WorldWideScience

Sample records for samail ophiolite aquifer

  1. Lead isotopic studies of the Samail ophiolite, Oman

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.H.; Pallister, J.S.

    1981-04-10

    The isotopic composition of Pb and the concentrations of U, Th, and Pb have been determined for samples from various lithologic units and massive sulfides of the Samail ophiolite. The observed /sup 206/Pb//sup 204/Pb ratios range from 17.90 to 19.06, /sup 207/Pb//sup 204/Pb ratios from 15.43 to 15.63, and /sup 208/Pb//sup 204/Pb from 37.66 to 38.78. In Pb isotopic evolution diagrams, the initial Pb isotopic compositions of most of the samples from the Samail ophiolite plot within the field of oceanic basalt, clearly distinct from island arc data, and define some of the least radiogenic Pb observed from oceanic rocks. Lead data from the Samail are compatible with a model involving magma generation from an oceanic mantle source and formation of the ophiolite at an oceanic spreading center. U--Th--Pb isotopic systematics demonstrate that vertical heterogeneity in the oceanic crust can be created through differential concentration of U, Th, and Pb during crystal fractionation and alteration at, or near, the spreading ridge. Calcite form amygdules in the ophiolite basalt has similar Pb isotopic composition to the igneous rocks, suggesting precipitation of the calcite from seawater which contained Pb derived mostly from the oceanic crust. Lead isotopic data on Fe--Cu sulfides are also similar to the results from the igneous suite suggesting that the source of the sulfides is predominently from the oceanic crust. Lead data from serpentinized peridotite and a galena sample from below the ophiolite suggest that part of the serpentinization process and the formation of galena could involve addition of radiogenic Pb from either a continental source or from oceanic sediments.

  2. Uranium-lead isotopic ages of the Samail ophiolite, Oman, with applicatons to Tethyan ocean ridge tectonics

    International Nuclear Information System (INIS)

    Tilton, G.R.; Hopson, C.A.; Wright, J.E.

    1981-01-01

    Plagiogranites are a minor but widespread component of the Samail ophiolite plutonic member. They crystallized from the most fractionated melts generated by magmatic crystallization and differentiation of a steady state magma chamber beneath the Tethyan spreading ocean ridge, and their ages are thought to mark the time of ocean crust formation. Isotopic U--Pb ages of zircons from 13 plagiogranites collected along a 270-km segment of the Samail ophiolite subparallel to the regional trend of the sheeted dike complex (the former spreading ridge axis direction) define a narrow time interval of 93.5--97.9 m.y., with a pronounced clustering about 95 m.y. The zircon ages of the plagiogranites agree remarkably well with the early Cenomanian to early Turonian biostratigraphic ages of sediments that are intercalated within the ophiolite pillow lavas and that lie just above them (Tippit et al., 1981). The agreement of radiometric and biostratigraphic ages provides strong support for the conclusion that the plagiogranite U--Pb ages closely date the time span of ocean crust formation. No step changes in age patterns are observed along the ridge axis (sheeted dike) direction, suggesting that there are no major internal offsets of the ophiolite by transform or other faults along most of the traverse. One possible exception occurs at the southeastern end of the sampled interval (Ibra area), where a 3 m.y. discontinuity might be caused by an unmapped fault. Assuming that the regional trend of the sheeted dikes (N10 0 --25 0 W) marks the direction of the former spreading ridge axis, the present array of sample localities spans a distance of 130 to 195 km normal to that axis (i.e., in the spreading direction). The data as a whole do not define a clear-cut age trend normal to the spreading axis, but by eliminating samples that may be aberrant due to faulting, the data array suggests a pattern of increasing ages from east to west

  3. Tracing alteration of mantle peridotite in the Samail ophiolite using Mg isotopes

    Science.gov (United States)

    de Obeso, J. C.; Kelemen, P. B.; Higgins, J. A.

    2017-12-01

    Magnesium is one of the main constituents of mantle peridotite ( 22.8 wt%), which has a homogeneous Mg isotopic composition (d26Mg = -0.25 ± 0.04 ‰ (2 sd) DSM3, Teng et al 2010 GCA). Mg isotopes are used as tracers of continental and oceanic weathering as they exhibit variable degrees of fractionation during alteration depending on the lithology. Here we report some of the first Mg isotopic compositions of the mantle section of the Samail ophiolite in Oman and its alteration products. The mantle section of the ophiolite is composed mainly of depleted harzburgites and dunites with mantle-like d26Mg (-0.25, -0.21 ‰). Mantle peridotite is far from equilibrium in near surface conditions leading to rapid, extensive serpentinization, carbonation and oxidation, as well as other geochemical changes. Our analyzed samples encompass most of the alteration of peridotite products observed in Oman including listvenites (completely carbonated peridotite) near the basal thrust of the ophiolite, massive magnesite veins within peridotite outcrops, and heavily altered harzburgites. Magnesite listvenites have d26Mg slightly below mantle values (-0.33, -0.33‰) while dolomite listvenites are significantly lighter (-1.46, -0.89‰). This suggests that heavy Mg isotopes were removed from the listvenites during ophiolite emplacement. Heavily altered peridotite from Wadi Fins exhibit alteration halos with drastic changes in composition. The most oxidized areas are enriched in Fe and depleted in Mg compared to the cores of the samples. These variations in Mg concentrations are complemented by a shift to heavy Mg isotopic compositions (0.74, 0.86‰), among the heaviest d26Mg values that have been reported in altered peridotite. Potential sinks for light isotopes removed from such alteration zones are massive magnesite veins with very light compositions (-3.39, -3.14‰). The fractionation of Mg isotopes observed in the mantle section of the ophiolite spans more than 50% of the known

  4. Geochemical bioenergetics during low-temperature serpentinization: An example from the Samail ophiolite, Sultanate of Oman

    Science.gov (United States)

    Canovas, Peter A.; Hoehler, Tori; Shock, Everett L.

    2017-07-01

    Various classes of microbial and biomolecular evidence from global studies in marine and continental settings are used to identify a set of reactions that appear to support microbial metabolism during serpentinization of ultramafic rocks. Geochemical data from serpentinizing ecosystems in the Samail ophiolite of Oman are used to evaluate the extent of disequilibria that can support this set of microbial metabolisms and to provide a ranking of potential metabolic energy sources in hyperalkaline fluids that are direct products of serpentinization. Results are used to construct hypotheses for how microbial metabolism may be supported in the subsurface for two cases: ecosystems hosted in rocks that have already undergone significant serpentinization and those hosted by deeper, active serpentinization processes.

  5. Sr isotopic tracer study of the Samail ophiolite, Oman

    International Nuclear Information System (INIS)

    Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.

    1981-01-01

    We have measured Rb and Sr concentrations and Sr isotopic compositions in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite diabase dikes, and gabbro and websterite dikes within the metamorphic peridotite. Ten samples of cummulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have mean 87 Sr/ 86 Sr ratios and standard deviations of 0.70314 +- 0.00030 and 0.70306 +- 0.00034, respectively. The dispersion in Sr isotopic composition may reflect real heterogeneities in the magma source region. The average Sr isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern midocean ridge basalt. The 87 Sr/ 86 Sr ratios of noncumulate gabbro, plagiogranite, and diabase dikes range from 0.7034 to 0.7047, 0.7038 to 0.7046, and 0.7037 to 0.7061, respectively. These higher 87 Sr/ 86 Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with seawater. Mineral separates from dikes that cut harzburgite tectonite have Sr isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dikes were derived from partial melting of source regions that had similar long-term histories and chemical compositions

  6. Palladium, platinum, rhodium, iridium and ruthenium in chromite- rich rocks from the Samail ophiolite, Oman.

    Science.gov (United States)

    Page, N.J.; Pallister, J.S.; Brown, M.A.; Smewing, J.D.; Haffty, J.

    1982-01-01

    30 samples of chromitite and chromite-rich rocks from two stratigraphic sections, 250 km apart, through the basal ultramafic member of the Samail ophiolite were spectrographically analysed for platinum-group elements (PGE) and for Co, Cu, Ni and V. These data are reported as are Cr/(Cr + Al), Mg/(Mg + Fe) and wt.% TiO2 for most samples. The chromitite occurs as pods or lenses in rocks of mantle origin or as discontinuous layers at the base of the overlying cumulus sequence. PGE abundances in both sections are similar, with average contents in chromite-rich rocks: Pd 8 ppb, Pt 14 ppb, Rh 6 ppb, Ir 48 ppb and Ru 135 ppb. The PGE data, combined with major-element and petrographic data on the chromitite, suggest: 1) relatively larger Ir and Ru contents and highest total PGE in the middle part of each section; 2) PGE concentrations and ratios do not correlate with coexisting silicate and chromite abundances or chromite compositions; 3) Pd/PGE, on average, increases upward in each section; 4) Samail PGE concentrations, particularly Rh, Pt and Pd, are lower than the average values for chromite-rich rocks in stratiform intrusions. 2) suggests that PGEs occur in discrete alloy or sulphide phases rather than in the major oxides or silicates, and 4) suggests that chromite-rich rocks from the oceanic upper mantle are depleted in PGE with respect to chondrites. L.C.C.

  7. Iron transformations during low temperature alteration of variably serpentinized rocks from the Samail ophiolite, Oman

    Science.gov (United States)

    Mayhew, Lisa E.; Ellison, Eric T.; Miller, Hannah M.; Kelemen, Peter B.; Templeton, Alexis S.

    2018-02-01

    Partially serpentinized peridotites in the Samail ophiolite in the Sultanate of Oman currently undergo low temperature alteration and hydration both at shallow levels, with water recently in contact with the atmosphere, and at depth, with anoxic, reducing fluids. However, it is unclear how changes in the distribution and oxidation state of Fe are driving the production of energy-rich gases such as hydrogen and methane detected in peridotite catchments. We track the Fe transformations in a suite of outcrop samples representing a subset of the spectrum of least to most altered end-members of the Oman peridotites. We use microscale mineralogical and geochemical analyses including QEMSCAN, Raman spectroscopy, synchrotron radiation X-ray fluorescence (XRF) mapping, and electron microprobe wavelength dispersive spectroscopy. The less-altered peridotites possess a diversity of Fe-bearing phases including relict primary minerals (e.g. olivine, pyroxene, chromite) and secondary phases (e.g. serpentine and brucite). Raman spectroscopy and electron microprobe data (Si/(Mg + Fe)) indicate that much of the serpentine is significantly intergrown with brucite on the sub-micron scale. These data also indicate that the Fe content of the brucite ranges from 10 to 20 wt% FeO. The mineral assemblage of the highly reacted rocks is less diverse, dominated by serpentine and carbonate while olivine and brucite are absent. Magnetite is relatively rare and mainly associated with chromite. Goethite and hematite, both Fe(III)-hydroxides, were also identified in the highly altered rocks. Whole rock chemical analyses reflect these mineralogical differences and show that Fe in the partially serpentinized samples is on average more reduced (∼0.40-0.55 Fe3+/FeTotal) than Fe in the highly reacted rocks (∼0.85-0.90 Fe3+/FeTotal). We propose that olivine, brucite, chromite and, perhaps, serpentine in the less-altered peridotites act as reactive phases during low temperature alteration of the Oman

  8. A deep hydrothermal fault zone in the lower oceanic crust, Samail ophiolite Oman

    Science.gov (United States)

    Zihlmann, B.; Mueller, S.; Koepke, J.; Teagle, D. A. H.

    2017-12-01

    Hydrothermal circulation is a key process for the exchange of chemical elements between the oceans and the solid Earth and for the extraction of heat from newly accreted crust at mid-ocean ridges. However, due to a dearth of samples from intact oceanic crust, or continuous samples from ophiolites, there remain major short comings in our understanding of hydrothermal circulation in the oceanic crust, especially in the deeper parts. In particular, it is unknown whether fluid recharge and discharge occurs pervasively or if it is mainly channeled within discrete zones such as faults. Here, we present a description of a hydrothermal fault zone that crops out in Wadi Gideah in the layered gabbro section of the Samail ophiolite of Oman. Field observations reveal a one meter thick chlorite-epidote normal fault with disseminated pyrite and chalcopyrite and heavily altered gabbro clasts at its core. In both, the hanging and the footwall the gabbro is altered and abundantly veined with amphibole, epidote, prehnite and zeolite. Whole rock mass balance calculations show enrichments in Fe, Mn, Sc, V, Co, Cu, Rb, Zr, Nb, Th and U and depletions of Si, Ca, Na, Cr, Zn, Sr, Ba and Pb concentrations in the fault rock compared to fresh layered gabbros. Gabbro clasts within the fault zone as well as altered rock from the hanging wall show enrichments in Na, Sc, V, Co, Rb, Zr, Nb and depletion of Cr, Ni, Cu, Zn, Sr and Pb. Strontium isotope whole rock data of the fault rock yield 87Sr/86Sr ratios of 0.7046, which is considerably more radiogenic than fresh layered gabbro from this locality (87Sr/86Sr = 0.7030 - 0.7034), and similar to black smoker hydrothermal signatures based on epidote, measured elsewhere in the ophiolite. Altered gabbro clasts within the fault zone show similar values with 87Sr/86Sr ratios of 0.7045 - 0.7050, whereas hanging wall and foot wall display values only slightly more radiogenic than fresh layered gabbro.The secondary mineral assemblages and strontium isotope

  9. Tethyan Anhydrite Preserved in the Lower Ocean Crust of the Samail Ophiolite? Evidence from Oman Drilling Project Holes GT1A and 2A

    Science.gov (United States)

    Teagle, D. A. H.; Harris, M.; Crispini, L.; Deans, J. R.; Cooper, M. J.; Kelemen, P. B.; Alt, J.; Banerjee, N.; Shanks, W. C., III

    2017-12-01

    Anhydrite is important in mid-ocean ridge hydrothermal systems because of the high concentrations of calcium and sulfate in modern seawater and anhydrite's retrograde solubility. Because anhydrite hosts many powerful tracers of fluid-rock interactions (87Sr/86Sr, δ18O, δ34S, trace elements, fluid inclusions) it is useful for tracing the chemical evolution of hydrothermal recharge fluids and estimating time-integrated fluid fluxes. Anhydrite can form from heated seawater (>100°C), through water-rock reaction, or by mixing of seawater and hydrothermal fluids. Although abundant in active hydrothermal mounds, and predicted to form from downwelling, warming fluids during convection, anhydrite is rare in drill core from seafloor lavas, sheeted dikes and upper gabbros, with only minor amounts in ODP Holes 504B and 1256D. Because anhydrite can dissolve during weathering, its occurrence in ophiolites is unexpected. Instead, gypsum is present in Macquarie Island lavas and Miocene gypsum fills cavities within the Cretaceous Troodos ore deposits. Thus, the occurrence of numerous anhydrite veins in cores from the gabbroic lower crust of the Samail ophiolite in Oman was unanticipated. To our knowledge, anhydrite in Oman gabbros has not been previously reported. Oman Drilling Project Holes GT1A and GT2A were drilled into the Wadi Gideah section of the Wadi Tayin massif. Both recovered 400 m of continuous core from sections of layered gabbros (GT1) and the foliated-layered gabbro transition (GT2). Anhydrite is present throughout both holes, some in vein networks but more commonly as isolated 1-110 mm veins (>60 mm ave). Anhydrite is mostly the sole vein filling but can occur with greenschist minerals such as epidote, quartz, chlorite and prehnite. Anhydrite commonly exhibits prismatic and bladed textures but can also be capriciously microcrystalline. Though definitive cross cutting relationships are elusive, anhydrite veins cut across some greenschist veins. Anhydrite is

  10. Structural Characterization of the Foliated-Layered Gabbro Transition in Wadi Tayin of the Samail Ophiolite, Oman; Oman Drilling Project Holes GT1A and GT2A

    Science.gov (United States)

    Deans, J. R.; Crispini, L.; Cheadle, M. J.; Harris, M.; Kelemen, P. B.; Teagle, D. A. H.; Matter, J. M.; Takazawa, E.; Coggon, J. A.

    2017-12-01

    Oman Drilling Project Holes GT1A and GT2A were drilled into the Wadi Tayin massif, Samail ophiolite and both recovered ca. 400 m of continuous core through a section of the layered gabbros and the foliated-layered gabbro transition. Hole GT1A is cut by a discrete fault system including localized thin ultracataclastic fault zones. Hole GT2A is cut by a wider zone of brittle deformation and incipient brecciation. Here we report the structural history of the gabbros reflecting formation at the ridge to later obduction. Magmatic and high temperature history- 1) Both cores exhibit a pervasive, commonly well-defined magmatic foliation delineated by plagioclase, olivine and in places clinopyroxene. Minor magmatic deformation is present. 2) The dip of the magmatic foliation varies cyclically, gradually changing dip by 30o from gentle to moderate over a 50 m wavelength. 3) Layering is present throughout both cores, is defined by changes in mode and grain size ranging in thickness from 2 cm to 3 m and is commonly sub-parallel to the foliation. 4) There are no high temperature crystal-plastic shear zones in the core. Key observations include: no simple, systematic shallowing of dip with depth across the foliated-layered gabbro transition and layering is continuous across this transition. Cyclic variation of magmatic foliation dip most likely reflects the process of plate separation at the ridge axis. Near-axis faulting- i) On or near-axis structures consist of epidote-amphibole bearing hydraulic breccias and some zones of intense cataclasis with intensely deformed epidote and seams of clay and chlorite accompanied by syntectonic alteration of the wall rock. Early veins are filled with amphibole, chlorite, epidote, and anhydrite. ii) The deformation ranges from brittle-ductile, causing local deflection of the magmatic foliation, to brittle offset of the foliation and core and mantle structures in anhydrite veins. iii) The prevalent sense of shear is normal and slickenfibers

  11. Development of Next-Generation Borehole Magnetometer and Its Potential Application in Constraining the Magnetic Declination of Oman Samail Ophiolite at ICDP Drill Sites

    Science.gov (United States)

    Lee, S. M.; Parq, J. H.; Kim, H.; Moe, K.; Lee, C. S.; Kanamatsu, T.; Kim, K. J.; Bahk, K. S.

    2017-12-01

    Determining the azimuthal orientation of core samples obtained from deep drilling is extremely difficult because the core itself could have rotated during drilling operations. Several indirect methods have been devised to address this issue, but have certain limitations. Thus it is still a challenge to determine the azimuthal orientation consistently over the entire length of the hole. Provided that the recovery rate is high and thus all the other magnetic properties such as magnetization intensity and inclination are measured from the recovered cores, one possible method for ascertaining magnetic declination information is to measure the magnetic field inside the empty borehole and invert for the best fitting declination. However, there are two major problems: one is that present-day borehole magnetometers are not precise enough to resolve changes in direction of magnetization, and the other is that in most rock drilling experiments the rate of recovery is low. To overcome the first major problem which is technical, scientists from Korea and Japan jointly conducted the development for the next-generation borehole magnetometer, namely 3GBM (3rd Generation Borehole Magnetometer). The borehole magnetometer which uses fiber-optic laser gyro promises to provide accurate information on not only the magnetic field itself but also the orientation of the instrument inside the borehole. Our goal is to deploy this borehole magnetometer in the ICDP Oman Drilling Project Phase 2 drilling experiment early 2018. The site may be suitable for the investigation because, as recent Phase 1 of the Oman Samail Ophiolite drilling has demonstrated, the recovery rate was very high. Also the post-drilling measurements onboard DV Chikyu have shown that much of the recovered samples has moderate magnetization intensity on the order of 0.1 and 1 A/m. Here, we present the results of numerical simulation of magnetic field inside the borehole using finite element method to show that magnetic

  12. Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey

    Directory of Open Access Journals (Sweden)

    Cüneyt Güler

    2017-01-01

    Full Text Available The aim of this study was to investigate natural and anthropogenic processes governing the chemical composition of alkaline groundwater within a fractured rock (ophiolitic mélange aquifer underlying a seasonally inhabited headwater area in the Aladağlar Range (Adana, Turkey. In this aquifer, spatiotemporal patterns of groundwater flow and chemistry were investigated during dry (October 2011 and wet (May 2012 seasons utilizing 25 shallow hand-dug wells. In addition, representative samples of snow, rock, and soil were collected and analyzed to constrain the PHREEQC inverse geochemical models used for simulating water-rock interaction (WRI processes. Hydrochemistry of the aquifer shows a strong interseasonal variability where Mg–HCO3 and Mg–Ca–HCO3 water types are prevalent, reflecting the influence of ophiolitic and carbonate rocks on local groundwater chemistry. R-mode factor analysis of hydrochemical data hints at geochemical processes taking place in the groundwater system, that is, WRI involving Ca- and Si-bearing phases; WRI involving amorphous oxyhydroxides and clay minerals; WRI involving Mg-bearing phases; and atmospheric/anthropogenic inputs. Results from the PHREEQC modeling suggested that hydrogeochemical evolution is governed by weathering of primary minerals (calcite, chrysotile, forsterite, and chromite, precipitation of secondary minerals (dolomite, quartz, clinochlore, and Fe/Cr oxides, atmospheric/anthropogenic inputs (halite, and seasonal dilution from recharge.

  13. Drilling the leading edge of the mantle wedge and the underlying metamorphic sole of the Samail Ophiolite: Hole BT1B, Oman Drilling Project

    Science.gov (United States)

    Morishita, T.; Kelemen, P. B.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.; Takazawa, E.; Teagle, D. A. H.

    2017-12-01

    Hole BT1B (23°21.861' N, 58°10.957' E) was drilled by the Oman Drilling Project (OmDP) on the north side of Wadi Mansah in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole BT1B was cored from 6 to 23 March 2017, to a depth of 300.05 m. The outer surfaces of the cores were imaged and described onsite before being curated, boxed and shipped to the IODP drill ship Chikyu. Hole BT1B sampled carbonated peridotite (listvenite), 2 carbonate-veined serpentinite bands at 80-100 and 180-185 m depth, a few cm of ultracataclasite and 70 cm of fault gouge at 197 m depth, followed by 103 m metamorphic sole. Onboard Chikyu, BT1B underwent X-ray computed tomography (CT) and multi-sensor logging, imaging and spectroscopy, macroscopic and thin section observations, physical properties measurements, and XRF, XRD and ICP-MS analyses. 1st authors of abstracts reporting initial results are Beinlich (matrix characteristics), de Obeso (modeling mass transfer), Godard (XRF and ICP-MS whole rock data), Greenberger (infrared spectroscopy), Johnson (XRF core scanner), Kelemen (overall petrology), Manning (veins), and Michibayashi (X-ray CT). Listvenite is composed of carbonate + quartz + Fe-oxyhydroxides, + minor relict spinel ± chromian mica (fuchsite). The mineralogy suggests formation at < 150°C. The bulk rock density is similar to that of gabbro but the P-wave velocity is generally higher. Rock textures suggest viscous deformation, while additional brittle deformation is recorded by older veins and younger breccias and faults. The metamorphic sole consists of fine-grained to microcrystalline

  14. Sedimentary record of the obduction of the Samail ophiolite in northern Oman: the Muti Formation in the Sail Hatat window

    Science.gov (United States)

    Ducassou, Céline; Robin, Cecile; Poujol, Marc; Al-Rahbi, Basim; Estournes, Guilhem

    2016-04-01

    The obduction of the Samail Ophiolite in Oman took place during the Upper Cretaceous. Since then, the northern part of Oman has been relatively preserved from deformation and is therefore one of the best places to study obduction processes. In addition, radiometric data provide good constraints on the timing of obduction from the formation of the metamorphic sole until the exhumation of the high-pressure / low-temperature metamorphic rocks involved in the subduction zone below the oceanic lithosphere. However, the response of the continental margin during the obduction is still poorly constrained. If most of the models suggest the development of a flexural basin and an associated forebulge such as in continental collision, their recognition within the syn-tectonic deposits led to different interpretations. The geometry of the youngest syn-tectonic deposits (Fiqa Formation) is relatively well constrained by sub-surface data that suggest a southward migration of the depocenter and progressive onlaps on the southern margin of the basin. The context of sedimentation of the oldest syn-tectonic deposits (Muti Formation) preserved below the nappes in the Oman Mountains is, however, still poorly understood. The location of the sedimentation area with respect of the forebulge, for instance, remains unclear. In order to acquire better constraints on the record, on the Arabian platform, of first steps of the obduction, the analysis of several sections of the Muti Formation has been performed. We present here our main results for the north-eastern part of the Oman Mountains, in the Sail Hatat window, where the thickest successions have been described in Quryat and Bidbid area, respectively located in the eastern and western part of the Sail Hatat window. Sedimentological and structural analysis have been combined to reconstitute the evolution of depositional environments in areas strongly affected by deformation. In addition, systematic measurements and restoration of

  15. Multi-stage origin of the Coast Range ophiolite, California: Implications for the life cycle of supra-subduction zone ophiolites

    Science.gov (United States)

    Shervais, J.W.; Kimbrough, D.L.; Renne, P.; Hanan, B.B.; Murchey, B.; Snow, C.A.; Zoglman, Schuman M.M.; Beaman, J.

    2004-01-01

    The Coast Range ophiolite of California is one of the most extensive ophiolite terranes in North America, extending over 700 km from the northernmost Sacramento Valley to the southern Transverse Ranges in central California. This ophiolite, and other ophiolite remnants with similar mid-Jurassic ages, represent a major but short-lived episode of oceanic crust formation that affected much of western North America. The history of this ophiolite is important for models of the tectonic evolution of western North America during the Mesozoic, and a range of conflicting interpretations have arisen. Current petrologic, geochemical, stratigraphic, and radiometric age data all favor the interpretation that the Coast Range ophiolite formed to a large extent by rapid extension in the forearc region of a nascent subduction zone. Closer inspection of these data, however, along with detailed studies of field relationships at several locales, show that formation of the ophiolite was more complex, and requires several stages of formation. Our work shows that exposures of the Coast Range ophiolite preserve evidence for four stages of magmatic development. The first three stages represent formation of the ophiolite above a nascent subduction zone. Rocks associated with the first stage include ophiolite layered gabbros, a sheeted complex, and volcanic rocks vith arc tholeiitic or (roore rarely) low-K calc-alkaline affinities. The second stage is characterized by intrusive wehrlite-clinopyroxenite complexes, intrusive gabbros, Cr-rich diorites, and volcanic rocks with high-Ca boninitic or tholeiitic ankaramite affinities. The third stage includes diorite and quartz diorite plutons, felsic dike and sill complexes, and calc-alkaline volcanic rocks. The first three stages of ophiolite formation were terminated by the intrusion of mid-ocean ridge basalt dikes, and the eruption of mid-ocean ridge basalt or ocean-island basalt volcanic suites. We interpret this final magmatic event (MORB

  16. Lower crustal section of the Oman Ophiolite drilled in Hole GT1A, ICDP Oman Drilling Project

    Science.gov (United States)

    Umino, S.; Kelemen, P. B.; Matter, J. M.; Coggon, J. A.; Takazawa, E.; Michibayashi, K.; Teagle, D. A. H.

    2017-12-01

    Hole GT1A (22° 53.535'N, 58° 30.904'E) was drilled by the Oman Drilling Project (OmDP) into GT1A of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT1A was diamond cored in 22 Jan to 08 Feb 2017 to a total depth of 403.05 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT1A drilled the lower crustal section in the southern Oman Ophiolite and recovered 401.52 m of total cores (99.6% recovery). The main lithology is dominated by olivine gabbro (65.9%), followed in abundance by olivine-bearing gabbro (21.5%) and olivine melagabbro (3.9%). Minor rock types are orthopyroxene-bearing olivine gabbro (2.4%), oxide-bearing olivine gabbro (1.5%), gabbro (1.1%), anorthositic gabbro (1%), troctolitic gabbro (0.8%); orthopyroxene-bearing gabbro (0.5%), gabbronorite (0.3%); and dunite (0.3%). These rocks are divided into Lithologic Unit I to VII at 26.62 m, 88.16 m, 104.72 m, 154.04 m, 215.22 m, 306.94 m in Chikyu Curated Depth in descending order; Unit I and II consist of medium-grained olivine gabbro with lower olivine abundance in Unit II. Unit III is medium-grained olivine melagabbros, marked by an increase in olivine. Unit IV is relatively homogenous medium-grained olivine gabbros with granular textures. Unit V is identified by the appearance of fine-grained gabbros, but the major rocktypes are medium grained olivine gabbros. Unit VI is medium-grained olivine gabbro, marked by appearance of orthopyroxene. Unit VII

  17. Masirah – the other Oman ophiolite: A better analogue for mid-ocean ridge processes?

    Directory of Open Access Journals (Sweden)

    Hugh Rollinson

    2017-11-01

    Full Text Available Oman has two ophiolites – the better known late Cretaceous northern Oman (or Semail ophiolite and the lesser known and smaller, Jurassic Masirah ophiolite located on the eastern coast of the country adjacent to the Indian Ocean. A number of geological, geochronological and geochemical lines of evidence strongly suggest that the northern Oman ophiolite did not form at a mid-ocean ridge but rather in a supra-subduction zone setting by fast spreading during subduction initiation. In contrast the Masirah ophiolite is structurally part of a series of ophiolite nappes which are rooted in the Indian Ocean floor. There are significant geochemical differences between the Masirah and northern Oman ophiolites and none of the supra-subduction features typical of the northern Oman ophiolite are found at Masirah. Geochemically Masirah is MORB, although in detail it contains both enriched and depleted MORB reflecting a complex source for the lavas and dykes. The enrichment of this source predates the formation of the ophiolite. The condensed crustal section on Masirah (ca. 2 km contains a very thin gabbro sequence and is thought to reflect its genesis from a cool mantle source associated with the early stages of sea-floor spreading during the early separation of eastern and western Gondwana. These data suggest that the Masirah ophiolite is a suitable analogue for an ophiolite created at a mid-ocean ridge, whereas the northern Oman ophiolite is not. The stratigraphic history of the Masirah ophiolite shows that it remained a part of the oceanic crust for ca. 80 Ma. The chemical variability and enrichment of the Masirah lavas is similar to that found elsewhere in Indian Ocean basalts and may simply reflect a similar provenance rather than a feature fundamental to the formation of the ophiolite.

  18. Ophiolitic detritus in Kimmeridgian resedimented limestones and its provenance from an eroded obducted ophiolitic nappe stack south of the Northern Calcareous Alps (Austria

    Directory of Open Access Journals (Sweden)

    Gawlick Hans-Jürgen

    2015-12-01

    Full Text Available The causes for the Middle to Late Jurassic tectonic processes in the Northern Calcareous Alps are still controversially discussed. There are several contrasting models for these processes, formerly designated “Jurassic gravitational tectonics”. Whereas in the Dinarides or the Western Carpathians Jurassic ophiolite obduction and a Jurassic mountain building process with nappe thrusting is widely accepted, equivalent processes are still questioned for the Eastern Alps. For the Northern Calcareous Alps, an Early Cretaceous nappe thrusting process is widely favoured instead of a Jurassic one, obviously all other Jurassic features are nearly identical in the Northern Calcareous Alps, the Western Carpathians and the Dinarides. In contrast, the Jurassic basin evolutionary processes, as best documented in the Northern Calcareous Alps, were in recent times adopted to explain the Jurassic tectonic processes in the Carpathians and Dinarides. Whereas in the Western Carpathians Neotethys oceanic material is incorporated in the mélanges and in the Dinarides huge ophiolite nappes are preserved above the Jurassic basin fills and mélanges, Jurassic ophiolites or ophiolitic remains are not clearly documented in the Northern Calcareous Alps. Here we present chrome spinel analyses of ophiolitic detritic material from Kimmeridgian allodapic limestones in the central Northern Calcareous Alps. The Kimmeridgian age is proven by the occurrence of the benthic foraminifera Protopeneroplis striata and Labyrinthina mirabilis, the dasycladalean algae Salpingoporella pygmea, and the alga incertae sedis Pseudolithocodium carpathicum. From the geochemical composition the analysed spinels are pleonastes and show a dominance of Al-chromites (Fe3+–Cr3+–Al3+ diagram. In the Mg/(Mg+ Fe2+ vs. Cr/(Cr+ Al diagram they can be classified as type II ophiolites and in the TiO2 vs. Al2O3 diagram they plot into the SSZ peridotite field. All together this points to a harzburgite

  19. Four billion years of ophiolites reveal secular trends in oceanic crust formation

    Directory of Open Access Journals (Sweden)

    Harald Furnes

    2014-07-01

    Full Text Available We combine a geological, geochemical and tectonic dataset from 118 ophiolite complexes of the major global Phanerozoic orogenic belts with similar datasets of ophiolites from 111 Precambrian greenstone belts to construct an overview of oceanic crust generation over 4 billion years. Geochemical discrimination systematics built on immobile trace elements reveal that the basaltic units of the Phanerozoic ophiolites are dominantly subduction-related (75%, linked to backarc processes and characterized by a strong MORB component, similar to ophiolites in Precambrian greenstone sequences (85%. The remaining 25% Phanerozoic subduction-unrelated ophiolites are mainly (74% of Mid-Ocean-Ridge type (MORB type, in contrast to the equal proportion of Rift/Continental Margin, Plume, and MORB type ophiolites in the Precambrian greenstone belts. Throughout the Phanerozoic there are large geochemical variations in major and trace elements, but for average element values calculated in 5 bins of 100 million year intervals there are no obvious secular trends. By contrast, basaltic units in the ophiolites of the Precambrian greenstones (calculated in 12 bins of 250 million years intervals, starting in late Paleo- to early Mesoproterozoic (ca. 2.0–1.8 Ga, exhibit an apparent decrease in the average values of incompatible elements such as Ti, P, Zr, Y and Nb, and an increase in the compatible elements Ni and Cr with deeper time to the end of the Archean and into the Hadean. These changes can be attributed to decreasing degrees of partial melting of the upper mantle from Hadean/Archean to Present. The onset of geochemical changes coincide with the timing of detectible changes in the structural architecture of the ophiolites such as greater volumes of gabbro and more common sheeted dyke complexes, and lesser occurrences of ocelli (varioles in the pillow lavas in ophiolites younger than 2 Ga. The global data from the Precambrian ophiolites, representative of nearly 50

  20. Thermo-mechanical models of obduction applied to the Oman ophiolite

    Science.gov (United States)

    Thibault, Duretz; Philippe, Agard; Philippe, Yamato; Céline, Ducassou; Taras, Gerya; Evguenii, Burov

    2015-04-01

    During obduction regional-scale fragments of oceanic lithosphere (ophiolites) are emplaced somewhat enigmatically on top of lighter continental lithosphere. We herein use two-dimensional thermo-mechanical models to investigate the feasibility and controlling parameters of obduction. The models are designed using available geological data from the Oman (Semail) ophiolite. Initial and boundary conditions are constrained by plate kinematic and geochronological data and modeling results are validated against petrological and structural observations. The reference model consists of three distinct stages: (1) initiation of oceanic subduction initiation away from Arabian margin, (2) emplacement of the Oman Ophiolite atop the Arabian margin, (2) dome-like exhumation of the subducted Arabian margin beneath the overlying ophiolite. A parametric study suggests that 350-400 km of shortening allows to best fit both the peak P-T conditions of the subducted margin (1.5-2.5 GPa / 450-600°C) and the dimensions of the ophiolite (~170 km width), in agreement with previous estimations. Our results further confirm that the locus of obduction initiation is close to the eastern edge of the Arabian margin (~100 km) and indicate that obduction is facilitated by a strong continental basement rheology.

  1. Neodymium and strontium isotope study of ophiolite and orogenic lherzolite petrogenesis

    International Nuclear Information System (INIS)

    Richard, P.; Allegre, C.J.; Paris-7 Univ., 75

    1980-01-01

    Neodymium isotopic analyses have been measured on nine ophiolites and four orogenic lherzolites. Epsilonsub(Nd) varies from +12 to +3 in the ophiolites and from +18 to +2 in the orogenic lherzolites. The majority of the analyses plot on a epsilonsub(Nd)-epsilonsub(Sr) correlation line as defined by Nd and Sr isotopic analyses of oceanic basalts. However, certain ophiolitic and lherzolitic samples exhibit high 87 Sr/ 86 Sr ratios and as such lie to the right of the correlation line towards seawater compositions. From these data one can postulate several origins for ophiolites including that of mid-ocean ridges and ocean islands. If the orogenic lherzolites are interpreted as representative of the mantle occurring below active ridges a more complex model is required involving mantle heterogeneity and multi-episodic chemical fractionation starting prior to 2 Ga ago. (orig.)

  2. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau

    Science.gov (United States)

    Zeng, Yun-Chuan; Xu, Ji-Feng; Chen, Jian-Lin; Wang, Bao-Di; Kang, Zhi-Qiang; Huang, Feng

    2018-02-01

    The formation of the Shiquanhe-Yunzhug-Namu Tso ophiolite mélange zone (SNMZ) within the Lhasa Terrane, Tibetan Plateau, is key to understanding the Mesozoic tectonic evolution of this terrane, which remains controversial. We show that the Yunzhug ophiolite in the central segment of the SNMZ formed at 150 Ma, based on U-Pb dating of zircons from a gabbroic sample in a well-developed sheeted dike complex. Geochemically, these mafic rocks are dominated by E-MORB-type compositions, along with minor amounts of rocks with P-MORB-type compositions. The samples also exhibit high εNd(t) values and lack negative Nb and Ta anomalies. Data for all the samples plot within the MORB array on a Th/Yb-Nb/Yb diagram. Therefore, these mafic rocks most likely formed in either a slow spreading oceanic setting or an embryonic ocean, and not in a back-arc basin as has been previously assumed. Taking into account the regional geology, we propose that the Yunzhug ophiolite is part of a distinct ophiolitic belt and represents material formed in an embryonic ocean within the Lhasa Terrane, which provides new insights into the Jurassic tectonic evolution of the Lhasa Terrane.

  3. Geophysical Characterization of Serpentinite Hosted Hydrogeology at the McLaughlin Natural Reserve, Coast Range Ophiolite

    Science.gov (United States)

    Ortiz, Estefania; Tominaga, Masako; Cardace, Dawn; Schrenk, Matthew O.; Hoehler, Tori M.; Kubo, Michael D.; Rucker, Dale F.

    2018-01-01

    Geophysical remote sensing both on land and at sea has emerged as a powerful approach to characterize in situ water-rock interaction processes in time and space. We conducted 2-D Electrical Resistivity Tomography (ERT) surveys to investigate in situ hydrogeological architecture within the Jurassic age tectonic mélange portion of the Coast Range Ophiolite Microbial Observatory (CROMO) during wet and dry seasons, where water-rock interactive processes are thought to facilitate a subsurface biosphere. Integrating survey tracks traversing two previously drilled wells, QV1,1 and CSW1,1 at the CROMO site with wireline and core data, and the Serpentine Valley site, we successfully documented changes in hydrogeologic properties in the CROMO formation, i.e., lateral and vertical distribution of conductive zones and their temporal behavior that are dependent upon seasonal hydrology. Based on the core-log-ERT integration, we propose a hydrogeological architectural model, in which the formation is composed of three distinct aquifer systems: perched serpentinite aquifer without seasonal dependency (shallow system), well-cemented serpentine confining beds with seasonal dependency (intermediate system), serpentinite aquifer (deep system), and the ultramafic basement that acts as a quasi-aquiclude (below the deep system). The stunning contrast between the seasonality in the surface water availability and groundwater storativity in the formation allowed us to locate zones where serpentinite weathering and possibly deeper serpentinization processes might have taken place. We based our findings primarily on lithological composition and the distribution of the conductive formation, our work highlights the link between serpentinite weathering processes and possible sources of water in time and space.

  4. Evaluation of Heterotrophy in in Serpentinite-Associated Waters from the Coast Range Ophiolite, Northern California, USA and the Zambales Ophiolite, Philippines

    Science.gov (United States)

    Scott, T. J.; Arcilla, C. A.; Cardace, D.; Hoehler, T. M.; McCollom, T. M.; Meyer-Dombard, D. R.; Schrenk, M. O.

    2013-12-01

    The deep biosphere in cold, dark sub-seafloor ultramafic rocks (i.e., those rocks rich in Fe and Mg) is stressed by exceedingly high pH, transient, if any, inorganic carbon availability, and little known organic carbon inventories. As a test of heterotrophic carbon use, serpentinite-associated waters (from groundwater sampling wells and associated surface seepages in tectonically uplifted mantle units in ophiolites) were tested for differences with respect to aqueous geochemistry and performance in EcoPlates™ - Biolog Inc. .. This work focuses on two field locations for water sampling: the Coast Range Ophiolite, CA, USA, and the Zambales Ophiolite, Philippines. Characteristics of each sampling site are presented (pH, mineral substrate, Ca2+/Mg2+ ratio, aqueous metal loads, etc.). Complementary EcoPlate™ results [prefabricated 96-well plates, seeded with triplicate experiments for determining microbiological community response to difference organic carbon sources; a triplicate control experiment with just water is built in to the plate also] are also presented. We found that waters from selected California [groundwater wells (7 discrete wells) and related surface seeps (5 hydrologically connected sites)] and Philippines [4 Zambales Ophiolite springs/seepages] sourced in serpentinites were analyzed. EcoPlate™ average well-color development (AWCD), which demonstrates microbial activities averaged per plate (as in Garland and Mills, 1991), differs across sites. Correlations of AWCD with environmental data (such as pH, oxidation-reduction potential or ORP, Ca2+/Mg2+ ratio, and Fe contents) are evaluated. Clarifying the geochemical-biological relationships that bear out in these analyses informs discourse on the energetic limits of life in serpentinizing systems, with relevance to ultramafic-hosted life on continents and in the seabed.

  5. Paleomagnetism of the Oman Ophiolite: New Results from Oman Drilling Project Cores

    Science.gov (United States)

    Horst, A. J.; Till, J. L.; Koornneef, L.; Usui, Y.; Kim, H.; Morris, A.

    2017-12-01

    The Oman Drilling Project drilled holes at four sites in a transect through the southern massifs of the Samail ophiolite, and recovered 1500 m of igneous and metamorphic rocks. We focus on three sites from the oceanic crustal section including lower layered gabbros (GT1A), the mid-crustal layered to foliated gabbro transition (GT2A), and the shallower transition from sheeted dikes to varitextured gabbros (GT3A). Detailed core descriptions, analyses, and paleomagnetic measurements, were made on D/V Chikyu from July to September 2017 to utilize the core laboratory facilities similar to IODP expeditions. Shipboard measurements included anisotropy of magnetic susceptibility (AMS) and alternating field and thermal demagnetization of 597 discrete samples. Sample demagnetization behavior is varied from each of the cores, with some revealing multiple components of magnetization, and others yielding nearly univectorial data. The interpretation of results from the lower crustal cores is complicated by the pervasive presence of secondary magnetite. In almost all samples, a stable component was resolved (interpreted as a characteristic remanent magnetization) after removal of a lower-coercivity or lower unblocking-temperature component. The inclinations of the stable components in the core reference frame are very consistent in Hole GT1A. However, a transition from negative to positive inclinations in GT2A suggests some structural complexity, possibly as a result of intense late faulting activity. Both abrupt and gradual transitions between multiple zones of negative and positive inclinations occur in Hole GT3A. Interpretation and direct comparison of remanence between drill sites is difficult as recovered core pieces currently remain azimuthally unoriented, and GT2A was drilled at a plunge of 60°, whereas GT1A and GT3A were both drilled vertically. Work is ongoing to use borehole imagery to reorient the core pieces and paleomagnetic data into a geographic in situ reference

  6. Geology of the Zambales ophiolite, Luzon, Philippines

    Science.gov (United States)

    Rossman, D.L.; Castanada, G.C.; Bacuta, G.C.

    1989-01-01

    The Zambales ophiolite of western Luzon, Philippines, exposes a typical succession of basalt flows, diabasic dikes, gabbro and tectonized harzburgite. The age established by limiting strata is late Eocene. Lack of evidence of thrust faulting and the general domal disposition of the lithologie units indicate that the ophiolitic rocks are exposed by uplift. Highly complex internal layered structures within the complex are related to processes developed during formation of the ophiolite and the Zambales ophiolite may be one of the least disturbed (by emplacement) ophiolitic masses known. The exposed mass trends north and the upper surface plunges at low angles (a few degrees) to the north and south. The chemistry and composition of the rocks in the northwest part of the Zambales area (Acoje block) is distinct from that in the southeastern segment (Coto block). The Acoje block, according to Evans (1983) and Hawkins and Evans (1983), resembles (on a chemical basis) arc-tholeiite series rocks from intra-island arcs and the rocks in the Coto block are typical back-arc basin rock series. The present writer believes that the ophiolite composes a single genetic unit and that the changes in composition are the result of changes that took place during the initial formation. The gabbro probably formed below a spreading center in an elongate, in cross section, V-shaped, magma chamber. The gabbro is estimated by the writer to be less than 2 km thick and may be less than 1 km in places. Numerous erosional windows through the gabbro in the northern and eastern side of the Zambales area show that the gabbro remaining in those areas is likely to be only a few hundred meters thick. Harzburgite is exposed to a depth of about 800 m in the Bagsit River area and this may be the deepest part of the ophiolite accessible for study on which there is any control on depth. A transitional zone, about 200 m thick lying between the gabbro and harzburgite, is composed of serpentinized dunite

  7. Beginning the Modern Regime of Subduction Tectonics in Neoproterozoic time: Inferences from Ophiolites of the Arabian-Nubian Shield

    Science.gov (United States)

    Stern, R.

    2003-04-01

    It is now clear that the motive force for plate tectonics is provided by the sinking of dense lithosphere in subduction zones. Correspondingly, the modern tectonic regime is more aptly called ``subduction tectonics" than plate tectonics, which only describes the way Earth's thermal boundary layer adjusts to subduction. The absence of subduction tectonics on Mars and Venus implies that special circumstances are required for subduction to occur on a silicate planet. This begs the question: When did Earth's oceanic lithosphere cool sufficiently for subduction to began? This must be inferred from indirect lines of evidence; the focus here is on the temporal distribution of ophiolites. Well-preserved ophiolites with ``supra-subduction zone" (SSZ) affinities are increasingly regarded as forming when subduction initiates as a result of lithospheric collapse (± a nudge to get it started), and the formation of ophiolitic lithosphere in evolving forearcs favors their emplacement and preservation. The question now is what percentage of ophiolites with ``supra-subduction zone" (SSZ) chemical signatures formed in forearcs during subduction initiation events? Most of the large, well-preserved ophiolites (e.g., Oman, Cyprus, California, Newfoundland) may have this origin. If so, the distribution in space and time of such ophiolites can be used to identify ``subduction initiation" events, which are important events in the evolution of plate tectonics. Such events first occurred at the end of the Archean (˜2.5Ga) and again in the Paleoproterozoic (˜1.8 Ga), but ophiolites become uncommon after this. Well-preserved ophiolites become abundant in Neoproterozoic time, at about 800±50 Ma. Ophiolites of this age are common and well-preserved in the Arabian-Nubian Shield (ANS) of Egypt, Sudan, Ethiopia, Eritrea, and Saudi Arabia. ANS ophiolites mostly contain spinels with high Cr#, indicating SSZ affinities. Limited trace element data on pillowed lavas supports this interpretation

  8. The Othris Ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge

    NARCIS (Netherlands)

    Barth, M.G.; Mason, P.R.D.; Davies, G.R.; Drury, M.R.

    2008-01-01

    The mantle section of the Tethyan-type Othris Ophiolite, Greece, records tectono-magmatic processes characteristic of both mid-ocean ridges and supra-subduction zones. The Othris Ophiolite is a remnant of the Jurassic Neotethys Ocean, which existed between Eurasia and Gondwanaland. Othris

  9. Natural flows of H2-rich fluids in the ophiolites of Oman and the Philippines: Tectonic control of migration pathways and associated diagenetic processes

    Science.gov (United States)

    Deville, E. P.; Prinzhofer, A.; Vacquand, C.; Chavagnac, V.; Monnin, C.; Ceuleneer, G.; Arcilla, C. A.

    2009-12-01

    We compare the geological environments of sites of emission of natural hydrogen in the Oman ophiolite and the Zambales ophiolite (Luzon, Philippines). The genesis of natural H2 results from the interaction between ultrabasic rocks and aqueous solutions circulating in deep fracture networks, by oxidation of metals (Fe2+, Mn2+) and reduction of water, probably under high temperature conditions. This process generates very reducing conditions capable of destabilizing other molecules (notably reduction of deep CO2 being transformed into CH4 by Fisher-Tropsch type reactions). Nitrogen is also commonly associated to the H2-rich fluids. H2 flows are associated with the expulsion of hyperalkaline waters rich in ions OH- and Ca2+ and characterized by high pH (between 11 and 12). Most alkaline springs are found in the vicinity of major faults and/or lithological discontinuities like the basal thrust plane of the ophiolites and the peridotite-gabbro contact (Moho). Within the fracture networks, gas and water separate probably at shallow depth, i.e. close to the top of the upper aquifer level. Locally high flows of gas migrate vertically through fracture pathways and they are able to inflame spontaneously on the surface. Aqueous fluids tends to migrate laterally in the fracture network toward the creeks where most of the hyperalkaline springs are found. This water circulation induces a chain of diagenetic reactions starting in the fracture systems and continuing at the surface where it leads to the precipitation of calcite, aragonite, brucite and more rarely portlandite. This chain of diagenetic reactions is associated with the capture of the atmospheric CO2 during the precipitation of carbonates.

  10. Multi-scale Onland-Offshore Investigations of the New Caledonia Ophiolite, SW Pacific

    Science.gov (United States)

    Clerc, C. N.; Collot, J.; Sevin, B.; Patriat, M.; Etienne, S.; Iseppi, M.; Lesimple, S.; Jeanpert, J.; Mortimer, N. N.; Poli, S.; Pattier, F.; Juan, C.; Robineau, B.; Godard, M.; Cluzel, D.

    2017-12-01

    The Peridotite Nappe of New Caledonia is one of the largest ultramafic ophiolite in the World: it represents about one quarter of the 500 x 80 km island of Grande Terre. This extensive upper mantle unit was tectonically emplaced during the Eocene onto the northeastern edge of Zealandia continent. It is weakly deformed because it was not involved in a collision belt after obduction. A dome-shaped Eocene HP/LT metamorphic complex was exhumed across the fore-arc mantle lithosphere in the northern tip of the island. Post-obduction Miocene to Present coral reefs developed in shallow waters around Grande Terre and surrounding islands. In the perspective of a possible onshore/offshore drilling project (IODP/ICDP), we present recent advances in our understanding of offshore extensions of this ophiolite. To the south of New Caledonia, the offshore continuation of the ultramafic allochthon has been identified by dredges and by its geophysical signature as a continuous linear body that extends over a distance of more than 400 km at about 2000m bsl. Such water depths allow an unprecedented seismic reflection imaging of a drowned and well-preserved ophiolite. Seismic profiles show that the nappe has a flat-top, and is capped by carbonate reefs and dissected by several major normal faults. To the east of this presumed ultramafic body, Felicité Ridge is a 30 km wide, 350 km long, dome-shaped ridge, which may be interpreted as the possible southern extension of the HP/LT metamorphic complex observed onshore. Onshore, several 150 to 200 m long cores were drilled in the ophiolite and airborne electromagnetic allowed high-resolution imaging down to 400 m depth. These recent results allow identification of internal thrusts within the peridotite body and more superficial landslides. The analysis of polyphase fracturation and associated serpentinization brings new constraints on the tectonic evolution of the ophiolite and its subsequent weathering pattern. We integrate these data and

  11. Structural evolution of the Semail Ophiolite metamorphic sole, Wadi Hawasina and Northern Jebel Nakhl Culmination, Oman

    Science.gov (United States)

    Hurtado, C.; Bailey, C.; Visokay, L.; Scharf, A.

    2017-12-01

    The Semail ophiolite is the world's largest and best-exposed ophiolite sequence, however the processes associated with both oceanic detachment and later emplacement onto the Arabian continental margin remain enigmatic. This study examines the upper mantle section of the ophiolite, its associated metamorphic sole, and the autochthonous strata beneath the ophiolite at two locations in northern Oman. Our purpose is to understand the structural history of ophiolite emplacement and evaluate the deformation kinematics of faulted and sheared rocks in the metamorphic sole. At Wadi Hawasina, the base of the ophiolite is defined by a 5- to 15-m thick zone of penetratively-serpentinized mylonitic peridotite. Kinematic indicators record top-to-the SW (reverse) sense-of-shear with a triclinic deformation asymmetry. An inverted metamorphic grade is preserved in the 300- to 500-m thick metamorphic sole that is thrust over deep-water sedimentary rocks of the Hawasina Group. The study site near Buwah, in the northern Jebel Nakhl culmination, contains a N-to-S progression of mantle peridotite, metamorphic sole, and underlying Jurassic carbonates. Liswanite crops out in NW-SE trending linear ridges in the peridotite. The metamorphic sole includes well-foliated quartzite, metachert, and amphibolite. Kinematic evidence indicates that the liswanite and a serpentinized mélange experienced top to-the north (normal) sense-of-shear. Two generations of E-W striking, N-dipping normal faults separate the autochthonous sequence from the metamorphic sole, and also cut out significant sections of the metamorphic sole. Fabric analysis reveals that the metamorphic sole experienced flattening strain (K<0.2) that accumulated during pure shear-dominated general shear (Wk<0.4). Normal faulting and extension at the Buwah site indicates that post-ophiolite deformation is significant in the Jebel Akhdar and Jebel Nakhl culminations.

  12. Stratigraphic units overlying the Zambales Ophiolite Complex (ZOC) in Luzon, (Philippines): Tectonostratigraphic significance and regional implications

    Science.gov (United States)

    Queaño, Karlo L.; Dimalanta, Carla B.; Yumul, Graciano P.; Marquez, Edanjarlo J.; Faustino-Eslava, Decibel V.; Suzuki, Shigeyuki; Ishida, Keisuke

    2017-07-01

    The Zambales Ophiolite Complex (ZOC) on the island of Luzon, Philippines is one of the most well-studied crust-mantle sequences in the region. Several massifs comprise the ZOC, one of which is the Coto Block overlain by clastic sedimentary units previously dated as Eocene. Geochronologic studies from diabase, granodiorites and other late-stage magmatic products similarly yielded the same age. Succeeding tectonic models have therefore all been grounded on the assumption that the entire ZOC is Eocene. Recent investigations, however, revealed the presence of chert blocks within the Early to Middle Miocene clastic formation overlying the Acoje Block in the northern part of the ophiolite complex. Radiolarians extracted from the cherts yielded a stratigraphic range that suggests a Late Jurassic to Early Cretaceous age. The recognition of a much older age than previously reported of the ZOC warrants a re-examination of its actual distribution and genesis. Correlating with other similarly-aged ophiolites, we suggest defining a western Mesozoic ophiolite belt, largely extending from the west-central portion of the archipelago to the northeastern tip of Luzon island. Tentatively, we attribute the Mesozoic ophiolitic and associated rocks in western Luzon to an arc-continent collision involving the Philippine Mobile Belt and the Palawan Microcontinental Block. In addition, differences in the clastic compositions of the Cenozoic sedimentary formations provide material not only for deciphering the ZOC's unroofing history but also for constraining the timing of province linkage. The intermittent appearance of lithic fragments and detrital minerals from the ophiolite in the units of the Middle Miocene Candelaria Limestone and the Late Miocene to Early Pliocene Sta. Cruz Formation indicates significant but geographically variable contributions from the ophiolite complex. In the northern Zambales Range, the Sta. Cruz Formation caps the Coto Block and the Acoje Block of the ZOC

  13. Sulfide mineralization in ultramafic rocks of the Faryab ophiolite complex, southern Kerman

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajabzadeh

    2015-10-01

    Full Text Available Introduction Worldwide, Ni-Cu and PGE magmatic sulfide deposits are confined to the lower parts of stratiform mafic and ultramafic complexes. However, ophiolite mafic and ultramafic complexes have been rarely explored for sulfide deposits despite the fact that they have been extensively explored and exploited for chromite. Sulfide saturation during magmatic evolution is necessary for sulfide mineralization, in which sulfide melts scavenge chalcophile metals from the parent magma and concentrate them in specific lithological zones. The lack of exploration for sulfides in this environment suggests that sulfide saturation is rarely attained in ophiolite-related magmas. Some ophiolites, however, contain sulfide deposits, such as at Acoje in Philippines, and Cliffs in Shetland, U.K. (Evans, 2000; Naldrett, 2004. The Faryab ophiolite complex in southern Kerman Province, the most important mining area for chromite deposits in Iran, is located in the southwest part of the Makran Zone. Evidence of sulfide mineralization has been reported there by some authors (e.g. Rajabzadeh and Moosavinasab, 2013. This paper discusses the genesis of sulfides in the Faryab ophiolite using mineral chemistry of the major mineral phases in different rocks of the ophiolite column in order to determine the possible lithological location of sulfide deposits. Materials and methods Seventy three rock samples from cumulate units were collected from surficial occurrences and drill core. The samples were studied using conventional microscopic methods and the mineralogy confirmed by x-ray diffraction. Electron microprobe analysis was carried out on different mineral phases in order to determine the chemistry of the minerals used in the interpretation of magma evolution in the Faryab ophiolite. Lithologically, the Faryab ophiolite complex is divided into two major parts: the northern part includes magmatic rocks and the southern part is comprised of rocks residual after partial

  14. Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc : Evidence from paleomagnetism, sediment provenance, and stratigraphy

    NARCIS (Netherlands)

    Huang, Wentao; van Hinsbergen, Douwe J J; Maffione, Marco; Orme, Devon A.; Dupont-Nivet, Guillaume; Guilmette, Carl; Ding, Lin; Guo, Zhaojie; Kapp, Paul

    2015-01-01

    The India-Asia suture zone of southern Tibet exposes Lower Cretaceous Xigaze ophiolites and radiolarian cherts, and time-equivalent Asian-derived clastic forearc sedimentary rocks (Xigaze Group). These ophiolites have been interpreted to have formed in the forearc of the north-dipping subduction

  15. Contrasting thermal and melting histories for segments of mantle lithosphere in the Nahlin ophiolite, British Columbia, Canada

    Science.gov (United States)

    McGoldrick, Siobhan; Canil, Dante; Zagorevski, Alex

    2018-03-01

    The Permo-Triassic Nahlin ophiolite is the largest and best-preserved ophiolite in the Canadian Cordillera of British Columbia and Yukon, Canada. The ophiolite is well-exposed along its 150 km length with mantle segments divisible into the Hardluck and Menatatuline massifs. Both massifs comprise mostly depleted spinel harzburgite (exchange temperatures in the mantle of the ophiolite also change systematically along strike with the degree of partial melt depletion. The temperatures recorded by REE and Ca-Mg exchange between coexisting pyroxenes require markedly higher peak temperatures and cooling rates for the Menatatuline massif (1250 °C, 0.1-0.01 °C/year) compared to the Hardluck massif (rates controlled by presence or absence of a crustal section above the mantle lithosphere, or by rapid exhumation along a detachment.

  16. The ophiolitic North Fork terrane in the Salmon River region, central Klamath Mountains, California

    Science.gov (United States)

    Ando, C.J.; Irwin, W.P.; Jones, D.L.; Saleeby, J.B.

    1983-01-01

    The North Fork terrane is an assemblage of ophiolitic and other oceanic volcanic and sedimentary rocks that has been internally imbricated and folded. The ophiolitic rocks form a north-trending belt through the central part of the region and consist of a disrupted sequence of homogeneous gabbro, diabase, massive to pillowed basalt, and interleaved tectonitic harzburgite. U-Pb zircon age data on a plagiogranite pod from the gabbroic unit indicate that at least this part of the igneous sequence is late Paleozoic in age.The ophiolitic belt is flanked on either side by mafic volcanic and volcaniclastic rocks, limestone, bedded chert, and argillite. Most of the chert is Triassic, including much of Late Triassic age, but chert with uncertain stratigraphic relations at one locality is Permian. The strata flanking the east side of the ophiolitic belt face eastward, and depositional contacts between units are for the most part preserved. The strata on the west side of the ophiolitic belt are more highly disrupted than those on the east side, contain chert-argillite melange, and have unproven stratigraphic relation to either the ophiolitic rocks or the eastern strata.Rocks of the North Fork terrane do not show widespread evidence of penetrative deformation at elevated temperatures, except an early tectonitic fabric in the harzburgite. Slip-fiber foliation in serpentinite, phacoidal foliation in chert and mafic rocks, scaly foliation in argillite, and mesoscopic folds in bedded chert are consistent with an interpretation of large-scale anti-formal folding of the terrane about a north-south hinge found along the ophiolitic belt, but other structural interpretations are tenable. The age of folding of North Fork rocks is constrained by the involvement of Triassic and younger cherts and crosscutting Late Jurassic plutons. Deformation in the North Fork terrane must have spanned a short period of time because the terrane is bounded structurally above and below by Middle or Late

  17. Petrography and mineral chemistry of metamorphosed mantle peridotites of Nain Ophiolite (Central Iran)

    OpenAIRE

    Nargess Shirdashtzadeh; Ghodrat Torabi; Ramin Samadi

    2017-01-01

    Introduction Study of the petrology of the ophiolites as the relics of ancient oceanic lithosphere, is a powerful tool to reconstruct Earth’s history. Mantle peridotites have mostly undergone alteration and serpentinization to some extent. Thus, the relics of metamorphic signatures from the upper mantle and crustal processes from most of the peridotites have been ruined. Several recent papers deal with the mantle peridotites of Nain Ophiolite (e.g. Ghazi et al., 2010). However, no scientif...

  18. Eclogite nappe-stack in the Grivola-Urtier Ophiolites (Southern Aosta Valley, Western Alps)

    Science.gov (United States)

    Tartarotti, Paola

    2013-04-01

    In the Western Alpine chain, ophiolites represent a section of the Mesozoic Tethys oceanic lithosphere, involved in subduction during the convergence between the paleo-Africa and paelo-Europe continents during the Cretaceous - Eocene. The Western Alpine ophiolites consist of several tectonic units, the most famous being the Zermatt-Saas and Combin nappes, and other major ophiolite bodies as the Voltri, Monviso, and Rocciavrè that show different rock assemblages and contrasting metamorphic imprints. The Grivola-Urtier (GU) unit is exposed in the southern Aosta Valley, covering an area of about 100 km2; it is tectonically sandwiched between the continentally-derived Pennidic Gran Paradiso Nappe below, and the Austroalpine Mount Emilius klippe above. This unit has been so far considered as part of the Zermatt-Saas nappe extending from the Saas-Fee area (Switzerland) to the Aosta Valley (Italy). The GU unit consists of serpentinized peridotites that include pods and boudinaged layers of eclogitic Fe-metagabbro and trondhjemite, rodingites and chloriteschists transposed in the main foliation together with calcschists and micaschists. All rocks preserve particularly fresh eclogitic mineral assemblages. The contact between the serpentinites and calcshists is marked by a tectonic mélange consisting of mylonitic marble and calcschist with stretched and boudinaged serpentinite blocks. Continentally-derived allochthonous blocks ranging in size from100 meters to meters are also included within the ophiolites. New field, petrographic and geochemical data reveal the complex nature of the fossil Tethyan oceanic lithosphere exposed in the southern Aosta Valley, as well as the extent and size of the continental-oceanic tectonic mélange. The geological setting of the GU unit is here inferred as a key tool for understanding the complex architecture of the ophiolites in the Western Alps.

  19. The basal part of the Oman ophiolitic mantle: a fossil Mantle Wedge?

    Science.gov (United States)

    Prigent, Cécile; Guillot, Stéphane; Agard, Philippe; Godard, Marguerite; Chauvet, Alain; Dubacq, Benoit; Monié, Patrick; Yamato, Philippe

    2014-05-01

    Although the Oman ophiolite is classically regarded as being the direct analog of oceanic lithosphere created at fast spreading ridges, the geodynamic context of its formation is still highly debated. The other alternative end-member model suggests that this ophiolite entirely formed in a supra-subduction zone setting. Fluids involved in the hydration of the oceanic lithosphere and in the presence of a secondary boninitic and andesitic volcanism may provide a way to discriminate between these two interpretations: are they descending near-axis hydrothermal fluxes (first model) or ascending from a subducting slab (second model)? We herein focus on the base of the ophiolitic mantle in order to characterize the origin of fluids and decipher hydration processes. Samples were taken along hecto- to kilometre-long sections across the basal banded unit directly overlying the amphibolitic/granulitic metamorphic sole. We carried out a petrological, structural and geochemical study on these rocks and their constitutive minerals. Our results show that, unlike the generally refractory character of Oman harzburgites, all the basal mantle rocks display secondary crystallization of clinopyroxene and amphibole through metasomatic processes. The microstructures and the chronology of these secondary mineralizations (clinopyroxene, pargasitic amphibole, antigorite and then lizardite/chrysotile) suggest that these basal rocks have been affected by cooling from mantle temperatures (serpentines (B, Sr, Rb, Ba, As), are consistent with amphibolite-derived fluids (Ishikawa et al., 2005) and cannot be easily explained by other sources. Based on these observations, we propose a geodynamic model in which intense and continuous metasomatism of the cooling base of the ophiolitic mantle is due to the release of fluids coming from the progressive dehydration of underlying amphibolitic rocks. This process is compatible with the progressive subduction of the Arabian margin during the Upper

  20. Origin of Manipur Ophiolite Complex, Indo-Myanmar Range ...

    Indian Academy of Sciences (India)

    r b

    2017-11-20

    Nov 20, 2017 ... The Manipur. Ophiolite. Complex: Varying degree of serpentinization and relict pyroxenes. 11/20/2017. 13. Page 14. Serpentinization process preserves the protolith elemental signatures. 11/20/2017. 14 ... The range of Nd isotope ratios in the serpentinized peridotites. 11/20/2017. 17. Kingson et al.

  1. Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet

    Science.gov (United States)

    Zhang, Xiu-Zheng; Dong, Yong-Sheng; Wang, Qiang; Dan, Wei; Zhang, Chunfu; Deng, Ming-Rong; Xu, Wang; Xia, Xiao-Ping; Zeng, Ji-Peng; Liang, He

    2016-07-01

    Reconstructing the evolutionary history of the Paleo-Tethys Ocean remains at the center of debates over the linkage between Gondwana dispersion and Asian accretion. Identifying the remnants of oceanic lithosphere (ophiolites) has very important implications for identifying suture zones, unveiling the evolutionary history of fossil oceans, and reconstructing the amalgamation history between different blocks. Here we report newly documented ophiolite suites from the Longmu Co-Shuanghu Suture zone (LSSZ) in the Xiangtaohu area, central Qiangtang block, Tibet. Detailed geological investigations and zircon U-Pb dating reveal that the Xiangtaohu ophiolites are composed of a suite of Permian (281-275 Ma) ophiolites with a nearly complete Penrose sequence and a suite of Early Carboniferous (circa 350 Ma) ophiolite remnants containing only part of the lower oceanic crust. Geochemical and Sr-Nd-O isotopic data show that the Permian and Carboniferous ophiolites in this study were derived from an N-mid-ocean ridge basalts-like mantle source with varied suprasubduction-zone (SSZ) signatures and were characterized by crystallization sequences from wet magmas, suggesting typical SSZ-affinity ophiolites. Permian and Carboniferous SSZ ophiolites in the central Qiangtang provide robust evidence for the existence and evolution of an ancient ocean basin. Combining with previous studies on high-pressure metamorphic rocks and pelagic radiolarian cherts, and with tectonostratigraphic and paleontological data, we support the LSSZ as representing the main suture of the Paleo-Tethys Ocean which probably existed and evolved from Devonian to Triassic. The opening and demise of the Paleo-Tethys Ocean dominated the formation of the major framework for the East and/or Southeast Asia.

  2. Timing of pyroxenite formation in supra-subduction Josephine Ophiolite, Oregon.

    Science.gov (United States)

    Hough, T.; Le Roux, V.; Kurz, M. D.

    2017-12-01

    The Josephine ophiolite is a partly dismembered ophiolite located in southern Oregon and northwestern California (USA). It displays a large ( 640 km2) mantle section that is mostly composed of depleted spinel harzburgite and lherzolite re-equilibrated at temperatures of 900 °C. In addition, the peridotite section of the ophiolite contains minor dunites and pyroxenite veins ranging from orthopyroxenites to clinopyroxenites. Using field, petrological and geochemical data, previous studies have shown that the peridotite experienced 10-20% of hydrous flux melting. In addition, clinopyroxene and orthopyroxene in harzburgites show variable degrees of light rare-earth element (LREE) enrichment, which suggests percolation and re-equilibration with small fractions of boninite melt. Overall, the trace element concentrations of pyroxenes indicate that the harzburgites experienced particularly high degrees of melting in the mantle wedge. We collected a number of orthopyroxenite and clinopyroxenite veins in the mantle section of the Josephine Ophiolite. Here we present the major and rare-earth element (REE) contents of pyroxene in 4 orthopyroxenites and 2 clinopyroxenites and calculate the major element and REE closure temperatures for individual veins. We show that individual pyroxenites record drastic variations in their degree of REE depletion, indicating that multiple generations of melts percolated the peridotite. The pyroxenite veins also record higher REE closure temperatures (>1200 ºC) compared to the surrounding peridotite, potentially indicating rapid cooling after emplacement. REE closure temperatures are also higher than major element closure temperatures. In parallel, we analyzed Sr isotopes by MC-ICPMS in pyroxene separates from 4 veins. Results indicate that the maximum age of emplacement of orthopyroxenite veins corresponds to the age of exhumation. Some clinopyroxenites may have formed during earlier melt percolation events. This study supports the idea that

  3. Water-Rock Interactions in the Peridotite Aquifer of the Oman-UAE Ophiolite: Strontium Isotopic Ratio and Geochemical Evolution of Groundwater

    Science.gov (United States)

    Bompard, Nicolas; Matter, Juerg; Teagle, Damon

    2016-04-01

    The peridotite aquifer in Wadi Tayin, Sultanate of Oman, is a perfect example of natural carbonation of ultramafic rocks. In situ mineral carbonation is considered the most safest and permanent option of CO2 Capture and Sequestration (CCS). However, the process itself is yet to be characterised and a better understanding of the mechanisms involved in natural mineral carbonation is needed before geo-engineering it. We used the 87Sr/86Sr system to follow the water-rock interactions along the groundwater flowpath in the peridotite aquifer and to determine the sources of divalent cations (Mg2+, Ca2+) required for mineral carbonation. The Sr-isotope data of groundwater show that the aquifer rocks are the main source for divalent cations (Mg2+, Ca2+ and Sr2+) and secondary carbonates are their main sink. The groundwater 87Sr/86Sr ratio evolves with its pH: from 87Sr/86Sr = 0.7087 (n=3) to 0.7082 (n=8) between pH 7 and 8, and from 0.7086 (n=6) at pH 9 to 0.07075 (n=9) at pH 11. This evolution seems to support a two-step model for the water-rock interactions in the peridotite aquifer. From pH 7 to 8, secondary Ca-carbonate precipitation buffers the pH rise resulting from peridotite serpentinisation. From pH 9 to 11, peridotite serpentinisation drives the pH to alkaline condition. The change from a Mg-rich to a Ca-rich groundwater at pH 9 seems to confirm the two-step model.

  4. Deformation of the Songshugou ophiolite in the Qinling orogen

    Science.gov (United States)

    Sun, Shengsi; Dong, Yunpeng

    2017-04-01

    The Qinling orogen, middle part of the China Central Orogenic Belt, is well documented that was constructed by multiple convergences and subsequent collisions between the North China and South China Blocks mainly based on geochemistry and geochronology of ophiolites, magmatic rocks as well as sedimentary reconstruction. However, this model is lack of constraints from deformation of subduction/collision. The Songshugou ophiolite outcropped to the north of the Shangdan suture zone represents fragments of oceanic crust and upper mantle. Previous works have revealed that the ophiolite was formed at an ocean ridge and then emplaced in the northern Qinling belt. Hence, deformation of the ophiolite would provide constraints for the rifting and subduction processes. The ophiolite consists chiefly of metamorphosed mafic and ultramafic rocks. The ultramafic rocks contain coarse dunite, dunitic mylonite and harzburgite, with minor diopsidite veins. The mafic rocks are mainly amphibolite, garnet amphibolite and amphibole schist, which are considered to be eclogite facies and retrograde metamorphosed oceanic crust. Amphibole grains in the mafic rocks exhibit a strong shape-preferred orientation parallel to the foliation, which is also parallel to the lithologic contacts between mafic and ultramafic rocks. Electron backscattered diffraction (EBSD) analyses show strong olivine crystallographic preferred orientations (CPO) in dunite including A-, B-, and C-types formed by (010)[100], (010)[001] and (100)[001] dislocation slip systems, respectively. A-type CPO suggests high temperature plastic deformation in the upper mantle. In comparison, B-type may be restricted to regions with significantly high water content and high differential stress, and C-type may also be formed in wet condition with lower differential stress. Additionally, the dunite evolved into amphibolite facies metamorphism with mineral assemblages of olivine + talc + anthophyllite. Assuming a pressure of 1.5 GPa

  5. Origin of ophiolite complexes related to intra-oceanic subduction initiation: implications of IODP Expedition 352 (Izu-Bonin fore arc)

    Science.gov (United States)

    Robertson, Alastair; Avery, Aaron; Carvallo, Claire; Christeson, Gail; Ferré, Eric; Kurz, Walter; Kutterolf, Steffen; Morgan, Sally; Pearce, Julian; Reagan, Mark; Sager, William; Shervais, John; Whattam, Scott; International Ocean Discovery Program Expedition 352 (Izu-Bonin-Mariana Fore Arc), the Scientific Party of

    2015-04-01

    Ophiolites, representing oceanic crust exposed on land (by whatever means), are central to the interpretation of many orogenic belts (e.g. E Mediterranean). Based mostly on geochemical evidence, ophiolites are widely interpreted, in many but by no means all cases, as having formed within intra-oceanic settings above subduction zones (e.g. Troodos ophiolite, Cyprus). Following land geological, dredging and submersible studies, fore arcs of the SW Pacific region became recognised as likely settings of supra-subduction zone ophiolite genesis. This hypothesis was tested by recent drilling of the Izu-Bonin fore arc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that three of the sites are located in fault-controlled sediment ponds that formed in response to dominantly down-to the-west extensional faulting (with hints of preceding top-to-the-east compressional thrusting). The sediments overlying the igneous basement, of maximum Late Eocene to Recent age, document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds. At the two more trenchward sites (U1440 and U1441), mostly tholeiitic basalts were drilled, including massive and pillowed lavas and hyaloclastite. Geochemically, these extrusives are of near mid-oceanic ridge basalt composition (fore arc basalts). Subtle chemical deviation from normal MORB can be explained by weakly fluid-influenced melting during decompression melting in the earliest stages of supra-subduction zone spreading (not as 'trapped' older MORB). The remaining two sites, c. 6 km to the west (U1439 and U1442), penetrated dominantly high-magnesian andesites, known as boninites, largely as fragmental material. Their formation implies the extraction of highly depleted magmas from previously depleted, refractory upper mantle in a supra-subduction zone setting. Following supra-subduction zone spreading, the active

  6. Overview of Hole GT2A: Drilling middle gabbro in Wadi Tayin massif, Oman ophiolite

    Science.gov (United States)

    Takazawa, E.; Kelemen, P. B.; Teagle, D. A. H.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.

    2017-12-01

    Hole GT2A (UTM: 40Q 655960.7E / 2529193.5N) was drilled by the Oman Drilling Project (OmDP) into Wadi Gideah of Wadi Tayin massif in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT2A was diamond cored in 25 Dec 2016 to 18 Jan 2017 to a total depth of 406.77 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. 33 shipboard scientists were divided into six teams (Igneous, Alteration, Structural, Geochem, Physical Properties, Paleomag) to describe and analyze the cores. Hole GT2A drilled through the transition between foliated and layered gabbro. The transition zone occurs between 50 and 150 m curation corrected depth (CCD). The top 50 m of Hole GT2A is foliated gabbro whereas the bottom 250 m consists of layered gabbro. Brittle fracture is observed throughout the core. Intensity of alteration vein decreases from the top to the bottom of the hole. On the basis of changes in grain size and/or modal abundance and/or appearance/disappearance of igneous primary mineral(s) five lithological units are defined in Hole GT2A (Unit I to V). The uppermost part of Hole GT2A (Unit I) is dominated by fine-grained granular olivine gabbro intercalated with less dominant medium-grained granular olivine gabbro and rare coarse-grained varitextured gabbro. The lower part of the Hole (Units II, III and V) is dominated by medium-grained olivine gabbro, olivine melagabbro and olivine-bearing gabbro. Modally-graded rhythmic layering with

  7. Slab and Sediment Melting during Subduction Initiation: Mantle Plagiogranites from the Oman Ophiolite

    Science.gov (United States)

    Rollinson, H. R.

    2014-12-01

    Granitoid dykes up to several hundred metres wide and 2 km long are found in depleted harzburgites in the mantle section of the Oman ophiolite. They vary in composition from tonalite to potassic granite and are generally more potassic than the crustal plagiogranites found within the sheeted dyke complex higher up within the ophiolite stratigraphy. Some granites are strongly peraluminous and contain garnet and andalusite. They are geochemically variable, some with REE that are relatively unfractionated ((La/Yb)n= 3.5-6.0, flat middle to heavy REE, steep light REE) to those which are highly fractionated ((La/Yb)n= 28-220). On primitive-mantle normalised plots some have very high concentrations of fluid-mobile elements - Cs, Rb, Th, U and Pb. Few have significant Ta-Nb anomalies. On the Ca-Fe-Mg-Ti discrimination diagram of Patino Douce (J. Petrol., 1999) whole-rock compositions define a spectrum between felsic-pelite derived melts and amphibolite-derived melts. There is a chemical similarity between the least REE fractionated plagiogranites (generally tonalites and granodiorites) and melts of an amphibolitic parent. This is supported by the occurrence of mafic xenoliths in some dykes, the presence of hornblende and highly calcic cores (up to An85) in some plagioclase grains. Trace element modelling using Oman Geotimes lavas as the starting composition indicates that melting took place in the garnet stability field, although enrichment in the melt in Cs, Rb, Ba and Pb suggests that there was another component present in addition to the mafic parent. Other plagiogranites (trondhjemites and granites) have a strongly peraluminous chemistry and mineralogy and geochemical similarities with the Himalayan leucogranites implying that they were derived from a sedimentary protolith. These mantle plagiogranites are more prevalent in the northern outcrops of the ophiolite. The volume of granitoid melt and the depth of melting preclude their derivation from the sole of the

  8. Syndeformation Chrome Spinels Inclusions in the Plastically Deformed Olivine Aggregates (Kraka Ophiolites, the Southern Urals

    Directory of Open Access Journals (Sweden)

    D. E. Saveliev

    2015-12-01

    Full Text Available This article presents the results of structural, petrographic, mineralogical and chemical studies of dunite veinlets in spinel peridotite from the Kraka ophiolites. It is demonstrated that plastic deformation of polycrystalline olivine, which form dunite, was accompanied by precipitation of impurities (aluminum and chrome as newly formed chrome spinels. The thinnest acicular inclusions of 0.3-0.5 micron thick are aligned in olivine grains along [010] axis. Bigger elongated irregular chrome spinel grains usually occur along grain and sub-grain olivine boundaries, and, occasionally, inside the grains along [100] axis. Alteration from the fine xenomorphic grains of chrome spinels to the bigger idiomorphic crystals was observed. Analogically to dynamic ageing (dispersion hardening in metals, the structural and chemical alterations in dunites are interpreted as deformation induced segregation of impurities. It is suggested that the euhedral chrome spinel grains typical for ophiolitic dunites were formed by coalescence and spheroidization. This process may be a key factor in the formation of ophiolitic chrome ore deposits.

  9. Vestiges of Submarine Serpentinization Recorded in the Microbiology of Continental Ophiolite Complexes

    Science.gov (United States)

    Schrenk, M. O.; Sabuda, M.; Brazelton, W. J.; Twing, K. I.

    2017-12-01

    The study of serpentinization-influenced microbial ecosystems at and below the seafloor has accelerated in recent years with multidisciplinary drilling expeditions to the Atlantis Massif (X357), Southwest Indian Ridge (X360) and Mariana Forearc (X366). In parallel, a number of studies have surveyed serpentinizing systems in ophiolite complexes which host a range of geologic histories, geochemical characteristics, fluid pathways, and consequently microbiology. As ophiolite complexes originate as seafloor materials, it is likely that a microbiological record of seafloor serpentinization processes is maintained through the emplacement and weathering of continental serpentinites. This hypothesis was evaluated through a global comparison of continental serpentinite springs and groundwater, ranging from highly brackish (saline) to freshwater. One of the most saline sites, known as the Coast Range Ophiolite Microbial Observatory (CROMO), was used as a point-of-comparison to marine serpentinizing systems, such as the Lost City Hydrothermal Field. Although there was little taxonomic overlap between microbial populations in marine and terrestrial systems, both communities harbored an abundance of genes involved in sulfur metabolism, including sulfide oxidation, thiosulfate disproportionation, and sulfate reduction. The phylogeny of key genes involved in these metabolic processes was evaluated relative to published studies and compared between sites. Together, these data provide insights into both the functioning of microbial communities in modern-day serpentinizing systems, and the transport processes that disperse microorganisms between marine and terrestrial serpentinites.

  10. Magnetic properties of serpentinized peridotites from the Zedong ophiolite, Yarlung-Zangbo suture zone, SE Tibet

    Science.gov (United States)

    Li, Z.; Zheng, J.; Moskowitz, B. M.; Xiong, Q.; Liu, Q.

    2017-12-01

    Serpentinized mantle peridotites are widely supposed to be significant sources of the magnetic, gravity and seismic anomalies in mid-oceanic ridges, forearcs and suture zones. However, the relationship between the magnetic properties of variably serpentinized peridotites and the serpentinization process is still under debate. Ophiolite outcrops commonly comprise peridotites in different stages of serpentinization and these ophiolitic peridotites are ideal to investigate the magnetic signatures of suture zones. The Zedong ophiolite locates in the eastern part of the Yarlung-Zangbo suture zone, SE Tibet (China), and the peridotite massif represents the remnants of the Neo-Tethyan lithospheric mantle. The harzburgite and lherzolite samples show densities between 3.316 and 2.593 g cm-3, and vary from the freshest to >90% serpentinized peridotites. The magnetic susceptibility curves from room temperature to 700ºC mainly show the Curie temperatures of 585ºC for pure magnetite. The low-temperature (20-300 K) demagnetization curves show the Verwey transitions at 115-125 K, suggesting that magnetite is also the dominant remanence-carrying phase. The hysteresis data of the peridotites fall in the region of pseudo-single-domain (PSD) and follow the theoretical trends for mixtures of single domain (SD) and multidomain (MD) magnetite. The first-order reversal curve (FORC) diagrams suggest that the magnetite is dominantly interacting SD + PSD particles for S 40% serpentinized samples. The susceptibility and saturation magnetization of the Zedong peridotites range from 0.9 to 30.8 × 10‒3 (SI) and 14.1 to 1318 × 10‒3 Am2 kg‒1, respectively, and both show consistent trends with increasing degrees of serpentinization. The S serpentinization of ophiolitic peridotites, whereas the S > 40% peridotites have higher susceptibilities of 0.02-0.03 (SI) and fall in the region of abyssal peridotites. Our results suggest that the Zedong ophiolitic peridotites probably experienced a

  11. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    Science.gov (United States)

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  12. From an ocean floor wrench zone origin to transpressional tectonic emplacement of the Sithonia ophiolite, eastern Vardar Suture Zone, northern Greece

    Science.gov (United States)

    Bonev, Nikolay; Filipov, Petyo

    2017-12-01

    In the Hellenides of northern Greece, the Sithonia back-arc ophiolite constitute an element of the Vardar suture zone against the Chortiatis island arc magmatic suite, the Melissochori Formation and the Serbo-Macedonian Massif further north at the Mesozoic continental margin of Eurasia. A granodiorite from the Chortiatis island arc magmatic suite crystallized at 160 Ma as derived from new U-Pb zircon geochronology and confirms the end of arc magmatic activity that started at around 173 Ma. Located southerly of the Chortiatis island arc magmatic suite, the Sithonia ophiolite had igneous life from 159 to 149 Ma, and the ophiolite interfinger with clastic-carbonate Kimmeridgian sediments. Magmatic structures (i.e., sheeted dykes) in the ophiolite witness for NE-trending rift axis, while the transform faults and fracture zones sketch NW-SE transcurrent transtension-like propagation of the rift-spreading center at Sithonia that is consistent with a dextral wrench corridor already proposed for the ophiolite origin in the eastern Vardar zone. The tectonic emplacement of the Sithonia ophiolite involved dextral ENE to SE strike-slip sense of shear and SW and NE reverse thrust sense of shear on mostly steep foliation S1, subhorizontal lineation L1 and associated variably inclined F1 fold axes. This structural grain and kinematics are shared by adjacent Chortiatis island arc magmatic suite and the Melissochori Formation. The coexistence of strike-parallel and thrust components of displacement along discrete dextral strike-slip shear zones and internal deformation of the mentioned units is interpreted to result from a bulk dextral transpressive deformation regime developed in greenschist-facies metamorphic conditions. The back-arc ocean floor previous structural architecture with faults and fracture zones where Kimmeridgian sediments deposited in troughs was used by discrete strike-slip shear zones in which these sediments involved, and the shear zones become the sites for

  13. Chromian spinels in highly altered ultramafic rocks from the Sartohay ophiolitic mélange, Xinjiang, NW China

    Science.gov (United States)

    Qiu, Tian; Zhu, Yongfeng

    2018-06-01

    The Sartohay ophiolitic mélange is located in western Junggar (Xinjiang province, NW China), which is a major component of the core part of the Central Asian Orogenic Belt (CAOB). Chromian spinels in serpentinite, talc schist, carbonate-talc schist and listwaenite in Sartohay ophiolitic mélange retain primary compositions with Cr# of 0.39-0.65, Mg# = 0.48-0.67, and Fe3+# evolution of chromian spinels in highly altered ultramafic rocks from the Sartohay ophiolitic mélange. Chromian spinels in serpentinite and talc schist were rimmed by Cr-magnetite, which was dissolved completely during transformation from serpentinite/talc schist to listwaenite. Chromian spinels were then transformed into Fe2+-rich chromite in shear zones, which characterized by high fluid/rock ratios. This Fe2+-rich chromite and/or chromian spinels could then be transformed into Fe3+-rich chromite in oxidizing conditions at shallow levels.

  14. Complejo Ojosmin: fragment of ophiolite transamazonian

    International Nuclear Information System (INIS)

    Bossi, J.; Pineyro, D. . Email geologia@fagro.edu.uy

    2004-01-01

    A preliminary geological survey of a previously unknown basic igneous complex in the Padre Alta Terrane (Pat) is presented. We report petrographic, geochemical and stratigraphic data for more than 200 outcrops. Geological evolution of the complex can be described in terms of four main events: (1) formation Pat units around 2000 Ma; (2) granodiorite thrusting onto possible ophiolite ca 1900 Ma ; (3) granophyric magmatism around 1700 Ma(4) intrusion of trachyte dykes. Data available suggest thrusting onto fragment of oceanic crust. Since the described structure presupposes the existence of pre transamazonian continental fragments in the TPA, it is very important to study the area in detail in the future [es

  15. Anatomy of a frozen axial melt lens from a fast-spreading paleo-ridge (Wadi Gideah, Oman ophiolite)

    Science.gov (United States)

    Müller, T.; Koepke, J.; Garbe-Schönberg, C.-D.; Dietrich, M.; Bauer, U.; Wolff, P. E.

    2017-02-01

    At fast-spreading mid-ocean ridges, axial melt lenses (AMLs) sandwiched between the sheeted dyke section and the uppermost gabbros are assumed to be the major magma source of crust formation. Here, we present our results from a field study based on a single outcrop of a frozen AML in the Samail ophiolite in the Sultanate of Oman which presents a whole suite of different lithologies and complex cutting relationships: varitextured gabbro with relics of primitive poikilitic clinopyroxene is intruded by massive quartz diorites and tonalites bearing relics of assimilated sheeted dykes, which in turn are cut by trondhjemite dykes. The whole is cut by basaltic dykes with chilled margins. The geochemical evolutionary trend of the varitextured gabbros, including some of the quartz diorites and tonalites, can be best modelled by fractional crystallisation of an experimental MORB parental melt composition containing 0.4 to 0.8 wt.% H2O. Patchy varitextured gabbros containing domains of primitive poikilitic clinopyroxene and evolved granular networks represent the record of in situ crystallisation. Some quartz diorites, often with xenoliths of sheeted dykes and exceptionally high Al2O3 contents, show a bulk trace element pattern more in accord with melts generated by experimental partial melting of dyke material. Highly evolved, crosscutting trondhjemite dykes show characteristic trace element patterns implying a formation by partial melting of sheeted dykes under lower water activity which is indicated by relatively low Al2O3 contents. The late basaltic dykes with chilled margins crosscutting all other lithologies show a relatively depleted geochemical character with pronounced negative Nb-Ta anomalies implying a genetic relationship to the second phase of magmatic Oman paleo-ridge activity (V2). The field relationships in combination with the petrological/geochemical trends reveal multiple sequences of MORB-type magma cooling (resulting in fractional crystallisation) and re

  16. Crustal Accretion at Subduction Initiation Along Izu-Bonin-Mariana Arc and the Link to SSZ Ophiolites

    Science.gov (United States)

    Ishizuka, O.; Tani, K.; Reagan, M. K.; Kanayama, K.; Umino, S.; Harigane, Y.; Sakamoto, I.

    2014-12-01

    The Izu-Bonin-Mariana (IBM) forearc preserves the earliest arc magmatic history from subduction initiation to the establishment of the arc. Recent investigations have established a bottom to top igneous stratigraphy of: 1) mantle peridotite, 2) gabbroic rocks, 3) a sheeted dyke complex, 4) basaltic pillow lavas (forearc basalts: FAB), 5) boninites and magnesian andesites, 6) tholeiites and calcalkaline arc lavas. This stratigraphy has many similarities to supra-subduction zone (SSZ) ophiolites. One of the most important common characteristics between the SSZ ophiolites and the forearc crust is the occurrence of MORB-like basaltic lavas underlying or accompanying boninites and early arc volcanic suites. A key observation from the IBM forearc is that FAB differs from nearby back-arc lavas in chemical characteristics, including a depletion in moderately incompatible elements. This indicates that FAB is not a pre-existing oceanic basement of the arc, but the first magmatic product after subduction initiation. Sheeted dikes of FAB composition imply that this magmatism was associated with seafloor spreading, possibly triggered by onset of slab sinking. Recognition of lavas with transitional geochemical characteristics between the FAB and the boninites strongly implies genetic linkage between these two magma types. The close similarity of the igneous stratigraphy of SSZ ophiolites to the IBM forearc section strongly implies a common magmatic evolutionary path, i.e., decompressional melting of a depleted MORB-type mantle is followed by melting of an even more depleted mantle with the addition of slab-derived fluid/melt to produce boninite magma. Similarity of magmatic process between IBM forearc and Tethyan ophiolites appears to be reflected on common characteristics of upper mantle section. Peridotite from both sections show more depleted characteristics compared to upper mantle rocks from mid-ocean ridges. Age determinations reveal that first magmatism at the IBM arc

  17. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    Science.gov (United States)

    Maffione, Marco; van Hinsbergen, Douwe J. J.; de Gelder, Giovanni I. N. O.; van der Goes, Freek C.; Morris, Antony

    2017-05-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at suprasubduction spreading centers) were generated during this subduction event and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Several models have been proposed to explain the formation of these ophiolites and the evolution of the associated intra-Neo-Tethyan subduction zone. Here we present new paleospreading directions from six Upper Cretaceous ophiolites of Turkey, Cyprus, and Syria, calculated by using new and published paleomagnetic data from sheeted dyke complexes. Our results show that NNE-SSW subduction zones were formed within the Neo-Tethys during the Late Cretaceous, which we propose were part of a major step-shaped subduction system composed of NNE-SSW and WNW-ESE segments. We infer that this subduction system developed within old (Triassic?) lithosphere, along fracture zones and perpendicular weakness zones, since the Neo-Tethyan spreading ridge formed during Gondwana fragmentation would have already been subducted at the Pontides subduction zone by the Late Cretaceous. Our new results provide an alternative kinematic model of Cretaceous Neo-Tethyan subduction initiation and call for future research on the mechanisms of subduction inception within old (and cold) lithosphere and the formation of metamorphic soles below suprasubduction zone ophiolites in the absence of nearby spreading ridges.

  18. Petrographical and geochemical properties of plagiogranites and gabbros in Guleman ophiolite

    Directory of Open Access Journals (Sweden)

    Ayşe Didem KILIÇ

    2009-06-01

    Full Text Available Petrographical and geochemical properties of gabbros and plagiogranites of Guleman ophiolite are determined. It was concluded that gabbros can be basic rocks on subduction zone and plagioclase-rich leucocratic rocks (plagiogranite are differentiation products of fractional crystallization of a basic magma in the magma chamber.

  19. A Fragment of Ophiolite Assemblage of Kasargi Lake Area: East-Urals Megazone, Northern Part of the Southern Urals

    Directory of Open Access Journals (Sweden)

    D. E. Saveliev

    2014-03-01

    Full Text Available The results of study of rocks of ophiolite assemblage exposed on the east coast of Kasargi Lake are presented. The ophiolite assemblage is formed with the serpentinised ultramafic rocks of dunite-harzburgite association, which are residual and the shlirenbanded gabbros with a number of later dikes of diabases and porphiritic gabbros. The chemical content of mafic and ultramafic rocks of Kasargi massif shows that they are likely the equivalent rocks encountered within the backarc spreading ridges.

  20. Alteration, age, and emplacement of the Tangihua Complex ophiolite, New Zealand

    International Nuclear Information System (INIS)

    Nicholson, K.N.; Black, P.M.; Picard, C.; Cooper, P.; Hall, C.M.; Itaya, T.

    2007-01-01

    The Tangihua Complex, New Zealand, represents an upper sequence of Late Cretaceous oceanic crustal material: massive basalt flows, pillow lavas, and dolerites. Three phases of alteration are preserved within the complex, each characterised by zeolite precipitation, which correlate to stratigraphic position. The mylonitised sole contains greenschist assemblages (c. 325 degrees C) grading upwards into the initial phase of alteration (250-300 degrees C), and is characterised by actinolite, epidote, albite, and Na-rich zeolites. This phase is cut by lower temperature veins of chlorite-smectite and Ca-rich zeolites. The final alteration phase ( + and Ca 2+ rich minerals, including apophyllite and calcite. Disruption of Ar/Ar spectra around 50 Ma correlate with rifting in the Loyalty Basin and initiation of obduction along the Loyalty-Three Kings Ridge system. We suggest that these events resulted in initial dismemberment, alteration, and movement of the ophiolite, whereas Ar/Ar plateaux at 25-35 Ma correspond to ophiolite emplacement and the last phases of alteration. (author). 49 refs., 5 figs., 3 tabs

  1. Strongly foliated garnetiferous amphibolite clasts in ophiolitic melanges, Yarlung Zangbo Suture Zone, Tibet; Early Cretaceous disruption of a back-arc basin?

    Science.gov (United States)

    Guilmette, C.; Hebert, R.; Wang, C.; Indares, A. D.; Ullrich, T. D.; Dostal, J.; Bedard, E.

    2007-12-01

    Metre to decameter-size clasts of amphibolite are found embedded in ophiolitic melanges underlying the Yarlung Zangbo Suture Zone Ophiolites, South Tibet, China. These ophiolites and melanges occur at the limit between Indian and Tibetan-derived rocks and represent remnants of an Early Cretaceous intraoceanic supra-subduction zone domain, the Neo-Tethys. In the Saga-Dazuka segment (500 km along-strike), we discovered new occurrences of strongly foliated amphibolites found as clasts in the ophiolitic melange. In garnet-free samples, hornblende is green-blue magnesio-hornblende and cpx is low-Al diopside. In garnet- bearing samples, garnet is almandine with a strong pyrope component (up to 30 mol%) whereas coexisting hornblende is brown Ti-rich tschermakite and clinopyroxene is Al-diopside. Plagioclase composition was ubiquitously shifted to albite during a late metasomatic event. Geochemistry of these rocks indicates that their igneous protoliths crystallized from a slightly differentiated tholeiitic basaltic liquid that did not undergo major fractionation. Trace element patterns reveal geochemical characteristics identical to those of the overlying ophiolitic crust. These are 1) trace element abundances similar to that of N-MORBs or BABBs, 2) a slight depletion of LREE and 3) a moderate to strong Ta-Nb negative anomaly and a slight Ti anomaly. Such characteristics suggest genesis over a spreading center close to a subduction zone, possibly a back-arc basin. Step-heating Ar/Ar plateau ages were obtained from hornblende separates. All ages fall in the range of 123-128 Ma, overlapping the crystallization ages from the overlying ophiolite (126-131 Ma). Pseudosections were built with the THERMOCALC software in the system NCFMASH. Results indicate that the observed assemblage Hb+Pl+Gt+Cpx is stable over a wide range of P-T conditions, between 10-18 kbars and at more than 800°C. Measured mineral modes and solid solution compositions were successfully modeled, indicating

  2. Orogenic, Ophiolitic, and Abyssal Peridotites

    Science.gov (United States)

    Bodinier, J.-L.; Godard, M.

    2003-12-01

    "Tectonically emplaced" mantle rocks include subcontinental, suboceanic, and subarc mantle rocks that were tectonically exhumed from the upper mantle and occur:(i) as dispersed ultramafic bodies, a few meters to kilometers in size, in suture zones and mountain belts (i.e., the "alpine," or "orogenic" peridotite massifs - De Roever (1957), Thayer (1960), Den Tex (1969));(ii) as the lower ultramafic section of large (tens of kilometers) ophiolite or island arc complexes, obducted on continental margins (e.g., the Oman Ophiolite and the Kohistan Arc Complex - Coleman (1971), Boudier and Coleman (1981), Burg et al. (1998));(iii) exhumed above the sea level in ocean basins (e.g., Zabargad Island in the Red Sea, St. Paul's islets in the Atlantic and Macquarie Island in the southwestern Pacific - Tilley (1947), Melson et al. (1967), Varne and Rubenach (1972), Bonatti et al. (1981)).The "abyssal peridotites" are samples from the oceanic mantle that were dredged on the ocean floor, or recovered from drill cores (e.g., Bonatti et al., 1974; Prinz et al., 1976; Hamlyn and Bonatti, 1980).Altogether, tectonically emplaced and abyssal mantle rocks provide insights into upper mantle compositions and processes that are complementary to the information conveyed by mantle xenoliths (See Chapter 2.05). They provide coverage to vast regions of the Earth's upper mantle that are sparsely sampled by mantle xenoliths, particularly in the ocean basins and beneath passive continental margins, back-arc basins, and oceanic island arcs.Compared with mantle xenoliths, a disadvantage of some tectonically emplaced mantle rocks for representing mantle compositions is that their original geodynamic setting is not exactly known and their significance is sometimes a subject of speculation. For instance, the provenance of orogenic lherzolite massifs (subcontinental lithosphere versus upwelling asthenosphere) is still debated (Menzies and Dupuy, 1991, and references herein), as is the original setting

  3. Spring and surface water quality of the Cyprus ophiolites

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A survey of surface, spring and borehole waters associated with the ophiolite rocks of Cyprus shows five broad water types (1 Mg-HCO3, (2 Na-SO4-Cl-HCO3, (3 Na-Ca-Cl-SO4-OH-CO3, (4 Na-Cl-SO4 and (5 Ca-SO4. The waters represent a progression in chemical reactivity from surface waters that evolve within a groundwater setting due to hydrolysis of the basic/ultrabasic rock as modified by CO2-weathering. An increase in salinity is also observed which is due to mixing with a saline end-member (modified sea-water and dissolution of gypsum/anhydrite. In some cases, the waters have pH values greater than 11. Such high values are associated with low temperature serpentinisation reactions. The system is a net sink for CO2. This feature is related not only to the hydrolysis of the primary minerals in the rock, but also to CaCO3 or Ca-Mg-CO3 solubility controls. Under hyperalkaline conditions, virtually all the carbon dioxide is lost from the water due to the sufficiently high calcium levels and carbonate buffering is then insignificant. Calcium sulphate solubility controls may also be operative when calcium and sulphate concentrations are particularly high. Keywords: Cyprus, Troodos, ophiolite, serpentinisation, spring, stream, water quality, bromide, iodine, boron, trace elements, hyperalkaline.

  4. Petrology and Rock Magnetism of the peridotites of Pindos Ophiolite (Greece), insights into the serpentinization process

    Science.gov (United States)

    Bonnemains, D.; Carlut, J. H.; Mevel, C.; Andreani, M.; Escartin, J.; Debret, B.

    2015-12-01

    We present a petrological and magnetic study of a suite of serpentinized peridotites from the Pindos ophiolite spanning a wide range in the degree of serpentinization (from ~10 to 100%). The Pindos ophiolite, in Northern Greece, is a portion of Late Triassic oceanic lithosphere obducted during the convergence of the Apulian and Pelagonian micro-continents. This ophiolite is interpreted mainly as the result of a supra-subduction zone spreading process but its complete history remains largely unknown. Therefore, it is not clear when the ultramafic section was exposed to fluid circulation that resulted in its serpentinization. Element partitioning during serpentinization reactions is dependent on parameters such as temperature and water-rock ratio. In particular, they affect the behavior of the iron released by olivine, which can be taken up either by magnetite, serpentine and/or brucite. Analyses of the reaction products are therefore a key to constrain the conditions during the main stage of the alteration. Our study was designed to gain insight on the conditions prevailing during hydration. Our results indicate that even fully serpentinized samples have a very low magnetization and magnetite content. Moreover, microprobe and μXanes results show that serpentine is the main host of iron in the divalent but also trivalent form. These results are compared with a set of data from serpentinized ultramafics sampled from the ocean floors, as well as from various other ophiolites. We suggest that serpentinization at Pindos occurred at relatively low-temperature (less than 200 °C), therefore not at a ridge environment. In addition, we stress that the presence of trivalent iron in serpentine indicates that serpentinization may remain a producer of hydrogen even when very little magnetite is formed.

  5. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    Science.gov (United States)

    Vacquand, Christèle; Deville, Eric; Beaumont, Valérie; Guyot, François; Sissmann, Olivier; Pillot, Daniel; Arcilla, Carlo; Prinzhofer, Alain

    2018-02-01

    This paper proposes a comparative study of reduced gas seepages occurring in ultrabasic to basic rocks outcropping in ophiolitic complexes based on the study of seepages from Oman, the Philippines, Turkey and New Caledonia. This study is based on analyses of the gas chemical composition, noble gases contents, stable isotopes of carbon, hydrogen and nitrogen. These seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct types of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These types are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich type, associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 types. H2-bearing gases are either associated with ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and alkaline conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4. The N2-rich type is notably associated with relatively high contents of crustal 4He and in this gas type N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  6. Enriched and depleted characters of the Amnay Ophiolite upper crustal section and the regionally heterogeneous nature of the South China Sea mantle

    Science.gov (United States)

    Perez, Americus d. C.; Faustino-Eslava, Decibel V.; Yumul, Graciano P.; Dimalanta, Carla B.; Tamayo, Rodolfo A.; Yang, Tsanyao Frank; Zhou, Mei-Fu

    2013-03-01

    The volcanic section of the Middle Oligocene Amnay Ophiolite in Mindoro, Philippines has previously been shown to be of normalmid-oceanic ridge basalt (NMORB) composition. Here we report for the first time an enriched mantle component that is additionally recorded in this crustal section. New whole rock major and trace element data are presented for nine mafic volcanic rocks from a section of the ophiolite that has not been previously examined. These moderately evolved tholeiitic basalts were found to have resulted from the bulk mixing of ˜10% ocean island basalt components with depleted mantle. Drawing together various geochemical characteristics reported for different rock suites taken as representatives of the South China Sea crust, including the enriched MORB (EMORB) and NMORB of the East Taiwan Ophiolite, the NMORB from previous studies of the Amnay Ophiolite and the younger ocean floor eruptives of the Scarborough Seamount-Reed Bank region, a veined mantle model is proposed for the South China Sea mantle. The NMORB magmatic products are suggested to have been derived from the more depleted portions of the mantle whereas the ocean island basalt (OIB) and EMORB-type materials from the mixing of depleted and veined/enriched mantle regions.

  7. Comment on "Timing and nature of the Xinlin-Xiguitu Ocean: constraints from ophiolitic gabbros in the northern Great Xing'an Range, eastern Central Asian Orogenic Belt" by Feng et al. (2016)

    Science.gov (United States)

    Ni, Dong-Hong

    2017-09-01

    We disagree the transitional supra-subduction zone model of Feng et al. (Int J Earth Sci (Geol Rundsch) 105:491-505, 2016) for the tectonic setting of Jifeng ophiolite suite in NE China. Existence of the komatiite in the Jifeng ophiolite indicates an oceanic plateau environment for this ophiolite suite within the so-called Xinlin-Xiguitu ocean.

  8. Interpretation of recent gravity profiles over the ophiolite belt, Northern Oman Mountains, United Arab Emirates

    Science.gov (United States)

    Khattab, M. M.

    1993-04-01

    The compiled Bouguer gravity anomaly map over parts of the ophiolite rocks of the Northern Oman Mountains suggests the existence of three partially serpentinized nappes: two along the Gulf of Oman coast with axes near Dadnah, near Fujira and the third 17 km SSE of Masafi. Modeling of the subsurface geology, beneath two gravity profiles (Diba-Kalba and Masafi-Fujira), is based on the occurrence (field evidence) of multiphase low-angle thrusting of the members of the Tethyan lithosphere in northern and Oman Mountains. An assumed crustal model at the Arabian continental margin, beneath the Masafi-Fujira profile, is made to explain an intense gravity gradient. Gravity interpretation is not inconsistent with a gliding mechanism for obduction of the ophiolite on this part of the Arabian continental margin.

  9. Controls on rheology of peridotite at a palaeosubduction interface: a transect across the base of the Oman-UAE ophiolite

    Science.gov (United States)

    Ambrose, T. K.; Wallis, D.; Hansen, L. N.; Waters, D. J.; Searle, M. P.

    2017-12-01

    Studies of experimentally deformed rocks and small-scale natural shear zones have demonstrated that volumetrically minor phases can control strain localisation by limiting grain growth and promoting grain-size sensitive deformation mechanisms. Such studies are often used to infer a critical role for minor phases in the development of plate boundaries. However, the role of of minor phases in strain localisation at plate boundaries remains to be tested by direct observation. To test the hypothesis that minor phases control strain localisation at plate boundaries, we conducted microstructural analyses of peridotite samples collected across the base of the Oman-UAE ophiolite. The base of the ophiolite is marked by the Semail thrust, which represents the now exhumed contact between subducted oceanic crust and the overlying mantle wedge. As such, the base of the ophiolite provides the opportunity to directly examine a former plate boundary. Our results demonstrate that the mean olivine grain size is inversely proportional to the abundance of minor phases (primarily pyroxene), consistent with suppression of grain growth by grain-boundary pinning. Our results also reveal that mean olivine grain size is proportional to CPO strength, suggesting that the fraction of strain accommodated by different deformation mechanisms varied spatially. Experimentally-derived flow laws indicate that under the inferred deformation conditions the viscosity of olivine was grain-size sensitive. As such, grain size, and thereby the abundance of minor phases, influenced viscosity during subduction-related deformation along the base of the mantle wedge. We calculate that viscosity and strain rate respectively decrease and increase by approximately an order of magnitude towards the base of the ophiolite. Our data indicate that this rheological weakening was primarily the result of more abundant secondary phases near the base of the ophiolite. Our interpretations are consistent with those of

  10. Petrography and mineral chemistry of wehrlites in contact zone of gabbro intrusions and mantle peridotites of the Naein ophiolite

    Directory of Open Access Journals (Sweden)

    Farhad Ghaseminejad

    2014-10-01

    Full Text Available Introduction Geological background Ophiolites have played a major role in our understanding of Earth’s processes ranging from seafloor spreading, melt evolution and magma transport in oceanic spreading centers, and hydrothermal alteration and mineralization of oceanic crust to collision tectonics, mountain building processes, and orogeny. They provide the essential structural, petrological, geochemical, and geochronological evidence to document the evolutionary history of ancient continental margins and ocean basin. Ophiolites include a peridotitic mantle sequence, generally characterized by high-temperature plastic deformation and residual chemistry, and a comagmatic crustal sequence (gabbros, diabase dikes, and submarine basalts, weakly or not deformed. According to this interpretation, ophiolites were allochthonous with respect to their country rocks. They were assembled during a primary accretion stage at an oceanic spreading center, and later tectonically emplaced on a continental margin or island arc (Dilek, 2003. The indigenous dikes of pyroxenites and gabbros that were injected into a melting peridotite, or intrusive dikes of pyroxenite and gabbro that injected when the peridotite was fresh and well below its solidus, are discussed in different ophiolite papers. Pyroxenite formation and contact of gabbro and mantle peridotite are discussed in different articles (Dilek, 2003. When a gabbro intrude a fresh mantle peridotite could not significantly react with it, but if intrusion occurs during the serpentinization, the gabbro will change to rodingite. Geological setting The Naein ophiolitic melanges comprise the following rock units: mantle peridotites (harzburgite, lherzolite, dunite, with associated chromitite, gabbro, pyroxenite, sheeted and swarm dikes, massive basalts, pillow lava, plagiogranite, radiolarian chert, glaubotruncana limestone, rodingite, listvenite, and metamorphic rocks (foliated amphibolitic dike, amphibolite, skarn

  11. The internal structure of eclogite-facies ophiolite complexes: Implications from the Austroalpine outliers within the Zermatt-Saas Zone, Western Alps

    Science.gov (United States)

    Weber, Sebastian; Martinez, Raul

    2016-04-01

    The Western Alpine Penninic domain is a classical accretionary prism that formed after the closure of the Penninic oceans in the Paleogene. Continental and oceanic nappes were telescoped into the Western Alpine stack associated with continent-continent collision. Within the Western Alpine geologic framework, the ophiolite nappes of the Zermatt-Saas Zone and the Tsate Unit are the remnants of the southern branch of the Piemonte-Liguria ocean basin. In addition, a series of continental basement slices reported as lower Austroalpine outliers have preserved an eclogitic high-pressure imprint, and are tectonically sandwiched between these oceanic nappes. Since the outliers occur at an unusual intra-ophiolitic setting and show a polymetamorphic character, this group of continental slices is of special importance for understanding the tectono-metamorphic evolution of Western Alps. Recently, more geochronological data from the Austroalpine outliers have become available that make it possible to establish a more complete picture of their complex geological history. The Lu-Hf garnet-whole rock ages for prograde growth of garnet fall into the time interval of 52 to 62 Ma (Weber et al., 2015, Fassmer et al. 2015), but are consistently higher than the Lu-Hf garnet-whole rock ages from several other locations throughout the Zermatt-Saas zone that range from 52 to 38 Ma (Skora et al., 2015). This discrepancy suggests that the Austroalpine outliers may have been subducted earlier than the ophiolites of the Zermatt-Saas Zone and therefore have been tectonically emplaced into their present intra-ophiolite position. This points to the possibility that the Zermatt-Saas Zone consists of tectonic subunits, which reached their respective pressure peaks over a prolonged time period, approximately 10-20 Ma. The pressure-temperature estimates from several members of the Austroalpine outliers indicate a complex distribution of metamorphic peak conditions, without ultrahigh

  12. Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites - An experimental study

    Science.gov (United States)

    Dixon, S.; Rutherford, M. J.

    1979-01-01

    A study of relationships between basic and acidic rocks was made by fractionating primitive basalt at low pressure anhydrous conditions at various fugacities. Fractionally crystallized basalt became increasingly enriched in iron which became silicate liquid immiscible, producing Fe-enriched basaltic and granitic liquids. The latter is similar to plagiogranites found in mid-oceanic rift (MOR) regions, showing that silicate liquid immiscibility could be the petrogenic process which produces plagiogranites in some MOR regions and ophiolites. The major problem in considering plagiogranites as products of silicate liquid immiscibility is absence of any description of the Fe-enriched conjugate liquid in the ophiolite or MOR literature, and the identification of this magma is essential for a definite case of silicate liquid immiscibility.

  13. Peridote-water interaction generating migration pathways of H2-rich fluids in subduction context: Common processes in the ophiolites of Oman, New-Caledonia, Philippines and Turkey

    Science.gov (United States)

    Deville, E. P.; Prinzhofer, A.; Pillot, D.; Vacquand, C.; Sissmann, O.

    2010-12-01

    The occurrence of H2 flows which were punctually known notably in the ophiolites of Oman, Zambales (Philippines) and Antalya (Turkey) appears to be a widespread phenomenon in these major peridotite massifs associated with ancient or active subduction processes. Similar H2-rich gas flows have been discovered also in the peridotite of New-Caledonia. H2 concentrations are locally high (commonly 60 to90% in Oman). H2 is frequently degassing in hyperalkaline springs but the highest flows were found directly expelled from fractures in the peridotites. Obviously, within the fracture systems, gas and associated hyperalkaline water separate at shallow depth close to the top of the upper aquifer level. Locally high flows of gas migrate vertically in the fractures, whereas water with degassing H2 tends to migrate laterally in the fracture network toward the creeks where most of the hyperalkaline springs are found. The genesis of natural H2 is interpreted as the result of the interaction, at depth, between ultrabasic mantle rocks in the upper plate and water expelled by the subducted sediments by oxidation of metals (Fe2+, Mn2+) and reduction of water during serpentinisation. CH4 is commonly associated to the H2-rich fluids and it is interpreted as the result of the reduction of available CO2 at depth. N2 is also commonly associated to the H2-rich fluids in the ophiolites, whereas N2 flows (within H2) were found in the subducted sediments (below the sole décollement of the peridotite) where it can be observed (Oman and New-Caledonia). Within the peridotites, the hyperalkaline water is rich in ions OH- and Ca2+ and characterized by high pH (between 11 and 12). Most alkaline springs are found in the vicinity of major faults and/or lithological discontinuities like the basal décollement of the ophiolites and the peridotite-gabbro contact (Moho). This hyperalkaline water migration induces a chain of diagenetic reactions starting at depth within the fracture systems by the

  14. Reconstructing Plate Boundaries in the Jurassic Neo-Tethys From the East and West Vardar Ophiolites (Greece and Serbia)

    Science.gov (United States)

    Maffione, Marco; van Hinsbergen, Douwe J. J.

    2018-03-01

    Jurassic subduction initiation in the Neo-Tethys Ocean eventually led to the collision of the Adria-Africa and Eurasia continents and the formation of an 6,000 km long Alpine orogen spanning from Iberia to Iran. Reconstructing the location and geometry of the plate boundaries of the now disappeared Neo-Tethys during the initial moments of its closure is instrumental to perform more realistic plate reconstructions of this region, of ancient ocean basins in general, and on the process of subduction initiation. Neo-Tethyan relics are preserved in an ophiolite belt distributed above the Dinaric-Hellenic fold-thrust belt. Here we provide the first quantitative constraints on the geometry of the spreading ridges and trenches active in the Jurassic Neo-Tethys using a paleomagnetically based net tectonic rotation analysis of sheeted dykes and dykes from the West and East Vardar Ophiolites of Serbia (Maljen and Ibar) and Greece (Othris, Pindos, Vourinos, and Guevgueli). Based on our results and existing geological evidence, we show that initial Middle Jurassic ( 175 Ma) closure of the western Neo-Tethys was accommodated at a N-S trending, west dipping subduction zone initiated near and parallel to the spreading ridge. The West Vardar Ophiolites formed in the forearc parallel to this new trench. Simultaneously, the East Vardar Ophiolites formed above a second N-S to NW-SE trending subduction zone located close to the European passive margin. We tentatively propose that this second subduction zone had been active since at least the Middle Triassic, simultaneously accommodating the closure of the Paleo-Tethys and the back-arc opening of Neo-Tethys.

  15. Chemistry of chromites from Arroio Grande Ophiolite (Dom Feliciano Belt, Brazil) and their possible connection with the Nama Group (Namibia)

    Science.gov (United States)

    Ramos, Rodrigo Chaves; Koester, Edinei; Porcher, Carla Cristine

    2017-12-01

    The present paper shows a mineral chemistry study in chromites found in serpentine-talc schists of the Arroio Grande Ophiolite, located in the southeastern Dom Feliciano Belt, near the Brazil/Uruguay border. Using electron microscope scanning and electron microprobe techniques, this study found a supra-subduction zone signature in the chromites, together with evidence of metasomatism. It corroborates previous hypothesis that suggested a supra-subduction zone origin for the protoliths of the Arroio Grande meta-igneous rocks and a metasomatic origin for the chromite-bearing magnesian schists. The studied chromites present high Cr# (0.65-0.77) and Fe2+# (0.88-0.95), low MgO (0.85-2.47 wt%) and TiO2 (0.01-0.19 wt%) and anomalous high concentration of ZnO (up to 1.97 wt%). The results were compared with chemical data from detrital chromites from the Schwarzrand and Fish River Subgroups of the Nama Group (Namibia), demonstrating that they are compositionally similar with those found in the latter. These chromites, in turn, are believed to have been derived from the oceanic Marmora Terrane (Gariep Belt) in the west (present-day coordinates). Taking into consideration that oceanic metamafites from both the latter and the Arroio Grande Ophiolite share common bulk-rock geochemical features (in this paper interpreted as fragments of the same paleo-ocean floor - the Marmora back-arc basin), it is possible to raise the hypothesis that detrital material derived from the studied ophiolite might also be found in Nama Group. It is reinforced by the fact that sediments (related to the Pelotas-Aiguá Batholith granitoids) derived from the easternmost Dom Feliciano Belt, i.e. the region where Arroio Grande Ophiolite is located, is found in both Schwarzrand and Fish River Subgroups. Thus, we suggest that Arroio Grande Ophiolite detrital sediments might also have contributed to the Nama Basin infilling during Late Ediacaran-Lower Cambrian.

  16. Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites.

    Science.gov (United States)

    Bindi, Luca; Griffin, William L; Panero, Wendy R; Sirotkina, Ekaterina; Bobrov, Andrey; Irifune, Tetsuo

    2018-04-03

    Tibetan ophiolites are shallow mantle material and crustal slabs that were subducted as deep as the mantle transition zone, a conclusion supported by the discovery of high-pressure phases like inverse ringwoodite in these sequences. Ringwoodite, Mg 2 SiO 4 , exhibits the normal spinel structure, with Mg in the octahedral A site and Si in the tetrahedral B site. Through A and B site-disorder, the inverse spinel has four-coordinated A cations and the six-coordinated site hosts a mixture of A and B cations. This process affects the density and impedance contrasts across the boundaries in the transition zone and seismic-wave velocities in this portion of the Earth. We report the first synthesis at high pressure (20 GPa) and high temperature (1600 °C) of a Cr-bearing ringwoodite with a completely inverse-spinel structure. Chemical, structural, and computational analysis confirm the stability of inverse ringwoodite and add further constraints to the subduction history of the Luobusa peridotite of the Tibetan ophiolites.

  17. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  18. Petrography and mineral chemistry of metamorphosed mantle peridotites of Nain Ophiolite (Central Iran

    Directory of Open Access Journals (Sweden)

    Nargess Shirdashtzadeh

    2017-07-01

    Full Text Available Introduction Study of the petrology of the ophiolites as the relics of ancient oceanic lithosphere, is a powerful tool to reconstruct Earth’s history. Mantle peridotites have mostly undergone alteration and serpentinization to some extent. Thus, the relics of metamorphic signatures from the upper mantle and crustal processes from most of the peridotites have been ruined. Several recent papers deal with the mantle peridotites of Nain Ophiolite (e.g. Ghazi et al., 2010. However, no scientific work has been carried out on the metamorphosed mantle peridotites. The study area of the Darreh Deh that is located in the east of the Nain Ophiolite, is composed of huge massifs of metamorphosed mantle peridotites (i.e. lherzolite, clinopyroxene-bearing harzburgite, and harzburgite, and small volumes of dunite, characterized by darker color, higher topographic relief, smaller number of basic intrusives, lower serpentinization degree, and amphibolite-facies metamorphism. In this study, the petrography and mineralogy of metamorphosed peridotites in the Darreh Deh has been considered based on geochemical data. Geological Setting The Mesozoic ophiolitic mélange of Nain is located in the west of CEIM, along the Nain-Baft fault. As a part of a metamorphosed oceanic crust, it is mainly composed of harzburgite, lherzolite, dunite and their serpentinized varieties, chromitite, pyroxenite, gabbro, diabasic dike, spilitized pillow lava, plagiogranite, amphibolite, metaperidotites, schist, skarn, marble, rodingite, metachert and listwaenite (Shirdashtzadeh et al., 2010, 2014a, 2014b. Geochemical investigations indicate a suprasubduction zone in the eastern branch of the Neo-Tethys Ocean (Ghasemi and Talbot, 2006; Shirdashtzadeh et al., 2010, 2014a, 2014b. Materials and Methods Chemical analyses of mineral compositions were carried out using a JEOL JXA8800R wavelength-dispersive electron probe micro-analyzer (accelerating voltage of 15 kV and a beam current of 15 n

  19. Geochemical and Geophysical Characteristics of the Balud Ophiolitic Complex (BOC, Masbate Island, Philippines: Implications for its Generation, Evolution and Emplacement

    Directory of Open Access Journals (Sweden)

    Pearlyn C. Manalo

    2015-01-01

    Full Text Available This paper presents the first field, geochemical and geophysical information on the recently recognized Early Cretaceous Balud Ophiolitic Complex (BOC in the island of Masbate in the Central Philippines. Mapping of the western limb of the island revealed that only the upper crustal section of the BOC is exposed in this area. Geochemically, the pillow basalts are characterized by transitional mid-oceanic ridge basalt-island arc tholeiitic compositions. Gravity surveys yielded low Bouguer anomaly values that are consistent with the highly dismembered nature of the BOC. Short wavelength, high amplitude magnetic anomalies registered across the study area are attributed to shallow magnetic sources. This is taken to support the model that the ophiolitic complex occurs as thin crustal slivers that are not deeply-rooted in the mantle. Comparing BOC with other ophiolites in the Central Philippines, such as those in the islands of Sibuyan, Leyte and Bohol, suggests the possibility of a common or contiguous source for similarly-aged and geochemically composed crust-mantle sequences in the region.

  20. 87Sr enrichment of ophiolitic sulphide deposits in Cyprus confirms ore formation by circulating seawater

    International Nuclear Information System (INIS)

    Chapman, H.J.; Spooner, E.T.C.

    1977-01-01

    The hypothesis that seawater was the source of the hydrothermal fluid which formed the Upper Cretaceous ophiolitic cupriferous pyrite ore deposits of the Troodos Massif (Cyprus) has been tested by analysing the strontium isotopic composition of thirteen mineralized samples from four mines. Initial 87 Sr/ 86 Sr ratios range from 0.7052+-0.0001 to 0.7075+-0.00002, the latter value being indistinguishable from that of Upper Cretaceous seawater at 0.7076+-0.0006 (2 sigma). Hence, the mineralized metabasalt samples have been contaminated with 87 Sr, relative to initial magmatic strontium isotope ratios of the Troodos ophiolitic complex (0.70338+-0.00010 to 0.70365+-0.00005). Since seawater was the only source of strontium available during formation of the Troodos Complex which was isotopically relatively enriched in 87 Sr, the data confirm that seawater was the source of the hydrothermal oreforming fluid. (Auth.)

  1. Age and microfacies of oceanic Upper Triassic radiolarite components from the Middle Jurassic ophiolitic mélange in the Zlatibor Mountains (Inner Dinarides, Serbia and their provenance

    Directory of Open Access Journals (Sweden)

    Gawlick Hans-Jürgen

    2017-08-01

    Full Text Available Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt west of the Drina–Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje–Ljubiš–Visoka–Radoševo mélange contains a mixture of blocks of 1 oceanic crust, 2 Middle and Upper Triassic ribbon radiolarites, and 3 open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1 the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2 the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange. We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef, B between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef, and C in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon. The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and

  2. Age and microfacies of oceanic Upper Triassic radiolarite components from the Middle Jurassic ophiolitic mélange in the Zlatibor Mountains (Inner Dinarides, Serbia) and their provenance

    Science.gov (United States)

    Gawlick, Hans-Jürgen; Djerić, Nevenka; Missoni, Sigrid; Bragin, Nikita Yu.; Lein, Richard; Sudar, Milan; Jovanović, Divna

    2017-08-01

    Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt) west of the Drina-Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje-Ljubiš-Visoka-Radoševo mélange) contains a mixture of blocks of 1) oceanic crust, 2) Middle and Upper Triassic ribbon radiolarites, and 3) open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1) the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2) the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange). We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A) on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef), B) between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef), and C) in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon). The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange) filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and slightly older

  3. Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines

    Science.gov (United States)

    Abrajano, T.A.; Sturchio, N.C.; Kennedy, B.M.; Lyon, G.L.; Muehlenbachs, K.; Böhlke, J.K.

    1990-01-01

    Methane-hydrogen gas seeps with mantle-like C and noble gas isotopic characteristics issue from partially serpentinized ultramafic rocks in the Zambales ophiolite, Philippines. New measurements of noble gas and 14C isotope abundances, rock/mixed-volatile equilibrium calculations, and previous chemical and isotopic data suggest that these reduced gases are products of periodotite hydration. The gas seeps are produced in rock-dominated zones of serpentinization, and similar gases may be ubiquitous in ultramafic terranes undergoing serpentinization.

  4. Thermo-mechanical modeling of the obduction process based on the Oman ophiolite case

    OpenAIRE

    Duretz , Thibault; Agard , Philippe; Yamato , Philippe; Ducassou , Céline; Burov , Evgenii ,; Gerya , T. V.

    2016-01-01

    International audience; Obduction emplaces regional-scale fragments of oceanic lithosphere (ophiolites) over continental lithosphere margins of much lower density. For this reason, the mechanisms responsible for obduction remain enigmatic in the framework of plate tectonics. We present two-dimensional (2D) thermo-mechanical models of obduction and investigate possible dynamics and physical controls of this process. Model geometry and boundary conditions are based on available geological and g...

  5. Mineral chemistry and petrology of highly magnesian ultramafic cumulates from the Sarve-Abad (Sawlava) ophiolites (Kurdistan, NW Iran): New evidence for boninitic magmatism in intra-oceanic fore-arc setting in the Neo-Tethys between Arabia and Iran

    Science.gov (United States)

    Allahyari, Khalil; Saccani, Emilio; Rahimzadeh, Bahman; Zeda, Ottavia

    2014-01-01

    The Sarve-Abad (Sawlava) ophiolitic complex consists of several tectonically dismembered ophiolitic sequences. They are located along the Main Zagros Thrust Zone, which marks the ophiolitic suture between the Arabian and Sanandaj-Sirjan continental blocks. They represent a portion of the southern Neo-Tethyan oceanic lithosphere, which originally existed between the Arabian (to the south) and Eurasian (to the north) continental margins. The Sarve-Abad ophiolites include cumulitic lherzolites bearing minor dunite and chromitite lenses in places. The main rock-forming minerals in ultramafic cumulates are cumulus olivine and inter-cumulus clinopyroxene and orthopyroxene. Minor (<5%) chromian spinel occurs as both cumulus and inter-cumulus phases.

  6. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    Science.gov (United States)

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  7. Potential Hydrogen Yields from Ultramafic Rocks of the Coast Range Ophiolite and Zambales Ophiolite: Inferences from Mössbauer Spectroscopy

    Science.gov (United States)

    Stander, A.; Nelms, M.; Wilkinson, K.; Dyar, M. D.; Cardace, D.

    2013-12-01

    The reduced status of mantle rocks is a possible controller and indicator of deep life habitat, due to interactions between water and ultramafic (Fe, Mg-rich) minerals, which, under reducing conditions, can yield copious free hydrogen, which is an energy source for rock-hosted chemosynthetic life. In this work, Mössbauer spectroscopy was used to parameterize the redox status of Fe in altering peridotites of the Coast Range Ophiolite (CRO) in California, USA and Zambales Ophiolite (ZO) in the Philippines. Fe-bearing minerals were identified and data were collected for the percentages of Fe(III)and Fe(II)and bulk Fe concentration. Thin section analysis shows that relict primary olivines and spinels generally constitute a small percentage of the ZO and CRO rock, and given satisfactory estimates of the volume of the ultramafic units of the ZO and CRO, a stoichiometric H2 production can be estimated. In addition, ZO serpentinites are ~63,000 ppm Fe in bulk samples; they contain ~41-58% Fe(III)and ~23-34% Fe(II) in serpentine and relict minerals along with ~8-30% of the total Fe as magnetite. CRO serpentinites are ~42,000 ppm Fe in bulk samples; they contain ~15-50% Fe(III), ~22-88% Fe(II) in serpentine and relict minerals, and ~0-52% of total Fe is in magnetite (Fe(II)Fe(III)2O4). Assuming stoichiometric production of H2, and given the following representation of serpentinization 2(FeO)rock + H2O → (Fe2O3)rock +H2, we calculated the maximum quantity of hydrogen released and yet to be released through the oxidation of Fe(II). Given that relatively high Fe(III)/Fetotal values can imply higher water:rock ratios during rock alteration (Andreani et al., 2013), we can deduce that ZO ultramafics in this study have experienced a net higher water:rock ratio than CRO ultramafics. We compare possible H2 yields and contrast the tectonic and alteration histories of the selected ultramafic units. (M. Andreani, M. Muñoz, C. Marcaillou, A. Delacour, 2013, μXANES study of iron

  8. The Armenian and NW Anatolian ophiolites: new insights for the closure of the Tethys domain and obduction onto the South Armenian Block and Anatolian-Tauride Platform before collision through dynamic modeling

    Science.gov (United States)

    Hässig, Marc; Rolland, Yann; Sosson, Marc; Hassani, Riad; Topuz, Gultekin; Faruk Çelik, Ömer; Gerbault, Muriel; Galoyan, Ghazar; Müller, Carla; Sahakyan, Lilit; Avagyan, Ara

    2013-04-01

    In the Lesser Caucasus three main domains are distinguished from SW to NE: (1) the South Armenian Block (SAB), a Gondwanian-derived continental terrane; (2) scattered outcrops of ophiolites coming up against the Sevan-Akera suture zone; and (3) the Eurasian plate. The Armenian ophiolites represent remnants of an oceanic domain which disappeared during Eurasia-Arabia convergence. Previous works using geochemical whole-rock analyses, 40Ar/39Ar and paleontological dating have shown that the ophiolite outcrops throughout this area were emplaced during the Late Cretaceous as one non-metamorphic preserved ophiolitic nappe of back-arc origin that formed during Middle to Late Jurassic. From these works, tectonic reconstructions include two clearly identified subductions, one related to the Neotethys subduction beneath the Eurasian margin and another to intra-oceanic subduction responsible for the opening of the back-arc basin corresponding to the ophiolites of the Lesser Caucasus. The analysis of the two stages of metamorphism of the garnet amphibolites of the ophiolite obduction sole at Amasia (M1: HT-LP peak of P = 6-7 kbar and T > 630°C; M2; MP-MT peak at P = 8-10 kbar and T = 600°C) has allowed us to deduce the onset of subduction of the SAB at 90 Ma for this locality, which age coincides with other paleontological ages at the obduction front. A preliminary paleomagnetic survey has also brought quantification to the amount of oceanic domain which disappeared by subduction between the SAB and Eurasia before collision. We propose a dynamic finite element model using ADELI to test the incidence of parameters such as the density of the different domains (or the interval between the densities), closing speed (or speeds if sporadic), the importance and interactions of mantle discontinuities with the subducting lithosphere and set a lithospheric model. Our field observations and analyses are used to validate combinations of factors. The aim is to better qualify the

  9. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  10. Paleomagnetic Constraints on the Tectonic History of the Mesozoic Ophiolite and Arc Terranes of Western Mexico

    Science.gov (United States)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.

    2017-12-01

    The North American Cordillera has been shaped by a long history of accretion of arcs and other buoyant crustal fragments to the western margin of the North American Plate since the Early Mesozoic. Accretion of these terranes resulted from a complex tectonic history interpreted to include episodes of both intra-oceanic subduction within the Panthalassa/Pacific Ocean, as well as continental margin subduction along the western margin of North America. Western Mexico, at the southern end of the Cordillera, contains a Late Cretaceous-present day long-lived continental margin arc, as well as Mesozoic arc and SSZ ophiolite assemblages of which the origin is under debate. Interpretations of the origin of these subduction-related rock assemblages vary from far-travelled exotic intra-oceanic island arc character to autochthonous or parautochthonous extended continental margin origin. We present new paleomagnetic data from four localities: (1) the Norian SSZ Vizcaíno peninsula Ophiolite; (2) its Lower Jurassic sedimentary cover; and (3) Barremian and (4) Aptian sediments derived from the Guerrero arc. The data show that the Mexican ophiolite and arc terranes have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. These spreading phases resulted in the temporal existence of tectonic plates between the North American and Farallon Plates, and upon closure of the basins, in the growth of the North American continent without addition of any far-travelled exotic terranes.

  11. Magmatic Diversity of the Wehrlitic Intrusions in the Oceanic Lower Crust of the Northern Oman Ophiolite

    Science.gov (United States)

    Kaneko, R.; Adachi, Y.; Miyashita, S.

    2014-12-01

    The Oman ophiolite extends along the east coast of Oman, and is the world's largest and best-preserved slice of obducted oceanic lithosphere. The magmatic history of this ophiolite is complex and is generally regarded as having occurred in three stages (MOR magmatism, subduction magmatism and intraplate magmatism). Wehrlitic intrusions constitute an important element of oceanic lower crust of the ophiolite, and numerous intrusions cut gabbro units in the northern Salahi block of this ophiolite. In this study area, we identified two different types of wehrlitic intrusions. One type of the intrusions mainly consists of dunite, plagioclase (Pl) wehrlite and mela-olivine (Ol) gabbro, in which the crystallization sequence is Ol followed by the contemporaneous crystallization of Pl and clinopyroxene (Cpx). This type is called "ordinary" wehrlitic intrusions and has similar mineral compositions to host gabbros (Adachi and Miyashita 2003; Kaneko et al. 2014). Another type of the intrusions is a single intrusion that crops out in an area 250 m × 150 m along Wadi Salahi. This intrusion consists of Pl-free "true" wehrlite, in which the crystallization sequence is Ol and then Cpx. The forsterite contents (Fo%) of Ol from the "ordinary" wehrlitic intrusions and "true" wehrlitic intrusions have ranges of 90.8-87.0 (NiO = 0.36-0.13 wt%) and 84.7 (NiO = 0.31 wt%), respectively. Cr numbers (Cr#) of Cr-spinel from the "true" wehrlitic intrusions show higher Cr# value of 0.85 than those of the "ordinary" wehrlitic intrusions (0.48-0.64). But the former is characterized by very high Fe3+ values (YFe3+ = 0.49-0.68). Kaneko et al. (2014) showed that the "ordinary" ubiquitous type has similar features to MOR magmatism and the depleted type in the Fizh block (Adachi and Miyashita 2003) links to subduction magmatism. These types are distinguished by their mineral chemistries (TiO2 and Na2O contents of Cpx). The TiO2 and Na2O contents of Cpx from the "true" wehrlitic intrusions have 0

  12. A middle Permian ophiolite fragment in Late Triassic greenschist- to blueschist-facies rocks in NW Turkey: An earlier pulse of suprasubduction-zone ophiolite formation in the Tethyan belt

    Science.gov (United States)

    Topuz, Gültekin; Okay, Aral I.; Schwarz, Winfried H.; Sunal, Gürsel; Altherr, Rainer; Kylander-Clark, Andrew R. C.

    2018-02-01

    The Eastern Mediterranean region within the Tethyan belt is characterised by two main pulses of suprasubduction-zone ophiolite formation during the Early-Middle Jurassic and Late Cretaceous. Despite vast exposures of the Permo-Triassic accretionary complexes, related suprasubduction-zone ophiolites and the timing of subduction initiation leading to the formation of Permo-Triassic accretionary complexes are unknown so far. Here we report on a 40 km long and 0.3 to 1.8 km wide metaophiolite fragment within transitional greenschist- to blueschist-facies oceanic rocks from NW Turkey. The metaophiolite fragment is made up mainly of serpentinite and minor dykes or stocks of strongly sheared metagabbro with mineral assemblages involving actinolite/winchite, chlorite, epidote, albite, titanite and phengite. The metagabbro displays (i) variable CaO and MgO contents, (ii) anomalously high Mg# (= 100 ∗ molar MgO/(MgO + FeOtot)) of 75-88, and (iii) positive Eu anomalies, together with low contents of incompatible elements such as Ti, P and Zr, suggesting derivation from former plagioclase cumulates. The serpentinites comprise serpentine, ± chlorite, ± talc, ± calcite and relict Cr-Al spinel surrounded by ferrichromite to magnetite. Relict Cr-Al spinels are characterised by (i) Cr/(Cr + Al) ratios of 0.45-0.56 and Mg/(Mg + Fe2 +) ratio of 0.76-0.22, (ii) variable contents of ZnO and MnO, and (iii) extremely low TiO2 contents. Zn and Mn contents are probably introduced into Cr-Al spinels during greenschist- to blueschist metamorphism. Compositional features of the serpentinite such as (i) Ca- and Al-depleted bulk compositions, (ii) concave U-shaped, chondrite-normalised rare earth element patterns (REE) with enrichment of light and heavy REEs, imply that serpentinites were probably derived from depleted peridotites which were refertilised by light rare earth element enriched melts in a suprasubduction-zone mantle wedge. U-Pb dating on igneous zircons from three metagabbro

  13. Groundwater Modeling and Sustainability of a Transboundary Hardrock–Alluvium Aquifer in North Oman Mountains

    Directory of Open Access Journals (Sweden)

    Azizallah Izady

    2017-02-01

    Full Text Available This study aims at modeling groundwater flow using MODFLOW in a transboundary hardrock–alluvium aquifer, located in northwestern Oman. A three-dimensional stratigraphic model of the study area representing the vertical and spatial extent of four principal hydro-geologic units (specifically, the Hawasina, ophiolite, Tertiary and alluvium was generated using data collected from hundreds drilled borehole logs. Layer elevations and materials for four layers grid cells were taken from the generated stratigraphic model in which the materials and elevations were inherited from the stratigraphic model that encompasses the cell. This process led to accurate grid so that the developed groundwater conceptual model was mapped to simulate the groundwater flow and to estimate groundwater balance components and sustainable groundwater extraction for the October 1996 to September 2013 period. Results show that the long-term lateral groundwater flux ranging from 4.23 to 11.69 Mm3/year, with an average of 5.67 Mm3/year, drains from the fractured eastern ophiolite mountains into the alluvial zone. Moreover, the long-term regional groundwater sustainable groundwater extraction is 18.09 Mm3/year for 17 years, while it is, respectively, estimated as 14.51, 16.31, and 36.00 Mm3/year for dry, normal, and wet climate periods based on standardized precipitation index (SPI climate condition. Considering a total difference in groundwater levels between eastern and western points of the study area on the order of 228 m and a 12-year monthly calibration period (October 1996 to September 2008, a root mean squared error (RMSE in predicted groundwater elevation of 2.71 m is considered reasonable for the study area characterized by remarkable geological and hydrogeological diversity. A quantitative assessment of the groundwater balance components and particularly sustainable groundwater extraction for the different hydrological period would help decision makers to better

  14. Comparison of aquifer characteristics derived from local and regional aquifer tests.

    Science.gov (United States)

    Randolph, R.B.; Krause, R.E.; Maslia, M.L.

    1985-01-01

    A comparison of the aquifer parameter values obtained through the analysis of a local and a regional aquifer test involving the same area in southeast Georgia is made in order to evaluate the validity of extrapolating local aquifer-test results for use in large-scale flow simulations. Time-drawdown and time-recovery data were analyzed by using both graphical and least-squares fitting of the data to the Theis curve. Additionally, directional transmissivity, transmissivity tensor, and angle of anisotropy were computed for both tests. -from Authors Georgia drawdown transmissivity regional aquifer tests

  15. Geochemistry and petrogenesis of serpentinite from the Ingalls ophiolite complex, central Cascades, Washington

    Science.gov (United States)

    MacDonald, J. H., Jr.; Milliken, S. H.; Zalud, K. M.

    2017-12-01

    The Jurassic Ingalls ophiolite complex is located in the central Cascades, Washington State. This ophiolite predominantly consists of three variably serpentinized mantle units. Serpentinite occurs as massive replacing peridotite, or as highly sheared fault zones cutting other rocks. Mylonitic serpentinite forms a large-scale mélange in the middle of the ophiolite, and is interpreted as a fracture zone. Whole-rock and mineral geochemistry of the massive serpentinite was done to understand the metasomatic process and identify the possible protoliths of these rocks. Whole-rock major and trace elements of the massive serpentinite are similar to modern peridotites. The majority of samples analyzed are strongly serpentinized, while a few were moderately to weakly altered. Ca, Mg, and Al suggest these rocks formed from serpentinized harzburgite and dunite with minor lherzolite. All samples have positive Eu/Eu*. Serpentinites plot in fields defined by modern abyssal and forearc peridotites. Trace elements suggests the protoliths underwent variable amounts of mantel depletion (5-20%). Serpentine and relic igneous minerals were analyzed by EPMA at the Florida Center for Analytical Electron Microscopy. The serpentine dose not chemically display brucite mixing, has minor substitution of Fe, Ni, and Cr for Mg, and minor Al substitution for Si. Bastites have higher Ni than replaced olivine. Mineral chemistry, high LOI, and X-ray diffraction suggest lizardite is the primary serpentine polymorph, with minor chrysotile also occurring. Relic Al-chromite and Cr-spinel commonly have Cr-magnetite rims. These relic cores have little SiO2 and Fe3+, suggesting the spinels are well preserved. Most spinels plot in overlap fields defined by abyssal and arc peridotite, while two samples plot entirely in arc fields. Relic olivine have Fo90 to Fo92 and plot along the mantle array. Relic pyroxene are primarily enstatite, with lesser high-Ca varieties. Relic minerals plot near fields defined by

  16. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    Science.gov (United States)

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  17. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia

    Science.gov (United States)

    Gordon, Debbie W.; Gonthier, Gerard

    2017-04-24

    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  18. Genesis and transport of hexavalent chromium in the system ophiolitic rocks - groundwater

    Science.gov (United States)

    Shchegolikhina, Anastasia; Guadagnini, Laura; Guadagnini, Alberto

    2015-04-01

    Our study aims at contributing to the quantification and characterization of chromium transport processes from host rocks and soil matrices to groundwater. We focus on dissolved hexavalent chromium detected in groundwaters of geological regions with ophiolitic rocks (ophiolites and serpentinites) inclusions due to its critical ecological impact. (Oze et al., 2004). Despite the large number of analyses on the occurrence of high concentrations of hazardous hexavalent chromium ions in natural waters, only few studies were performed with the objective of identifying and investigating the geochemical reactions which could occur in the natural system rock - groundwater - dissolved chromium (Fantoni et al., 2002, Stephen and James, 2004, Lelli et al., 2013). In this context, there is a need for integration of results obtained from diverse studies in various regions and settings to improve our knowledge repository. Our theoretical analyses are grounded and driven by practical scenarios detected in subsurface reservoirs exploited for civil and industrial use located in the Emilia-Romagna region (Italy). Available experimental datasets are complemented with data from other international regional-scale settings (Altay mountains region, Russia). Modeling of chromium transformation and migration particularly includes characterization of the multispecies geochemical system. A key aspect of our study is the analysis of the complex competitive sorption processes governing heavy metal evolution in groundwater. The results of the research allow assessing the critical qualitative features of the mechanisms of hexavalent chromium ion mobilization from host rocks and soils and the ensuing transformation and migration to groundwater under the influence of diverse environmental factors. The study is then complemented by the quantification of the main sources of uncertainty associated with prediction of heavy metal contamination levels in the groundwater system explored. Fantoni, D

  19. Hydrogen Gas from Serpentinite, Ophiolites and the Modern Ocean Floor as a Source of Green Energy

    Science.gov (United States)

    Coveney, R. M.

    2008-12-01

    Hydrogen gas is emitted by springs associated with serpentinites and extensive carbonate deposits in Oman, The Philippines, the USA and other continental locations. The hydrogen springs contain unusually alkaline fluids with pH values between 11 and 12.5. Other workers have described off-ridge submarine springs with comparably alkaline fluid compositions, serpentinite, abundant free hydrogen gas, and associated carbonate edifices such as Lost City on the Atlantis Massif 15 km west of the Mid-Atlantic Ridge (D.S. Kelley and associates, Science 2005). The association of hydrogen gas with ultramafites is a consistent one that has been attributed to a redox couple involving oxidation of divalent iron to the trivalent state during serpentinization, although other possibilities exist. Some of the hydrogen springs on land are widespread. For example in Oman dozens of alkaline springs (Neal and Stanger, EPSL 1983) can be found over thousands of sq km of outcropping ophiolite. While the deposits in Oman and the Philippines are well-known to much of the geochemical community, little interest seems to have been displayed toward either the ophiolitic occurrences or the submarine deposits for energy production. This may be a mistake as the showings because they could lead to an important source of green energy. Widespread skepticism currently exists about hydrogen as a primary energy source. It is commonly said that free hydrogen does not occur on earth and that it is therefore necessary to use other sources of energy to produce hydrogen, obviating the general environmental benefit. However the existence of numerous occurrences of hydrogen gas associated with ophiolites and submarine occurrences of hydrogen suggests the likelihood that natural hydrogen gas may be an important source of clean energy for modern society remaining to be tapped. Calculations in progress should establish whether or not this is likely to be the case.

  20. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    International Nuclear Information System (INIS)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides

  1. Controls on the rheological properties of peridotite at a palaeosubduction interface: A transect across the base of the Oman-UAE ophiolite

    Science.gov (United States)

    Ambrose, Tyler K.; Wallis, David; Hansen, Lars N.; Waters, Dave J.; Searle, Michael P.

    2018-06-01

    Studies of experimentally deformed rocks and small-scale natural shear zones have demonstrated that volumetrically minor phases can control strain localisation by limiting grain growth and promoting grain-size sensitive deformation mechanisms. These small-scale studies are often used to infer a critical role for minor phases in the development of plate boundaries. However, the role of minor phases in strain localisation at an actual plate boundary remains to be tested by direct observation. In order to test the hypothesis that minor phases control strain localisation at plate boundaries, we conducted microstructural analyses of peridotite samples collected along a ∼1 km transect across the base of the Oman-United Arab Emirates (UAE) ophiolite. The base of the ophiolite is marked by the Semail thrust, which represents the now exhumed contact between subducted oceanic crust and the overlying mantle wedge. As such, the base of the ophiolite provides the opportunity to directly examine a former plate boundary. Our results demonstrate that the mean olivine grain size is inversely proportional to the abundance of minor phases (primarily orthopyroxene, as well as clinopyroxene, hornblende, and spinel), consistent with suppression of grain growth by grain-boundary pinning. Our results also reveal that mean olivine grain size is proportional to CPO strength (both of which generally decrease towards the metamorphic sole), suggesting that the fraction of strain produced by different deformation mechanisms varied spatially. Experimentally-derived flow laws indicate that under the inferred deformation conditions, the viscosity of olivine was grain-size sensitive. As such, grain size, and thereby the abundance of minor phases, influenced viscosity during subduction-related deformation along the base of the mantle wedge. We calculate an order of magnitude decrease in the viscosity of olivine towards the base of the ophiolite, which suggests strain was localised near the

  2. Diagnosis of the Ghiss Nekor aquifer in order to elaborate the aquifer contract

    Science.gov (United States)

    Baite, Wissal; Boukdir, A.; Zitouni, A.; Dahbi, S. D.; Mesmoudi, H.; Elissami, A.; Sabri, E.; Ikhmerdi, H.

    2018-05-01

    The Ghiss-Nekor aquifer, located in the north-east of the action area of the ABHL, plays a strategic role in the drinkable water supply of the city of Al Hoceima and of the neighboring urban areas. It also participates in the irrigation of PMH. However, this aquifer has problems such as over-exploitation and pollution. In the face of these problems, the only Solution is the establishment of a new mode of governance, which privileges the participation, the involvement and the responsibility of the actors concerned in a negotiated contractual framework, namely the aquifer contract. The purpose of this study is to diagnose the current state of the Ghiss Nekor aquifer, the hydrogeological characterization of the aquifer, the use of the waters of the aquifer, the Problem identification and the introduction of the aquifer contract, which aims at the participatory and sustainable management of underground water resources in the Ghiss- Nekor plain, to ensure sustainable development.

  3. Microbial Community Structure in a Serpentine-Hosted Abiotic Gas Seepage at the Chimaera Ophiolite, Turkey.

    Science.gov (United States)

    Neubeck, Anna; Sun, Li; Müller, Bettina; Ivarsson, Magnus; Hosgörmez, Hakan; Özcan, Dogacan; Broman, Curt; Schnürer, Anna

    2017-06-15

    The surface waters at the ultramafic ophiolitic outcrop in Chimaera, Turkey, are characterized by high pH values and high metal levels due to the percolation of fluids through areas of active serpentinization. We describe the influence of the liquid chemistry, mineralogy, and H 2 and CH 4 levels on the bacterial community structure in a semidry, exposed, ultramafic environment. The bacterial and archaeal community structures were monitored using Illumina sequencing targeting the 16S rRNA gene. At all sampling points, four phyla, Proteobacteria , Actinobacteria , Chloroflexi , and Acidobacteria , accounted for the majority of taxa. Members of the Chloroflexi phylum dominated low-diversity sites, whereas Proteobacteria dominated high-diversity sites. Methane, nitrogen, iron, and hydrogen oxidizers were detected as well as archaea and metal-resistant bacteria. IMPORTANCE Our study is a comprehensive microbial investigation of the Chimaera ophiolite. DNA has been extracted from 16 sites in the area and has been studied from microbial and geochemical points of view. We describe a microbial community structure that is dependent on terrestrial, serpentinization-driven abiotic H 2 , which is poorly studied due to the rarity of these environments on Earth. Copyright © 2017 Neubeck et al.

  4. Characterization of ophiolites from northern Havana-Matanzas petroleum fields using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montero Cabrera, M.E. E-mail: montero@yakko.cimav.edu.mx; Ortueta Milan, M.; Herrera Peraza, E.F.; Herrera Hernandez, H.; Rodriguez Martinez, N.; Olivares Rieumont, S.; Lopez Reyes, M.C

    2001-01-15

    Concentrations of 16 elements from 14 serpentinitic samples from Basilio and Cantel petroleum fields were obtained by instrumental neutron activation analysis (INAA): Cr, Co, Ni, La, Nd, Sm, Eu, Gd, Tb, Ce Yb, Lu, Rb, Cs, Hf and Th. Relative INAA was performed using certified reference materials and laboratory standards. Average elemental concentrations showed that the ophiolites have a basic character, suggesting the use of a well-logging method designed for volcano-sedimentary petroleum fields.

  5. Characterization of ophiolites from northern Havana-Matanzas petroleum fields using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Montero Cabrera, M.E.; Ortueta Milan, M.; Herrera Peraza, E.F.; Herrera Hernandez, H.; Rodriguez Martinez, N.; Olivares Rieumont, S.; Lopez Reyes, M.C.

    2001-01-01

    Concentrations of 16 elements from 14 serpentinitic samples from Basilio and Cantel petroleum fields were obtained by instrumental neutron activation analysis (INAA): Cr, Co, Ni, La, Nd, Sm, Eu, Gd, Tb, Ce Yb, Lu, Rb, Cs, Hf and Th. Relative INAA was performed using certified reference materials and laboratory standards. Average elemental concentrations showed that the ophiolites have a basic character, suggesting the use of a well-logging method designed for volcano-sedimentary petroleum fields

  6. EPA Region 1 Sole Source Aquifers

    Science.gov (United States)

    This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.

  7. Hydrological connectivity of perched aquifers and regional aquifers in semi-arid environments: a case study from Namibia

    Science.gov (United States)

    Hamutoko, J. T.; Wanke, H.

    2017-12-01

    Integrated isotopic and hydrological tracers along with standard hydrological data are used to understand complex dry land hydrological processes on different spatial and temporal scales. The objective of this study is to analyse the relationship between the perched aquifers and the regional aquifer using hydrochemical data and isotopic composition in the Cuvelai-Etosha Basin in Namibia. This relation between the aquifers will aid in understanding groundwater recharge processes and flow dynamics. Perched aquifers are discontinuous shallow aquifers with water level ranging from 0 to 30 meters below ground level. The regional aquifer occurs in semi-consolidated sandstone at depths between about 60 and 160 meters below ground level. Water samples were collected from both aquifers in 10 villages and were analysed for major ions and stable isotopes. The results show overlapping hydrochemistry and isotopic compositions of both aquifers in 8 villages which suggest the possibility of perched aquifer water infiltrating into the regional aquifer. In two villages the hydrochemistry and isotopic composition of the aquifers are totally different and this suggests that there is no interaction between this aquifers. Areas where perched aquifers are connected to regional aquifers maybe recharge zones. These finding have important implications for groundwater resource management.

  8. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    Science.gov (United States)

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  9. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.

    Science.gov (United States)

    Zlotnik, Vitaly A; Kacimov, Anvar; Al-Maktoumi, Ali

    2017-11-01

    Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip. The solution, based on the Dupiuit-Forchheimer approximation, Green's function method, and coordinate transformations is convenient for computing. This solution reveals important MAR traits in variance with Hantush's solution: mounding is limited in time and space; elevation of the mound is strongly affected by the dip angle; and the peak of the mound moves over time. These findings have important practical implications for assessment of various MAR scenarios, including waterlogging potential and determining proper rates of recharge. Computations are illustrated for several characteristic MAR settings. © 2017, National Ground Water Association.

  10. The ophiolite massif of Kahnuj (western Makran, Southern Iran): new geological and geochronological data

    International Nuclear Information System (INIS)

    Kananian, A.; Juteau, Th.; Bellon, H.; Darvishzadeh, A.; Sabzehi, M.; Whitechurch, H.; Ricou, L.E.

    2001-01-01

    The ophiolite massif of Kahnuj (600 km 2 ) consists, from bottom to top, of layered gabbros, isotropic gabbros and ouralite gabbros, agmatites of dioritic to plagio-granitic composition, a sheeted dyke complex and lastly a basaltic pillow lava unit. Amphiboles from gabbros were dated ( 40 K- 40 Ar ages) between 156 and 139 Ma and the agmatites are nearly contemporaneous. Potassic granitic veins dated at 93-88 Ma are related to the development of the Ganj arc complex. (authors)

  11. Aquifer thermal-energy-storage modeling

    Science.gov (United States)

    Schaetzle, W. J.; Lecroy, J. E.

    1982-09-01

    A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.

  12. Incipient boninitic arc crust built on denudated mantle: the Khantaishir ophiolite (western Mongolia)

    Science.gov (United States)

    Gianola, Omar; Schmidt, Max W.; Jagoutz, Oliver; Sambuu, Oyungerel

    2017-12-01

    The 570 Ma old Khantaishir ophiolite is built by up to 4 km harzburgitic mantle with abundant pyroxenites and dunites followed by 2 km of hornblende-gabbros and gabbronorites and by a 2.5 km thick volcanic unit composed of a dyke + sill complex capped by pillow lavas and some volcanoclastics. The volcanics are mainly basaltic andesites and andesites (or boninites) with an average of 58.2 ± 1.0 wt% SiO2, X Mg = 0.61 ± 0.03 ( X Mg = molar MgO/(MgO + FeOtot), TiO2 = 0.4 ± 0.1 wt% and CaO = 7.5 ± 0.6 wt% (errors as 2 σ). Normalized trace element patterns show positive anomalies for Pb and Sr, a negative Nb-anomaly, large ion lithophile elements (LILE) concentrations between N- and E-MORB and distinctly depleted HREE. These characteristics indicate that the Khantaishir volcanics were derived from a refractory mantle source modified by a moderate slab-component, similar to boninites erupted along the Izu-Bonin-Mariana subduction system and to the Troodos and Betts Cove ophiolites. Most strikingly and despite almost complete outcrops over 260 km2, there is no remnant of any pre-existing MORB crust, suggesting that the magmatic suite of this ophiolite formed on completely denudated mantle, most likely upon subduction initiation. The architecture of this 4-5 km thick early arc crust resembles oceanic crust formed at mid ocean ridges, but lacks a sheeted dyke complex; volcanic edifices are not observed. Nevertheless, low melting pressures combined with moderate H2O-contents resulted in high-Si primitive melts, in abundant hornblende-gabbros and in a fast enrichment in bulk SiO2. Fractional crystallization modeling starting from the observed primitive melts (56.6 wt% SiO2) suggests that 25 wt% pyroxene + plagioclase fractionation is sufficient to form the average Khantaishir volcanic crust. Most of the fractionation happened in the mantle, the observed pyroxenite lenses and layers in and at the top of the harzburgites account for the required cumulate volumes. Finally

  13. Quantification of Tremolite in Friable Material Coming from Calabrian Ophiolitic Deposits by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Antonella Campopiano

    2015-01-01

    Full Text Available The aim of this study is to identify the infrared absorption band suitable for quantifying tremolite in three powdered samples (fine, medium, and large size classes coming from a quarry of ophiolitic friable rocks in the western part of the Calabria region of Italy. Three IR bands were considered: OH stretching band between 3700 and 3650 cm−1, the stretching bands of the Si-O-Si linkage between 1200 and 900 cm−1, and the absorbance band at 756 cm−1 attributable to tremolite. The amount of tremolite in the test samples was quantified by using the curve parameters of the three analytical bands. The quantitative analysis of tremolite using the band due to OH stretchings (3700–3650 cm−1 and the bands attributed to the Si-O-Si stretchings (1200–900 cm−1 showed high values for all test samples. Their use overestimated the tremolite amount because both bands were affected at the interfering mineral silicates such as talc, kaolinite, chlorite, and serpentinites. The abundant presence of antigorite in studied samples mainly in medium size class sample had a key role in our findings. The band at 756 cm−1 was not affected at the interfering minerals and can be used for quantitative analysis of tremolite in sample coming from ophiolitic deposits.

  14. Aquifer test to determine hydraulic properties of the Elm aquifer near Aberdeen, South Dakota

    Science.gov (United States)

    Schaap, Bryan D.

    2000-01-01

    The Elm aquifer, which consists of sandy and gravelly glacial-outwash deposits, is present in several counties in northeastern South Dakota. An aquifer test was conducted northeast of Aberdeen during the fall of 1999 to determine the hydraulic properties of the Elm aquifer in that area. An improved understanding of the properties of the aquifer will be useful in the possible development of the aquifer as a water resource. Historical water-level data indicate that the saturated thickness of the Elm aquifer can change considerably over time. From September 1977 through November 1985, water levels at three wells completed in the Elm aquifer near the aquifer test site varied by 5.1 ft, 9.50 ft, and 11.1 ft. From June 1982 through October 1999, water levels at five wells completed in the Elm aquifer near the aquifer test site varied by 8.7 ft, 11.4 ft, 13.2 ft, 13.8 ft, and 19.7 ft. The water levels during the fall of 1999 were among the highest on record, so the aquifer test was affected by portions of the aquifer being saturated that might not be saturated during drier times. The aquifer test was conducted using five existing wells that had been installed prior to this study. Well A, the pumped well, has an operating irrigation pump and is centrally located among the wells. Wells B, C, D, and E are about 70 ft, 1,390 ft, 2,200 ft, and 3,100 ft, respectively, in different directions from Well A. Using vented pressure transducers and programmable data loggers, water-level data were collected at the five wells prior to, during, and after the pumping, which started on November 19, 1999, and continued a little over 72 hours. Based on available drilling logs, the Elm aquifer near the test area was assumed to be unconfined. The Neuman (1974) method theoretical response curves that most closely match the observed water-level changes at Wells A and B were calculated using software (AQTESOLV for Windows Version 2.13-Professional) developed by Glenn M. Duffield of Hydro

  15. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer withdrawals on the Upper Floridan aquifer at Barbour Pointe Community, Chatham County, Georgia, 2013

    Science.gov (United States)

    Gonthier, Gerard; Clarke, John S.

    2016-06-02

    Two test wells were completed at the Barbour Pointe community in western Chatham County, near Savannah, Georgia, in 2013 to investigate the potential of using the Lower Floridan aquifer as a source of municipal water supply. One well was completed in the Lower Floridan aquifer at a depth of 1,080 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 440 ft below land surface. At the Barbour Pointe test site, the U.S. Geological Survey completed electromagnetic (EM) flowmeter surveys, collected and analyzed water samples from discrete depths, and completed a 72-hour aquifer test of the Floridan aquifer system withdrawing from the Lower Floridan aquifer.Based on drill cuttings, geophysical logs, and borehole EM flowmeter surveys collected at the Barbour Pointe test site, the Upper Floridan aquifer extends 369 to 567 ft below land surface, the middle semiconfining unit, separating the two aquifers, extends 567 to 714 ft below land surface, and the Lower Floridan aquifer extends 714 to 1,056 ft below land surface.A borehole EM flowmeter survey indicates that the Upper Floridan and Lower Floridan aquifers each contain four water-bearing zones. The EM flowmeter logs of the test hole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 91 percent of the total flow rate of 1,000 gallons per minute; the Lower Floridan aquifer contributed about 8 percent. Based on the transmissivity of the middle semiconfining unit and the Floridan aquifer system, the middle semiconfining unit probably contributed on the order of 1 percent of the total flow.Hydraulic properties of the Upper Floridan and Lower Floridan aquifers were estimated based on results of the EM flowmeter survey and a 72-hour aquifer test completed in Lower Floridan aquifer well 36Q398. The EM flowmeter data were analyzed using an AnalyzeHOLE-generated model to simulate upward borehole flow and determine the transmissivity of

  16. The recycling of chromitites in ophiolites from southwestern North America

    Science.gov (United States)

    González-Jiménez, José M.; Camprubí, Antoni; Colás, Vanessa; Griffin, William L.; Proenza, Joaquín A.; O'Reilly, Suzanne Y.; Centeno-García, Elena; García-Casco, Antonio; Belousova, Elena; Talavera, Cristina; Farré-de-Pablo, Júlia; Satsukawa, Takako

    2017-12-01

    Podiform chromitites occur in mantle peridotites of the Late Triassic Puerto Nuevo Ophiolite, Baja California Sur State, Mexico. These are high-Cr chromitites [Cr# (Cr/Cr + Al atomic ratio = 0.61-0.69)] that contain a range of minor- and trace-elements and show whole-rock enrichment in IPGE (Os, Ir, Ru). That are similar to those of high-Cr ophiolitic chromitites crystallised from melts similar to high-Mg island-arc tholeiites (IAT) and boninites in supra-subduction-zone mantle wedges. Crystallisation of these chromitites from S-undersaturated melts is consistent with the presence of abundant inclusions of platinum-group minerals (PGM) such as laurite (RuS2)-erlichmanite (OsS2), osmium and irarsite (IrAsS) in chromite, that yield TMA ≈ TRD model ages peaking at 325 Ma. Thirty-three xenocrystic zircons recovered from mineral concentrates of these chromitites yield ages (2263 ± 44 Ma to 278 ± 4 Ma) and Hf-O compositions [ɛHf(t) = - 18.7 to + 9.1 and 18O values the mantle via subduction. They were captured by the parental melts of the chromitites when the latter formed in a supra-subduction zone mantle wedge polluted with crustal material. In addition, the Puerto Nuevo chromites have clinopyroxene lamellae with preferred crystallographic orientation, which we interpret as evidence that chromitites have experienced high-temperature and ultra high-pressure conditions (the formation of chromitite in the supra-subduction zone mantle wedge underlying the Vizcaino intra-oceanic arc ca. 250 Ma ago, deep-mantle recycling, and subsequent diapiric exhumation in the intra-oceanic basin (the San Hipólito marginal sea) generated during an extensional stage of the Vizcaino intra-oceanic arc ca. 221 Ma ago. The TRD ages at 325 Ma record a partial melting event in the mantle prior to the construction of the Vizcaino intra-oceanic arc, which is probably related to the Permian continental subduction, dated at 311 Ma.

  17. Guarani aquifer hydrogeological synthesis of the Guarani aquifer system. Edicion bilingue

    International Nuclear Information System (INIS)

    2009-01-01

    This work represents the synthesis of current knowledge of the Guarani Aquifer System, based on technical products made by different companies and consultants who participated in the framework of the Project for Environmental Protection and Sustainable Development of the Guarani Aquifer.

  18. Monitoring Aquifer Depletion from Space: Case Studies from the Saharan and Arabian Aquifers

    Science.gov (United States)

    Ahmed, M.; Sultan, M.; Wahr, J. M.; Yan, E.

    2013-12-01

    Access to potable fresh water resources is a human right and a basic requirement for economic development in any society. In arid and semi-arid areas, the characterization and understanding of the geologic and hydrologic settings of, and the controlling factors affecting, these resources is gaining increasing importance due to the challenges posed by increasing population. In these areas, there is immense natural fossil fresh water resources stored in large extensive aquifers, the transboundary aquifers. Yet, natural phenomena (e.g., rainfall patterns and climate change) together with human-related factors (e.g., population growth, unsustainable over-exploitation, and pollution) are threatening the sustainability of these resources. In this study, we are developing and applying an integrated cost-effective approach to investigate the nature (i.e., natural and anthropogenic) and the controlling factors affecting the hydrologic settings of the Saharan (i.e., Nubian Sandstone Aquifer System [NSAS], Northwest Sahara Aquifer System [NWSA]) and Arabian (i.e., Arabian Peninsula Aquifer System [APAS]) aquifer systems. Analysis of the Gravity Recovery and Climate Experiment (GRACE)-derived Terrestrial Water Storage (TWS) inter-annual trends over the NSAS and the APAS revealed two areas of significant TWS depletions; the first correlated with the Dakhla Aquifer System (DAS) in the NSAS and second with the Saq Aquifer System (SAS) in the APAS. Annual depletion rates were estimated at 1.3 × 0.66 × 109 m3/yr and 6.95 × 0.68 × 109 m3/yr for DAS and SAS, respectively. Findings include (1) excessive groundwater extraction, not climatic changes, is responsible for the observed TWS depletions ;(2) the DAS could be consumed in 350 years if extraction rates continue to double every 50 years and the APAS available reserves could be consumed within 60-140 years at present extraction (7.08 × 109 m3/yr) and depletion rates; and (3) observed depletions over DAS and SAS and their

  19. Plutonic rocks in the Mineoka-Setogawa ophiolitic mélange, central Japan: Fragments of middle to lower crust of the Izu-Bonin-Mariana Arc?

    Science.gov (United States)

    Ichiyama, Yuji; Ito, Hisatoshi; Hokanishi, Natsumi; Tamura, Akihiro; Arai, Shoji

    2017-06-01

    A Paleogene accretionary complex, the Mineoka-Setogawa Belt, is distributed around the Izu Collision Zone, central Japan. Plutonic rocks of gabbro, diorite and tonalite compositions are included as fragments and dykes in an ophiolitic mélange in this belt. Zircon U-Pb dating of the plutonic rocks indicates that they were formed at ca. 35 Ma simultaneously. These ages are consistent with Eocene-Oligocene tholeiite and calc-alkaline arc magmatism in the Izu-Bonin-Mariana (IBM) Arc and exclude several previous models for the origin of the Mineoka-Setogawa ophiolitic rocks. The geochemical characteristics of these plutonic rocks are similar to those of the Eocene-Oligocene IBM tholeiite and calc-alkaline volcanic rocks as well as to the accreted middle crust of the IBM Arc, the Tanzawa Plutonic Complex. Moreover, their lithology is consistent with those of the middle and lower crust of the IBM Arc estimated from the seismic velocity structure. These lines of evidence strongly indicate that the plutonic rocks in the Mineoka-Setogawa ophiolitic mélange are fragments of the middle to lower crust of the IBM Arc. Additionally, the presence of the Mineoka-Setogawa intermediate to felsic plutonic rocks supports the hypothesis that intermediate magma can form continental crust in intra-oceanic arcs.

  20. Recharge and Aquifer Response: Manukan Island’s Aquifer, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Sarva Mangala Praveena

    2010-01-01

    Full Text Available Manukan Island is a small island located in North-West of Sabah, Malaysia was used as a case study area for numerical modeling of an aquifer response to recharge and pumping rates. The results in this study present the variations of recharge into the aquifer under the prediction simulations. The recharge rate increases the water level as indicated by hydraulic heads. This shows that it can alter groundwater of Manukan Island which has been suffering from an overexploration in its unconfined the aquifer. The increase in recharge rate (from 600 mm/year to 750 mm/year increases the water level indicated by hydraulic heads. A reduction in pumping rate (from 0.072 m3/day to 0.058 m3/day not only increases the amount of water levels in aquifer but also reduces the supply hence a deficit in supply. The increase in hydraulic heads depends on the percentage reduction of pumping and recharges rates. The well water has 1978.3 mg/L chloride with current pumping (0.072 m3/day and recharge rates (600 mm/year. However, with an increased of recharge rate and current pumping rate it has decreased about 1.13%. In addition, reduction in pumping rate made the chloride concentration decreased about 2.8%. In general, a reduction in pumping with an increase in recharge rate leads to a decreased in chloride concentrations within the vicinity of cone of depression. Next, to further develop the numerical model, the model should focus on climate change variables such as consequences of climate change are increase in air temperature, increase in sea surface temperature, and more extreme weather conditions. These parameters are considered critical parameters for climate change impact modeling in aquifers. The behavior of the aquifer and its sustainable pumping rate can be done by applying a computer modeling component.

  1. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics

    Directory of Open Access Journals (Sweden)

    Emilio Saccani

    2015-07-01

    Full Text Available In this paper, a new discrimination diagram using absolute measures of Th and Nb is applied to post-Archean ophiolites to best discriminate a large number of different ophiolitic basalts. This diagram was obtained using >2000 known ophiolitic basalts and was tested using ∼560 modern rocks from known tectonic settings. Ten different basaltic varieties from worldwide ophiolitic complexes have been examined. They include two basaltic types that have never been considered before, which are: (1 medium-Ti basalts (MTB generated at nascent forearc settings; (2 a type of mid-ocean ridge basalts showing garnet signature (G-MORB that characterizes Alpine-type (i.e., non volcanic rifted margins and ocean-continent transition zones (OCTZ. In the Th-Nb diagram, basalts generated in oceanic subduction-unrelated settings, rifted margins, and OCTZ can be distinguished from subduction-related basalts with a misclassification rate <1%. This diagram highlights the chemical variation of oceanic, rifted margin, and OCTZ basalts from depleted compositions to progressively more enriched compositions reflecting, in turn, the variance of source composition and degree of melting within the MORB-OIB array. It also highlights the chemical contributions of enriched (OIB-type components to mantle sources. Enrichment of Th relative to Nb is particularly effective for highlighting crustal input via subduction or crustal contamination. Basalts formed at continental margin arcs and island arc with a complex polygenetic crust can be distinguished from those generated in intra-oceanic arcs in supra-subduction zones (SSZ with a misclassification rate <1%. Within the SSZ group, two sub-settings can be recognized with a misclassification rate <0.5%. They are: (1 SSZ influenced by chemical contribution from subduction-derived components (forearc and intra-arc sub-settings characterized by island arc tholeiitic (IAT and boninitic basalts; (2 SSZ with no contribution from subduction

  2. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

    Science.gov (United States)

    Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

    2014-05-01

    In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and

  3. Nutrient Removal during Stormwater Aquifer Storage and Recovery in an Anoxic Carbonate Aquifer.

    Science.gov (United States)

    Vanderzalm, Joanne L; Page, Declan W; Dillon, Peter J; Barry, Karen E; Gonzalez, Dennis

    2018-03-01

    Stormwater harvesting coupled to managed aquifer recharge (MAR) provides a means to use the often wasted stormwater resource while also providing protection of the natural and built environment. Aquifers can act as a treatment barrier within a multiple-barrier approach to harvest and use urban stormwater. However, it remains challenging to assess the treatment performance of a MAR scheme due to the heterogeneity of aquifers and MAR operations, which in turn influences water treatment processes. This study uses a probabilistic method to evaluate aquifer treatment performance based on the removal of total organic C (TOC), N, and P during MAR with urban stormwater in an anoxic carbonate aquifer. Total organic C, N, and P are represented as stochastic variables and described by probability density functions (PDFs) for the "injectant" and "recovery"; these injectant and recovery PDFs are used to derive a theoretical MAR removal efficiency PDF. Four long-term MAR sites targeting one of two tertiary carbonate aquifers (T1 and T2) were used to describe the nutrient removal efficiencies. Removal of TOC and total N (TN) was dominated by redox processes, with median removal of TOC between 50 and 60% at all sites and TN from 40 to 50% at three sites with no change at the fourth. Total P removal due to filtration and sorption accounted for median removal of 29 to 53%. Thus, the statistical method was able to characterize the capacity of the anoxic carbonate aquifer treatment barrier for nutrient removal, which highlights that aquifers can be an effective long-term natural treatment option for management of water quality, as well as storage of urban stormwater. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. The usefulness of multi-well aquifer tests in heterogeneous aquifers

    International Nuclear Information System (INIS)

    Young, S.C.; Benton, D.J.; Herweijer, J.C.; Sims, P.

    1990-01-01

    Three large-scale (100 m) and seven small-scale (3-7 m) multi-well aquifer tests were conducted in a heterogeneous aquifer to determine the transmissivity distribution across a one-hectare test site. Two of the large-scale tests had constant but different rates of discharge; the remaining large-scale test had a discharge that was pulsed at regulated intervals. The small-scale tests were conducted at two well clusters 20 m apart. The program WELTEST was written to analyze the data. By using the methods of non-linear least squares regression analysis and Broyden's method to solve for non-linear extrema, WELTEST automatically determines the best values of transmissivity and the storage coefficient. The test results show that order of magnitude differences in the calculated transmissivities at a well location can be realized by varying the discharge rate at the pumping well, the duration of the aquifer test, and/or the location of the pumping well. The calculated storage coefficients for the tests cover a five-order magnitude range. The data show a definite trend for the storage coefficient to increase with the distance between the pumping and the observation wells. This trend is shown to be related to the orientation of high hydraulic conductivity zones between the pumping and the observation wells. A comparison among single-well aquifer tests, geological investigations and multi-well aquifer tests indicate that the multi-well tests are poorly suited for characterizing a transmissivity field. (Author) (11 refs., 14 figs.)

  5. Characterizing and quantifying superparamagnetic magnetite particles in serpentinized mantle peridotite observed in continental ophiolite complexes.

    Science.gov (United States)

    Ortiz, E.; Vento, N. F. R.; Tominaga, M.; Beinlich, A.; Einsle, J. F.; Buisman, I.; Ringe, E.; Schrenk, M. O.; Cardace, D.

    2017-12-01

    Serpentinization of mantle peridotite has been recognized as one of the most important energy factories for the deep biosphere. To better evaluate the habitability of the deep biosphere, it is crucial to understand the link between in situ peridotite serpentinization processes and associated magnetite and hydrogen production. Previous efforts in correlating magnetite and hydrogen production during serpentinization processes are based primarily on laboratory experiments and numerical modeling, being challenged to include the contribution of superparamagnetic-sized magnetites (i.e., extremely fine-grained magnetite, petrographically observed as a "pepper flake" like texture in many natural serpentinized rock samples). To better estimate the abundance of superparamagnetic grains, we conducted frequency-dependent susceptibility magnetic measurements at the Institute of Rock Magnetism on naturally serpentinized rock samples from the Coast Range Ophiolite Microbial Observatory (CROMO) in California, USA and the Atlin Ophiolite (British Columbia). In addition, we conducted multiscale EDS phase mapping, BackScattered Electron (BSE) scanning, FIB-nanotomography and STEM-EELS to identify and quantify the superparamagnetic minerals that contribute to the measured magnetic susceptibility signals in our rock samples. Utilizing a multidisciplinary approach, we aim to improve the estimation of hydrogen production based on the abundance of magnetite, that includes the contribution of superparamagnetic particle size magnetite, to ultimately provide a more accurate estimation of bulk deep-biomass hosted by in situ serpentinization processes.

  6. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Frederick, D.B.

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells. Each of these wells has approximately 200 feet of open borehole below the water table, penetrating the E through G and I basalt flow groups and interbedded sediments of the Snake River Plain aquifer. The success of the aquifer tests was limited by the inability to induce measurable drawdown in several zones. Time-drawdown data from aquifer tests were matched to type curves for 8 of the 16 zones tested. A single aquifer test at the water table exhibited greater curvature than those at depth. The increased degree of curvature suggests an unconfined response and resulted in an estimate of specific yield of 0.03. Aquifer tests below the water table generally yielded time-drawdown graphs with a rapid initial response followed by constant drawdown throughout the duration of the tests; up to several hours in length. The rapid initial response implies that the aquifer responds as a confined system during brief pumping periods. The nearly constant drawdown suggests a secondary source of water, probably vertical flow from overlying and underlying aquifer layers. Three analytical models were applied for comparison to the conceptual model and to provide estimates of aquifer properties. This, Hantush-Jacob leaky aquifer, and the Moench double-porosity fractured rock models were fit to time-drawdown data. The leaky aquifer type curves of Hantush and Jacob generally provided the best match to observed drawdown. A specific capacity regression equation was also used to estimate hydraulic conductivity

  7. Aquifer thermal energy stores in Germany

    International Nuclear Information System (INIS)

    Kabus, F.; Seibt, P.; Poppei, J.

    2000-01-01

    This paper describes the state of essential demonstration projects of heat and cold storage in aquifers in Germany. Into the energy supply system of the buildings of the German Parliament in Berlin, there are integrated both a deep brine-bearing aquifer for the seasonal storage of waste heat from power and heat cogeneration and a shallow-freshwater bearing aquifer for cold storage. In Neubrandenburg, a geothermal heating plant which uses a 1.200 m deep aquifer is being retrofitted into an aquifer heat storage system which can be charged with the waste heat from a gas and steam cogeneration plant. The first centralised solar heating plant including an aquifer thermal energy store in Germany was constructed in Rostock. Solar collectors with a total area of 1000m 2 serve for the heating of a complex of buildings with 108 flats. A shallow freshwater-bearing aquifer is used for thermal energy storage. (Authors)

  8. Exploration of an alluvial aquifer in Oman by time-domain electromagnetic sounding

    Science.gov (United States)

    Young, M. E.; de Bruijn, R. G. M.; Al-Ismaily, A. Salim

    One-third of the population of Oman depends upon groundwater extracted from the alluvium of the Batinah Plain, on the coast of the Gulf of Oman. Deep geophysical exploration techniques were used to determine the depth and nature of the alluvium and the boundaries of the aquifer. The base and structural controls of the alluvial basin at its contact with Tertiary marine sediments and Cretaceous ophiolite were mapped with seismic reflection data, recorded originally for oil exploration. The base of the alluvium dips northward from the foothills of the Northern Oman Mountains, reaching a maximum depth of 2000m at the coast. The varying facies of the alluvium are grossly characterised by different, overlapping ranges of electrical resistivity, depending largely on the clay content and degree of cementation. Resistivities near the coast are reduced by saline intrusion. These variations of resistivity were mapped with time-domain electromagnetic sounding along 400km of profile, to distinguish among the three zones of the alluvial aquifer. The wedge of saline intrusion was also delineated, up to 10km from the coast. The thickness of the saturated gravel aquifer ranges from 20-160m in an area greater than 600km2. Résumé Un tiers de la population d'Oman est alimenté par de l'eau souterraine pompée dans les alluvions de la plaine de Batinah, sur la côte du golfe d'Oman. Des techniques d'exploration géophysique profonde ont été mises en oeuvre pour déterminer la profondeur et la nature des alluvions et les limites de l'aquifère. La base et les contrôles structuraux du bassin alluvial au contact des sédiments marins tertiaires et des ophiolites crétacées ont été cartographiés à partir des données de sismique réflexion obtenues à l'origine pour la recherche pétrolière. La base des alluvions plonge vers le nord à partir du piémont du massif septentrional d'Oman, pour atteindre une profondeur maximale de 2000m sur la côte. Les divers faciès alluviaux

  9. EPA Region 1 Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of...

  10. Development and Modelling of a High-Resolution Aquifer Analog in the Guarani Aquifer (Brazil)

    OpenAIRE

    Höyng, Dominik

    2014-01-01

    A comprehensive and detailed knowledge about the spatial distribution of physical and chemical properties in heterogeneous porous aquifers plays a decisive role for a realistic representation of governing parameters in mathematical models. Models allow the simulation, prediction and reproduction of subsurface flow and transport characteristics. This work explains the identification, characterization and effects of small-scale aquifer heterogeneities in the Guarani Aquifer System (GAS) in S...

  11. Investigating river–aquifer relations using water temperature in an anthropized environment (Motril-Salobreña aquifer)

    DEFF Research Database (Denmark)

    Duque, Carlos; Calvache, Marie; Engesgaard, Peter Knudegaard

    2010-01-01

    Heat was applied as a tracer for determining river–aquifer relations in the Motril-Salobreña aquifer (S Spain). The aquifer has typically been recharged by River Guadalfeo infiltration, nevertheless from 2005 a dam was constructed changing the traditional dynamic river flow and recharge events...

  12. Review of Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer in Southern Florida

    Science.gov (United States)

    Reese, Ronald S.

    2006-01-01

    Introduction: Interest and activity in aquifer storage and recovery (ASR) in southern Florida has increased greatly during the past 10 to 15 years. ASR wells have been drilled to the carbonate Floridan aquifer system at 30 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The primary storage zone at these sites is contained within the brackish to saline Upper Floridan aquifer of the Floridan aquifer system. The strategy for use of ASR in southern Florida is to store excess freshwater available during the wet season in an aquifer and recover it during the dry season when needed for supplemental water supply. Each ASR cycle is defined by three periods: recharge, storage, and recovery. This fact sheet summarizes some of the findings of a second phase retrospective assessment of existing ASR facilities and sites.

  13. Geospatial compilation of historical water-level changes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13, Gulf Coast aquifer system, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Linard, Joshua I.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced an annual series of reports that depict water-level changes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas, from 1977 to 2013. Changes are determined from water-level measurements between December and March of each year from groundwater wells screened in one of the three aquifers. Existing published maps and unpublished geographic information system (GIS) datasets were compiled into a comprehensive geodatabase of all water-level-change maps produced as part of this multiagency effort. Annual water-level-change maps were georeferenced and digitized where existing GIS data were unavailable (1979–99). Existing GIS data available for 2000–13 were included in the geodatabase. The compilation contains 121 datasets showing water-level changes for each primary aquifer of the Gulf Coast aquifer system: 56 for the Chicot aquifer (1977; 1979–2013 and 1990; 1993–2013), 56 for the Evangeline aquifer (1977; 1979–2013 and 1990; 1993–2013), and 9 for the Jasper aquifer (2000; 2005–13).

  14. Guarani aquifer

    International Nuclear Information System (INIS)

    2007-01-01

    The environmental protection and sustain ability develop project of Guarani Aquifer System is a join work from Argentina, Brazil, Paraguay and Uruguay with a purpose to increase the knowledge resource and propose technical legal and organizational framework for sustainable management between countries.The Universities funds were created as regional universities support in promotion, training and academic research activities related to environmental al social aspects of the Guarani Aquifer System.The aim of the project is the management and protection of the underground waters resources taking advantage and assesment for nowadays and future generations

  15. Circum-Pacific accretion of oceanic terranes to continental blocks: accretion of the Early Permian Dun Mountain ophiolite to the E Gondwana continental margin, South Island, New Zealand

    Science.gov (United States)

    Robertson, Alastair

    2016-04-01

    Accretionary orogens, in part, grow as a result of the accretion of oceanic terranes to pre-existing continental blocks, as in the circum-Pacific and central Asian regions. However, the accretionary processes involved remain poorly understood. Here, we consider settings in which oceanic crust formed in a supra-subduction zone setting and later accreted to continental terranes (some, themselves of accretionary origin). Good examples include some Late Cretaceous ophiolites in SE Turkey, the Jurassic Coast Range ophiolite, W USA and the Early Permian Dun Mountain ophiolite of South Island, New Zealand. In the last two cases, the ophiolites are depositionally overlain by coarse clastic sedimentary rocks (e.g. Permian Upukerora Formation of South Island, NZ) that then pass upwards into very thick continental margin fore-arc basin sequences (Great Valley sequence, California; Matai sequence, South Island, NZ). Field observations, together with petrographical and geochemical studies in South Island, NZ, summarised here, provide evidence of terrane accretion processes. In a proposed tectonic model, the Early Permian Dun Mountain ophiolite was created by supra-subduction zone spreading above a W-dipping subduction zone (comparable to the present-day Izu-Bonin arc and fore arc, W Pacific). The SSZ oceanic crust in the New Zealand example is inferred to have included an intra-oceanic magmatic arc, which is no longer exposed (other than within a melange unit in Southland), but which is documented by petrographic and geochemical evidence. An additional subduction zone is likely to have dipped westwards beneath the E Gondwana margin during the Permian. As a result, relatively buoyant Early Permian supra-subduction zone oceanic crust was able to dock with the E Gondwana continental margin, terminating intra-oceanic subduction (although the exact timing is debatable). The amalgamation ('soft collision') was accompanied by crustal extension of the newly accreted oceanic slab, and

  16. Geohydrology of the Cerro Prieto geothermal aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, J.; de la Pena L, A.

    1981-01-01

    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  17. Post-magmatic structural evolution of the Troodos Ophiolite Pillow Lavas revealed by microthermometry within vein precipitates, with application to Alpine-Mediterranean supra-subduction zone settings

    Science.gov (United States)

    Kurz, W.; Quandt, D.; Micheuz, P.; Krenn, K.

    2017-12-01

    The Troodos ophiolite, Cyprus, is one of the best preserved ophiolites. Based on geochemical data a supra-subduction zone (SSZ) setting was proposed. Microtextures and fluid inclusions of veins and vesicles within the Pillow Lavas record the post-magmatic structural and geochemical evolution of this SSZ beginning at 75 Ma. Three different vein types from the Upper and Lower Pillow Lavas are distinguished and imply vein precipitation under a dominant extensional regime: (1) syntaxial calcite-, quartz- and zeolite-bearing veins are interpreted as mineralized extension fractures that were pervaded by seawater. This advective fluid flow in an open system changed later into a closed system characterized by geochemical self-organization. (2) Blocky and (3) antitaxial fibrous calcite veins are associated with brecciation due to hydrofracturing and diffusion-crystallization processes, respectively. Based on aqueous fluid inclusion chemistry with seawater salinities in all studied vein types, representative fluid inclusion isochores crossed with calculated litho- and hydrostatic pressure conditions yield mineral precipitation temperatures between 180 and 210 °C, for veins and vesicles hosted in the Upper and Lower Pillow Lavas. This points to a heat source for the circulating seawater and implies that vein and vesicle minerals precipitated shortly after pillow lava crystallization under dominant isobaric cooling conditions. Compared to previous suggestions derived from secondary mineralization a less steep geothermal gradient of 200 °C from the Sheeted Dyke Complex to the Pillow Lavas of the Troodos SSZ is proposed. Further fossil and recent SSZ like the Mirdita ophiolite, Albania, the South-Anatolian ophiolites, Turkey, and the Izu-Bonin fore arc, respectively, reveal similar volcanic sequences. Vein samples recovered during International Ocean Discovery Program expedition 351 and 352 in the Izu-Bonin back and fore arc, respectively, indicate also seawater infiltration

  18. New methodology for aquifer influx status classification for single wells in a gas reservoir with aquifer support

    Directory of Open Access Journals (Sweden)

    Yong Li

    2016-10-01

    Full Text Available For gas reservoirs with strong bottom or edge aquifer support, the most important thing is avoiding aquifer breakthrough in a gas well. Water production in gas wells does not only result in processing problems in surface facilities, but it also explicitly reduces well productivity and reservoir recovery. There are a lot of studies on the prediction of water breakthrough time, but they are not completely practicable due to reservoir heterogeneity. This paper provides a new method together with three diagnostic curves to identify aquifer influx status for single gas wells; the aforementioned curves are based on well production and pressure data. The whole production period of a gas well can be classified into three periods based on the diagnostic curves: no aquifer influx period, early aquifer influx period, and middle-late aquifer influx period. This new method has been used for actual gas well analysis to accurately identify gas well aquifer influx status and the water breakthrough sequence of all wells in the same gas field. Additionally, the evaluation results are significantly beneficial for well production rate optimization and development of an effective gas field.

  19. Serpentinite with and without brucite: A reaction pathway analysis of a natural serpentinite in the Josephine ophiolite, California

    OpenAIRE

    Sonzogni, Yann; Treiman, Allan H.; Schwenzer, Susanne P.

    2017-01-01

    A partially serpentinized peridotite from the Josephine ophiolite has been studied in detail in order to characterize the chemical processes of its serpentinization. The original rock was harzburgite, and its olivine and orthopyroxene are partially replaced by veins and patches of lizardite serpentine and magnetite; brucite and talc are completely absent from the serpentinite, regardless of whether the precursor mineral was olivine or pyroxene. Petrographic and mineral-chemical data suggest a...

  20. Increasing freshwater recovery upon aquifer storage : A field and modelling study of dedicated aquifer storage and recovery configurations in brackish-saline aquifers

    NARCIS (Netherlands)

    Zuurbier, Koen

    2016-01-01

    The subsurface may provide opportunities for robust, effective, sustainable, and cost-efficient freshwater management solutions. For instance, via aquifer storage and recovery (ASR; Pyne, 2005): “the storage of water in a suitable aquifer through a well during times when water is available, and the

  1. Mineralogy of Surface Serpentinite Outcrops in the Coast Range Ophiolite: Implications for the Deep Biosphere and Astrobiology

    Science.gov (United States)

    Mccann, A. R.; Cardace, D.; Carnevale, D.; Ehlmann, B. L.

    2011-12-01

    California contains a number of ultramafic (Fe- and Mg rich) rock bodies, including the Coast Range Ophiolite, a block of oceanic crust and upper mantle tectonically emplaced onto land. These ultramafic rocks are primarily composed of olivine and pyroxene, both of which are stable at the high temperatures and pressures in the deep subsurface where they crystallize but become unstable at low temperature and low pressure conditions near the surface. They are highly reduced rocks, creating chemical disequilibria, which can theoretically provide energy to chemoautotrophic organisms. Serpentinization (serpentine-forming) reactions between the rocks and water produce hydrogen molecules, which can be metabolized by diverse organisms. Earth and Mars have shown evidence of similar early geologic histories, possibly with widespread reducing habitable environments (Schulte et al., 2006). Recent data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) have shown serpentine-bearing outcrops near Nili Fossae (21 N, 282 W) and elsewhere in Mars' cratered highlands. Serpentine-bearing outcrops are rare, but their presence confirms that such systems involving the aqueous alteration of ultramafic rocks were active in the past (specifically during the Noachian epoch (older than ~3.7 billion years), possibly producing aqueous habitats suitable for chemoautotrophic life (Ehlmann et al., 2010). Remotely sensed data cannot confirm whether there is active serpentinization on Mars, however exposed, presently serpentinizing ultramafics in terrestrial ophiolites such as those of the California Coast Range provide points of comparison for similar Martian rocks. Volume expansion during serpentinization fractures the host rock, exposing new reaction surfaces, allowing further serpentinization. If subsurface liquid water is present on Mars, serpentinization may still be occurring. We will provide x-ray diffraction and petrographic data for surface serpentinites from the Coast

  2. Clinopyroxenite dykes within a banded unit in the basal mantle section of the northern part of the Oman ophiolite: A record of the latest deep-seated magmatism

    Science.gov (United States)

    Ishimaru, Satoko; Arai, Shoji; Tamura, Akihiro

    2017-11-01

    We found clinopyroxenite dykes in a banded harzburgite block within the Sumeini area in the uppermost part of the metamorphic sole of the northern part of the Oman ophiolite. The dykes clearly cut the deformational structure of the harzburgite and contain its fragments, indicating dyke formation during obduction of the ophiolite. The Mg# [= Mg / (Mg + total Fe)] of clinopyroxenes in the dykes ranges from 0.81 to 0.91, and increases up to 0.93 proximal to harzburgite fragments. Mantle minerals in the harzburgite fragments were modified chemically through interaction with the magma that formed the dyke, yielding lower clinopyroxene and spinel Mg#, and spinels with higher TiO2 contents than those in the unaltered harzburgite. These geochemical features indicate that the clinopyroxenite dykes are cumulates derived from a relatively deep-seated primitive magma enriched in light rare earth elements (LREE) with an ocean island basalt (OIB)-like affinity, geochemically similar to the V3 lavas of an off-ridge origin. Combining these data with geological observations suggests that the clinopyroxenite dykes represent root system of the V3 lavas. Our analyses of the clinopyroxenite dykes testify to the external nature of the V3 magmas, which was added to the sliced oceanic lithosphere from the outside. It is likely that the V3 magma underwent deep-seated crystallization of clinopyroxene and had limited interaction with mantle peridotite en route to the surface. The mode of occurrence of the Sumeini clinopyroxenites (i.e., emplaced into a banded harzburgite block surrounded by garnet amphibolite) is consistent with the generation of OIB-like magmas (V3 lava) beneath the Oman ophiolite resulting from the break-off of the "subducting slab" and subsequent infiltration of hot asthenospheric mantle. This view is consistent with the limited distribution of V3-related rocks in the Oman ophiolite. The production of such OIB-like magmas during ophiolite obduction is not a rare event

  3. Aquifers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons....

  4. Biofilm formation and potential for iron cycling in serpentinization-influenced groundwater of the Zambales and Coast Range ophiolites.

    Science.gov (United States)

    Meyer-Dombard, D'Arcy R; Casar, Caitlin P; Simon, Alexander G; Cardace, Dawn; Schrenk, Matthew O; Arcilla, Carlo A

    2018-05-01

    Terrestrial serpentinizing systems harbor microbial subsurface life. Passive or active microbially mediated iron transformations at alkaline conditions in deep biosphere serpentinizing ecosystems are understudied. We explore these processes in the Zambales (Philippines) and Coast Range (CA, USA) ophiolites, and associated surface ecosystems by probing the relevance of samples acquired at the surface to in situ, subsurface ecosystems, and the nature of microbe-mineral associations in the subsurface. In this pilot study, we use microcosm experiments and batch culturing directed at iron redox transformations to confirm thermodynamically based predictions that iron transformations may be important in subsurface serpentinizing ecosystems. Biofilms formed on rock cores from the Zambales ophiolite on surface and in-pit associations, confirming that organisms from serpentinizing systems can form biofilms in subsurface environments. Analysis by XPS and FTIR confirmed that enrichment culturing utilizing ferric iron growth substrates produced reduced, magnetic solids containing siderite, spinels, and FeO minerals. Microcosms and enrichment cultures supported organisms whose near relatives participate in iron redox transformations. Further, a potential 'principal' microbial community common to solid samples in serpentinizing systems was identified. These results indicate collectively that iron redox transformations should be more thoroughly and universally considered when assessing the function of terrestrial subsurface ecosystems driven by serpentinization.

  5. Gabbroic lithologies of the dike-gabbro transition, Hole GT3A, Oman Drilling Project

    Science.gov (United States)

    Jesus, A. P. M.; Koepke, J.; Morishita, T.; Beinlich, A.; Johnson, K. T. M.; Greenberger, R. N.; Harris, M.; Michibayashi, K.; de Obeso, J. C.

    2017-12-01

    Hole GT3A intersects 400 m of oceanic crust providing unique insight into the dike-gabbro transition and the variability of the high level gabbros in the Samail ophiolite. Olivine gabbro and olivine bearing gabbro occur exclusively within the Upper Gabbro Sequence (16 % thickness; 111.02 m - 127.89 m) whereas oxide gabbro and disseminated oxide gabbro represent ca 5 % of the Lower Gabbro Sequence (233.84 m - 398.21 m). Gabbro with less than 1 vol. % olivine and oxide is the most common lithology in both Gabbro Sequences (10-13 %). Most gabbroic rocks were classified as "varitextured" due to textural and grain size macroscopic variations forming irregular domains/patches. Varitextured gabbros are medium-grained (1-5 mm), with seriate grain size distribution and subophitic/poikilitic to granular textural domains. Poikilitic domains comprise clinopyroxene with plagioclase chadacrysts, whereas in granular domains plagioclase interstices are filled by green-brown magmatic hornblende; plagioclase is zoned in both domains. Olivine (bearing) gabbros have 4-8 mm skeletal olivine pseudomorphs with roundish inclusions of chromite and plagioclase. Oxide (disseminated) gabbros comprise variable amounts of plagioclase, clinopyroxene, Oman paleo ridge.

  6. Geospatial compilation of historical water-level altitudes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13 in the Gulf Coast aquifer system, Houston-Galveston Region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Ellis, Robert H.H.

    2013-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced a series of annual reports depicting groundwater-level altitudes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas. To produce these annual reports, contours of equal water-level altitudes are created from water levels measured between December and March of each year from groundwater wells screened completely within one of these three aquifers. Information obtained from maps published in the annual series of USGS reports and geospatial datasets of water-level altitude contours used to create the annual series of USGS reports were compiled into a comprehensive geodatabase. The geospatial compilation contains 88 datasets from previously published contour maps showing water-level altitudes for each primary aquifer of the Gulf Coast aquifer system, 37 for the Chicot (1977–2013), 37 for the Evangeline aquifer (1977–2013), and 14 for the Jasper aquifer (2000–13).

  7. Can Remote Sensing Detect Aquifer Characteristics?: A Case Study in the Guarani Aquifer System

    Science.gov (United States)

    Richey, A. S.; Thomas, B.; Famiglietti, J. S.

    2013-12-01

    Global water supply resiliency depends on groundwater, especially regions threatened by population growth and climate change. Aquifer characteristics, even as basic as confined versus unconfined, are necessary to prescribe regulations to sustainably manage groundwater supplies. A significant barrier to sustainable groundwater management exists in the difficulties associated with mapping groundwater resources and characteristics at a large spatial scale. This study addresses this challenge by investigating if remote sensing, including with NASA's Gravity Recovery and Climate Experiment (GRACE), can detect and quantify key aquifer parameters and characteristics. We explore this through a case study in the Guarani Aquifer System (GAS) of South America, validating our remote sensing-based findings against the best available regional estimates. The use of remote sensing to advance the understanding of large aquifers is beneficial to sustainable groundwater management, especially in a trans-boundary system, where consistent information exchange can occur within hydrologic boundaries instead of political boundaries.

  8. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    Science.gov (United States)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  9. Water-quality characteristics of quaternary unconsolidated-deposit aquifers and lower tertiary aquifers of the Bighorn Basin, Wyoming and Montana, 1999-2001

    Science.gov (United States)

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Norris, Jody R.; Gamper, Merry E.; Hallberg, Laura L.

    2004-01-01

    As part of the Yellowstone River Basin National Water Quality Assessment study, ground-water samples were collected from Quaternary unconsolidated-deposit and lower Tertiary aquifers in the Bighorn Basin of Wyoming and Montana from 1999 to 2001. Samples from 54 wells were analyzed for physical characteristics, major ions, trace elements, nutrients, dissolved organic carbon, radionuclides, pesticide compounds, and volatile organic compounds (VOCs) to evaluate current water-quality conditions in both aquifers. Water-quality samples indicated that waters generally were suitable for most uses, and that natural conditions, rather than the effects of human activities, were more likely to limit uses of the waters. Waters in both types of aquifers generally were highly mineralized, and total dissolved-solids concentrations frequently exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 500 milligrams per liter (mg/L). Because of generally high mineralization, waters from nearly one-half of the samples from Quaternary aquifers and more than one-half of the samples from lower Tertiary aquifers were not classified as fresh (dissolved-solids concentration were not less than 1,000 mg/L). The anions sulfate, fluoride, and chloride were measured in some ground-water samples at concentrations greater than SMCLs. Most waters from the Quaternary aquifers were classified as very hard (hardness greater than 180 mg/L), but hardness varied much more in waters from the lower Tertiary aquifers and ranged from soft (less than 60 mg/L) to very hard (greater than 180 mg/L). Major-ion chemistry varied with dissolved-solids concentrations. In both types of aquifers, the predominant anion changes from bicarbonate to sulfate with increasing dissolved-solids concentrations. Samples from Quaternary aquifers with fresh waters generally were calcium-bicarbonate, calcium-sodium-bicarbonate, and calcium-sodium-sulfate-bicarbonate type waters, whereas

  10. Compositionally heterogeneous podiform chromitite in the Shetland Ophiolite Complex (Scotland): Implications for chromitite petrogenesis and late-stage alteration in the upper mantle portion of a supra-subduction zone ophiolite

    Science.gov (United States)

    Derbyshire, E. J.; O'Driscoll, B.; Lenaz, D.; Gertisser, R.; Kronz, A.

    2013-03-01

    The mantle sequence of the ~ 492 Ma Shetland Ophiolite Complex (SOC; Scotland) contains abundant compositionally heterogeneous podiform chromitite bodies enclosed in elongate dunite lenses in the vicinity of the petrological Moho. Chromitite petrogenesis and late-stage alteration events recorded in these seams are examined here using petrography, mineral chemistry and crystal structural data. The resistant nature of Cr-spinel to serpentinisation and other late-stage alteration means that primary igneous compositions are preserved in unaltered crystal cores. Chromitite mineralogy and texture from five sampled localities at The Viels, Hagdale, Harold's Grave, Nikka Vord and Cliff reveal significant inter-pod chemical heterogeneity. The Cr-spinel mineral chemistry is consistent with supra-subduction zone melt extraction from the SOC peridotites. The occurrence of chromitite seams in the centres of the dunite lenses combined with variable Cr-spinel compositions at different chromitite seam localities supports a model of chromitite formation from spatially (and temporally?) fluctuating amounts of melt-rock interaction through channelised and/or porous melt flow. Pervasive serpentinisation of the SOC has led to the almost complete replacement of the primary (mantle) silicate mineral assemblages with serpentine (lizardite with minor chrysotile and antigorite). Magmatic sulphide (e.g., pentlandite) in dunite and chromitite is locally converted to reduced Ni-sulphide varieties (e.g., heazlewoodite and millerite). A post-serpentinisation (prograde) oxidisation event is recorded in the extensively altered Cliff chromitite seams in the west of the studied area, where chromitite Cr-spinel is extensively altered to ferritchromit. The ferritchromit may comprise > 50% of the volume of the Cliff Cr-spinels and contain appreciable quantities of 1-2 μm inclusions of sperrylite (PtAs2) and Ni-arsenide, signifying the coeval formation of these minerals with ferritchromit at

  11. Ground-water quality of the surficial aquifer system and the upper Floridan Aquifer, Ocala National Forest and Lake County, Florida, 1990-99

    Science.gov (United States)

    Adamski, J.C.; Knowles, Leel

    2001-01-01

    Data from 217 ground-water samples were statistically analyzed to assess the water quality of the surficial aquifer system and Upper Floridan aquifer in the Ocala National Forest and Lake County, Florida. Samples were collected from 49 wells tapping the surficial aquifer system, 141 wells tapping the Upper Floridan aquifer, and from 27 springs that discharge water from the Upper Floridan aquifer. A total of 136 samples was collected by the U.S. Geological Survey from 1995 through 1999. These data were supplemented with 81 samples collected by the St. Johns River Water Management District and Lake County Water Resources Management from 1990 through 1998. In general, the surficial aquifer system has low concentrations of total dissolved solids (median was 41 milligrams per liter) and major ions. Water quality of the surficial aquifer system, however, is not homogeneous throughout the study area. Concentrations of total dissolved solids, many major ions, and nutrients are greater in samples from Lake County outside the Ocala National Forest than in samples from within the Forest. These results indicate that the surficial aquifer system in Lake County outside the Ocala National Forest probably is being affected by agricultural and (or) urban land-use practices. High concentrations of dissolved oxygen (less than 0.1 to 8.2 milligrams per liter) in the surficial aquifer system underlying the Ocala National Forest indicate that the aquifer is readily recharged by precipitation and is susceptible to surface contamination. Concentrations of total dissolved solids were significantly greater in the Upper Floridan aquifer (median was 182 milligrams per liter) than in the surficial aquifer system. In general, water quality of the Upper Floridan aquifer was homogeneous, primarily being a calcium or calciummagnesium- bicarbonate water type. Near the St. Johns River, the water type of the Upper Floridan aquifer is sodium-chloride, corresponding to an increase in total dissolved

  12. WTAQ - A computer program for aquifer-test analysis of confined and unconfined aquifers

    Science.gov (United States)

    Barlow, P.M.; Moench, A.F.

    2004-01-01

    Computer program WTAQ was developed to implement a Laplace-transform analytical solution for axial-symmetric flow to a partially penetrating, finite-diameter well in a homogeneous and anisotropic unconfined (water-table) aquifer. The solution accounts for wellbore storage and skin effects at the pumped well, delayed response at an observation well, and delayed or instantaneous drainage from the unsaturated zone. For the particular case of zero drainage from the unsaturated zone, the solution simplifies to that of axial-symmetric flow in a confined aquifer. WTAQ calculates theoretical time-drawdown curves for the pumped well and observation wells and piezometers. The theoretical curves are used with measured time-drawdown data to estimate hydraulic parameters of confined or unconfined aquifers by graphical type-curve methods or by automatic parameter-estimation methods. Parameters that can be estimated are horizontal and vertical hydraulic conductivity, specific storage, and specific yield. A sample application illustrates use of WTAQ for estimating hydraulic parameters of a hypothetical, unconfined aquifer by type-curve methods. Copyright ASCE 2004.

  13. Geochemistry of the Arbuckle-Simpson Aquifer

    Science.gov (United States)

    Christenson, Scott; Hunt, Andrew G.; Parkhurst, David L.; Osborn, Noel I.

    2009-01-01

    The Arbuckle-Simpson aquifer in south-central Oklahoma provides water for public supply, farms, mining, wildlife conservation, recreation, and the scenic beauty of springs, streams, and waterfalls. A new understanding of the aquifer flow system was developed as part of the Arbuckle-Simpson Hydrology Study, done in 2003 through 2008 as a collaborative research project between the State of Oklahoma and the Federal government. The U.S. Geological Survey collected 36 water samples from 32 wells and springs in the Arbuckle-Simpson aquifer in 2004 through 2006 for geochemical analyses of major ions, trace elements, isotopes of oxygen and hydrogen, dissolved gases, and dating tracers. The geochemical analyses were used to characterize the water quality in the aquifer, to describe the origin and movement of ground water from recharge areas to discharge at wells and springs, and to determine the age of water in the aquifer.

  14. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, M., E-mail: mmusgrov@usgs.gov [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Opsahl, S.P. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States); Mahler, B.J. [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Herrington, C. [City of Austin Watershed Protection Department, Austin, TX 78704 (United States); Sample, T.L. [U.S. Geological Survey, 19241 David Memorial Dr., Ste. 180, Conroe, TX 77385 (United States); Banta, J.R. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States)

    2016-10-15

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO{sub 3}{sup −}) loading to surface and groundwater. We investigate variability and sources of NO{sub 3}{sup −} in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO{sub 3}{sup −} stable isotopes (δ{sup 15}N and δ{sup 18}O). These data were augmented by historical data collected from 1937 to 2007. NO{sub 3}{sup −} concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO{sub 3}{sup −} concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO{sub 3}{sup −} concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO{sub 3}{sup −}. These results highlight the vulnerability of karst aquifers to NO{sub 3}{sup −} contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO{sub 3}{sup −} than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates

  15. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    International Nuclear Information System (INIS)

    Musgrove, M.; Opsahl, S.P.; Mahler, B.J.; Herrington, C.; Sample, T.L.; Banta, J.R.

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO 3 − ) loading to surface and groundwater. We investigate variability and sources of NO 3 − in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO 3 − stable isotopes (δ 15 N and δ 18 O). These data were augmented by historical data collected from 1937 to 2007. NO 3 − concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO 3 − concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO 3 − concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO 3 − . These results highlight the vulnerability of karst aquifers to NO 3 − contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO 3 − than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a

  16. Oman Drilling Project Phase I Borehole Geophysical Survey

    Science.gov (United States)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for

  17. Hydrogeology of the Cambrian-Ordovician aquifer system in the northern Midwest: B in Regional aquifer-system analysis

    Science.gov (United States)

    Young, H.L.; Siegel, D.I.

    1992-01-01

    The Cambrian-Ordovician aquifer system contains the most extensive and continuous aquifers in the northern Midwest of the United States. It is the source of water for many municipalities, industries, and rural water users. Since the beginning of ground-water development from the aquifer system in the late 1800's, hydraulic heads have declined hundreds of feet in the heavily pumped Chicago-Milwaukee area and somewhat less in other metropolitan areas. The U.S. Geological Survey has completed a regional assessment of this aquifer system within a 161,000-square-mile area encompassing northern Illinois, northwestern Indiana, Iowa, southeastern Minnesota, northern Missouri, and Wisconsin.

  18. Protrusive intrusion, dehydration and polymorphism in minerals as possible reason of seismic activity, relation between ophiolite belts and seismic zonation of the territory of Armenia

    Science.gov (United States)

    Harutyunyan, A. V.; Petrosyan, H. M.

    2010-05-01

    In the basis of multiple geological and geophysical data, also on the results of investigations seismic and density properties of rocks at high termobaric conditions, we proposed the petrophisical section and model of evolution of Earth crust of the territory of Armenia. On the proposed model the following interrelated problems are debated: forming of ophiolite belts and volcanic centers, genesis of hydrocarbons by organic and inorganic ways, and also reasons of originating of seismic centers. The reasons of originating of seismic centers in different depths of Earth crust, are miscellaneous. According to the model of Earth crust evolution the ophiolite belts are formed due to permanent protrusive intrusion of serpentinized masses from the foot of the crust (35-50km) into upper horizons. It is natural to assume, that the permanent intrusion of serpentinizd masses through deep faults has drastically occurred accompanying with seismic shakings. This process encourages the development of deep faults. The protrusive intrusion of serpentinized masse accompanied with partial dehydration of serpentinites and serpentinized ultrabasites and new mineral formation. The processes was accompanied also with drastic change of seismic waves and volumes up to 30%. Experiments at high termobaric conditions show, that some minerals undergone polymorphous transformations, accompanied with phase change and drastic change of rocks volume. Particularly plastic calcite, included in the composition of metamorphic rocks to run into the cracks expends and diversifies them. The process described cause some general effects similar to those of the process of dilatancy. Therefore, the protrusive intrusion of serpentinized masses into upper horizons, it dehydrations and polymorphous transformations in different minerals, may be cause of geo-dynamic processes at different depths of Earth crust. It may be assumed, that those processes permanently occur nowadays as well. Comparing the maps of

  19. Aquifer geochemistry at potential aquifer storage and recovery sites in coastal plain aquifers in the New York city area, USA

    Science.gov (United States)

    Brown, C.J.; Misut, P.E.

    2010-01-01

    The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water

  20. Hydrology of the shallow aquifer and uppermost semiconfined aquifer near El Paso, Texas

    Science.gov (United States)

    White, D.E.; Baker, E.T.; Sperka, Roger

    1997-01-01

    The availability of fresh ground water in El Paso and adjacent areas that is needed to meet increased demand for water supply concerns local, State, and Federal agencies. The Hueco bolson is the principal aquifer in the El Paso area. Starting in the early 1900s and continuing to the 1950s, most of the municipal and industrial water supply in El Paso was pumped from the Hueco bolson aquifer from wells in and near the Rio Grande Valley and the international border. The Rio Grande is the principal surface-water feature in the El Paso area, and a major source of recharge to the shallow aquifer (Rio Grande alluvium) within the study area is leakage of flow from the Rio Grande.

  1. Geochemistry and Nd-isotope systematics of chemical and terrigenous sediments from the Dun Mountain Ophiolite, New Zealand

    International Nuclear Information System (INIS)

    Sivell, W.J.

    2002-01-01

    Two sedimentary associations closely related to temporally discrete ophiolitic magma suites occur within the Early Permian Dun Mountain Ophiolite Belt (DMOB), New Zealand. These are: (1) a suite of diverse chemical sediments and turbidite argillites (TA) that bear an intimate depositional relationship to early-formed pillow lavas (back-arc basin basalts); and (2) a younger, lithic-dominated, bimodal, coarse sandstone-ophiolitic rudite assemblage of proximal turbidite/mass-flow origin, rich in clasts of infant-arc magmas which comprise the bulk of the ophiolite. There are four groups of DMOB chemical sediments. Red hematitic chert (group 1) fills interstices between basalt pillows, and black nodular Fe-Mn deposits (group 2) occur along pillow lava/sediment interfaces. These facies are overlain by red mudstones (group 3), and mottled orange-olive brown mudstones (altered hyaloclastites; group 4). Geochemical features (including REE contents, Fe/Ti and transition ratios) indicate that the cherts reflect silica and metalliferous contributions to sea water, promoted by low-temperature hydrothermal alteration of glassy basalt, while group 4 muds represent residual components in halmyrolytically altered volcanic glass. Transition metal and REE enrichments in group 2 nodules (with high Ce/Ce*, Ni/Fe, and Cu/Fe ratios) reflect hydrogenous chemisorption to a hydothermal component (with high Ba and Sr). The nodules possess ε Nd (T) values (c. 0) identical to those calculated for Permian sea water. Group 3 red muds have lower ε Nd (T) = -1 to -2, and Nd model ages (T) Nd DM) that indicate contributions from continentally derived fluvial particulate fallout of mean Proterozoic age. For the nodules and red muds, strong negative correlations between Mn/Fe, Nd, Ce*/Ce, and ε Nd (T) are attributed to increasing diagenetic influence in the muds. ε Nd (T) values (c. +2) in group 4 muds are transitional toward higher values in their (hyaloclastite) basalt glass precursors

  2. Mineral compositions of plutonic rocks from the Lewis Hills massif, Bay of Islands ophiolite

    Science.gov (United States)

    Smith, Susan E.; Elthon, Don

    1988-01-01

    Mineral compositions of residual and cumulate rocks from the Lewis Hills massif of the Bay of Islands ophiolite complex are reported and interpreted in the context of magnetic processes involved in the geochemical evolution of spatially associated diabase dikes. The mineral compositions reflect greater degrees of partial melting than most abyssal peridotites do and appear to represent the most depleted end of abyssal peridotite compositions. Subsolidus equilibration between Cr-Al spinal and olivine generally has occurred at temperatures of 700 to 900 C. The spinel variations agree with the overall fractionation of basaltic magmas producing spinels with progressively lower Cr numbers. The compositions of clinopyroxenes suggest that the fractionation of two different magma series produced the various cumulate rocks.

  3. Serpentinization and fluid-rock interaction in Jurassic mafic and ultramafic sea-floor: constraints from Ligurian ophiolite sequences

    Science.gov (United States)

    Vogel, Monica; Früh-Green, Gretchen L.; Boschi, Chiara; Schwarzenbach, Esther M.

    2014-05-01

    The Bracco-Levanto ophiolitic complex (Eastern Liguria) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge, such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of deformation processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to modern oceanic hydrothermal systems, such as the Lost City Hydrothermal Field hosted in ultramafic rocks on the Atlantis Massif. A focus is on investigating mass transfer and fluid flow paths during high and low temperature hydrothermal activity, and on processes leading to hydrothermal carbonate precipitation and the formation of ophicalcites, which are characteristic of the Bracco-Levanto sequences. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread SiO2 metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater and high fluid-rock ratios in the shallow ultramafic-dominated portions of the Jurassic seafloor. We observe regional variations in MgO, SiO2 and Al2O3, suggesting Si-flux towards stratigraphically higher units. In general, the ophicalcites have higher Si, Al and Fe concentrations and lower Mg than the serpentinite basement rocks or serpentinites with minimal carbonate veins. Bulk rock trace element data and Sr isotope ratios indicate seawater reacting with rocks of more mafic composition, then channeled towards stratigraphically higher

  4. Behaviour and fate of nine recycled water trace organics during managed aquifer recharge in an aerobic aquifer

    Science.gov (United States)

    Patterson, B. M.; Shackleton, M.; Furness, A. J.; Bekele, E.; Pearce, J.; Linge, K. L.; Busetti, F.; Spadek, T.; Toze, S.

    2011-03-01

    The fate of nine trace organic compounds was evaluated during a 12 month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life NDMA and NMOR) did not degrade under either aerobic or anaerobic aquifer geochemical conditions (half life > 50 days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required.

  5. Behaviour and fate of nine recycled water trace organics during managed aquifer recharge in an aerobic aquifer.

    Science.gov (United States)

    Patterson, B M; Shackleton, M; Furness, A J; Bekele, E; Pearce, J; Linge, K L; Busetti, F; Spadek, T; Toze, S

    2011-03-25

    The fate of nine trace organic compounds was evaluated during a 12month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life aquifer geochemical conditions (half life >50days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  6. Comparison of support vector machine and neutral network classification method in hyperspectral mapping of ophiolite mélanges–A case study of east of Iran

    Directory of Open Access Journals (Sweden)

    Bahram Bahrambeygi

    2017-06-01

    Full Text Available Ophiolitic regions are one of the most complex geology settings. Mapping in these parts need broad and precise studies and tools because of the mixture rocks and confusion units. Hyperion hyperspectral sensor data are one of the advanced tools for earth surface mapping that containing rich information of shallow electromagnetic reflection in 242 continuous bands. Because of some contaminated noise in tens of these bands we removed 87 most noisy bands and focused our study on 155 low noisy bands. In present study, tow spectral based classification algorithms of support vector machine and neutral network are compared on hyperion image for classification of cluttered units in an ophiolite set. Study area is Mesina region in collision ophiolitic belt of south east of Iran. In this region for design processing results validation rate, lots of random locations and control points were studied in field scale and were sampled for laboratory surveys. Samples were investigated in microscopic section and by electron microprobe system. Based on laboratory-field studies, the lithology of this area can divided into five general groups: (Melange series, metamorphic units, Oligocene – Miocene to Quaternary volcanic units, lime and flysch units. Based on field-laboratory works, some standard points defined for validate processing results accuracy rate. Therefore, the Support Vector Machine and neutral network method as advanced hyperspectral image processing methods respectively have overall accuracies of 52% and 65%. Consequently the method based neutral network theory for hyperspectral classification have acceptable ratio in separation of blended complicated units.

  7. Hydrochemical processes in a shallow coal seam gas aquifer and its overlying stream–alluvial system: implications for recharge and inter-aquifer connectivity

    International Nuclear Information System (INIS)

    Duvert, Clément; Raiber, Matthias; Owen, Daniel D.R.; Cendón, Dioni I.; Batiot-Guilhe, Christelle; Cox, Malcolm E.

    2015-01-01

    Highlights: • Major ions and isotopes used to study inter-aquifer mixing in a shallow CSG setting. • Considerable heterogeneity in the water composition of the coal-bearing aquifer. • Rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks. • Potential mixing between the coal-bearing aquifer and downstream alluvial aquifer. • Need to consider the seasonal influences on inter-aquifer mixing in CSG settings. - Abstract: In areas of potential coal seam gas (CSG) development, understanding interactions between coal-bearing strata and adjacent aquifers and streams is of highest importance, particularly where CSG formations occur at shallow depth. This study tests a combination of hydrochemical and isotopic tracers to investigate the transient nature of hydrochemical processes, inter-aquifer mixing and recharge in a catchment where the coal-bearing aquifer is in direct contact with the alluvial aquifer and surface drainage network. A strong connection was observed between the main stream and underlying alluvium, marked by a similar evolution from fresh Ca–Mg–HCO 3 waters in the headwaters towards brackish Ca–Na–Cl composition near the outlet of the catchment, driven by evaporation and transpiration. In the coal-bearing aquifer, by contrast, considerable site-to-site variations were observed, although waters generally had a Na–HCO 3 –Cl facies and high residual alkalinity values. Increased salinity was controlled by several coexisting processes, including transpiration by plants, mineral weathering and possibly degradation of coal organic matter. Longer residence times and relatively enriched carbon isotopic signatures of the downstream alluvial waters were suggestive of potential interactions with the shallow coal-bearing aquifer. The examination of temporal variations in deuterium excess enabled detection of rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks, particularly at the catchment

  8. Isotopic study of the Continental Intercalaire aquifer and its relationship with other aquifers of the northern Sahara

    International Nuclear Information System (INIS)

    Gonfiantini, R.; Sauzay, G.; Payne, B.R.; Conrad, G.; Fontes, J.Ch.

    1974-01-01

    The Northern Sahara contains several aquifers, the largest of which is that of the Continental Intercalaire formations. In its eastern part the aquifer is confined and presents a very homogeneous isotopic composition. The 14 C activity is low or zero except in the outcrop zones of the north (Saharan Atlas), the east (Dahar) and the south (Tinrhert), all of which are recharge zones. In these areas the isotopic composition does not differ appreciably from that of the old water in the confined part of the aquifer. In the western part, where the reservoir outcrops widely, the 14 C activities show the extent of the local recharge. The heavy isotope content indicates the overflow of the surface aquifer of the western Grand Erg into the Continental Intercalaire over the whole Gourara front. The mixtures thus formed pass under the Tademait and drain towards the Touat. In the resurgence zone of the Gulf of G abes in Tunisia the heavy-isotope content confirms the recharging of the aquifer of the Complex terminal by drainage of water from the Continental Intercalaire through the El-Hamma fault system. The water then runs eastwards, mixing with local contributions. The marine Miocene confined aquifer of Zarzis-Djerba in the Gulf of Gabes receives no contribution from the Continental Intercalaire. The water in the aquifer of the western Grand Erg indicates an evaporation mechanism, probably peculiar to the dune systems, which gives rise to heavy-isotope enrichment compared with the recharge of other types of formations. (author) [fr

  9. AQUIFER IN AJAOKUTA, SOUTHWESTERN NIGERIA

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... To establish the feasibility of water supply in a basement complex area ofAjaokuta, Southwestern Nigeria, pumping test results were used to investigate the storage properties and groundwater potential of the aquifer. The aquifer system consists of weathered and weathered/fractured zone of decomposed ...

  10. Hydrogen generation during serpentinisation in ophiolite complexes: A comparison of H2-rich gases from Oman, Philippines and Turkey.

    Science.gov (United States)

    Beaumont, Valérie; Vacquand, Christèle; Deville, Eric; Prinzhofer, Alain

    2013-04-01

    H2-rich gas seepages in ultrabasic to basic contexts both in marine and continental environment are by-products of serpentinisation. Hydrothermal systems at MOR expose ultrabasic rocks to thermodynamic conditions favouring oxidation of FeII bearing minerals and water reduction. In continental context such thermodynamic conditions do not exist although active serpentinisation occurs in all known ophiolitic complexes (Barnes et al., 1978; Bruni et al., 2002; Cipolli et al., 2004; Boschetti and Toscani, 2008; Marques et al., 2008). Hyperalkaline springs are reported in these contexts as evidence of this active serpentinisation (Barnes et al., 1967) and are often associated with seepages of reduced gases (Neal and Stanger, 1983; Sano et al., 1993). Dry gas seepages are also observed (Abrajano et al., 1988, 1990; Hosgörmez, 2007; Etiope et al., 2011) Such H2-rich gases from ophiolite complexes were sampled in the Sultanate of Oman, the Philippines and Turkey and were analysed for chemical composition, noble gases contents, stable isotopes of carbon, hydrogen and nitrogen. The conditions for present-day serpentinisation in ophiolites were recognised as low temperature processes in Oman with high rock/water ratios (Neal and Stanger, 1985), while the origin of gases is not as univocal for Philippines and Turkey gas seepages. Although, H2 generation is directly linked with FeII oxidation, different reactions can occur during peridotite hydration (McCollom and Bach, 2009; Marcaillou et al., 2011) and serpentine weathering. Produced H2 can react with carbonate species to produce methane via processes that could be biological or abiotic, while carbon availability depends on water recharge chemistry. In the present study, the geochemical properties of gases sampled from three different ophiolite complexes are compared and provide evidence that weathering reactions producing H2 depend on structural, geological, geomorphologic and hydrological local features. REFERENCES Abrajano

  11. Hydrological controls on transient aquifer storage in a karst watershed

    Science.gov (United States)

    Spellman, P.; Martin, J.; Gulley, J. D.

    2017-12-01

    While surface storage of floodwaters is well-known to attenuate flood peaks, transient storage of floodwaters in aquifers is a less recognized mechanism of flood peak attenuation. The hydraulic gradient from aquifer to river controls the magnitude of transient aquifer storage and is ultimately a function of aquifer hydraulic conductivity, and effective porosity. Because bedrock and granular aquifers tend to have lower hydraulic conductivities and porosities, their ability to attenuate flood peaks is generally small. In karst aquifers, however, extensive cave systems create high hydraulic conductivities and porosities that create low antecedent hydraulic gradients between aquifers and rivers. Cave springs can reverse flow during high discharges in rivers, temporarily storing floodwaters in the aquifer thus reducing the magnitude of flood discharge downstream. To date however, very few studies have quantified the magnitude or controls of transient aquifer storage in karst watersheds. We therefore investigate controls on transient aquifer storage by using 10 years of river and groundwater data from the Suwannee River Basin, which flows over the karstic upper Floridan aquifer in north-central Florida. We use multiple linear regression to compare the effects of three hydrological controls on the magnitude of transient aquifer storage: antecedent stage, recharge and slope of hydrograph rise. We show the dominant control on transient aquifer storage is antecedent stage, whereby lower stages result in greater magnitudes of transient aquifer storage. Our results suggest that measures of groundwater levels prior to an event can be useful in determining whether transient aquifer storage will occur and may provide a useful metric for improving predictions of flood magnitudes.

  12. Hydrogeology - AQUIFER_SYSTEMS_BEDROCK_IDNR_IN: Bedrock Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — AQUIFER_SYSTEMS_BEDROCK_IDNR_IN is a polygon shapefile that shows bedrock aquifer systems of the State of Indiana. The source scale of the map depicting the aquifers...

  13. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    Science.gov (United States)

    Musgrove, MaryLynn; Opsahl, Stephen P.; Mahler, Barbara J.; Herrington, Chris; Sample, Thomas; Banta, John

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3−) loading to surface and groundwater. We investigate variability and sources of NO3− in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3− stable isotopes (δ15N and δ18O). These data were augmented by historical data collected from 1937 to 2007. NO3− concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3− concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3− concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3−. These results highlight the vulnerability of karst aquifers to NO3− contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3−than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously

  14. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    Science.gov (United States)

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  15. Aquifers in coastal reclaimed lands - real world assessments

    Science.gov (United States)

    Saha, A.; Bironne, A.; Vonhögen-Peeters, L.; Lee, W. K.; Babovic, V. M.; Vermeulen, P.; van Baaren, E.; Karaoulis, M.; Blanchais, F.; Nguyen, M.; Pauw, P.; Doornenbal, P.

    2017-12-01

    Climate change and population growth are significant concerns in coastal regions around the world, where more than 30% of the world's population reside. The numbers continue to rise as coastal areas are increasingly urbanized. Urbanization creates land shortages along the coasts, which has spurred coastal reclamation activities as a viable solution. In this study, we focus on these reclamation areas; reclaimed areas in Singapore, and in the Netherlands, and investigate the potential of these reclaimed bodies as artificial aquifers that could attenuate water shortage problems in addition to their original purpose. We compare how the reclamation methods determine the hydrogeological characteristics of these manmade aquifers. We highlight similarities in freshwater lens development in the artificial shallow aquifers under natural recharge under diverse conditions, i.e. tropical and temperate zones, using numerical models. The characteristics and responses of these aquifers with dynamic freshwater-saltwater interface are contrasted against naturally occurring coastal aquifers where equilibrium was disturbed by anthropogenic activities. Finally, we assess the risks associated with subsidence and saltwater intrusion, combining measurements and numerical models, in case these aquifers are planned for Aquifer Storage and Recovery (ASR) or Managed Aquifer Recharge (MAR) strategies. Relative performances of some ASR schemes are simulated and compared in the reclaimed lands.

  16. Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida

    Science.gov (United States)

    Reese, Ronald S.; Alvarez-Zarikian, Carlos A.

    2007-01-01

    Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement

  17. Clinopyroxenite dikes crosscutting banded peridotites just above the metamorphic sole in the Oman ophiolite: early cumulates from the primary V3 lava

    Science.gov (United States)

    Ishimaru, Satoko; Arai, Shoji; Tamura, Akihiro

    2013-04-01

    Oman ophiolite is one of the well-known ophiolites for excellent exposures not only of the mantle section but also of the crustal section including effusive rocks and the underlying metamorphic rocks. In the Oman ophiolite, three types of effusive rocks (V1, V2 and V3 from the lower sequences) are recognized: i.e., V1, MORB-like magma, V2, island-arc type lava, and V3, intra-plate lava (Godard et al., 2003 and references there in). V1 and V2 lavas are dominant (> 95 %) as effusive rocks and have been observed in almost all the blocks of northern part of the Oman ophiolite (Godard et al., 2003), but V3 lava has been reported only from Salahi area (Alabaster et al., 1982). It is clear that there was a time gap of lava eruption between V1-2 and V3 based on the presence of pelagic sediments in between (Godard et al., 2003). In addition, V3 lavas are fed by a series of doleritic dikes crosscutting V2 lava (Alley unit) (Alabaster et al., 1982). We found clinopyroxenite (CPXITE) dikes crosscutting deformation structure of basal peridotites just above the metamorphic sole in Wadi Ash Shiyah. The sole metamorphic rock is garnet amphibolite, which overlies the banded and deformed harzburgite and dunite. The CPXITE is composed of coarse clinopyroxene (CPX) with minor amount of chlorite, garnet (hydrous/anhydrous grossular-andradite) with inclusions of titanite, and serpentine formed at a later low-temperature stage. The width of the CPXITE dikes is 2-5 cm (10 cm at maximum) and the dikes contain small blocks of wall harzburgite. Almost all the silicates are serpentinized in the harzburgite blocks except for some CPX. The Mg# (= Mg/(Mg + Fe) atomic ratio) of the CPX is almost constant (= 0.94-0.95) in the serpentinite blocks but varies within the dikes, highest at the contact with the block (0.94) and decreasing with the distance from the contact to 0.81 (0.85 on average). The contents of Al2O3, Cr2O3, and TiO2 in the CPX of the dikes are 0.5-2.0, 0.2-0.6, and 0

  18. Factors affecting public-supply well vulnerability in two karst aquifers.

    Science.gov (United States)

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-09-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management. © 2014 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  19. Ozark Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — These digital maps contain information on the altitude of the base and top, the extent, and the potentiometric surface of the Ozark aquifer in Kansas. The Ozark...

  20. Bedrock aquifers of eastern San Juan County, Utah

    Science.gov (United States)

    Avery, Charles

    1986-01-01

    This study is one of a series of studies appraising the waterbearing properties of the Navajo Sandstone and associated formations in southern Utah.  The study area is about 4,600 square miles, extending from the Utah-Arizona State line northward to the San Juan-Grand County line and westward from the Utah-Colorado State line to the longitude of about 109°50'.Some of the water-yielding formations are grouped into aquifer systems. The C aquifer is comprised of the DeChelly Sandstone Member of the Cutler Formation.  The P aquifer is comprised of the Cedar Mesa Member of the Cutler Formation and the undifferentiated Cutler Formation. The N aquifer is comprised of the sedimentary section that includes the Wingate Sandstone, Kayenta Formation, Navajo Sandstone, Carmel Formation, and Entrada sandstone.  The M aquifer is comprised of the Bluff Sandstone Member and other sandstone units of the Morrison Formation.  The D aquifer is comprised of the Burro Canyon Formation and Dakota Sandstone.  Discharge from the ground-water reservoir to the San Juan River between gaging stations at Four Corners and Mexican Hat is about 66 cubic feet per second.The N aquifer is the main aquifer in the study area. Recharge by infiltration of precipitation is estimated to be 25,000 acre-feet per year.  A major ground-water divide exists under the broad area east of Monticello.  The thickness of the N aquifer, where the sedimentary section is fully preserved and saturated, generally is 750 to 1,250 feet.   Hydraulic conductivity values obtained from aquifer tests range from 0.02 to 0.34 foot per day.  The total volume of water in transient storage is about 11 million acre-feet. Well discharge somewhat exceeded 2,340 acre-feet during 1981.  Discharge to the San Juan River from the N aquifer is estimated to be 6.9 cubic feet per second. Water quality ranges from a calcium bicarbonate to sodium chloride type water

  1. Geomorphic Controls on Aquifer Geometry in Northwestern India

    Science.gov (United States)

    van Dijk, W. M.; Densmore, A. L.; Sinha, R.; Gupta, S.; Mason, P. J.; Singh, A.; Joshi, S. K.; Nayak, N.; Kumar, M.; Shekhar, S.

    2014-12-01

    The Indo-Gangetic foreland basin suffers from one of the highest rates of groundwater extraction in the world, especially in the Indian states of Punjab, Haryana and Rajasthan. To understand the effects of this extraction on ground water levels, we must first understand the geometry and sedimentary architecture of the aquifer system, which in turn depend upon its geomorphic setting. We use satellite images and digital elevation models to map the geomorphology of the Sutlej and Yamuna river systems, while aquifer geometry is assessed using ~250 wells that extend to ~300 m depth in Punjab and Haryana. The Sutlej and Yamuna rivers have deposited large sedimentary fans at their outlets. Elongate downslope ridges on the fan surfaces form distributary networks that radiate from the Sutlej and Yamuna fan apices, and we interpret these ridges as paleochannel deposits associated with discrete fan lobes. Paleochannels picked out by soil moisture variations illustrate a complex late Quaternary history of channel avulsion and incision, probably associated with variations in monsoon intensity. Aquifer bodies on the Sutlej and Yamuna fans have a median thickness of 7 and 6 m, respectively, and follow a heavy-tailed distribution, probably because of stacked sand bodies. The percentage of aquifer material in individual lithologs decreases downstream, although the exponent on the thickness distribution remains the same, indicating that aquifer bodies decrease in number down fan but do not thin appreciably. Critically, the interfan area between the Sutlej and Yamuna fans has thinner aquifers and a lower proportion of aquifer material, despite its proximal location. Our data show that the Sutlej and Yamuna fan systems form the major aquifer systems in this area, and that their geomorphic setting therefore provides a first-order control on aquifer distribution and geometry. The large spatial heterogeneity of the system must be considered in any future aquifer management scheme.

  2. Ogallala Aquifer Mapping Program

    International Nuclear Information System (INIS)

    1984-10-01

    A computerized data file has been established which can be used efficiently by the contour-plotting program SURFACE II to produce maps of the Ogallala aquifer in 17 counties of the Texas Panhandle. The data collected have been evaluated and compiled into three sets, from which SURFACE II can generate maps of well control, aquifer thickness, saturated thickness, water level, and the difference between virgin (pre-1942) and recent (1979 to 1981) water levels. 29 figures, 1 table

  3. Mineral textures in Serpentine-hosted Alkaline Springs from the Oman ophiolite

    Science.gov (United States)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Bach, Wolfgang; Garrido, Carlos J.; Los, Karin; Fussmann, Dario; Monien, Monien

    2017-04-01

    Meteoric water infiltration in ultramafic rocks leads to serpentinization and the formation of subaerial, low temperature, hydrothermal alkaline springs. Here, we present a detailed investigation of the mineral precipitation mechanisms and textural features of mineral precipitates, along as the geochemical and hydrological characterization, of two alkaline spring systems in the Semail ophiolite (Nasif and Khafifah sites, Wadi Tayin massif). The main aim of the study is to provide new insights into mineral and textural variations in active, on-land, alkaline vents of the Oman ophiolite. Discharge of circulating fluids forms small-scale, localized hydrological catchments consisting in unevenly interconnected ponds. Three different types of waters can be distinguished within the pond systems: i) Mg-type; alkaline (7.9 11.6), Ca-OH-rich waters; and iii) Mix-type waters arising from the mixing of Mg-type and Ca-type waters (9.6 ponds were carried out by X-ray diffraction (XRD), Raman spectroscopy and field-emission scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Aragonite and calcite are the dominant minerals (95 vol.%) of the total mineralogical index in all sites. Mg-type waters host hydrated magnesium carbonates (nesquehonite) and magnesium hydroxycarbonate hydrates (artinite) due to evaporation. Brucite, hydromagnesite and dypingite presence in Mix-type waters is spatially controlled by the hydrology of the system and is localized around mixing zones between Ca-type with Mg-type waters. Residence time of discharging waters in the ponds before mixing has an impact on fluid chemistry as it influences the equilibration time with the atmosphere. Acicular aragonite is the main textural type in hyper-alkaline Ca-type waters, acting as a substratum for the growth of calcite and brucite crystals. Low crystallinity, dumbbell shaped and double pyramid aragonite dominates in Mix-type water precipitates. Rate of supersaturation is essential

  4. Natural analogue studies of bentonite reaction under hyperalkaline conditions. Overview of ongoing work at the Zambales ophiolite, Philippines

    International Nuclear Information System (INIS)

    Fujii, N.; Yanakawa, M.; Arcilla, C.A.; Pascua, C.; Namiki, K.; Sato, T.; Shikazono, N.; Alexander, W.R.

    2011-01-01

    Bentonite is one of the safety-critical components of the engineered barrier system for the disposal concepts developed for many types of radioactive waste. However, bentonite - especially the swelling clay component that contributes to its essential barrier functions - is unstable at high pH. To date, results from laboratory tests on bentonite degradation have been ambiguous as the reaction rates are so slow as to be difficult to observe. As such, a key goal in this project is to examine the reaction of natural bentonites in contact with natural hyperalkaline groundwaters to determine if any long-term alteration of the bentonite occurs. Ophiolites have been identified as sources of hyperalkaline groundwaters that can be considered natural analogues of the leachates produced by some cementitious materials in repositories for radioactive waste. At the Zambales ophiolite in the Philippines, widespread active serpentinisation results in hyperalkaline groundwaters with measured pH values of up to 11.7, falling into the range typical of low-alkali cement porewaters. These cements are presently being developed worldwide to minimise the geochemical perturbations which are expected to result from the use of OPC-based concretes (see Kamei et al., this conference, for details). In particular, it is hoped that the lower pH of the low-alkali cement leachates will reduce, or even avoid entirely, the potential degradation of the bentonite buffer which is expected at the higher pH levels (12.5 and above) common to OPC-based concretes. During recent field campaigns at two sites in the Zambales ophiolite (Mangatarem and Bigbiga), samples of bentonite and the associated hyperalkaline groundwaters have been collected by drilling and trenching. At Mangatarem, qualitative data from a 'fossil' (i.e. no groundwater is currently present) reaction zone indicates some alteration of the bentonite to zeolite, serpentine and CSH phases. Preliminary reaction path modelling suggests that the

  5. Mineralogy, composition and PGM of chromitites from Pefki, Pindos ophiolite complex (NW Greece): evidence for progressively elevated fAs conditions in the upper mantle sequence

    Science.gov (United States)

    Kapsiotis, Argirios; Grammatikopoulos, Tassos A.; Tsikouras, Basilios; Hatzipanagiotou, Konstantin; Zaccarini, Federica; Garuti, Giorgio

    2011-01-01

    The Pindos ophiolite complex, located in the northwestern part of continental Greece, hosts various chromite deposits of both metallurgical (high-Cr) and refractory (high-Al) type. The Pefki chromitites are banded and sub-concordant to the surrounding serpentinized dunites. The Cr# [Cr/(Cr + Al)] of magnesiochromite varies between 0.75 and 0.79. The total PGE grade ranges from 105.9 up to 300.0 ppb. IPGE are higher than PPGE, typical of mantle hosted ophiolitic chromitites. The PGM assemblage in chromitites comprises anduoite, ruarsite, laurite, irarsite, sperrylite, hollingworthite, Os-Ru-Ir alloys including osmium and rutheniridosmine, Ru-bearing oxides, braggite, paolovite, platarsite, cooperite, vysotskite, and palladodymite. Iridarsenite and omeiite were also observed as exsolutions in other PGM. Rare electrum and native Ag are recovered in concentrates. This PGM assemblage is of great petrogenetic importance because it is significantly different from that commonly observed in podiform mantle-hosted and banded crustal-hosted ophiolitic chromitites. PGE chalcogenides of As and S are primary, and possibly crystallized directly from a progressively enriched in As boninitic melt before or during magnesiochromite precipitation. The presence of Ru-bearing oxides implies simultaneous desulfurization and dearsenication processes. Chemically zoned laurite and composite paolovite-electrum intergrowths are indicative of the relatively high mobility of certain PGE at low temperatures under locally oxidizing conditions. The PGM assemblage and chemistry, in conjunction with geological and petrologic data of the studied chromitites, indicate that it is characteristic of chromitites found within or close to the petrologic Moho. Furthermore, the strikingly different PGM assemblages between the high-Cr chromitites within the Pindos massif is suggestive of non-homogeneous group of ores.

  6. The Juchatengo complex: an upper-level ophiolite assemblage of late Paleozoic age in Oaxaca, southern Mexico

    Science.gov (United States)

    Grajales-Nishimura, José Manuel; Ramos-Arias, Mario Alfredo; Solari, Luigi; Murillo-Muñetón, Gustavo; Centeno-García, Elena; Schaaf, Peter; Torres-Vargas, Ricardo

    2018-04-01

    The Juchatengo complex (JC) suite is located between the Proterozoic Oaxacan complex to the north and the Xolapa complex to the south, and was amalgamated by late Paleozoic magmatism. It consists of mafic and sedimentary rocks that have oceanic affinities, with internal pseudostratigraphic, structural and metamorphic characteristics, which resemble a typical upper-level ophiolite assemblage. New U-Pb zircon and previous hornblende K-Ar analyses yield ages of ca. 291-313 Ma (U-Pb) for plagiogranites and ca. 282-277 Ma for tonalites intruding the entire sequence, including pelagic sediments at the top, with a maximum deposition age of ca. 278 Ma and noteworthy local provenance. These data constrain the age of the JC to the Late Pennsylvanian-Early Permian period. Hf isotopic analyses obtained from zircons in the JC plagiogranite and tonalite show that they come from a similar primitive mantle source (176Hf/177Hf: 0.282539-0.283091; ƐHf(t): + 3.2 to + 15.0). ƐHf(t) values from near 0 to - 2.8 in the tonalites indicate a contribution from the continental crust. Trace elements and REE patterns in whole rock and zircons point to a primitive mantle source for differentiated mafic, plagiogranite dykes and tonalitic plutons. Geochronological and geochemical data address the generation of new oceanic crust above the subduction zone, probably in a backarc setting. In this tectonic scenario, the JC ophiolite originated due to the convergence of the paleo-Pacific plate below the already integrated Oaxacan and Acatlán complexes in western Pangea. The dextral displacement places the deformation in a transtensional regime during the late Paleozoic age.

  7. An oceanic core complex (OCC) in the Albanian Dinarides? Preliminary paleomagnetic and structural results from the Mirdita Ophiolite (northern Albania)

    Science.gov (United States)

    Maffione, M.; Morris, A.; Anderson, M.

    2010-12-01

    Oceanic core complexes (OCCs) are dome-shaped massifs commonly associated with the inside corners of the intersection of transform faults and slow (and ultra-slow) spreading centres. They represent the uplifted footwalls of large-slip oceanic detachment faults (e.g. Cann et al., 1997; Blackman et al., 1998) and are composed of mantle and lower crustal rocks exhumed during fault displacement (Smith et al., 2006, 2008). Recent paleomagnetic studies of core samples from OCCs in the Atlantic Ocean (Morris et al., 2009; MacLeod et al., in prep) have confirmed that footwall sections undergo substantial rotation around (sub-) horizontal axes. These studies, therefore, support “rolling hinge” models for the evolution of OCCs, whereby oceanic detachment faults initiate at a steep angle at depth and then “roll-over” to their present day low angle orientations during unroofing (Buck, 1988; Wernicke & Axen, 1988; Lavier et al., 1999). However, a fully integrated paleomagnetic and structural analysis of this process is hampered by the one-dimensional sampling provided by ocean drilling of OCC footwalls. Therefore, ancient analogues for OCCs in ophiolites are of great interest, as these potentially provide 3-D exposures of these important structures and hence a more complete understanding of footwall strain and kinematics (providing that emplacement-related phases of deformation can be accounted for). Recently, the relationship between outcropping crustal and upper mantle rocks led Tremblay et al. (2009) to propose that an OCC is preserved within the Mirdita ophiolite of the Albanian Dinarides (northern Albania). This is a slice of Jurassic oceanic lithosphere exposed along a N-S corridor which escaped the main late Cenozoic Alpine deformation (Robertson, 2002, 2004; Dilek et al., 2007). Though in the eastern portion of the Mirdita ophiolite a Penrose-type sequence is present, in the western portion mantle rocks are in tectonic contact with upper crustal lithologies

  8. Microbiological risks of recycling urban stormwater via aquifers.

    Science.gov (United States)

    Page, D; Gonzalez, D; Dillon, P

    2012-01-01

    With the release of the Australian Guidelines for Water Recycling: Managed Aquifer Recharge (MAR), aquifers are now being included as a treatment barrier when assessing risk of recycled water systems. A MAR research site recharging urban stormwater in a confined aquifer was used in conjunction with a Quantitative Microbial Risk Assessment to assess the microbial pathogen risk in the recovered water for different end uses. The assessment involved undertaking a detailed assessment of the treatment steps and exposure controls, including the aquifer, to achieve the microbial health-based targets.

  9. Risk assessment and management of an oil contaminated aquifer

    International Nuclear Information System (INIS)

    Braxein, A.; Daniels, H.; Rouve, G.; Rubin, H.

    1991-01-01

    This paper concerns the provision of the basic information needed for the decision making process regarding the remedial measures leading to reutilization of an oil contaminated aquifer. The study refers to the case history of jet fuel contamination of an aquifer comprising part of the coastal aquifer of Israel. Due to that contamination two major water supply wells were abandoned. This study examines the use of numerical simulations in order to restore the contamination history of the aquifer. Such simulations also provide quantitative information needed for the decision making process regarding the future management of the contaminated aquifer

  10. Groundwater vulnerability mapping of Qatar aquifers

    Science.gov (United States)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  11. Aquifers Characterization and Productivity in Ellala Catchment ...

    African Journals Online (AJOL)

    user

    Aquifers Characterization and Productivity in Ellala Catchment, Tigray, ... using geological and hydrogeological methods in Ellala catchment (296.5km. 2. ) ... Current estimates put the available groundwater ... Aquifer characterization takes into.

  12. Transient well flow in leaky multiple-aquifer systems

    Science.gov (United States)

    Hemker, C. J.

    1985-10-01

    A previously developed eigenvalue analysis approach to groundwater flow in leaky multiple aquifers is used to derive exact solutions for transient well flow problems in leaky and confined systems comprising any number of aquifers. Equations are presented for the drawdown distribution in systems of infinite extent, caused by wells penetrating one or more of the aquifers completely and discharging each layer at a constant rate. Since the solution obtained may be regarded as a combined analytical-numerical technique, a type of one-dimensional modelling can be applied to find approximate solutions for several complicating conditions. Numerical evaluations are presented as time-drawdown curves and include effects of storage in the aquitard, unconfined conditions, partially penetrating wells and stratified aquifers. The outcome of calculations for relatively simple systems compares very well with published corresponding results. The proposed multilayer solution can be a valuable tool in aquifer test evaluation, as it provides the analytical expression required to enable the application of existing computer methods to the determination of aquifer characteristics.

  13. Factors Affecting Public-Supply Well Vulnerability in Two Karst Aquifers

    OpenAIRE

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearb...

  14. Remediation of a contaminated thin aquifer by horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Breh, W.; Suttheimer, J.; Hoetzl, H. [Univ. of Karlsruhe (Germany); Frank, K. [GEO-Service GmbH, Rheinmuenster (Germany)

    1997-12-31

    At an industrial site in Bruchsal (Germany) a huge trichloroethene contamination was found. After common remedial actions proved to be widely ineffective, new investigations led to a highly contaminated thin aquifer above the main aquifer. The investigation and the beginning of the remediation of the thin aquifer by two horizontal wells is described in this paper. Special attention was given to the dependence between precipitation and the flow direction in the thin aquifer and to hydraulic connections between the thin and the main aquifer. Also a short introduction into a new remedial technique by horizontal wells and first results of the test phase of the horizontal wells are given.

  15. Mid amphibolite facies metamorphism of harzburgites in the Neoproterozoic Cerro Mantiqueiras Ophiolite, southernmost Brazil

    Directory of Open Access Journals (Sweden)

    HARTMANN LÉO A.

    2003-01-01

    Full Text Available Valuable information is retrieved from the integrated investigation of the field relationships, microstructure and mineral compositions of harzburgites from the Neoproterozoic Cerro Mantiqueiras Ophiolite. This important tectonic marker of the geological evolution of southernmost Brazilian Shield was thoroughly serpentinized during progressive metamorphism, because the oldest mineral assemblage is: olivine + orthopyroxene + tremolite + chlorite + chromite. This M1 was stabilized in mid amphibolite facies - 550-600ºC as calculated from mineral equilibria. No microstructural (e.g. ductile deformation of olivine or chromite or compositional (e.g. mantle spinel remnant of mantle history was identified. A metamorphic event M2 occurred in the low amphibolite facies along 100 m-wide shear zones, followed by intense serpentinization (M3 and narrow 1-3 m-wide shear zones (M4 containing asbestos.

  16. Isotopic and trace element constraints on the genesis of a boninitic sequence in the Thetford Mines ophiolitic complex, Quebec, Canada

    International Nuclear Information System (INIS)

    Olive, V.; Hebert, R.; Loubet, M.

    1997-01-01

    The Mont Ham Massif (part of the Thetford Mines ophiolite, south Quebec) represents a magmatic sequence made up of tholeiitic and boninitic derived products. A geochemical study confirms the multicomponent mixing models that have been classically advanced for the source of boninites, with slab-derived components added to the main refractory harzburgitic peridotite. An isochron diagram of the boninitic rocks is interpreted as a mixing trend between two components: (i) a light rare earth element (LREE) enriched component (A), interpreted as slab-derived fluid-melts equilibrated with sedimentary materials (ε Nd = -3, 147 Sm/ 144 Nd = 0.140), and (ii) a LREE-depleted component (B) (0.21 147 Sm/ 144 Nd Nd = 9). A multicomponent source is also necessary to explain the Nd-isotope and trace element composition of the tholeiites, which are explained by the melting of a more fertile, Iherzolitic mantle and (or) mid-ocean ridge basalt source (component C), characterized by a large-ion lithophile element depicted pattern and an lapetus mantle Nd isotopic composition (ε Nd = 9), mixed in adequate proportions with the two previously infered slab-derived components (A and B). The genesis of the boninites of Mont Ham is not significantly different from those of boninites located in the Pacific. An intraoceanic subduction zone appears to be an appropriate geodynamic environment for the Mont Ham ophiolitic sequence. (author)

  17. Listwaenite in the Sartohay ophiolitic mélange (Xinjiang, China): A genetic model based on petrology, U-Pb chronology and trace element geochemistry

    Science.gov (United States)

    Qiu, Tian; Zhu, Yongfeng

    2018-03-01

    Listwaenite lenses in the Sartohay ophiolitic mélange (Xinjiang, China) were formed via reactions between serpentinite and metasomatic fluids. First, serpentinite changed into talc schist via the reaction of serpentine + CO2 → talc + magnesite + H2O. Second, talc schist changed into listwaenite via the reaction of talc + CO2 → magnesite + quartz + H2O. Magnetite was progressively destroyed during transformation from serpentinite to talc schist, and completely consumed in listwaenite. Zircon crystals 30-100 μm long, disseminating in talc schist, undeformed listwaenite and mylonitized listwaenite, coexist with talc, quartz and magnesite, while micron-sized zircon grains (ages (302.9 ± 6.8 Ma, 299.7 ± 5.5 Ma and 296.5 ± 3.5 Ma), and are thought to represent the age of formation of the talc schist and listwaenite. These ages are indistinguishable within errors and suggest a rapid transformation from talc schist to listwaenite. Some zircon rims in samples of the undeformed listwaenite and mylonitized listwaenite give much younger apparent U-Pb ages (280-277 Ma), which could be interpreted as a recrystallization age reflecting late-stage shearing in the Sartohay ophiolitic mélange.

  18. 40 CFR 147.502 - Aquifer exemptions. [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Aquifer exemptions. [Reserved] 147.502... (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Florida § 147.502 Aquifer exemptions. [Reserved] ...

  19. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France)

    International Nuclear Information System (INIS)

    Hubert, A.

    2005-09-01

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium ( 234 U et 238 U), thorium ( 230 Th et 232 Th), 226 Ra and 222 Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during α-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and α-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  20. Mineralogical assemblages forming at hyperalkaline warm springs hosted on ultramafic rocks: A case study of Oman and Ligurian ophiolites

    Science.gov (United States)

    Chavagnac, Valérie; Ceuleneer, Georges; Monnin, Christophe; Lansac, Benjamin; Hoareau, Guilhem; Boulart, Cédric

    2013-07-01

    We report on the mineralogical assemblages found in the hyperalkaline springs hosted on Liguria and Oman ophiolites based on exhaustive X-ray diffraction and scanning electron microprobe analyses. In Liguria, hyperalkaline springs produce a thin brownish calcite precipitate that covers the bedrock due to the concomitant atmospheric CO2 uptake and neutralization of the hyperalkaline waters. No brucite and portlandite minerals are observed. The discharge of alkaline waters in Oman ophiolite forms white-orange precipitates. Calcium carbonate minerals (calcite and/or aragonite) are the most abundant and ubiquitous precipitates and are produced by the same mechanism as in Liguria. This process is observed as a thin surface crust made of rhombohedral calcite. Morphological features of aragonite vary from needle-, bouquet-, dumbbell-, spheroidal-like habitus according to the origin of carbon, temperature, and ionic composition of the hyperalkaline springs, and the biochemical and organic compounds. Brucite is observed both at hyperalkaline springs located at the thrust plane and at the paleo-Moho. The varying mixing proportions between the surface runoff waters and the hyperalkaline ones control brucite precipitation. The layered double hydroxide minerals occur solely in the vicinity of hyperalkaline springs emerging within the bedded gabbros. Finally, the dominant mineralogical associations we found in Oman (Ca-bearing carbonates and brucite) in a serpentinizing environment driven by the meteoric waters are surprisingly the same as those observed at the Lost City hydrothermal site in a totally marine environment.

  1. Bioremediation of a diesel fuel contaminated aquifer: simulation studies in laboratory aquifer columns

    Science.gov (United States)

    Hess, A.; Höhener, P.; Hunkeler, D.; Zeyer, J.

    1996-08-01

    The in situ bioremediation of aquifers contaminated with petroleum hydrocarbons is commonly based on the infiltration of groundwater supplemented with oxidants (e.g., O 2, NO 3-) and nutrients (e.g., NH 4+, PO 43-). These additions stimulate the microbial activity in the aquifer and several field studies describing the resulting processes have been published. However, due to the heterogeneity of the subsurface and due to the limited number of observation wells usually available, these field data do not offer a sufficient spatial and temporal resolution. In this study, flow-through columns of 47-cm length equipped with 17 sampling ports were filled with homogeneously contaminated aquifer material from a diesel fuel contaminated in situ bioremediation site. The columns were operated over 96 days at 12°C with artificial groundwater supplemented with O 2, NO 3- and PO 43-. Concentration profiles of O 2, NO 3-, NO 2-, dissolved inorganic and organic carbon (DIC and DOC, respectively), protein, microbial cells and total residual hydrocarbons were measured. Within the first 12 cm, corresponding to a mean groundwater residence time of < 3.6 h, a steep O 2 decrease from 4.6 to < 0.3 mg l -1, denitrification, a production of DIC and DOC, high microbial cell numbers and a high removal of hydrocarbons were observed. Within a distance of 24 to 40.5 cm from the infiltration, O 2 was below 0.1 mg l -1 and a denitrifying activity was found. In the presence and in the absence of O 2, n-alkanes were preferentially degraded compared to branched alkanes. The results demonstrate that: (1) infiltration of aerobic groundwater into columns filled with aquifer material contaminated with hydrocarbons leads to a rapid depletion of O 2; (2) O 2 and NO 3- can serve as oxidants for the mineralization of hydrocarbons; and (3) the modelling of redox processes in aquifers has to consider denitrifying activity in presence of O 2.

  2. PALLADIUM, PLATINUM, RHODIUM, RUTHENIUM AND IRIDIUM IN PERIDOTITES AND CHROMITITES FROM OPHIOLITE COMPLEXES IN NEWFOUNDLAND.

    Science.gov (United States)

    Page, Norman J; Talkington, Raymond W.

    1984-01-01

    Samples of spinel lherzolite, harzburgite, dunite, and chromitite from the Bay of Islands, Lewis Hills, Table Mountain, Advocate, North Arm Mountain, White Hills Periodite Point Rousse, Great Bend and Betts Cove ophiolite complexes in Newfoundland were analyzed for the platinum-group elements (PGE) Pd, Pt, Rh, Ru and Ir. The ranges of concentration (in ppb) observed for all rocks are: less than 0. 5 to 77 (Pd), less than 1 to 120 (Pt), less than 0. 5 to 20 (Rh), less than 100 to 250 (Ru) and less than 20 to 83 (Ir). Chondrite-normalized PGE ratios suggest differences between rock types and between complexes. Samples of chromitite and dunite show relative enrichment in Ru and Ir and relative depletion in Pt and Pd.

  3. Aquifer recharging in South Carolina: radiocarbon in environmental hydrogeology

    International Nuclear Information System (INIS)

    Stone, P.A.; Knox, R.L.; Mathews, T.D.

    1985-01-01

    Radiocarbon activities of dissolved inorganic carbon (and tritium activities where infiltration rates are rapid and aquifers shallow) provide relatively unambiguous and inexpensive evidence for identification of significant recharge areas. Such evidence is for the actual occurrence of modern recharge in the aquifer and thus is less inferential than stratigraphic or potentiometric evidence. These underutilized isotopic techniques are neither arcane nor complex and have been more-or-less standardized by earlier researchers. In South Carolina, isotopic evidence has been used from both calcareous and siliceous sedimentary aquifers and fractured crystalline rock aquifers. The Tertiary limestone aquifer is shown not to be principally recharged in its subcrop area, unlike conditions assumed for many other sedimentary aquifers in southeastern United States, and instead receives considerable lateral recharge from interfingering updip Tertiary sand aquifers in the middle coastal plain. Induced recharging at Hilton Head Island is mixing ancient relict water and modern recharge water. Recharging to deeper portions of the Cretaceous Middendorf basal sand aquifer occurs at least as far coastward as the middle coastal plain, near sampling sites that stratigraphically appear to be confined. Pronounced mineralization of water in fractured rocks cannot be considered as evidence of ancient or relict ground water that is isolated from modern contaminants, some of these waters contain considerable radiocarbon and hydrogen-bomb tritium

  4. Managed Aquifer Recharge Using Treated Wastewater: An Option to Manage a Coastal Aquifer In Oman For Better Domestic Water Supply

    Science.gov (United States)

    Al-Maktoumi, Ali; Zekri, Slim; ElRawy, Mustafa

    2016-04-01

    Arid countries, such as the Sultanate of Oman, are facing challenges of water shortages threatening economic development and social stability. Most of those countries are vulnerable to the potential adverse impacts of climate change, the most significant of which are increased average temperatures, less and more erratic precipitation, sea level rise, and desertification. The combined effect of existing adverse conditions and likely impacts of future climate change will make water management even more difficult than what it is today. Tremendous efforts have been devoted to augment the water resources. Managed Aquifer Recharge (MAR) is practiced widely to store water during periods of surpluses and withdraw during deficits from an aquifer. In Muscat, there will be a surplus of >100,000 m3/day of TWW during winter months in the coming few years. The aquifer along the northern coast of Oman (Al-Khawd Aquifer) is conducive for MAR. Data show that TWW volumes will increase from 7.6 Mm3 in 2003 to 70.9 Mm3 in 2035 in Muscat city only. This study assesses, using MODFLOW 2005 numerical code, the impact of MAR using TWW on better management of the Al-Khawd unconfined coastal aquifer for better urban water supply. Specifically, aiming to maximize withdrawals from the domestic wells with minimize adverse effect of seawater intrusion. The model operates under a number of constrains that minimize the loss to the sea and the injected TWW must not migrates upstream (due to developed mound) and reach the wellfields used for domestic supply. The hypothetical injection wells are located downstream the domestic wellfield zone. The results of different managerial scenarios show that MAR produces a hydraulic barrier that decelerates the seawater intrusion which allows higher abstraction of pristine water from the upstream part of the aquifer. MAR along with redistribution/relocation of public wells allows abstraction of 2 times the current abstraction rate (around 6 Mm3/year to 12 Mm3

  5. Accounting for the Decreasing Reaction Potential of Heterogeneous Aquifers in a Stochastic Framework of Aquifer-Scale Reactive Transport

    Science.gov (United States)

    Loschko, Matthias; Wöhling, Thomas; Rudolph, David L.; Cirpka, Olaf A.

    2018-01-01

    Many groundwater contaminants react with components of the aquifer matrix, causing a depletion of the aquifer's reactivity with time. We discuss conceptual simplifications of reactive transport that allow the implementation of a decreasing reaction potential in reactive-transport simulations in chemically and hydraulically heterogeneous aquifers without relying on a fully explicit description. We replace spatial coordinates by travel-times and use the concept of relative reactivity, which represents the reaction-partner supply from the matrix relative to a reference. Microorganisms facilitating the reactions are not explicitly modeled. Solute mixing is neglected. Streamlines, obtained by particle tracking, are discretized in travel-time increments with variable content of reaction partners in the matrix. As exemplary reactive system, we consider aerobic respiration and denitrification with simplified reaction equations: Dissolved oxygen undergoes conditional zero-order decay, nitrate follows first-order decay, which is inhibited in the presence of dissolved oxygen. Both reactions deplete the bioavailable organic carbon of the matrix, which in turn determines the relative reactivity. These simplifications reduce the computational effort, facilitating stochastic simulations of reactive transport on the aquifer scale. In a one-dimensional test case with a more detailed description of the reactions, we derive a potential relationship between the bioavailable organic-carbon content and the relative reactivity. In a three-dimensional steady-state test case, we use the simplified model to calculate the decreasing denitrification potential of an artificial aquifer over 200 years in an ensemble of 200 members. We demonstrate that the uncertainty in predicting the nitrate breakthrough in a heterogeneous aquifer decreases with increasing scale of observation.

  6. A novel analytical solution for estimating aquifer properties within a horizontally anisotropic aquifer bounded by a stream

    Science.gov (United States)

    Huang, Yibin; Zhan, Hongbin; Knappett, Peter S. K.

    2018-04-01

    Past studies modeling stream-aquifer interaction commonly account for vertical anisotropy in hydraulic conductivity, but rarely address horizontal anisotropy, which may exist in certain sedimentary environments. If present, horizontal anisotropy will greatly impact stream depletion and the amount of recharge a pumped aquifer captures from the river. This scenario requires a different and somewhat more sophisticated mathematical approach to model and interpret pumping test results than previous models used to describe captured recharge from rivers. In this study, a new mathematical model is developed to describe the spatiotemporal distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model is used to estimate four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. In order to approve the efficacy of the new model, a MATLAB script file is programmed to conduct a four-parameter inversion to estimate the four parameters of concern. By comparing the results of analytical and numerical inversions, the accuracy of estimated results from both inversions is acceptable, but the MATLAB program sometimes becomes problematic because of the difficulty of separating the local minima from the global minima. It appears that the new analytical model of this study is applicable and robust in estimating parameter values for a horizontally anisotropic aquifer laterally bounded by a stream. Besides that, the new model calculates stream depletion rate as a function of stream-bank pumping. Unique to horizontally anisotropic and homogeneous aquifers, the stream depletion rate at any given pumping rate depends closely on the horizontal anisotropy ratio and the direction of the principle transmissivities relative to

  7. Origin of hexavalent chromium in groundwater: The example of Sarigkiol Basin, Northern Greece.

    Science.gov (United States)

    Kazakis, N; Kantiranis, N; Kalaitzidou, K; Kaprara, E; Mitrakas, M; Frei, R; Vargemezis, G; Tsourlos, P; Zouboulis, A; Filippidis, A

    2017-09-01

    Hexavalent chromium constitutes a serious deterioration factor for the groundwater quality of several regions around the world. High concentrations of this contaminant have been also reported in the groundwater of the Sarigkiol hydrological basin (near Kozani city, NW Greece). Specific interest was paid to this particular study area due to the co-existence here of two important factors both expected to contribute to Cr(VI) presence and groundwater pollution; namely the area's exposed ophiolitic rocks and its substantial fly ash deposits originating from the local lignite burning power plant. Accordingly, detailed geochemical, mineralogical, hydro-chemical, geophysical and hydrogeological studies were performed on the rocks, soils, sediments and water resources of this basin. Cr(VI) concentrations varied in the different aquifers, with the highest concentration (up to 120μgL -1 ) recorded in the groundwater of the unconfined porous aquifer situated near the temporary fly ash disposal site. Recharge of the porous aquifer is related mainly to precipitation infiltration and occasional surface run-off. Nevertheless, a hydraulic connection between the porous and neighboring karst aquifers could not be delineated. Therefore, the presence of Cr(VI) in the groundwater of this area is thought to originate from both the ophiolitic rock weathering products in the soils, and the local leaching of Cr(VI) from the diffused fly ash located in the area surrounding the lignite power plant. This conclusion was corroborated by factor analysis, and the strongly positively fractionated Cr isotopes (δ 53 Cr up to 0.83‰) recorded in groundwater, an ash leachate, and the bulk fly ash. An anthropogenic source of Cr(VI) that possibly influences groundwater quality is especially apparent in the eastern part of the Sarigkiol basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Novel Analytical Solution for Estimating Aquifer Properties and Predicting Stream Depletion Rates by Pumping from a Horizontally Anisotropic Aquifer

    Science.gov (United States)

    Huang, Y.; Zhan, H.; Knappett, P.

    2017-12-01

    Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and managers to exploit groundwater resource reasonably while protecting stream ecosystem.

  9. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.

    Science.gov (United States)

    Davids, Jeffrey C; Mehl, Steffen W

    2015-01-01

    Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%. © 2014, National Ground Water Association.

  10. Aquifer thermal energy storage. International symposium: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  11. Metaultramafic schists and dismembered ophiolites of the Ashe Metamorphic Suite of northwestern North Carolina, USA

    Science.gov (United States)

    Raymond, Loren A.; Merschat, Arthur J.; Vance, R. Kelly

    2016-01-01

    both chemical composition and metamorphic history. Spot sampling of heterolithic MUR bodies does not reveal MUR body character or history or allow ‘type’ designations. We recommend that the subdivision of MUR bodies into ‘types’ be abandoned and that the metasomatic hypothesis be carefully applied. AMS MURs and associated metamafic rocks likely represent fragments of dismembered ophiolites from various ophiolite types.

  12. Metabolic Potential and Activity in Fluids of the Coast Range Ophiolite Microbial Observatory, California, USA

    Science.gov (United States)

    Hoehler, T.; Som, S.; Schrenk, M.; McCollom, T.; Cardace, D.

    2016-01-01

    Metabolic potential and activity associated with hydrogen and carbon monoxide were characterized in fluids sampled from the the Coast Range Ophiolite Microbial Observatory (CROMO). CROMO consists of two clusters of science-dedicated wells drilled to varying depths up to 35m in the actively serpentinizing, Jurassic-age Coast Range Ophiolite of Northern California, along with a suite of pre-existing monitoring wells at the same site. Consistent with the fluid chemistry observed in other serpentinizing systems, CROMO fluids are highly alkaline, with pH up to 12.5, high in methane, with concentrations up 1600 micromolar, and low in dissolved inorganic carbon (DIC), with concentrations of 10's to 100's of micromolar. CROMO is conspicuous for fluid H2 concentrations that are consistently sub-micromolar, orders of magnitude lower than is typical of other systems. However, higher H2 concentrations (10's -100's of micromolar) at an earlier stage of fluid chemical evolution are predicted by, or consistent with: thermodynamic models for fluid chemistry based on parent rock composition equivalent to local peridotite and with water:rock ratio constrained by observed pH; the presence of magnetite at several wt% in CROMO drill cores; and concentrations of formate and carbon monoxide that would require elevated H2 if formed in equilibrium with H2 and DIC. Calculated Gibbs energy changes for reaction of H2 and CO in each of several metabolisms, across the range of fluid composition encompassed by the CROMO wells, range from bioenergetically feasible (capable of driving ATP synthesis) to thermodynamically unfavorable. Active consumption relative to killed controls was observed for both CO and H2 during incubation of fluids from the pre-existing monitoring wells; in incubations of freshly cored solids, consumption was only observed in one sample set (corresponding to the lowest pH) out of three. The specific metabolisms by which H2 and CO are consumed remain to be determined.

  13. Global assessment of coastal aquifer state and its vulnerability respect to Sea Water Intrusion. Application to several Mediterranean Coastal Aquifers.

    Science.gov (United States)

    Baena, Leticia; Pulido-Velazquez, David; Renau-Pruñonosa, Arianna; Morell, Ignacio

    2017-04-01

    In this research we propose a method for a global assessment of coastal aquifer state and its vulnerability to Sea Water Intrusion (SWI). It is based on two indices, the MART index, which summarize the global significance of the SWI phenomenon, and the L_GALDIT for a lumped assessment of the vulnerability to SWI. Both of them can be useful as a tool to assess coastal groundwater bodies in risk of not achieving good status in accordance with the Water Framework Directive (WFD, 2000) and to identify possible management alternative to reduce existing impacts. They can be obtained even from a reduced number of data (in the MART case only depend on the geometry and available aquifer state data) with simple calculations, which have been implemented in a general GIS tool that can be easily applied to other case studies. The MART index in an aquifer is related with the total mass of chloride in the aquifer due to sea water intrusion and can be obtained by simple linear operations of volume and concentrations that can be deduced from a schematic conceptual cross-section approach (orthogonal to the shore line) defined to summarize the intrusion volume in the aquifer. At a certain historical time, this representative aquifer cross-section can be defined in a systhematic way from the aquifer geometry, the specific yield, and the hydraulic head and chloride concentration fields that can be deduced from the available information by using appropriate interpolation methods. Following the proposed procedure we will finally obtain a summary of the historical significance of the SWI in an aquifer at different spatial resolution: 3D salinity concentration maps, 2D representative conceptual cross-section of intrusion and the MART lumped significance index. The historical evolution of the MART can be employed to perform a global assessment of the resilience and trends of global significance of the SWI in an aquifer. It can be useful to compare the significance of intrusion problems in

  14. Comparison of groundwater flow in Southern California coastal aquifers

    Science.gov (United States)

    Hanson, Randall T.; Izbicki, John A.; Reichard, Eric G.; Edwards, Brian D.; Land, Michael; Martin, Peter

    2009-01-01

    Development of the coastal aquifer systems of Southern California has resulted in overdraft, changes in streamflow, seawater intrusion, land subsidence, increased vertical flow between aquifers, and a redirection of regional flow toward pumping centers. These water-management challenges can be more effectively addressed by incorporating new understanding of the geologic, hydrologic, and geochemical setting of these aquifers.

  15. Aquifer test at well SMW-1 near Moenkopi, Arizona

    Science.gov (United States)

    Carruth, Rob; Bills, Donald J.

    2012-01-01

    The Hopi villages of Lower Moencopi and Upper Moenkopi are on the Hopi Indian Reservation south of Tuba City in northern Arizona. These adjacent Hopi villages, located west and north of the confluence of Pasture Canyon Wash and Moenkopi Wash, are dependent on groundwater withdrawals from three wells that penetrate the N aquifer and from two springs that discharge from the N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and is composed of thick beds of sandstone between less permeable layers of siltstone and mudstone. The fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells; however, the aquifer is moderately productive at yields generally less than 25 gallons per minute in the study area. In recent years, the water level has declined in the three public-supply wells and the flow from the springs has decreased, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. In addition to the challenge imposed by declining groundwater levels, the water-supply wells and springs are located about 2 miles downgradient from the Tuba City Landfill site where studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are higher than regional concentrations in the N aquifer. In August 2008, the U.S. Geological Survey, in cooperation with the Hopi Tribe, conducted an aquifer test on well SMW-1, designed to help the Hopi Tribe determine the potential yield and water quality of the N aquifer south of Moenkopi Wash as a possible source of additional water supply. Well SMW-1 was drilled south of Moenkopi Wash to a depth of 760 feet below land surface before being backfilled and cased to about 300 feet. The well penetrates, in descending order, the Navajo Sandstone and the Kayenta Formation, both units of the N aquifer. The pre-test water level in the well was 99.15 feet below land

  16. PGE mineralization and melt composition of chromitites in Proterozoic ophiolite complexes of Eastern Sayan, Southern Siberia

    Directory of Open Access Journals (Sweden)

    O. Kiseleva

    2017-07-01

    Full Text Available The Ospino-Kitoi and Kharanur ultrabasic massifs represent the northern and southern ophiolite branches respectively of the Upper Onot ophiolitic nappe and they are located in the southeastern part of the Eastern Sayan (SEPES ophiolites. Podiform chromitites with PGE mineralization occur as lensoid pods within dunites and rarely in harzburgites or serpentinized peridotites. The chromitites are classified into type I and type II based on their Cr#. Type I (Cr# = 59–85 occurs in both northern and southern branches, whereas type II (Cr# = 76–90 occurs only in the northern branch. PGE contents range from ∑PGE 88–1189 ppb, Pt/Ir 0.04–0.42 to ∑PGE 250–1700 ppb, Pt/Ir 0.03–0.25 for type I chromitites of the northern and southern branches respectively. The type II chromitites of the northern branch have ∑PGE contents higher than that of type I (468–8617 ppb, Pt/Ir 0.1–0.33. Parental melt compositions, in equilibrium with podiform chromitites, are in the range of boninitic melts and vary in Al2O3, TiO2 and FeO/MgO contents from those of type I and type II chromitites. Calculated melt compositions for type I chromitites are (Al2O3melt = 10.6–13.5 wt.%, (TiO2melt = 0.01–0.44 wt.%, (Fe/Mgmelt = 0.42–1.81; those for type II chromitites are: (Al2O3melt = 7.8–10.5 wt.%, (TiO2melt = 0.01–0.25 wt.%, (Fe/Mgmelt = 0.5–2.4. Chromitites are further divided into Os-Ir-Ru (I and Pt-Pd (II based on their PGE patterns. The type I chromitites show only the Os-Ir-Ru pattern whereas type II shows both Os-Ir-Ru and Pt-Pd patterns. PGE mineralization in type I chromitites is represented by the Os-Ir-Ru system, whereas in type II it is represented by the Os-Ir-Ru-Rh-Pt system. These results indicate that chromitites and PGE mineralization in the northern branch formed in a suprasubduction setting from a fluid-rich boninitic melt during active subduction. However, the chromitites and PGE mineralization of the southern

  17. Regeneration of a confined aquifer after redevelopment and decommission of artesian wells, example from Grafendorf aquifer (Styria, Austria)

    Science.gov (United States)

    Mehmedovski, Nudzejma; Winkler, Gerfried

    2016-04-01

    Water is essential for life and it is therefore necessary to protect drinking water sustainably. Compared to shallow groundwater, deeper groundwater is especially important due to its characteristic tendency to remain extensively unaffected by environmental impacts. Thus, the uncontrolled waste of this valuable resource has to be avoided. A lot of artesian wells have been established in Grafendorf bei Hartberg (Styria, Austria). Almost all wells were not state-of-the art. As a result the different aquifer horizons began to intermix. Additionally some of the artesian wells had a permanent free overflow and the water was not even used. Consequently, since 1950, where the mean discharge of 37 wells was 0,334 l/s per well, the discharge has decreased to 0,090 l/s until 2013, which means a decline of about 75 %. As a reaction to these declines a decommissioning campaign was conducted where 69 artesian wells have been closed by injecting a cement-bentonite suspension (ratio 3:1). The Grafendorf aquifer is situated in the Styrian Basin and consists of 5 separated artesian horizons in Neogene sediments. These artesian horizons range from 42 m (1st horizon) to 176 m (5th horizon) and mostly consist of sand, partly of fine/medium/coarse gravel and partially with minor clay content. In order to analyse the reaction of the Grafendorf aquifer to these redevelopments, 5 monitoring wells could be used for the analysis. Some monitoring wells include different aquifer horizons and hydraulically short cut them. Thus, in this work the analysis focus on the general trend of the whole aquifer system neglecting the individual interactions between the different aquifers. In a first investigation step the hydraulic properties of the aquifer system has been determined using pumping tests which were analysed with different analytical solutions with the software AQTESOLV. Overall the pumping test solutions hardly differ in the transmissivity and hydraulic conductivity. On the contrary the

  18. Petro-structural, geochemical and carbon and oxygen isotopic study on carbonates crosscuting the Oman Ophiolite peridotites: evidence of polygenic CO2 trapping

    Science.gov (United States)

    Noël, J.; Godard, M.; Martinez, I.; Oliot, E.; Williams, M. J.; Rodriguez, O.; Chaduteau, C.; Gouze, P.

    2017-12-01

    Carbon trapping in ophiolitic peridotites contributes to the global carbon cycle between solid Earth and its outer envelopes (through subduction and/or modern alteration). To investigate this process, we performed petro-structural (microtomography, EBSD, EPMA) and geochemical studies (LA-ICP-MS, carbon and oxygen isotopes on bulk and minerals using SHRIMP) of harzburgites cored in the Oman Ophiolite. Studied harzburgites are highly serpentinized (> 90 %) and crosscut by 3 generations of carbonates (> 20 Vol%) with compositions from calcite to dolomite (Mg/Ca = 0-0.85). Type 1 carbonates are fine penetrative veinlets and mesh core after olivine. They have low REE (e.g., Yb = 0.08-0.23 x CI-chondrite) and negative Ce anomalies. They have δ13CPDB = -15.2 to 1.10‰ and δ18OSMOW = 17.5 to 33.7‰, suggesting precipitation temperatures up to 110°C. Type 2 carbonates are pluri-mm veins bounded by cm-thick serpentinized vein selvages, oriented dominantly parallel to mantle foliation. Dynamic recrystallization is observed, indicating polygenetic formation: well crystallized calcite with REE abundances similar to Type 1 carbonates are locally replaced by small dolomite and calcite grains with higher REE (e.g., Yb = 0.35-1.0 x CI-chondrite) and positive Gd anomaly. Type 2 carbonates have δ13CPDB = -12.6 to -4.1‰ and δ18OSMOW = 25.0 to 32.7‰, suggesting precipitation temperatures from 10 to 60°C. Type 3 carbonates are late pluri-mm to cm veins reactivating Type 2 veins. They consist of small grains of dolomite and calcite with REE abundances similar to recrystallized Type 2 carbonates. Type 3 carbonates have δ13CPDB = -8.3 to -5.8‰ and δ18OSMOW = 28.8 to 32.7‰, suggesting precipitation temperatures 100°C). Formation of carbonate veins (Type 2) indicates localization of fluid flux, while serpentinization remains the dominant alteration process. Low T carbonate veins (Type 3) remain the main flow path through ophiolitic peridotites. Our study suggests that

  19. Transient well flow in vertically heterogeneous aquifers

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

  20. Unravelling aquifer-wetland interaction using CSAMT and gravity methods: the Mollina-Camorra aquifer and the Fuente de Piedra playa-lake, southern Spain

    Science.gov (United States)

    Pedrera, A.; Martos-Rosillo, S.; Galindo-Zaldívar, J.; Rodríguez-Rodríguez, M.; Benavente, J.; Martín-Rodríguez, J. F.; Zúñiga-López, M. I.

    2016-06-01

    The hydrological regime of Fuente de Piedra playa-lake (Málaga, southern Spain) has been significantly affected by the intensive exploitation of groundwater in the area. The playa-lake is situated above clays, marls, and gypsum, and under unaltered conditions received surface-subsurface runoff within the watershed as well as groundwater discharge from two carbonate aquifers. We have analyzed the structure of the main one, the Mollina-Camorra carbonate aquifer, by combining controlled source audio magnetotellurics (CSAMT), gravity prospecting, and time-domain electromagnetic (TDEM) soundings. This geophysical information, together with new structural and hydrogeological data, was gathered to develop a new conceptual hydrogeological model. This model allows the hydrological linkage of the carbonate aquifer with the playa-lake system to be established. Moreover, the intensive exploitation in the carbonate aquifer, even outside the watershed of the playa-lake, has affected the hydrological regime of the system. This multidisciplinary work demonstrates the potential of geophysical methods for understanding wetland-aquifer interaction, having important groundwater management implications.

  1. Petrology and geochemistry of the high-Cr podiform chromitites of the Köycegiz ophiolite, southwest Turkey: implications for the multi-stage evolution of the oceanic upper mantle

    Science.gov (United States)

    Xiong, Fahui; Yang, Jingsui; Dilek, Yildirim; Wang, ChunLian; Hao, Xiaolin; Xu, Xiangzhen; Lian, Dongyang

    2018-03-01

    Ophiolites exposed across the western Tauride belt in Turkey represent tectonically emplaced fragments of oceanic lithosphere obducted onto the continental margin following the closure of the Neotethys Ocean during the Late Cretaceous. The ultramafic massif of Köycegiz, which is located in the ophiolitic belt of southwestern Turkey, is a major source of metallurgical chromitite ore. The massif comprises a base of tectonized harzburgite with minor dunite overlain by a magmatic sequence of wehrlite, pyroxenite, troctolite and gabbro. Only sparse refractory chromitites occur within the harzburgites; in contrast, the upper and middle sections of the peridotite sequence contain abundant metallurgical chromitites. The peridotites record abundant evidence of mantle metasomatism on various scales, as the Fo values of olivine in harzburgite are 90.1-95.4, whereas those in dunite are 90.1-91.8. The compositions of the melts passing through the peridotites changed gradually from arc tholeiite to boninite due to melt-rock reactions, thus producing more Cr-rich chromitites in the upper part of the body. Most of the chromitites have high Cr numbers (77-78), although systematic changes in the compositions of the olivine and chromian spinel occur from the harzburgites to the dunite envelopes to the chromitites, reflecting melt-rock reactions. The calculated ΔlogfO2 (FMQ) values range from - 2.77 to + 1.03 in the chromitites, - 2.73 to -0.01 in the harzburgites, and - 1.65 to + 0.45 in the dunites. All of the available evidence suggests that the Köycegiz ophiolite formed in a supra-subduction zone (SSZ) mantle wedge. These models indicate that the harzburgites represent the products of first-stage melting and low degrees of melt-rock interaction that occurred in a mid-ocean ridge (MOR) environment. In contrast, the chromitites and dunites represent the products of second-stage melting and related refertilization, which occurred in an SSZ environment.

  2. Hydrogeology - AQUIFER_SYSTEMS_UNCONSOLIDATED_IDNR_IN: Unconsolidated Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:48,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — AQUIFER_SYSTEMS_UNCONSOLIDATED_IDNR_IN is a polygon shapefile that shows unconsolidated aquifer systems of the state of Indiana at a scale of 1:48,000. The following...

  3. Hydrogeology of the Umm Er Radhuma Aquifer (Arabian peninsula)

    Science.gov (United States)

    Dirks, Heiko; Al Ajmi, Hussain; Kienast, Peter; Rausch, Randolf

    2018-03-01

    The aim of this article is to enhance the understanding of the Umm Er Radhuma aquifer's genesis, and its hydraulic and hydrochemical development over time. This is a prerequisite for wise use of the fossil groundwater resources contained within. The Umm Er Radhuma is a karstified limestone aquifer, extending over 1.6 Mio. km2 in the eastern part of the Arabian Peninsula. Both epigene and hypogene karstification contributed to the genesis of what is today the most prolific aquifer in the region. Besides man-made abstractions, even the natural outflows are higher than the small recharge (natural storage depletion). The Umm Er Radhuma shows that large aquifers in arid regions are never in "steady state" (where inflows equal outflows), considering Quaternary climate history. The aquifer's adaption to climate changes (precipitation, sea level) can be traced even after thousands of years, and is slower than the climate changes themselves.

  4. Simple method for quick estimation of aquifer hydrogeological parameters

    Science.gov (United States)

    Ma, C.; Li, Y. Y.

    2017-08-01

    Development of simple and accurate methods to determine the aquifer hydrogeological parameters was of importance for groundwater resources assessment and management. Aiming at the present issue of estimating aquifer parameters based on some data of the unsteady pumping test, a fitting function of Theis well function was proposed using fitting optimization method and then a unitary linear regression equation was established. The aquifer parameters could be obtained by solving coefficients of the regression equation. The application of the proposed method was illustrated, using two published data sets. By the error statistics and analysis on the pumping drawdown, it showed that the method proposed in this paper yielded quick and accurate estimates of the aquifer parameters. The proposed method could reliably identify the aquifer parameters from long distance observed drawdowns and early drawdowns. It was hoped that the proposed method in this paper would be helpful for practicing hydrogeologists and hydrologists.

  5. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  6. isotopic characteristics of aquifers in sinai

    International Nuclear Information System (INIS)

    Al-Gamal, S.A.

    2004-01-01

    the environmental isotopes data (expressed as δ 2 d and δ 18 O) of different aquifers in sinai were treated using correlation and regression techniques. whereas, rain water isotopic data were treated using empirical orthogonal functions (EOF) techniques. environmental isotopes for different aquifers expressed in terms of O-18 and H-2, were taken to represent the isotopic characteristics. regression equations using the highly correlated variables of δ 2 d and δ 18 O were constructed for each aquifer. the latitudinal variations (of rainwater in sinai and selected climatic stations east mediterranean ) versus rainwater isotopic compositions were analyzed using the normalized variables. it was found that the latitudinal variations of the rainwater isotopic compositions ( δ 2 D, δ 18 O), vapor pressure, and surface temperature occurred in parallel and decreased with latitude. in the east mediterranean, empirical linear relationship between altitude and δ 2 D has indicted that the rate of change of δ 2 D with height is comparable with the dry lapse rate in the atmosphere.The obtained regression equations of environmental isotopes data have impacted on different slopes and different constants expressing the non-homogeneity in the isotopic composition of rainwater recharging the aquifers of sinai , due to the presence of different air masses

  7. Drought-sensitive aquifer settings in southeastern Pennsylvania

    Science.gov (United States)

    Zimmerman, Tammy M.; Risser, Dennis W.

    2005-01-01

    This report describes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey, to determine drought-sensitive aquifer settings in southeastern Pennsylvania. Because all or parts of southeastern Pennsylvania have been in drought-warning or drought-emergency status during 6 of the past 10 years from 1994 through 2004, this information should aid well owners, drillers, and water-resource managers in guiding appropriate well construction and sustainable use of Pennsylvania's water resources. 'Drought-sensitive' aquifer settings are defined for this study as areas unable to supply adequate quantities of water to wells during drought. Using information from previous investigations and a knowledge of the hydrogeology and topography of the study area, drought-sensitive aquifer settings in southeastern Pennsylvania were hypothesized as being associated with two factors - a water-table decline (WTD) index and topographic setting. The WTD index is an estimate of the theoretical water-table decline at the ground-water divide for a hypothetical aquifer with idealized geometry. The index shows the magnitude of ground-water decline after cessation of recharge is a function of (1) distance from stream to divide, (2) ground-water recharge rate, (3) transmissivity, (4) specific yield, and (5) duration of the drought. WTD indices were developed for 39 aquifers that were subsequently grouped into categories of high, moderate, and low WTD index. Drought-sensitive settings determined from the hypothesized factors were compared to locations of wells known to have been affected (gone dry, replaced, or deepened) during recent droughts. Information collected from well owners, drillers, and public agencies identified 2,016 wells affected by drought during 1998-2002. Most of the available data on the location of drought-affected wells in the study area were

  8. Intensively exploited Mediterranean aquifers: resilience and proximity to critical points of seawater intrusion

    Science.gov (United States)

    Mazi, K.; Koussis, A. D.; Destouni, G.

    2013-11-01

    We investigate here seawater intrusion in three prominent Mediterranean aquifers that are subject to intensive exploitation and modified hydrologic regimes by human activities: the Nile Delta Aquifer, the Israel Coastal Aquifer and the Cyprus Akrotiri Aquifer. Using a generalized analytical sharp-interface model, we review the salinization history and current status of these aquifers, and quantify their resilience/vulnerability to current and future sea intrusion forcings. We identify two different critical limits of sea intrusion under groundwater exploitation and/or climatic stress: a limit of well intrusion, at which intruded seawater reaches key locations of groundwater pumping, and a tipping point of complete sea intrusion upto the prevailing groundwater divide of a coastal aquifer. Either limit can be reached, and ultimately crossed, under intensive aquifer exploitation and/or climate-driven change. We show that sea intrusion vulnerability for different aquifer cases can be directly compared in terms of normalized intrusion performance curves. The site-specific assessments show that the advance of seawater currently seriously threatens the Nile Delta Aquifer and the Israel Coastal Aquifer. The Cyprus Akrotiri Aquifer is currently somewhat less threatened by increased seawater intrusion.

  9. Optimal Aquifer Pumping Policy to Reduce Contaminant Concentration

    Directory of Open Access Journals (Sweden)

    Ali Abaei

    2012-01-01

    Full Text Available Different sources of ground water contamination lead to non-uniform distribution of contaminant concentration in the aquifer. If elimination or containment of pollution sources was not possible, the distribution of contaminant concentrations could be modified in order to eliminate peak concentrations using optimal water pumping discharge plan. In the present investigation Visual MODFLOW model was used to simulate the flow and transport in a hypothetic aquifer. Genetic Algorithm (GA also was applied to optimize the location and pumping flow rate of wells in order to reduce contaminants peak concentrations in aquifer.

  10. Sedimentological analysis of a contaminated groundwater aquifer

    International Nuclear Information System (INIS)

    Towse, D.

    1991-01-01

    The use of sedimentological reservoir analysis techniques adapted from standard oilfield practice can improve the efficiency and reduce the costs of the evaluation of groundwater aquifers and the design of restoration programs. An evaluation/restoration program at a site in California drilled over 200 test wells in about 750 ac. All wells were logged lithologically and with wireline. The shallow aquifer is a complex braided alluvial floodplain deposit of Late Quaternary age. Analysis demonstrates depositional and erosional responses to periodic hinterland uplifts and to changing climatic conditions. Channel, overbank, lacustrine, and minor deltaic deposits can be recognized. The aquifer architecture has been interpreted to explain the movement of fuel and halogenated hydrocarbon solvents in the sediments and water. Routine engineering geology techniques and hydrologic tests were used to evaluate contamination and to design experimental restoration processes. As demonstrated here, sedimentological techniques show promise in reducing the costs and time required for this type of study. The abundant detailed data will be used in an attempt to develop a microcomputer-based expert system for rapid preliminary analyses of similar aquifers or reservoirs

  11. Disposal of carbon dioxide in aquifers in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Winter, E.M.; Bergman, P.D.

    1995-11-01

    Deep saline aquifers were investigated as potential disposal sites for CO{sub 2}. The capacity of deep aquifers for CO{sub 2} disposal in the U.S. is highly uncertain. A rough estimate, derived from global estimates, is 5,500 Gt of CO{sub 2}. Saline aquifers underlie the regions in the U.S. where most utility power plants are situated. Therefore, approximately 65 percent of CO{sub 2} from power plants could possibly be injected directly into deep saline aquifers below these plants, without the need for long pipelines.

  12. The Tunisian Jurassic aquifer in the North African Sahara aquifer system: information derived from two-dimensional seismic reflection and well logs

    Science.gov (United States)

    Ben Lasmar, Rafika; Guellala, Rihab; Garrach, Mohamed; Mahroug, Ali; Sarsar Naouali, Benen; Inoubli, Mohamed Hédi

    2017-12-01

    Southern Tunisia is an arid area where socio-economic activities are dependent on groundwater resources. The presented study aims to better characterize the Jurassic aquifer based on geological and geophysical data, with a view to develop a rational exploitation program. Well logs are used to precisely determine the position and composition of the known Jurassic aquifer layers and to identify others able to produce good quality water. The logs show that limestones, sandstones and dolomites of the Krachoua, Techout and Foum Tataouine formations are the main Jurassic aquifers. Sixty-eight seismic-reflection sections are integrated within this study. The interpolation between the interpreted sections leads to the construction of isochronous isopach maps and geoseismic sections, and their analysis finds that compressive and extensive tectonic deformations have influenced the Jurassic aquifer geometry. The Hercynian orogeny phase manifestation is remarkable in that there are several stratigraphic gaps in the Jurassic sequence. The E-W, NW-SE, and NNW-SSE accidents, reactivated in normal faults since the Permian to Lower Cretaceous epochs, have generated the structures found in the Jurassic series, such as subsided and raised blocks. Their syn-sedimentary activity has controlled the thickness and facies of these series. The Cretaceous, Tortonian and Post-Villafranchian compressions are responsible for the Jurassic-deposits folding in some localities. The highlighted tectonic and sedimentary events have an important impact on the Jurassic aquifer function by favoring the Jurassic aquifer interconnections and their connections with the Triassic and Cretaceous permeable series.

  13. Upper Basalt-Confined Aquifer System in the Southern Hanford Site

    International Nuclear Information System (INIS)

    Thorne, P.

    1999-01-01

    The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995)

  14. CO2/Brine transport into shallow aquifers along fault zones.

    Science.gov (United States)

    Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh

    2013-01-02

    Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.

  15. Ground-water levels in aquifers used for residential supply, Campton Township, Kane County, Illinois

    Science.gov (United States)

    Kay, Robert T.; Kraske, Kurt A.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Campton Township Board of Trustees, measured water levels in the aquifers used for residential supply in Campton Township, Kane County, Illinois. Aquifers used for residential supply are the shallow and deep aquifers in the glacial drift, composed of unconsolidated sand and gravels; the Alexandrian-Maquoketa aquifer, composed of dolomite and shale of the Alexandrian Series and the Maquoketa Group; the Galena-Platteville aquifer, composed of dolomite of the Platteville and Galena Groups; and the Ancell aquifer, composed of sandstones of the Glenwood Formation and the St. Peter Sanstone. Water-level altitudes in the shallow drift aquifers generally follow surface topography. Analysis of water-level data does not clearly indicate overutilization of these aquifers. Water-level altitudes in the deep drift aquifers decrease from west to east. Comparison of historical depth to water measurements with current (1995) measurements indicates large decreases in water levels in some areas. The deep drift aquifers may be overutilized at these locations. Water-level altitudes in the Alexandrian-Maquoketa aquifer generally decrease from west to east. The potentiometric surface of the aquifer follows the bedrock-surface topography in some locations. Localized low water-level altitudes and large decreases in water levels indicate the Alexandrian-Maquoketa aquifer is overutilized in several areas. Water-level altitudes in the wells finished in the Galena- Platteville aquifer vary by more than 300 feet. Large decreases in water levels in wells finished in the Galena-Platteville aquifer indicate the Galena-Platteville and Alexandrian-Maquoketa aquifers are overutilized in the northern part of the township. Water-level altitudes in the wells finished in the Ancell aquifer are also highly variable. There is no indication that the Ancell aquifer is overutilized.

  16. San Pedro River Aquifer Binational Report

    Science.gov (United States)

    Callegary, James B.; Minjárez Sosa, Ismael; Tapia Villaseñor, Elia María; dos Santos, Placido; Monreal Saavedra, Rogelio; Grijalva Noriega, Franciso Javier; Huth, A. K.; Gray, Floyd; Scott, C. A.; Megdal, Sharon; Oroz Ramos, L. A.; Rangel Medina, Miguel; Leenhouts, James M.

    2016-01-01

    The United States and Mexico share waters in a number of hydrological basins and aquifers that cross the international boundary. Both countries recognize that, in a region of scarce water resources and expanding populations, a greater scientific understanding of these aquifer systems would be beneficial. In light of this, the Mexican and U.S. Principal Engineers of the International Boundary and Water Commission (IBWC) signed the “Joint Report of the Principal Engineers Regarding the Joint Cooperative Process United States-Mexico for the Transboundary Aquifer Assessment Program" on August 19, 2009 (IBWC-CILA, 2009). This IBWC “Joint Report” serves as the framework for U.S.-Mexico coordination and dialogue to implement transboundary aquifer studies. The document clarifies several details about the program such as background, roles, responsibilities, funding, relevance of the international water treaties, and the use of information collected or compiled as part of the program. In the document, it was agreed by the parties involved, which included the IBWC, the Mexican National Water Commission (CONAGUA), the U.S. Geological Survey (USGS), and the Universities of Arizona and Sonora, to study two priority binational aquifers, one in the San Pedro River basin and the other in the Santa Cruz River basin. This report focuses on the Binational San Pedro Basin (BSPB). Reasons for the focus on and interest in this aquifer include the fact that it is shared by the two countries, that the San Pedro River has an elevated ecological value because of the riparian ecosystem that it sustains, and that water resources are needed to sustain the river, existing communities, and continued development. This study describes the aquifer’s characteristics in its binational context; however, most of the scientific work has been undertaken for many years by each country without full knowledge of the conditions on the other side of the border. The general objective of this study is to

  17. Identifying Stream/Aquifer Exchange by Temperature Gradient in a Guarani Aquifer System Outcrop Zone

    Science.gov (United States)

    Wendland, E.; Rosa, D. M. S.; Anache, J. A. A.; Lowry, C.; Lin, Y. F. F.

    2017-12-01

    Recharge of the Guarani Aquifer System (GAS) in South America is supposed to occur mainly in the outcrop zones, where the GAS appears as an unconfined aquifer (10% of the 1.2 Million km2 aquifer extension). Previous evaluations of recharge are based essentially on water balance estimates for the whole aquifer area or water table fluctuations in monitoring wells. To gain a more detailed understanding of the recharge mechanisms the present work aimed to study the stream aquifer interaction in a watershed (Ribeirão da Onça) at an outcrop zone. Two Parshall flumes were installed 1.3 km apart for discharge measurement in the stream. Along this distance an optic fiber cable was deployed to identify stretches with gaining and losing behavior. In order to estimate groundwater discharge in specific locations, 8 temperature sticks were set up along the stream reach to measure continuously the vertical temperature gradient. A temperature probe with 4 thermistors was also used to map the shallow streambed temperature gradient manually along the whole distance. The obtained results show a discharge difference of 250 m3/h between both flumes. Since the last significant rainfall (15 mm) in the watershed occurred 3 months ago, this value can be interpreted as the base flow contribution to the stream during the dry season. Given the temperature difference between groundwater ( 24oC) and surface water ( 17oC) the fiber-optic distributed temperature sensing (FO-DTS) allowed the identification of stretches with gaining behavior. Temperature gradients observed at the streambed varied between 0.67 and 14.33 oC/m. The study demonstrated that heat may be used as natural tracer even in tropical conditions, where the groundwater temperature is higher than the surface water temperature during the winter. The obtained results show that the discharge difference between both flumes can not be extrapolated without detailed analysis. Gaining and loosing stretches have to be identified on order

  18. Estimating aquifer transmissivity from geo-electrical sounding ...

    African Journals Online (AJOL)

    Aquifer resistivity range from 4.26 ohm-m to 755.3 ohm-m with maximum thickness of 52.25m. A maximum 55.52m depth- tobasement was obtained in the study area. Based on the model obtained, aquifer Transmissivity was calculated and was used to delineate the study area into prospective low and high groundwater ...

  19. Managed aquifer recharge: rediscovering nature as a leading edge technology.

    Science.gov (United States)

    Dillon, P; Toze, S; Page, D; Vanderzalm, J; Bekele, E; Sidhu, J; Rinck-Pfeiffer, S

    2010-01-01

    Use of Managed Aquifer Recharge (MAR) has rapidly increased in Australia, USA, and Europe in recent years as an efficient means of recycling stormwater or treated sewage effluent for non-potable and indirect potable reuse in urban and rural areas. Yet aquifers have been relied on knowingly for water storage and unwittingly for water treatment for millennia. Hence if 'leading edge' is defined as 'the foremost part of a trend; a vanguard', it would be misleading to claim managed aquifer recharge as a leading edge technology. However it has taken a significant investment in scientific research in recent years to demonstrate the effectiveness of aquifers as sustainable treatment systems to enable managed aquifer recharge to be recognised along side engineered treatment systems in water recycling. It is a 'cross-over' technology that is applicable to water and wastewater treatment and makes use of passive low energy processes to spectacularly reduce the energy requirements for water supply. It is robust within limits, has low cost, is suitable from village to city scale supplies, and offers as yet almost untapped opportunities for producing safe drinking water supplies where they do not yet exist. It will have an increasingly valued role in securing water supplies to sustain cities affected by climate change and population growth. However it is not a universal panacea and relies on the presence of suitable aquifers and sources of water together with effective governance to ensure human health and environment protection and water resources planning and management. This paper describes managed aquifer recharge, illustrates its use in Australia, outlining economics, guidelines and policies, and presents some of the knowledge about aquifer treatment processes that are revealing the latent value of aquifers as urban water infrastructure and provide a driver to improving our understanding of urban hydrogeology.

  20. Decision Support System for Aquifer Recharge (AR) and Aquifer Storage and Recovery (ASR) Planning, Design, and Evaluation - Principles and Technical Basis

    Science.gov (United States)

    Aquifer recharge (AR) is a technical method being utilized to enhance groundwater resources through man-made replenishment means, such as infiltration basins and injections wells. Aquifer storage and recovery (ASR) furthers the AR techniques by withdrawal of stored groundwater at...

  1. Radial flow towards well in leaky unconfined aquifer

    Science.gov (United States)

    Mishra, P. K.; Kuhlman, K. L.

    2012-12-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large- diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  2. Restoration of Wadi Aquifers by Artificial Recharge with Treated Waste Water

    KAUST Repository

    Missimer, Thomas M.; Drewes, Jö rg E.; Amy, Gary L.; Maliva,, Robert G.; Keller, Stephanie

    2012-01-01

    , such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge

  3. Unraveling P-T-t-D Evolution of Zermatt-Saas Ophiolites from Valtournanche: from Ocean Opening to Mountain Building

    Science.gov (United States)

    Rebay, G.; Tiepolo, M.; Zanoni, D.; Langone, A.; Spalla, M. I.

    2015-12-01

    The Zermatt-Saas (ZS) Zone, formerly part of Tethyan oceanic crust and variously affected by oceanic metamorphism, is now part of the orogenic suture that developed in the Western European Alps during the Alpine subduction and collision. The ZS rocks preserve a dominant HP to UHP metamorphic imprint overprinted by greenschist facies metamorphism. The age of the oceanic protoliths is considered to be middle to upper Jurassic whereas the HP metamorphism is mostly considered to be Eocene. In upper Valtournanche ZS ophiolites, the dominant regional S2 foliation is mapped with spatial continuity in serpentinite, metarodingite and eclogite and is defined by HP/UHP parageneses in all lithotypes. It developed at 2.5 ± 0.3 GPa and 600 ± 20°C during Alpine subduction. S2 foliation of serpentinites wraps rare clinopyroxene and zircon relics. Trace element composition of clinopyroxene suggests that they crystallised from a melt in equilibrium with plagioclase: they most likely represent relicts of gabbroic assemblages. The clinopyroxene porphyroclasts have rims indented within S2 and compositions similar to fine-grained clinopyroxeneII defining S2, suggesting that they recrystallised during Alpine subduction. Zircon cores show, under CL, sector zoning typical of magmatic growth. U-Pb dates suggest their crystallisation during Middle Jurassic. Magmatic cores have thin fringe overgrowths parallel to the S2 foliation. U-Pb concordant analyses on these domains reveal an Upper Cretaceous-Paleocene crystallization most likely representing the HP to UHP Alpine re-equilibration. This suggests that some sections of the ZS have experienced HP to UHP metamorphism earlier than previously thought, opening new interpretative geodynamic scenarios. Remarkably, these new dates are similar to those recorded for the HP re-equilibration in the continental crust of the adjacent Austroalpine units (upper plate of the Alpine subduction system) and to those recorded for prograde metamorphism in

  4. Making a report of a short trip in an ophiolitic complex with Google Earth

    Science.gov (United States)

    Aubret, Marianne

    2017-04-01

    Plate tectonics is taught in French secondary school (lower and upper-sixth). According to the curriculum, the comprehension of plate-tectonic processes and concepts should be based on field data. For example, the Alpine's ocean history is studied to understand how mountain ranges are formed. In this context, Corsica is a great open-air laboratory, but unfortunately, the traffic conditions are very difficult in the island and despite the short distances, it's almost impossible for teachers to take their students to the remarkable geologic spots. The «défilé de l'Inzecca» is one of them: there you can see a part of the alpine's ophiolitic complex. The aim of this activity is to elaborate a « KMZ folder » in Google Earth as a report of a short trip thanks to the students' data field; it is also the occasion to enrich the Google Earth KMZ folder already available for our teaching.

  5. EPA Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Information on sole source aquifers (SSAs) is widely used in assessments under the National Environmental Policy Act and at the state and local level. A national...

  6. Hydrologic analysis of data for the Lost Lake Aquifer Zone of the Steel Pond Aquifer at recovery well RWM-16

    International Nuclear Information System (INIS)

    Wells, D.G.; Cook, J.W.; Hiergesell, R.A.

    1993-04-01

    This report presents the results of an analysis of data obtained from a large-scale, multiple-well aquifer test of the sandy unit referred to as the Lost Lake Aquifer Zone of the Steed Pond Aquifer in an area just south of the A and M Areas. Pumping was conducted at recovery well RWM-16, which is located near the MSB-40 well cluster, approximately 4000 feet south of the M-Area Basin. RWM-16 is located in the lower left portion of Figure 1, which also illustrates the general relationship of the testing site to the A and M Areas and other monitor wells. The data generated from testing RWM-16 was used to calculate estimates of transmissivity and storage for the aquifer system within which RWM-16 is screened. These parameters are related to hydraulic conductivity and storativity of the aquifer system by the vertical thickness of the unit. The leakage coefficient for the overlying confining unit is also estimated. This information is needed to refine conceptual understanding of the groundwater flow system beneath the A and M Areas. The refined conceptual model will more adequately describe the pattern of groundwater flow, and will contribute to updating the open-quotes Zone of Captureclose quotes model that has been used in the initial phases of designing a groundwater remediation system in the A and M Areas

  7. Characterising Bedrock Aquifer Systems in Korea Using Paired Water-Level Monitoring Data

    Directory of Open Access Journals (Sweden)

    Jae Min Lee

    2017-06-01

    Full Text Available This study focused on characterising aquifer systems based on water-level changes observed systematically at 159 paired groundwater monitoring wells throughout Korea. Using spectral analysis, principal component analysis (PCA, and cross-correlation analysis with linear regression, aquifer conditions were identified from the comparison of water-level changes in shallow alluvial and deep bedrock monitoring wells. The spectral analysis could identify the aquifer conditions (i.e., unconfined, semi-confined and confined of 58.5% of bedrock wells and 42.8% of alluvial wells: 93 and 68 wells out of 159 wells, respectively. Even among the bedrock wells, 50 wells (53.7% exhibited characteristics of the unconfined condition, implying significant vulnerability of the aquifer to contaminants from the land surface and shallow depths. It appears to be better approach for deep bedrock aquifers than shallow alluvial aquifers. However, significant portions of the water-level changes remained unclear for categorising aquifer conditions due to disturbances in data continuity. For different aquifer conditions, PCA could show typical pattern and factor scores of principal components. Principal component 1 due to wet-and-dry seasonal changes and water-level response time was dominant covering about 55% of total variances of each aquifer conditions, implying the usefulness of supplementary method of aquifer characterisation. Cross-correlation and time-lag analysis in the water-level responses to precipitations clearly show how the water levels in shallow and deep wells correspond in time scale. No significant differences in time-lags was found between shallow and deep wells. However, clear time-lags were found to be increasing from unconfined to confined conditions: from 1.47 to 2.75 days and from 1.78 to 2.75 days for both shallow alluvial and deep bedrock wells, respectively. In combination of various statistical methods, three types of water-level fluctuation

  8. Determining shallow aquifer vulnerability by the DRASTIC model ...

    Indian Academy of Sciences (India)

    Shallow aquifer vulnerability has been assessed using GIS-based DRASTIC model by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination in a granitic terrain. It provides a relative indication of aquifer vulnerability to the contamination. Further, it has been ...

  9. Tracers Detect Aquifer Contamination

    National Research Council Canada - National Science Library

    Enfield, Carl

    1995-01-01

    The EPA's National Laboratory (NRMRL) at Ada, OK, along with the University of Florida and the University of Texas, have developed a tracer procedure to detect the amount of contamination in aquifer formations...

  10. VULNERABILITY AND RISK OF CONTAMINATION KARSTIC AQUIFERS

    Directory of Open Access Journals (Sweden)

    Yameli Aguilar

    2013-08-01

    Full Text Available Karstic systems occupy nearly 20% of the surface of the earth and are inhabited by numerous human communities. Karstic aquifers are the most exposed to pollution from human activities. Pollution of karstic aquifers is a severe environmental problem worldwide.  In order to face the vulnerability of karstic aquifers to pollution, researchers have created a diversity of study approaches and models, each one having their own strengths and weaknesses depending on the discipline from which they were originated, thus requiring a thorough discussion within the required multidisciplinary character. The objective of this article was to analyze the theoretical and methodological approaches applied to the pollution of karstic aquifers. The European hydrogeological, land evaluation, hydropedological and a geographic approach were analyzed. The relevance of a geomorphological analysis as a cartographic basis for the analysis of vulnerability and risks were emphasized. From the analysis of models, approaches and methodologies discussed the following recommendation is made: to form an interdisciplinary work team, to elaborate a conceptual model according to the site and the working scale and to e, apply and validate the model.

  11. FEWA: a Finite Element model of Water flow through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables

  12. FEWA: a Finite Element model of Water flow through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables.

  13. The quality of our Nation's waters: water quality in the Upper Floridan aquifer and overlying surficial aquifers, southeastern United States, 1993-2010

    Science.gov (United States)

    Berndt, Marian P.; Katz, Brian G.; Kingsbury, James A.; Crandall, Christy A.

    2015-01-01

    About 10 million people rely on groundwater from the Upper Floridan and surficial aquifers for drinking water. The Upper Floridan aquifer also is of primary importance to the region as a source of water for irrigation and as a source of crystal clear water that discharges to springs and streams providing recreational and tourist destinations and unique aquatic habitats. The reliance of the region on the Upper Floridan aquifer for drinking water and for the tourism and agricultural economies highlights the importance of long-term management to sustain the availability and quality of these resources.

  14. Arsenic release during managed aquifer recharge (MAR)

    Science.gov (United States)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  15. Crystallization Temperatures of Lower Crustal Gabbros from the Oman Ophiolite and the Persistence of the 'Mush Zone' at Intermediate/Fast Spreading Ridges

    Science.gov (United States)

    VanTongeren, J. A.

    2017-12-01

    Oceanic crust is formed when mantle-derived magmas are emplaced at the ridge axis, a zone of intense rifting and extension. Magmas begin to cool and crystallize on-axis, forming what is termed the "Mush Zone", a region of partially molten rocks. Several attempts have been made to understand the nature of the Mush Zone at fast spreading mid-ocean ridges, specifically how much partial melt exists and how far off-axis the Mush Zone extends. Geophysical estimates of P-wave velocity perturbations at the East Pacific Rise show a region of low velocity approximately 1.5-2.5 km off-axis, which can be interpreted to be the result of higher temperature [e.g. Dunn et al., 2000, JGR] or the existence of partial melt. New petrological and geochemical data and methods allow for the calculation of the lateral extent of the Mush Zone in the lower oceanic crust on exposed sections collected from the Oman ophiolite, a paleo-fast/intermediate spreading center. I will present new data quantifying the crystallization temperatures of gabbros from the Wadi Khafifah section of lower oceanic gabbros from the Oman ophiolite. Crystallization temperatures are calculated with the newly developed plagioclase-pyroxene REE thermometer of Sun and Liang [2017, Contrib. Min. Pet.]. There does not appear to be any systematic change in the crystallization temperature of lower crustal gabbros with depth in the crust. In order to quantify the duration of crystallization and the lateral extent of the Mush Zone of the lower crust, crystallization temperatures are paired with estimates of the solidus temperature and cooling rate determined from the same sample, previously constrained by the Ca diffusion in olivine geothermometer/ geospeedometer [e.g. VanTongeren et al., 2008 EPSL]. There is no systematic variation in the closure temperature of Ca in olivine, or the cooling rate to the 800°C isotherm. These results show that gabbros throughout the lower crust of the Oman ophiolite remain in a partially

  16. The contribution of environmental isotopes to studies of large aquifers in Morocco

    International Nuclear Information System (INIS)

    Kabbaj, A.; Zeryouhi, I.; Carlier, Ph.

    1979-01-01

    The geochemistry of environmental isotopes has been used for the study of various aquifers in Morocco, some of which are large, such as the Charf el Akab in the Tangiers area, the Oum er Rbia basin and the Turonian aquifer of the Tadla, the free groundwater of the Quaternary lacustrine limestones of the Sais Plain and the Lias limestone aquifer. These isotope studies take hydrogeochemical data into account and have made it possible to determine the conditions of recharge of the aquifers, to distinguish waters of different origin from the Atlas Mountains or from the Phosphate Plateau in the Tadla Basin and the Sais plain, to estimate the recharge of one aquifer by another - for example groundwater of the Lias limestones passing via the folds of the Sais Plain into the lacustrine limestone aquifer - and to test the homogeneity or heterogeneity of these aquifers and their tightness (e.g. the Turonian aquifer of the Tadla and the special case of the Charf el Akab in relation to the marine environment). Altogether, these results made it possible to test the value of the techniques used and to specify the general conditions in which they can profitably be used. (author)

  17. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles

    Energy Technology Data Exchange (ETDEWEB)

    Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. (Minnesota Geological Survey, St. Paul, MN (United States))

    1991-06-01

    Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

  18. Unconsolidated Aquifers in Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2000-01-01

    Unconsolidated aquifers consisting of saturated sand and gravel are capable of supplying large quantities of good-quality water to wells in Tompkins County, but little published geohydrologic inform ation on such aquifers is available. In 1986, the U.S.Geological Survey (USGS) began collecting geohydrologic information and well data to construct an aquifer map showing the extent of unconsolidated aquifers in Tompkins county. Data sources included (1) water-well drillers. logs; (2) highway and other construction test-boring logs; (3) well data gathered by the Tompkins County Department of Health, (4) test-well logs from geohydrologic consultants that conducted projects for site-specific studies, and (5) well data that had been collected during past investigations by the USGS and entered into the National Water Information System (NWIS) database. In 1999, the USGS, in cooperation with the Tompkins County Department of Planning, compiled these data to construct this map. More than 600 well records were entered into the NWIS database in 1999 to supplement the 350 well records already in the database; this provided a total of 950 well records. The data were digitized and imported into a geographic information system (GIS) coverage so that well locations could be plotted on a map, and well data could be tabulated in a digital data base through ARC/INFO software. Data on the surficial geology were used with geohydrologic data from well records and previous studies to delineate the extent of aquifers on this map. This map depicts (1) the extent of unconsolidated aquifers in Tompkins County, and (2) locations of wells whose records were entered into the USGS NWIS database and made into a GIS digital coverage. The hydrologic information presented here is generalized and is not intended for detailed site evaluations. Precise locations of geohydrologic-unit boundaries, and a description of the hydrologic conditions within the units, would require additional detailed, site

  19. Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)

    Science.gov (United States)

    McMahon, P. B.

    2010-12-01

    Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.

  20. Simulation of seawater intrusion in coastal aquifers: Some typical ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Seawater intrusion; coastal aquifers; density-dependent flow and ... The seawater intrusion mechanism in coastal aquifers generally causes the occurrence of ... (4) The dynamic viscosity of the fluid does not change with respect to salinity and.

  1. Simulated effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system and Piney Point aquifer, Maurice and Cohansey River Basins, Cumberland County and vicinity, New Jersey

    Science.gov (United States)

    Gordon, Alison D.; Buxton, Debra E.

    2018-05-10

    The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, conducted a study to simulate the effects of withdrawals from the Kirkwood-Cohansey aquifer system on streamflow and groundwater flow and from the Piney Point aquifer on water levels in the Cohansey and Maurice River Basins in Cumberland County and surrounding areas. The aquifer system consists of gravel, sand, silt, and clay sediments of the Cohansey Sand and Kirkwood Formation that dip and thicken to the southeast. The aquifer system is generally an unconfined aquifer, but semi-confined and confined conditions exist within the Cumberland County study area. The Kirkwood-Cohansey aquifer system is present throughout Cumberland County and is the principal source of groundwater for public, domestic, agricultural-irrigation, industrial, and commercial water uses. In 2008, reported groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the study area totaled about 21,700 million gallons—about 36 percent for public supply; about 49 percent for agricultural irrigation; and about 15 percent for industrial, commercial, mining by sand and gravel companies, and non-agricultural irrigation uses. A transient numerical groundwater-flow model of the Kirkwood-Cohansey aquifer system was developed and calibrated by incorporating monthly recharge, base-flow estimates, water-level data, surface-water diversions and discharges, and groundwater withdrawals from 1998 to 2008.The groundwater-flow model was used to simulate five withdrawal scenarios to observe the effects of additional groundwater withdrawals on the Kirkwood-Cohansey aquifer system and streams. These scenarios include (1) average 1998 to 2008 monthly groundwater withdrawals (baseline scenario); (2) monthly full-allocation groundwater withdrawals, but agricultural-irrigation withdrawals were decreased for October through March; (3) monthly full-allocation groundwater withdrawals; (4) estimated monthly

  2. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    Science.gov (United States)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in

  3. A New Boundary for the High Plains - Ogallala Aquifer Complex

    Science.gov (United States)

    Haacker, E. M.; Nozari, S.; Kendall, A. D.

    2017-12-01

    In the semi-arid Great Plains, water is the key ingredient for crop growth: the difference between meager yields for many crops and an agricultural bonanza. The High Plains-Ogallala Aquifer complex (HPA) underlies 452,000 square kilometers of the region, and over 95% of water withdrawn from the aquifer is used for irrigation. Much of the HPA is being pumped unsustainably, and since the region is heavily reliant on this resource for its social and economic health, the High Plains has been a leader in groundwater management planning. However, the geographic boundary of the High Plains region fails to reflect the hydrogeological realities of the aquifer. The current boundary, recognizable from countless textbooks and news articles, is only slightly modified from a version from the 1980's, and largely follows the physiographic borders of the High Plains - defined by surface features such as escarpments and rivers - rather than the edges of water-bearing sediment sufficient for high-volume pumping. This is supported by three lines of evidence: hydrogeological observations from the original aquifer boundary determination; the extent of irrigated land, as estimated by MODIS-MIrAD data; and statistical estimates of saturated thickness, incorporating improved maps of the aquifer base and an additional 35 years of water table measurements. In this project, new maps of saturated thickness are used to create an updated aquifer boundary, which conforms with the standard definition of an aquifer as a package of sediment that yields enough water to be economically pumped. This has major implications for social and physical models, as well as water planning and estimates of sustainability for the HPA. Much of the area of the HPA that has been labeled `sustainable' based upon estimates of recharge relative to pumping estimates falls outside the updated aquifer boundary. In reality, the sustainably-pumped area of this updated aquifer boundary is far smaller—a fact that if more

  4. Conceptual and numerical modeling approach of the Guarani Aquifer System

    Science.gov (United States)

    Rodríguez, L.; Vives, L.; Gomez, A.

    2013-01-01

    In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s-1 while the observed absolute minimum discharge was 382 m3 s-1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through the aquifer boundaries, except at the eastern boundary. On average

  5. Toward an Economic Definition of Sustainable Yield for Coastal Aquifers

    Science.gov (United States)

    Jenson, J. W.; Habana, N. C.; Lander, M.

    2016-12-01

    The concept of aquifer sustainable yield has long been criticized, debated, and even disparaged among groundwater hydrologists, but policy-makers and professional water resource managers inevitably ask them for unequivocal answers to such questions as "What is the absolute maximum volume of water that could be sustainably withdrawn from this aquifer?" We submit that it is therefore incumbent upon hydrologists to develop and offer valid practical definitions of sustainable yield that can be usefully applied to given conditions and types of aquifers. In coastal aquifers, water quality—in terms of salinity—is affected by changes in the natural water budget and the volume rate of artificial extraction. In principle, one can identify a family of assay curves for a given aquifer, showing the specific relationships between the quantity and quality of the water extracted under given conditions of recharge. The concept of the assay curve, borrowed from the literature of natural-resource extraction economics, has to our knowledge not yet found its way into the literature of applied hydrology. The relationships between recharge, extraction, and water quality that define the assay curve can be determined empirically from sufficient observations of groundwater response to recharge and extraction and can be estimated from models that have been reliably history-matched ("calibrated") to such data. We thus propose a working definition of sustainable yield for coastal aquifers in terms of the capacity that ultimately could be achieved by an ideal production system, given what is known or can be assumed about the natural limiting conditions. Accordingly, we also offer an approach for defining an ideal production system for a given aquifer, and demonstrate how observational data and/or modeling results can be used to develop assay curves of quality vs. quantity extracted, which can serve as reliable predictive tools for engineers, managers, regulators, and policy

  6. Modelling stream aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW

    Science.gov (United States)

    Osman, Yassin Z.; Bruen, Michael P.

    2002-07-01

    Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.

  7. Water-level altitudes 2013 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973--2012 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2013-01-01

    Most of the subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction mostly in the clay and silt layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate water-level altitudes for 2013 (represented by measurements made during December 2012-February 2013) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2012-13) water-level changes for each aquifer; maps depicting 5-year (2008--13) water-level changes for each aquifer; maps depicting long-term (1990-2013 and 1977-2013) water-level changes for the Chicot and Evangeline aquifers; a map depicting long-term (2000-13) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured compaction of subsurface sediments at the extensometers during 1973-2012. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  8. Intensively exploited Mediterranean aquifers: resilience to seawater intrusion and proximity to critical thresholds

    Science.gov (United States)

    Mazi, K.; Koussis, A. D.; Destouni, G.

    2014-05-01

    We investigate seawater intrusion in three prominent Mediterranean aquifers that are subject to intensive exploitation and modified hydrologic regimes by human activities: the Nile Delta, Israel Coastal and Cyprus Akrotiri aquifers. Using a generalized analytical sharp interface model, we review the salinization history and current status of these aquifers, and quantify their resilience/vulnerability to current and future seawater intrusion forcings. We identify two different critical limits of seawater intrusion under groundwater exploitation and/or climatic stress: a limit of well intrusion, at which intruded seawater reaches key locations of groundwater pumping, and a tipping point of complete seawater intrusion up to the prevailing groundwater divide of a coastal aquifer. Either limit can be reached, and ultimately crossed, under intensive aquifer exploitation and/or climate-driven change. We show that seawater intrusion vulnerability for different aquifer cases can be directly compared in terms of normalized intrusion performance curves. The site-specific assessments show that (a) the intruding seawater currently seriously threatens the Nile Delta aquifer, (b) in the Israel Coastal aquifer the sharp interface toe approaches the well location and (c) the Cyprus Akrotiri aquifer is currently somewhat less threatened by increased seawater intrusion.

  9. Mineral chemistry and geothemobarometry of mantle harzburgites in the Eastern Metamorphic Complex of Khoy ophiolite -NW Iran

    Directory of Open Access Journals (Sweden)

    Morovvat Faridazad

    2017-02-01

    Full Text Available Introduction Khoy ophiolite at the global scale is in the middle part of the Alp-Himalaya orogenic belt and it is extended over 3900 Km2 which indicates remnant Neotethys oceanic lithosphere in the Mesozoic era (Kananian et al., 2010. In this paper, in addition to a review of previous investigations about Khoy ophiolite, we will try to determine the nature and kind of minerals, origin and partial melting rate as well as the equilibrium pressure and temperature of harzburgites from the Eastern Metamorphic Complex of Khoy ophiolite. Materials and methods Thin sections microscopy studies were carried out following field investigations. EPMA analysis was carried out with using a Superprobe JEOL, JXA 8200 Microprobe unit at the state of WDS and under condition of 15kv accelerating voltage, 10nA current beam, 1µm beam diameter and collection of natural and synthetic standards for calibration. Results The study area is located at the NW of Iran and north of the Khoy city in the west Azarbaijan province. This area is part of the ophiolitic complex of NW Iran and belongs to its Eastern Metamorphic Complex. This metamorphic zone has large tectonically segments of the metamorphic ophiolites which mainly include serpentinized peridotites with associated metagabbros. There are three types of peridotitic rocks in this area which are: Lherzolites, harzburgites and dunites. Lherzolites are composed of olivine (60-70%, orthopyroxene (10-30% and clinopyroxene (~10-20% with minor amounts (~2% of Cr-spinel mineral. Harzburgites are composed of olivine (70-80%, orthopyroxene (10-20% and clinopyroxene (~5% with minor amounts (~2% of Cr-spinel mineral. Dunites are composed of olivine (90-95%, orthopyroxene (5-10% with minor amounts (~1-2% of Cr-spinel mineral. Composition range of olivines is between Fo89.46 Fa10.37 to Fo89.86 Fa10.0 as well as NiO content range is 018-046 (wt %. The calculated Mg# of olivines is 0.90 and the composition of olivines in Fo-Fa diagram

  10. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    Science.gov (United States)

    O'Leary, David R.; Izbicki, John A.; Metzger, Loren F.

    2015-11-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency's secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100-2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  11. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    Science.gov (United States)

    O'Leary, David; Izbicki, John A.; Metzger, Loren F.

    2015-01-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency’s secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100–2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  12. Modeling of drainage and hay production over the Crau aquifer for analyzing the impact of global change on aquifer recharge

    Science.gov (United States)

    Olioso, Albert; Lecerf, Rémi; Baillieux, Antoine; Chanzy, André; Ruget, Françoise; Banton, Olivier; Lecharpentier, Patrice; Alkassem Alosman, Mohamed; Ruy, Stéphane; Gallego Elvira, Belen

    2013-04-01

    The recharge of the aquifer in the Crau plain (550 km2, Southern Rhone Valley, France) depends on the irrigation of 15000 ha of meadow using water withdrawn from the River Durance through a dense network of channels. Traditional irrigation practice, since the XVIth century, has consisted in flooding the grassland fields with a large amount of water, the excess being infiltrated toward the water table. Today, the Crau aquifer holds the main resource in water in the area (300 000 inhabitants) but changes in the agricultural practices and progressive replacement of the irrigated meadows by urbanized area threaten the sustainability of groundwater. The distributed modeling of irrigated meadows together with the modeling of groundwater has been undertaken for quantifying the contribution of the irrigation to the recharge of the aquifer and to investigate possible evolution of hay production, water drainage, evapotranspiration and water table under scenarios of climate and land-use changes. The model combines a crop model (STICS) that simulates hay production, evapotranspiration and water drainage, a multisimulation tool (MultiSimLib) that allows to run STICS over each agricultural field in the aquifer perimeter, a groundwater model MODFLOW to simulate the water table from recharge data (simulated drainage). Specific models were developed for simulating the spatial distribution of climate, including scenario of changes for the 2025 - 2035 time period, soil properties (influenced by irrigation), and agricultural practices (calendar and amount), in particular irrigation and hay cutting. This step was crucial for correctly simulating hay production level and amount of water used for irrigation. Model results were evaluated thanks to plot experiments and information from farmers (biomass production, downward water flow, quantity of irrigated water, cutting calendar...), a network of piezometers and remote sensing maps of evapotranspiration. Main results included: - the

  13. Contribution of environmental isotopes to the study of large aquifers in Morocco

    International Nuclear Information System (INIS)

    Kabbaj, A.; Zeryouhi, I.; Carlier, P.

    1978-01-01

    The geochemistry of environmental isotopes has been applied to several aquifers in Maroc, some of them quite large: Charf el Akab in the Tanger region, the Oum er Rbia basin and the Tadla aquifer, the free nappe of limnic limes tone in the Sais plane, and the lias limestone aquifer. The isotopic investigations on the basis of hydrogeochemical data have given more precise information on the supply conditions of these aquifers. The types of water of different origin from the Atlas or the phosphate plateau in the Sais plane and the Tadla basin have been distinguished, the supply from one aquifer to another Lias nappe which, via the flexures of the Sais plane, supplies the nappe of limic limestone has been assessed, the homogeneity or heterogeneity of these aquifers has been investigated as well as their impermeability, the Tadla aquifer and the special case of Charf el Akab compared with the marine region. The findings have proved the usefulness of these techniques and permitted a specification of the general conditions for their application. (orig.) [de

  14. Sulphide mineralization and wall-rock alteration in ophiolites and modern oceanic spreading centres

    Science.gov (United States)

    Koski, R.A.

    1983-01-01

    Massive and stockwork Fe-Cu-Zn (Cyprus type) sulphide deposits in the upper parts of ophiolite complexes represent hydrothermal mineralization at ancient accretionary plate boundaries. These deposits are probable metallogenic analogues of the polymetallic sulphide deposits recently discovered along modern oceanic spreading centres. Genetic models for these deposits suggest that mineralization results from large-scale circulation of sea-water through basaltic basement along the tectonically active axis of spreading, a zone of high heat flow. The high geothermal gradient above 1 to 2 km deep magma chambers emplaced below the ridge axis drives the convective circulation cell. Cold oxidizing sea-water penetrating the crust on the ridge flanks becomes heated and evolves into a highly reduced somewhat acidic hydrothermal solvent during interaction with basaltic wall-rock. Depending on the temperature and water/rock ratio, this fluid is capable of leaching and transporting iron, manganese, and base metals; dissolved sea-water sulphate is reduced to sulphide. At the ridge axis, the buoyant hydrothermal fluid rises through permeable wall-rocks, and fluid flow may be focussed along deep-seated fractures related to extensional tectonic processes. Metal sulphides are precipitated along channelways as the ascending fluid undergoes adiabatic expansion and then further cooling during mixing with ambient sub-sea-floor water. Vigorous fluid flow results in venting of reduced fluid at the sea-floor/sea-water interface and deposition of massive sulphide. A comparison of sulphide mineralization and wall-rock alteration in ancient and modern spreading centre environments supports this genetic concept. Massive sulphide deposits in ophiolites generally occur in clusters of closely spaced (stacked sequences of pillow basalt and sheet flows, the sea-floor underlying numerous deposits in Guaymas Basin consists of diatomaceous ooze and terrigenous clastic sediment that is intruded by diabase

  15. Hydrology of aquifer systems in the Memphis area, Tennessee

    Science.gov (United States)

    Criner, James H.; Sun, P-C. P.; Nyman, Dale J.

    1964-01-01

    The Memphis area as described in .this report comprises about 1,300 square miles of the Mississippi embayment part of the Gulf Coastal Plain. The area is underlain by as much as 3,000 feet of sediments ranging in age from Cretaceous through Quaternary. In 1960, 150 mgd (million gallons per day) of water was pumped from the principal aquifers. Municipal pumpage accounted for almost half of this amount, and industrial pumpage a little more than half. About 90 percent of the water used in the area is derived from the '500-foot' sand, and most of the remainder is from the ?400-foot' sand; both sands are of Eocene age. A small amount of water for domestic use is pumped from the terrace deposits of Pliocene and Pleistocene age. Both the '500-foot' and the '1,400-foot' sands are artesian aquifers except in the southeastern part of the area; there the water level in wells in the '500-foot' sand is now below the overlying confining clay. Water levels in both aquifers have declined almost continuously since pumping began, but the rate of decline has increased rapidly since 1940. Water-level decline in the '1,400-foot' sand has been less pronounced since 1956. The cones of depression in both aquifers have expanded and deepened as a result of the annual increases in pumping, and an increase in hydraulic gradients has induced a greater flow of water into the area. Approximately 135 mgd entered the Memphis area through the '500-foot' sand aquifer in 1960, and, of this amount, 60 mgd originated as inflow from the east and about 75 mgd was derived from leakage from the terrace deposits, from the north, south, and west and from other sources. Of the water entering the '1,400-foot' sand, about 5 mgd was inflow from the east, and about half that amount was from each of the north, south, and west directions. The average rate of movement of water outside the area of heavy withdrawals is about 70 feet per year in the '500-foot' sand and about 40 feet per year in the '1,400-foot' sand

  16. Water-level altitudes 2014 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2013 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2014-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained clay and silt layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate 2014 water-level altitudes (represented by measurements made during December 2013–March 2014) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2013–14) water-level changes for each aquifer; maps depicting contoured 5-year (2009–14) water-level changes for each aquifer; maps depicting contoured long-term (1990–2014 and 1977–2014) water-level changes for the Chicot and Evangeline aquifers; a map depicting contoured long-term (2000–14) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2013. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  17. Water-level altitudes 2012 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2011 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2012-01-01

    Most of the subsidence in the Houston–Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers and caused compaction of the clay layers of the aquifer sediments. This report—prepared by the U.S. Geological Survey in cooperation with the Harris– Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District—is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing approximate water-level altitudes for 2012 (calculated from measurements of water levels in wells made during December 2011–February 2012) for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2011–12) water-level-altitude changes for each aquifer; maps showing 5-year (2007–12) water-levelaltitude changes for each aquifer; maps showing long-term (1990–2012 and 1977–2012) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–12) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface sediments at the extensometers from 1973 (or later) through 2011. Tables listing the data that were used to construct each water-level map for each aquifer and the cumulative compaction graphs are included.

  18. Ground Water movement in crystalline rock aquifers

    International Nuclear Information System (INIS)

    Serejo, A.N.C.; Freire, C.; Siqueira, H.B. de; Frischkorn, H.; Torquato, J.R.F.; Santiago, M.M.F.; Barbosa, P.C.

    1984-01-01

    Ground water movement studies were performed in crystalline rock aquifers from the upper Acarau River hydrographic basin, state of Ceara, Brazil. The studies included carbon-14, 18 O/ 16 O and tritium measurements as well as chemical analysis. A total of 35 wells were surveyed during drought seasons. Carbon-14 values displayed little variation which implied that the water use was adequate despite of the slower recharge conditions. Fairly constant isotopic 18 O/ 16 O ratio values in the wells and their similarity with rainwater values indicated that the recharge is done exclusively by pluvial waters. A decreasing tendency within the tritium concentration values were interpreted as a periodic rainwater renewal for these aquifers. The chemical analysis demonstrated that there is in fact no correlation between salinity and the time the water remains in the aquifer itself. (D.J.M.) [pt

  19. Water-level altitudes 2009 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973-2008 in the Chicot and Evangeline Aquifers, Houston-Galveston Region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Houston, Natalie A.; Ramage, Jason K.

    2009-01-01

    This report, done in cooperation with the Harris-Galveston Subsidence District, the City of Houston, the Fort Bend Subsidence District, and the Lone Star Groundwater Conservation District, is one in an annual series of reports that depicts water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers, and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region, Texas. The report (excluding appendixes) contains 16 sheets and 15 tables: 3 sheets are maps showing current-year (2009) water-level altitudes for each aquifer, respectively; 3 sheets are maps showing 1-year (2008-09) water-level changes for each aquifer, respectively; 3 sheets are maps showing 5-year (2004-09) water-level changes for each aquifer, respectively; 4 sheets are maps showing long-term (1990-2009 and 1977-2009) water-level changes for the Chicot and Evangeline aquifers, respectively; 1 sheet is a map showing long-term (2000-2009) water-level change for the Jasper aquifer; 1 sheet is a map showing site locations of borehole extensometers; and 1 sheet comprises graphs showing measured compaction of subsurface material at the sites from 1973 or later through 2008, respectively. Tables listing the data used to construct the aquifer-data maps and the compaction graphs are included.

  20. Karst connections between unconfined aquifers and the Upper Floridan aquifer in south Georgia: geophysical evidence and hydrogeological models

    Science.gov (United States)

    Thieme, D. M.; Denizman, C.

    2011-12-01

    Buried karst features in sedimentary rocks of the south Georgia Coastal Plain present a challenge for hydrogeological models of recharge and confined flow within the underlying Upper Floridan aquifer. The Withlacoochee River, the trunk stream for the area, frequently disappears into subsurface caverns as it makes its way south to join the Suwannee River in northern Florida. The Withlacoochee also receives inputs from small ponds and bays which in turn receive spring and seep groundwater inputs. We have mapped karst topography at the "top of rock" using ground-penetrating radar (GPR). Up to seven meters of relief is indicated for the paleotopography on Miocene to Pliocene rocks, contrasting with the more subdued relief of the modern landscape. Current stratigraphic and hydrogeological reconstructions do not incorporate this amount of relief or lateral variation in the confining beds. One "pipe" which is approximately four meters in diameter is being mapped in detail. We have field evidence at this location for rapid movement of surficial pond and river water with a meteoric signature through several separate strata of sedimentary rock into an aquifer in the Hawthorn formation. We use our geophysical and hydrological field evidence to constrain quantitative hydrogeological models for the flow rates into and out of both this upper aquifer and the underlying Upper Floridan aquifer, which is generally considered to be confined by the clays of the Hawthorn.

  1. Benzene dynamics and biodegradation in alluvial aquifers affected by river fluctuations.

    Science.gov (United States)

    Batlle-Aguilar, J; Morasch, B; Hunkeler, D; Brouyère, S

    2014-01-01

    The spatial distribution and temporal dynamics of a benzene plume in an alluvial aquifer strongly affected by river fluctuations was studied. Benzene concentrations, aquifer geochemistry datasets, past river morphology, and benzene degradation rates estimated in situ using stable carbon isotope enrichment were analyzed in concert with aquifer heterogeneity and river fluctuations. Geochemistry data demonstrated that benzene biodegradation was on-going under sulfate reducing conditions. Long-term monitoring of hydraulic heads and characterization of the alluvial aquifer formed the basis of a detailed modeled image of aquifer heterogeneity. Hydraulic conductivity was found to strongly correlate with benzene degradation, indicating that low hydraulic conductivity areas are capable of sustaining benzene anaerobic biodegradation provided the electron acceptor (SO4 (2-) ) does not become rate limiting. Modeling results demonstrated that the groundwater flux direction is reversed on annual basis when the river level rises up to 2 m, thereby forcing the infiltration of oxygenated surface water into the aquifer. The mobilization state of metal trace elements such as Zn, Cd, and As present in the aquifer predominantly depended on the strong potential gradient within the plume. However, infiltration of oxygenated water was found to trigger a change from strongly reducing to oxic conditions near the river, causing mobilization of previously immobile metal species and vice versa. MNA appears to be an appropriate remediation strategy in this type of dynamic environment provided that aquifer characterization and targeted monitoring of redox conditions are adequate and electron acceptors remain available until concentrations of toxic compounds reduce to acceptable levels. © 2013, National Ground Water Association.

  2. Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces

    Science.gov (United States)

    Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.; Rivière, A.; Weill, P.

    2014-08-01

    Coupled hydrological-hydrogeological models, emphasising the importance of the stream-aquifer interface, are more and more used in hydrological sciences for pluri-disciplinary studies aiming at investigating environmental issues. Based on an extensive literature review, stream-aquifer interfaces are described at five different scales: local [10 cm-~10 m], intermediate [~10 m-~1 km], watershed [10 km2-~1000 km2], regional [10 000 km2-~1 M km2] and continental scales [>10 M km2]. This led us to develop the concept of nested stream-aquifer interfaces, which extends the well-known vision of nested groundwater pathways towards the surface, where the mixing of low frequency processes and high frequency processes coupled with the complexity of geomorphological features and heterogeneities creates hydrological spiralling. This conceptual framework allows the identification of a hierarchical order of the multi-scale control factors of stream-aquifer hydrological exchanges, from the larger scale to the finer scale. The hyporheic corridor, which couples the river to its 3-D hyporheic zone, is then identified as the key component for scaling hydrological processes occurring at the interface. The identification of the hyporheic corridor as the support of the hydrological processes scaling is an important step for the development of regional studies, which is one of the main concerns for water practitioners and resources managers. In a second part, the modelling of the stream-aquifer interface at various scales is investigated with the help of the conductance model. Although the usage of the temperature as a tracer of the flow is a robust method for the assessment of stream-aquifer exchanges at the local scale, there is a crucial need to develop innovative methodologies for assessing stream-aquifer exchanges at the regional scale. After formulating the conductance model at the regional and intermediate scales, we address this challenging issue with the development of an

  3. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    resistance (ρ); dielectric constant (ε); magnetic permeability (η); electrochemical activity ..... comprises grey sands of different particle size distribution ..... groundwater: testing pollution mechanisms for sedimentary aquifers in. Bangladesh.

  4. Regional modelling of the confined aquifers below the Boom clay in NE-Belgium

    International Nuclear Information System (INIS)

    Vandersteen, K.; Gedeon, M.; Marivoet, J.; Wouters, L.

    2012-01-01

    Document available in extended abstract form only. In the framework of the Belgian research program on the long term management of high-level and/or long-lived radioactive waste coordinated by ONDRAF/NIRAS, the Boom Clay is considered as a reference host rock for the geological disposal of high-level radioactive waste in NE-Belgium (Campine area). The hydrogeological program at SCK.CEN supports the long-term performance assessments of the geological disposal of radioactive waste by performing a phenomenological research of the aquifer systems surrounding the studied disposal system. One of the important components of this programme is the regional hydrogeological modelling. The regional hydrogeology is studied using two main models - the steady state Neogene aquifer model (NAM) and the transient deep aquifer pumping model (DAP), developed to characterize and quantify the regional groundwater flow in, respectively, the aquifers lying above the Boom Clay in the Nete catchment area (NAM), and the aquifers lying below the Boom Clay in the Campine area (DAP). This paper describes the most recent update of the DAP model. The DAP model represents the confined part of the groundwater system located stratigraphically below the Boom Clay. This includes the parts of the Oligocene aquifer, the Bartoon aquitard system and the Ledo-Paniselian-Brusselian aquifer buried under the Boom Clay. Due to the considerable pumping from these aquifers in combination with a limited recharge, a gradual decrease in groundwater levels has been observed in more than 30-year piezometric records. In the DAP model, the shallow aquifer system overlying the Boom Clay is replaced by fixed head boundaries: this aquifer system is dominated by close-to-surface hydrological processes and the heads fluctuate seasonally without any apparent long-term trend. In the horizontal direction, the model extends to the south as far as the outcrops of the major aquitards: the Maldegem Formation confining the Ledo

  5. Landfill leachate effects on sorption of organic micropollutants onto aquifer materials

    DEFF Research Database (Denmark)

    Larsen, Thomas; Christensen, Thomas Højlund; Pfeffer, Fred M.

    1992-01-01

    The effect of dissolved organic carbon as present in landfill leachate, on the sorption of organic micropollutants in aquifer materials was studied by laboratory batch and column experiments involving 15 non-polar organic chemicals, 5 landfill leachates and 4 aquifer materials of low organic carbon......, the effect of landfill leachate on retardation of organic micropollutants in aquifer material seems limited....... content. The experiments showed that hydrophobic organic micropollutants do partition into dissolved organic carbon found in landfill leachate potentially increasing their mobility. However, landfill leachate interacted with aquifer materials apparently increases the sorbent affinity for the hydrophobic...

  6. Saturated-unsaturated flow in a compressible leaky-unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.

    2012-06-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  7. Identification of the microbes mediating Fe reduction in a deep saline aquifer and their influence during managed aquifer recharge.

    Science.gov (United States)

    Ko, Myoung-Soo; Cho, Kyungjin; Jeong, Dawoon; Lee, Seunghak

    2016-03-01

    In this study, indigenous microbes enabling Fe reduction under saline groundwater conditions were identified, and their potential contribution to Fe release from aquifer sediments during managed aquifer recharge (MAR) was evaluated. Sediment and groundwater samples were collected from a MAR feasibility test site in Korea, where adjacent river water will be injected into the confined aquifer. The residual groundwater had a high salinity over 26.0 psu, as well as strong reducing conditions (dissolved oxygen, DOaquifer were found to be Citrobacter sp. However, column experiments to simulate field operation scenarios indicated that additional Fe release would be limited during MAR, as the dominant microbial community in the sediment would shift from Citrobacter sp. to Pseudomonas sp. and Limnohabitans sp. as river water injection alters the pore water chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Hydrogeochemical study of water in some aquifers of the Estado de Mexico

    International Nuclear Information System (INIS)

    Pena, P.; Lopez, A.; Balcazar, M.; Flores, J.H.; Cardenas, S.; Schubert, M.

    2005-01-01

    The National Institute of Nuclear Research of Mexico (ININ), has developed a technique that allows to study the association of recharge mechanisms, residence times of the water in the aquifers, as well as the local lithology and the geochemical parameters. The viability of this technique was proven on November 2004 in the aquifers (La Perita, El Tunel y El Pedregal) located in the Asuncion Tepexoyuca, Estado de Mexico. It was observed that so much the aquifer El Tunel like La Perita are used for the human consumption, the aquifer of El Pedregal is used for the fish cultivation. The studies were carried out during March 2003 to November 2004. In the aquifer La Perita the maximum values of the radon concentration (0.76 Bq L -1 ) they were observed in the summertime time (December). In the spring El Tunel the maximum values of the radon concentration (4.08 Bq L -1 ) they were observed in the rainy season (September) this increment can be due to the contributions of the recharge of aquifers that it allows the haulage of the radon of other alternating roads of infiltration of the rain water. Of the physicochemical and radiochemical analyses carried out in the water samples of the studied aquifers, it is deduced that they are waters of good quality since for the human consumption since that they are inside on the maximum permissible limits as for their potability according to national and international standards. Likewise it was observed that the water of the aquifers is a single aquifer, since that its differences they due to the time of permanency of the water inside the aquifer. The classification of the underground water deduced that it is calcic and/or magnesic bi carbonated water belonging to the type of meteoric waters of recent infiltration. (Author)

  9. Three-Dimensional Flow Generated by a Partially Penetrating Well in a Two-Aquifer System

    Science.gov (United States)

    Sepulveda, N.

    2007-12-01

    An analytical solution is presented for three-dimensional (3D) flow in a confined aquifer and the overlying storative semiconfining layer and unconfined aquifer. The equation describing flow caused by a partially penetrating production well is solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Previous solutions for a partially penetrating well did not account for 3D flow or storativity in the semiconfining unit. The 3D and two- dimensional (2D) flow solutions in the semiconfining layer are compared for various hydraulic conductivity ratios between the aquifer and the semiconfining layer. Analysis of the drawdown data from an aquifer test in central Florida showed that the 3D solution in the semiconfining layer provides a more unique identification of the hydraulic parameters than the 2D solution. The analytical solution could be used to analyze, with higher accuracy, the effect that pumping water from the lower aquifer in a two-aquifer system has on wetlands.

  10. Aquifer restoration at uranium in situ leach sites

    International Nuclear Information System (INIS)

    Anastasi, F.S.; Williams, R.E.

    1985-01-01

    In situ mining of uranium involves injection of a leaching solution (lixiviant) into an ore-bearing aquifer. Frequently, the ground water in the mined aquifer is a domestic or livestock water supply. As the lixiviant migrates through the ore body, uranium and various associated elements such as arsenic, selenium, molybdenum, vanadium and radium-226 are mobilized in the ground water. Aquifer restoration after in situ mining is not fully understood. Several methods have been developed to restore mined aquifers to pre-mining (baseline) quality. Commonly used methods include ground water sweeping, clean water injection, and treatment by ion exchange and reverse osmosis technologies. Ammonium carbonate lixiviant was used at one RandD in situ mine. Attempts were made to restore the aquifer using a variety of methods. Efforts were successful in reducing concentrations of the majority of contaminants to baseline levels. Concentrations of certain parameters, however, remained at levels above baseline six months after restoration ceased. Relatively large quantities of ground water were processed in the restoration attempt considering the small size of the project (1.25 acre). More thorough characterization of the hydrogeology of the site may have enhanced the effectiveness of restoration and reduced potential environmental impacts associated with the project. This paper presents some of the findings of a research project conducted by the Mineral Resources Waste Management Team at the University of Idaho in Moscow, Idaho. Views contained herein do not reflect U.S. Nuclear Regulatory Commission policy

  11. Water levels of the Ozark aquifer in northern Arkansas, 2013

    Science.gov (United States)

    Schrader, Tony P.

    2015-07-13

    The Ozark aquifer is the largest aquifer, both in area of outcrop and thickness, and the most important source of freshwater in the Ozark Plateaus physiographic province, supplying water to northern Arkansas, southeastern Kansas, southern Missouri, and northeastern Oklahoma. The study area includes 16 Arkansas counties lying completely or partially within the Ozark Plateaus of the Interior Highlands major physiographic division. The U.S. Geological Survey, in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey, conducted a study of water levels in the Ozark aquifer within Arkansas. This report presents a potentiometric-surface map of the Ozark aquifer within the Ozark Plateaus of northern Arkansas, representing water-level conditions for the early spring of 2013 and selected water-level hydrographs.

  12. ZVI (Fe0) desalination: catalytic partial desalination of saline aquifers

    Science.gov (United States)

    Antia, David D. J.

    2018-05-01

    Globally, salinization affects between 100 and 1000 billion m3 a-1 of irrigation water. The discovery that zero valent iron (ZVI, Fe0) could be used to desalinate water (using intra-particle catalysis in a diffusion environment) raises the possibility that large-scale in situ desalination of aquifers could be undertaken to support agriculture. ZVI desalination removes NaCl by an adsorption-desorption process in a multi-stage cross-coupled catalytic process. This study considers the potential application of two ZVI desalination catalyst types for in situ aquifer desalination. The feasibility of using ZVI catalysts when placed in situ within an aquifer to produce 100 m3 d-1 of partially desalinated water from a saline aquifer is considered.

  13. Conceptual and numerical modeling approach of the Guarani Aquifer System

    Directory of Open Access Journals (Sweden)

    L. Rodríguez

    2013-01-01

    Full Text Available In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s−1 while the observed absolute minimum discharge was 382 m3 s−1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through

  14. Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, coastal Georgia, 2009-2010

    Science.gov (United States)

    Gonthier, Gerald J.

    2011-01-01

    Two test wells were completed at Fort Stewart, coastal Georgia, to investigate the potential for using the Lower Floridan aquifer as a source of water to satisfy anticipated, increased water needs. The U.S. Geological Survey, in cooperation with the U.S. Department of the Army, completed hydrologic testing of the Floridan aquifer system at the study site, including flowmeter surveys, slug tests, and 24- and 72-hour aquifer tests by mid-March 2010. Analytical approaches and model simulation were applied to aquifer-test results to provide estimates of transmissivity and hydraulic conductivity of the multilayered Floridan aquifer system. Data from a 24-hour aquifer test of the Upper Floridan aquifer were evaluated by using the straight-line Cooper-Jacob analytical method. Data from a 72-hour aquifer test of the Lower Floridan aquifer were simulated by using axisymmetric model simulations. Results of aquifer testing indicated that the Upper Floridan aquifer has a transmissivity of 100,000 feet-squared per day, and the Lower Floridan aquifer has a transmissivity of 7,000 feet-squared per day. A specific storage for the Floridan aquifer system as a result of model calibration was 3E-06 ft–1. Additionally, during a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.

  15. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise

    Science.gov (United States)

    Morrissey, Sheila K.; Clark, Jordan F.; Bennett, Michael; Richardson, Emily; Stute, Martin

    2010-10-01

    Sea-level fluctuations, particularly those associated with glacial-interglacial cycles, can have profound impacts on the flow and circulation of coastal groundwater: the water found at present in many coastal aquifers may have been recharged during the last glacial period, when sea level was over 100m lower than present, and thus is not in equilibrium with present recharge conditions. Here we show that the geochemistry of the groundwater found in the Floridan Aquifer System in south Florida is best explained by a reorganization of groundwater flow following the sea-level rise at the end of the Last Glacial Maximum approximately 18,000 years ago. We find that the geochemistry of the fresh water found in the upper aquifers at present is consistent with recharge from meteoric water during the last glacial period. The lower aquifer, however, consists of post-sea-level-rise salt water that is most similar to that of the Straits of Florida, though with some dilution from the residual fresh water from the last glacial period circulation. We therefore suggest that during the last glacial period, the entire Floridan Aquifer System was recharged with meteoric waters. After sea level rose, the increased hydraulic head reduced the velocity of the groundwater flow. This velocity reduction trapped the fresh water in the upper aquifers and initiated saltwater circulation in the lower aquifer.

  16. Water-level altitudes 2015 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2014 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Houston, Natalie A.; Johnson, Michaela R.; Schmidt, Tiffany S.

    2015-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2015 water-level altitudes (represented by measurements made during December 2014–March 2015) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2014–15) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2010–15) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2015 and 1977–2015) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–15) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2014. Three tables listing the water-level data used to construct each water-level map for each aquifer and a table listing the measured cumulative compaction data for each extensometer site and graphs are included.

  17. Semi-analytical solutions for flow to a well in an unconfined-fractured aquifer system

    Science.gov (United States)

    Sedghi, Mohammad M.; Samani, Nozar

    2015-09-01

    Semi-analytical solutions of flow to a well in an unconfined single porosity aquifer underlain by a fractured double porosity aquifer, both of infinite radial extent, are obtained. The upper aquifer is pumped at a constant rate from a pumping well of infinitesimal radius. The solutions are obtained via Laplace and Hankel transforms and are then numerically inverted to time domain solutions using the de Hoog et al. algorithm and Gaussian quadrature. The results are presented in the form of dimensionless type curves. The solution takes into account the effects of pumping well partial penetration, water table with instantaneous drainage, leakage with storage in the lower aquifer into the upper aquifer, and storativity and hydraulic conductivity of both fractures and matrix blocks. Both spheres and slab-shaped matrix blocks are considered. The effects of the underlying fractured aquifer hydraulic parameters on the dimensionless drawdown produced by the pumping well in the overlying unconfined aquifer are examined. The presented solution can be used to estimate hydraulic parameters of the unconfined and the underlying fractured aquifer by type curve matching techniques or with automated optimization algorithms. Errors arising from ignoring the underlying fractured aquifer in the drawdown distribution in the unconfined aquifer are also investigated.

  18. Perched aquifers - their potential impact on contaminant transport in the southern High Plains, Texas

    International Nuclear Information System (INIS)

    Mullican, W.F. III; Fryar, A.E.; Johns, N.D.

    1993-01-01

    Understanding the hydrogeology and hydrochemistry of perched aquifers at potential and known contaminated waste sites has become increasingly important because of the impact these aquifers may have on contaminant transport independent of regional aquifer processes. Investigations of a perched aquifer above the Ogallala aquifer are being conducted in the region of the U.S. Department of Energy's Pantex Plant, a proposed Superfund site, located approximately 20 mi northeast of Amarillo, Texas. Since the early 1950s, a small playa basin located on the Pantex Plant has been used as a waste-water discharge pond with daily discharge rates ranging from 400,000 to 1 million gal. The focus of this investigation is an unconfined, perched aquifer that overlies a thick silty clay sequence within the upper, mostly unsaturated part of the Ogallala Formation (Neogene). In the area of the Pantex Plant, measured depths to the perched aquifer range from 200 to 300 ft below land surface, whereas depth to the regional Ogallala aquifer ranges from 375 to 500 ft. The potentiometric surface of the perched aquifer typically represents groundwater mounds proximal to the playas and thins into trough in the interplaya areas. Hydrologic gradients of the primary mound under investigation are relatively high, ranging from 28 to 45 ft/mi. Calculated transmissivities have a geometric mean of 54 ft 2 /day, with saturated thicknesses ranging from 4 to 1000 ft. Modeling of the perched aquifer was designed to determine how much, if any, discharge to the small playa basin has enhanced recharge to the perched aquifers and increased the vertical and lateral extent of the perched aquifer. Preliminary results indicate that measurements of vertical conductance through the perching silty-clay sequence and recharge rates through playas are critical for calibrating the model. Accurate delineation of rates and flow directions in the perched aquifer is critical to any successful remediation effort

  19. Assessing aquifer storage and recovery feasibility in the Gulf Coastal Plains of Texas

    Directory of Open Access Journals (Sweden)

    W. Benjamin Smith

    2017-12-01

    Full Text Available Study region: The Gulf Coast and Carrizo-Wilcox aquifer systems in the Gulf Coastal Plains of Texas. Study focus: Aquifer storage and recovery is a water storage alternative that is underutilized in Texas, a state with both long periods of drought and high intensity storms. Future water storage plans in Texas almost exclusively rely on surface reservoirs, subject to high evaporative losses. This study seeks to identify sites where aquifer storage and recovery (ASR may be successful, especially in recovery of injected waters, by analyzing publicly-available hydrogeologic data. Transmissivity, hydraulic gradient, well density, depth to aquifer, and depth to groundwater are used in a GIS-based index to determine feasibility of implementing an ASR system in the Gulf Coast and Carrizo-Wilcox aquifer systems. New hydrological insights for the region: Large regions of the central and northern Gulf Coast and the central and southern Carrizo-Wilcox aquifer systems are expected to be hydrologically feasible regions for ASR. Corpus Christi, Victoria, San Antonio, Bryan, and College Station are identified as possible cities where ASR would be a useful water storage strategy. Keywords: Aquifer storage and recovery (ASR, GIS, Gulf coast, Carrizo-Wilcox, Managed aquifer recharge (MAR

  20. Fate of N-nitrosomorpholine in an anaerobic aquifer used for managed aquifer recharge: a column study.

    Science.gov (United States)

    Pitoi, M M; Patterson, B M; Furness, A J; Bastow, T P; McKinley, A J

    2011-04-01

    The fate of N-nitrosomorpholine (NMOR) was evaluated at microgram and nanogram per litre concentrations. Experiments were undertaken to simulate the passage of groundwater contaminants through a deep anaerobic pyritic aquifer system, as part of a managed aquifer recharge (MAR) strategy. Sorption studies demonstrated the high mobility of NMOR in the Leederville aquifer system, with retardation coefficients between 1.2 and 1.6. Degradation studies from a 351 day column experiment and a 506 day stop-flow column experiment showed an anaerobic biologically induced reductive degradation process which followed first order kinetics. A biological lag-time of less than 3 months and a transient accumulation of morpholine (MOR) were also noted during the degradation. Comparable half-life degradation rates of 40-45 days were observed over three orders of magnitude in concentration (200 ng L(-1) to 650 μg L(-1)). An inhibitory effect on microorganism responsible to the biodegradation of NMOR at 650 μg L(-1) or a threshold effect at 200 ng L(-1) was not observed during these experiments. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  1. Hydrologic and isotopic study of the Quito aquifer

    International Nuclear Information System (INIS)

    Villalba, Fabio; Benalcazar, Julio; Garcia, Marco; Altamirano, Cesar; Altamirano, Homero; Sarasti, Santiago; Mancero, Maria; Leiva, Eduardo; Pino, Jose; Alulema, Rafael; Cedeno, Alberto; Burbano, Napoleon; Paquel, Efren; Becerra, Simon; Andrade, Graciela

    2000-10-01

    The dynamics of the Quito basin and surrounding area aquifers were determined through the use of stable and radioactive isotopes, and the monitoring of the freatic levels and of the bacteriological and physico-chemical quality of the water. A conceptual hydrodynamic model of the Quito aquifer was also proposed in order to establish in the future a sustainable management system

  2. Hydrogeology and water-quality characteristics of the Lower Floridan aquifer in east-central Florida

    Science.gov (United States)

    O'Reilly, Andrew M.; Spechler, Rick M.; McGurk, Brian E.

    2002-01-01

    The hydrogeology and water-quality characteristics of the Lower Floridan aquifer and the relation of the Lower Floridan aquifer to the framework of the Floridan aquifer system were evaluated during a 6-year (1995-2001) study. The study area, a 7,500 square-mile area of east-central Florida, is underlain by three principal hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. The Floridan aquifer system, a carbonate-rock aquifer system composed of the Upper Floridan aquifer, a middle semiconfining unit, a middle confining unit, and the Lower Floridan aquifer, is the major source of water supply to east-central Florida. The Upper Floridan aquifer provides much of the water required to meet the current (2002) demand; however, the Lower Floridan aquifer is being used increasingly as a source of freshwater, particularly for municipal needs. For this reason, a better understanding of the aquifer is needed. The Lower Floridan aquifer is present throughout east-central Florida. The aquifer is composed of alternating beds of limestone and dolomite, and is characterized by abundant fractured dolomite zones and solution cavities. The altitude of the top of the Lower Floridan aquifer ranges from less than 600 feet below sea level in the northern part of the study area to more than 1,600 feet below sea level in the southwestern part. Thickness of the unit ranges from about 910 to 1,180 feet. The top of the Lower Floridan aquifer generally is marked by an increase in formation resistivity and by an increase in the occurrence of fractures and solution cavities within the carbonates. Also, a noticeable increase in borehole flow often marks the top of the unit. The bottom of the Lower Floridan aquifer is based on the first occurrence of evaporites. Ground-water in the Lower Floridan aquifer generally moves in a southwest-to-northeast direction across the study area. In September 1998, the altitude of the potentiometric

  3. Groundwater Dynamics in Fossil Fractured Carbonate Aquifers in Eastern Arabian Peninsula

    Science.gov (United States)

    Farag, A. Z. A.; Heggy, E.; Helal, M.; Thirunavukkarasu, D.; Scabbia, G.; Palmer, E. M.

    2017-12-01

    The Eastern Arabian Peninsula, notably the Qatar Peninsula, represents one of the highest natural groundwater discharge areas for the Arabian platform fossil aquifer system. Groundwater flow dynamics in these aquifers trace the paleoclimatic conditions that have prevailed the Arabian Peninsula during the Quaternary. In such settings, connections between aquifers strongly affect the flow dynamics, water quality and availability as well as karst formation and landscape evolution. Geological structures such as folds, faults and fractures are central to aquifer connectivity, yet their role on groundwater flow is poorly understood. Herein, we performed a detailed mapping of exposed and buried structural features in Qatar using Landsat, Sentinel and ALOS-PalSAR scenes, correlated with field and laboratory measurements to understand their role in aquifer connectivity and groundwater dynamics. Our results suggest that E-W oriented fold-related faults act as vertical conduits along which artesian upward leakages from the deep aquifers (e.g. Aruma and Umm er Radhuma) take place into the shallower aquifers (e.g. Rus and Dammam). Evidence includes: (1) the high potentiometric surfaces of deep aquifers (6 to 25 m amsl) compare to the shallower aquifers (2-3 m amsl for the same region); (2) anomalous elevation of groundwater levels and steeper hydraulic gradients in densely faulted regions; (3) mixed isotopic composition in shallow aquifers (δ18O: -5 to -2 ‰, δ2H: -40 to -10 ‰) between reported deep fossil waters (δ18O: -6.3 ‰, δ2H: -55 ‰) and modern meteoric waters (weighted average: δ18O: -0.6 ‰, δ2H: 4 ‰); (4) abundant meso-crystalline fibrous gypsum veins along fault zones in the Dammam Formation (up to 28 m amsl) in southern Qatar where the anhydritic member of the Rus Formation predominates the subsurface leading to gypsum oversaturation of groundwater. The similarity of crystal morphology (platy crystals under SEM), mineralogical compositions from XRD

  4. Confined aquifer vulnerability induced by a pumping well in a leakage area

    Directory of Open Access Journals (Sweden)

    X. Meng

    2015-05-01

    Full Text Available Due to the pollution of shallow groundwater and the rapid development of society and economy which consume more freshwater, the exploitation of confined groundwater is steadily increasing in north China. Therefore, the rapid decline of the confined groundwater head increases the risk of confined aquifer pollution by leaky recharge from shallow aquifers. In this paper, a quantitative method for assessing confined aquifer vulnerability to contamination due to pumping has been developed. This method is based on the shallow and confined groundwater flow model and the advection and dispersion in the aquitard, including sorption. The cumulative time for the pollutant concentration at the top boundary of confined aquifer exceeding the maximum allowable level is defined as the confined aquifer vulnerability index, which can be obtained by numerically solving the solute transport equation. A hypothetical example is chosen as a case study to illustrate the whole process. The results indicate that the proposed method is a practical and reasonable assessment method of confined aquifer vulnerability.

  5. Unconfined aquifer response to infiltration basins and shallow pump tests

    Science.gov (United States)

    Ostendorf, David W.; DeGroot, Don J.; Hinlein, Erich S.

    2007-05-01

    SummaryWe measure and model the unsteady, axisymmetric response of an unconfined aquifer to delayed, arbitrary recharge. Water table drainage follows the initial elastic aquifer response, as modeled for uniform, instantaneous recharge by Zlotnik and Ledder [Zlotnik, V., Ledder, G., 1992. Groundwater flow in a compressible unconfined aquifer with uniform circular recharge. Water Resources Research 28(6), 1619-1630] and delayed drainage by Moench [Moench, A.F., 1995. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer. Ground Water 33(3), 378-384]. We extend their analyses with a convolution integral that models the delayed response of an aquifer to infiltration from a circular infiltration basin. The basin routes the hydrograph to the water table with a decay constant dependent on a Brooks and Corey [Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division ASCE 92(2), 61-88] unsaturated permeability exponent. The resulting closed form model approaches Neuman's [Neuman, S.P., 1972. Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Research 8(4), 1031-1045] partially penetrating pump test equation for a small source radius, instantaneous, uniform drainage and a shallow screen section. Irrigation pump data at a well characterized part of the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate the small source model, while infiltration data from the closed drainage system of State Route 25 calibrate the infiltration basin model. The calibrated permeability, elasticity, specific yield, and permeability exponent are plausible and consistent for the pump and infiltration data sets.

  6. Integrated and sustainable management of the shared aquifer systems in the Sahel region

    International Nuclear Information System (INIS)

    Edwerd, Mickel

    2012-01-01

    It highlights the project Justification, the long term objective, the specific objectives and the project implementation strategy. The countries which participate to this project are the following: Algeria, Benin, Burkina Faso, Cameroon, central African Republic, Chad, Gambia, Guinea-Bissau, Mali, Mauritania, Niger, Nigeria and Senegal. Regarding Aquifer System we have: Chad Basin, Liptako-Gourma Aquifer, Iullemeden Aquifer, Senegalo-Mauritanian Aquifer and Taoudeni/Tanezrouft Basin.

  7. ALOPEX stochastic optimization for pumping management in fresh water coastal aquifers

    International Nuclear Information System (INIS)

    Stratis, P N; Saridakis, Y G; Zakynthinaki, M S; Papadopoulou, E P

    2014-01-01

    Saltwater intrusion in freshwater aquifers is a problem of increasing significance in areas nearby the coastline. Apart from natural disastrous phenomena, such as earthquakes or floods, intense pumping human activities over the aquifer areas may change the chemical composition of the freshwater aquifer. Working towards the direction of real time management of freshwater pumping from coastal aquifers, we have considered the deployment of the stochastic optimization Algorithm of Pattern Extraction (ALOPEX), coupled with several penalty strategies that produce convenient management policies. The present study, which further extents recently derived results, considers the analytical solution of a classical model for underground flow and the ALOPEX stochastic optimization technique to produce an efficient approach for pumping management over coastal aquifers. Numerical experimentation also includes a case study at Vathi area on the Greek island of Kalymnos, to compare with known results in the literature as well as to demonstrate different management strategies

  8. Natural and EDTA-complexed lanthanides used as a geochemical probe for aquifers: a case study of Orleans valley's alluvial and karstic aquifers

    International Nuclear Information System (INIS)

    Le Borgne, F.; Treuil, M.; Joron, J.L.; Lepiller, M.

    2005-01-01

    The transit of chemical elements within the different parts of Orleans valley's aquifer is studied by two complementary methods. Those methods rely on the fractionation of lanthanides (Ln) during their migration in natural waters. The first method consists in studying natural lanthanides patterns within the watershed, at its entries and exits. second one lies on multi-tracer experiments with Ln-EDTA complexes. This work is completed through an observation network consisting of 52 piezometers set on a sand and gravel quarry, and the natural entries and exits of the aquifer. Orleans valley's aquifer, which is made of an alluvial watershed lying on a karstic aquifer, is mainly fed by Loire river via a large karstic network. At the entries of the aquifer (Loire river at Jargeau), the Ln concentrations in the dissolved fraction ( heavy Ln. On the other hand, the filtration of alluvial groundwater with high colloids content induces no significant Ln fractionation when the solution contains no strong chelating agent. Hence, the transit of natural and artificial Ln in Orleans valley aquifer can be explained by two complementary processes. (I) Decanting/filtering or, on the opposite, stirring of colloids. Those processes induce no important Ln fractionation. (2) Exchanges of Ln between solute complexes, colloids and sediments due to the presence of strong chelating agents. Those exchanges fractionate the Ln in the order of their stability constants. Considering the natural Ln fractionation that occurs in the Loire river and in the studied aquifer, the carbonates, the stability constants of which follow the order light Ln < heavy Ln, are the best candidates as natural strong chelating agents. From the hydrodynamic point of view, both tracer experiments and natural Ln concentrations show that the transfer of elements within the alluvial watershed is pulsed by the Loire river movements. During an ascent phase, the elements migrate away from and perpendicularly to the karstic

  9. Environmental isotopic study of the Korama aquifers, south of Zinder (Niger)

    International Nuclear Information System (INIS)

    Zakara, Z.; Karbo, A.; Aranyossy, J.F.

    1993-01-01

    A first environmental isotope study has been carried out on the ''Korama'' aquifers located in the southern part of the city of Zinder (Niger). Preliminary interpretation confirms that most of the aquifers are presently recharged by direct infiltration of rainwater. Structural fractures seem to play an important role in the water circulation allowing vertical drainage of oldest water coming from deeper aquifers and facilitating the recharge by surface water in the prheatic zone. It does not appear any difference between the so-called ''superficial Korama'' and the ''Deep Korama'' aquifers on the basis of the isotopic compositions. (author). 11 refs, 7 figs, 2 tabs

  10. Mapping Greenland's Firn Aquifer using L-band Microwave Radiometry

    Science.gov (United States)

    Miller, J.; Bringer, A.; Jezek, K. C.; Johnson, J. T.; Scambos, T. A.; Long, D. G.

    2016-12-01

    Greenland's recently discovered firn aquifer is one of the most interesting, yet still mysterious, components of the ice sheet system. Many open questions remain regarding timescales of refreezing and/or englacial drainage of liquid meltwater, and the connections of firn aquifers to the subglacial hydrological system. If liquid meltwater production at the surface of the Greenland ice sheet continues to increase, subsequent increases in the volume of mobile liquid meltwater retained within Greenland's firn aquifer may increase the possibility of crevasse-deepening via hydrofracture. Hydrofracture is an important component of supraglacial lake drainage leading to at least temporary accelerated flow velocities and ice sheet mass balance changes. Firn aquifers may also support hydrofracture-induced drainage and thus are potentially capable of significantly influencing ice sheet mass balance and sea level rise. Spaceborne L-band microwave radiometers provide an innovative tool for ice-sheet wide mapping of the spatiotemporal variability of Greenland's firn aquifer. Both refreezing and englacial drainage may be observable given the sensitivity of the microwave response to the upper surface of liquid meltwater retained within snow and firn pore space as well as the ability of L band instruments to probe the ice sheet from the surface to the firn-ice transition at pore close-off depth. Here we combine L-band (1.4 GHz) brightness temperature observations from multiple sources to demonstrate the potential of mapping firn aquifers on ice sheets using L-band microwave radiometry. Data sources include the interferometric MIRAS instrument aboard ESA's Soil Moisture and Ocean Salinity (SMOS) satellite mission and the radiometer aboard NASA's Soil Moisture Active Passive (SMAP) satellite mission. We will also present mulit-frequency L-band brightness temperature data (0.5-2 GHz) that will be collected over several firn aquifer areas on the Greenland ice sheet by the Ohio State

  11. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.

    Science.gov (United States)

    Mirecki, June E; Bennett, Michael W; López-Baláez, Marie C

    2013-01-01

    Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water-quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub-oxic to sulfate-reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe(2+) /H2 S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co-precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub-oxic conditions of the recharge phase, but iron sulfide (which co-precipitates arsenic) is stable during the sulfate-reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate-reducing aquifer. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  12. A method to investigate inter-aquifer leakage using hydraulics and multiple environmental tracers

    Science.gov (United States)

    Priestley, Stacey; Love, Andrew; Wohling, Daniel; Post, Vincent; Shand, Paul; Kipfer, Rolf; Tyroller, Lina

    2016-04-01

    Informed aquifer management decisions regarding sustainable yields or potential exploitation require an understanding of the groundwater system (Alley et al. 2002, Cherry and Parker 2004). Recently, the increase in coal seam gas (CSG) or shale gas production has highlighted the need for a better understanding of inter-aquifer leakage and contaminant migration. In most groundwater systems, the quantity or location of inter-aquifer leakage is unknown. Not taking into account leakage rates in the analysis of large scale flow systems can also lead to significant errors in the estimates of groundwater flow rates in aquifers (Love et al. 1993, Toth 2009). There is an urgent need for robust methods to investigate inter-aquifer leakage at a regional scale. This study builds on previous groundwater flow and inter-aquifer leakage studies to provide a methodology to investigate inter-aquifer leakage in a regional sedimentary basin using hydraulics and a multi-tracer approach. The methodology incorporates geological, hydrogeological and hydrochemical information in the basin to determine the likelihood and location of inter-aquifer leakage. Of particular benefit is the analysis of hydraulic heads and environmental tracers at nested piezometers, or where these are unavailable bore couplets comprising bores above and below the aquitard of interest within a localised geographical area. The proposed methodology has been successful in investigating inter-aquifer leakage in the Arckaringa Basin, South Australia. The suite of environmental tracers and isotopes used to analyse inter-aquifer leakage included the stable isotopes of water, radiocarbon, chloride-36, 87Sr/86Sr and helium isotopes. There is evidence for inter-aquifer leakage in the centre of the basin ~40 km along the regional flow path. This inter-aquifer leakage has been identified by a slight draw-down in the upper aquifer during pumping in the lower aquifer, overlap in Sr isotopes, δ2H, δ18O and chloride

  13. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    Science.gov (United States)

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  14. Estimating Poromechanical and Hydraulic Properties of Fractured Media Aquifers Using a Model of the Aquifer at Ploemeur France: Broad Applications and Future Uses

    Science.gov (United States)

    Wilson, M. W.; Burbey, T. J.

    2017-12-01

    Aquifers in fractured crystalline bedrock are located over half of the earth's surface and are vital civil and economic resources particularly in places where ample, safe surface water is not available. With fractured media aquifers providing large percentages of water for municipal, industrial, and agricultural use in many regions of the world. Distinguishing sustainable quantities of extraction is of paramount importance to the continuing viability of these important resources and the communities they serve. The fractured and faulted crystalline-rock aquifer system supporting the community of Ploemeur France has been providing one million cubic meters of water annually, resulting in a modest long-term drawdown of about 15m. To understand the sources and mechanisms of recharge that support this aquifer system, a three-dimensional ABAQUS model was developed using known geologic, water-level and geodetic (tiltmeters and GPS) data to simulate the natural aquifer system that is dominated by a permeable sub-vertical fault and an intersecting semi-horizontal contact zone. The model is used to constrain the poromechanical properties of the fault and contact zones relative to the host crystalline rocks and overlying saprolite by taking advantage of the tilt and seasonal GPS responses caused by municipal pumping along with water-level data for the area. A chief goal in this modeling effort is to assess the sources of recharge to this aquifer system that is atypically productive for a crystalline-rock setting. Preliminary results suggest that the source of water supplying this community is a combination of rapid localized recharge through the saprolite and fault zone and recharge along the contact zone, both from the north (older water) and where it is exposed to the south (younger water). The modeling effort also shows the importance of combining GPS and surface tiltmeter data with water-level measurements for constraining the properties of this complex aquifer system and

  15. The Behaviour of Fe Stable Isotopes Accompanying Fluid Migration in Subducted Serpentinite from the Zermatt-Saas Ophiolite of the Swiss Alps

    Science.gov (United States)

    Inglis, E.; Bouilhol, P.; Burton, K. W.; Debret, B.; Millet, M. A.; Williams, H. M.

    2016-12-01

    During subduction the destabilisation of hydrous serpentine group phases can generate significant fluid fluxes between the subducting slab and the overlying mantle wedge. Despite our knowledge of this, the exact process and nature of the fluids released during serpentinite devolatilisation remain poorly understood. This study presents new field observations alongside petrographic and geochemical data for metamorphic veins and host serpentinite from the Zermatt-Saas ophiolite from the Swiss Alps, which underwent high-pressure metamorphism during the Alpine orogeny. Samples were collected from the serpentinised ultramafic section of the Zermatt-Saas ophiolite, which is mainly comprised of variably foliated and sheared antigorite serpentine. High-pressure metamorphic veins hosted within the antigorite serpentinite, are observed within the least deformed part of the massif, occurring as cm scale laterally continuous channels or mm scale interconnected anastomosing networks. Preliminary high-precision Fe isotope data for the host antigorite serpentine yield a mean δ56Fe value of -0.09‰ ± 0.04‰ (n=3), notably lighter than previously measured Alpine and abyssal serpentinites (Debret et al., 2016). In contrast, samples of cm scale olivine-bearing veins display a mean δ56Fe value of 0.07 ± 0.05‰ (n=3), resolvably heavier than that of the host serpentinite. These preliminary results suggest preferential mobility of isotopically heavy Fe within the vein forming fluids, but at this stage it is unclear if this fluid is related to local devolatilisation of the host serpentinite or input from an external source. Debret et al., 2016. Isotopic evidence for iron mobility during subduction. Geology, v. 44, no. 3, pp. 215 -218.

  16. Variation of uranium isotopes in some carbonate aquifers

    International Nuclear Information System (INIS)

    Cowart, J.B.

    1980-01-01

    The 234 U/ 238 U alpha activity ratio (AR) and uranium concentrations are reported for 83 springs that issue from carbonate aquifers in Florida, Texas, Nevada-California, and Israel. Data for each aquifer fall within more or less mutually exclusive fields. In general, the spring in a humid climate have AR's approaching secular equilibrium, whereas those in more arid climates have AR's differing greatly from equilibrium

  17. Microbiological and environmental effects of aquifer thermal energy storage - studies at the Stuttgart man-made aquifer and a large-scale model system

    International Nuclear Information System (INIS)

    Adinolfi, M.; Ruck, W.

    1993-01-01

    The storage of thermal energy, either heat or cold, in natural or artificial aquifers creates local perturbations of the indigenous microflora and the environmental properties. Within an international working group of the International Energy Agency (IEA Annex VI) possible environmental impacts of ATES-systems were recognized and investigated. Investigations of storage systems on natural sites, man-made aquifers and large-scale models of impounded aquifers showed changes in microbial populations, but until now no adverse microbiological processes associated with ATES-systems could be documented. However, examinations with a model system indicate an increased risk of environmental impact. Therefore, the operation of ATES-systems should be accompanied by chemical and biological investigations. (orig.) [de

  18. Estimation of Hydraulic Parameters and Aquifer Properties for a Managed Aquifer Recharge Pilot Study in The Lower Mississippi River Basin

    Science.gov (United States)

    Ozeren, Y.; Rigby, J.; Holt, R. M.

    2017-12-01

    Mississippi River Valley Alluvial Aquifer (MRVAA) is the major irrigation water resource in the in the lower Mississippi River basin. MRVAA has been significantly depleted in the last two decades due to excessive pumping. A wide range of measures to ensure sustainable groundwater supply in the region is currently under investigation. One of the possible solution under consideration is to use Managed Aquifer Recharge (MAR) by artificial recharge. The proposed artificial recharge technique in this study is to collect water through bank filtration, transfer water via pipeline to the critically low groundwater areas by a set of injection wells. A pilot study in the area is underway to investigate the possibility of artificial recharge in the area. As part of this study, a pumping test was carried out on an existing irrigation well along banks of Tallahatchie River near Money, MS. Geophysical surveys were also carried out in the pilot study area. Hydraulic response of the observation wells was used to determine stream bed conductance and aquifer parameters. The collected hydraulic parameters and aquifer properties will provide inputs for small-scale, high-resolution engineering model for abstraction-injection hydraulics along river. Here, preliminary results of the pilot study is presented.

  19. Aquifer thermal energy storage - A feasibility study for large scale demonstration

    Science.gov (United States)

    Skinner, W. V.; Supkow, D. J.

    Engineering procedures necessary for aquifer thermal energy storage (ATES), based on studies of the Magothy Aquifer on Long Island, NY, are presented, with chilled winter water pumped into the aquifer and reclaimed in summer months for air conditioning. The choice of aquifer involves necessary volume, flow rate, efficiency of thermal recovery, and avoidance of conflict with other users; utilization depends on choice of appropriate piping, heat exchangers, and well construction to prevent degradation of the aquifer. The methods employed to probe the Magothy for suitability are described, including drilling an asymmetric well cluster for observation, and 48 hr pumping and 8 hr recovery. Transmissivity was found to vary from 8,000 to 29,000 sq ft/day. A doublet well was then drilled and water withdrawn, chilled, and returned. Later withdrawal indicated a 46% thermal recovery, with computer models projecting 80% with additional cycling. The study verified the feasibility of ATES, which can be expanded with additional demand.

  20. Hydraulic properties of the Midville Aquifer at the Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    Hodges, R.A.; Snipes, D.S.; Benson, S.M.; Daggett, J.S.; Temples, T.; Harrelson, L.

    1994-01-01

    Aquifer performance tests of the Midville Aquifer System were conducted at the Savannah River Site (SRS) in South Carolina. The stratigraphic section of interest consists of Late Cretaceous Coastal Plain sediments. Within the study area, the Midville Aquifer System is composed of sand aquifers separated by discontinuous clay lenses. The Midville is underlain by the Appleton Confining Unit which is separated from underlying Triassic sediments and Paleozoic crystallines by a regional unconformity. This unconformable surface has a dip of 10 m/km to the southeast. The Midville is overlain by the Allendale Confining Unit which separates the Midville from the Dublin Aquifer System. The tests were performed at B and P Areas within the SRS using production wells screened in the Midville Aquifer and monitor well clusters screened in the Midville, Dublin, and Gordon (Eocene) Aquifers. The B Area is located 13 km updip from P Area. The Midville is about 50 meters thick at B Area and 80 meters thick at P Area. The transmissivity of the Midville is 0.0095 m 2 /s at B Area and 0.017 m 2 /s at P Area. The storativity at both areas is about 10 -4 . Vertical leakance of the Midville is greater updip as the stratigraphic section thins. During the B Area test, pumping induced water level changes were detected in aquifers above the Midville. At P Area, no pumping induced water level changes were detected above the Midville Aquifer System

  1. Water-level altitudes 2011 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2010 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Ramage, Jason K.; Kasmarek, Mark C.

    2011-01-01

    Most of the subsidence in the Houston–Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris–Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing 2011 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2010–11) water-level-altitude changes for each aquifer; maps showing 5-year (2006–11) water-level-altitude changes for each aquifer; maps showing long-term (1990–2011 and 1977–2011) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–11) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2010. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included.Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2010–February 2011. In 2011, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 40-foot decline to a 33-foot rise (2010–11), from a 10-foot

  2. Water-level altitudes 2010 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2009 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2010-01-01

    Most of the subsidence in the Houston-Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps showing 2010 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers, respectively; maps showing 1-year (2009-10) water-level-altitude changes for each aquifer; maps showing 5-year (2005-10) water-level-altitude changes for each aquifer; maps showing long-term (1990-2010 and 1977-2010) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000-10) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2009. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included. Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2009-March 2010. In 2010, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below National Geodetic Vertical Datum of 1929 or North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 49-foot decline to a 67

  3. Paleomagnetism of Jurassic radiolarian chert above the Coast Range ophiolite at Stanley Mountain, California, and implications for its paleogeographic origins

    Science.gov (United States)

    Hagstrum, J.T.; Murchey, B.L.

    1996-01-01

    Upper Jurassic red tuffaceous chert above the Coast Range ophiolite at Stanley Mountain, California (lat 35??N, long 240??E), contains three components of remanent magnetization. The first component (A; removed by ???100-???200 ??C) has a direction near the present-day field for southern California and is probably a recently acquired thermoviscous magnetization. A second component (B; removed between ???100 and ???600 ??C) is identical to that observed by previous workers in samples of underlying pillow basalt and overlying terrigenous sedimentary rocks. This component has constant normal polarity and direction throughout the entire section, although these rocks were deposited during a mixed polarity interval of the geomagnetic field. The B magnetization, therefore, is inferred to be a secondary magnetization acquired during accretion, uplift, or Miocene volcanism prior to regional clockwise rotation. The highest temperature component (C; removed between ???480 and 680 ??C) is of dual polarity and is tentatively interpreted as a primary magnetization, although it fails a reversal test possibly due to contamination by B. Separation of the B and C components is best shown by samples with negative-inclination C directions, and a corrected mean direction using only these samples indicates an initial paleolatitude of 32??N ?? 8??. Paleobiogeographic models relating radiolarian faunal distribution patterns to paleolatitude have apparently been incorrectly calibrated using the overprint B component. Few other paleomagnetic data have been incorporated in these models, and faunal distribution patterns are poorly known and mostly unqualified. The available data, therefore, do not support formation of the Coast Range ophiolite at Stanley Mountain near the paleoequator or accretion at ???10??N paleolatitude, as has been previously suggested based on paleomagnetic data, but indicate deposition near expected paleolatitudes for North America (35??N ?? 4??) during Late Jurassic

  4. Direct Evidence of Meltwater Flow Within a Firn Aquifer in Southeast Greenland

    Science.gov (United States)

    Miller, Olivia; Solomon, D. Kip; Miège, Clément; Koenig, Lora; Forster, Richard; Schmerr, Nicholas; Ligtenberg, Stefan R. M.; Montgomery, Lynn

    2018-01-01

    Within the lower percolation zone of the southeastern Greenland ice sheet, meltwater has accumulated within the firn pore space, forming extensive firn aquifers. Previously, it was unclear if these aquifers stored or facilitated meltwater runoff. Following mixing of a saline solution into boreholes within the aquifer, we observe that specific conductance measurements decreased over time as flowing freshwater diluted the saline mixture in the borehole. These tests indicate that water flows through the aquifer with an average specific discharge of 4.3 × 10-6 m/s (σ = 2.5 × 10-6 m/s). The specific discharge decreases dramatically to 0 m/s, defining the bottom of the aquifer between 30 to 50 m depth. The observed flow indicates that the firn pore space is a short-term (ocean.

  5. Laboratory evidence of MTBE biodegradation in Borden aquifer material

    Science.gov (United States)

    Schirmer, Mario; Butler, Barbara J.; Church, Clinton D.; Barker, James F.; Nadarajah, Nalina

    2003-02-01

    Mainly due to intrinsic biodegradation, monitored natural attenuation can be an effective and inexpensive remediation strategy at petroleum release sites. However, gasoline additives such as methyl tert-butyl ether (MTBE) can jeopardize this strategy because these compounds often degrade, if at all, at a slower rate than the collectively benzene, toluene, ethylbenzene and the xylene (BTEX) compounds. Investigation of whether a compound degrades under certain conditions, and at what rate, is therefore important to the assessment of the intrinsic remediation potential of aquifers. A natural gradient experiment with dissolved MTBE-containing gasoline in the shallow, aerobic sand aquifer at Canadian Forces Base (CFB) Borden (Ontario, Canada) from 1988 to 1996 suggested that biodegradation was the main cause of attenuation for MTBE within the aquifer. This laboratory study demonstrates biologically catalyzed MTBE degradation in Borden aquifer-like environments, and so supports the idea that attenuation due to biodegradation may have occurred in the natural gradient experiment. In an experiment with batch microcosms of aquifer material, three of the microcosms ultimately degraded MTBE to below detection, although this required more than 189 days (or >300 days in one case). Failure to detect the daughter product tert-butyl alcohol (TBA) in the field and the batch experiments could be because TBA was more readily degradable than MTBE under Borden conditions.

  6. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge.

    Science.gov (United States)

    Fakhreddine, Sarah; Dittmar, Jessica; Phipps, Don; Dadakis, Jason; Fendorf, Scott

    2015-07-07

    Mobilization of arsenic and other trace metal contaminants during managed aquifer recharge (MAR) poses a challenge to maintaining local groundwater quality and to ensuring the viability of aquifer storage and recovery techniques. Arsenic release from sediments into solution has occurred during purified recycled water recharge of shallow aquifers within Orange County, CA. Accordingly, we examine the geochemical processes controlling As desorption and mobilization from shallow, aerated sediments underlying MAR infiltration basins. Further, we conducted a series of batch and column experiments to evaluate recharge water chemistries that minimize the propensity of As desorption from the aquifer sediments. Within the shallow Orange County Groundwater Basin sediments, the divalent cations Ca(2+) and Mg(2+) are critical for limiting arsenic desorption; they promote As (as arsenate) adsorption to the phyllosilicate clay minerals of the aquifer. While native groundwater contains adequate concentrations of dissolved Ca(2+) and Mg(2+), these cations are not present at sufficient concentrations during recharge of highly purified recycled water. Subsequently, the absence of dissolved Ca(2+) and Mg(2+) displaces As from the sediments into solution. Increasing the dosages of common water treatment amendments including quicklime (Ca(OH)2) and dolomitic lime (CaO·MgO) provides recharge water with higher concentrations of Ca(2+) and Mg(2+) ions and subsequently decreases the release of As during infiltration.

  7. Use of static Quantitative Microbial Risk Assessment to determine pathogen risks in an unconfined carbonate aquifer used for Managed Aquifer Recharge.

    Science.gov (United States)

    Toze, Simon; Bekele, Elise; Page, Declan; Sidhu, Jatinder; Shackleton, Mark

    2010-02-01

    Managed Aquifer Recharge (MAR) is becoming a mechanism used for recycling treated wastewater and captured urban stormwater and is being used as a treatment barrier to remove contaminants such as pathogens from the recharged water. There is still a need, however, to demonstrate the effectiveness of MAR to reduce any residual risk of pathogens in the recovered water. A MAR research site recharging secondary treated wastewater in an unconfined carbonate aquifer was used in conjunction with a static Quantitative Microbial Risk Assessment (QMRA) to assess the microbial pathogen risk in the recovered water following infiltration and aquifer passage. The research involved undertaking a detailed hydrogeological assessment of the aquifer at the MAR site and determining the decay rates of reference pathogens from an in-situ decay study. These variables along with literature data were then used in the static QMRA which demonstrated that the recovered water at this site did not meet the Australian Guidelines for recycled water when used for differing private green space irrigation scenarios. The results also confirmed the importance of obtaining local hydrogeological data as local heterogeneity can influence of residence time in the aquifer which, in turn, influences the outcomes. The research demonstrated that a static QMRA can be used to determine the residual risk from pathogens in recovered water and showed that it can be a valuable tool in the preliminary design and operation of MAR systems and the incorporation of complementary engineered treatment processes to ensure that there is acceptable health risk from the recovered water. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  8. FEMA: a Finite Element Model of Material Transport through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1985-01-01

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above.

  9. FEMA: a Finite Element Model of Material Transport through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1985-01-01

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above

  10. Hydrogeology and water quality of the Floridan aquifer system and effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Fort Stewart, Georgia

    Science.gov (United States)

    Clarke, John S.; Cherry, Gregory C.; Gonthier, Gerard

    2011-01-01

    Test drilling, field investigations, and digital modeling were completed at Fort Stewart, GA, during 2009?2010, to assess the geologic, hydraulic, and water-quality characteristics of the Floridan aquifer system and evaluate the effect of Lower Floridan aquifer (LFA) pumping on the Upper Floridan aquifer (UFA). This work was performed pursuant to the Georgia Environmental Protection Division interim permitting strategy for new wells completed in the LFA that requires simulation to (1) quantify pumping-induced aquifer leakage from the UFA to LFA, and (2) identify the equivalent rate of UFA pumping that would produce the same maximum drawdown in the UFA that anticipated pumping from LFA well would induce. Field investigation activities included (1) constructing a 1,300-foot (ft) test boring and well completed in the LFA (well 33P028), (2) constructing an observation well in the UFA (well 33P029), (3) collecting drill cuttings and borehole geophysical logs, (4) collecting core samples for analysis of vertical hydraulic conductivity and porosity, (5) conducting flowmeter and packer tests in the open borehole within the UFA and LFA, (6) collecting depth-integrated water samples to assess basic ionic chemistry of various water-bearing zones, and (7) conducting aquifer tests in new LFA and UFA wells to determine hydraulic properties and assess interaquifer leakage. Using data collected at the site and in nearby areas, model simulation was used to assess the effects of LFA pumping on the UFA. Borehole-geophysical and flowmeter data indicate the LFA at Fort Stewart consists of limestone and dolomitic limestone between depths of 912 and 1,250 ft. Flowmeter data indicate the presence of three permeable zones at depth intervals of 912-947, 1,090-1,139, and 1,211?1,250 ft. LFA well 33P028 received 50 percent of the pumped volume from the uppermost permeable zone, and about 18 and 32 percent of the pumped volume from the middle and lowest permeable zones, respectively. Chemical

  11. State Aquifer Recharge Atlas Plates, Geographic NAD83, LDEQ (1999) [aquifer_recharge_potential_LDEQ_1988

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a polygon dataset depicting the boundaries of aquifer systems in the state of Louisiana and adjacent areas of Texas, Arkansas and a portion of Mississippi....

  12. Distribution of sulphur isotopes of sulphates in groundwaters from the principal artesian aquifer of Florida and the Edwards aquifer of Texas, United States of America

    International Nuclear Information System (INIS)

    Rightmire, C.T.; Pearson, F.J. Jr.; Back, W.; Rye, R.O.; Hanshaw, B.B.

    1974-01-01

    New information on the sources of sulphate dissolved in groundwater is obtainable from the measurement of the sulphur isotope composition of sulphates. Field studies in the Floridan aquifer, Florida, and the Edwards aquifer, Texas, show that the use of sulphur isotope data in conjunction with hydrologic and geochemical techniques permits refinements of interpretation. In the Floridan the interpretation of the chemical data, particularly the SO 4 2- concentration and the SO 4 2- /Cl - ratio, leads to the conclusion that recharging maritime rainfall, solution of intraformational gypsum, and mixing with ocean-like saline waters are the sources of sulphate in the groundwater. Sulphur isotope data substantiate this interpretation. The Edwards in the area studied can be separated into two hydrologie units on the basis of water chemistry and aquifer characteristics. The sulphide-free waters in the part of the aquifer upgradient from a distinct sulphide boundary are low in sulphate (less than 100 mg/1) and contain no sulphide. The waters downgradient from that boundary contain greater than 150 mg/1 sulphate and all contain measurable quantities of sulphide. Interpretation of the SO 4 2- concentration and SO 4 2- /Cl ratio on the basis of the Florida study leads to the erroneous conclusion that the solution of intraformational gypsum is again a major source of sulphate in the sulphide-free part of the aquifer. Isotope analyses, however, show that the gypsum is likely to be Permian in age and introduced into the aquifer by the recharge water. The absence of evidence for enrichment in 34 S in the sulphate in the sulphide-bearing portion of the aquifer leads to the possibility of H 2 S migration upgradient from downdip oil fields. (author)

  13. Modelling contaminant transport in saturated aquifers

    International Nuclear Information System (INIS)

    Lakshminarayana, V.; Nayak, T.R.

    1990-01-01

    With the increase in population and industrialization the problem of pollution of groundwater has become critical. The present study deals with modelling of pollutant transport through saturated aquifers. Using this model it is possible to predict the concentration distribution, spatial as well as temporal, in the aquifer. The paper also deals with one of the methods of controlling the pollutant movement, namely by pumping wells. A simulation model is developed to determine the number, location and rate of pumping of a number of wells near the source of pollution so that the concentration is within acceptable limits at the point of interest. (Author) (18 refs., 14 figs., tab.)

  14. Hysteresis, regime shifts, and non-stationarity in aquifer recharge-storage-discharge systems

    Science.gov (United States)

    Klammler, Harald; Jawitz, James; Annable, Michael; Hatfield, Kirk; Rao, Suresh

    2016-04-01

    Based on physical principles and geological information we develop a parsimonious aquifer model for Silver Springs, one of the largest karst springs in Florida. The model structure is linear and time-invariant with recharge, aquifer head (storage) and spring discharge as dynamic variables at the springshed (landscape) scale. Aquifer recharge is the hydrological driver with trends over a range of time scales from seasonal to multi-decadal. The freshwater-saltwater interaction is considered as a dynamic storage mechanism. Model results and observed time series show that aquifer storage causes significant rate-dependent hysteretic behavior between aquifer recharge and discharge. This leads to variable discharge per unit recharge over time scales up to decades, which may be interpreted as a gradual and cyclic regime shift in the aquifer drainage behavior. Based on field observations, we further amend the aquifer model by assuming vegetation growth in the spring run to be inversely proportional to stream velocity and to hinder stream flow. This simple modification introduces non-linearity into the dynamic system, for which we investigate the occurrence of rate-independent hysteresis and of different possible steady states with respective regime shifts between them. Results may contribute towards explaining observed non-stationary behavior potentially due to hydrological regime shifts (e.g., triggered by gradual, long-term changes in recharge or single extreme events) or long-term hysteresis (e.g., caused by aquifer storage). This improved understanding of the springshed hydrologic response dynamics is fundamental for managing the ecological, economic and social aspects at the landscape scale.

  15. Field Investigation of Stream-Aquifer Interactions: A Case Study in Coastal California

    Science.gov (United States)

    Pritchard-Peterson, D.; Malama, B.

    2017-12-01

    We report here results of a detailed investigation of the dynamic interaction between a stream and an alluvial aquifer at Swanton Pacific Ranch in the Scotts Creek watershed, Santa Cruz County, California. The aquifer is an important source of groundwater for cropland irrigation and for aquatic ecosystem support. Low summer base flows in Scotts Creek are a source of serious concern for land managers, fisheries biologists, and regulatory agencies due to the presence of federally protected steelhead trout and coho salmon. An understanding of the interaction between the stream and pumped aquifer will allow for assessment of the impacts of groundwater extraction on stream flows and is essential to establishing minimum flow requirements. This will aid in the development of sustainable riparian groundwater pumping practices that meet agricultural and ecological needs. Results of extensive direct-push sampling of the subsurface, laboratory falling-head permeameter tests and particle size analysis of aquifer sediments, multi-day pumping tests, long-term passive monitoring of aquifer hydraulic heads and stream stage and discharge, and electrical resistivity interrogation of the subsurface are reported here. Findings indicate that the permeable subsurface formation tapped by irrigation wells is a leaky semi-confined aquifer, overlain by a thin low permeability layer of silt and clay above which lies Scotts Creek. These results are particularly useful to land managers responsible for groundwater abstraction from wells that tap into the aquifer. Additionally, an index of stream-aquifer connectivity is proposed that would allow land managers to conveniently modify groundwater abstraction practices, minimizing concerns of stream depletion.

  16. Isotopes to Study the coastal aquifer plain, Cap Bon, Tunisia

    International Nuclear Information System (INIS)

    Ben Hamouda, M. F.; Zouari, Kamel; Tarhouni, J.; Gaye, C.B.; Oueslati, M.N.

    2005-01-01

    The study area is located in the northeastern part of Tunisia about 60 km south of the Tunis city. It is bounded by the Gulf of Haematite in the East, Djebel Sidi Aberahmane in the West, The town of Nabeul in the south and the area of the town Kelibia in the north. The landscape is a coastal plain slightly sloping (3%) towards the sea. The groundwater of the Oriental coast aquifer system occurs mainly at two levels, a shallow aquifer up to depths of about 50 m whose reservoir is consisted by sediments of the Plio quaternary and a deep aquifer between about 150 and 400 m located in the sand stone formations of Miocene of the anticline of Djebel Sidi Abderrahmene. The climate of the region is semi-arid to sub-humid and of Mediterranean type. There are no perennial rivers in this region; but intense storms occasionally cause surface runoff, which is discharged by the oueds. The study is related to a technical cooperation project with the International Atomic Energy Agency, Vienna, Austria, aimed at the use of isotope techniques to study the seawater intrusion into the coastal aquifers of Cap Bon in Tunisia. In this regard, a better understanding of the recharge and flow regime as well as the origin or salinity of the groundwater was required. To reach this goal, isotope and geochemical investigations were carried out. Water samples were taken from wells, boreholes from deep and shallow aquifer of the Oriental coastal aquifer located between Beni Khiar in the south and Kelibia in the north. The samples were analysed for their chemical and isotopic compositions (18O, 2H, 3H, 13C, 14C, 34S). In the following, the results of these analyses are presented and discussed in terms of the recharge and flow regime of the groundwater and the origin and evolution of its salinity. The results of geochemical and isotopic studies have shown that the groundwater is very eterogeneous and suggest the aquifer is replenished by recent water coming from direct infiltration from rain. At

  17. Late Precambrian Balkan-Carpathian ophiolite — a slice of the Pan-African ocean crust?: geochemical and tectonic insights from the Tcherni Vrah and Deli Jovan massifs, Bulgaria and Serbia

    Science.gov (United States)

    Savov, Ivan; Ryan, Jeff; Haydoutov, Ivan; Schijf, Johan

    2001-10-01

    The Balkan-Carpathian ophiolite (BCO), which outcrops in Bulgaria, Serbia and Romania, is a Late Precambrian (563 Ma) mafic/ultramafic complex unique in that it has not been strongly deformed or metamorphosed, as have most other basement sequences in Alpine Europe. Samples collected for study from the Tcherni Vrah and Deli Jovan segments of BCO include cumulate dunites, troctolites, wehrlites and plagioclase wehrlites; olivine and amphibole-bearing gabbros; anorthosites; diabases and microgabbros; and basalts representing massive flows, dikes, and pillow lavas, as well as hyaloclastites and umbers (preserved sedimentary cover). Relict Ol, Cpx and Hbl in cumulate peridotites indicate original orthocumulate textures. Plagioclase in troctolites and anorthosites range from An60 to An70. Cumulate gabbro textures range from ophitic to poikilitic, with an inferred crystallization order of Ol-(Plag+Cpx)-Hbl. The extrusive rocks exhibit poikilitic, ophitic and intersertal textures, with Cpx and/or Plag (Oligoclase-Andesine) phenocrysts. The major opaques are Ti-Magnetite and Ilmenite. The metamorphic paragenesis in the mafic samples is Chl-Trem-Ep, whereas the ultramafic rocks show variable degrees of serpentinization, with lizardite and antigorite as dominant phases. Our samples are compositionally and geochemically similar to modern oceanic crust. Major element, trace element and rare earth element (REE) signatures in BCO basalts are comparable to those of MORB. In terms of basalt and dike composition, the BCO is a 'high-Ti' or 'oceanic' ophiolite, based on the classification scheme of Serri [Earth Planet. Sci. Lett. 52 (1981) 203]. Our petrologic and geochemical results, combined with the tectonic position of the BCO massifs (overlain by and in contact with Late Cambrian island arc and back-arc sequences), suggest that the BCO may have formed in a mid-ocean ridge setting. If the BCO records the existence of a Precambrian ocean basin, then there may be a relationship

  18. Dual Pump Recovery (DPR System to Extract Freshwater in Coastal Aquifers

    Directory of Open Access Journals (Sweden)

    C. Otto

    2002-06-01

    Full Text Available The paper describes the hydraulic theory of recovering a dense plume using a newly devised dual pump recover system (DPR and its feasibility to half the remediation time of a contaminated unconfined aquifer in a coastal urban environment. Although the DPR system was successfully applied to clean up the polluted aquifer, the hydraulic principles and techniques are also applicable to extract fresh groundwater from coastal aquifers without the risk of saltwater incursion.

  19. Aquifer/aquitard interfaces: mixing zones that enhance biogeochemical reactions

    Science.gov (United States)

    McMahon, P. B.

    2001-01-01

    Several important biogeochemical reactions are known to occur near the interface between aquifer and aquitard sediments. These reactions include O2 reduction; denitrification; and Fe3+, SO42-, and CO2 (methanogenesis) reduction. In some settings, these reactions occur on the aquitard side of the interface as electron acceptors move from the aquifer into the electron-donor-enriched aquitard. In other settings, these reactions occur on the aquifer side of the interface as electron donors move from the aquitard into the electron-acceptor-enriched, or microorganism-enriched, aquifer. Thus, the aquifer/aquitard interface represents a mixing zone capable of supporting greater microbial activity than either hydrogeologic unit alone. The extent to which biogeochemical reactions proceed in the mixing zone and the width of the mixing zone depend on several factors, including the abundance and solubility of electron acceptors and donors on either side of the interface and the rate at which electron acceptors and donors react and move across the interface. Biogeochemical reactions near the aquifer/aquitard interface can have a substantial influence on the chemistry of water in aquifers and on the chemistry of sediments near the interface. Résumé. Il se produit au voisinage de l'interface entre les aquifères et les imperméables plusieurs réactions biogéochimiques importantes. Il s'agit des réactions de réduction de l'oxygène, de la dénitrification et de la réduction de Fe3+, SO42- et CO2 (méthanogenèse). Dans certaines situations, ces réactions se produisent du côté imperméable de l'interface, avec des accepteurs d'électrons qui vont de l'aquifère vers l'imperméable riche en donneurs d'électrons. Dans d'autres situations, ces réactions se produisent du côté aquifère de l'interface, avec des donneurs d'électrons qui se déplacent de l'imperméable vers l'aquifère riche en accepteurs d'électrons ou en microorganismes. Ainsi, l'interface aquif

  20. Hydrochemistry of New Zealand's aquifers

    International Nuclear Information System (INIS)

    Rosen, M.R.

    2001-01-01

    Groundwater chemistry on a national scale has never been studied in New Zealand apart from a few studies on nitrate concentrations and pesticides. These studies are covered in Chapter 8 of this book. However general studies of groundwater chemistry, groundwater-rock interaction and regional characteristics of water quality have not been previously addressed in much detail. This is partly because New Zealand aquifers are relatively small on a world scale and are geologically and tectonically diverse (see Chapter 3). But New Zealand has also recently lacked a centralised agency responsible for groundwater quality, and therefore, no national assessments have been undertaken. In recent years, the Institute of Geological and Nuclear Sciences has managed a programme of collecting and analysing the groundwater chemistry of key New Zealand aquifers. This programme is called the National Groundwater Monitoring Programme (NGMP) and is funded by the New Zealand Public Good Science Fund. The programme started in 1990 using only 22 wells, with four regional authorities of the country participating. The NGMP now includes all 15 regional and unitary authorities that use groundwater and over 100 monitoring sites. The NGMP is considered a nationally significant database by the New Zealand Foundation for Research Science and Technology. The NGMP allows a national comparison of aquifer chemistries because the samples are all analysed at one laboratory in a consistent manner and undergo stringent quality control checks. Poor quality analyses are thus minimised. In addition, samples are collected quarterly so that long-term seasonal trends in water quality can be analysed, and the effects of changes in land use and the vulnerability of aquifers to contaminant leaching can be assessed. This chapter summarises the water quality data collected for the NGMP over the past 10 years. Some records are much shorter than others, but most are greater than three years. Additional information is

  1. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  2. Geothermal characterization of the coastal aquifer near Ravenna (Italy

    Directory of Open Access Journals (Sweden)

    M. Antonellini

    2012-12-01

    Full Text Available The coastal aquifer near Ravenna (Italy contains a large volume of groundwater (2,5x109 m3 whose quality has been compromised by sea-water intrusion. Today, the phreatic groundwater is mostly brackish with some lenses of freshwater floating on top of more saline water. This water, although impossible to use as drink-water or for irrigation, is still important to guarantee the health of wetland habitats and especially of the roman historical and coastal pine forests of Ravenna. With the objective of defining the flow pattern within the aquifer and the exchange between surface and ground water, we characterized the temperature distribution in the shallow subsurface by means of a dense network of piezometers. At the same time we had the opportunity to characterize the phreatic aquifer from the geothermal point of view, so that it could eventually be considered for use as a “low enthalpy” heat source. Heat pumps are able to extract heat during the winter and dissipate it during the summer. The temperature of the groundwater in the top layer of the aquifer (surficial zone is sensitive to the changes in atmospheric temperature throughout the year whereas the temperature of the deeper groundwater follows the geothermal gradient (geothermal zone. One of the scopes of the project is to discover at what depth is located the geothermal zone, so that the aquifer has a constant temperature throughout the year. A constant temperature is needed for storage of heat at low enthalpy. The thickness of the surficial zone and the temperature at the top of the geothermal zone are essentially related to land use, distance from the sea, sediment type, and amount of interaction between surface and groundwater. A knowledge of these factors allows to better exploit the geothermal potential of the aquifer when choosing the optimal placement of the heat pumps.

  3. Development of A Mississippi River Alluvial Aquifer Groundwater Model

    Science.gov (United States)

    Karakullukcu, R. E.; Tsai, F. T. C.; Bhatta, D.; Paudel, K.; Kao, S. C.

    2017-12-01

    The Mississippi River Alluvial Aquifer (MRAA) underlies the Mississippi River Valley of the northeastern Louisiana, extending from the north border of Louisiana and Arkansas to south central of Louisiana. The MRAA has direct contact with the Mississippi River. However, the interaction between the Mississippi River and the alluvial aquifer is largely unknown. The MRAA is the second most used groundwater source in Louisiana's aquifers with about 390 million gallons per day, which is about 25% of all groundwater withdrawals in Louisiana. MRAA is the major water source to agriculture in the northeastern Louisiana. The groundwater withdrawals from the MRAA increases annually for irrigation. High groundwater pumping has caused significant groundwater level decline and elevated salinity in the aquifer. Therefore, dealing with agricultural irrigation is the primary purpose for managing the MRAA. The main objective of this study is to develop a groundwater model as a tool for the MRAA groundwater management. To do so, a hydrostratigraphy model of the MRAA was constructed by using nearly 8,000 drillers' logs and electric logs collected from Louisiana Department of Natural Resources. The hydrostratigraphy model clearly shows that the Mississippi River cuts into the alluvial aquifer. A grid generation technique was developed to convert the hydrostratigraphy model into a MODFLOW model with 12 layers. A GIS-based method was used to estimate groundwater withdrawals for irrigation wells based on the crop location and acreage from the USDACropScape - Cropland Data Layer. Results from the Variable Infiltration Capacity (VIC) model were used to determine potential recharge. NHDPlusV2 data was used to determine water level for major streams for the MODFLOW River Package. The groundwater model was calibrated using groundwater data between 2004 and 2015 to estimate aquifer hydraulic conductivity, specific yield, specific storage, river conductance, and surficial recharge.

  4. Artificial Intelligence-Based Models for the Optimal and Sustainable Use of Groundwater in Coastal Aquifers

    Science.gov (United States)

    Sreekanth, J.; Datta, Bithin

    2011-07-01

    Overexploitation of the coastal aquifers results in saltwater intrusion. Once saltwater intrusion occurs, it involves huge cost and long-term remediation measures to remediate these contaminated aquifers. Hence, it is important to have strategies for the sustainable use of coastal aquifers. This study develops a methodology for the optimal management of saltwater intrusion prone aquifers. A linked simulation-optimization-based management strategy is developed. The methodology uses genetic-programming-based models for simulating the aquifer processes, which is then linked to a multi-objective genetic algorithm to obtain optimal management strategies in terms of groundwater extraction from potential well locations in the aquifer.

  5. Hydrochemistry and hydrogeologic conditions within the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Webber, W.D.

    1995-09-01

    As part of the Hanford Site Ground-Water Surveillance Project, Flow System Characterization Task. Pacific Northwest Laboratory examines the potential for offsite migration of contamination within the upper basalt confined aquifer system for the US Department of Energy (DOE). As part of this activity, groundwater samples were collected over the past 2 years from selected wells completed in the upper Saddle Mountains Basalt. The hydrochemical and isotopic information obtained from these groundwater samples provides hydrologic information concerning the aquifer-flow system. Ideally, when combined with other hydrologic property information, hydrochemical and isotopic data can be used to evaluate the origin and source of groundwater, areal groundwater-flow patterns, residence and groundwater travel time, rock/groundwater reactions, and aquifer intercommunication for the upper basalt confined aquifer system. This report presents the first comprehensive Hanford Site-wide summary of hydrochemical properties for the upper basalt confined aquifer system. This report provides the hydrogeologic characteristics (Section 2.0) and hydrochemical properties (Section 3.0) for groundwater within this system. A detailed description of the range of the identified hydrochemical parameter subgroups for groundwater in the upper basalt confined aquifer system is also presented in Section 3.0. Evidence that is indicative of aquifer contamination/aquifer intercommunication and an assessment of the potential for offsite migration of contaminants in groundwater within the upper basalt aquifer is provided in Section 4.0. The references cited throughout the report are given in Section 5.0. Tables that summarize groundwater sample analysis results for individual test interval/well sites are included in the Appendix

  6. aquifer in ajaokuta, southwestern nigeria

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... (1969) straight line method (observation well) of draw-down analysis in an unconfined aquifer (B=1) yield ... April) and a short wet season (May-September). .... DECOMPOSED. GRANITIC ROCK WITH. QUARTZ VEINS. 13.

  7. Degradation of herbicides in shallow Danish aquifers - an integrated laboratory and field study

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Mills, M.; Aamand, J.

    2001-01-01

    Degradation of pesticides in aquifers has been evaluated based on a number of co-ordinated field and laboratory studies carried out in Danish aquifers. These studies included investigations of vertical and horizontal variability in degradation rates from the vadose zone to an aquifer, the effects...

  8. Modeling groundwater flow to elliptical lakes and through multi-aquifer elliptical inhomogeneities

    Science.gov (United States)

    Bakker, Mark

    2004-05-01

    Two new analytic element solutions are presented for steady flow problems with elliptical boundaries. The first solution concerns groundwater flow to shallow elliptical lakes with leaky lake beds in a single-aquifer. The second solution concerns groundwater flow through elliptical cylinder inhomogeneities in a multi-aquifer system. Both the transmissivity of each aquifer and the resistance of each leaky layer may differ between the inside and the outside of an inhomogeneity. The elliptical inhomogeneity may be bounded on top by a shallow elliptical lake with a leaky lake bed. Analytic element solutions are obtained for both problems through separation of variables of the Laplace and modified-Helmholtz differential equations in elliptical coordinates. The resulting equations for the discharge potential consist of infinite sums of products of exponentials, trigonometric functions, and modified-Mathieu functions. The series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately, but up to machine accuracy provided enough terms are used. The head and flow may be computed analytically at any point in the aquifer. Examples are given of uniform flow through an elliptical lake, a well pumping near two elliptical lakes, and uniform flow through three elliptical inhomogeneities in a multi-aquifer system. Mathieu functions may be applied in a similar fashion to solve other groundwater flow problems in semi-confined aquifers and leaky aquifer systems with elliptical internal or external boundaries.

  9. Estimating aquifer properties from the water level response to Earth tides.

    Science.gov (United States)

    Cutillo, Paula A; Bredehoeft, John D

    2011-01-01

    Water level fluctuations induced by tidal strains can be analyzed to estimate the elastic properties, porosity, and transmissivity of the surrounding aquifer material. We review underutilized methods for estimating aquifer properties from the confined response to earth tides. The earth tide analyses are applied to an open well penetrating a confined carbonate aquifer. The resulting range of elastic and hydraulic aquifer properties are in general agreement with that determined by other investigators for the area of the well. The analyses indicate that passive monitoring data from wells completed in sufficiently stiff, low porosity formations can provide useful information on the properties of the surrounding formation. Journal compilation © 2010 National Ground Water Association. No claim to original US government works.

  10. Redox Conditions in Selected Principal Aquifers of the United States

    Science.gov (United States)

    McMahon, P.B.; Cowdery, T.K.; Chapelle, F.H.; Jurgens, B.C.

    2009-01-01

    Reduction/oxidation (redox) processes affect the quality of groundwater in all aquifer systems. Redox processes can alternately mobilize or immobilize potentially toxic metals associated with naturally occurring aquifer materials, contribute to the degradation or preservation of anthropogenic contami-nants, and generate undesirable byproducts, such as dissolved manganese (Mn2+), ferrous iron (Fe2+), hydrogen sulfide (H2S), and methane (CH4). Determining the kinds of redox processes that occur in an aquifer system, documenting their spatial distribution, and understanding how they affect concentrations of natural or anthropogenic contaminants are central to assessing and predicting the chemical quality of groundwater. This Fact Sheet extends the analysis of U.S. Geological Survey authors to additional principal aquifer systems by applying a framework developed by the USGS to a larger set of water-quality data from the USGS national water databases. For a detailed explanation, see the 'Introduction' in the Fact Sheet.

  11. An evaluation of slug interference tests for aquifer characterization at the Hanford Site

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Thorne, P.D.

    1992-01-01

    Slug interference tests are conducted by instantaneously changing the water level in a well and monitoring the aquifer response at one or more observation wells. The applicability of this method for hydraulic characterization of a high permeability unconfined aquifer at the Hanford Site was evaluated. Analytical techniques were used to predict slug interference responses over a range of aquifer hydraulic conditions and observation well distances. This was followed by a field test of the proposed technique. The results showed that slug interference testing can be used to characterize aquifers having transmissivities up to 10 -1 m 2 /s compared to a maximum transmissivity of about 10 -3 m 2 /s for single-well slug tests. The amplitude of the pressure response measured at the observation well is primarily determined by aquifer storativity, while the time-lag of the pressure peak is mainly controlled by the transmissivity. Several recommendations are made optimizing the results of slug interference tests in higher permeability, unconfined to semiconfined aquifers

  12. Geochemistry and origins of mineralized waters in the Floridan aquifer system, northeastern Florida

    Science.gov (United States)

    Phelps, G.G.

    2001-01-01

    Increases in chloride concentration have been observed in water from numerous wells tapping the Floridan aquifer system in northeastern Florida. Although most increases have been in the eastern part of Duval County, Florida, no spatial pattern in elevated chloride concentrations is discernible. Possible sources of the mineralized water include modern seawater intrusion; unflushed Miocene-to-Pleistocene-age seawater or connate water in aquifer sediments; or mineralized water from deeper zones of the aquifer system or from formations beneath the Floridan aquifer system. The purpose of this study was to document the chemical and isotopic characteristics of water samples from various aquifer zones, and from geochemical and hydrogeologic data, to infer the source of the increased mineralization. Water samples were collected from 53 wells in northeastern Florida during 1997-1999. Wells tapped various zones of the aquifer including: the Fernandina permeable zone (FPZ), the upper zone of the Lower Floridan aquifer (UZLF), the Upper Floridan aquifer (UFA), and both the UFA and the UZLF. Water samples were analyzed for major ions and trace constituents and for isotopes of carbon, oxygen, hydrogen, sulfur, strontium, chlorine, and boron. Samples of rock from the aquifer were analyzed for isotopes of oxygen, carbon, and strontium. In general, water from various aquifer zones cannot be differentiated based on chemistry, except for water from FPZ wells. Major-ion concentrations vary as much within the upper zone of the Lower Floridan aquifer and the Upper Floridan aquifer as between these two zones. Simple models of mixing between fresh ground water and either modern seawater or water from the FPZ as a mineralized end member show that many water samples from the UZLF aquifer and the UFA are enriched in bicarbonate, calcium, magnesium, sulfate, fluoride, and silica and are depleted in sodium and potassium (as compared to concentrations predicted by simple mixing). Chemical mass

  13. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities

    Science.gov (United States)

    Medici, G.; West, L. J.; Mountney, N. P.

    2016-11-01

    Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavy fractured when rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. In this paper, well test and outcrop-scale studies reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤ 180 m), similar to limestone and crystalline aquifers. However, sedimentary heterogeneities can primarily control fluid flow where fracture apertures are reduced by overburden pressures or mineral infills at greater depths. The Triassic St Bees Sandstone Formation (UK) of the East Irish Sea Basin represents an optimum example for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This fluvial sedimentary succession accumulated in rapidly subsiding basins, which typically favours preservation of complete depositional cycles including fine grained layers (mudstone and silty sandstone) interbedded in sandstone fluvial channels. Additionally, vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding discontinuities. Additionally, normal faults are present through the succession showing particular development of open-fractures. Here, the shallow aquifer (depth ≤ 180 m) was characterized using hydro-geophysics. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures characterize 50% of water flow. The remaining flow component is dominated by bed-parallel fractures

  14. Geochemical processes in a calcareous sandstone aquifer during managed aquifer recharge with desalinated seawater

    Science.gov (United States)

    Ganot, Yonatan; Russak, Amos; Siebner, Hagar; Bernstein, Anat; Katz, Yoram; Guttman, Jospeh; Kurtzman, Daniel

    2017-04-01

    In the last three years we monitor Managed Aquifer Recharge (MAR) of post-treated desalinated seawater (PTDES) in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. The PTDES are stabilized with CaCO3 during post-treatment in the desalination plant and their chemical composition differs from those of any other water recharged to the aquifer and of the natural groundwater. We use suction cups in the unsaturated zone, shallow observation wells within the pond and production wells that encircles the MAR Menashe site, to study the geochemical processes during MAR with PTDES. Ion-enrichment (remineralization) of the recharged water was observed in both unsaturated zone and shallow observation wells samples. Enrichment occurs mainly in the first few meters below the pond surface by ion-exchange processes. Mg2+ enrichment is most prominent due to its deficiency in the PTDES. It is explained by ion-exchange with Ca2+, as the PTDES (enriched with Ca2+) infiltrates through a calcareous-sandstone aquifer with various amount of adsorbed Mg2+ (3-27 meq/kg). Hence, the higher concentration of Ca+2 in the PTDES together with its higher affinity to the sediments promotes the release of Mg2+ ions to the recharged water. Water isotopes analysis of the production wells were used to estimate residence time and mixing with local groundwater. At the end of 2016, it was found that the percentage of PTDES in adjacent down-gradient production wells was around 10%, while more distant or up-gradient wells show no mixing with PTDES. The distinct isotope contrast between the recharged desalinated seawater (δ2H=+11.2±0.2‰) and the local groundwater (δ2H ranged from -22.7 to -16.7‰) is a promising tool to evaluate future mixing processes at the Menshae MAR site. Using the Menashe MAR system for remineralization could be beneficial as a primary or complementary post-treatment technique. However, the sustainability of this process is

  15. Water-quality observations of the San Antonio segment of the Edwards aquifer, Texas, with an emphasis on processes influencing nutrient and pesticide geochemistry and factors affecting aquifer vulnerability, 2010–16

    Science.gov (United States)

    Opsahl, Stephen P.; Musgrove, MaryLynn; Mahler, Barbara J.; Lambert, Rebecca B.

    2018-06-07

    As questions regarding the influence of increasing urbanization on water quality in the Edwards aquifer are raised, a better understanding of the sources, fate, and transport of compounds of concern in the aquifer—in particular, nutrients and pesticides—is needed to improve water management decision-making capabilities. The U.S. Geological Survey, in cooperation with the San Antonio Water System, performed a study from 2010 to 2016 to better understand how water quality changes under a range of hydrologic conditions and in contrasting land-cover settings (rural and urban) in the Edwards aquifer. The study design included continuous hydrologic monitoring, continuous water-quality monitoring, and discrete sample collection for a detailed characterization of water quality at a network of sites throughout the aquifer system. The sites were selected to encompass a “source-to-sink” (that is, from aquifer recharge to aquifer discharge) approach. Network sites were selected to characterize rainfall, recharging surface water, and groundwater; groundwater sites included wells in the unconfined part of the aquifer (unconfined wells) and in the confined part of the aquifer (confined wells) and a major discharging spring. Storm-related samples—including rainfall samples, stormwater-runoff (surface-water) samples, and groundwater samples—were collected to characterize the aquifer response to recharge.Elevated nitrate concentrations relative to national background values and the widespread detection of pesticides indicate that the Edwards aquifer is vulnerable to contamination and that vulnerability is affected by factors such as land cover, aquifer hydrogeology, and changes in hydrologic conditions. Greater vulnerability of groundwater in urban areas relative to rural areas was evident from results for urban groundwater sites, which generally had higher nitrate concentrations, elevated δ15N-nitrate values, a greater diversity of pesticides, and higher pesticide

  16. Platinum-Group Minerals and Other Accessory Phases in Chromite Deposits of the Alapaevsk Ophiolite, Central Urals, Russia

    Directory of Open Access Journals (Sweden)

    Federica Zaccarini

    2016-10-01

    Full Text Available An electron microprobe study has been carried out on platinum-group minerals, accessory phases, and chromite in several chromite deposits of the Alapaevsk ophiolite (Central Urals, Russia namely the Bakanov Kluch, Kurmanovskoe, Lesnoe, 3-d Podyony Rudnik, Bol’shaya Kruglyshka, and Krest deposits. These deposits occur in partially to totally serpentinized peridotites. The microprobe data shows that the chromite composition varies from Cr-rich to Al-rich. Tiny platinum-group minerals (PGM, 1–10 µm in size, have been found in the chromitites. The most abundant PGM is laurite, accompanied by minor cuproiridsite and alloys in the system Os–Ir–Ru. A small grain (about 20 μm was found in the interstitial serpentine of the Bakanov Kluch chromitite, and its calculated stoichiometry corresponds to (Ni,Fe5P. Olivine, occurring in the silicate matrix or included in fresh chromite, has a mantle-compatible composition in terms of major and minor elements. Several inclusions of amphibole, Na-rich phlogopite, and clinopyroxene have been identified. The bimodal Cr–Al composition of chromite probably corresponds to a vertical distribution in the ophiolite sequence, implying formation of Cr-rich chromitites in the deep mantle, and Al-rich chromitites close to the Moho-transition zone, in a supra-subduction setting. The presence of abundant hydrous silicate inclusions, such as amphibole and phlogopite, suggests that the Alapaevsk chromitites crystallized as a result of the interaction between a melt enriched in fluids and peridotites. Laurite and cuproiridsite are considered to be magmatic in origin, i.e., entrapped as solid phases during the crystallization of chromite at high temperatures. The sulfur fugacity was relatively high to allow the precipitation of Ir-bearing sulfides, but below the Os–OsS2 buffer. The alloys in the system Os–Ir–Ru are classified as secondary PGM, i.e., formed at low temperature during the serpentinization process. The

  17. Similar sediment provenance of low and high arsenic aquifers in Bangladesh

    Science.gov (United States)

    Zheng, Y.; Yang, Q.; Li, S.; Hemming, S. R.; Zhang, Y.; Rasbury, T.; Hemming, G.

    2017-12-01

    Geogenic arsenic (As) in drinking water, especially in groundwater, is estimated to have affected the health of over 100 million people worldwide, with nearly half of the total at risk population in Bangladesh. Sluggish flow and reducing biogeochemical environment in sedimentary aquifers have been shown as the primary controls for the release of As from sediment to the shallower groundwater in the Holocene aquifer. In contrast, deeper groundwater in the Pleistocene aquifer is depleted in groundwater As and sediment-extractable As. This study assesses the origin of the sediment in two aquifers of Bangladesh that contain distinctly different As levels to ascertain whether the source of the sediment is a factor in this difference through measurements of detrital mica Ar-Ar age, detrital zircon U-Pb age, as well as sediment silicate Sr and Nd isotopes. Whole rock geochemical data were also used to illuminate the extent of chemical weathering. Detrital mica 40Ar/39Ar cooling ages and detrital zircon U-Pb ages show no statistical difference between high-As Holocene sediment and low-As Pleistocene sediment, but suggest an aquifer sediment source of both the Brahmaputra and the Ganges rivers. Silicate 87Sr/86Sr and 143Nd/144Nd further depict a major sediment source from the Brahmaputra river, which is supported by a two end member mixing model using 87Sr/86Sr and Sr concentrations. Pleistocene and Holocene sediments show little difference in weathering of mobile elements including As, while coarser sediments and a longer history of the Pleistocene aquifer suggest that sorting and flushing play more important roles in regulating the contrast of As occurrence between these two aquifers.

  18. Origin and structures of groundwater humic substances from three Danish aquifers

    DEFF Research Database (Denmark)

    Grøn, C.; Wassenaar, L.; Krog, M.

    1996-01-01

    and halogens, hydrolyzable amino acids and carbohydrates, carbon isotopes) applied to aquatic humic and fulvic acids led to consistent structural interpretations for each of the three aquifers studied. For humic substances in two-aquifers, the analyses suggested source rocks in agreement with geological......Structural, chemical, and isotopic parameters were used to identify the origins of groundwater humic substances from three Danish aquifers. A variety of analytical techniques (visible light absorption, molecular weight distribution, C-13-NMR spectroscopy, elemental composition with major elements...

  19. Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction

    Science.gov (United States)

    Desimone, Leslie A.; Barlow, Paul M.

    1999-01-01

    Quantifying the hydraulic interaction of aquifers and streams is important in the analysis of stream base fow, flood-wave effects, and contaminant transport between surface- and ground-water systems. This report describes the use of two computer programs, STLK1 and STWT1, to analyze the hydraulic interaction of streams with confined, leaky, and water-table aquifers during periods of stream-stage fuctuations and uniform, areal recharge. The computer programs are based on analytical solutions to the ground-water-flow equation in stream-aquifer settings and calculate ground-water levels, seepage rates across the stream-aquifer boundary, and bank storage that result from arbitrarily varying stream stage or recharge. Analysis of idealized, hypothetical stream-aquifer systems is used to show how aquifer type, aquifer boundaries, and aquifer and streambank hydraulic properties affect aquifer response to stresses. Published data from alluvial and stratifed-drift aquifers in Kentucky, Massachusetts, and Iowa are used to demonstrate application of the programs to field settings. Analytical models of these three stream-aquifer systems are developed on the basis of available hydrogeologic information. Stream-stage fluctuations and recharge are applied to the systems as hydraulic stresses. The models are calibrated by matching ground-water levels calculated with computer program STLK1 or STWT1 to measured ground-water levels. The analytical models are used to estimate hydraulic properties of the aquifer, aquitard, and streambank; to evaluate hydrologic conditions in the aquifer; and to estimate seepage rates and bank-storage volumes resulting from flood waves and recharge. Analysis of field examples demonstrates the accuracy and limitations of the analytical solutions and programs when applied to actual ground-water systems and the potential uses of the analytical methods as alternatives to numerical modeling for quantifying stream-aquifer interactions.

  20. Quantification of the reactions in heat storage systems in the Malm aquifer

    Science.gov (United States)

    Ueckert, Martina; Baumann, Thomas

    2017-04-01

    Combined heat and power plants (CHP) are efficient and environmentally friendly because excess heat produced during power generation is used for heating purposes. While the power demand remains rather constant throughout the year, the heat demand shows seasonal variations. In a worst-case scenario, the heat production in winter is not sufficient, and the power production in summer has to be ramped down because the excess heat cannot be released to the environment. Therefore, storage of excess heat of CHP is highly beneficial from an economic and an ecological point of view. Aquifer thermal energy storage (ATES) is considered as a promising technology for energy storage. In a typical setting, water from an aquifer is produced, heated up by excess heat from the CHP and injected through a second borehole back into the aquifer. The carbonate rocks of the upper Jurrasic in the Molasse Basin seem to be promising sites for aquifer heat storage because of their high transmissivity combined with a typical geological setting with tight caprock. However, reactions in the aquifer cannot be neglected and may become the limiting process of the whole operation. While there have been several studies performed in clastic aquifers and for temperatures below 100°C, the knowledge about high injection temperatures and storage into a carbonatic aquifer matrix is still limited. Within a research project funded by the Bavarian State Ministry for Economic Affairs and the BMW Group, the storage and recuperation of excess heat energy into the Bavarian Malm aquifer with flow rates of 15 L/s and temperatures of up to 110°C was investigated. The addition of {CO_2} was used to prevent precipitations. Data from the field site was backed up by autoclave experiments and used to verify a conceptional hydrogeochemical model with PhreeqC for the heat storage operation. The model allows to parametrize the operation and to predict possible reactions in the aquifer.

  1. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  2. Characteristics of Southern California coastal aquifer systems

    Science.gov (United States)

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    Most groundwater produced within coastal Southern California occurs within three main types of siliciclastic basins: (1) deep (>600 m), elongate basins of the Transverse Ranges Physiographic Province, where basin axes and related fluvial systems strike parallel to tectonic structure, (2) deep (>6000 m), broad basins of the Los Angeles and Orange County coastal plains in the northern part of the Peninsular Ranges Physiographic Province, where fluvial systems cut across tectonic structure at high angles, and (3) shallow (75-350 m), relatively narrow fluvial valleys of the generally mountainous southern part of the Peninsular Ranges Physiographic Province in San Diego County. Groundwater pumped for agricultural, industrial, municipal, and private use from coastal aquifers within these basins increased with population growth since the mid-1850s. Despite a significant influx of imported water into the region in recent times, groundwater, although reduced as a component of total consumption, still constitutes a significant component of water supply. Historically, overdraft from the aquifers has caused land surface subsidence, flow between water basins with related migration of groundwater contaminants, as well as seawater intrusion into many shallow coastal aquifers. Although these effects have impacted water quality, most basins, particularly those with deeper aquifer systems, meet or exceed state and national primary and secondary drinking water standards. Municipalities, academicians, and local water and governmental agencies have studied the stratigraphy of these basins intensely since the early 1900s with the goals of understanding and better managing the important groundwater resource. Lack of a coordinated effort, due in part to jurisdictional issues, combined with the application of lithostratigraphic correlation techniques (based primarily on well cuttings coupled with limited borehole geophysics) have produced an often confusing, and occasionally conflicting

  3. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers

    Directory of Open Access Journals (Sweden)

    Timotej Verbovšek

    2008-12-01

    Full Text Available Hydraulic conductivities and specific storage coefficients of fractures and matrix in Slovenian carbonate aquifers were determined by Barker’s method for pumping test analysis, based on fractional flow dimension. Values are presented for limestones and mainly for dolomites, and additionally for separate aquifers, divided by age andlithology in several groups. Data was obtained from hydrogeological reports for 397 water wells, and among these, 79 pumping tests were reinterpreted. Hydraulic conductivities of fractures are higher than the hydraulic conductivities of matrix, and the differences are highly statistically significant. Likewise, differences are significant for specific storage, and the values of these coefficients are higher in the matrix. Values of all coefficients vary in separate aquifers, and the differences can be explained by diagenetic effects, crystal size, degree of fracturing, andcarbonate purity. Comparison of the methods, used in the reports, and the Barker’s method (being more suitable for karstic and fractured aquifers, shows that the latter fits real data better.

  4. Geohydrologic units and water-level conditions in the Terrace alluvial aquifer and Paluxy Aquifer, May 1993 and February 1994, near Air Force Plant 4, Fort Worth area, Texas

    Science.gov (United States)

    Rivers, Glen A.; Baker, Ernest T.; Coplin, L.S.

    1996-01-01

    The terrace alluvial aquifer underlying Air Force Plant 4 and the adjacent Naval Air Station (formerly Carswell Air Force Base) in the Fort Worth area, Texas, is contaminated locally with organic and metal compounds. Residents south and west of Air Force Plant 4 and the Naval Air Station are concerned that contaminants might enter the underlying Paluxy aquifer, which provides water to the city of White Settlement, south of Air Force Plant 4, and to residents west of Air Force Plant 4. The U.S. Environmental Protection Agency has qualified Air Force Plant 4 for Superfund cleanup. The pertinent geologic units include -A~rom oldest to youngest the Glen Rose, Paluxy, and Walnut Formations, Goodland Limestone, and terrace alluvial deposits. Except for the Glen Rose Formation, all units crop out at or near Air Force Plant 4 and the Naval Air Station. The terrace alluvial deposits, which nearly everywhere form the land surface, range from 0 to about 60 feet thick. These deposits comprise a mostly unconsolidated mixture of gravel, sand, silt, and clay. Mudstone and sandstone of the Paluxy Formation crop out north, west, and southwest of Lake Worth and total between about 130 and about 175 feet thick. The terrace alluvial deposits and the Paluxy Formation comprise the terrace alluvial aquifer and the Paluxy aquifer, respectively. These aquifers are separated by the Goodland-Walnut confining unit, composed of the Goodland Limestone and (or) Walnut Formation. Below the Paluxy aquifer, the Glen Rose Formation forms the Glen Rose confining unit. Water-level measurements during May 1993 and February 1994 from wells in the terrace alluvial aquifer indicate that, regionally, ground water flows toward the east-southeast beneath Air Force Plant 4 and the Naval Air Station. Locally, water appears to flow outward from ground-water mounds maintained by the localized infiltration of precipitation and reportedly by leaking water pipes and sanitary and (or) storm sewer lines beneath the

  5. Modeling the potential impact of seasonal and inactive multi-aquifer wells on contaminant movement to public water-supply wells

    Science.gov (United States)

    Johnson, R.L.; Clark, B.R.; Landon, M.K.; Kauffman, L.J.; Eberts, S.M.

    2011-01-01

    Wells screened across multiple aquifers can provide pathways for the movement of surprisingly large volumes of groundwater to confined aquifers used for public water supply (PWS). Using a simple numerical model, we examine the impact of several pumping scenarios on leakage from an unconfined aquifer to a confined aquifer and conclude that a single inactive multi-aquifer well can contribute nearly 10% of total PWS well flow over a wide range of pumping rates. This leakage can occur even when the multi-aquifer well is more than a kilometer from the PWS well. The contribution from multi-aquifer wells may be greater under conditions where seasonal pumping (e.g., irrigation) creates large, widespread downward hydraulic gradients between aquifers. Under those conditions, water can continue to leak down a multi-aquifer well from an unconfined aquifer to a confined aquifer even when those multi-aquifer wells are actively pumped. An important implication is that, if an unconfined aquifer is contaminated, multi-aquifer wells can increase the vulnerability of a confined-aquifer PWS well.

  6. The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008

    Science.gov (United States)

    Kingsbury, James A.; Barlow, Jeannie R.; Katz, Brian G.; Welch, Heather L.; Tollett, Roland W.; Fahlquist, Lynne S.

    2015-01-01

    About 8 million people rely on groundwater from the Mississippi embayment—Texas coastal uplands aquifer system for drinking water. The Mississippi River Valley alluvial aquifer also provides drinking water for domestic use in rural areas but is of primary importance to the region as a source of water for irrigation. Irrigation withdrawals from this aquifer are among the largest in the Nation and play a key role in the economy of the area, where annual crop sales total more than $7 billion. The reliance of the region on both aquifers for drinking water and irrigation highlights the importance of long-term management to sustain the availability and quality of these resources.

  7. On the migration of uranium isotopes in sandstone aquifers

    International Nuclear Information System (INIS)

    Froehlich, K.; Gellermann, R.

    1982-01-01

    Measurements of natural 238 U and 234 U activity in groundwater of sandstone aquifers have been used to study the migration of these uranium isotopes. Regarding the uranium exchange between liquid phase and rock surface during migration, two different models were applied for evaluating the experimental results. Values of corresponding parameters (retardation factor K, removal rate R) reflecting different behaviour concerning this exchange were determined. For example, the values obtained for 238 U in a Triassic sandstone aquifer of the GDR are K = 8.6 x 10 6 and R = 1.3 x 10 -3 a -1 , respectively. It was found that, under the conditions of the sandstone aquifer concerned, the removal rate model is better suited for calculating uranium-isotope migration in groundwater. (author)

  8. Water quality management of aquifer recharge using advanced tools.

    Science.gov (United States)

    Lazarova, Valentina; Emsellem, Yves; Paille, Julie; Glucina, Karl; Gislette, Philippe

    2011-01-01

    Managed aquifer recharge (MAR) with recycled water or other alternative resources is one of the most rapidly growing techniques that is viewed as a necessity in water-short areas. In order to better control health and environmental effects of MAR, this paper presents two case studies demonstrating how to improve water quality, enable reliable tracing of injected water and better control and manage MAR operation in the case of indirect and direct aquifer recharge. Two water quality management strategies are illustrated on two full-scale case studies, including the results of the combination of non conventional and advanced technologies for water quality improvement, comprehensive sampling and monitoring programs including emerging pollutants, tracer studies using boron isotopes and integrative aquifer 3D GIS hydraulic and hydrodispersive modelling.

  9. Peridotite carbonation at the leading edge of the mantle wedge: OmDP Site BT1

    Science.gov (United States)

    Kelemen, P. B.; Godard, M.; Johnson, K. T. M.; Okazaki, K.; Manning, C. E.; Urai, J. L.; Michibayashi, K.; Harris, M.; Coggon, J. A.; Teagle, D. A. H.; Phase I Science Party, T. O. D. P.

    2017-12-01

    Hole BT1B sampled 3 layers of carbonated peridotite (listvenite, 0-80, 100-180, 185-197 m) separated by 2 layers of carbonate-bearing serpentinite (80-100, 180-185 m), underlain by 100 m metasediment and metabasalt. Listvenites (magnesite and/or dolomite + quartz + Fe-oxyhydroxides + chromian spinel ± fuchsite rocks) replacing mantle peridotite at and near the base of the Samail ophiolite (Stanger 85, Wilde ea 02, Nasir ea 07, Falk & Kelemen 15: FK15) reveal processes of carbon transfer into the mantle wedge (Kelemen & Manning 15) and suggest methods for CO2 capture and storage (Kelemen ea 11). Near BT1, 10 to 200 m thick tabular listvenites interlayered with partly serpentinized harzburgite have contacts parallel to the basal thrust. Imprecise Rb/Sr and 40Ar/39Ar ages indicate listvenite formed during obduction (FK15). Listvenite-peridotite contacts are gradational over 1-2 m. The listvenite matrix is microcrystalline quartz + magnesite. Quartz recrystallized from opal as in listvenites worldwide (Akbulut ea 06, Boschi ea 09, Jurkovic ea 12, Aftabi & Zarrinkoub 13, Posukhova ea 13, Ulrich ea 14) consistent with 80-120°C from clumped isotopes and phase equilibria (FK15). Thus listvenite formed - and deformed ductilely - at low T. Ubiquitous carbonate-rich veins locally comprise >10% of core sections; many have antitaxial textures consistent with expansion due to crystallization pressure. Carbonate-rich veins cut serpentinite and listvenite; veins formed a mesh, followed by replacement of mesh cores. Despite variability in and around veins, average Mg/Si, Fe/Si, Al/Si, Fe/Mg, and Cr/Al in listvenite (75 whole rocks, 7712 XRF scanner points) are indistinguishable from average Samail peridotite. CaO (average 5 wt%, range 0-40) and strongly correlated Sr were added to peridotite, most likely from subducting sediment. Rare core with >10 vol% dolomite has higher Fe/Mg than peridotite, but the same Mg/Si. Thus Mg, Si, Al and Cr, plus Fe in most rocks, were largely

  10. Multi-scale nitrate transport in a sandstone aquifer system under intensive agriculture

    Science.gov (United States)

    Paradis, Daniel; Ballard, Jean-Marc; Lefebvre, René; Savard, Martine M.

    2018-03-01

    Nitrate transport in heterogeneous bedrock aquifers is influenced by mechanisms that operate at different spatial and temporal scales. To understand these mechanisms in a fractured sandstone aquifer with high porosity, a groundwater-flow and nitrate transport model—reproducing multiple hydraulic and chemical targets—was developed to explain the actual nitrate contamination observed in groundwater and surface water in a study area on Prince Edward Island, Canada. Simulations show that nitrate is leached to the aquifer year-round, with 61% coming from untransformed and transformed organic sources originating from fertilizers and manure. This nitrate reaches the more permeable shallow aquifer through fractures in weathered sandstone that represent only 1% of the total porosity (17%). Some of the nitrate reaches the underlying aquifer, which is less active in terms of groundwater flow, but most of it is drained to the main river. The river-water quality is controlled by the nitrate input from the shallow aquifer. Groundwater in the underlying aquifer, which has long residence times, is also largely influenced by the diffusion of nitrate in the porous sandstone matrix. Consequently, following a change of fertilizer application practices, water quality in domestic wells and the river would change rapidly due to the level of nitrate found in fractures, but a lag time of up to 20 years would be necessary to reach a steady level due to diffusion. This demonstrates the importance of understanding nitrate transport mechanisms when designing effective agricultural and water management plans to improve water quality.

  11. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    Science.gov (United States)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  12. Characterization of the sediments overlying the Floridan aquifer system in Alachua County, Florida

    OpenAIRE

    Green, Richard; Duncan, Joel; Seal, Thomas; Weinberg, J. Michael; Rupert, Frank

    1989-01-01

    The primary purpose of this project is to attempt to improve the existing hydrogeologic information through lithologic and hydrogeologic characterizations of the sediments overlying the Floridan aquifer system in Alachua County. These sediments locally comprise both the intermediate aquifer system and associated confining beds and the surficial aquifer system. (PDF has 119 pages.)

  13. L'aquifère du bassin de la Mamora, Maroc: geometrie et ecoulements souterrainsThe aquifer of the Mamora Basin, Morocco: geometry and groundwater flow

    Science.gov (United States)

    Zouhri, L.

    2001-05-01

    The Mamora aquifer, in the northern Moroccan Meseta, constitutes the main regional water resource. Its impermeable basement is mostly composed of blue marls. The lithostratigraphy of the basin aquifer is characterised by a sequence of sandstones, sandy limestones, conglomerates and sandy clays. The structure of the basement of the Mamora aquifer, deduced from electrical resistivity measurements, allowed the hydrogeological behaviour of the reservoir, and the direction of the groundwater flow, to be established. The combination of the lithological, morphological, piezometric, geophysical and structural investigations revealed a northward thickening of the substrate with groundwater flow towards the Rharb (to the north) and towards the Atlantic Ocean (northwest). This 'multicriteria' approach enabled a structural model to be defined, which correlated well with the aquifer geometry and the groundwater flow. The variability of the hydrogeological units, and the northward thickening of the sedimentary facies, were controlled by northeast-southwest orientated faults, which affect their impermeability.

  14. Contribution to the hydrogeological, geochemical and isotopic study of Ain El Beidha and Merguellil (Kairouan plain) aquifers: Implication for the dam-aquifer relationship

    International Nuclear Information System (INIS)

    Ben Ammar, Safouan

    2007-01-01

    In the semiarid central part of Tunisia the water resources are becoming increasingly rare because of the scarcity and irregularity of the precipitation and a steadily growing need for fresh water. This study addresses the use of geochemical and isotopic data to analyze the relationship between the El Haouareb dam and the Ain El Beidha and the Kairouan alluvial plain aquifers systems for durable groundwater management. In the Ain El Beidha basin the hydrogeological and geochemical investigations showed that: - The general direction of the groundwater flow is mainly from the SW to the NE, i.e. towards the hydraulic sill of El Haouareb which allows the connection between the Ain El Beidha basin and the Kairouan plain, - The salinity distribution displays a zonation in apparent relationship with the lithological variation of the aquifer formation, - Mineral exchange between groundwater and the aquifer matrix is the dominant process in determining groundwater salinity. The isotopic data confirm the flow directions of groundwater and shows that the recharge of Ain El Beidha aquifers takes place from the floods of the Khechem and Ben Zitoun wadies and also by preferential infiltration of runoff at the front of hill slopes area. Close to preferential recharge areas, groundwater 3H contents reflect a recent input of surface water, whereas the radiocarbon data indicate a longer residence time downstream. The isotopic characteristics of Ain El Beidha groundwater (small space and temporal changes) authorize the use of averaged values for the dam-aquifer water exchange. Under natural conditions, groundwater recharge of the alluvial aquifer of Kairouan plain occurs by infiltration of the Merguellil floods and from the Ain el Beidha groundwater flow close the karstic hydraulic sills. Since the construction of the El Haouareb dam, these natural mechanisms have been strongly modified: the dam waters infiltrate into the karst, mix with the Ain el Beidha groundwater, and feed the

  15. Aquifer Characterization and Groundwater Potential Assessment

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Keywords: Aquifer Characterization, Groundwater Potential, Electrical Resistivity, Lithologic Logs ... State Water Corporation currently cannot meet the daily water ... METHOD OF STUDY ... sections which were constrained with the available.

  16. Sensitivity Analysis of DRASTIC Model in Vulnerability Assessment of Shahrood Alluvial Aquifer

    Directory of Open Access Journals (Sweden)

    Shadi Abolhasan Almasi

    2017-07-01

    Full Text Available Groundwater vulnerability assessment is typically accomplished as a management tool to protect groundwater resources. In this research, the DRASTIC model which is an empirical one used for evaluating the potential of an aquifer for pollution was employed to evaluate the vulnerability of Shahrood alluvial aquifer. Moreover, the sensitivity of the model paramneters was assessed to identify the ones with greatest effect on vulnerability. The model layers including depth to groundwater table level, recharge, aquifer media, topography, impact of unsaturated zone, and hydraulic conductivity were prepared and classified in the ArcGIS software based on analyses of both the available data and the layer of surface soil texture using Aster satellite images. Once the vulnerability index was calculated, the sensitivity map of Shahroud aquifer vulnerability was analyzed using the two parameter removal and single parameter sensitivity methods. These were further verified by textural analysis of soil samples from different parts of the region. The layers with appropriate weights were overlaid and the DRASTIC index of the aquifer was estimated at 28 to 148. The highest vulnerability was detected in the northern margins and southwestern parts of the aquifer while other parts were characterized by medium to low vulnerability. The low nitrogen concentration observed in the farm areas and its rise to 45 mg/l in the northern stretches of the aquifer bear witness to the accuracy of the zoning rendered by the DRASTIC model. Based on the vulnerability map of Sharoud aquifer, it was found that 1.6% of the aquifer’s area has a very high vulnerability or potential for pollution followed by 10%, 28.8%, and 18.9% of the area were identified as having high, medium and low potentials for pollution, respecytively. The remaining (i.e., 40.5% was found to have no risk of pollution.

  17. A newly developed borehole flowmeter technology for heterogeneous aquifers

    International Nuclear Information System (INIS)

    Young, S.C.

    1990-01-01

    Extensive borehole flowmeter tests were performed at 37 fully-screened wells on a one-hectare test site to characterize the three-dimensional hydraulic conductivity field of an alluvial aquifer with a σ lnK of 4.7. During the site investigations, several major advancements with respect to borehole flowmeter technology were developed. The milestones included: (1) the development of a field-durable electromagnetic borehole flowmeter with a lower detection limit of 0.1 l/min; (2) the realization of the importance of the pumping rate with respect to the calculated value for the depth-averaged hydraulic conductivity; and (3) an evaluation of alternative methods for calculating the depth-averaged hydraulic conductivity. The predicted three-dimensional hydraulic conductivity field was compared to the results of 10 small-scale (3 to 7 m) tracer tests, information about the depositional history of the aquifer, and the results of three large-scale aquifer tests. The hydraulic conductivity data predict the major features of the tracer breakthrough curves, maps the outline of a former river meander in an aerial photograph, and leads to a geometric mean consistent with the average hydraulic conductivity of the aquifer. (Author) (14 refs., 15 figs., 2 tabs.)

  18. Determining Changes in Groundwater Quality during Managed Aquifer Recharge

    Science.gov (United States)

    Gambhir, T.; Houlihan, M.; Fakhreddine, S.; Dadakis, J.; Fendorf, S. E.

    2016-12-01

    Managed aquifer recharge (MAR) is becoming an increasingly prevalent technology for improving the sustainability of freshwater supply. However, recharge water can alter the geochemical conditions of the aquifer, mobilizing contaminants native to the aquifer sediments. Geochemical alterations on deep (>300 m) injection of highly treated recycled wastewater for MAR has received limited attention. We aim to determine how residual disinfectants used in water treatment processes, specifically the strong oxidants chloramine and hydrogen peroxide, affect metal mobilization within deep injection wells of the Orange County Water District. Furthermore, as the treated recharge water has very low ionic strength (44.6 mg L-1 total dissolved solids), we tested how differing concentrations of magnesium chloride and calcium chloride affected metal mobilization within deep aquifers. Continuous flow experiments were conducted on columns dry packed with sediments from a deep injection MAR site in Orange County, CA. The effluent was analyzed for shifts in water quality, including aqueous concentrations of arsenic, uranium, and chromium. Interaction between the sediment and oxic recharge solution causes naturally-occurring arsenopyrite to repartition onto iron oxides. The stability of arsenic on the newly precipitated iron oxides is dependent on pH changes during recharge.

  19. Water-level trends and potentiometric surfaces in the Nacatoch Aquifer in northeastern and southwestern Arkansas and in the Tokio Aquifer in southwestern Arkansas, 2014–15

    Science.gov (United States)

    Rodgers, Kirk D.

    2017-09-20

    The Nacatoch Sand in northeastern and southwestern Arkansas and the Tokio Formation in southwestern Arkansas are sources of groundwater for agricultural, domestic, industrial, and public use. Water-level altitudes measured in 51 wells completed in the Nacatoch Sand and 42 wells completed in the Tokio Formation during 2014 and 2015 were used to create potentiometric-surface maps of the two areas. Aquifers in the Nacatoch Sand and Tokio Formation are hereafter referred to as the Nacatoch aquifer and the Tokio aquifer, respectively.Potentiometric surfaces show that groundwater in the Nacatoch aquifer flows southeast toward the Mississippi River in northeastern Arkansas. Groundwater flow direction is towards the south and southeast in Hempstead, Little River, and Nevada Counties in southwestern Arkansas. An apparent cone of depression exists in southern Clark County and likely alters groundwater flow from a regional direction toward the depression.In southwestern Arkansas, potentiometric surfaces indicate that groundwater flow in the Tokio aquifer is towards the city of Hope. Northwest of Hope, an apparent cone of depression exists. In southwestern Pike, northwestern Nevada, and northeastern Hempstead Counties, an area of artesian flow (water levels are at or above land surface) exists.Water-level changes in wells were identified using two methods: (1) linear regression analysis of hydrographs from select wells with a minimum of 20 years of water-level data, and (2) a direct comparison between water-level measurements from 2008 and 2014–15 at each well. Of the six hydrographs analyzed in the Nacatoch aquifer, four indicated a decline in water levels. Compared to 2008 measurements, the largest rise in water levels was 35.14 feet (ft) in a well in Clark County, whereas the largest decline was 14.76 ft in a well in Nevada County, both located in southwestern Arkansas.Of the four hydrographs analyzed in the Tokio aquifer, one indicated a decline in water levels, while

  20. A new approach for assessing the future of aquifers supporting irrigated agriculture

    Science.gov (United States)

    Butler, James J.; Whittemore, Donald O.; Wilson, Blake B.; Bohling, Geoffrey C.

    2016-03-01

    Aquifers supporting irrigated agriculture are under stress worldwide as a result of large pumping-induced water deficits. To aid in the formulation of more sustainable management plans for such systems, we have developed a water balance approach for assessing the impact of proposed management actions and the prospects for aquifer sustainability. Application to the High Plains aquifer (HPA) in the state of Kansas in the United States reveals that practically achievable reductions in annual pumping (determining the net inflow (capture) component of the water balance. The HPA is similar to many aquifers supporting critically needed agricultural production, so the presented approach should prove of value far beyond the area of this initial application.

  1. Alluvial aquifers in the Mzingwane catchment: Their distribution, properties, current usage and potential expansion

    Science.gov (United States)

    Moyce, William; Mangeya, Pride; Owen, Richard; Love, David

    The Mzingwane River is a sand filled channel, with extensive alluvial aquifers distributed along its banks and bed in the lower catchment. LandSat TM imagery was used to identify alluvial deposits for potential groundwater resources for irrigation development. On the false colour composite band 3, band 4 and band 5 (FCC 345) the alluvial deposits stand out as white and dense actively growing vegetation stands out as green making it possible to mark out the lateral extent of the saturated alluvial plain deposits using the riverine fringe and vegetation . The alluvial aquifers form ribbon shaped aquifers extending along the channel and reaching over 20 km in length in some localities and are enhanced at lithological boundaries. These alluvial aquifers extend laterally outside the active channel, and individual alluvial aquifers have been measured with area ranging from 45 ha to 723 ha in the channels and 75 ha to 2196 ha on the plains. The alluvial aquifers are more pronounced in the Lower Mzingwane, where the slopes are gentler and allow for more sediment accumulation. Estimated water resources potential ranges between 175,000 m 3 and 5,430,000 m 3 in the channels and between 80,000 m 3 and 6,920,000 m 3 in the plains. Such a water resource potential can support irrigation ranging from 18 ha to 543 ha for channels alluvial aquifers and 8 ha to 692 ha for plain alluvial aquifers. Currently, some of these aquifers are being used to provide water for domestic use, livestock watering and dip tanks, commercial irrigation and market gardening. The water quality of the aquifers in general is fairly good due to regular recharge and flushing out of the aquifers by annual river flows and floodwater. Water salinity was found to increase significantly in the end of the dry season, and this effect was more pronounced in water abstracted from wells on the alluvial plains. During drought years, recharge is expected to be less and if the drought is extended water levels in the

  2. Hydraulic properties from pumping tests data of aquifers in Azare ...

    African Journals Online (AJOL)

    Pumping test data from twelve boreholes in Azare area were analysed to determine the hydraulic properties of the aquifers, and the availability of water to meet the conjugate demands of the increasing population. The values of the aquifer constants obtained from the Cooper-Jacob's non-equilibrium graphical method were ...

  3. Hydrogeology and ground-water flow of the drift and Platteville aquifer system, St Louis Park, Minnesota

    Science.gov (United States)

    Lindgren, R.J.

    1995-01-01

    Three aquifers and two confining units have been delineated within the drift underlying the area near the site of a former coal-tar distillation and wood-preserving plant in St. Louis Park, Minnesota. The hydrogeologic units of the drift, in descending order, are the upper drift aquifer, the upper drift confining unit, the middle drift aquifer, the lower drift confining unit. and the lower drift aquifer. A contamination plume consisting of coal-tar derivatives exists in the drift aquifers and in the Platteville aquifer underlying the southern part of the plant site and areas to the south and east of the plant site.

  4. The aquifer recharge: an overview of the legislative and planning aspect.

    Science.gov (United States)

    De Giglio, O; Caggiano, G; Apollonio, F; Marzella, A; Brigida, S; Ranieri, E; Lucentini, L; Uricchio, V F; Montagna, M T

    2018-01-01

    In most regions of the world, safeguarding groundwater resources is a serious issue, particularly in coastal areas where groundwater is the main water source for drinking, irrigation and industry. Water availability depends on climate, topography and geology. The aim of this paper is to evaluate aquifer recharge as a possible strategy to relieve water resource scarcity. Natural aquifer recharge is defined as the downward flow of water reaching the water table, increasing the groundwater reservoir. Hydro-meteorological factors (rainfall, evapotranspiration and runoff) may alter natural recharge processes. Artificial aquifer recharge is a process by which surface water is introduced with artificial systems underground to fill an aquifer. As a consequence of global warming that has increased the frequency and severity of natural disasters like the drought, the impacts of climate change and seasonality, the artificial recharge has been considered as a viable option. Different direct and indirect techniques can be used, and the choice depends on the hydrologic characteristics of a specific area. In Italy, Legislative Decree no. 152/06 plans artificial aquifer recharge as an additional measure in water management, and Decree no. 100/2016 establishes quantitative and qualitative conditions for recharge. Many projects examine aquifer recharge, such us WADIS-MAR in the southern Mediterranean region, WARBO in Italy and municipal wastewater treatment project in Apulia, a southern Italian region. However, aside from groundwater recharge, the community must foster a spirit of cooperation to manage groundwater as a sustainable resource.

  5. Seasonal Hydrologic Controls on Uranium and Iron Biogeochemistry in a Riparian Aquifer

    Science.gov (United States)

    Wilkins, M.; Williams, K. H.; Danczak, R. E.; Yabusaki, S.; Fang, Y.; Hobson, C.

    2015-12-01

    The maintenance of geochemically reducing conditions is generally optimal for the formation and preservation of reduced metals and mineral phases that can limit contaminant fate and transport. At a riparian aquifer near Rifle, CO, we tracked over six months the biogeochemical response within the aquifer to an annual pulse of dissolved oxygen (DO) that results from snowmelt-driven changes in Colorado River stage. In reduced portions of the aquifer (naturally reduced zones; NRZs) the re-oxidation of abundant iron sulfide minerals was the dominant oxygen-consuming process, and resulted in little DO intrusion into the deeper aquifer. In less reduced areas, DO intruded through the entire vertical profile of the aquifer. Across both regions, these perturbations resulted in changes to the microbial community structure, and aqueous metal pools. Two potentially different mechanisms of uranium mobilization were observed; (1) re-oxidation of reduced U(IV) phases in response to DO intrusion, and (2) mobilization of U(VI) from the vadose zone during water table rise. This high-resolution, long-term monitoring of aquifer biogeochemistry at the Rifle site has revealed dynamic microbial and geochemical responses to predictable, annual hydrologic perturbations, and offers an opportunity to further refine modeling approaches for such regions.

  6. Bio-remediation of aquifers polluted by chlorinated solvents

    International Nuclear Information System (INIS)

    Fayolle, F.

    1996-01-01

    Numerous cases of contamination of aquifers by chlorinated aliphatic solvents, largely utilized during the last decades, constitute a public health problem, because of the toxic effect of such compounds. Different types of aerobic or anaerobic bacteria are able to degrade these molecules. Processes of bio remediation are now experimented in order to restore polluted aquifers. We present here the microorganisms and the enzymatic reactions involved in the biodegradation of chlorinated solvents, and different examples of in situ bio remediation operations are described. (author)

  7. Developing Methods For Linking Surficial Aquifers With Localized Rainfall Data

    Science.gov (United States)

    Lafrenz, W. B.; van Gaalen, J. F.

    2008-12-01

    Water level hydrographs of the surficial aquifer can be evaluated to identify both the cause and consequence of water supply development. Rainfall, as a source of direct recharge and as a source of delayed or compounded recharge, is often the largest influence on surficial aquifer water level responses. It is clear that proximity of the rain gauge to the observation well is a factor in the degree of correlation, but in central Florida, USA, rainfall patterns change seasonally, with latitude, and with distance from the coast . Thus, for a location in central Florida, correlation of rain events with observed hydrograph responses depends on both distance and direction from an observation well to a rain gauge. In this study, we examine the use of extreme value analysis as a method of selecting the best rainfall data set for describing a given surficial aquifer monitor well. A surficial aquifer monitor well with a substantial suite of data is compared to a series of rainfall data sets from gauges ranging from meters to tens of kilometers in distance from the monitor well. The gauges vary in a wide range of directions from the monitor well in an attempt to identify both a method for rainfall gauge selection to be associated with the monitor well. Each rainfall gauge is described by a correlation coefficient with respect to the surficial aquifer water level data.

  8. Isotopic and chemical investigations of quaternary aquifer in sinai peninsula

    International Nuclear Information System (INIS)

    Sadek, M.A.; Ahmed, M.A.; Awad, M.A.

    2001-01-01

    The present study has been conducted to investigate the renewal activity and mineralization potential of the quaternary aquifer in Sinai peninsula using environmental isotopes and hydrochemistry. The quaternary aquifer is vital for development processes as it has a wide extension and shallow water table. The total dissolved salts vary greatly from one location to another and range widely between 510-7060 mg/1, reflecting all categories from fresh to saline water. The change in salinity all over Sinai can be attributed to variations in the rate of evaporation. Leaching and dissolution of terrestrial salts during floods as well as the effects of sea spray and saline water intrusion. The main sources of groundwater recharge are the infiltration of Local precipitation and surface runoff as well as lateral flow through hydraulic connection with fractured aquifers. Snow melt also contributes to aquifer recharge in some areas in the central part of southern Sinai. The environmental stable isotopic contents of the ground water in the quaternary aquifer in Sinai reflect the isotopic composition of rain water from continental and east Mediterranean precipitation and monsonal air mass which comes from Indian ocean as well as the seepage of partly evaporated floodwater. The southern samples are more suitable for drinking and irrigation purposes due to its lower salinity and sodium hazard

  9. Characterization of California Central Coast Aquifers using Pneumatic Slug Tests

    Science.gov (United States)

    Aurelius, S.; Platt, D.; Whetsler, B.; Malama, B.

    2017-12-01

    The recent prolonged drought in California, where about 75% of the population depends to some extent ongroundwater, has led to increased stresses on the state's groundwater resources due to reduced recharge andincreased abstraction to supplement dwindling surface water supplies for irrigation and other urban uses.These factors have conspired to cause historic lows in groundwater levels, lost aquifer storage capacity dueincreased potential for land subsidence, and degraded water quality in coastal aquifers faced with increasedrates of seawater intrusion. Groundwater accounts for about a third of the total water uses in California,with some coastal communities being 100% dependent on groundwater. Irrigation accounts for over 60%of all state groundwater withdrawals in California. In light of this, the state of California recently passedthe Sustainable Groundwater Management Act (SGMA) aimed at bringing the State's groundwater basinsinto sustainable regimes of abstraction, recharge and storage. Groundwater ow models are critical to thesuccessful implementation of the SGMA legislation. However, the usefulness of the models is severely limitedby a lack of detailed knowledge of aquifer properties at spatial scales that allow for accurate projections tobe made about groundwater basin sustainability by resource managers. We report here the results of highresolution pneumatic slug tests performed in two shallow aquifers in San Luis Obispo County on the CaliforniaCentral Coast to obtain detailed information about aquifer properties, including permeability and storage,and their spatial variability.

  10. Fate of nine recycled water trace organic contaminants and metal(loid)s during managed aquifer recharge into a anaerobic aquifer: Column studies.

    Science.gov (United States)

    Patterson, B M; Shackleton, M; Furness, A J; Pearce, J; Descourvieres, C; Linge, K L; Busetti, F; Spadek, T

    2010-03-01

    Water quality changes associated with the passage of aerobic reverse osmosis (RO) treated recycled water through a deep anaerobic pyritic aquifer system was evaluated in sediment-filled laboratory columns as part of a managed aquifer recharge (MAR) strategy. The fate of nine recycled water trace organic compounds along with potential negative water quality changes such as the release of metal(loid)s were investigated in large-scale columns over a period of 12 months. The anaerobic geochemical conditions provided a suitable environment for denitrification, and rapid (half-life 100 days). High retardation coefficients (R) determined for many of the trace organics (R 13 to 67) would increase aquifer residence time and be beneficial for many of the slow degrading compounds. However, for the trace organics with low R values (1.1-2.6) and slow degradation rates (half-life > 100 days), such as N-nitrosodimethylamine, N-nitrosomorpholine and iohexol, substantial biodegradation during aquifer passage may not occur and additional investigations are required. Only minor transient increases in some metal(loid) concentrations were observed, as a result of either pyrite oxidation, mineral dissolution or pH induced metal desorption, followed by metal re-sorption downgradient in the oxygen depleted zone. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  11. Degradation of the Pesticides Mecoprop and Atrazine in Unpolluted Sandy Aquifers

    DEFF Research Database (Denmark)

    Klint, Mikala; Arvin, Erik; Jensen, Bjørn K.

    1993-01-01

    The potential for biodegradation of the pesticides mecoprop ((+/-)-2-(4-chloro-2-methyl-phenoxy)propionic acid) and atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) in an aerobic aquifer was investigated in laboratory batch experiments. The experiments were performed with groundwater...... the aquifer. Atrazine was not degraded during an incubation period of 539 d in groundwater and 174 d in suspensions of groundwater and aquifer sediment. The addition of nutrients, primary substrates (acetate and naphthalene), and a pH or temperature increase had not effect on the recalcitrance of atrazine....

  12. Radionuclide transport in the Neogene aquifer system located in the environment of the Boom clay

    International Nuclear Information System (INIS)

    Gedeon, M.; Marivoet, J.; Vandersteen, K.

    2012-01-01

    Document available in extended abstract form only. In the framework the Belgian research program on the long term management of high-level and/or long-lived radioactive waste coordinated by ONDRAF/NIRAS, the Boom Clay is considered as a reference host rock for the geological disposal of high-level radioactive waste in NE-Belgium (Campine area). In the frame of the performance assessments of a disposal system located in the Boom Clay Formation, the transport of radionuclides diffusing through the clay barrier into the aquifers located above is modelled. The transport model for the Neogene aquifer is based on a series of groundwater flow models simulating the aquifer systems in the surroundings of the Boom Clay. This series of groundwater models include the regional north-eastern Belgium model simulating flow both above and below the Boom Clay, the recently updated deep-aquifer pumping model, simulating transient flow in the over-exploited aquifers below the Boom Clay and finally the catchment-scale Neogene aquifer model, simulating flow in the aquifer system above the Boom Clay. The Neogene aquifer system consists of two main aquifers. The Pliocene aquifer is located at the top, separated from the underlying Miocene aquifer by the Kasterlee Clay aquitard. The Miocene aquifer consists of three hydrostratigraphic units: the Diest, Berchem and Voort Formations; with the last two having a lower hydraulic conductivity than the Diest unit. The transport model for the Neogene aquifer represents a fraction of the catchment-scale Neogene aquifer model. It stretches from the local divide between the Grote and Kleine Nete Rivers up to the Kleine Nete River, representing the main model sink. The boundary conditions and the sources/sinks in the Pliocene aquifer are defined mostly by the surface water features, such as the rivers, brooks, lakes and canals. In the partially confined Miocene aquifer, the effect of the surface water features is dampened and the heads at the model

  13. Solute geochemistry of the Snake River Plain regional aquifer system, Idaho and eastern Oregon

    International Nuclear Information System (INIS)

    Wood, W.W.; Low, W.H.

    1987-01-01

    Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Reactions controlling solutes in the western Snake river basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake river Plain contains total dissolved solids similar to those in the overlying Snake River Plain aquifer system but contains higher concentrations of sodium, bicarbonate, silica, fluoride, sulfate, chloride, arsenic, boron, and lithium, and lower concentrations of calcium, magnesium, and hydrogen. 132 refs., 30 figs., 27 tabs

  14. Aquifer sensitivity to pesticide leaching: Testing a soils and hydrogeologic index method

    Science.gov (United States)

    Mehnert, E.; Keefer, D.A.; Dey, W.S.; Wehrmann, H.A.; Wilson, S.D.; Ray, C.

    2005-01-01

    For years, researchers have sought index and other methods to predict aquifer sensitivity and vulnerability to nonpoint pesticide contamination. In 1995, an index method and map were developed to define aquifer sensitivity to pesticide leaching based on a combination of soil and hydrogeologic factors. The soil factor incorporated three soil properties: hydraulic conductivity, amount of organic matter within individual soil layers, and drainage class. These properties were obtained from a digital soil association map. The hydrogeologic factor was depth to uppermost aquifer material. To test this index method, a shallow ground water monitoring well network was designed, installed, and sampled in Illinois. The monitoring wells had a median depth of 7.6 m and were located adjacent to corn and soybean fields where the only known sources of pesticides were those used in normal agricultural production. From September 1998 through February 2001, 159 monitoring wells were sampled for 14 pesticides but no pesticide metabolites. Samples were collected and analyzed to assess the distribution of pesticide occurrence across three units of aquifer sensitivity. Pesticides were detected in 18% of all samples and nearly uniformly from samples from the three units of aquifer sensitivity. The new index method did not predict pesticide occurrence because occurrence was not dependent on the combined soil and hydrogeologic factors. However, pesticide occurrence was dependent on the tested hydrogeologic factor and was three times higher in areas where the depth to the uppermost aquifer was <6 m than in areas where the depth to the uppermost aquifer was 6 to <15 m. Copyright ?? 2005 National Ground Water Association.

  15. Onset of density-driven instabilities in fractured aquifers

    Science.gov (United States)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  16. Geochemical detection of carbon dioxide in dilute aquifers

    Directory of Open Access Journals (Sweden)

    Aines Roger

    2009-03-01

    Full Text Available Abstract Background Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 103 to 2 × 106 t/yr (0.63 to 1250 t/m2/yr to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. Results For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux ≥ 104 t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase

  17. Geochemical detection of carbon dioxide in dilute aquifers.

    Science.gov (United States)

    Carroll, Susan; Hao, Yue; Aines, Roger

    2009-03-26

    Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 10(3) to 2 x 10(6) t/yr (0.63 to 1250 t/m2/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux >or= 10(4) t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase in the lower most permeable unit and does

  18. A correction for Dupuit-Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers

    Science.gov (United States)

    Koussis, Antonis D.; Mazi, Katerina; Riou, Fabien; Destouni, Georgia

    2015-06-01

    Interface flow models that use the Dupuit-Forchheimer (DF) approximation for assessing the freshwater lens and the seawater intrusion in coastal aquifers lack representation of the gap through which fresh groundwater discharges to the sea. In these models, the interface outcrops unrealistically at the same point as the free surface, is too shallow and intersects the aquifer base too far inland, thus overestimating an intruding seawater front. To correct this shortcoming of DF-type interface solutions for unconfined aquifers, we here adapt the outflow gap estimate of an analytical 2-D interface solution for infinitely thick aquifers to fit the 50%-salinity contour of variable-density solutions for finite-depth aquifers. We further improve the accuracy of the interface toe location predicted with depth-integrated DF interface solutions by ∼20% (relative to the 50%-salinity contour of variable-density solutions) by combining the outflow-gap adjusted aquifer depth at the sea with a transverse-dispersion adjusted density ratio (Pool and Carrera, 2011), appropriately modified for unconfined flow. The effectiveness of the combined correction is exemplified for two regional Mediterranean aquifers, the Israel Coastal and Nile Delta aquifers.

  19. Hydrogeology, Pesticide DRASTIC for the Intermediate Aquifer. Pesticide DRASTIC coverage for the Intermediate Aquifer System. Drastic maps are most useful as a generalized tool to assess regional potential aquifer vulnerability., Published in 1998, 1:24000 (1in=2000ft) scale, Florida Department of Environmental Protection (FDEP).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Hydrogeology dataset current as of 1998. Pesticide DRASTIC for the Intermediate Aquifer. Pesticide DRASTIC coverage for the Intermediate Aquifer System. Drastic maps...

  20. Conceptual and numerical models of the glacial aquifer system north of Aberdeen, South Dakota

    Science.gov (United States)

    Marini, Katrina A.; Hoogestraat, Galen K.; Aurand, Katherine R.; Putnam, Larry D.

    2012-01-01

    This U.S. Geological Survey report documents a conceptual and numerical model of the glacial aquifer system north of Aberdeen, South Dakota, that can be used to evaluate and manage the city of Aberdeen's water resources. The glacial aquifer system in the model area includes the Elm, Middle James, and Deep James aquifers, with intervening confining units composed of glacial till. The Elm aquifer ranged in thickness from less than 1 to about 95 feet (ft), with an average thickness of about 24 ft; the Middle James aquifer ranged in thickness from less than 1 to 91 ft, with an average thickness of 13 ft; and the Deep James aquifer ranged in thickness from less than 1 to 165 ft, with an average thickness of 23 ft. The confining units between the aquifers consisted of glacial till and ranged in thickness from 0 to 280 ft. The general direction of groundwater flow in the Elm aquifer in the model area was from northwest to southeast following the topography. Groundwater flow in the Middle James aquifer was to the southeast. Sparse data indicated a fairly flat potentiometric surface for the Deep James aquifer. Horizontal hydraulic conductivity for the Elm aquifer determined from aquifer tests ranged from 97 to 418 feet per day (ft/d), and a confined storage coefficient was determined to be 2.4x10-5. Estimates of the vertical hydraulic conductivity of the sediments separating the Elm River from the Elm aquifer, determined from the analysis of temperature gradients, ranged from 0.14 to 2.48 ft/d. Average annual precipitation in the model area was 19.6 inches per year (in/yr), and agriculture was the primary land use. Recharge to the Elm aquifer was by infiltration of precipitation through overlying outwash, lake sediments, and glacial till. The annual recharge for the model area, calculated by using a soil-water-balance method for water year (WY) 1975-2009, ranged from 0.028 inch in WY 1980 to 4.52 inches in WY 1986, with a mean of 1.56 inches. The annual potential

  1. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  2. The groundwater budget: A tool for preliminary estimation of the hydraulic connection between neighboring aquifers

    Science.gov (United States)

    Viaroli, Stefano; Mastrorillo, Lucia; Lotti, Francesca; Paolucci, Vittorio; Mazza, Roberto

    2018-01-01

    Groundwater management authorities usually use groundwater budget calculations to evaluate the sustainability of withdrawals for different purposes. The groundwater budget calculation does not always provide reliable information, and it must often be supported by further aquifer monitoring in the case of hydraulic connections between neighboring aquifers. The Riardo Plain aquifer is a strategic drinking resource for more than 100,000 people, water storage for 60 km2 of irrigated land, and the source of a mineral water bottling plant. Over a long period, the comparison between the direct recharge and the estimated natural outflow and withdrawals highlights a severe water deficit of approximately 40% of the total groundwater outflow. A groundwater budget deficit should be a clue to the aquifer depletion, but the results of long-term water level monitoring allowed the observation of the good condition of this aquifer. In fact, in the Riardo Plain, the calculated deficit is not comparable to the aquifer monitoring data acquired in the same period (1992-2014). The small oscillations of the groundwater level and the almost stable streambed spring discharge allows the presumption of an additional aquifer recharge source. The confined carbonate aquifer locally mixes with the above volcanic aquifer, providing an externally stable recharge that reduces the effects of the local rainfall variability. The combined approach of the groundwater budget results and long-term aquifer monitoring (spring discharge and/or hydraulic head oscillation) provides information about significant external groundwater exchanges, even if unidentified by field measurements, and supports the stakeholders in groundwater resource management.

  3. Closed-form analytical solutions incorporating pumping and tidal effects in various coastal aquifer systems

    Science.gov (United States)

    Wang, Chaoyue; Li, Hailong; Wan, Li; Wang, Xusheng; Jiang, Xiaowei

    2014-07-01

    Pumping wells are common in coastal aquifers affected by tides. Here we present analytical solutions of groundwater table or head variations during a constant rate pumping from a single, fully-penetrating well in coastal aquifer systems comprising an unconfined aquifer, a confined aquifer and semi-permeable layer between them. The unconfined aquifer terminates at the coastline (or river bank) and the other two layers extend under tidal water (sea or tidal river) for a certain distance L. Analytical solutions are derived for 11 reasonable combinations of different situations of the L-value (zero, finite, and infinite), of the middle layer's permeability (semi-permeable and impermeable), of the boundary condition at the aquifer's submarine terminal (Dirichlet describing direct connection with seawater and no-flow describing the existence of an impermeable capping), and of the tidal water body (sea and tidal river). Solutions are discussed with application examples in fitting field observations and parameter estimations.

  4. Managed Aquifer Recharge in Italy: present and prospects.

    Science.gov (United States)

    Rossetto, Rudy

    2015-04-01

    On October the 3rd 2014, a one-day Workshop on Managed Aquifer Recharge (MAR) experiences in Italy took place at the GEOFLUID fair in Piacenza. It was organized within the framework of the EIP AG 128 - MAR Solutions - Managed Aquifer Recharge Strategies and Actions and the EU FPVII MARSOL. The event aimed at showcasing present experiences on MAR in Italy while at the same time starting a network among all the Institutions involved. In this contribution, we discuss the state of MAR application in Italy and summarize the outcomes of that event. In Italy aquifer recharge is traditionally applied unintentionally, by increasing riverbank filtration or because of excess irrigation. A certain interest for artificial recharge of aquifers arose at the end of the '70s and the beginning of the '80s and tests have been carried out in Tuscany, Veneto and Friuli Venezia Giulia. During the last years some projects on aquifer recharge were co-financed by the European Commission mainly through the LIFE program. Nearly all of them use the terminology of artificial recharge instead of MAR. They are: - TRUST (Tool for regional - scale assessment of groundwater storage improvement in adaptation to climate change, LIFE07 ENV/IT/000475; Marsala 2014); - AQUOR (Implementation of a water saving and artificial recharging participated strategy for the quantitative groundwater layer rebalance of the upper Vicenza's plain - LIFE 2010 ENV/IT/380; Mezzalira et al. 2014); - WARBO (Water re-born - artificial recharge: innovative technologies for the sustainable management of water resources, LIFE10 ENV/IT/000394; 2014). While the TRUST project dealt in general with aquifer recharge, AQUOR and WARBO focused essentially on small scale demonstration plants. Within the EU FPVII-ENV-2013 MARSOL project (Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; 2014), a dedicated monitoring and decision support system is under development to manage recharge at a large scale

  5. Groundwater chemistry of shallow aquifers in the coastal zones of Cochin, India

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Gopinath, G.; DineshKumar, P.K.

    Laluraj et al.: Groundwater chemistry of shallow aquifers - 133 - APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 3(1): 133-139. http://www.ecology.kee.hu ● ISSN 1589 1623  2005, Penkala Bt., Budapest, Hungary GROUNDWATER CHEMISTRY OF SHALLOW AQUIFERS... post monsoon (November 2003) in the coastal zones of Cochin. Laluraj et al.: Groundwater chemistry of shallow aquifers - 134 - APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 3(1): 133-139. http://www.ecology.kee.hu ● ISSN 1589 1623  2005, Penkala...

  6. Coastal aquifers: Scientific advances in the face of global environmental challenges

    Science.gov (United States)

    Post, Vincent E. A.; Werner, Adrian D.

    2017-08-01

    Coastal aquifers embody the subsurface transition between terrestrial and marine systems, and form the almost invisible pathway for tremendous volumes of freshwater that flow to the ocean. Changing conditions of the earth's landscapes and oceans can disrupt the fragile natural equilibrium between fresh and saltwater that exists in coastal zones. Among these, over-abstraction of groundwater is considered the leading man-made cause of seawater intrusion. Moreover, many of the world's largest urban settings, where sources of contamination are profuse, have been built over the freshwater in coastal aquifers. Thus, coastal aquifers are important receptors of human impacts to water on Earth (Michael et al., 2017). This Special Issue on 'Investigation and Management of Coastal Aquifers' contains current scientific advances on the topic, dealing with the storage and quality of water, affected by stressors ranging in scale from point source contamination to global climate change.

  7. Assessing water quality and pollution origin of the Bou-Areg aquifer (north east Morocco)

    OpenAIRE

    Alonso, A.; Sbaa, M.; Vanclooster, M.

    2011-01-01

    This study aims to evaluate the quality of the groundwater and the sources of pollution of the Bou-Areg aquifer, situated in the Oriental region, in the northeast part of Morocco. We first elaborated the aquifer pollution risk map by crossing a vulnerability map, principally based on the physical characteristics of the area, with a pressures map based on the soil occupation. The resulting map showed that the aquifer is subjected to a medium to high risk for at least half of the total aquifer ...

  8. Evaluation of mercury and physicochemical parameters in different depths of aquifer water of Thar coalfield, Pakistan.

    Science.gov (United States)

    Ali, Jamshed; Kazi, Tasneem G; Tuzen, Mustafa; Ullah, Naeem

    2017-07-01

    In the current study, mercury (Hg) and physicochemical parameters have been evaluated in aquifer water at different depths of Thar coal field. The water samples were collected from first aquifer (AQ 1 ), second aquifer (AQ 2 ), and third aquifer (AQ 3 ) at three depths, 50-60, 100-120, and 200-250 m, respectively. The results of aquifer water of three depths were interpreted by using different multivariate statistical techniques. Validation of desired method was checked by spiking standard addition method in studied aquifer water samples. The content of Hg in aquifer water samples was measured by cold vapor atomic absorption spectrometer (CV-AAS). These determined values illustrate that the levels of Hg were higher than WHO recommended values for drinking water. All physicochemical parameters were higher than WHO permissible limits for drinking water except pH and SO 4 2- in aquifer water. The positive correlation of Hg with other metals in aquifer water samples of AQ 1 , AQ 2 , and AQ 3 of Thar coalfield except HCO 3 - was observed which might be caused by geochemical minerals. The interpretation of determined values by the cluster technique point out the variations within the water quality parameter as well as sampling location of studied field. The aquifer water AQ 2 was more contaminated with Hg as compared to AQ 1 and AQ 3 ; it may be due to leaching of Hg from coal zone. The concentration of Hg in aquifer water obtained from different depths was found in the following decreasing order: AQ 2  < AQ 1  < AQ 3 .

  9. Effects of Barometric Fluctuations on Well Water-Level Measurements and Aquifer Test Data

    Energy Technology Data Exchange (ETDEWEB)

    FA Spane, Jr.

    1999-12-16

    The Pacific Northwest National Laboratory, as part of the Hanford Groundwater Monitoring Project, examines the potential for offsite migration of contamination within underlying aquifer systems. Well water-level elevation measurements from selected wells within these aquifer systems commonly form the basis for delineating groundwater-flow patterns (i.e., flow direction and hydraulic gradient). In addition, the analysis of water-level responses obtained in wells during hydrologic tests provides estimates of hydraulic properties that are important for evaluating groundwater-flow velocity and transport characteristics. Barometric pressure fluctuations, however, can have a discernible impact on well water-level measurements. These barometric effects may lead to erroneous indications of hydraulic head within the aquifer. Total hydraulic head (i.e., sum of the water-table elevation and the atmospheric pressure at the water-table surface) within the aquifer, not well water-level elevation, is the hydrologic parameter for determining groundwater-flow direction and hydraulic gradient conditions. Temporal variations in barometric pressure may also adversely affect well water-level responses obtained during hydrologic tests. If significant, adjustments or removal of these barometric effects from the test-response record may be required for quantitative hydraulic property determination. This report examines the effects of barometric fluctuations on well water-level measurements and evaluates adjustment and removal methods for determining areal aquifer head conditions and aquifer test analysis. Two examples of Hanford Site unconfined aquifer tests are examined that demonstrate barometric response analysis and illustrate the predictive/removal capabilities of various methods for well water-level and aquifer total head values. Good predictive/removal characteristics were demonstrated with best corrective results provided by multiple-regression deconvolution methods.

  10. Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers – a new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer

    Directory of Open Access Journals (Sweden)

    D. Pulido-Velazquez

    2018-05-01

    Full Text Available Any change in the components of the water balance in a coastal aquifer, whether natural or anthropogenic, can alter the freshwater–salt water equilibrium. In this sense climate change (CC and land use and land cover (LULC change might significantly influence the availability of groundwater resources in the future. These coastal systems demand an integrated analysis of quantity and quality issues to obtain an appropriate assessment of hydrological impacts using density-dependent flow solutions. The aim of this work is to perform an integrated analysis of future potential global change (GC scenarios and their hydrological impacts in a coastal aquifer, the Plana Oropesa-Torreblanca aquifer. It is a Mediterranean aquifer that extends over 75 km2 in which important historical LULC changes have been produced and are planned for the future. Future CC scenarios will be defined by using an equi-feasible and non-feasible ensemble of projections based on the results of a multi-criteria analysis of the series generated from several regional climatic models with different downscaling approaches. The hydrological impacts of these CC scenarios combined with future LULC scenarios will be assessed with a chain of models defined by a sequential coupling of rainfall-recharge models, crop irrigation requirements and irrigation return models (for the aquifer and its neighbours that feed it, and a density-dependent aquifer approach. This chain of models, calibrated using the available historical data, allow testing of the conceptual approximation of the aquifer behaviour. They are also fed with series representatives of potential global change scenarios in order to perform a sensitivity analysis regarding future scenarios of rainfall recharge, lateral flows coming from the hydraulically connected neighbouring aquifer, agricultural recharge (taking into account expected future LULC changes and sea level rise (SLR. The proposed analysis is valuable for

  11. An overview of nitrate sources and operating processes in arid and semiarid aquifer systems.

    Science.gov (United States)

    Gutiérrez, Mélida; Biagioni, Richard N; Alarcón-Herrera, Maria Teresa; Rivas-Lucero, Bertha A

    2018-05-15

    Nitrate concentration in most aquifers in arid and semi-arid areas has increased in the past several decades as a result of human activities. Under the predominantly oxic conditions of these aquifers, denitrification is inhibited, allowing nitrate, a soluble and stable form of nitrogen (N), to accumulate. Because of its close association with municipal and agricultural wastes, nitrate is commonly used as an indicator of anthropogenic contamination. Aquifers affected by agricultural waste may contain salts from irrigation returns and herbicides in addition to nitrates. Preventing leakage from soil to deeper parts of the aquifer is thus a priority in the sustainable management of aquifers in arid and semiarid areas. Studies report a wide range of nitrate concentrations distributed non-uniformly within the aquifer, with roughly 40% and 20% of sampled wells exceeding 50mg/L nitrate in shallow and deep parts of the aquifer respectively. In aquifers at risk of becoming contaminated, nitrate isotopes (δ 15 N, δ 18 O, Δ 17 O) can be used to identify the source of nitrogen as mineral or organic fertilizer, sewage, or atmospheric deposition. A variety of mathematical models (crop, hydrological, geochemical, or a combination of them) have been successful in identifying best practices that minimize N leakage without negatively affecting crop yield. In addition, field research in crop management, e.g., conservation agriculture, has yielded promising results in determining the adequate dosage and time of application of fertilizers to reduce N losses. Examples of key dryland aquifers impacted by nitrate are discussed, and some of the most pressing challenges to achieve sustainability are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. An analytical solution for modeling thermal energy transfer in a confined aquifer system

    Science.gov (United States)

    Shaw-Yang, Yang; Hund-der, Yeh

    2008-12-01

    A mathematical model is developed for simulating the thermal energy transfer in a confined aquifer with different geological properties in the underlying and overlying rocks. The solutions for temperature distributions in the aquifer, underlying rock, and overlying rock are derived by the Laplace transforms and their corresponding time-domain solutions are evaluated by the modified Crump method. Field data adopted from the literature are used as examples to demonstrate the applicability of the solutions in modeling the heat transfer in an aquifer thermal energy storage (ATES) system. The results show that the aquifer temperature increases with time, injection flow rate, and water temperature. However, the temperature decreases with increasing radial and vertical distances. The heat transfer in the rocks is slow and has an effect on the aquifer temperature only after a long period of injection time. The influence distance depends on the aquifer physical and thermal properties, injection flow rate, and injected water temperature. A larger value of thermal diffusivity or injection flow rate will result in a longer influence distance. The present solution can be used as a tool for designing the heat injection facilities for an ATES system.

  13. Estimated hydrologic budgets of kettle-hole ponds in coastal aquifers of southeastern Massachusetts

    Science.gov (United States)

    Walter, Donald A.; Masterson, John P.

    2011-01-01

    Kettle-hole ponds in southeastern Massachusetts are in good hydraulic connection to an extensive coastal aquifer system that includes the Plymouth-Carver aquifer system on the mainland and aquifers underlying Cape Cod. The ponds receive water from, and contribute water to, the underlying glacial aquifer; ponds also receive water from precipitation and lose water to evaporation from the pond surface. Some ponds are connected to surface-water drainage systems and receive water from or contribute water to streams or adjacent wetlands. The Massachusetts Department of Environmental Protection currently (2011) is developing Total Maximum Daily Loads of phosphorus for the freshwater ponds in the region to maintain the health of pond ecosystems; the amounts and sources of water fluxes into and out of the ponds are important factors in determining the amount of phosphorus that can be assimilated into a pond. To assist in this effort, the U.S. Geological Survey used groundwater-flow models of the coastal aquifer system to estimate hydrologic budgets-including inflows and outflows from the aquifer system and adjacent streams and wetlands, and recharge from precipitation-for 425 ponds in southeastern Massachusetts.

  14. Geoelectrical characterisation of basement aquifers: the case of Iberekodo, southwestern Nigeria

    Science.gov (United States)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2018-03-01

    Basement aquifers, which occur within the weathered and fractured zones of crystalline bedrocks, are important groundwater resources in tropical and subtropical regions. The development of basement aquifers is complex owing to their high spatial variability. Geophysical techniques are used to obtain information about the hydrologic characteristics of the weathered and fractured zones of the crystalline basement rocks, which relates to the occurrence of groundwater in the zones. The spatial distributions of these hydrologic characteristics are then used to map the spatial variability of the basement aquifers. Thus, knowledge of the spatial variability of basement aquifers is useful in siting wells and boreholes for optimal and perennial yield. Geoelectrical resistivity is one of the most widely used geophysical methods for assessing the spatial variability of the weathered and fractured zones in groundwater exploration efforts in basement complex terrains. The presented study focuses on combining vertical electrical sounding with two-dimensional (2D) geoelectrical resistivity imaging to characterise the weathered and fractured zones in a crystalline basement complex terrain in southwestern Nigeria. The basement aquifer was delineated, and the nature, extent and spatial variability of the delineated basement aquifer were assessed based on the spatial variability of the weathered and fractured zones. The study shows that a multiple-gradient array for 2D resistivity imaging is sensitive to vertical and near-surface stratigraphic features, which have hydrological implications. The integration of resistivity sounding with 2D geoelectrical resistivity imaging is efficient and enhances near-surface characterisation in basement complex terrain.

  15. Detections of MTBE in surficial and bedrock aquifers in New England

    International Nuclear Information System (INIS)

    Grady, S.J.

    1995-01-01

    The gasoline additive methyl tert-butyl ether (MTBE) was detected in 24% of water samples collected from surficial and bedrock aquifers in areas of New England. MTBE was the most frequently detected volatile organic compound among the 60 volatile chemicals analyzed and was present in 33 of 133 wells sampled from July 1993 through September 1995. The median MTBE concentration measured in ground-water samples was 0.45 microgram per liter and concentrations ranged from 0.2 to 5.8 microgram per liter. The network of wells sampled for MTBE consisted of 103 monitoring wells screened in surficial sand-and-gravel aquifers and 30 domestic-supply wells in fractured crystalline bedrock aquifers. Seventy-seven percent of all MTBE detections were from 26 shallow monitoring wells screened in surficial aquifers. MTBE was detected in42% of monitoring wells in urban areas. In agricultural areas, MTBE was detected i 8% (2 of 24) of wells and was not detected in undeveloped areas. Sixty-two percent of the MTBE detections in surficial aquifers were from wells within 0.25 mile of gasoline stations or underground gasoline storage tanks; all but one of these wells were in Connecticut and Massachusetts, where reformulated gasoline is used. MTBE was detected in 23% of deep domestic-supply wells that tapped fractured bedrock aquifers. MTBE was detected in bedrock wells only in Connecticut and Massachusetts; land use near the wells was suburban to rural, and none of the sampled bedrock wells were within 0.25 mile of a gasoline station

  16. Restoration of Wadi Aquifers by Artificial Recharge with Treated Waste Water

    KAUST Repository

    Missimer, Thomas M.

    2012-04-26

    Fresh water resources within the Kingdom of Saudi Arabia are a rare and precious commodity that must be managed within a context of integrated water management. Wadi aquifers contain a high percentage of the naturally occurring fresh groundwater in the Kingdom. This resource is currently overused and has become depleted or contaminated at many locations. One resource that could be used to restore or enhance the fresh water resources within wadi aquifers is treated municipal waste water (reclaimed water). Each year about 80 percent of the country\\'s treated municipal waste water is discharged to waste without any beneficial use. These discharges not only represent a lost water resource, but also create a number of adverse environmental impacts, such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge and recovery (ARR) systems that will be able to treat the impaired-quality water, store it until needed, and allow recovery of the water for transmittal to areas in demand. Full-engineered ARR systems can be designed at high capacities within wadi aquifer systems that can operate in concert with the natural role of wadis, while providing the required functions of additional treatment, storage and recovery of reclaimed water, while reducing the need to develop additional, energy-intensive desalination to meet new water supply demands. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  17. Restoration of wadi aquifers by artificial recharge with treated waste water.

    Science.gov (United States)

    Missimer, Thomas M; Drewes, Jörg E; Amy, Gary; Maliva, Robert G; Keller, Stephanie

    2012-01-01

    Fresh water resources within the Kingdom of Saudi Arabia are a rare and precious commodity that must be managed within a context of integrated water management. Wadi aquifers contain a high percentage of the naturally occurring fresh groundwater in the Kingdom. This resource is currently overused and has become depleted or contaminated at many locations. One resource that could be used to restore or enhance the fresh water resources within wadi aquifers is treated municipal waste water (reclaimed water). Each year about 80 percent of the country's treated municipal waste water is discharged to waste without any beneficial use. These discharges not only represent a lost water resource, but also create a number of adverse environmental impacts, such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge and recovery (ARR) systems that will be able to treat the impaired-quality water, store it until needed, and allow recovery of the water for transmittal to areas in demand. Full-engineered ARR systems can be designed at high capacities within wadi aquifer systems that can operate in concert with the natural role of wadis, while providing the required functions of additional treatment, storage and recovery of reclaimed water, while reducing the need to develop additional, energy-intensive desalination to meet new water supply demands. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  18. Obtaining Samples Representative of Contaminant Distribution in an Aquifer

    International Nuclear Information System (INIS)

    Schalla, Ronald; Spane, Frank A.; Narbutovskih, Susan M.; Conley, Scott F.; Webber, William D.

    2002-01-01

    Historically, groundwater samples collected from monitoring wells have been assumed to provide average indications of contaminant concentrations within the aquifer over the well-screen interval. In-well flow circulation, heterogeneity in the surrounding aquifer, and the sampling method utilized, however, can significantly impact the representativeness of samples as contaminant indicators of actual conditions within the surrounding aquifer. This paper identifies the need and approaches essential for providing cost-effective and technically meaningful groundwater-monitoring results. Proper design of the well screen interval is critical. An accurate understanding of ambient (non-pumping) flow conditions within the monitoring well is essential for determining the contaminant distribution within the aquifer. The ambient in-well flow velocity, flow direction and volumetric flux rate are key to this understanding. Not only do the ambient flow conditions need to be identified for preferential flow zones, but also the probable changes that will be imposed under dynamic conditions that occur during groundwater sampling. Once the in-well flow conditions are understood, effective sampling can be conducted to obtain representative samples for specific depth zones or zones of interest. The question of sample representativeness has become an important issue as waste minimization techniques such as low flow purging and sampling are implemented to combat the increasing cost of well purging and sampling at many hazardous waste sites. Several technical approaches (e.g., well tracer techniques and flowmeter surveys) can be used to determine in-well flow conditions, and these are discussed with respect to both their usefulness and limitations. Proper fluid extraction methods using minimal, (low) volume and no purge sampling methods that are used to obtain representative samples of aquifer conditions are presented

  19. Managed Aquifer Recharge (MAR in Sustainable Urban Water Management

    Directory of Open Access Journals (Sweden)

    Declan Page

    2018-02-01

    Full Text Available To meet increasing urban water requirements in a sustainable way, there is a need to diversify future sources of supply and storage. However, to date, there has been a lag in the uptake of managed aquifer recharge (MAR for diversifying water sources in urban areas. This study draws on examples of the use of MAR as an approach to support sustainable urban water management. Recharged water may be sourced from a variety of sources and in urban centers, MAR provides a means to recycle underutilized urban storm water and treated wastewater to maximize their water resource potential and to minimize any detrimental effects associated with their disposal. The number, diversity and scale of urban MAR projects is growing internationally due to water shortages, fewer available dam sites, high evaporative losses from surface storages, and lower costs compared with alternatives where the conditions are favorable, including water treatment. Water quality improvements during aquifer storage are increasingly being documented at demonstration sites and more recently, full-scale operational urban schemes. This growing body of knowledge allows more confidence in understanding the potential role of aquifers in water treatment for regulators. In urban areas, confined aquifers provide better protection for waters recharged via wells to supplement potable water supplies. However, unconfined aquifers may generally be used for nonpotable purposes to substitute for municipal water supplies and, in some cases, provide adequate protection for recovery as potable water. The barriers to MAR adoption as part of sustainable urban water management include lack of awareness of recent developments and a lack of transparency in costs, but most importantly the often fragmented nature of urban water resources and environmental management.

  20. The Marlborough Deep Wairau Aquifer sustainability review 2008 : isotopic indicators

    International Nuclear Information System (INIS)

    Morgenstern, U.; van der Raaij, R.W.; Trompetter, V.; McBeth, K.

    2008-01-01

    The Deep Wairau Aquifer (DWA) consists of several relatively thin water bearing layers at depths generally greater than 150 m separated by thick confining layers and was therefore thought to be relatively isolated from surface hydrological processes, with little pumping induced effects on spring flows and shallow aquifers. However, because the DWA partially underlies fully allocated shallower Southern Valleys Aquifers it is critical to understand the dynamics (recharge, flow) of the DWA. Recent aquifer testing revealed that the DWA is hydraulically linked to the Southern Valley Benmorven Aquifer and that most wells penetrating the DWA are hydraulically linked. The aquifers of the Wairau Plain are formed by a series of glacial and alluvial outwash deposits laid down by the Wairau River. Bore logs indicate that the aquifer contains thin water-bearing layers within the mixed strata. These layers come under artesian pressure towards the east. The Wairau Gravels are overlain by a sequence of glacial outwash and fluvial gravels interspersed with marine deposits. Immediately above the Wairau Gravels lies the Speargrass Formation consisting of poorly sorted glacial outwash gravels, sand and clay deposits. This formation has greater permeability than the Wairau Gravels. Above the Speargrass Formation lie highly permeable postglacial fluvial gravels, sand and silt deposits from the Wairau and tributary rivers known as the Rapaura Formation. Towards the coast, the alluvial gravels are overlain by marine and estuarine deposits of sand, silt and clay known as the Dillons Point Formation. Chemistry and isotope samples were analysed over time from various DWA wells to obtain information on changes in source and age of water with continued abstraction. All DWA water samples are tritium-free indicating that there is no young water influx yet intercepted by any of the sampled wells. Radiocarbon repeat measurements indicate that the water source is changing towards older water with

  1. Hydrogeology and water quality of the Dublin and Midville aquifer systems at Waynesboro, Burke County, Georgia, 2011

    Science.gov (United States)

    Gonthier, Gerard

    2013-01-01

    The hydrogeology and water quality of the Dublin and Midville aquifer systems were characterized in the City of Waynesboro area in Burke County, Georgia, based on geophysical and drillers’ logs, flowmeter surveys, a 24-houraquifer test, and the collection and chemical analysis of water samples in a newly constructed well. At the test site, the Dublin aquifer system consists of interlayered sands and clays between depths of 396 and 691 feet, and the Midville aquifer system consists of a sandy clay layer overlying a sand and gravel layer between depths of 728 and 936 feet. The new well was constructed with three screened intervals in the Dublin aquifer system and four screened intervals in the Midville aquifer system. Wellbore-flowmeter testing at a pumping rate of 1,000 gallons per minute indicated that 52.2 percent of the total flow was from the shallower Dublin aquifer system with the remaining 47.8 percent from the deeper Midville aquifer system. The lower part of the lower Midville aquifer (900 to 930 feet deep), contributed only 0.1 percent of the total flow. Hydraulic properties of the two aquifer systems were estimated using data from two wellbore-flowmeter surveys and a 24-hour aquifer test. Estimated values of transmissivity for the Dublin and Midville aquifer systems were 2,000 and 1,000 feet squared per day, respectively. The upper and lower Dublin aquifers have a combined thickness of about 150 feet and the horizontal hydraulic conductivity of the Dublin aquifer system averages 10 feet per day. The upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer have a combined thickness of about 210 feet, and the horizontal hydraulic conductivity of the Midville aquifer system averages 6 feet per day. Storage coefficient of the Dublin aquifer system, computed using the Theis method on water-level data from one observation well, was estimated to be 0.0003. With a thickness of about 150 feet, the specific storage of the Dublin aquifer

  2. Three-dimensional geologic model of the Arbuckle-Simpson aquifer, south-central Oklahoma

    Science.gov (United States)

    Faith, Jason R.; Blome, Charles D.; Pantea, Michael P.; Puckette, James O.; Halihan, Todd; Osborn, Noel; Christenson, Scott; Pack, Skip

    2010-01-01

    The Arbuckle-Simpson aquifer of south-central Oklahoma encompasses more than 850 square kilometers and is the principal water resource for south-central Oklahoma. Rock units comprising the aquifer are characterized by limestone, dolomite, and sandstones assigned to two lower Paleozoic units: the Arbuckle and Simpson Groups. Also considered to be part of the aquifer is the underlying Cambrian-age Timbered Hills Group that contains limestone and sandstone. The highly faulted and fractured nature of the Arbuckle-Simpson units and the variable thickness (600 to 2,750 meters) increases the complexity in determining the subsurface geologic framework of this aquifer. A three-dimensional EarthVision (Trademark) geologic framework model was constructed to quantify the geometric relationships of the rock units of the Arbuckle-Simpson aquifer in the Hunton anticline area. This 3-D EarthVision (Trademark) geologic framework model incorporates 54 faults and four modeled units: basement, Arbuckle-Timbered Hills Group, Simpson Group, and post-Simpson. Primary data used to define the model's 54 faults and four modeled surfaces were obtained from geophysical logs, cores, and cuttings from 126 water and petroleum wells. The 3-D framework model both depicts the volumetric extent of the aquifer and provides the stratigraphic layer thickness and elevation data used to construct a MODFLOW version 2000 regional groundwater-flow model.

  3. Potentiometric surfaces of the intermediate aquifer system, west-central Florida, May, 1993

    Science.gov (United States)

    Mularoni, R.A.

    1994-01-01

    The intermediate aquifer system underlies a 5000-sq-mi area including De Soto, Sarasota, Hardee, Manatee, and parts of Charlotte, Hillsborough, Highlands, and Polk Counties, Florida. It is overlain by the surf@cial aquifer system and underlain by the Floridan aquifer system. The potentiometric surface of the intermediate aquifer system was mapped by determining the altitude of water levels in a network of wells and represented on a map by contours that connect points of equal altitude. This map represents water-level conditions near the end of the spring dry season when ground- water withdrawals for agricultural use were high. The cumulative rainfall for the study area was 4.84 inches above normal for the period from June 1992 to May 1993. Hydrographs for selected wells indicated that the annual and seasonal fluctuations of the water levels were generally large (greater than 15 feet) in the central interior region where water demand for irrigation is high during the fall and spring. Seasonal fluctuations were smaller in the northern recharge area where water use is predominantly for public supply. Water levels measured in May 1993 for the composite intermediate aquifer potentiometric surface were lower than those measured in May or September 1992. A cone of depression exists in the potentiometric surface for the composite aquifer system at Warm Mineral Springs, which is a natural discharge point from this system.

  4. Recovery of energetically overexploited urban aquifers using surface water

    Science.gov (United States)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  5. Water withdrawals and trends from the Floridan aquifer system in the southeastern United States, 1950-2000

    Science.gov (United States)

    Marella, Richard L.; Berndt, Marian P.

    2005-01-01

    The Floridan aquifer system in the southeastern United States is one of the most productive aquifers in the world (Miller, 1990). This aquifer system underlies an area of about 100,000 square miles in southern Alabama, eastern and southern Georgia, southeastern Mississippi, southern South Carolina, and all of Florida. The Floridan aquifer system is the primary source of water for nearly 10 million people and supports agriculture, industry, and tourism throughout most of the region. In most areas, water from this aquifer is potable and needs very little treatment before use. However, in southern Florida (south of Lake Okeechobee), northwestern Florida and southern Alabama and Mississippi (Pensacola and westward), and eastern South Carolina, water in the aquifer system generally is not potable. The purpose of this report is to: Provide a general description of the Floridan aquifer system; Discuss water withdrawals by category for 2000; Highlight trends in water withdrawals between 1950 and 2000; and Provide a brief summary on the effects that human impacts have on the Floridan aquifer system.

  6. Transfer of subduction fluids into the deforming mantle wedge during nascent subduction: Evidence from trace elements and boron isotopes (Semail ophiolite, Oman)

    Science.gov (United States)

    Prigent, C.; Guillot, S.; Agard, P.; Lemarchand, D.; Soret, M.; Ulrich, M.

    2018-02-01

    The basal part of the Semail ophiolitic mantle was (de)formed at relatively low temperature (LT) directly above the plate interface during "nascent subduction" (the prelude to ophiolite obduction). This subduction-related LT deformation was associated with progressive strain localization and cooling, resulting in the formation of porphyroclastic to ultramylonitic shear zones prior to serpentinization. Using petrological and geochemical analyses (trace elements and B isotopes), we show that these basal peridotites interacted with hydrous fluids percolating by porous flow during mylonitic deformation (from ∼850 down to 650 °C). This process resulted in 1) high-T amphibole crystallization, 2) striking enrichments of minerals in fluid mobile elements (FME; particularly B, Li and Cs with concentrations up to 400 times those of the depleted mantle) and 3) peridotites with an elevated δ11B of up to +25‰. These features indicate that the metasomatic hydrous fluids are most likely derived from the dehydration of subducting crustal amphibolitic materials (i.e., the present-day high-T sole). The rapid decrease in metasomatized peridotite δ11B with increasing distance to the contact with the HT sole (to depleted mantle isotopic values in <1 km) suggests an intense interaction between peridotites and rapid migrating fluids (∼1-25 m.y-1), erasing the initial high-δ11B subduction fluid signature within a short distance. The increase of peridotite δ11B with increasing deformation furthermore indicates that the flow of subduction fluids was progressively channelized in actively deforming shear zones parallel to the contact. Taken together, these results also suggest that the migration of subduction fluids/melts by porous flow through the subsolidus mantle wedge (i.e., above the plate interface at sub-arc depths) is unlikely to be an effective mechanism to transport slab-derived elements to the locus of partial melting in subduction zones.

  7. Functioning of the Primary Aquifer Relating to the Maider Basin, Morocco: Case of the Ordovician aquifer.

    Science.gov (United States)

    Ben-said, E.; Boukdir, A.; Mahboub, A.; Younsi, A.; Zitouni, A.; Alili, L.; Ikhmerdi, H.

    2018-05-01

    The basin of Maider is limited northly by the vast ensemble Oriental Saghro-Ougnate, from the east by the Tafilalet plain, from the west by the oriental Jbel Bani, finally from the south and south-east by the Cretaceous Hamada of Kern-Kem. During last decades, groundwater in the basin of Maider, is confronting degradation in both cases: Quantitative and qualitative, as a result of the drought, the overexploitation and the salinization. The aim of this action research is to understand the current state of water resources in the area of stady. At the end of this work, we can get the following conclusions: the general flow of the ordovician aquifer is always directed from the north to the south-east of the basin by following the principal axes of the wadis:Taghbalt, Hssiya and Fezzou. The recharge of the aquifer is primarily done, either by the underground flow, or by the surface runoff of torrential waters from the upstream of Jbel Saghro. The piezometric anomaly noticed at the level of Ait Saàdane, explained by overexploitation linked to the needs of irrigation water. The physicochemical approach for the Maider basin identifies two essential factors of the salinisation of groundwater: the dissolution of the aquifer which is rich in minerals with high temperature on the one hand, and the decrease of the piezometric surface due to the overexploitation and drought on the other hand.

  8. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  9. Flow of river water into a Karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia

    International Nuclear Information System (INIS)

    Plummer, L.N.; Busenberg, E.; McConnell, J.B.; Drenkard, S.; Schlosser, P.; Michel, R.L.

    1998-01-01

    The quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl - , 3 H, tritiogenic helium-3 ( 3 He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O 2 (DO), H 2 S, CH 4 , δ 18 O, δD, and 14 C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl - , δ 18 O, δD, CFC-12, and the quantity ( 3 H+ 3 He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H 2 S, CH 4 , 14 C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl - and δ 18 O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water (δ 18 O=-2.5±0.3per thousand, Cl - =12.2±2 mg/l), (2) regional infiltration water (δ 18 O=-4.2±0.1per thousand, Cl - =2.3±0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer (δ 18 O=-3.4±0.1per thousand, Cl - =2.6±0.1 mg/l) (uncertainties are ±1σ). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to the N and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining beds overlying the Upper Floridan aquifer. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Flow of river water into a Karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, L.N.; Busenberg, E. [U.S. Geological Survey, 432 National Center, Reston, VA (United States); McConnell, J.B. [U.S. Geological Survey, 3039 Amwiler Rd., Atlanta, GA (United States); Drenkard, S.; Schlosser, P. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY (United States); Michel, R.L. [U.S. Geological Survey, Mail Stop 434, 345 Middlefield Road, Menlo Park, CA (United States)

    1998-11-01

    he quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl{sup -}, {sup 3}H, tritiogenic helium-3 ({sup 3}He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O{sub 2} (DO), H{sub 2}S, CH{sub 4}, {delta}{sup 18}O, {delta}D, and {sup 14}C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl{sup -}, {delta}{sup 18}O, {delta}D, CFC-12, and the quantity ({sup 3}H+{sup 3}He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H{sub 2}S, CH{sub 4}, {sup 14}C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl{sup -} and {delta}{sup 18}O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water ({delta}{sup 18}O=-2.5{+-}0.3per thousand, Cl{sup -}=12.2{+-}2 mg/l), (2) regional infiltration water ({delta}{sup 18}O=-4.2{+-}0.1per thousand, Cl{sup -}=2.3{+-}0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer ({delta}{sup 18}O=-3.4{+-}0.1per thousand, Cl{sup -}=2.6{+-}0.1 mg/l) (uncertainties are {+-}1{sigma}). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to theN and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining

  11. Estimating aquifer transmissivity from specific capacity using MATLAB.

    Science.gov (United States)

    McLin, Stephen G

    2005-01-01

    Historically, specific capacity information has been used to calculate aquifer transmissivity when pumping test data are unavailable. This paper presents a simple computer program written in the MATLAB programming language that estimates transmissivity from specific capacity data while correcting for aquifer partial penetration and well efficiency. The program graphically plots transmissivity as a function of these factors so that the user can visually estimate their relative importance in a particular application. The program is compatible with any computer operating system running MATLAB, including Windows, Macintosh OS, Linux, and Unix. Two simple examples illustrate program usage.

  12. Study of Aquifer Thermal Energy Storage

    Science.gov (United States)

    Okuyama, Masaaki; Umemiya, Hiromichi; Shibuya, Ikuko; Haga, Eiji

    Yamagata University 'Aquifer Thermal Energy Storage (ATES)' is the experimental system which has been running since 1982. From the results for along terms of experiments, we obtain many important knowledge. This paper presents the accomplishments for 16 years and the characteristics of thermal energy storage in thermal energy storage well. The conclusions show as follows. 1)In recent years, the thermal recovery factor of warm energy storage well becomes almost constant at about 60%. 2) The thermal recovery factor of cool energy storage well increases gradually and becomes at about 15%. 3) Since the ferric colloidal dam is formed in aquifer, thermal recovery factor increase year after year. 4) Back wash can remove clogging for ferric colloidal dam. 5) The apparent thermal diffusivity decrease gradually due to ferric colloidal dam.

  13. Aquifer thermal energy storage in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Iihola, H; Ala-Peijari, T; Seppaenen, H

    1988-01-01

    The rapid changes and crises in the field of energy during the 1970s and 1980s have forced us to examine the use of energy more critically and to look for new ideas. Seasonal aquifer thermal energy storage (T < 100/sup 0/C) on a large scale is one of the grey areas which have not yet been extensively explored. However, projects are currently underway in a dozen countries. In Finland there have been three demonstration projects from 1974 to 1987. International co-operation under the auspices of the International Energy Agency, Annex VI, 'Environmental and Chemical Aspects of Thermal Energy Storage in Aquifers and Research and Development of Water Treatment Methods' started in 1987. The research being undertaken in 8 countries includes several elements fundamental to hydrochemistry and biochemistry.

  14. Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA)

    Science.gov (United States)

    Langston, Abigail L.; Screaton, Elizabeth J.; Martin, Jonathan B.; Bailly-Comte, Vincent

    2012-06-01

    The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.

  15. Variable exchange between a stream and an aquifer in the Rio Grande Project Area

    Science.gov (United States)

    Sheng, Z.; Abudu, S.; Michelsen, A.; King, P.

    2016-12-01

    Both surface water and groundwater in the Rio Grande Project area in southern New Mexico and Far West Texas have been stressed by natural conditions such as droughts and human activities, including urban development and agricultural irrigation. In some area pumping stress in the aquifer becomes so great that it depletes the river flow especially during the irrigation season, typically from March through October. Therefore understanding such relationship between surface water and groundwater becomes more important in regional water resources planning and management. In this area, stream flows are highly regulated by the upstream reservoirs during the irrigation season and greatly influenced by return flows during non-irrigation season. During a drought additional groundwater pumping to supplement surface water shortage further complicates the surface water and groundwater interaction. In this paper the authors will use observation data and results of numerical models (MODFLOW) to characterize and quantify hydrological exchange fluxes between groundwater in the aquifers and surface water as well as impacts of groundwater pumping. The interaction shows a very interesting seasonal variation (irrigation vs. non-irrigation) as well as impact of a drought. Groundwater has been pumped for both municipal supplies and agricultural irrigation, which has imposed stresses toward both stream flows and aquifer storage. The results clearly show that historic groundwater pumping has caused some reaches of the river change from gaining stream to losing stream. Beyond the exchange between surface water and groundwater in the shallow aquifer, groundwater pumping in a deep aquifer could also enhance the exchanges between different aquifers through leaky confining layers. In the earlier history of pumping, pumping from the shallow aquifer is compensated by simple depletion of surface water, while deep aquifer tends to use the aquifer storage. With continued pumping, the cumulative

  16. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    Science.gov (United States)

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, “Southwest”) since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality.The synthesis consists of three major components:1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report).2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants.3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination.Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in

  17. The ophiolite massif of Kahnuj (western Makran, Southern Iran): new geological and geochronological data; Le massif ophiolitique de Kahnuj (Makran occidental, Iran meridional): nouvelles donnees geologiques et geochronologiques

    Energy Technology Data Exchange (ETDEWEB)

    Kananian, A. [University of Tarbiat Modarress, Geological Dept., Faculty of Science, Teheran (Iran, Islamic Republic of); Juteau, Th.; Bellon, H. [Universite de Bretagne Occidentale, IUEM, 29 - Brest (France); Darvishzadeh, A. [University of Teheran, Geological Dept., Faculty of Science, Teheran (Iran, Islamic Republic of); Sabzehi, M. [Geological Survey of Iran, Teheran (Iran, Islamic Republic of); Whitechurch, H. [Universite Louis Pasteur, EOST, Institut de Physique du Globe, 67 - Strasbourg (France); Ricou, L.E. [Institut de Physique du Globe, 75 - Paris (France)

    2001-05-01

    The ophiolite massif of Kahnuj (600 km{sup 2}) consists, from bottom to top, of layered gabbros, isotropic gabbros and ouralite gabbros, agmatites of dioritic to plagio-granitic composition, a sheeted dyke complex and lastly a basaltic pillow lava unit. Amphiboles from gabbros were dated ({sup 40}K-{sup 40}Ar ages) between 156 and 139 Ma and the agmatites are nearly contemporaneous. Potassic granitic veins dated at 93-88 Ma are related to the development of the Ganj arc complex. (authors)

  18. Volcanic aquifers of Hawai‘i—Hydrogeology, water budgets, and conceptual models

    Science.gov (United States)

    Izuka, Scot K.; Engott, John A.; Rotzoll, Kolja; Bassiouni, Maoya; Johnson, Adam G.; Miller, Lisa D.; Mair, Alan

    2016-06-13

    Hawai‘i’s aquifers have limited capacity to store fresh groundwater because each island is small and surrounded by saltwater. Saltwater also underlies much of the fresh groundwater. Fresh groundwater resources are, therefore, particularly vulnerable to human activity, short-term climate cycles, and long-term climate change. Availability of fresh groundwater for human use is constrained by the degree to which the impacts of withdrawal—such as lowering of the water table, saltwater intrusion, and reduction in the natural discharge to springs, streams, wetlands, and submarine seeps—are deemed acceptable. This report describes the hydrogeologic framework, groundwater budgets (inflows and outflows), conceptual models of groundwater occurrence and movement, and the factors limiting groundwater availability for the largest and most populated of the Hawaiian Islands—Kaua‘i, O‘ahu, Maui, and Hawai‘i Island.The bulk of each of Hawai‘i’s islands is built of many thin lava flows erupted from shield volcanoes; the great piles of lava flows form highly permeable aquifers. In some areas, low-permeability dikes cutting across the lava flows, or low-permeability ash and soil horizons interlayered with the lava flows, can substantially alter groundwater flow. On some islands, sedimentary rocks form thick semiconfining coastal-plain deposits, locally known as caprock, that impede natural groundwater discharge to the ocean. In some regions, thick lava flows that ponded in preexisting depressions form aquifers that are much less permeable than aquifers formed by thin lava flows.Fresh groundwater inflow to Hawai‘i’s aquifers comes from recharge. For predevelopment conditions (1870), estimates of groundwater recharge from this study are 871, 675, 1,279, and 5,291 million gallons per day (Mgal/d) for Kaua‘i, O‘ahu, Maui, and Hawai‘i Island, respectively. Estimates of recharge for recent conditions (2010 land cover and 1978–2007 rainfall for Kaua‘i, O

  19. Revised hydrogeologic framework of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    Science.gov (United States)

    Williams, Lester J.; Kuniansky, Eve L.

    2015-04-08

    The hydrogeologic framework for the Floridan aquifer system has been revised throughout its extent in Florida and parts of Georgia, Alabama, and South Carolina. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s, except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual higher and contrasting lower permeability zones within these aquifers. The system behaves as one aquifer over much of its extent; although subdivided vertically into two aquifer units, the Upper and Lower Floridan aquifers. In the previous framework, discontinuous numbered middle confining units (MCUI–VII) were used to subdivide the system. In areas where less-permeable rocks do not occur within the middle part of the system, the system was previously considered one aquifer and named the Upper Floridan aquifer. In intervening years, more detailed data have been collected in local areas, resulting in some of the same lithostratigraphic units in the Floridan aquifer system being assigned to the Upper or Lower Floridan aquifer in different parts of the State of Florida. Additionally, some of the numbered middle confining units are found to have hydraulic properties within the same order of magnitude as the aquifers. A new term “composite unit” is introduced for lithostratigraphic units that cannot be defined as either a confining or aquifer unit over their entire extent. This naming convention is a departure from the previous framework, in that stratigraphy is used to consistently subdivide the aquifer system into upper and lower aquifers across the State of Florida. This lithostratigraphic mapping approach does not change the concept of flow within the system. The revised boundaries of the Floridan aquifer system were mapped by considering results from local studies and regional correlations of lithostratigraphic and hydrogeologic units or zones. Additional zones within

  20. Evaluation of long-term water-level declines in basalt aquifers near Mosier, Oregon

    Science.gov (United States)

    Burns, Erick R.; Morgan, David S.; Lee, Karl K.; Haynes, Jonathan V.; Conlon, Terrence D.

    2012-01-01

    The Mosier area lies along the Columbia River in northwestern Wasco County between the cities of Hood River and The Dalles, Oregon. Major water uses in the area are irrigation, municipal supply for the city of Mosier, and domestic supply for rural residents. The primary source of water is groundwater from the Columbia River Basalt Group (CRBG) aquifers that underlie the area. Concerns regarding this supply of water arose in the mid-1970s, when groundwater levels in the orchard tract area began to steadily decline. In the 1980s, the Oregon Water Resources Department (OWRD) conducted a study of the aquifer system, which resulted in delineation of an administrative area where parts of the Pomona and Priest Rapids aquifers were withdrawn from further appropriations for any use other than domestic supply. Despite this action, water levels continued to drop at approximately the same, nearly constant annual rate of about 4 feet per year, resulting in a current total decline of between 150 and 200 feet in many wells with continued downward trends. In 2005, the Mosier Watershed Council and the Wasco Soil and Water Conservation District began a cooperative investigation of the groundwater system with the U.S. Geological Survey. The objectives of the study were to advance the scientific understanding of the hydrology of the basin, to assess the sustainability of the water supply, to evaluate the causes of persistent groundwater-level declines, and to evaluate potential management strategies. An additional U.S. Geological Survey objective was to advance the understanding of CRBG aquifers, which are the primary source of water across a large part of Oregon, Washington, and Idaho. In many areas, significant groundwater level declines have resulted as these aquifers were heavily developed for agricultural, municipal, and domestic water supplies. Three major factors were identified as possible contributors to the water-level declines in the study area: (1) pumping at rates that

  1. Groundwater vulnerability assessment in karstic aquifers using COP method.

    Science.gov (United States)

    Bagherzadeh, Somayeh; Kalantari, Nasrollah; Nobandegani, Amir Fadaei; Derakhshan, Zahra; Conti, Gea Oliveri; Ferrante, Margherita; Malekahmadi, Roya

    2018-05-02

    Access to safe and reliable drinking water is amongst the important indicators of development in each society, and water scarcity is one of the challenges and limitations affecting development at national and regional levels and social life and economic activity areas. Generally, there are two types of drinking water sources: the first type is surface waters, including lakes, rivers, and streams and the second type is groundwaters existing in aquifers. Amongst aquifers, karst aquifers play an important role in supplying water sources of the world. Therefore, protecting these aquifers from pollution sources is of paramount importance. COP method is amongst the methods to investigate the intrinsic vulnerability of this type of aquifers, so that areas susceptible to contamination can be determined before being contaminated and these sources can be protected. In the present study, COP method was employed in order to spot the regions that are prone to contamination in the region. This method uses the properties of overlying geological layers above the water table (O factor), the concentration of flow (C factor), and precipitation (P factor) over the aquifer, as the parameters to assess the intrinsic vulnerability of groundwater resources. In this regard, geographical information system (GIS) and remote sensing (RS) were utilized to prepare the mentioned factors and the intrinsic vulnerability map was obtained. The results of COP method indicated that the northwest and the west of the region are highly and very vulnerable. This study indicated that regions with low vulnerability were observed in eastern areas, which accounted for 15.6% of the area. Moderate vulnerability was 40% and related to the northeast and southeast of the area. High vulnerability was 38.2% and related to western and southwestern regions. Very high vulnerability was 6.2% and related to the northwest of the area. By means of the analysis of sensitivity of the model, it was determined that the focus

  2. Flow Generated by a Partially Penetrating Well in a Leaky Two-Aquifer System with a Storative Semiconfining Layer

    Science.gov (United States)

    Sepulveda, N.; Rohrer, K.

    2008-05-01

    The permeability of the semiconfining layers of the highly productive Floridan Aquifer System may be large enough to invalidate the assumptions of the leaky aquifer theory. These layers are the intermediate confining and the middle semiconfining units. The analysis of aquifer-test data with analytical solutions of the ground-water flow equation developed with the approximation of a low hydraulic conductivity ratio between the semiconfining layer and the aquifer may lead to inaccurate hydraulic parameters. An analytical solution is presented here for the flow in a confined leaky aquifer, the overlying storative semiconfining layer, and the unconfined aquifer, generated by a partially penetrating well in a two-aquifer system, and allowing vertical and lateral flow components to occur in the semiconfining layer. The equations describing flow caused by a partially penetrating production well are solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Analysis of the drawdown data from an aquifer test performed in central Florida showed that the flow solution presented here for the semiconfining layer provides a better match and a more unique identification of the hydraulic parameters than an analytical solution that considers only vertical flow in the semiconfining layer.

  3. Heat storage in the Hettangian aquifer in Berlin - results from a column experiment

    Science.gov (United States)

    Milkus, Chri(Sch)augott

    2015-04-01

    Aquifer Thermal Energy Storage (ATES) is a sustainable alternative for storage and seasonal availability of thermal energy. However, its impact on the subsurface flow regime is not well known. In Berlin (Germany), the Jurassic (Hettangian) sandstone aquifer with highly mineralized groundwater (TDS 27 g/L) is currently used for heat storage. The aim of this study was to examine the hydrogeochemical changes that are caused by the induced temperature shift and its effects on the hydraulic permeability of the aquifer. Column experiments were conducted, in which stainless steel columns were filled with sediment from the aquifer and flushed with native groundwater for several weeks. The initial temperature of the experiment was 20°C, comparable to the in-situ conditions within the aquifer. After reaching equilibrium between sediment and water, the temperature was increased to simulate heating of the aquifer. During the experiment, physical and chemical parameters (pH, ORP, dissolved oxygen and dissolved carbon dioxide) were measured at the outflow of the column and the effluent water was sampled. Using a Scanning Electron Microscope, the deposition of precipitated minerals and biofilm on sediment grains was analyzed. Changes in hydraulic properties of the sediment were studied by the use of tracer tests with Uranin.

  4. Assessment of groundwater recharge and water fluxes of the Guarani Aquifer System, Brazil

    Science.gov (United States)

    Rabelo, Jorge Luiz; Wendland, Edson

    2009-11-01

    The groundwater recharge and water fluxes of the Guarani Aquifer System in the state of Sao Paulo in Brazil were assessed through a numeric model. The study area (6,748 km2) comprises Jacaré-Guaçú and Jacaré-Pepira River watersheds, tributaries of the Tietê River in the central region of the state. GIS based tools were used in the storage, processing and analysis of data. Main hydrologic phenomena were selected, leading to a groundwater conceptual model, taking into account the significant outcrops occurring in the study area. Six recharge zones were related to the geologic formation and structures of the semi-confined and phreatic aquifer. The model was calibrated against the baseflows and static water levels of the wells. The results emphasize the strong interaction of groundwater flows between watersheds and the groundwater inflow into the rivers. It has been concluded that lateral groundwater exchanges between basins, the deep discharges to the regional system, and well exploitation were not significant aquifer outflows when compared to the aquifer recharge. The results have shown that the inflows from the river into the aquifer are significant and have the utmost importance since the aquifer is potentially more vulnerable in these places.

  5. Review: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA

    Science.gov (United States)

    Gurdak, Jason J.; Roe, Cassia D.

    2010-12-01

    Playas are ephemeral, closed-basin wetlands that are hypothesized as an important source of recharge to the High Plains aquifer in central USA. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on groundwater from the High Plains aquifer has prompted many questions regarding the contribution and quality of recharge from playas to the High Plains aquifer. As a result, there has been considerable scientific debate about the potential for water to infiltrate the relatively impermeable playa floors, travel through the unsaturated zone sediments that are tens of meters thick, and subsequently recharge the High Plains aquifer. This critical review examines previously published studies on the processes that control recharge rates and chemistry beneath playas. Reported recharge rates beneath playas range from less than 1.0 to more than 500 mm/yr and are generally 1-2 orders of magnitude higher than recharge rates beneath interplaya settings. Most studies support the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this review provide science-based implications for management of playas and groundwater resources of the High Plains aquifer and directions for future research.

  6. Fate of N-nitrosodimethylamine in recycled water after recharge into anaerobic aquifer.

    Science.gov (United States)

    Patterson, B M; Pitoi, M M; Furness, A J; Bastow, T P; McKinley, A J

    2012-03-15

    Laboratory and field experiments were undertaken to assess the fate of N-nitrosodimethylamine (NDMA) in aerobic recycled water that was recharged into a deep anaerobic pyritic aquifer, as part of a managed aquifer recharge (MAR) strategy. Laboratory studies demonstrated a high mobility of NDMA in the Leederville aquifer system with a retardation coefficient of 1.1. Anaerobic degradation column and (14)C-NDMA microcosm studies showed that anaerobic conditions of the aquifer provided a suitable environment for the biodegradation of NDMA with first-order kinetics. At microgram per litre concentrations, inhibition of biodegradation was observed with degradation half-lives (260±20 days) up to an order of magnitude greater than at nanogram per litre concentrations (25-150 days), which are more typical of environmental concentrations. No threshold effects were observed at the lower ng L(-1) concentrations with NDMA concentrations reduced from 560 ng L(-1) to recharge bore. These microcosm experiments showed a faster degradation rate than anaerobic microcosms, with a degradation half-life of 8±2 days, after a lag period of approximately 10 days. Results from a MAR field trial recharging the Leederville aquifer with aerobic recycled water showed that NDMA concentrations reduced from 2.5±1.0 ng L(-1) to 1.3±0.4 ng L(-1) between the recharge bore and a monitoring location 20 m down gradient (an estimated aquifer residence time of 10 days), consistent with data from the aerobic microcosm experiment. Further down gradient, in the anaerobic zone of the aquifer, NDMA degradation could not be assessed, as NDMA concentrations were too close to their analytical detection limit (<1 ng L(-1)). Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  7. Time scales of DNAPL migration in sandy aquifers examined via numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, J.I.; Pang, T.; Kueper, B.H. [University of Edinburgh, Edinburgh (United Kingdom). Inst. of Infrastructure & Environmental

    2007-03-15

    The time required for dense nonaqueous phase liquid (DNAPL) to cease migrating following release to the subsurface is a valuable component of a site conceptual model. This study uses numerical simulation to investigate the migration of six different DNAPLs in sandy aquifers. The most influential parameters governing migration cessation time are the density and viscosity of the DNAPL and the mean hydraulic conductivity of the aquifer. Releases of between 1 and 40 drums of chlorinated solvent DNAPLs, characterized by relatively high density and low viscosity, require on the order of months to a few years to cease migrating in a heterogeneous medium sand aquifer having an average hydraulic conductivity of 7.4 x 10{sup -3} cm/s. In contrast to this, the release of 20 drums of coal tar {rho}{sub D} = 1061 kg/m{sup 3}, {mu}{sub D} = 0.161 Pa(.)s) requires more than 100 years to cease migrating in the same aquifer. Altering the mean hydraulic conductivity of the aquifer results in a proportional change in cessation times. Parameters that exhibit relatively little influence on migration time scales are the DNAPL-water interfacial tension, release volume, source capillary pressure, mean aquifer porosity, and ambient ground water hydraulic gradient. This study also demonstrates that low-density DNAPLs (e.g., coal tar) give rise to greater amounts of lateral spreading and greater amounts of pooling on capillary barriers than high-density DNAPLs such as trichloroethylene or tetrachloroethylene.

  8. Fate and origin of 1,2-dichloropropane in an unconfined shallow aquifer.

    Science.gov (United States)

    Tesoriero, A J; Löffler, F E; Liebscher, H

    2001-02-01

    A shallow aquifer with different redox zones overlain by intensive agricultural activity was monitored for the occurrence of 1,2-dichloropropane (DCP) to assess the fate and origin of this pollutant. DCP was detected more frequently in groundwater samples collected in aerobic and nitrate-reducing zones than those collected from iron-reducing zones. Simulated DCP concentrations for groundwater entering an iron-reducing zone were calculated from a fate and transport model that included dispersion, sorption, and hydrolysis but not degradation. Simulated concentrations were well in excess of measured values, suggesting that microbial degradation occurred in the iron-reducing zone. Microcosm experiments were conducted using aquifer samples collected from iron-reducing and aerobic zones to evaluate the potential for microbial degradation of DCP and to explain field observations. Hydrogenolysis of DCP and production of monochlorinated propanes in microcosm experiments occurred only with aquifer materials collected from the iron-reducing zone, and no dechlorination was observed in microcosms established with aquifer materials collected from the aerobic zones. Careful analyses of the DCP/1,2,2-trichloropropane ratios in groundwater indicated that older fumigant formulations were responsible for the high levels of DCP present in this aquifer.

  9. Quantifying the energy required for groundwater pumping across a regional aquifer system

    Science.gov (United States)

    Ronayne, M. J.; Shugert, D. T.

    2017-12-01

    Groundwater pumping can be a substantial source of energy expenditure, particularly in semiarid regions with large depths to water. In this study we assessed the energy required for groundwater pumping in the Denver Basin aquifer system, a group of sedimentary rock aquifers used for municipal water supply in Colorado. In recent decades, declining water levels in the Denver Basin aquifers has resulted in increased pumping lifts and higher energy use rates. We quantified the spatially variable energy intensity for groundwater pumping by analyzing spatial variations in the lift requirement. The median energy intensities for two major aquifers were 1.2 and 1.8 kWh m-3. Considering typical municipal well production rates and household water use in the study area, these results indicate that the energy cost associated with groundwater pumping can be a significant fraction (>20%) of the total electricity consumption for all household end uses. Pumping at this scale (hundreds of municipal wells producing from deep aquifers) also generates substantial greenhouse gas emissions. Analytical wellfield modeling conducted as part of this study clearly demonstrates how multiple components of the lift impact the energy requirement. Results provide guidance for water management strategies that reduce energy expenditure.

  10. Aquifer Treatment of Sea Water to Remove Natural Organic Matter Before Desalination

    KAUST Repository

    Dehwah, Abdullah

    2016-10-18

    An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.

  11. Aquifer Treatment of Sea Water to Remove Natural Organic Matter Before Desalination

    KAUST Repository

    Dehwah, Abdullah; Almashharawi, Samir; Ng, Kim Choon; Missimer, Thomas M.

    2016-01-01

    An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.

  12. Relationship of regional water quality to aquifer thermal energy storage

    International Nuclear Information System (INIS)

    Allen, R.D.; Raymond, J.R.

    1990-01-01

    Aquifer thermal energy storage (ATES) involves injection and withdrawal of temperature-conditioned water into and from a permeable water-bearing formation. The groundwater quality and associated geological characteristics were assessed as they may affect the feasibility of ATES system development in any hydrologic region. Seven physical and chemical mechanisms may decrease system efficiency: particulate plugging, chemical precipitation, clay mineral dispersion, piping corrosion, aquifer disaggregation, mineral oxidation, and the proliferation of biota. Factors affecting groundwater quality are pressure, temperature, pH, ion exchange, evaporation/transpiration, and commingling with diverse waters. Modeling with the MINTEQ code showed three potential reactions: precipitation of calcium carbonate at raised temperatures; solution of silica at raised temperature followed by precipitation at reduced temperatures; and oxidation/precipitation of iron compounds. Low concentrations of solutes are generally favorable for ATES. Near-surface waters in high precipitation regions are low in salinity. Groundwater recharged from fresh surface waters also has reduced salinity. Rocks least likely to react with groundwater are siliceous sandstones, regoliths, and metamorphic rocks. On the basis of known aquifer hydrology, ten US water resource regions are candidates for selected exploration and development, all characterized by extensive silica-rich aquifers

  13. Estimates of the relative specific yield of aquifers from geo-electrical ...

    African Journals Online (AJOL)

    This paper discusses a method of estimating aquifer specific yield based on surface resistivity sounding measurements supplemented with data on water conductivity. The practical aim of the method is to suggest a parallel low cost method of estimating aquifer properties. The starting point is the Archie's law, which relates ...

  14. Water-table altitude of the unconfined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  15. Potentiometric-surface altitude of the confined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  16. Climate change and Mediterranean coastal karst aquifers: the case of Salento (southern Italy)

    OpenAIRE

    Polemio, M.; Romanazzi, A.

    2014-01-01

    Second half of the 20th century was characterized by an increase of groundwater discharge. Numerous aquifers are overexploited in the world and in particular in the Mediterranean area. Problems tie to overexploitation, as piezometric decline and increase of seawater intrusion, are amplified in karst coastal aquifers where the whole effect could be a groundwater quality and quantity degradation. Focusing on Mediterranean countries, most part of coastal aquifers of Spain, France, Portugal, S...

  17. The Transboundary Aquifer Management Challenge: Linking Landscape Patterns and Groundwater Nitrate Concentrations in the Abbotsford-Sumas Aquifer, USA/Canada

    Science.gov (United States)

    Gallagher, T.; Gergel, S. E.

    2015-12-01

    Changes in land use and landscape pattern can have an array of impacts on aquatic systems, including impacts which span international waters and borders. Globally, agricultural land use patterns and practices are among the factors responsible for elevated nitrate concentrations in groundwater aquifers. Coordination of landscape monitoring across trans-boundary aquifers is needed to monitor and address contamination issues as landscape patterns can vary widely among different political jurisdictions. Landscape indicators, which quantify the amount and arrangement of land cover (such as proportion and abundance of land cover types), are one such way to improve our understanding of cross-border aquatic system interactions. In Western North America, the Abbotsford-Sumas Aquifer (ASA) spans the US-Canada border and provides drinking water for over 100,000 people. Intensive agriculture combined with high precipitation and well-drained soils make this aquifer susceptible to nitrate leaching. To understand how landscape patterns influence nitrate concentrations, we ask: Which landscape indicators correlate most strongly with elevated nitrate concentrations? A seamless cross-border land cover mosaic was created by harmonizing a variety of US and Canadian geodata. Auxiliary high spatial resolution imagery (e.g., 5m RapidEye and historical Google Earth) were used to quantify fine-scale landscape features (such as number of farm field renovations) with suspected mechanistic links to nitrate sources. We examined groundwater nitrate concentrations in shallow wells (screens Environment Canada. Surrounding each well, terrestrial zones of influence (aligned with the directional flow of groundwater) were delineated within which landscape patterns were characterized. Multiple regression was used to compare the strength of relationships between land use practices and nitrate concentrations. Preliminary results show strong positive correlations between area of raspberry renovations and

  18. Tubular wells perforation manual for investigation and training of Guarani Aquifer System

    International Nuclear Information System (INIS)

    2007-01-01

    The Environmental protection and sustainable development of the Aquifer Guarani System project is a initiative by Argentina, Brasil, Paraguay y Uruguay with the aim to raise the knowledge, legal and institutional sustainable management from 2003-2008 period. The Guarani consortium integrated by Tahal Engineers Ltda.(Israel), SEINCO SRL. (Uruguay), Hidrocontrol S:A:(Paraguay), Arcadis Hidroambiente S.A. (Argentina) have shown in Tubular wells perforation for investigation and training of Guarani Aquifer System manual their first product. This Manual includes technical especifications focused in Guarani Aquifer System harmessing building

  19. Characterization of an island aquifer from tidal response

    Science.gov (United States)

    Banerjee, Pallavi; Sarwade, Deepak; Singh, V. S.

    2008-08-01

    Growing demand for potable water for various needs has lead to indiscriminate exploitation of groundwater resources, particularly, in the terrain where surface water resources are negligible. One such area is an island where groundwater is the only source of fresh water. Groundwater is the prime source of fresh water on most of the atolls in the world. Groundwater on these islands is in the form of thin fragile floating lens and is often vulnerable to overexploitation, draught, tidal waves, tsunami and cyclone resulting in seawater ingress. Sustainable development of this meager source of fresh groundwater for a longer time becomes a more difficult task on small atolls with a large population depending on this vital resource. To develop a sustainable management scheme and identify the vulnerable part of aquifer, characterization of the aquifer system on islands is imperative. Groundwater on an atoll is extremely vulnerable to seawater mixing through natural as well as human activities. One such natural process is the tides of the ocean. The response of sea tide to the water table on the island offers valuable data as well as cost-effective means to characterize an aquifer system. Such characterization is vital for the management of groundwater resources on an atoll. The obtained results have compared well with the parameters obtained through a conventional pumping test. Therefore, the use of tidal response to the water table, which can easily be recorded, provides a rapid and cost-effective means to characterization of the aquifer system on the island.

  20. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-12-01

    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  1. Hydrogeological and quantitative groundwater assessment of the Basaltic Aquifer, Northern Harrat Rahat, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Shaibani, A.; Abokhodair, Abdulwahab A.; Lloyd, J.W.; Al-Ahmari, A.

    2007-01-01

    The Northern Harrat Rahat consists of 300m basalt lavas covering some 2000 km2 to the south-east of Al-Madinah in western Saudi Arabia. Like many basalt sequences, the Rahat basalts form an important aquifer and groundwater resource. The aquifer has a saturated thickness of up to 60m and made up of the weathered upper part of underlying basement, pre-basalt sands and gravels and the fractured basalts. Since 1992, groundwater has been abstracted from the aquifer as part of the Al-Madinah water supply. To assess the potential of the aquifer an assessment has been made based on pumping tests of 70 wells. The hydraulic parameters have been shown to be highly variable typical of the fractured domain. The aquifer contains good-quality water in storage, but receives limited recharge. Groundwater temperature anomalies indicate remnant volcanic activity locally. A numerical groundwater model has been constructed, which has been calibrated using limited groundwater head measurements, but with good abstraction records. Prediction of groundwater heads and the examination of several abstraction scenarios indicate that the aquifer can continue to support part of the Al-Madinah demand for the next several years, if certain well distributions are adopted. The predictions also show that the aquifer can only support the total demand of the city for a few days as a contingency resource. (author)

  2. Carbon-14 measurements in aquifers with methane

    International Nuclear Information System (INIS)

    Barker, J.F.; Fritz, P.; Brown, R.M.

    1979-01-01

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta 13 Csub(CH 4 )>-45 per mille and microbially produced or biogenic methane had delta 13 Csub(CH 4 ) 13 C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14 C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14 C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14 C activity. The adjusted groundwater ages can be explained in terms of the complex hydrogeology of this aquifer, but also indicate that these conceptual models must be more rigorously tested to evaluate their appropriateness. (author)

  3. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  4. Information content of slug tests for estimating hydraulic properties in realistic, high-conductivity aquifer scenarios

    Science.gov (United States)

    Cardiff, Michael; Barrash, Warren; Thoma, Michael; Malama, Bwalya

    2011-06-01

    SummaryA recently developed unified model for partially-penetrating slug tests in unconfined aquifers ( Malama et al., in press) provides a semi-analytical solution for aquifer response at the wellbore in the presence of inertial effects and wellbore skin, and is able to model the full range of responses from overdamped/monotonic to underdamped/oscillatory. While the model provides a unifying framework for realistically analyzing slug tests in aquifers (with the ultimate goal of determining aquifer properties such as hydraulic conductivity K and specific storage Ss), it is currently unclear whether parameters of this model can be well-identified without significant prior information and, thus, what degree of information content can be expected from such slug tests. In this paper, we examine the information content of slug tests in realistic field scenarios with respect to estimating aquifer properties, through analysis of both numerical experiments and field datasets. First, through numerical experiments using Markov Chain Monte Carlo methods for gauging parameter uncertainty and identifiability, we find that: (1) as noted by previous researchers, estimation of aquifer storage parameters using slug test data is highly unreliable and subject to significant uncertainty; (2) joint estimation of aquifer and skin parameters contributes to significant uncertainty in both unless prior knowledge is available; and (3) similarly, without prior information joint estimation of both aquifer radial and vertical conductivity may be unreliable. These results have significant implications for the types of information that must be collected prior to slug test analysis in order to obtain reliable aquifer parameter estimates. For example, plausible estimates of aquifer anisotropy ratios and bounds on wellbore skin K should be obtained, if possible, a priori. Secondly, through analysis of field data - consisting of over 2500 records from partially-penetrating slug tests in a

  5. Arsenic release from shallow aquifers of the Hetao basin, Inner Mongolia: evidence from bacterial community in aquifer sediments and groundwater.

    Science.gov (United States)

    Li, Yuan; Guo, Huaming; Hao, Chunbo

    2014-12-01

    Indigenous microbes play crucial roles in arsenic mobilization in high arsenic groundwater systems. Databases concerning the presence and the activity of microbial communities are very useful in evaluating the potential of microbe-mediated arsenic mobilization in shallow aquifers hosting high arsenic groundwater. This study characterized microbial communities in groundwaters at different depths with different arsenic concentrations by DGGE and one sediment by 16S rRNA gene clone library, and evaluated arsenic mobilization in microcosm batches with the presence of indigenous bacteria. DGGE fingerprints revealed that the community structure changed substantially with depth at the same location. It indicated that a relatively higher bacterial diversity was present in the groundwater sample with lower arsenic concentration. Sequence analysis of 16S rRNA gene demonstrated that the sediment bacteria mainly belonged to Pseudomonas, Dietzia and Rhodococcus, which have been widely found in aquifer systems. Additionally, NO3(-)-reducing bacteria Pseudomonas sp. was the largest group, followed by Fe(III)-reducing, SO4(2-)-reducing and As(V)-reducing bacteria in the sediment sample. These anaerobic bacteria used the specific oxyanions as electron acceptor and played a significant role in reductive dissolution of Fe oxide minerals, reduction of As(V), and release of arsenic from sediments into groundwater. Microcosm experiments, using intact aquifer sediments, showed that arsenic release and Fe(III) reduction were microbially mediated in the presence of indigenous bacteria. High arsenic concentration was also observed in the batch without amendment of organic carbon, demonstrating that the natural organic matter in sediments was the potential electron donor for microbially mediated arsenic release from these aquifer sediments.

  6. Glacial recharge, salinisation and anthropogenic contamination in the coastal aquifers of Recife (Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Chatton, E., E-mail: eliot.chatton@gmail.com [Géosciences Rennes, Université Rennes 1-CNRS, UMR 6118, adress: 263 av du général Leclerc, Campus de Beaulieu, bat 15, 35042 Rennes Cedex (France); Aquilina, L., E-mail: luc.aquilina@univ-rennes1.fr [Géosciences Rennes, Université Rennes 1-CNRS, UMR 6118, adress: 263 av du général Leclerc, Campus de Beaulieu, bat 15, 35042 Rennes Cedex (France); Pételet-Giraud, E., E-mail: e.petelet@brgm.fr [Bureau de Recherches Géologiques et Minières (BRGM), adress: 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2 (France); Cary, L., E-mail: l.cary@brgm.fr [Bureau de Recherches Géologiques et Minières (BRGM), adress: 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2 (France); Bertrand, G., E-mail: guillaume353@gmail.com [Instituto de Geociências, CEPAS (Groundwater Research Center), University of São Paulo, adress: Rua do lago 562, 05508-080 Sao Paulo (Brazil); Labasque, T., E-mail: thierry.labasque@univ-rennes1.fr [Géosciences Rennes, Université Rennes 1-CNRS, UMR 6118, adress: 263 av du général Leclerc, Campus de Beaulieu, bat 15, 35042 Rennes Cedex (France); and others

    2016-11-01

    Implying large residence times and complex water origins deep coastal aquifers are of particular interest as they are remarkable markers of climate, water use and land use changes. Over the last decades, the Metropolitan Region of Recife (Brazil) went through extensive environmental changes increasing the pressure on water resources and giving rise to numerous environmental consequences on the coastal groundwater systems. We analysed the groundwater of the deep aquifers Cabo and Beberibe that are increasingly exploited. The processes potentially affecting groundwater residence times and flow paths have been studied using a multi-tracer approach (CFCs, SF6, noble gases, 14C, 2H and 18O). The main findings of these investigations show that: (1) Groundwaters of the Cabo and Beberibe aquifers have long residence times and were recharged about 20,000 years ago. (2) Within these old groundwaters we can find palaeo-climate evidences from the last glacial period at the tropics with lower temperatures and dryer conditions than the present climate. (3) Recently, the natural slow dynamic of these groundwater systems was significantly affected by mixing processes with contaminated modern groundwater coming from the shallow unconfined Boa Viagem aquifer. (4) The large exploitation of these aquifers leads to a modification of the flow directions and causes the intrusion through palaeo-channels of saline water probably coming from the Capibaribe River and from the last transgression episodes. These observations indicate that the current exploitation of the Cabo and Beberibe aquifers is unsustainable regarding the long renewal times of these groundwater systems as well as their ongoing contamination and salinisation. The groundwater cycle being much slower than the human development rhythm, it is essential to integrate the magnitude and rapidity of anthropogenic impacts on this extremely slow cycle to the water management concepts. - Highlights: • Study of anthropogenic impacts

  7. Glacial recharge, salinisation and anthropogenic contamination in the coastal aquifers of Recife (Brazil)

    International Nuclear Information System (INIS)

    Chatton, E.; Aquilina, L.; Pételet-Giraud, E.; Cary, L.; Bertrand, G.; Labasque, T.

    2016-01-01

    Implying large residence times and complex water origins deep coastal aquifers are of particular interest as they are remarkable markers of climate, water use and land use changes. Over the last decades, the Metropolitan Region of Recife (Brazil) went through extensive environmental changes increasing the pressure on water resources and giving rise to numerous environmental consequences on the coastal groundwater systems. We analysed the groundwater of the deep aquifers Cabo and Beberibe that are increasingly exploited. The processes potentially affecting groundwater residence times and flow paths have been studied using a multi-tracer approach (CFCs, SF6, noble gases, 14C, 2H and 18O). The main findings of these investigations show that: (1) Groundwaters of the Cabo and Beberibe aquifers have long residence times and were recharged about 20,000 years ago. (2) Within these old groundwaters we can find palaeo-climate evidences from the last glacial period at the tropics with lower temperatures and dryer conditions than the present climate. (3) Recently, the natural slow dynamic of these groundwater systems was significantly affected by mixing processes with contaminated modern groundwater coming from the shallow unconfined Boa Viagem aquifer. (4) The large exploitation of these aquifers leads to a modification of the flow directions and causes the intrusion through palaeo-channels of saline water probably coming from the Capibaribe River and from the last transgression episodes. These observations indicate that the current exploitation of the Cabo and Beberibe aquifers is unsustainable regarding the long renewal times of these groundwater systems as well as their ongoing contamination and salinisation. The groundwater cycle being much slower than the human development rhythm, it is essential to integrate the magnitude and rapidity of anthropogenic impacts on this extremely slow cycle to the water management concepts. - Highlights: • Study of anthropogenic impacts

  8. Model-based analysis of δ34S signatures to trace sedimentary pyrite oxidation during managed aquifer recharge in a heterogeneous aquifer

    Science.gov (United States)

    Seibert, Simone; Descourvieres, Carlos; Skrzypek, Grzegorz; Deng, Hailin; Prommer, Henning

    2017-05-01

    The oxidation of pyrite is often one of the main drivers affecting groundwater quality during managed aquifer recharge in deep aquifers. Data and techniques that allow detailed identification and quantification of pyrite oxidation are therefore crucial for assessing and predicting the adverse water quality changes that may be associated with this process. In this study, we explore the benefits of combining stable sulphur isotope analysis with reactive transport modelling to improve the identification and characterisation of pyrite oxidation during an aquifer storage and recovery experiment in a chemically and physically heterogeneous aquifer. We characterise the stable sulphur isotope signal (δ34S) in both the ambient groundwater and the injectant as well as its spatial distribution within the sedimentary sulphur species. The identified stable sulphur isotope signal for pyrite was found to vary between -32 and +34‰, while the signal of the injectant ranged between +9.06 and +14.45‰ during the injection phase of the experiment. Both isotope and hydrochemical data together suggest a substantial contribution of pyrite oxidation to the observed, temporally variable δ34S signals. The variability of the δ34S signal in pyrite and the injectant were both found to complicate the analysis of the stable isotope data. However, the incorporation of the data into a numerical modelling approach allowed to successfully employ the δ34S signatures as a valuable additional constraint for identifying and quantifying the contribution of pyrite oxidation to the redox transformations that occur in response to the injection of oxygenated water.

  9. A long-term bench-scale investigation of permanganate consumption by aquifer materials.

    Science.gov (United States)

    Xu, Xiuyuan; Thomson, Neil R

    2009-11-20

    In situ chemical oxidation (ISCO) applications using permanganate involve the injection or release of permanganate into the subsurface to destroy various target contaminants. Naturally occurring reduced components associated with aquifer materials can exert a significant oxidant demand thereby reducing the amount of permanganate available for the destruction of contaminants as well as reducing the overall rate of oxidation. Quantification of this natural oxidant demand (NOD) is a requirement for site-specific assessment and the design of cost-effective oxidant delivery systems. To further our understanding of the interaction between permanganate and aquifer materials, aerobic and anaerobic aquifer materials from eight representative sites throughout North America were tested in a series of systematic bench-scale experiments. Various permanganate to aquifer solids mass loading ratios at different initial permanganate concentrations in well-mixed batch reactors were monitored for >300 days. All NOD temporal profiles demonstrated an initial fast consumption rate followed by a persistent slower consumption rate. The data generated show that the mass loading ratio, the initial permanganate concentration, and the nature and quantity of reduced aquifer material species are the main factors controlling permanganate consumption rates. A higher initial permanganate concentration or a larger mass loading ratio produced a larger fast NOD consumption rate and generated a corresponding higher maximum NOD value. Hence, both the NOD temporal profile and the maximum NOD are not single-valued but are heavily dependent on the experimental conditions. Predictive relationships were developed to estimate the maximum NOD and the NOD at 7 days based on aquifer material properties. The concentration of manganese oxides deposited on the aquifer solids was highly correlated with the mass of permanganate consumed suggesting that passivation of NOD reaction sites occurred due to the formation

  10. Estimating energy fluxes within the stream-aquifer interface of the Avenelles basin

    Science.gov (United States)

    Berrhouma, Asma; Rivière, Agnès; Goblet, Patrick; Cucchi, Karina; Rubin, Yoram; Baudin, Aurélien; Ansart, Patrick; Flipo, Nicolas

    2017-04-01

    The understanding of water temperature evolution and its associated energy fluxes is important to follow the aquatic habitats evolution and to predict future modifications induced by climate change. The spatio-temporal energy balance dynamics within the stream-aquifer interface is complex because of the multitude of physical, morphological and meteorological parameters on which it depends. This critical interface is involving numerous physical and bio-geochemical processes which are taking place at different time and spatial scales. The energy balance estimation at this interface depends mainly on the direction, magnitude and variability of water exchanges and the temporal variation of river and aquifer temperatures as well as the thermal porous media properties. In this work, a combined numerical and experimental approach is used to study the temporal and spatial evolution of the energy budget along 6 km of the stream network of the Avenelles watershed. With an area of 46 km2, the Avenelles watershed is located 70 km east from Paris. The Avenelles river presents different types of connectivity with the underlying aquifers. Five Local Monitoring Stations (LOMOS) have been deployed along the hydraulic corridor to monitor the water and thermal exchanges between the stream and aquifer over years, based on continuous pressure and temperature measurements in the river, the hyporheic zone (HZ) and the underlying aquifer. A 2D finite element thermo-hydrogeological model (METIS) coupled with a parameters screening script is used to determine the hydrogeological and thermal properties of the HZ and of the underlying aquifers by inversion at five LOMOS. Once the local models are calibrated, water and heat fluxes through the stream - aquifer interface are assessed over years (2012-2015) along the stream network. This work offers a new understanding of the stream-aquifer interface functioning, shifting from a pure hydrological characterizing toward a more subtle view that

  11. Inventory and review of aquifer storage and recovery in southern Florida

    Science.gov (United States)

    Reese, Ronald S.

    2002-01-01

    publications > water resources investigations > report 02-4036 US Department of the Interior US Geological Survey WRI 02-4036Inventory and Review of Aquifer Storage and Recovery in Southern Florida By Ronald S. ReeseTallahassee, Florida 2002 prepared as part of the U.S. Geological Survey Place-Based Studies Program ABSTRACT Abstract Introduction Inventory of Data Case Studies Summary References Tables Aquifer storage and recovery in southern Florida has been proposed on an unprecedented scale as part of the Comprehensive Everglades Restoration Plan. Aquifer storage and recovery wells were constructed or are under construction at 27 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The Upper Floridan aquifer, the principal storage zone of interest to the restoration plan, is the aquifer being used at 22 of the sites. The aquifer is brackish to saline in southern Florida, which can greatly affect the recovery of the freshwater recharged and stored.Well data were inventoried and compiled for all wells at most of the 27 sites. Construction and testing data were compiled into four main categories: (1) well identification, location, and construction data; (2) hydraulic test data; (3) ambient formation water-quality data; and (4) cycle testing data. Each cycle during testing or operation includes periods of recharge of freshwater, storage, and recovery that each last days or months. Cycle testing data include calculations of recovery efficiency, which is the percentage of the total amount of potable water recharged for each cycle that is recovered.Calculated cycle test data include potable water recovery efficiencies for 16 of the 27 sites. However, the number of cycles at most sites was limited; except for two sites, the highest number of cycles was five. Only nine sites had a recovery efficiency above 10 percent for the first cycle, and 10 sites achieved a recovery efficiency above 30 percent during at least one cycle. The

  12. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida

    Science.gov (United States)

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  13. Characterising the vertical separation of shale-gas source rocks and aquifers across England and Wales (UK)

    Science.gov (United States)

    Loveless, Sian E.; Bloomfield, John P.; Ward, Robert S.; Hart, Alwyn J.; Davey, Ian R.; Lewis, Melinda A.

    2018-03-01

    Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairs—the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for `safe separation' between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shale-aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development.

  14. Carbonate Chemistry and Isotope Characteristics of Groundwater of Ljubljansko Polje and Ljubljansko Barje Aquifers in Slovenia

    Directory of Open Access Journals (Sweden)

    Sonja Cerar

    2013-01-01

    Full Text Available Ljubljansko polje and Ljubljansko Barje aquifers are the main groundwater resources for the needs of Ljubljana, the capital of Slovenia. Carbonate chemistry and isotope analysis of the groundwater were performed to acquire new hydrogeological data, which should serve as a base for improvement of hydrogeological conceptual models of both aquifers. A total of 138 groundwater samples were collected at 69 sampling locations from both aquifers. Major carbonate ions and the stable isotope of oxygen were used to identify differences in the recharging areas of aquifers. Four groups of groundwater were identified: (1 Ljubljansko polje aquifer, with higher Ca2+ values, as limestone predominates in its recharge area, (2 northern part of Ljubljansko Barje aquifer, with prevailing dolomite in its recharge area, (3 central part of Ljubljansko Barje aquifer, which lies below surface cover of impermeable clay and is poor in carbonate, and (4 Brest and Iški vršaj aquifer in the southern part of Ljubljansko Barje with higher Mg2+ in groundwater and dolomite prevailing in its recharge area. The radioactive isotope tritium was also used to estimate the age of groundwater. Sampled groundwater is recent with tritium activity between 4 and 8 TU and residence time of up to 10 years.

  15. Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares

    Science.gov (United States)

    Heidari, Manoutchehr; Wench, Allen

    1997-05-01

    Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.

  16. Application of a numerical model in the interpretation of a leaky aquifer test

    International Nuclear Information System (INIS)

    Schroth, B.; Narasimhan, T.N.

    1997-01-01

    The potential use of numerical models in aquifer analysis is by no means a new concept; yet relatively few engineers and scientists are taking advantage of this powerful tool that is more convenient to use now than ever before. In this technical note the authors present an example of using a numerical model in an integrated analysis of data from a three-layer leaky aquifer system involving well-bore storage, skin effects, variable discharge, and observation wells in the pumped aquifer and in an unpumped aquifer. The modeling detail may differ for other cases. The intent is to show that interpretation can be achieved with reduced bias by reducing assumptions in regard to system geometry, flow rate, and other details. A multiwell aquifer test was carried out at a site on the western part of the Lawrence Livermore National Laboratory (LLNL), located about 60 kilometers east of San Francisco. The test was conducted to hydraulically characterize one part of the site and thus help develop remediation strategies to alleviate the ground-water contamination

  17. Geochemical Investigation of the Arbuckle-Simpson Aquifer, South-Central Oklahoma, 2004-06

    Science.gov (United States)

    Christenson, Scott; Hunt, Andrew G.; Parkhurst, David L.

    2009-01-01

    A geochemical reconnaissance investigation of the Arbuckle-Simpson aquifer in south-central Oklahoma was initiated in 2004 to characterize the ground-water quality at an aquifer scale, to describe the chemical evolution of ground water as it flows from recharge areas to discharge in wells and springs, and to determine the residence time of ground water in the aquifer. Thirty-six water samples were collected from 32 wells and springs distributed across the aquifer for chemical analysis of major ions, trace elements, isotopes of oxygen and hydrogen, dissolved gases, and age-dating tracers. In general, the waters from wells and springs in the Arbuckle-Simpson aquifer are chemically suitable for all regulated uses, such as public supplies. Dissolved solids concentrations are low, with a median of 347 milligrams per liter (mg/L). Two domestic wells produced water with nitrate concentrations that exceeded the U.S. Environmental Protection Agency's nitrate maximum contaminant level (MCL) of 10 mg/L. Samples from two wells in the confined part of the aquifer exceeded the secondary maximum contaminant level (SMCL) for chloride of 250 mg/L and the SMCL of 500 mg/L for dissolved solids. Water samples from these two wells are not representative of water samples from the other wells and springs completed in the unconfined part of the aquifer. No other water samples from the Arbuckle-Simpson geochemical reconnaissance exceeded MCLs or SMCLs, although not every chemical constituent for which the U.S. Environmental Protection Agency has established a MCL or SMCL was analyzed as part of the Arbuckle-Simpson geochemical investigation. The major ion chemistry of 34 of the 36 samples indicates the water is a calcium bicarbonate or calcium magnesium bicarbonate water type. Calcium bicarbonate water type is found in the western part of the aquifer, which is predominantly limestone. Calcium magnesium bicarbonate water is found in the eastern part of the aquifer, which is predominantly a

  18. Aquifer overexploitation: what does it mean?

    Science.gov (United States)

    Custodio, Emilio

    2002-02-01

    Groundwater overexploitation and aquifer overexploitation are terms that are becoming common in water-resources management. Hydrologists, managers and journalists use them when talking about stressed aquifers or some groundwater conflict. Overexploitation may be defined as the situation in which, for some years, average aquifer ion rate is greater than, or close to the average recharge rate. But rate and extent of recharge areas are often very uncertain. Besides, they may be modified by human activities and aquifer development. In practice, however, an aquifer is often considered as overexploited when some persistent negative results of aquifer development are felt or perceived, such as a continuous water-level drawdown, progressive water-quality deterioration, increase of ion cost, or ecological damage. But negative results do not necessarily imply that ion is greater than recharge. They may be simply due to well interferences and the long transient period that follow changes in the aquifer water balance. Groundwater storage is depleted to some extent during the transient period after ion is increased. Its duration depends on aquifer size, specific storage and permeability. Which level of "aquifer overexploitation" is advisable or bearable, depends on the detailed and updated consideration of aquifer-development effects and the measures implemented for correction. This should not be the result of applying general rules based on some indirect data. Monitoring, sound aquifer knowledge, and calculation or modelling of behaviour are needed in the framework of a set of objectives and policies. They should be established by a management institution, with the involvement of groundwater stakeholders, and take into account the environmental and social constraints. Aquifer overexploitation, which often is perceived to be associated with something ethically bad, is not necessarily detrimental if it is not permanent. It may be a step towards sustainable development. Actually

  19. Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test Site Carbonate Aquifer Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Hershey; William Howcroft; Paul W. Reimus

    2003-03-01

    Determination of groundwater flow velocities at the Nevada Test Site is important since groundwater is the principal transport medium of underground radionuclides. However, 14C-based groundwater velocities in the carbonate aquifers of the Nevada Test Site are several orders of magnitude slower than velocities derived from the Underground Test Area regional numerical model. This discrepancy has been attributed to the loss or retardation of 14C from groundwater into the surrounding aquifer matrix making 14C-based groundwater ages appear much older. Laboratory experiments were used to investigate the retardation of 14C in the carbonate aquifers at the Nevada Test Site. Three sets of experiments were conducted evaluating the diffusion of 14C into the carbonate aquifer matrix, adsorption and/or isotopic exchange onto the pore surfaces of the carbonate matrix, and adsorption and/or isotopic exchange onto the fracture surfaces of the carbonate aquifer. Experimental results a nd published aquifer matrix and fracture porosities from the Lower Carbonate Aquifer were applied to a 14C retardation model. The model produced an extremely wide range of retardation factors because of the wide range of published aquifer matrix and fracture porosities (over three orders of magnitude). Large retardation factors suggest that groundwater with very little measured 14C activity may actually be very young if matrix porosity is large relative to the fracture porosity. Groundwater samples collected from highly fractured aquifers with large effective fracture porosities may have relatively small correction factors, while samples from aquifers with a few widely spaced fractures may have very large correction factors. These retardation factors were then used to calculate groundwater velocities from a proposed flow path at the Nevada Test Site. The upper end of the range of 14C correction factors estimated groundwater velocities that appear to be at least an order of magnitude too high compared

  20. Spinel and plagioclase peridotites of the Nain ophiolite (Central Iran): Evidence for the incipient stage of oceanic basin formation

    Science.gov (United States)

    Pirnia, Tahmineh; Saccani, Emilio; Arai, Shoji

    2018-06-01

    The Nain ophiolites crop out along the western border of the central East Iran Microcontinent (CEIM) and consist of an ophiolitic mélange in which pargasite-bearing spinel and plagioclase mantle lherzolites are largely represented. Whole-rock and mineral chemistry data suggest that these rocks record the complex history of the asthenospheric and lithospheric mantle evolution. The spinel lherzolites have experienced low-degree ( 5%) partial melting and contain clinopyroxenes with positive Eu anomalies (Eu/Eu* = 1.10-1.48) suggesting that the partial melting occurred under oxidized conditions (fayalite-magnetite-quartz -0.8 to +1.3). The pargasite and coexisting clinopyroxene in these rocks are depleted in light rare earth elements (LREE) (mean chondrite-normalized CeN/SmN = 0.045). The depleted chemistry of this amphibole reflects metasomatism during interaction with H2O-rich subalkaline mafic melts, most likely concurrently with or after the partial melting of the spinel lherzolites. The plagioclase lherzolites were subsequently formed by the subsolidus recrystallization of spinel lherzolites under plagioclase facies conditions as a result of mantle uprising, as evidenced by: (1) the development of plagioclase rims around the spinels; (2) plagioclase + orthopyroxene exsolution textures within some clinopyroxene grains; (3) an increase in plagioclase modal content coupled with an increase in modal olivine and a decrease in modal pyroxene and pargasite; (4) coincident decreases in Al, Mg, and Ni, and increases in Cr, Ti, and Fe in spinel, as well as decreases in Al and Ca, and increases in Cr and Ti in pyroxene and pargasite; and (5) the identical whole rock compositions of the spinel and plagioclase lherzolites, which rules out a magmatic origin for the plagioclase in these units. The Nain lherzolites have similar whole-rock and mineral geochemical compositions to subcontinental peridotites that are typically representative of Iberia-type rifted continental margins

  1. Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam.

    Science.gov (United States)

    Postma, Dieke; Mai, Nguyen Thi Hoa; Lan, Vi Mai; Trang, Pham Thi Kim; Sø, Helle Ugilt; Nhan, Pham Quy; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus

    2017-01-17

    Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium-helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO 2 (P CO 2 ) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L.

  2. Identifying and characterizing transboundary aquifers along the Mexico-US border: An initial assessment

    Science.gov (United States)

    Sanchez, Rosario; Lopez, Victoria; Eckstein, Gabriel

    2016-04-01

    The transboundary nature of water dividing Mexico and the United States (U.S.) transforms the entire border region into an instrument of cooperation, a source of conflict, a national security issue, and an environmental concern. Reasonable data collection and research analysis have been conducted for surface waters by joint governmental institutions and non-governmental bodies. However, with the exception of the U.S. Transboundary Assessment Act Program (TAAP) (focusing on the Hueco Bolson, Mesilla Bolson, San Pedro and Santa Cruz aquifers), there is no comparable research, institutional development, or assessment of transboundary groundwater issues on the frontier. Moreover, data collection and methodologies vary between the two countries, there is no broadly accepted definition of the transboundary nature of an aquifer, and available legal and policy frameworks are constrained by non-hydrological considerations. Hence, there is a conceptual and institutional void regarding transboundary groundwater resources between Mexico and the U.S. The purpose of this paper is to bridge this void and characterize transboundary aquifers on the Mexico-US border. It reviews existing international frameworks for identifying hydrological and social criteria that characterize an aquifer as transboundary. It then assesses data from both countries to propose where and which aquifers could be considered transboundary. Finally, the paper proposes an agenda for assessing Mexico-US transboundary aquifers as a means for improving groundwater management in the border region.

  3. Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam

    Science.gov (United States)

    2016-01-01

    Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium–helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO2 (PCO2) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L. PMID:27958705

  4. Drilling methods to keep the hydrogeological parameters of natural aquifer

    International Nuclear Information System (INIS)

    Chen Xiaoqin

    2004-01-01

    In hydrogeological drilling, how to keep the hydrogeological parameters of natural aquifer unchanged is a deeply concerned problem for the technicians, this paper introduces the methods taken by the state-owned 'Red Hill' geological company of Uzbekistan. By the research and contrast of different kinds of flush liquid, the company has found the methods to reduce the negative effects of drilling on the permeability of the vicinal aquifer. (author)

  5. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    Science.gov (United States)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  6. Discourse characteristics of ore-bearing aquifer of Chaidenghao in Husiliang area

    International Nuclear Information System (INIS)

    Zhou Bowen

    2012-01-01

    Call Sri Lanka article focuses primarily on wood board beam region trench features lots of ore-bearing aquifer, located in the ore-bearing aquifer under Zhiluo lower sub-section; A brief introduction to the work area's geology and stratigraphic structure, and a brief description of the main ore purpose of the lower layer Zhiluo under sub-section lithology; Shows aquifer top, bottom and described its characteristics, the two formed a 'watertight-water-impermeable' good hydrogeological structure of the ancient interlayer oxidation zone formation to create a favorable space. Based on the above description and analysis of the location of uranium mineralization in good condition, have a good vision of the mineralization. (author)

  7. A New Approach for Assessing Aquifer Sustainability and the Impact of Proposed Management Actions

    Science.gov (United States)

    Butler, J. J., Jr.; Whittemore, D. O.; Wilson, B. B.

    2015-12-01

    Aquifers are under stress worldwide as a result of large imbalances between inflows and outflows. These imbalances are particularly severe in aquifers in semi-arid regions that are heavily pumped for irrigation, such as the High Plains aquifer (HPA) in the United States. The water resources community has responded by placing an increasing emphasis on more sustainable management plans. To aid in the formulation of such plans, we have developed a simple, water-balance-based approach for rapid assessment of the impact of proposed management actions and the prospects for aquifer sustainability. This theoretically sound approach is particularly well suited for assessing the short- to medium-term (years to a few decades) response to management actions in seasonably pumped aquifers. The net inflow (capture) term of the aquifer water balance can also be directly calculated from water-level and water-use data with this approach. Application to the data-rich portion of the HPA in the state of Kansas reveals that practically achievable reductions in annual pumping would have a large impact. For example, a 22% reduction in average annual water use would have stabilized areally averaged water levels across northwest Kansas from 1996 to 2013 because of larger-than-expected and near-constant net inflows. Whether this is a short-term phenomenon or a path to long-term sustainability, however, has yet to be determined. Water resources managers are often in a quandary about the most effective use of scarce funds for data collection in support of aquifer assessment and management activities. This work demonstrates that a strong emphasis should be placed on collection of reliable water-use data; greater resources devoted to direct measurement of pumping will yield deeper insights into an aquifer's future. The Kansas HPA is similar to many other regional aquifers supporting critically needed agricultural production, so this approach should prove of value far beyond the borders of Kansas.

  8. Aquifers productivity in the Pan-African context

    Indian Academy of Sciences (India)

    , including 14 near existing boreholes for comparison. Aquifer parameters of hydraulic conductivity and transmissivity were obtained by analyzing pumping test data from existing boreholes. An empirical relationship between hydraulic ...

  9. Inverse modelling of aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software

    Directory of Open Access Journals (Sweden)

    Kanak Moharir

    2017-11-01

    The present study of estimation of aquifer factors such as transmissivity (T and storativity (S are vital for the evaluation of groundwater resources. There are several methods to estimate the accurate aquifer parameters (i.e. hydrograph analysis, pumping test, etc.. In initial days, these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory. The simultaneous information on the hydraulic behavior of the well (borehole that provides on this method, the reservoir and the reservoir boundaries, are important for efficient aquifer and well data management and analysis. The most common in-situ test is pumping test performed on wells, which involves the measurement of the fall and increase of groundwater level with respect to time. The alteration in groundwater level (drawdown/recovery is caused due to pumping of water from the well. Theis (1935 was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer. It is essential to know the transmissivity (T = Kb, where b is the aquifer thickness; pumping flow rate, Q = TW (dh/dl flow through an aquifer and storativity (confined aquifer: S = bSs, unconfined: S = Sy, for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer. The determination of aquifer's parameters is an important basis for groundwater resources evaluation, numerical simulation, development and protection as well as scientific management. For determining aquifer's parameters, pumping test is a main method. A case study shows that these techniques have been fast speed and high correctness. The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.

  10. Have We Overestimated Saline Aquifer CO2 Storage Capacities?

    International Nuclear Information System (INIS)

    Thibeau, S.; Mucha, V.

    2011-01-01

    During future, large scale CO 2 geological storage in saline aquifers, fluid pressure is expected to rise as a consequence of CO 2 injection, but the pressure build up will have to stay below specified values to ensure a safe and long term containment of the CO 2 in the storage site. The pressure build up is the result of two different effects. The first effect is a local overpressure around the injectors, which is due to the high CO 2 velocities around the injectors, and which can be mitigated by adding CO 2 injectors. The second effect is a regional scale pressure build up that will take place if the storage aquifer is closed or if the formation water that flows away from the pressurised area is not large enough to compensate volumetrically the CO 2 injection. This second effect cannot be mitigated by adding additional injectors. In the first section of this paper, we review some major global and regional assessments of CO 2 storage capacities in deep saline aquifers, in term of mass and storage efficiency. These storage capacities are primarily based on a volumetric approach: storage capacity is the volumetric sum of the CO 2 that can be stored through various trapping mechanisms. We then discuss in Section 2 storage efficiencies derived from a pressure build up approach, as stated in the CO2STORE final report (Chadwick A. et al. (eds) (2008) Best Practice for the Storage of CO 2 in Saline Aquifers, Observations and Guidelines from the SACS and CO2STORE Projects, Keyworth, Nottingham, BGS Occasional Publication No. 14) and detailed by Van der Meer and Egberts (van der Meer L.G.H., Egberts P.J.P. (2008) A General Method for Calculating Subsurface CO 2 Storage Capacity, OTC Paper 19309, presented at the OTC Conference held in Houston, Texas, USA, 5-8 May). A quantitative range of such storage efficiency is presented, based on a review of orders of magnitudes of pore and water compressibilities and allowable pressure increase. To illustrate the relevance of this

  11. Water-level altitudes 2016 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973–2015 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Johnson, Michaela R.

    2016-10-07

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2016 water-level altitudes (represented by measurements made during December 2015–March 2016) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2015–16) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2011–16) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2016 and 1977–2016) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–16) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2015. Tables listing the water-level data used to construct each water-level map for each aquifer and the measured long-term cumulative compaction data for each extensometer site are included. Graphs depicting water-level measurement data also are included; these graphs can be used to approximate

  12. Hydrogeology and water quality of the Shell Valley Aquifer, Rolette County, North Dakota

    Science.gov (United States)

    Strobel, M.L.

    1997-01-01

    The Shell Valley aquifer is the sole source of water for the city of Belcourt and the primary source of water for most of the Turtle Mountain Indian Reservation. The Turtle Mountain Band of Chippewa Indians is concerned about the quantity and quality of water in the Shell Valley aquifer, which underlies about 56 square miles in central Rolette County and has an average saturated thickness of about 35 feet. Water levels across most of the Shell Valley aquifer fluctuate with variations in precipitation but generally are stable. Withdrawals from the north well field decreased slightly during 1976-95, but withdrawals from the south well field increased during 1983-95. Water levels in the south well field declined as withdrawals increased. The average decline during the last 8 years was about 1.75 feet per year. The water level has reached the well screen in at least one of the production wells. Most of the water in the aquifer is a bicarbonate type and has dissolved-solids concentrations ranging from 479 to 1,510 milligrams per liter. None of the samples analyzed had detectable concentrations of pesticides, but hydrocarbons were detected in both ground- and surfacewater samples. Polycyclic aromatic hydrocarbons (PAH) were the most frequently detected hydrocarbons. Benzene, toluene, ethylbenzene, and xylene (BTEX), polychlorinated biphenyls (PCB), and pentachlorophenol (PCP) also were detected.Generally, the Shell Valley aquifer is an adequate source of water for current needs, but evaluation of withdrawals in relation to a knowledge of aquifer hydrology would be important in quantifying sustainable water supplies. Water quality in the aquifer generally is good; the Turtle Mountain Band of Chippewa Indians filters the water to reduce concentrations of dissolved constituents. Hydrocarbons, although present in the aquifer, have not been quantified and may not pose a general health risk. Further analysis of the quantity and distribution of the hydrocarbons would be useful

  13. Denitrification in the karstic Floridan Aquifer

    Science.gov (United States)

    Fork, M.; Albertin, A. R.; Heffernan, J. B.; Katz, B. G.; Cohen, M. J.

    2010-12-01

    Nitrate concentrations in the karstic Floridan Aquifer have increased dramatically over the past 50 years, owing to agricultural intensification and urbanization. Due to low concentrations of organic matter and moderately oxic conditions in the Floridan Aquifer, groundwater denitrification has been assumed to be negligible. In this study, we evaluate that assumption using both existing and new data describing dissolved gases (Ne, N2, O2, Ar) and NO3- concentration and isotopic composition (δ18O- and δ15N-NO3) in the aquifer’s artesian springs. For new data, we collected samples from 33 spring vents representing a gradient of both DO and NO3- concentrations in northern Florida and used Membrane Inlet Mass Spectrometry (MIMS) to directly measure dissolved N2 and Ar. We modeled the physical processes (recharge temperature, dissolution of excess air) driving super-saturation of N2 gas using Ne and Ar where data describing Ne were available. Ar concentrations were correlated closely with recharge temperature, which ranged from 15.7 - 22.2°C, while Ne was closely correlated with excess air, which ranged from 1.05 to 2.66 mg L-1 and averaged 1.83 mg L-1. Estimates of physical mechanisms allowed calculation of expected N2 concentrations that were compared to observed N2 concentrations. Where Ne data were unavailable, we assumed excess air equal to the empirical average. Overall, observed N2 exceeded expectations based on physical processes in 33 of 47 cases; average excess N2 was 0.48 mg L-1 across all sites. In addition, excess N2 was negatively correlated with DO (r2 = 0.46); springs with low DO (Aquifer. Low DOC concentrations indicate that alternative electron donors may fuel nitrate reduction. Scaling to regional estimates of N2 production based on springs discharge and DO concentrations indicates that subsurface denitrification may account for some of the imbalance in springshed nutrient budgets. In addition, we conclude that use of δ15N-NO3- to diagnose

  14. Characterizing a complex aquifer system using geophysics, hydrodynamics and geochemistry: A new distribution of Miocene aquifers in the Zéramdine and Mahdia-Jébéniana blocks (east-central Tunisia)

    Science.gov (United States)

    Lachaal, Fethi; Bédir, Mourad; Tarhouni, Jamila; Gacha, Ayadi Ben; Leduc, Christian

    2011-06-01

    The Zéramdine and Mahdia-Jébéniana blocks are located in the Sahel region in east-central Tunisia. Active tectonics have divided the region into numerous sub-units, as result of multiple phases of distension and compression. The Miocene fluvio-deltaic sediment sandy layers have aquiferous capacities but their hydraulic properties are still unknown, due to the lack of investigation wells. This study proposes a new description of the regional hydrogeology of Miocene deposits. Seismic-reflection and wireline logging of petroleum and water wells were used to understand the structure and the geometry of the Miocene reservoirs. The groundwater flow and its relationship to the sedimentary and tectonic context were then identified by studying piezometry and hydrochemistry. Two Miocene deep aquifer systems were identified: (1) Zéramdine-Béni Hassen to the north and (2) Jébéniana-Ksour Essef to the south. These aquifers are separated by the Mahdia graben. Other major tectonic structures, such as the Zéramdine fault corridor, the Moknine graben, and the El-Jem half-graben represent lateral boundaries for these aquifers. Other deeper sandy and clayey-sandy reservoirs were also identified in the area. Their repartition, thickness and depth vary from one block to other. Hydrodynamics of the deep aquifers seems to be controlled by geological structures. Two independent compartments were identified: in the northern block groundwater flows from West to East and from Northwest to Southeast, while in the southern block it flows from Northwest to Southeast. Geochemical facies are of two types: Na-Ca-Cl-SO 4 for the Zéramdine-Béni Hassen deep aquifer and Na-Cl for the Jébéniana-Ksour Essef deep aquifer. The hydrodynamic and geochemical results confirm the sharing of the Miocene sediments into two aquifers.

  15. Effects of Land-Use Change and Managed Aquifer Recharge on Geochemical Reactions with Implications for Groundwater Quantity and Quality in Atoll Island Aquifers, Roi-Namur, Republic of the Marshall Islands

    Science.gov (United States)

    Hejazian, M.; Swarzenski, P. W.; Gurdak, J. J.; Odigie, K. O.; Storlazzi, C. D.

    2015-12-01

    This study compares the hydrogeochemistry of two contrasting atoll groundwater systems in Roi-Namur, Republic of the Marshall Islands. Roi-Namur houses a U.S. Department of Defense military installation and presents an ideal study location where a human impacted aquifer is co-located next to a natural aquifer as part of two artificially conjoined atoll islands. The hydrogeology and geochemistry of carbonate atoll aquifers has been well studied, particularly because of its small, well-defined hydrologic system that allows for relatively precise modeling. However, it is unknown how changes in land-use/land cover and managed aquifer recharge (MAR) alters natural geochemical processes in atoll aquifers. A better understanding of this has implications on groundwater quantity and quality, carbonate dissolution, and best aquifer management practices in the context of rising sea level and saltwater intrusion. Roi has been heavily modified to house military and civilian operations; here, lack of vegetation and managed recharge has increased the volume of potable groundwater and affected the geochemical processes in the freshwater lens and saltwater transition zone. Namur is heavily vegetated and the hydrogeology is indicative of a natural atoll island. A suite of monitoring wells were sampled across both island settings for major ions, nutrients, trace elements, DOC/DIC, δ13C and δ18O/2H isotopes. By modeling geochemical reactions using a conservative mixing approach, we measure deviations from expected reactions and compare the two contrasting settings using derived geochemical profiles through a wide salinity spectrum. Results indicate that groundwater on Namur is more heavily depleted in δ13C and has greater dissolved inorganic carbon, suggesting higher microbial oxidation and greater dissolution within the carbonate aquifer. This suggests MAR and reduction of vegetation makes the groundwater supply on atoll islands more resilient to sea level rise.

  16. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and ...

  17. Migration of 99Tc in a weak loess aquifer. A field column experiment

    International Nuclear Information System (INIS)

    Liu, C.L.; Wang, X.Y.; Wang, H.F.

    2001-01-01

    The migration of 99 Tc in a weak loess aquifer was investigated in-situ with undisturbed aquifer medium columns. The columns were obtained horizontally at a depth of 32∼36 m in an Underground Research Facility (URF). Quartz containing 3 H (HTO) and 99 Tc (in the form of 99 TcO 4 - ) was introduced into one end of the columns and the columns were covered tightly. Aquifer water was introduced into the columns directly from an experimental shaft in the UFR. Effluents from the columns were collected and the activity of 3 H and 99 Tc were determined with a liquid scintillation analyzer. The breakthrough curves of 3 H and 99 Tc indicate that 99 Tc migrates a little faster than that 3 H does in the aquifer. (author)

  18. Residence Times in Central Valley Aquifers Recharged by Dammed Rivers

    Science.gov (United States)

    Loustale, M.; Paukert Vankeuren, A. N.; Visser, A.

    2017-12-01

    Groundwater is a vital resource for California, providing between 30-60% of the state's water supply. Recent emphasis on groundwater sustainability has induced a push to characterize recharge rates and residence times for high priority aquifers, including most aquifers in California's Central Valley. Flows in almost all rivers from the western Sierra to the Central Valley are controlled by dams, altering natural flow patterns and recharge to local aquifers. In eastern Sacramento, unconfined and confined shallow aquifers (depth recharged by a losing reach of the Lower American River, despite the presence of levees with slurry cut-off walls.1 Flow in the Lower American River is controlled through the operation of the Folsom and Nimbus Dams, with a minimum flow of 500 cfs. Water table elevation in wells in close proximity to the river are compared to river stage to determine the effect of river stage on groundwater recharge rates. Additionally, Tritium-3Helium dates and stable isotopes (∂18O and ∂2H) have been measured in monitoring wells 200- 2400 ft lateral distance from the river, and depths of 25 -225 feet BGS. Variation in groundwater age in the vertical and horizontal directions are used to determine groundwater flow path and velocity. These data are then used to calculate residence time of groundwater in the unconfined and confined aquifer systems for the Central Valley in eastern Sacramento. Applying groundwater age tracers can benefit future compliance metrics of the California Sustainable Groundwater Resources Act (SGMA), by quantifying river seepage rates and impacts of groundwater management on surface water resources. 1Moran et al., UCRL-TR-203258, 2004.

  19. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Alison [Arup, 50 Ringsend Road, Dublin 4 (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Nitsche, Janka [RPS, West Pier Business Campus, Dun Laoghaire, Co. Dublin (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Archbold, Marie [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Deakin, Jenny [Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Department of Civil, Structural and Environmental Engineering, Trinity College Dublin (Ireland); Ofterdinger, Ulrich; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom)

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ{sup 15}N and δ{sup 18}O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. - Graphical abstract: Contrasting nitrate isotope signatures of groundwater in a free draining catchment underlain by a karstified aquifer and a poorly drained catchment underlain by a low transmissivity aquifer. - Highlights: • Comparison of N fate and

  20. Intrinsic vulnerability assessment of Sette Comuni Plateau aquifer (Veneto Region, Italy).

    Science.gov (United States)

    Cucchi, Franco; Franceschini, Giuliana; Zini, Luca; Aurighi, Marina

    2008-09-01

    Maps illustrating the different degrees of vulnerability within a given area are integral to environmental protection and management policies. The assessment of the intrinsic vulnerability of karst areas is difficult since the type and stage of karst development and the related underground discharge behavior are difficult to determine and quantify. Geographic Information Systems techniques are applied to the evaluation of the vulnerability of an aquifer in the alpine karst area of the Sette Comuni Plateau, in the Veneto Region of northern Italy. The water resources of the studied aquifer are of particular importance to the local communities. This aquifer must therefore be protected from both inappropriate use as well as possible pollution. The SINTACS and SINTACS P(RO) K(ARST) vulnerability assessment methods have been utilized here to create the vulnerability map. SINTACS P(RO) K(ARST) is an adaptation of the parametric managerial model (SINTACS) to karst hydrostructures. The vulnerability map reveals vast zones (81% of the analyzed areas) with a high degree of vulnerability. The presence of well-developed karst structures in these highly vulnerable areas facilitate water percolation, thereby enhancing the groundwater vulnerability risk. Only 1.5 of the studied aquifer have extremely high-vulnerability levels, however these areas include all of the major springs utilized for human consumption. This vulnerability map of the Sette Comuni Plateau aquifer is an indispensable tool for both the effective management of water resources and as support to environmental planning in the Sette Comuni Plateau area.