parallel placed iron electrodes. This enabled combining anodic dissolved iron species release with cathodic hydroxyl anion production, which alleviates all the aforementioned concerns. A long-term experiment was successfully carried out achieving an average sulfide removal efficiency of 95.4 ± 4.4% at low voltage input of 2.90 ± 0.54 V over the course of 8 weeks. This electrochemical method was demonstrated to successfully achieve efficient sulfide control. In addition, it increases the sewage pH, thereby overcoming the drawbacks associated with the pH decrease in the case of conventional iron salt dosing. Ferrous ions were produced at an overall coulombic efficiency (CE) of 98.2 ± 1.2%, whereas oxygen evolution and direct sulfide oxidation were not observed. Short-term experiments showed that increasing either inter-electrode gap or current density increased the cell voltage associated with the increase in the ohmic drop of the system. Overall, this study highlights the practical potential of in-situ generation of dissolved iron species and simultaneous hydroxyl anion generation for efficient sulfide control in sewers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Quantitative prediction process and evaluation method for seafloor polymetallic sulfide resources

    Directory of Open Access Journals (Sweden)

    Mengyi Ren

    2016-03-01

    Full Text Available Seafloor polymetallic sulfide resources exhibit significant development potential. In 2011, China received the exploration rights for 10,000 km2 of a polymetallic sulfides area in the Southwest Indian Ocean; China will be permitted to retain only 25% of the area in 2021. However, an exploration of seafloor hydrothermal sulfide deposits in China remains in the initial stage. According to the quantitative prediction theory and the exploration status of seafloor sulfides, this paper systematically proposes a quantitative prediction evaluation process of oceanic polymetallic sulfide resources and divides it into three stages: prediction in a large area, prediction in the prospecting region, and the verification and evaluation of targets. The first two stages of the prediction process have been employed in seafloor sulfides prospecting of the Chinese contract area. The results of stage one suggest that the Chinese contract area is located in the high posterior probability area, which indicates good prospecting potential area in the Indian Ocean. In stage two, the Chinese contract area of 48°–52°E has the highest posterior probability value, which can be selected as the reserved region for additional exploration. In stage three, the method of numerical simulation is employed to reproduce the ore-forming process of sulfides to verify the accuracy of the reserved targets obtained from the three-stage prediction. By narrowing the exploration area and gradually improving the exploration accuracy, the prediction will provide a basis for the exploration and exploitation of seafloor polymetallic sulfide resources.

  7. Nanoscale Zero-Valent Iron for Sulfide Removal from Digested Piggery Wastewater

    Directory of Open Access Journals (Sweden)

    Sheng-Hsun Chaung

    2014-01-01

    Full Text Available The removal of dissolved sulfides in water and wastewater by nanoscale zero-valent iron (nZVI was examined in the study. Both laboratory batch studies and a pilot test in a 50,000-pig farm were conducted. Laboratory studies indicated that the sulfide removal with nZVI was a function of pH where an increase in pH decreased removal rates. The pH effect on the sulfide removal with nZVI is attributed to the formation of FeS through the precipitation of Fe(II and sulfide. The saturated adsorption capacities determined by the Langmuir model were 821.2, 486.3, and 359.7 mg/g at pH values 4, 7, and 12, respectively, for nZVI, largely higher than conventional adsorbents such as activated carbon and impregnated activated carbon. The surface characterization of sulfide-laden nZVI using XPS and TGA indicated the formation of iron sulfide, disulfide, and polysulfide that may account for the high adsorption capacity of nZVI towards sulfide. The pilot study showed the effectiveness of nZVI for sulfide removal; however, the adsorption capacity is almost 50 times less than that determined in the laboratory studies during the testing period of 30 d. The complexity of digested wastewater constituents may limit the effectiveness of nZVI. Microbial analysis suggested that the impact of nZVI on the change of microbial species distribution was relatively noticeable after the addition of nZVI.

  8. A study of the thermostimulated evolution of labelled hydrogen sulfide from the leached basalt fibers

    International Nuclear Information System (INIS)

    Zheleznov, A.V.; Zyuzin, A.Yu.; Bekman, I.N.

    1991-01-01

    Thermostimulated separation of labelled hydrogen sulfide from basalt fibers leached by hydrochloric acid is investigated by the method of radioactive tracers. It is shown that the type of H 2 35 S thermosorption spectrum depends on the presence of water traces in a fibrous adsrobent. Formal order and activation energy of thermodesorption of labelled hydrogen sulfide as well as inhomogeneity of porous structure of adsorbents based on basalt fibers are established

  9. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device.

    Science.gov (United States)

    Fremerey, Peter; Jess, Andreas; Moos, Ralf

    2015-10-23

    In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H₂S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions.

  10. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device

    Directory of Open Access Journals (Sweden)

    Peter Fremerey

    2015-10-01

    Full Text Available In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H2S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions.

  11. EBSD and EDS of nickel sulfide inclusions in glass

    International Nuclear Information System (INIS)

    Miflin, G.E.; Barry, J.C.

    2002-01-01

    Full text: A delayed phase transformation in small nickel sulfide inclusions can cause spontaneous fracture in toughened glass. Typically, a phase transformation within a 5 ?g nickel sulphide inclusion may break a window which weighs more than 50 kg. In most cases the nickel sulfide inclusions are detected only after window failure, although it is possible to detect the inclusions within intact glass. It is known that only type three nickel sulphide inclusions, that is, inclusions with a composition in the range Ni 7 S 6 to NiS 1.03 , break the glass. The solid-state phase transformation of alpha Ni 1-x S to beta NiS which induces a 2.5% volume increase has been given as the main reason for the spontaneous fracture. The aim of this present study is to investigate the crystal structure of phases within the type three inclusions using scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). With EBSD it is possible to map regions of alpha Ni 1-x S and to distinguish those regions from regions with beta Ni 1-x S when the elemental compositions of the two regions are identical. The inclusions of this study came from two sources. One set of inclusions were found at initiation-of-fracture in glass windows that had failed by spontaneous fracture, while the other set were found in intact windows. All of the inclusions came from windows on buildings in the Brisbane area. The EBSD analysis was done at 20kV with the stage tilted to 70 degrees on a Philips XL30 SEM with LaB 6 filament, and with attached Oxford/Link Opal camera and software. EBSD mapping was done for alpha nickel sulfide (Ni 1-x S), beta nickel sulphide (NiS), heazelwoodite (Ni 3 S 2 ), and godlevskite (Ni 9 S 8 ). The integration time was 1.3 seconds for each point. Colour coded crystal phase and grain orientation maps were produced. EDS analysis was also done on the Philips XL30 with attached EDAX EDS detector. We found that although the EBSD technique is successful in identifying alpha

  12. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas

    International Nuclear Information System (INIS)

    Ko, T.-H.; Chu Hsin; Lin, H.-P.; Peng, C.-Y.

    2006-01-01

    In this study, hydrogen sulfide (H 2 S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773 K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H 2 S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl 2 O 4 was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency

  13. Formation of mercury sulfide from Hg(II)−thiolate complexes in natural organic matter

    Science.gov (United States)

    Alain Manceau,; Cyprien Lemouchi,; Mironel Enescu,; Anne-Claire Gaillot,; Martine Lanson,; Valerie Magnin,; Pieter Glatzel,; Poulin, Brett; Ryan, Joseph N.; Aiken, George R.; Isabelle Gautier-Lunea,; Kathryn L. Nagy,

    2015-01-01

    Methylmercury is the environmental form of neurotoxic mercury that is biomagnified in the food chain. Methylation rates are reduced when the metal is sequestered in crystalline mercury sulfides or bound to thiol groups in macromolecular natural organic matter. Mercury sulfide minerals are known to nucleate in anoxic zones, by reaction of the thiol-bound mercury with biogenic sulfide, but not in oxic environments. We present experimental evidence that mercury sulfide forms from thiol-bound mercury alone in aqueous dark systems in contact with air. The maximum amount of nanoparticulate mercury sulfide relative to thiol-bound mercury obtained by reacting dissolved mercury and soil organic matter matches that detected in the organic horizon of a contaminated soil situated downstream from Oak Ridge, TN, in the United States. The nearly identical ratios of the two forms of mercury in field and experimental systems suggest a common reaction mechanism for nucleating the mineral. We identified a chemical reaction mechanism that is thermodynamically favorable in which thiol-bound mercury polymerizes to mercury–sulfur clusters. The clusters form by elimination of sulfur from the thiol complexes via breaking of mercury–sulfur bonds as in an alkylation reaction. Addition of sulfide is not required. This nucleation mechanism provides one explanation for how mercury may be immobilized, and eventually sequestered, in oxygenated surface environments.

  14. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  15. Ferrites Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} doped with samarium: structural analysis, morphological and electromagnetic; Ferritas Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} dopada com samario: analise estrutural, morfologica e eletromagnetica

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A.C.F.M.; Diniz, A.P., E-mail: anacristina@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academinca de Engenharia de Materiais; Viana, K.M.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, PE (Brazil). Escola de Ciencias e Tecnologia; Cornejo, D.R. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2010-07-01

    This paper proposes to investigate the sintering at 1200 deg C/2h of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2-x}Sm{sub x}O{sub 4} ferrite doped with 0.05; 0.075 e 0.1 mol of Sm synthesized by combustion reaction to evaluate the performance materials as absorbers of electromagnetic radiation. The influence of the concentration of samarium on the structure, morphology and electromagnetic properties of ferrites was studied. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), magnetic measurements and reflectivity measurements in the frequency range between 8-12 GHz. The results showed that increasing the concentration of samarium caused a decrease in particle size of the samples, encouraging, therefore, to obtain materials with better values of magnetization and reflectivity, allowing for use as absorbers in narrow-band frequency between 9-10 GHz. (author)

  16. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts

    Science.gov (United States)

    Liu, Yanan; Samaha, Naji-Tom; Baker, Don R.

    2007-04-01

    The sulfur concentration in silicate melts at sulfide saturation (SCSS) was experimentally investigated in a temperature range from 1150 to 1450 °C and a pressure range from 500 MPa to 1 GPa in a piston-cylinder apparatus. The investigated melt compositions varied from rhyolitic to basaltic and water concentrations varied from 0 to ˜9 wt%. All experiments were saturated with FeS melt or pyrrhotite crystals. Temperature was confirmed to have a positive effect on the SCSS. Experimental oxygen fugacities were either near the carbon-carbon monoxide buffer or one log unit above the nickel-nickel oxide buffer, and found to positively affect the SCSS. Combining our results with data from the literature we constructed a model to predict the SCSS in melts ranging in composition from komatiitic to rhyolitic, with water concentrations from 0 to 9 wt%, at pressures from 1 bar to 9 GPa and oxygen fugacities between ˜2 log units below the fayalite-magnetite-quartz buffer to ˜2 log units above it. The coefficients were obtained by multiple linear regression of experimental data and the best model found for the prediction of the SCSS is: ln(Sinppm)=11.35251-{4454.6}/{T}-0.03190{P}/{T}+0.71006ln(MFM)-1.98063[(MFM)(XO)]+0.21867ln(XO)+0.36192lnX where P is in bar, T is in K, MFM is a compositional parameter describing the melt based upon cation mole fractions: MFM={Na+K+2(Ca+Mg+Fe)}/{Si×(Al+Fe)}, XO is the mole fraction of water in the melt, and X is the mole fraction of FeO in the melt. This model was independently tested against experiments performed on anhydrous and hydrous melts in the temperature range from 800 to 1800 °C and 1-9 GPa. The model typically predicts the measured values of the natural log of the SCSS (in ppm) for komatiitic to rhyolitic (˜42 to ˜74 wt% SiO 2) melts to within 5% relative, but is less accurate for high-silica (>76 wt% SiO 2) rhyolites, especially those with molar ratios of iron to sulfur below 2. We demonstrate how this model can be used with

  17. Detection of hydrogen sulfide above the clouds in Uranus's atmosphere

    Science.gov (United States)

    Irwin, Patrick G. J.; Toledo, Daniel; Garland, Ryan; Teanby, Nicholas A.; Fletcher, Leigh N.; Orton, Glenn A.; Bézard, Bruno

    2018-04-01

    Visible-to-near-infrared observations indicate that the cloud top of the main cloud deck on Uranus lies at a pressure level of between 1.2 bar and 3 bar. However, its composition has never been unambiguously identified, although it is widely assumed to be composed primarily of either ammonia or hydrogen sulfide (H2S) ice. Here, we present evidence of a clear detection of gaseous H2S above this cloud deck in the wavelength region 1.57-1.59 μm with a mole fraction of 0.4-0.8 ppm at the cloud top. Its detection constrains the deep bulk sulfur/nitrogen abundance to exceed unity (>4.4-5.0 times the solar value) in Uranus's bulk atmosphere, and places a lower limit on the mole fraction of H2S below the observed cloud of (1.0 -2.5 ) ×1 0-5. The detection of gaseous H2S at these pressure levels adds to the weight of evidence that the principal constituent of 1.2-3-bar cloud is likely to be H2S ice.

  18. Cadmium sulfide thin films growth by chemical bath deposition

    Science.gov (United States)

    Hariech, S.; Aida, M. S.; Bougdira, J.; Belmahi, M.; Medjahdi, G.; Genève, D.; Attaf, N.; Rinnert, H.

    2018-03-01

    Cadmium sulfide (CdS) thin films have been prepared by a simple technique such as chemical bath deposition (CBD). A set of samples CdS were deposited on glass substrates by varying the bath temperature from 55 to 75 °C at fixed deposition time (25 min) in order to investigate the effect of deposition temperature on CdS films physical properties. The determination of growth activation energy suggests that at low temperature CdS film growth is governed by the release of Cd2+ ions in the solution. The structural characterization indicated that the CdS films structure is cubic or hexagonal with preferential orientation along the direction (111) or (002), respectively. The optical characterization indicated that the films have a fairly high transparency, which varies between 55% and 80% in the visible range of the optical spectrum, the refractive index varies from 1.85 to 2.5 and the optical gap value of which can reach 2.2 eV. It can be suggested that these properties make these films perfectly suitable for their use as window film in thin films based solar cells.

  19. Detection of hydrogen sulfide above the clouds in Uranus's atmosphere

    Science.gov (United States)

    Irwin, Patrick G. J.; Toledo, Daniel; Garland, Ryan; Teanby, Nicholas A.; Fletcher, Leigh N.; Orton, Glenn A.; Bézard, Bruno

    2018-05-01

    Visible-to-near-infrared observations indicate that the cloud top of the main cloud deck on Uranus lies at a pressure level of between 1.2 bar and 3 bar. However, its composition has never been unambiguously identified, although it is widely assumed to be composed primarily of either ammonia or hydrogen sulfide (H2S) ice. Here, we present evidence of a clear detection of gaseous H2S above this cloud deck in the wavelength region 1.57-1.59 μm with a mole fraction of 0.4-0.8 ppm at the cloud top. Its detection constrains the deep bulk sulfur/nitrogen abundance to exceed unity (>4.4-5.0 times the solar value) in Uranus's bulk atmosphere, and places a lower limit on the mole fraction of H2S below the observed cloud of (1.0 -2.5 ) ×1 0-5. The detection of gaseous H2S at these pressure levels adds to the weight of evidence that the principal constituent of 1.2-3-bar cloud is likely to be H2S ice.

  20. Liquid hydrogen production via hydrogen sulfide methane reformation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [University of Central Florida, Florida Solar Energy Center, 1769 Clearlake Road, Cocoa, FL 32922 (United States)

    2008-01-03

    Hydrogen sulfide (H{sub 2}S) methane (CH{sub 4}) reformation (H{sub 2}SMR) (2H{sub 2}S + CH{sub 4} = CS{sub 2} + 4H{sub 2}) is a potentially viable process for the removal of H{sub 2}S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H{sub 2}SMR produces carbon disulfide (CS{sub 2}), a liquid under ambient temperature and pressure - a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H{sub 2}SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH{sub 4} to H{sub 2}S ratios are needed. In this paper, we analyze H{sub 2}SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H{sub 2}SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively. (author)

  1. Cinnamaldehyde promotes root branching by regulating endogenous hydrogen sulfide.

    Science.gov (United States)

    Xue, Yan-Feng; Zhang, Meng; Qi, Zhong-Qiang; Li, You-Qin; Shi, Zhiqi; Chen, Jian

    2016-02-01

    Cinnamaldehyde (CA) has been widely applied in medicine and food preservation. However, whether and how CA regulates plant physiology is largely unknown. To address these gaps, the present study investigated the beneficial effect of CA on root branching and its possible biochemical mechanism. The lateral root (LR) formation of pepper seedlings could be markedly induced by CA at specific concentrations without any inhibitory effect on primary root (PR) growth. CA could induce the generation of endogenous hydrogen sulfide (H2S) by increasing the activity of L-cysteine desulfhydrase in roots. By fluorescently tracking endogenous H2S in situ, it could be clearly observed that H2S accumulated in the outer layer cells of the PR where LRs emerge. Sodium hydrosulfide (H2S donor) treatment induced LR formation, while hypotaurine (H2S scavenger) showed an adverse effect. The addition of hypotaurine mitigated the CA-induced increase in endogenous H2S level, which in turn counteracted the inducible effect of CA on LR formation. CA showed great potential in promoting LR formation, which was mediated by endogenous H2S. These results not only shed new light on the application of CA in agriculture but also extend the knowledge of H2S signaling in the regulation of root branching. © 2015 Society of Chemical Industry.

  2. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms

    Science.gov (United States)

    Xing, Ruimin; Liu, Shanhu; Tian, Shufang

    2011-10-01

    In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.

  3. Novel phases and superconductivity of tin sulfide compounds

    Science.gov (United States)

    Gonzalez, Joseph M.; Nguyen-Cong, Kien; Steele, Brad A.; Oleynik, Ivan I.

    2018-05-01

    Tin sulfides, SnxSy, are an important class of materials that are actively investigated as novel photovoltaic and water splitting materials. A first-principles evolutionary crystal structure search is performed with the goal of constructing the complete phase diagram of SnxSy and discovering new phases as well as new compounds of varying stoichiometry at ambient conditions and pressures up to 100 GPa. The ambient phase of SnS2 with P 3 ¯ m 1 symmetry remains stable up to 28 GPa. Another ambient phase, SnS, experiences a series of phase transformations including α-SnS to β-SnS at 9 GPa, followed by β-SnS to γ-SnS at 40 GPa. γ-SnS is a new high-pressure metallic phase with P m 3 ¯ m space group symmetry stable up to 100 GPa, which becomes a superconductor with a maximum Tc = 9.74 K at 40 GPa. Another new metallic compound, Sn3S4 with I 4 ¯ 3 d space group symmetry, is predicted to be stable at pressures above 15 GPa, which also becomes a superconductor with relatively high Tc = 21.9 K at 30 GPa.

  4. Hydrogen Sulfide Donor GYY4137 Protects against Myocardial Fibrosis

    Directory of Open Access Journals (Sweden)

    Guoliang Meng

    2015-01-01

    Full Text Available Hydrogen sulfide (H2S is a gasotransmitter which regulates multiple cardiovascular functions. However, the precise roles of H2S in modulating myocardial fibrosis in vivo and cardiac fibroblast proliferation in vitro remain unclear. We investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial fibrosis. Spontaneously hypertensive rats (SHR were administrated with GYY4137 by intraperitoneal injection daily for 4 weeks. GYY4137 decreased systolic blood pressure and inhibited myocardial fibrosis in SHR as evidenced by improved cardiac collagen volume fraction (CVF in the left ventricle (LV, ratio of perivascular collagen area (PVCA to lumen area (LA in perivascular regions, reduced hydroxyproline concentration, collagen I and III mRNA expression, and cross-linked collagen. GYY4137 also inhibited angiotensin II- (Ang II- induced neonatal rat cardiac fibroblast proliferation, reduced the number of fibroblasts in S phase, decreased collagen I and III mRNA expression and protein synthesis, attenuated oxidative stress, and suppressed α-smooth muscle actin (α-SMA, transforming growth factor-β1 (TGF-β1 expression as well as Smad2 phosphorylation. These results indicate that GYY4137 improves myocardial fibrosis perhaps by a mechanism involving inhibition of oxidative stress, blockade of the TGF-β1/Smad2 signaling pathway, and decrease in α-SMA expression in cardiac fibroblasts.

  5. Analysis of hydrogen sulfide releases in heavy water production facilities

    International Nuclear Information System (INIS)

    Croitoru, Cornelia; Dumitrescu, Maria; Preda, Irina; Lazar, Roxana

    1996-01-01

    Safety analyses conducted at ICIS concern primarily the heavy water production installations. The quantitative risk assessment needs the frequency calculation of accident sequences and consequences. In heavy water plants which obtain primary isotopic concentration of water by H 2 O - H 2 S exchange, large amounts of hydrogen sulfide which is a toxic, inflammable and explosive gas, are circulated. The first stage in calculating the consequences consists in potential analysis of H 2 S release. This work presents a study of this types of releases for pilot installations of the heavy water production at ICIS (Plant 'G' at Rm. Valcea). The installations which contain and maneuver large quantities of H 2 S and the mathematical models for different types of releases are presented. The accidents analyzed are: catastrophic column, container, spy-hole failures or gas-duct rupture and wall cracks in the installation. The main results are given as tables while the time variations of the flow rate and quantities of H 2 O released by stack disposal are plotted

  6. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  7. Selective growth of gold onto copper indium sulfide selenide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna [Oldenburg Univ. (Germany). Inst. of Physics, Energy and Semiconductor Research

    2013-05-15

    Hybrid nanostructures are interesting materials for numerous applications in chemistry, physics, and biology, due to their novel properties and multiple functionalities. Here, we present a synthesis of metal-semiconductor hybrid nanostructures composed of nontoxic I-III-VI semiconductor nanoparticles and gold. Copper indium sulfide selenide (CuInSSe) nanocrystals with zinc blende structure and trigonal pyramidal shape, capped with dodecanethiol, serve as an original semiconductor part of a new hybrid nanostructure. Metallic gold nanocrystals selectively grow onto vertexes of these CuInSSe pyramids. The hybrid nanostructures were studied by transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and UV-Vis-absorption spectroscopy, which allowed us conclusions about their growth mechanism. Hybrid nanocrystals are generated by replacement of a sacrificial domain in the CuInSSe part. At the same time, small selenium nanocrystals form that stay attached to the remaining CuInSSe/Au particles. Additionally, we compare the synthesis and properties of CuInSSe-based hybrid nanostructures with those of copper indium disulfide (CuInS{sub 2}). CuInS{sub 2}/Au nanostructures grow by a different mechanism (surface growth) and do not show any selectivity. (orig.)

  8. Plant Uptake of Atmospheric Carbonyl Sulfide in Coast Redwood Forests

    Science.gov (United States)

    Campbell, J. E.; Whelan, M. E.; Berry, J. A.; Hilton, T. W.; Zumkehr, A.; Stinecipher, J.; Lu, Y.; Kornfeld, A.; Seibt, U.; Dawson, T. E.; Montzka, S. A.; Baker, I. T.; Kulkarni, S.; Wang, Y.; Herndon, S. C.; Zahniser, M. S.; Commane, R.; Loik, M. E.

    2017-12-01

    The future resilience of coast redwoods (Sequoia sempervirens) is now of critical concern due to the detection of a 33% decline in California coastal fog over the 20th century. However, ecosystem-scale measurements of photosynthesis and stomatal conductance are challenging in coast redwood forests, making it difficult to anticipate the impacts of future changes in fog. To address this methodological problem, we explore coastal variations in atmospheric carbonyl sulfide (COS or OCS), which could potentially be used as a tracer of these ecosystem processes. We conducted atmospheric flask campaigns in coast redwood sites, sampling at surface heights and in the canopy ( 70 m), at the University of California Landels-Hill Big Creek Reserve and Big Basin State Park. We simulated COS atmosphere-biosphere exchange with a high-resolution 3-D model to interpret these data. Flask measurements indicated a persistent daytime drawdown between the coast and the downwind forest (45 ± 6 ppt COS) that is consistent with the expected relationship between COS plant uptake, stomatal conductance, and gross primary production. Other sources and sinks of COS that could introduce noise to the COS tracer technique (soils, anthropogenic activity, nocturnal plant uptake, and surface hydrolysis on leaves) are likely to be small relative to daytime COS plant uptake. These results suggest that COS measurements may be useful for making ecosystem-scale estimates of carbon, water, and energy exchange in coast redwood forests.

  9. Liquid hydrogen production via hydrogen sulfide methane reformation

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  10. Global gridded anthropogenic emissions inventory of carbonyl sulfide

    Science.gov (United States)

    Zumkehr, Andrew; Hilton, Tim W.; Whelan, Mary; Smith, Steve; Kuai, Le; Worden, John; Campbell, J. Elliott

    2018-06-01

    Atmospheric carbonyl sulfide (COS or OCS) is the most abundant sulfur containing gas in the troposphere and is an atmospheric tracer for the carbon cycle. Gridded inventories of global anthropogenic COS are used for interpreting global COS measurements. However, previous gridded anthropogenic data are a climatological estimate based on input data that is over three decades old and are not representative of current conditions. Here we develop a new gridded data set of global anthropogenic COS sources that includes more source sectors than previously available and uses the most current emissions factors and industry activity data as input. Additionally, the inventory is provided as annually varying estimates from years 1980-2012 and employs a source specific spatial scaling procedure. We estimate a global source in year 2012 of 406 Gg S y-1 (range of 223-586 Gg S y-1), which is highly concentrated in China and is twice as large as the previous gridded inventory. Our large upward revision in the bottom-up estimate of the source is consistent with a recent top-down estimate based on air-monitoring and Antarctic firn data. Furthermore, our inventory time trends, including a decline in the 1990's and growth after the year 2000, are qualitatively consistent with trends in atmospheric data. Finally, similarities between the spatial distribution in this inventory and remote sensing data suggest that the anthropogenic source could potentially play a role in explaining a missing source in the global COS budget.

  11. Examining Dimethyl Sulfide Emissions in California's San Joaquin Valley

    Science.gov (United States)

    Huber, D.; Hughes, S.; Blake, D. R.

    2017-12-01

    Dimethyl Sulfide (DMS) is a sulfur-containing compound that leads to the formation of aerosols which can lead to the formation of haze and fog. Whole air samples were collected on board the NASA C-23 Sherpa aircraft during the 2017 Student Airborne Research Program (SARP) over dairies and agricultural fields in the San Joaquin Valley. Analysis of the samples indicate average DMS concentrations of 23 ± 9 pptv, with a maximum concentration of 49 pptv. When compared with DMS concentrations from previous SARP missions (2009-2016), 2017 by far had the highest frequency of elevated DMS in this region. For this study, agricultural productivity of this region was analyzed to determine whether land use could be contributing to the elevated DMS. Top down and bottom up analysis of agriculture and dairies were used to determine emission rates of DMS in the San Joaquin Valley. Correlations to methane and ethanol were used to determine that DMS emissions were strongly linked to dairies, and resulted in R2 values of 0.61 and 0.43, respectively. These values indicate a strong correlation between dairies and DMS emissions. Combined with NOAA HySPLIT back trajectory data and analysis of ground air samples, results suggest that the contribution of dairies to annual DMS emissions in the San Joaquin Valley exceeds those from corn and alfalfa production.

  12. The production of UV Absorber amorphous cerium sulfide thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kariper, İshak Afşin, E-mail: akariper@gmail.com [Faculty of Education, Erciyes University, Kayseri (Turkey)

    2017-10-15

    This study investigates the production of cerium sulfide (CeSx) amorphous thin films on substrates (commercial glass) by chemical bath deposition at different pH levels. The transmittance, absorption, optical band gap and refractive index of the films are measured by UV/VIS Spectrum. According to XRD analysis, the films show amorphous structure in the baths with pH: 1 to 5. It has been observed that the optical and structural properties of the films depend on pH value of the bath. The optical band gap (2.08 eV to 3.16 eV) of the films changes with the film thickness (23 nm to 1144 nm). We show that the refractive index has a positive relationship with the film thickness, where the values of 1.93, 1.45, 1.42, 2.60 and 1.39 are obtained for the former, and 34, 560, 509, 23 and 1144 nm (at 550 nm wavelength) for the latter. We compare the optical properties of amorphous and crystal form of CeSx thin films. We show that the optical band gaps of the amorphous CeS{sub x} are lower than that of crystal CeS{sub x} . (author)

  13. High-temperature study of superconducting hydrogen and deuterium sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Durajski, A.P. [Institute of Physics, Czestochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czestochowa (Poland); Szczesniak, R. [Institute of Physics, Czestochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czestochowa (Poland); Institute of Physics, Jan Dlugosz University, Ave. Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Pietronero, L. [Sapienza, Universita di Roma, Dip. Fisica, P. le A. Moro 2, 00185 Roma (Italy); Institute of Complex Systems, CNR, Via dei Taurini 19 Roma (Italy); London Institute for Mathematical Sciences, South Street 22, Mayfair London (United Kingdom)

    2016-05-15

    Hydrogen-rich compounds are extensively explored as candidates for a high-temperature superconductors. Currently, the measured critical temperature of 203 K in hydrogen sulfide (H{sub 3}S) is among the highest over all-known superconductors. In present paper, using the strong-coupling Eliashberg theory of superconductivity, we compared in detail the thermodynamic properties of two samples containing different hydrogen isotopes H{sub 3}S and D{sub 3}S at 150 GPa. Our research indicates that it is possible to reproduce the measured values of critical temperature 203 K and 147 K for H{sub 3}S and D{sub 3}S by using a Coulomb pseudopotential of 0.123 and 0.131, respectively. However, we also discuss a scenario in which the isotope effect is independent of pressure and the Coulomb pseudopotential for D{sub 3}S is smaller than for H{sub 3}S. For both scenarios, the energy gap, specific heat, thermodynamic critical field and related dimensionless ratios are calculated and compared with other conventional superconductors. We shown that the existence of the strong-coupling and retardation effects in the systems analysed result in significant differences between values obtained within the framework of the Eliashberg formalism and the prediction of the Bardeen-Cooper-Schrieffer theory. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Role of Hydrogen Sulfide in the Pathology of Inflammation

    Directory of Open Access Journals (Sweden)

    Madhav Bhatia

    2012-01-01

    Full Text Available Hydrogen sulfide (H2S is a well-known toxic gas that is synthesized in the human body from the amino acids cystathionine, homocysteine, and cysteine by the action of at least two distinct enzymes: cystathionine-γ-lyase and cystathionine-β-synthase. In the past few years, H2S has emerged as a novel and increasingly important biological mediator. Imbalances in H2S have also been shown to be associated with various disease conditions. However, defining the precise pathophysiology of H2S is proving to be a complex challenge. Recent research in our laboratory has shown H2S as a novel mediator of inflammation and work in several groups worldwide is currently focused on determining the role of H2S in inflammation. H2S has been implicated in different inflammatory conditions, such as acute pancreatitis, sepsis, joint inflammation, and chronic obstructive pulmonary disease (COPD. Active research on the role of H2S in inflammation will unravel the pathophysiology of its actions in inflammatory conditions and may help develop novel therapeutic approaches for several, as yet incurable, disease conditions.

  15. Toxicity of sulfide to early life stages of wild rice (Zizania palustris).

    Science.gov (United States)

    Fort, Douglas J; Todhunter, Kevin; Fort, Troy D; Mathis, Michael B; Walker, Rachel; Hansel, Mike; Hall, Scott; Richards, Robin; Anderson, Kurt

    2017-08-01

    The sensitivity of wild rice (Zizania palustris) to sulfide is not well understood. Because sulfate in surface waters is reduced to sulfide by anaerobic bacteria in sediments and historical information indicated that 10 mg/L sulfate in Minnesota (USA) surface water reduced Z. palustris abundance, the Minnesota Pollution Control Agency established 10 mg/L sulfate as a water quality criterion in 1973. A 21-d daily-renewal hydroponic study was conducted to evaluate sulfide toxicity to wild rice and the potential mitigation of sulfide toxicity by iron (Fe). The hydroponic design used hypoxic test media for seed and root exposure and aerobic headspace for the vegetative portion of the plant. Test concentrations were 0.3, 1.6, 3.1, 7.8, and 12.5 mg/L sulfide in test media with 0.8, 2.8, and 10.8 mg/L total Fe used to evaluate the impact of iron on sulfide toxicity. Visual assessments (i.e., no plants harvested) of seed activation, mesocotyl emergence, seedling survival, and phytoxicity were conducted 10 d after dark-phase exposure. Each treatment was also evaluated for time to 30% emergence (ET30), total plant biomass, root and shoot lengths, and signs of phytotoxicity at study conclusion (21 d). The results indicate that exposure of developing wild rice to sulfide at ≥3.1 mg sulfide/L in the presence of 0.8 mg/L Fe reduced mesocotyl emergence. Sulfide toxicity was mitigated by the addition of Fe at 2.8 mg/L and 10.8 mg/L relative to the control value of 0.8 mg Fe/L, demonstrating the importance of iron in mitigating sulfide toxicity to wild rice. Ultimately, determination of site-specific sulfate criteria taking into account factors that alter toxicity, including sediment Fe and organic carbon, are necessary. Environ Toxicol Chem 2017;36:2217-2226. © 2017 SETAC. © 2017 SETAC.

  16. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides.

    Science.gov (United States)

    Pi, Kunfu; Wang, Yanxin; Xie, Xianjun; Ma, Teng; Liu, Yaqing; Su, Chunli; Zhu, Yapeng; Wang, Zhiqiang

    2017-02-01

    Severe health problems due to elevated arsenic (As) in groundwater have made it urgent to develop cost-effective technologies for As removal. This field experimental study tested the feasibility of in-situ As immobilization via As incorporation into newly formed biogenic Fe(II) sulfides in a typical As-affected strongly reducing aquifer at the central part of Datong Basin, China. After periodic supply of FeSO 4 into the aquifer for 25 d to stimulate microbial sulfate reduction, dissolved sulfide concentrations increased during the experiment, but the supplied Fe(II) reacted quickly with sulfide to form Fe(II)-sulfides existing majorly as mackinawite as well as a small amount of pyrite-like minerals in sediments, thereby restricting sulfide build-up in groundwater. After the completion of field experiment, groundwater As concentration decreased from an initial average value of 593 μg/L to 159 μg/L, with an overall As removal rate of 73%, and it further declined to 136 μg/L adding the removal rate up to 77% in 30 d after the experiment. The arsenite/As total ratio gradually increased over time, making arsenite to be the predominant species in groundwater residual As. The good correlations between dissolved Fe(II), sulfide and As concentrations, the increased abundance of As in newly-formed Fe sulfides as well as the reactive-transport modeling results all indicate that As could have been adsorbed onto and co-precipitated with Fe(II)-sulfide coatings once microbial sulfate reduction was stimulated after FeSO 4 supply. Under the strongly reducing conditions, sulfide may facilitate arsenate reduction into arsenite and promote As incorporation into pyrite or arsenopyrite. Therefore, the major mechanisms for the in-situ As-contaminated groundwater remediation can be As surface-adsorption on and co-precipitation with Fe(II) sulfides produced during the experimental period. Copyright © 2016. Published by Elsevier Ltd.

  17. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    Science.gov (United States)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy

  18. Studies on silicone based antifoaming agents to be used in G.S. (Girlder sulfide) heavy water plants

    International Nuclear Information System (INIS)

    Delfino, C.A.

    1986-01-01

    In Girlder sulfide (G.S.) heavy water plants hydrogen sulfide-water systems are inherentely foaming, so the adding of antifoaming materials is of great importance. These may be of high volatility, pyrolizable or chemically unstable in plant operation conditions (water and hydrogen sulfide at 2MPa, up to 230 deg C). Six commercial silicone based antifoaming agents were studied from the point of view of their chemical and thermical stability in order to select the most suitable. (Author) [es

  19. Rocks Whose Compositions are Determined by Flow Differentiation of Olivine- and Sulfide Droplet-Laden Magma: the Jinchuan Story

    Science.gov (United States)

    Li, C.; Ripley, E. M.; de Waal, S. A.; Xu, Z.

    2002-12-01

    The Jinchuan intrusion in western China is an elongated, deeply-dipping dyke-like body of dominantly olivine-rich ultramafic rocks of high magnesium basaltic magma. It hosts the second largest Ni-Cu sulfide deposit in the world. More than 500 million tones of sulfide ore grading 1.2 percent Ni and 0.7 percent Cu occur mostly as next-textured and disseminated sulfide (pyrrhotite, pentlendite and chalcopyrite) with cumulus olivine in about half of the rocks of the intrusion. Based on different petrological zonations, the Jinchuan intrusion is further divided into three segments: eastern, central and western segments. The central segment is characterized by concentric enrichments of cumulus olivine and sulfide, whereas the eastern and western segments are characterized by the increase of both cumulus olivine and sulfide toward the footwall. The forsterite contents of fresh olivine from different segments are similar and vary between 82 and 86 mole percent. The small range of olivine compositional variation corresponds to less than 6 percent of fractional crystallization. Mass balance calculations based on sulfide solubility in basaltic magma indicate that the volume of the parental magma of the sulfide is many times larger than that which is currently represented in the intrusion. Large amounts of cumulus olivine (more than 40 weight percent) in the marginal samples and high concentrations of sulfide in the intrusion are consistent with an interpretation that the Jinchuan intrusion was formed by olivine- and sulfide droplet-laden magma ascending through a subvertical conduit to a higher level. Differentiation processes of the olivine- and sulfide droplet-laden magma varied in different parts of the conduit. Sub-vertical flow differentiation controlled the central segment of the conduit, resulting in further enrichment of olivine crystals and sulfide droplets in the conduit center. In contrast, sub-lateral flow and gravitational differentiation dominated in the eastern

  20. Antifoaming materials studies in G.S. (Girlder sulfide) heavy water plants. Chemical and thermical stability. Pt. 3

    International Nuclear Information System (INIS)

    Delfino, C.A.; Rojo, E.A.

    1988-01-01

    In Girlder sulfide (G.S.) heavy water plants hydrogen sulfide-water systems are inherentely foaming, so the adding of antifoaming materials is of great importance. These may be of high volatility, pyrolizable or chemically unstable in plant operation conditions (water and hydrogen sulfide at 2 MPa, up to 230 deg C). Five commercial surfactants were studied from the point of view of their chemical and thermical stability in order to select the most suitable. (Author) [es

  1. A Study on Dielectric Properties of Cadmium Sulfide-Zinc Sulfide Core-Shell Nanocomposites for Application as Nanoelectronic Filter Component in the Microwave Domain

    Science.gov (United States)

    Devi, Jutika; Datta, Pranayee

    2018-03-01

    Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.

  2. Mechanism analysis of improved DLC films friction behaviors with liquid sulfidation treatment

    International Nuclear Information System (INIS)

    Zeng Qunfeng; Yu Fei; Dong Guangneng; Mao Junhong

    2012-01-01

    Highlights: ► Liquid sulfidation is applied to treat DLC films. ► Sulfur atoms are chemically bonded and the graphitization presented in the treated films. ► The treated films exhibited much lower coefficient of friction than the untreated films under dry friction condition. ► The sulfidation mechanisms are supposed as surface chemical reaction and surface diffusion. ► The presence of sulfur-containing materials and graphitization are beneficial to improve anti-friction behaviors of the treated films. - Abstract: Diamond like carbon (DLC) films were treated by liquid sulfidation to improve their friction behaviors. Friction behaviors of DLC films were experimentally evaluated in ambient air under dry friction using GCr15 steel ball sliding over DLC-coated steel flat in a ball-on-disk tribometer system. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were applied to identify the chemical composition and structure of DLC films. It was found that the content of sp 2 carbon bond increased and G peak shifted to high wave number after sulfidation treatment. The measurement results showed that sulfur atoms were chemically bonded and the graphitization occurred in the treated DLC films. It was indicated that the treated DLC films exhibited much better friction behaviors than the untreated films, especially for DLC films deposited with high nitrogen ratio. In this paper, we proposed the possible sulfidation mechanism of sulfurized DLC films. Sulfidation mechanism is postulated that thiourea reacted with oxygen to form sulfur-containing organic compounds which included CSSC, CSOH and (NH 2 )NH=CSO 2 H and surface diffusion during sulfidation treatment. The anti-friction behaviors of the treated DLC films can be attributed to the production of the compounds containing sulfur on the DLC film surface, the reduce of oxygen content and the presence of graphitization of DLC films.

  3. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    Science.gov (United States)

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity.

  4. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule.

    Science.gov (United States)

    Calderwood, Alexander; Kopriva, Stanislav

    2014-09-15

    Sulfur is essential in all organisms for the synthesis of amino acids cysteine and methionine and as an active component of numerous co-factors and prosthetic groups. However, only plants, algae, fungi, and some prokaryotes are capable of using the abundant inorganic source of sulfur, sulfate. Plants take sulfate up, reduce it, and assimilate into organic compounds with cysteine being the first product of the pathway and a donor of reduced sulfur for synthesis of other S-containing compounds. Cysteine is formed in a reaction between sulfide, derived from reduction of sulfite and an activated amino acid acceptor, O-acetylserine. Sulfide is thus an important intermediate in sulfur metabolism, but numerous other functions in plants has been revealed. Hydrogen sulfide can serve as an alternative source of sulfur for plants, which may be significant in anaerobic conditions of waterlogged soils. On the other hand, emissions of hydrogen sulfide have been detected from many plant species. Since the amount of H2S discharged correlated with sulfate supply to the plants, the emissions were considered a mechanism for dissipation of excess sulfur. Significant hydrogen sulfide emissions were also observed in plants infected with pathogens, particularly with fungi. H2S thus seems to be part of the widely discussed sulfur-induced-resistance/sulfur-enhanced-defense. Recently, however, more evidence has emerged for a role for H2S in regulation and signaling. Sulfide stabilizes the cysteine synthase complex, increasing so the synthesis of its acceptor O-acetylserine. H2S has been implicating in regulation of plant stress response, particularly draught stress. There are more and more examples of processes regulated by H2S in plants being discovered, and hydrogen sulfide is emerging as an important signaling molecule, similar to its role in the animal and human world. How similar the functions, and homeostasis of H2S are in these diverse organisms, however, remains to be elucidated

  5. Adsorption removal of hydrogen sulfide gas. IV. Characteristics of adsorbents for the adsorption removal of hydrogen sulfide gas

    Energy Technology Data Exchange (ETDEWEB)

    Boki, K

    1974-10-25

    The amount of hydrogen sulfide gas adsorbed was affected by the surface properties (surface pH, acid strength, acid amount, and basic amount), the surface structure (pore volume), and the surface form (scanning electron microscopic observation) of 32 tested adsorbents. In general, the amount adsorption increased in the following order, amount of H/sub 2/S adsorbed on the silicate adsorbents, on the active carbon adsorbents, and on the zeolite adsorbents. The amount of H/sub 2/S adsorbed on magnesium silicate and silica gel adsorbents was mainly affected by the surface structure, and the amount adsorbed on the aluminum silicate adsorbents was affected by the distinctions on the surface forms of the adsorbents. The amount of H/sub 2/S adsorbed on 10 kinds of active carbon was determined by the surface properties and the surface structures of the adsorbents. The amount adsorbed on 12 kinds of zeolites was determined by either the surface properties or by the surface structures of the adsorbents. The amount of H/sub 2/S adsorbed on the silicate, active carbon, and zeolite adsorbents interacted with the heat of adsorption, and among the same kinds of adsorbents, the amount adsorbed was linearly related to the heat of adsorption.

  6. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, Jack R.; Christensen, Earl D.; Hallen, Richard T.; Lucke, Richard B.; Burton, Sarah D.; Lemmon, Teresa L.; Swita, Marie S.; Fioroni, Gina; Elliott, Douglas C.; Drennan, Corinne

    2017-08-01

    Catalytic hydroprocessing of pyrolysis oils from biomass produces hydrocarbons that can be considered for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. A comprehensive understanding of product oils is useful to optimize cost versus degree of deoxygenation. Additionally, a better understanding of the chemical composition of the distillate fractions can open up other uses of upgraded oils for potentially higher-value chemical streams. We present in this paper the characterization data for five well-defined distillate fractions of two hydroprocessed oils with different oxygen levels: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. Elemental analysis and 13C NMR results suggest that the distillate fractions become more aromatic/unsaturated as they become heavier. Our results also show that the use of sulfided catalysts directly affects the S content of the lightest distillate fraction. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. PIONA analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. These results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.

  7. Arsenic sulfide layers for dielectric reflection mirrors prepared from solution

    Science.gov (United States)

    Matějec, Vlastimil; Pedlikova, Jitka; BartoÅ, Ivo; Podrazký, Ondřej

    2017-12-01

    Chalcogenide materials due to high refractive indices, transparency in the mid-IR spectral region, nonlinear refractive indices, etc, have been employed as fibers and films in different photonic devices such as light amplifiers, optical regenerators, broadband radiation sources. Chalcogenide films can be prepared by physical methods as well as by solution-based techniques in which solutions of chalcogenides in amines are used. This paper presents results on the solution-based fabrication and optical characterization of single arsenic sulfide layers and multilayer stacks containing As2S3 layers together with porous silica layers coated on planar and fiber-optic substrates. Input As2S3 solutions for the layer fabrications were prepared by dissolving As2S3 powder in n-propylamine in a concentration of 0.50 mol/l. These solutions were applied on glass slides by dip-coating method and obtained layers were thermally treated in vacuum at temperatures up to 180 °C. Similar procedure was used for As2S3 layers in multilayer stacks. Such stacks were fabricated by repeating the application of one porous silica layer prepared by the sol-gel method and one As2S3 layer onto glass slides or silica fibers (a diameter of 0.3 mm) by using the dip-coating method. It has been found that the curing process of the applied layers has to be carefully controlled in order to obtain stacks with three pairs of such layers. Single arsenic and porous silica layers were characterized by optical microscopy, and by measuring their transmission spectra in a range of 200-2500 nm. Thicknesses and refractive indices were estimated from the spectra. Transmission spectra of planar multilayer stacks were measured, too. Interference bands have been determined from optical measurements on the multilayer stacks with a minimum transmittance of about 50% which indicates the possibility of using such stacks as reflecting mirrors.

  8. The Role of Hydrogen Sulfide in Renal System.

    Science.gov (United States)

    Cao, Xu; Bian, Jin-Song

    2016-01-01

    Hydrogen sulfide has gained recognition as the third gaseous signaling molecule after nitric oxide and carbon monoxide. This review surveys the emerging role of H 2 S in mammalian renal system, with emphasis on both renal physiology and diseases. H 2 S is produced redundantly by four pathways in kidney, indicating the abundance of this gaseous molecule in the organ. In physiological conditions, H 2 S was found to regulate the excretory function of the kidney possibly by the inhibitory effect on sodium transporters on renal tubular cells. Likewise, it also influences the release of renin from juxtaglomerular cells and thereby modulates blood pressure. A possible role of H 2 S as an oxygen sensor has also been discussed, especially at renal medulla. Alternation of H 2 S level has been implicated in various pathological conditions such as renal ischemia/reperfusion, obstructive nephropathy, diabetic nephropathy, and hypertensive nephropathy. Moreover, H 2 S donors exhibit broad beneficial effects in renal diseases although a few conflicts need to be resolved. Further research reveals that multiple mechanisms are underlying the protective effects of H 2 S, including anti-inflammation, anti-oxidation, and anti-apoptosis. In the review, several research directions are also proposed including the role of mitochondrial H 2 S in renal diseases, H 2 S delivery to kidney by targeting D-amino acid oxidase/3-mercaptopyruvate sulfurtransferase (DAO/3-MST) pathway, effect of drug-like H 2 S donors in kidney diseases and understanding the molecular mechanism of H 2 S. The completion of the studies in these directions will not only improves our understanding of renal H 2 S functions but may also be critical to translate H 2 S to be a new therapy for renal diseases.

  9. Immobilization of Se and U by iron sulfides

    International Nuclear Information System (INIS)

    Kang Mingliang; Ma Bin; Yang Zhuanwei; Liu Chunli; Chen Fanrong

    2014-01-01

    Both uranium and selenium are redox-sensitive, and can occur in several oxidation states. In reducing environments, they exist as insoluble forms. Therefore, reductive precipitation is the most effective way to immobilize U and Se. The interaction of aqueous Se (IV) and uranylwithiron sulfidesweresystematically investigated in light of thermodynamic calculations, X-ray Absorption Spectroscopy (XAS), and X-ray Photoelectron Spectroscopy (XPS). The results from the speciation study revealed that the reduction product was Se (O) when natural pyrite and pyrrhotitereacted with Se (IV), although FeSe 2 is the thermodynamically predicted product from nearly neural to alkaline conditions. This discrepancy is attributed to the oxidizing ability of Se (IV) towards FeSe 2 , of which produce the insoluble Se (0) as the stable product in short-term experiments. In contrast to the thermodynamic calculations, with a reaction product of mixed U (IV) and U (VI) (e.g., U 3 O 8 ), redox reaction was observed only at pH ∼ 8.5 and ∼ 4.5 for U (VI) reduction by nanosized pyrite and natural pyrite, respectively. We proposed that oxidation of pyrite needs an intermediate (e.g., Fe 2+ ), and the reaction between the uranyl and the intermediate is thermodynamically or kinetically limited. Moreover, trace elements generally held within pyrite structure can also greatly influence its reactivity. This study demonstrated that reaction kinetics play a significant role on the reaction product. From a geological time scale, Se and U are likely to be immobilized by iron sulfides via the form of FeSe 2 and UO 2 . (authors)

  10. Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Justin Raj, C.; Kim, Byung Chul; Cho, Won-Je; Lee, Won-Gil; Seo, Yongseong; Yu, Kook-Hyun, E-mail: yukook@dongguk.edu

    2014-02-15

    Highlights: • The electrochemical supercapacitor electrode was fabricated using CuS nanoplatelets. • CuS electrodes shows better electrochemical properties in aqueous LiClO{sub 4} electrolyte. • The heat treated CuS electrode shows an excellent pseudocapacitance performance than bare CuS electrode. -- Abstract: Copper sulfide (CuS) nanoplatelets have been fabricated by simple low temperature chemical bath deposition technique for electrochemical supercapacitor electrodes. The morphology and structural properties of the electrodes were analyzed using scanning electron microscopy and X-ray diffraction. The effect of heat treatment on electrochemical properties of CuS electrodes were examined by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge tests. Results show that bare and heat treated CuS has pseudocapacitive characteristic within the potential range of −0.6 to 0.3 V (vs. Ag/AgCl) in aqueous 1 M LiClO{sub 4} solution. The pseudocapacitance is induced mainly by lithium ions insertion/extraction with the CuS electrodes. The specific capacitance of 72.85 F g{sup −1} was delivered by heat treated CuS film at a scan rate of 5 mV s{sup −1} with an energy and power density of 6.23 W h kg{sup −1} and 1.75 kW kg{sup −1} at 3 Ag{sup −1} constant discharge current which is comparatively higher than that of as deposited CuS electrode.

  11. Hierarchical Nickel Sulfide Coated Halloysite Nanotubes For Efficient Energy Storage

    International Nuclear Information System (INIS)

    Li, Yanan; Zhou, Jie; Liu, Yun; Tang, Jian; Tang, Weihua

    2017-01-01

    Highlights: •An integration strategy was presented to construct Ni 3 S 2 based hierarchical composite. •Nanowhisker Ni 3 S 2 were densely integrated onto halloysite nanotubes. •The well-designed electrode exhibits remarkable capacitance and cycling stability. •This strategy provides good reference to electrode materials design for energy storage -- Abstract: Cost-effective and robust energy storage systems have attracted great attention for portable electronic devices. Three-dimensional electrodes can effectively enhance the charge transfer, increase the mechanical stability and thus improve the electrochemical performance upon continuous charge-discharge. The earth abundant halloysite nanotubes (HNTs) have shown immense potential in constructing nanoarchitectural composites. Here, we first demonstrate the development of hybrid composite of nickel sulfide (Ni 3 S 2 ) and HNTs with glucose as binders for efficient energy storage in supercapacitor. The surface sulfhydrylation of HNTs and glucose-assisted hydrothermal reaction are crucial for the preparation of well-structured composite. Due to the synergistic effect between components, the Ni 3 S 2 /HNTs@HS composite electrode delivers a capacity of 450.4C g −1 and high retention of 82.6% over 2000 cycles in three-electrode supercapacitors. Moreover, the Ni 3 S 2 /HNTs@HS//Whatman paper//Ni 3 S 2 /HNTs@HS two-electrode symmetric supercapacitor exhibits a maximum potential window of 1.3 V, with a capacity of 250C g −1 and performance loss of only 18.2% over 2000 cycling at 1 A g −1 . A maximum energy density of 79.6 Wh kg −1 is achieved at a power density of 1.03 kW kg −1 . Such excellent energy storage performance suggests the great potential of Ni 3 S 2 /HNTs@HS for high-efficiency energy storage systems.

  12. Fast retrievals of tropospheric carbonyl sulfide with IASI

    Science.gov (United States)

    Vincent, R. Anthony; Dudhia, Anu

    2017-02-01

    Iterative retrievals of trace gases, such as carbonyl sulfide (OCS), from satellites can be exceedingly slow. The algorithm may even fail to keep pace with data acquisition such that analysis is limited to local events of special interest and short time spans. With this in mind, a linear retrieval scheme was developed to estimate total column amounts of OCS at a rate roughly 104 times faster than a typical iterative retrieval. This scheme incorporates two concepts not utilized in previously published linear estimates. First, all physical parameters affecting the signal are included in the state vector and accounted for jointly, rather than treated as effective noise. Second, the initialization point is determined from an ensemble of atmospheres based on comparing the model spectra to the observations, thus improving the linearity of the problem. All of the 2014 data from the Infrared Atmospheric Sounding Interferometer (IASI), instruments A and B, were analysed and showed spatial features of OCS total columns, including depletions over tropical rainforests, seasonal enhancements over the oceans, and distinct OCS features over land. Error due to assuming linearity was found to be on the order of 11 % globally for OCS. However, systematic errors from effects such as varying surface emissivity and extinction due to aerosols have yet to be robustly characterized. Comparisons to surface volume mixing ratio in situ samples taken by NOAA show seasonal correlations greater than 0.7 for five out of seven sites across the globe. Furthermore, this linear scheme was applied to OCS, but may also be used as a rapid estimator of any detectable trace gas using IASI or similar nadir-viewing instruments.

  13. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system.

    Science.gov (United States)

    Meng, Guoliang; Zhao, Shuang; Xie, Liping; Han, Yi; Ji, Yong

    2018-04-01

    Hydrogen sulfide (H 2 S), independently of any specific transporters, has a number of biological effects on the cardiovascular system. However, until now, the detailed mechanism of H 2 S was not clear. Recently, a novel post-translational modification induced by H 2 S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine residues of target proteins by H 2 S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H 2 S induces S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca 2+ channels, transient receptor potential channels and ATP-sensitive K + channels) in the cardiovascular system. Although significant progress has been achieved in delineating the role of protein S-sulfhydration by H 2 S in the cardiovascular system, more proteins with detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate the development and application of H 2 S-related drugs in the future. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.

  14. Arsenic Sulfide Nanowire Formation on Fused Quartz Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, J.; Riley, B.J.; Johnson, B.R.; Sundaram, S.K.

    2005-01-01

    Arsenic sulfide (AsxSy) nanowires were synthesized by an evaporation-condensation process in evacuated fused quartz ampoules. During the deposition process, a thin, colored film of AsxSy was deposited along the upper, cooler portion of the ampoule. The ampoule was sectioned and the deposited film analyzed using scanning electron microscopy (SEM) to characterize and semi-quantitatively evaluate the microstructural features of the deposited film. A variety of microstructures were observed that ranged from a continuous thin film (warmer portion of the ampoule), to isolated micron- and nano-scale droplets (in the intermediate portion), as well as nanowires (colder portion of the ampoule). Experiments were conducted to evaluate the effects of ampoule cleaning methods (e.g. modify surface chemistry) and quantity of source material on nanowire formation. The evolution of these microstructures in the thin film was determined to be a function of initial pressure, substrate temperature, substrate surface treatment, and initial volume of As2S3 glass. In a set of two experiments where the initial pressure, substrate thermal gradient, and surface treatment were the same, the initial quantity of As2S3 glass per internal ampoule volume was doubled from one test to the other. The results showed that AsxSy nanowires were only formed in the test with the greater initial quantity of As2S3 per internal ampoule volume. The growth data for variation in diameter (e.g. nanowire or droplet) as a function of substrate temperature was fit to an exponential trendline with the form y = Aekx, where y is the structure diameter, A = 1.25×10-3, k = 3.96×10-2, and x is the temperature with correlation coefficient, R2 = 0.979, indicating a thermally-activated process.

  15. The global transcriptional response of fission yeast to hydrogen sulfide.

    Directory of Open Access Journals (Sweden)

    Xu Jia

    Full Text Available BACKGROUND: Hydrogen sulfide (H(2S is a newly identified member of the small family of gasotransmitters that are endogenous gaseous signaling molecules that have a fundamental role in human biology and disease. Although it is a relatively recent discovery and the mechanism of H(2S activity is not completely understood, it is known to be involved in a number of cellular processes; H(2S can affect ion channels, transcription factors and protein kinases in mammals. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we have used fission yeast as a model organism to study the global gene expression profile in response to H(2S by microarray. We initially measured the genome-wide transcriptional response of fission yeast to H(2S. Through the functional classification of genes whose expression profile changed in response to H(2S, we found that H(2S mainly influences genes that encode putative or known stress proteins, membrane transporters, cell cycle/meiotic proteins, transcription factors and respiration protein in the mitochondrion. Our analysis showed that there was a significant overlap between the genes affected by H(2S and the stress response. We identified that the target genes of the MAPK pathway respond to H(2S; we also identified that a number of transporters respond to H(2S, these include sugar/carbohydrate transporters, ion transporters, and amino acid transporters. We found many mitochondrial genes to be down regulated upon H(2S treatment and that H(2S can reduce mitochondrial oxygen consumption. CONCLUSION/SIGNIFICANCE: This study identifies potential molecular targets of the signaling molecule H(2S in fission yeast and provides clues about the identity of homologues human proteins and will further the understanding of the cellular role of H(2S in human diseases.

  16. Intracolonic hydrogen sulfide lowers blood pressure in rats.

    Science.gov (United States)

    Tomasova, Lenka; Dobrowolski, Leszek; Jurkowska, Halina; Wróbel, Maria; Huc, Tomasz; Ondrias, Karol; Ostaszewski, Ryszard; Ufnal, Marcin

    2016-11-30

    Research suggests that hydrogen sulfide (H 2 S) is an important biological mediator involved in various physiological processes including the regulation of arterial blood pressure (BP). Although H 2 S is abundant in the colon, the effects of gut-derived H 2 S on the circulatory system have not yet been investigated. We studied the effects of intracolonic administration of Na 2 S, a H 2 S donor, on systemic hemodynamics. Hemodynamics were recorded in anesthetized, normotensive Wistar Kyoto and spontaneously hypertensive rats at baseline and after intracolonic injection of either saline (controls) or Na 2 S·9H 2 O saline solution at a dose range of 10-300 mg/kg of BW. The H 2 S donor produced a significant, dose-dependent decrease in mean arterial blood pressure (MABP), which lasted several times longer than previously reported after parenteral infusions (>90 min). The effect was more pronounced in hypertensive than in normotensive rats. The Na 2 S-induced decrease in MABP was reduced by pretreatment with glibenclamide, an inhibitor of ATP-sensitive potassium-channels. Na 2 S did not affect mesenteric vein blood flow. Rats treated with Na 2 S showed increased portal blood levels of thiosulfate and sulfane sulfur, products of H 2 S oxidation. In contrast, rats treated with neomycin, an antibiotic, showed significantly decreased levels of thiosulfate and sulfane sulfur, and a tendency for greater hypotensive response to Na 2 S. The H 2 S donor decreased heart rate but did not affect ECG morphology and QTc interval. In conclusion the gut-derived H 2 S may contribute to the control of BP and may be one of the links between gut microbiota and hypertension. Furthermore, gut-derived H 2 S may be a therapeutic target in hypertension. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Response of gut health and microbiota to sulfide exposure in Pacific white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Suo, Yantong; Li, Erchao; Li, Tongyu; Jia, Yongyi; Qin, Jian G; Gu, Zhimin; Chen, Liqiao

    2017-04-01

    Sulfide is a natural and widely distributed toxicant. It can be commonly found on the interface between water and sediment in the aquatic environment. The Pacific white shrimp Litopenaeus vannamei starts life in the benthic zone soon after the mysis stage, an early stage of post larvae. Therefore, L. vannamei is inevitably affected by exposure to sulfide released from pond sediment. This study explored the toxicant effect of different concentrations of sulfide on the intestinal health and microbiota of Pacific white shrimp by monitoring the change of expression of inflammatory, immune related cytokines, and the structure of the intestinal microbiota. The gut histology, expressions of inflammatory and immune related cytokines (tumor necrosis factor-alpha, C-type lectin 3, myostatin and heat shock transcription factor 1), and the microbiota were determined in L. vannamei after exposure to 0 (control), 425.5 (1/10 LC 50-96 h), and 851 μg/L (1/5 LC 50-96 h) of sulfide for 21 days. With the increase of sulfide concentration, intestinal injury was aggravated and the inflammatory and immune related cytokines generated a range of reactions. The expression of myostatin (MSTN) was significantly down-regulated by the concentration of sulfide exposure. No difference in the expression of heat shock transcription factor 1 (HSF1) was found between the control and shrimp exposed to 425.5 μg/L, but significantly higher HSF1 expression was found in shrimp exposed to 851 μg/L of sulfide. Significantly higher values of tumor necrosis factor-alpha (TNF-α) and C-type lectin 3 (CTL3) were found in the shrimp exposed to 425.5 μg/L of sulfide compared to the control, but a lower value was found in the shrimp exposed to 851 μg/L (P < 0.05). Sulfide also changed the intestinal microbial communities. The abundance of pathogenic bacteria, such as Cyanobacteria, Vibrio and Photobacterium, increased significantly with exposure to the increasing concentration of sulfide. The

  18. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    Science.gov (United States)

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The effect of tin sulfide quantum dots size on photocatalytic and photovoltaic performance

    International Nuclear Information System (INIS)

    Cheraghizade, Mohsen; Jamali-Sheini, Farid; Yousefi, Ramin; Niknia, Farhad; Mahmoudian, Mohammad Reza; Sookhakian, Mehran

    2017-01-01

    In the current study, tin sulfide Quantum Dots (QDs) was successfully synthesized through sonochemical synthesis method by applying sonication times of 10, 15, and 20 min. Structural studies showed an orthorhombic phase of SnS and Sn_2S_3, and hexagonal phase of SnS_2. The particle size of tin sulfide QDs prepared through sonication time of 20 min was smaller than other QDs. According to TEM images, an increase in sonication time resulted in smaller spherical shaped particles. According to the results of Raman studies, five Raman bands and a shift towards the lower frequencies were observed by enhancing the sonication time. Based on the outcomes of photocatalytic activity, higher this property was observed for tin sulfide QDs, which are prepared through longer sonication time. Solar cell devices manufactured using tin sulfide QDs have a greater performance for the samples with more sonication time. Considering the obtained outcomes, the sonication time seems probable to be a factor affecting synthesis process of SnS QDs as well as its optical and electrical, photocatalytic, and photovoltaic conversion features. - Highlights: • Tin sulfide quantum dots (QDs) synthesized using a sonication method. • The sonication time was selected as a synthesis parameter. • The photocatalytic and photovoltaic performance were depended on synthesis parameter.

  20. Trace elements in tourmalines from massive sulfide deposits and tourmalinites: Geochemical controls and exploration applications

    Science.gov (United States)

    Griffin, W.L.; Slack, J.F.; Ramsden, A.R.; Win, T.T.; Ryan, C.G.

    1996-01-01

    Trace element contents of tourmalines from massive sulfide deposits and tourmalinites have been determined in situ by proton microprobe; >390 analyses were acquired from 32 polished thin sections. Concentrations of trace elements in the tourmalines vary widely, from Sr, Ba, and Ca). Base metal proportions in the tourmalines show systematic patterns on ternary Cu-Pb-Zn diagrams that correlate well with the major commodity metals in the associated massive sulfide deposits. For example, data for tourmalines from Cu-Zn deposits (e.g., Ming mine, Newfoundland) fall mainly on the Cu-Zn join, whereas those from Pb-Zn deposits (e.g., Broken Hill, Australia) plot on the Pb-Zn join; no data fall on the Cu-Pb join, consistent with the lack of this metal association in massive sulfide deposits. The systematic relationship between base metal proportions in the tourmalines and the metallogeny of the host massive sulfide deposits indicates that the analyzed tourmalines retain a strong chemical signature of their original hydrothermal formation, in spite of variable metamorphic recrystallization. Such trace element patterns in massive sulfide tourmalines may be useful in mineral exploration, specifically for the evaluation of tourmaline concentrations in rocks, soils, and stream sediments.