Sample records for salyut orbital stations

  1. Structure and properties of polymeric composite materials during 1501 days outer space exposure at Salyut-7 orbital station (United States)

    Startsev, Oleg V.; Nikishin, Eugene F.


    Specimens of polymeric composite materials for aviation and space applications such as glass fiber reinforced plastics (GFRP), carbon fiber reinforced plastics (CFRP), organic fiber reinforced plastics (OFRP), and hybrid plastics (HP) based on epoxy compounds were exposed to the space environment on the surface of Salyut-7 orbital station. The space exposure lasted 1501 days as a maximum. The data relating to the change in mechanical properties, mass losses, glass transition temperature, linear thermal expansion coefficient, and microstructure after various periods of exposure are given. It has been found that the change in properties is caused by the processes of binder postcuring and microerosion of the exposed surface of plastics. The phenomenon of strengthening of the surface layer of hybrid composites, due to which the nature of destruction changes at bending loads, has been revealed.

  2. Contemporary achievements in astronautics: Salyut-7, the Vega Project and Spacelab (United States)

    Kubasov, V. N.; Balebanov, V. M.; Goldovskiy, D. Y.


    The latest achievements in Soviet aeronautics are described; the new stage in the space program to study Venus using Soviet automated space probes, and the next space mission by cosmonauts to the Salyut-7 station. Information is also presented on the flight of the Spacelab orbiting laboratory created by Western European specialists.

  3. Ethical problems of interaction between ground-based personnel and orbital station crewmembers (United States)

    Grigoriev, A. I.; Kozerenko, O. P.; Myasnikov, V. I.; Egorov, A. D.

    Manned missions onboard orbital stations Salyut-6 and Salyut-7 have led us to the conclusion that a long-term space mission can be viewed as a complex socio-man-machine system whose effectiveness largely depends on the quality of interaction between its subsystems. When analyzing and assessing the reliability of this system, it is important to consider ethical aspects, because they concern human relations, permeating its very component and in the long run determining its efficiency. Psychological and medical examinations before, during and after manned missions have helped us to identify the major points of interaction of the subsystems which require adequate monitoring and optimization using socio-psychological and organization-technical approaches: arrangement and evaluation of the quality of work, arrangement of proper leisure, psychological comfort in the interpersonality and intergroup relations during prolonged space missions. This paper also discusses adaptive changes in the mental and physical state due to prolonged exposure to space flight factors such as microgravity and confinement.

  4. Orbit keeping attitude control for space station (United States)

    Barrows, D.; Bedell, H.


    It is pointed out that on-orbit configuration variability is expected to be a characteristic of a space station. The implementation of such a chracteristic will present reboost and thruster control system designers with a number of new challenges. The primary requirement for the space station orbit reboost (or orbit keeping) system is to ensure system viability for extended duration and prevent an uncontrolled reentry as with Skylab. For a station in a low earth orbit, earodynamic drag will be sufficient to cause relatively quick orbit altitude decay. A propulsion system is, therefore, needed to counteract the aerodynamic drag forces and to boost the vehicle to the desired orbit altitudes. A description is given of a typical reboost operational procedure and propellant requirements. Attention is given to thruster control systems, and aspects of reboost guidance.

  5. Orbit lifetime characteristics for Space Station (United States)

    Deryder, L.; Kelly, G. M.; Heck, M.

    The factors that influence the orbital lifetime characteristics of the NASA Space Station are discussed. These include altitude, attitude, launch date, ballistic coefficient, and the presence of large articulating solar arrays. Examples from previous program systems studies are presented that illustrate how each factor affects Station orbit lifetime. The effect of atmospheric density models on orbit lifetime predictions is addressed along with the uncertainty of these predictions using current trajectory analysis of the Long Duration Exposure Facility spacecraft. Finally, nominal reboost altitude profiles and fuel requirement considerations are presented for implementing a reboost strategy based on planned Shuttle Orbiter rendezvous strategy and contingency considerations.

  6. Main results of biological experiments on Russian orbital stations and its contribution in future life support system (United States)

    Nechitailo, Galina S.

    Biological experiments in a field of space biology have been started before the first satellite flight. These experiments were devoted to an estimation of space radiation factors on living organisms and carried out in mountains. The systematic biological experiments in space have been started in 1971 with orbital station Salyut. In total more than 1000 experiments have been installed in space flights: fundamental investigations (panspermia theory, gravity biology, complex factors of space environment on biological objects) and applications focused on future biological life support systems. The investigations were directed to some tasks: influence of complex factors of space flight on living organisms at different stages of the evolution scale; investigations of proteins and DNA, cell, tissue, organism and assembled organisms under space flight factors with separation of individual factors, for example, microgravity and space radiation. The aim was to understand the organism reactions on different levels, to get complete ontogenesis cycle in space flight and to find adaption ability of organisms to extreme factors of the space flight. In course of investigations, the unique experimental equipment for orbital biological experiments has been designed; new methods for organism protection against the negative factors of space flight were found; developed new biotechnological products and processes; developed recommendations for space station interior with biological objects for psychological comfort of crew. The results showed a possibility and ways to include different organisms into biotechnological life support systems for future space stations and interplanet spaceships.

  7. International Space Station: Meteoroid/Orbital Debris Survivability and Vulnerability (United States)

    Graves, Russell


    This slide presentation reviews the surviability and vulnerability of the International Space Station (ISS) from the threat posed by meteoroid and orbital debris. The topics include: (1) Space station natural and induced environments (2) Meteoroid and orbital debris threat definition (3) Requirement definition (4) Assessment methods (5) Shield development and (6) Component vulnerability

  8. Ballistic limit curve regression for Freedom Station orbital debris shields (United States)

    Jolly, William H.; Williamsen, Joel W.


    A procedure utilized at Marshall Space Flight Center to formulate ballistic limit curves for the Space Station Freedom's manned module orbital debris shields is presented. A stepwise linear least squares regression method similar to that employed by Burch (1967) is used to relate a penetration parameter to various projectile and target descriptors. A stepwise regression was also conducted with the model reduced to lower forms, thus eliminating the effects of generalized assumptions.

  9. International Space Station (ISS) Meteoroid/Orbital Debris Shielding (United States)

    Christiansen, Eric L.


    Design practices to provide protection for International Space Station (ISS) crew and critical equipment from meteoroid and orbital debris (M/OD) Impacts have been developed. Damage modes and failure criteria are defined for each spacecraft system. Hypervolocity Impact -1 - and analyses are used to develop ballistic limit equations (BLEs) for each exposed spacecraft system. BLEs define Impact particle sizes that result in threshold failure of a particular spacecraft system as a function of Impact velocity, angles and particle density. The BUMPER computer code Is used to determine the probability of no penetration (PNP) that falls the spacecraft shielding based on NASA standard meteoroid/debris models, a spacecraft geometry model, and the BLEs. BUMPER results are used to verify spacecraft shielding requirements Low-weight, high-performance shielding alternatives have been developed at the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) to meet spacecraft protection requirements.

  10. Combining Regional Monitoring Stations with Space-based Data to Determine the MEO Satellite Orbit

    Directory of Open Access Journals (Sweden)

    WANG Le


    Full Text Available The ground monitoring stations of BeiDou Navigation Satellite System (BDS are regional distribution and the number of these stations is small. The more global ground stations cannot be built in the short term. The ground regional monitoring stations are difficult to observe the global Medium Earth Orbit Satellite (MEO continuously, which leads to low precision of orbits in BDS real-time broadcast ephemeris. Based on the above problems, in view of real time satellite GNSS data of low earth orbit satellite can effectively make up the lack of regional monitoring stations in space overlay, a method is proposed that the GNSS receivers of LEO satellites used as high dynamic space-based monitoring stations combining with the data of the ground monitoring stations to calculate and forecast the MEO satellite orbits. The numeral results show that, using the data of seven regional monitoring stations add 1 to 3 LEO satellites, the precision of the MEO orbit determination can be increased by about 21%, 34% and 55% respectively. It also shows that, the ground regional monitoring stations combined with the data of LEO satellites can effectively improve the orbit precision of MEO satellite. It is suggested that using the data combined with ground stations and LEO satellites to improve the precision of broadcast ephemeris of MEO in BDS.

  11. Biotropic Effect of Radiation Conditions on Orbital Cosmic Stations (United States)

    Tsetlin, Vladimir; Ushakov, Igor; Gurieva, Tamar; Moisa, Svetlana; Zotin, Alexei; Lobanov, Alexei

    On the orbit of pilot orbital stations the crews undergo to low doses of chronic irradiation of cosmic radiation. The studying of radiobiological effects in different living systems were carried out in the ship’s side (OC “MIR” and ICS) and model surface experiments (power dose 200 mGy/day, density of neutron flow 30 particles/sm2 sec). It was shown that ionized radiation effects on embryonal development of Japanese quail embryo, inducing morphological disturbances in 12% of embryos. Many years ontogenesis (more 15 years of life in OC “MIR”) of microbial association evoked replacement of dominant types of micromycetes and bacterium and increasing of colony-formed units (CFU) in four orders. In laboratory low doses of γ-radiation induced the increasing of flight strain biomass of Aspergillus niger that corresponds to a radiation hormezis and also the increasing of radio-sensitivity. Moreover, under γ-neutron radiation were marked some deviations in morphology of supporting cell and numerous head falls of Aspergillus niger. The irradiation of Protozoa by low doses led to that spontaneous motion activity of spirostoms (Spirostomum ambiguum Ehbg.) accommodated in water processing by mixed γ-neutron radiation decreased twice that testified the fact that the definite factor of γ-neutron radiation effect is the changing of water medium state. In dry seeds of the highest plants wetting in water of preliminary low doses α-and γ-irradiation growth. The electing induction by juvenile mollusks Planorbarius corneus depends on their adaptation to magnetic field. Mollusks, cultivating in the conditions of normal geomagnetic field, preferred the conditions with maximal induction, but cultivating in the conditions of hypomagnetic camera, on the contrary, the conditions with minimal induction. Model experiments accompanied with the control of oxidative-reduction properties of water. It is revealed that under the chronic ionized irradiation the value of oxidative

  12. Results of microbiological Investigations of Orbital Station MIR Environment (United States)

    Novikova, N.

    15-year experience of orbital station MIR service demonstrated that specifically modified space vehicle environment allows to consider spaceship habitats as a certain ecological niche of microbial community development and functioning, which was formed from the organisms of different physiological and taxonomical groups. As a result of on-board experiments and revision of interior and equipment more than 234 microorganisms were identified. They were represented by technophylic specia, which cause material damage, as well as potential pathogens (bacteria, actinomyces spp, fungi), which capable to grow on artificial substrates. Resident colonization of interior and equipment of space habitat by bacterial and fungal associations, taking place during long-term microbiota exposure on cosmophysic, physic-chemical and biological factors, which is accompanied by appearance of technological and medical risks, capable to provide significant influence on safety of humans and reliability of space equipment. These risks are due to such processes: biodestruction of synthetic and organic polymeres, biocorrosion of metals, biofoulding of surfaces (biofilms), formation of obturation in vital activity support system, occurrence of biodisturbances resulting in devise and equipment failure, occurrence and development of supertolerants and other variants with unpredictable attributes, which are expressed as a result of phenotypical and genotypical modifications. Based on the information from results of in-flight and laboratory microbiological investigations, the following suppositions can be made to characterize evolution of the microbial community aboard long-operating space vehicle: - environment of a long-operating piloted space vehicle may be a peculiar kind of ecological niche for development and reproduction of bacilli and fungi belonging to particular species, - bacteriofungal associations primarily reside on decorative-finish and structural materials of space interior and

  13. Preliminary studies for the ORganics Exposure in Orbit (OREOcube) Experiment on the International Space Station

    NARCIS (Netherlands)

    Alonzo, Jason; Fresneau, A.; Elsaesser, A.; Chan, J.; Breitenbach, A.; Ehrenfreund, P.; Ricco, A.; Salama, F.; Mattioda, A.; Santos, O.; Cottin, H.; Dartois, E.; d'Hendecourt, L.; Demets, R.; Foing, B.; Martins, Z.; Sephton, M.; Spaans, M.; Quinn, R.

    Organic compounds that survive in uncommon space environments are animportant astrobiology focus. The ORganics Exposure in Orbit (OREOcube)experiment will investigate, in real time, chemical changes in organiccompounds exposed to low Earth orbit radiation conditions on anInternational Space Station

  14. Historical parallels of biological space experiments from Soyuz, Salyut and Mir to Shenzhou flights (United States)

    Nechitailo, Galina S.; Kondyurin, Alexey


    Human exploitation of space is a great achievement of our civilization. After the first space flights a development of artificial biological environment in space systems is a second big step. First successful biological experiments on a board of space station were performed on Salyut and Mir stations in 70-90th of last century such as - first long time cultivation of plants in space (wheat, linen, lettuce, crepis); - first flowers in space (Arabidopsis); - first harvesting of seeds in space (Arabidopsis); - first harvesting of roots (radish); - first full life cycle from seeds to seeds in space (wheat), Guinness recorded; - first tissue culture experiments (Panax ginseng L, Crocus sativus L, Stevia rebaundiana B; - first tree growing in space for 2 years (Limonia acidissima), Guinness recorded. As a new wave, the modern experiments on a board of Shenzhou Chinese space ships are performed with plants and tissue culture. The space flight experiments are now focused on applications of the space biology results to Earth technologies. In particular, the tomato seeds exposed 6 years in space are used in pharmacy industry in more then 10 pharmaceutical products. Tissue culture experiments are performed on the board of Shenzhou spaceship for creation of new bioproducts including Space Panax ginseng, Space Spirulina, Space Stetatin, Space Tomato and others products with unique properties. Space investments come back.

  15. Space Station Freedom assembly and operation at a 51.6 degree inclination orbit (United States)

    Troutman, Patrick A.; Brewer, Laura M.; Heck, Michael L.; Kumar, Renjith R.


    This study examines the implications of assembling and operating Space Station Freedom at a 51.6 degree inclination orbit utilizing an enhanced lift Space Shuttle. Freedom assembly is currently baselined at a 220 nautical mile high, 28.5 degree inclination orbit. Some of the reasons for increasing the orbital inclination are (1) increased ground coverage for Earth observations, (2) greater accessibility from Russian and other international launch sites, and (3) increased number of Assured Crew Return Vehicle (ACRV) landing sites. Previous studies have looked at assembling Freedom at a higher inclination using both medium and heavy lift expendable launch vehicles (such as Shuttle-C and Energia). The study assumes that the shuttle is used exclusively for delivering the station to orbit and that it can gain additional payload capability from design changes such as a lighter external tank that somewhat offsets the performance decrease that occurs when the shuttle is launched to a 51.6 degree inclination orbit.

  16. Orbital Stations: A Time of Quests and Accomplishments, (United States)


    Gorokhov, engineer. On 23 April 1971, after having been launched on the " Soyuz - 10", the cosmonaut-pilots of the USSR, V. Shatalov, A. Yeliseyev and N...Within specific time intervals a carrier rocket puts a spaceship into orbit. For example, one of the " Soyuz " type. In it there is either the next...end of the seventies. Too many problems confront their creators. one of these 11 - - - - ru ..--- "-’ - .- . , - A platform and a capsule for assembly

  17. International Space Station Major Constituent Analyzer On-Orbit Performance (United States)

    Gardner, Ben D.; Erwin, Phillip M.; Cougar, Tamara; Ulrich, BettyLynn


    The Major Constituent Analyzer (MCA) is a mass spectrometer based system that measures the major atmospheric constituents on the International Space Station. A number of limited-life components require periodic change-out, including the ORU 02 analyzer and the ORU 08 Verification Gas Assembly. The most recent ORU 02 and ORU 08 assemblies in the LAB MCA are operating nominally. For ORU 02, the ion source filaments and ion pump lifetime continue to be key determinants of MCA performance. Finally, the Node 3 MCA is being brought to an operational configuration.

  18. Quantifying and Improving International Space Station Survivability Following Orbital Debris Penetration (United States)

    Williamsen, Joel; Evans, Hilary; Bohl, Bill; Evans, Steven; Parker, Nelson (Technical Monitor)


    The increase of the orbital debris environment in low-earth orbit has prompted NASA to develop analytical tools for quantifying and lowering the likelihood of crew loss following orbital debris penetration of the International Space Station (ISS). NASA uses the Manned Spacecraft and Crew Survivability (MSCSurv) computer program to simulate the events that may cause crew loss following orbital debris penetration of ISS manned modules, including: (1) critical cracking (explosive decompression) of the module; (2) critical external equipment penetration (such as hydrazine and high pressure tanks); (3) critical internal system penetration (guidance, control, and other vital components); (4) hazardous payload penetration (furnaces, pressure bottles, and toxic substances); (5) crew injury (from fragments, overpressure, light flash, and temperature rise); (6) hypoxia from loss of cabin pressure; and (7) thrust from module hole causing high angular velocity (occurring only when key Guidance, Navigation, and Control (GN&C) equipment is damaged) and, thus, preventing safe escape vehicle (EV) departure. MSCSurv is also capable of quantifying the 'end effects' of orbital debris penetration, such as the likelihood of crew escape, the probability of each module depressurizing, and late loss of station control. By quantifying these effects (and their associated uncertainties), NASA is able to improve the likelihood of crew survivability following orbital debris penetration due to improved crew operations and internal designs.

  19. Low-Thrust Out-of-Plane Orbital Station-Keeping Maneuvers for Satellites

    Directory of Open Access Journals (Sweden)

    Vivian M. Gomes


    Full Text Available This paper considers the problem of out of plane orbital maneuvers for station keeping of satellites. The main idea is to consider that a satellite is in an orbit around the Earth and that it has its orbit is disturbed by one or more forces. Then, it is necessary to perform a small amplitude orbital correction to return the satellite to its original orbit, to keep it performing its mission. A low thrust propulsion is used to complete this task. It is important to search for solutions that minimize the fuel consumption to increase the lifetime of the satellite. To solve this problem a hybrid optimal control approach is used. The accuracy of the satisfaction of the constraints is considered, in order to try to decrease the fuel expenditure by taking advantage of this freedom. This type of problem presents numerical difficulties and it is necessary to adjust parameters, as well as details of the algorithm, to get convergence. In this versions of the algorithm that works well for planar maneuvers are usually not adequate for the out of plane orbital corrections. In order to illustrate the method, some numerical results are presented.

  20. Active Disturbance Rejection Station-Keeping Control of Unstable Orbits around Collinear Libration Points

    Directory of Open Access Journals (Sweden)

    Min Zhu


    Full Text Available An active disturbance rejection station-keeping control scheme is derived and analyzed for station-keeping missions of spacecraft along a class of unstable periodic orbits near collinear libration points of the Sun-Earth system. It is an error driven, rather than model-based control law, essentially accounting for the independence of model accuracy and linearization. An extended state observer is designed to estimate the states in real time by setting an extended state, that is, the sum of unmodeled dynamic and external disturbance. This total disturbance is compensated by a nonlinear state error feedback controller based on the extended state observer. A nonlinear tracking differentiator is designed to obtain the velocity of the spacecraft since only position signals are available. In addition, the system contradiction between rapid response and overshoot can be effectively solved via arranging the transient process in tracking differentiator. Simulation results illustrate that the proposed method is adequate for station-keeping of unstable Halo orbits in the presence of system uncertainties, initial injection errors, solar radiation pressure, and perturbations of the eccentric nature of the Earth's orbit. It is also shown that the closed-loop control system performance is improved significantly using our method comparing with the general LQR method.

  1. Orbital debris and near-Earth environmental management: A chronology (United States)

    Portree, David S. F.; Loftus, Joseph P., Jr.


    This chronology covers the 32-year history of orbital debris and near-Earth environmental concerns. It tracks near-Earth environmental hazard creation, research, observation, experimentation, management, mitigation, protection, and policy-making, with emphasis on the orbital debris problem. Included are the Project West Ford experiments; Soviet ASAT tests and U.S. Delta upper stage explosions; the Ariane V16 explosion, U.N. treaties pertinent to near-Earth environmental problems, the PARCS tests; space nuclear power issues, the SPS/orbital debris link; Space Shuttle and space station orbital debris issues; the Solwind ASAT test; milestones in theory and modeling the Cosmos 954, Salyut 7, and Skylab reentries; the orbital debris/meteoroid research link; detection system development; orbital debris shielding development; popular culture and orbital debris; Solar Max results; LDEF results; orbital debris issues peculiar to geosynchronous orbit, including reboost policies and the stable plane; seminal papers, reports, and studies; the increasing effects of space activities on astronomy; and growing international awareness of the near-Earth environment.

  2. De-Orbiting the International Space Station ISS: Safety Considerations and Preliminary Analysis (United States)

    Cremaschi, F.; Huertas, I.; Ortega, G.; Sgobba, T.; Laurel, C.


    NASA has proposed to its partners the de-orbiting of the International Space Station (ISS) around the year 2020. Technical plans on how to do it have been presented as long as the year 1999. The current situation of ISS claims for a possible extension of the date of 2020 but to all International Partners is clear that the de-orbiting operations need to be performed with safety as the main and central paradigm. The proposed paper evaluates several scenarios and options for the de- orbiting of ISS. The paper proposes trajectory design considerations, de- orbit strategies and the calculation of casualties and fatalities for some of those. The paper proposes as well some fragment disposal regions using the classic approach of disposing ISS on ground and compares it with the feasibility and cost with the approach of end of life vehicle recycling culture of the European Union. The paper computes and calculates the reliability of all options and establishes a trade-off between all of them. The paper provides a detailed mathematical model that is able to calculate casualty and fatality rates. The mathematical model has been programmed in the ASTOS software tool and the corresponding casualty and fatality curves have been computed for some considered options. The following options are studied, discussed, and traded- off: simple one-go complete disposal of ISS with controlled de-orbiting using a service module, complex partial disposal of ISS elements with controlled de-orbiting using a modified version of service module, same variation using a set of auxiliary vehicles, design of a new vehicle to dispose the ISS and finally the uncontrolled re-entry of the entire ISS. Further, the paper proposes some de-orbiting requirements, and mission design considerations for a successful end-of-mission closure.

  3. Meteoroid/orbital debris impact damage predictions for the Russian space station MIR (United States)

    Christiansen, E. L.; Hyde, J. L.; Lear, D.


    Components of the Mir space station have been exposed to the meteoroid/orbital debris (M/OD) environment for up to 11 years. During this period, no M/OD impact perforation of the pressure shell of the manned modules were reported. The NASA standard M/OD analysis code BUMPER was used to predict the probability of M/OD impact damage to various components of Mir. The analysis indicates a 1 in 2.2 chance that a M/OD impact would have caused a penetration resulting in a pressure leak of the Mir modules since its launch up to the February 1997. For the next five years, the estimated odds become 1 in 3. On an annual basis, penetration risks are 60 percent higher, on the average, in the next five years due to the larger size of Mir and the growth in the orbital debris population.

  4. Interplanetary Coronal Mass Ejection effects on thermospheric density as inferred from International Space Station orbital data (United States)

    Mendaza, T.; Blanco-Ávalos, J. J.; Martín-Torres, J.


    The solar activity induces long term and short term periodical variations in the dynamics and composition of Earth's atmosphere. The Sun also shows non periodical (i.e., impulsive) activity that reaches the planets orbiting around it. In particular, Interplanetary Coronal Mass Ejections (ICMEs) reach Earth and interact with its magnetosphere and upper neutral atmosphere. Nevertheless, the interaction with the upper atmosphere is not well characterized because of the absence of regular and dedicated in situ measurements at high altitudes; thus, current descriptions of the thermosphere are based on semi empirical models. In this paper, we present the total neutral mass densities of the thermosphere retrieved from the orbital data of the International Space Station (ISS) using the General Perturbation Method, and we applied these densities to routinely compiled trajectories of the ISS in low Earth orbit (LEO). These data are explicitly independent of any atmospheric model. Our density values are consistent with atmospheric models, which demonstrates that our method is reliable for the inference of thermospheric density. We have inferred the thermospheric total neutral density response to impulsive solar activity forcing from 2001 to the end of 2006 and determined how solar events affect this response. Our results reveal that the ISS orbital parameters can be used to infer the thermospheric density and analyze solar effects on the thermosphere.

  5. International Space Station (ISS) Orbital Replaceable Unit (ORU) Wet Storage Risk Assessment (United States)

    Squire, Michael D.; Rotter, Henry A.; Lee, Jason; Packham, Nigel; Brady, Timothy K.; Kelly, Robert; Ott, C. Mark


    The International Space Station (ISS) Program requested the NASA Engineering and Safety Center (NESC) to evaluate the risks posed by the practice of long-term wet storage of ISS Environmental Control and Life Support (ECLS) regeneration system orbital replacement units (ORUs). The ISS ECLS regeneration system removes water from urine and humidity condensate and converts it into potable water and oxygen. A total of 29 ORUs are in the ECLS system, each designed to be replaced by the ISS crew when necessary. The NESC assembled a team to review the ISS ECLS regeneration system and evaluate the potential for biofouling and corrosion. This document contains the outcome of the evaluation.

  6. Radiation exposure to the orbiting lunar station and lunar surface related to reusable nuclear shuttle operations (United States)

    Hutchinson, P. I.


    The radiation environment created by the Reusable Nuclear Vehicle (RNS) in performing its normal mission functions while in the lunar vicinity and the impact of that environment on the Orbiting Lunar Station (OLS) and/or the lunar surface are examined. Lunar surface exposures from the operating reactor were evaluated for both the arrival and departure burns and while there is little probability that manned bases would lie along the paths in which measurable exposures would be recorded, the analyses do indicate the need to consider this possibility in planning such operations. Conclusions supported by the analyses and recommended operational constraints for the RNS are presented.

  7. International Space Station USOS Potable Water Dispenser On-Orbit Functionality vs Design (United States)

    Toon, Katherine P.; Lovell, Randal W.


    The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmembers food and drinking packages with one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. The USOS Potable Water Dispenser (PWD) was delivered to ISS on ULF2, Shuttle Mission STS-126, and was subsequently activated in November 2008. The PWD activation on ISS is capable of supporting an ISS crew of six but nominally supplies only half the crew. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to US style food packages. PWD receives iodinated water from the US Laboratory Fuel Cell Water Bus, which is fed from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity supports three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. To date, the PWD on-orbit performance has been acceptable. Since activation of the PWD, there have been several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is outlined for the following key areas: microbiology, PWD to food package water leakage, no-dispense scenarios, under-dispense scenarios, and crewmember feedback on actual on-orbit use.

  8. Analysis and Optimization of BDS GEO/IGSO/MEO Ground Monitoring Stations Configuration for Determining GNSS Orbit

    Directory of Open Access Journals (Sweden)

    ZHANG Longping


    Full Text Available Orbit determination accuracy of GNSS satellites depends on the satellites dynamics models and GNSS orbit determination geometry. Because of the weak geometry, higher orbit height of GEO and IGSO and relatively low accuracy of the dynamics models, the geometry information may play an important role in improving the GNSS orbit. The method for analysis the configuration and the influence of BDS GEO/IGSO/MEO ground monitoring stations distribution are discussed. Firstly, based on the reduced-dynamic orbit determination theory, the precision improvement of GNSS orbit from multi-epoch geometry observations is revealed. Secondly, the geometric condition of an ideal configuration for BDS satellites orbit determination is studied and the influence factors (quantity, range, density are obtained. Thirdly, the method based on the discrete probability distribution is proposed to analyse the configuration of the ground monitoring stations. Finally, the indicators of discrete probability density and configuration of BDS orbit determination are optimized by adding five Chinese regional stations. It is showed that the improvement of GEO and IGSO satellites is more significant relative to MEO satellites. The accuracy of GEO/IGSO/MEO satellites is improved by 10%, 16%, 4% respectively.

  9. On the Application of Hall Thruster Working with Ambient Atmospheric Gas for Orbital Station-Keeping

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov


    Full Text Available The paper considers the application of the Hall thruster using the ambient atmospheric air for orbital station keeping. This is a relevant direction at the up-to-date development stage of propulsion systems. Many teams of designers of electric rocket thrusters evaluate the application of different schemes of particle acceleration at the low-earth orbit. Such technical solution allows us to abandon the storage systems of the working agent on the spacecraft board. Thus, lifetime of such a system at the orbit wouldn`t be limited by fuel range. The paper suggests a scheme of the propulsion device with a parabolic confuser that provides a required compression ratio of the ambient air for correct operation. Formulates physical and structural restrictions on ambient air to be used as a working agent of the thruster. Pointes out that the altitudes from 200 to 300 km are the most promising for such propulsion devices. Shows that for operation at lower altitudes are required the higher capacities that are not provided by modern onboard power supply systems. For the orbit heightening the air intakes with significant compression rate are of necessity. The size of such air intakes would exceed nose fairing of exploited space launch systems. To perform further design calculations are shown dependencies that allow us to calculate an effective diameter of the thruster channel and a critical voltage to be desirable for thrust force excess over air resistance. The dependencies to calculate minimal and maximal fluxes of neutral particles of oxygen and nitrogen, that are necessary for normal thruster operation, are also shown. Calculation results of the propulsion system parameters for the spacecrafts with cross-sectional area within 1 - 3 m2 and inlet diameter of air intake within 1 - 3 m are demonstrated. The research results have practical significance in design of advanced propulsion devices for lowaltitude spacecrafts. The work has been supported by the RFFR

  10. International Space Station USOS Potable Water Dispenser On-Orbit Functionality Versus Design (United States)

    Toon, Katherine P.; Lovell, Randal W.


    The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmember food and drinking packages. There is one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. Shuttle mission STS-126 delivered the USOS Potable Water Dispenser (PWD) to ISS on ULF2; subsequent activation occurred on November 2008. The PWD is capable of supporting an ISS crew of six, but nominally supplies only half this crew size. The PWD design provides incremental quantities of hot and ambient temperature potable water to US food and beverage packages. PWD receives iodinated water from the US Water Recovery System (WRS) Fuel Cell Water Bus, which feeds from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 L of hot water (65 to 93 ?C) every 30 min. During a single meal, this quantity of water supports three to four crewmembers? food rehydration and beverages. The unit design has a functional life expectancy of 10 years, with replacement of limited life items, such as filters. To date, the PWD on-orbit performance is acceptable. Since activation of the PWD, there were several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is discussed for the following key areas: 1) microbial contamination, 2) no-dispense and water leakage scenarios, and 3) under-dispense scenarios.

  11. International Space Station USOS Crew Quarters On-orbit vs Design Performance Comparison (United States)

    Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.


    The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The CQs provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The racksized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to the Node is described. Additionally, the comparison of on-orbit to original design performance is outlined for the following key operational parameters: interior acoustic performance, air flow rate, temperature rise, and crewmember feedback on provisioning and restraint layout.

  12. Service Life Extension of the Propulsion System of Long-Term Manned Orbital Stations (United States)

    Kamath, Ulhas; Kuznetsov, Sergei; Spencer, Victor


    One of the critical non-replaceable systems of a long-term manned orbital station is the propulsion system. Since the propulsion system operates beginning with the launch of station elements into orbit, its service life determines the service life of the station overall. Weighing almost a million pounds, the International Space Station (ISS) is about four times as large as the Russian space station Mir and about five times as large as the U.S. Skylab. Constructed over a span of more than a decade with the help of over 100 space flights, elements and modules of the ISS provide more research space than any spacecraft ever built. Originally envisaged for a service life of fifteen years, this Earth orbiting laboratory has been in orbit since 1998. Some elements that have been launched later in the assembly sequence were not yet built when the first elements were placed in orbit. Hence, some of the early modules that were launched at the inception of the program were already nearing the end of their design life when the ISS was finally ready and operational. To maximize the return on global investments on ISS, it is essential for the valuable research on ISS to continue as long as the station can be sustained safely in orbit. This paper describes the work performed to extend the service life of the ISS propulsion system. A system comprises of many components with varying failure rates. Reliability of a system is the probability that it will perform its intended function under encountered operating conditions, for a specified period of time. As we are interested in finding out how reliable a system would be in the future, reliability expressed as a function of time provides valuable insight. In a hypothetical bathtub shaped failure rate curve, the failure rate, defined as the number of failures per unit time that a currently healthy component will suffer in a given future time interval, decreases during infant-mortality period, stays nearly constant during the service

  13. Linking the space shuttle and space stations early docking technologies from concept to implementation

    CERN Document Server

    Shayler, David J


    How could the newly authorized space shuttle help in the U.S. quest to build a large research station in Earth orbit? As a means of transporting goods, the shuttle could help supply the parts to the station. But how would the two entitles be physically linked? Docking technologies had to constantly evolve as the designs of the early space stations changed. It was hoped the shuttle would make missions to the Russian Salyut and American Skylab stations, but these were postponed until the Mir station became available, while plans for getting a new U. S. space station underway were stalled. In Linking the Space Shuttle and Space Stations, the author delves into the rich history of the Space Shuttle and its connection to these early space stations, culminating in the nine missions to dock the shuttle to Mir. By 1998, after nearly three decades of planning and operations, shuttle missions to Mir had resulted in: • A proven system to link up the space shuttle to a space station • Equipment and hands-on experienc...

  14. NASA philosophy concerning space stations as operations centers for construction and maintenance of large orbiting energy systems (United States)

    Freitag, R. F.


    Future United States plans for manned space-flight activities are summarized, emphasizing the long-term goals of achieving permanent occupancy and limited self-sufficiency in space. NASA-sponsored studies of earth-orbiting Space Station concepts are reviewed along with lessons learned from the Skylab missions. Descriptions are presented of the Space Transportation System, the Space Construction Base, and the concept of space industrialization (the processing and manufacturing of goods in space). Future plans for communications satellites, solar-power satellites, terrestrial observations from space stations, and manned orbital-transfer vehicles are discussed.

  15. Simultaneous Laser Ranging and Communication from an Earth-Based Satellite Laser Ranging Station to the Lunar Reconnaissance Orbiter in Lunar Orbit (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; hide


    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  16. International Space Station as a base camp for exploration beyond low Earth orbit (United States)

    Raftery, Michael; Hoffman, Jeffrey


    The idea for using the International Space Station (ISS) as a platform for exploration has matured in the past few years and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed in cislunar space providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low Earth orbit. Life support systems and other technologies developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecrafts. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how the use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.

  17. Ionosphere Plasma State Determination in Low Earth Orbit from International Space Station Plasma Monitor (United States)

    Kramer, Leonard


    A plasma diagnostic package is deployed on the International Space Station (ISS). The system - a Floating Potential Measurement Unit (FPMU) - is used by NASA to monitor the electrical floating potential of the vehicle to assure astronaut safety during extravehicular activity. However, data from the unit also reflects the ionosphere state and seems to represent an unutilized scientific resource in the form of an archive of scientific plasma state data. The unit comprises a Floating Potential probe and two Langmuir probes. There is also an unused but active plasma impedance probe. The data, at one second cadence, are collected, typically for a two week period surrounding extravehicular activity events. Data is also collected any time a visiting vehicle docks with ISS and also when any large solar events occur. The telemetry system is unusual because the package is mounted on a television camera stanchion and its data is impressed on a video signal that is transmitted to the ground and streamed by internet to two off center laboratory locations. The data quality has in the past been challenged by weaknesses in the integrated ground station and distribution systems. These issues, since mid-2010, have been largely resolved and the ground stations have been upgraded. Downstream data reduction has been developed using physics based modeling of the electron and ion collecting character in the plasma. Recursive algorithms determine plasma density and temperature from the raw Langmuir probe current voltage sweeps and this is made available in real time for situational awareness. The purpose of this paper is to describe and record the algorithm for data reduction and to show that the Floating probe and Langmuir probes are capable of providing long term plasma state measurement in the ionosphere. Geophysical features such as the Appleton anomaly and high latitude modulation at the edge of the Auroral zones are regularly observed in the nearly circular, 51 deg inclined, 400 km

  18. On-Orbit Propulsion and Methods of Momentum Management for the International Space Station (United States)

    Russell, Samuel P.; Spencer, Victor; Metrocavage, Kevin; Swanson, Robert A.; Krajchovich, Mark; Beisner, Matthew; Kamath, Ulhas P.


    Since the first documented design of a space station in 1929, it has been a dream of many to sustain a permanent presence in space. Russia and the US spent several decades competing for a sustained human presence in low Earth orbit. In the 1980 s, Russia and the US began to openly collaborate to achieve this goal. This collaboration lead to the current design of the ISS. Continuous improvement of procedures for controlling the ISS have lead to more efficient propellant management over the years. Improved efficiency combined with the steady use of cargo vehicles has kept ISS propellant levels well above their defined thresholds in all categories. The continuing evolution of propellant and momentum management operational strategies demonstrates the capability and flexibility of the ISS propulsion system. The hard work and cooperation of the international partners and the evolving operational strategies have made the ISS safe and successful. The ISS s proven success is the foundation for the future of international cooperation for sustaining life in space.

  19. Orbits

    CERN Document Server

    Xu, Guochang


    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  20. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit... (United States)


    ... COMMISSION 47 CFR Part 2 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service... of Earth Stations Aboard Aircraft (ESAA) in the 14.0-14.5 GHz band from secondary to primary and... stations of the FSS on a primary basis in the 11.7-12.2 GHz band (space-to-Earth), on an unprotected basis...

  1. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit... (United States)


    ... COMMISSION 47 CFR Parts 2 and 25 Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service... technical and licensing rules for Earth Stations Aboard Aircraft (ESAA), i.e., earth stations on aircraft...-11.2 GHz, 11.45-11.7 GHz, 11.7-12.2 GHz (space-to-Earth or downlink) and 14.0-14.5 GHz (Earth-to...

  2. Orbital


    Yourshaw, Matthew Stephen


    Orbital is a virtual reality gaming experience designed to explore the use of traditional narrative structure to enhance immersion in virtual reality. The story structure of Orbital was developed based on the developmental steps of 'The Hero's Journey,' a narrative pattern identified by Joseph Campbell. Using this standard narrative pattern, Orbital is capable of immersing the player quickly and completely for the entirety of play time. MFA

  3. Speckle Interferometry at the USNO Flagstaff Station: Observations Obtained in 2008 and Nine New Orbits (United States)


    in the Washington Double Star (WDS) database. Orbits were re- calculated for those systems showing systematic trends in their residuals, using all...observations of neglected closer binaries. We acknowledge Ken Johnston for his continued support of the double star program. Thanks also to Blaise Canzian

  4. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit... (United States)


    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service... proposed rule that appeared in the Federal Register of March 8, 2013. The document proposed rules for Earth...

  5. Orbital (United States)

    Hanson, Robert M.


    ORBITAL requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime Plug-in, version compatible with your OS and browser (available from MDL).

  6. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.


    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  7. A Methodology for Training International Space Station Crews to Respond to On-Orbit Emergencies (United States)

    Balmain, Clinton; Fleming, Mark


    Most spaceflight crewmembers agree that emergency training is among the most important training they receive. If an emergency event occurs on-orbit crewmembers want to be able to rely on a thorough and proficient knowledge of emergency operations and procedures. The inherent complexity of ISS and the international nature of the onboard operations have resulted in emergency procedures that are complex by any measure; as a result, a very robust apparatus has been developed to give crewmembers initial training on emergency procedures and ensure proficiency up to (and even after) launch. One of the most important aspects of complex onboard operations in general, and emergency operations specifically, is learning how to coordinate roles and responsibilities with fellow crewmembers. A primary goal of NASA s emergency training program is to allow the crewmembers who will actually be together on-orbit to practice executing the emergency responses together before they fly. As with any operation that includes the use of software and hardware, the fidelity of the simulation environment is a critical element to successful training. The NASA training division has spent considerable time and effort to develop a simulator that addresses the most important aspects of emergency response, working within very difficult space and budgetary constraints.

  8. Internet-to-orbit gateway and virtual ground station: A tool for space research and scientific outreach (United States)

    Jaffer, Ghulam; Nader, Ronnie; Koudelka, Otto


    Students in higher education, and scientific and technological researchers want to communicate with the International Space Station (ISS), download live satellite images, and receive telemetry, housekeeping and science/engineering data from nano-satellites and larger spacecrafts. To meet this need the Ecuadorian Civilian Space Agency (EXA) has recently provided the civilian world with an internet-to-orbit gateway (Hermes-A/Minotaur) Space Flight Control Center (SFCC) available for public use. The gateway has a maximum range of tracking and detection of 22,000 km and sensitivity such that it can receive and discriminate the signals from a satellite transmitter with power˜0.1 W. The capability is enough to receive the faintest low-earth-orbit (LEO) satellites. This gateway virtually connects participating internet clients around the world to a remote satellite ground station (GS), providing a broad community for multinational cooperation. The goal of the GS is to lower financial and engineering barriers that hinder access to science and engineering data from orbit. The basic design of the virtual GS on a user side is based on free software suites. Using these and other software tools the GS is able to provide access to orbit for a multitude of users without each having to go through the costly setups. We present the design and implementation of the virtual GS in a higher education and scientific outreach settings. We also discuss the basic architecture of the single existing system and the benefits of a proposed distributed system. Details of the software tools and their applicability to synchronous round-the-world tracking, monitoring and processing performed by students and teams at Graz University of Technology, Austria, EXA-Ecuador, University of Michigan, USA and JAXA who have participated in various mission operations and have investigated real-time satellite data download and image acquisition and processing. Students and other remote users at these

  9. Optical ground station site diversity for Deep Space Optical Communications the Mars Telecom Orbiter optical link (United States)

    Wilson, K.; Parvin, B.; Fugate, R.; Kervin, P.; Zingales, S.


    Future NASA deep space missions will fly advanced high resolution imaging instruments that will require high bandwidth links to return the huge data volumes generated by these instruments. Optical communications is a key technology for returning these large data volumes from deep space probes. Yet to cost effectively realize the high bandwidth potential of the optical link will require deployment of ground receivers in diverse locations to provide high link availability. A recent analysis of GOES weather satellite data showed that a network of ground stations located in Hawaii and the Southwest continental US can provide an average of 90% availability for the deep space optical link. JPL and AFRL are exploring the use of large telescopes in Hawaii, California, and Albuquerque to support the Mars Telesat laser communications demonstration. Designed to demonstrate multi-Mbps communications from Mars, the mission will investigate key operational strategies of future deep space optical communications network.

  10. Optical Analysis of Impact Features in Aerogel From the Orbital Debris Collection Experiment on the MIR Station (United States)

    Hoerz, Friedrich; Cress, Glen; Zolensky, Mike; See, Thomas H.; Bernhard, Ronald P.; Warren, Jack L.


    The Mir Environmental Effects Package (MEEP) was deployed on the Mir station and retrieved after 18 months in space. The payload included the orbital debris collector (ODC), designed and built at the Johnson Space Center to capture and return analyzable residues of the man-made and natural particulate environment in low-Earth orbit for a detailed assessment of its compositional makeup and potential origins. The ODC exposed 2 identical trays, with highly porous, low-density SiO2 aerogel as the basic collector medium, pointed in opposite directions. The aerogel was expected to gently decelerate and capture hypervelocity particles, as opposed to other media that resulted in melting or vaporization of many impactors. Even cursory examination of the returned ODC collectors revealed a surprising variety of impact features. The compositional analyses using scanning electron "miccroscope-energy-dispersive X-ray spectroscopy concentrated on a survey-type inventory of diverse particle types and associated impact features. Detections, in the form of carrot-shaped tracks and shallow pits, included metallic Al, stainless steel, soldering compounds, human waste, and paint flakes. Many pits contained no detectable impactor residue (it was assumed to have vaporized), but most of the tracks contained analyzable residue. The study showed that aerogel would be useful for future low-velocity impact analysis.

  11. The International Space Station: A Low-Earth Orbit (LEO) Test Bed for Advancements in Space and Environmental Medicine (United States)

    Ruttley, Tara M.; Robinson, Julie A.


    Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.

  12. Plant growth during the Greenhouse II experiment on the Mir orbital station (United States)

    Salisbury, F. B.; Campbell, W. F.; Carman, J. G.; Bingham, G. E.; Bubenheim, D. L.; Yendler, B.; Sytchev, V.; Levinskikh, M. A.; Ivanova, I.; Chernova, L.; hide


    We carried out three experiments with Super Dwarf wheat in the Bulgarian/Russian growth chamber Svet (0.1 m2 growing area) on the Space Station Mir. This paper mostly describes the first of these NASA-supported trials, began on Aug. 13, 1995. Plants were sampled five times and harvested on Nov. 9 after 90 days. Equipment failures led to low irradiance (3, then 4 of 6 lamp sets failed), instances of high temperatures (ca. 37 degrees C), and sometimes excessive substrate moisture. Although plants grew for the 90 d, no wheat heads were produced. Considering the low light levels, plants were surprisingly green, but of course biomass production was low. Plants were highly disoriented (low light, mirror walls?). Fixed and dried samples and the root module were returned on the U.S. Shuttle Atlantis on Nov. 20, 1995. Samples of the substrate, a nutrient-charged zeolite called Balkanine, were taken from the root module, carefully examined for roots, weighed, dried, and reweighed. The Svet control unit and the light bank were shipped to Moscow. An experiment validation test (EVT) of plant growth and experimental procedures, carried out in Moscow, was highly successful. Equipment built in Utah to measure CO2, H2O vapor, irradiance, air and leaf (IR) temperature, O2, pressure, and substrate moisture worked well in the EVT and in space. After this manuscript was first prepared, plants were grown in Mir with a new light bank and controller for 123 d in late 1996 and 39 days in 1996/1997. Plants grew exceptionally well with higher biomass production than in any previous space experiment, but the ca. 280 wheat heads that were produced in 1996 contained no seeds. Ethylene in the cabin atmosphere was responsible. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  13. Hypervelocity Impact Testing of International Space Station Meteoroid/Orbital Debris Shielding Using an Inhibited Shaped Charge Launcher (United States)

    Kerr, Justin H.; Grosch, Donald


    Engineers at the NASA Johnson Space Center have conducted hypervelocity impact (HVI) performance evaluations of spacecraft meteoroid and orbital debris (M/OD) shields at velocities in excess of 7 km/s. The inhibited shaped charge launcher (ISCL), developed by the Southwest Research Institute, launches hollow, circular, cylindrical jet tips to approximately 11 km/s. Since traditional M/OD shield ballistic limit performance is defined as the diameter of sphere required to just perforate or spall a spacecraft pressure wall, engineers must decide how to compare ISCL derived data with those of the spherical impactor data set. Knowing the mass of the ISCL impactor, an equivalent sphere diameter may be calculated. This approach is conservative since ISCL jet tips are more damaging than equal mass spheres. A total of 12 tests were recently conducted at the Southwest Research Institute (SWRI) on International Space Station M/OD shields. Results of these tests are presented and compared to existing ballistic limit equations. Modification of these equations is suggested based on the results.

  14. Anthropization on the Cerrado biome in the Brazilian Uruçuí-Una Ecological Station estimated from orbital images. (United States)

    Pereira, A C; Gama, V F


    In this study we analysed the dynamics of deforestation and burnings during the dry seasons from 2003 to 2008 in the Uruçuí-Una Ecological Station (UUES) and its buffer zone, located in the Cerrado biome of the southwest of Piauí, a Brazil's State, based on images from the orbital sensors CCD/CBERS-2 and TM/Landsat-5. Two dates from each of the years were interpreted and analysed: one in the middle of the dry season and one at the end. The deforested areas were expanded through the period analysed and were larger in the buffer zone, suggesting a relative protection of the UUES. New cut-offs were predictable because of the early opening of roads that would become their limits. The burning scars were larger at the end of the dry season as a consequence of the management and implementation of agricultures and pastures. In 2004 and 2007 these scars were larger probably because of the increase of dry phytomass that every three years is big enough to spread the fire originated in the anthropogenic burnings through the native vegetation. This scenario reaffirms the need for: stronger enforcement in order to stop anthropisation in the UUES and a management plan, absent for this unit so far. These proceedings are urgent also because the UUES is located in one of the most preserved regions of the Cerrado and controversially where intense anthropisation in ongoing, which stresses the lack, need and urgency of biological conservation proceedings for the Piauí's southeastern Cerrado.

  15. Close Range Photogrammetry in Space - Measuring the On-Orbit Clearance between Hardware on the International Space Station (United States)

    Liddle, Donn


    real clearance between the ammonia lines and expected position of the thruster bell using existing on-orbit imagery. Imagery of the area of interest, taken several years earlier from the Space Shuttle during a fly-around of the ISS, was found and used to set a stereo pair. Space Vision System Targets and Handrail bolts measured in the ISS analytical coordinate system (ISSACS) prior to launch, were used to obtain an absolute orientation so all photogrammetric measurement's would be in the ISSACS coordinate system. Coordinates for the design location of the edges of the thruster bell, when the cargo vehicle was fully berthed to the ISS, were displayed in 3-D relative to the as-installed ammonia lines. This immediately revealed a positive clearance, which was later quantified to be a minimum of 10" +/0.5". The analysis was completed over a single weekend by a single analyst. Using updated imagery, acquired from the station's robotic arm, a complete as-installed model of the coolant lines was generated from stereo photography and replaced the design model in the master ISS CAD database.

  16. Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations I: COMS simulation case

    Directory of Open Access Journals (Sweden)

    Ju Young Son


    Full Text Available To protect and manage the Korean space assets including satellites, it is important to have precise positions and orbit information of each space objects. While Korea currently lacks optical observatories dedicated to satellite tracking, the Korea Astronomy and Space Science Institute (KASI is planning to establish an optical observatory for the active generation of space information. However, due to geopolitical reasons, it is difficult to acquire an adequately sufficient number of optical satellite observatories in Korea. Against this backdrop, this study examined the possible locations for such observatories, and performed simulations to determine the differences in precision of optical orbit estimation results in relation to the relative baseline distance between observatories. To simulate more realistic conditions of optical observation, white noise was introduced to generate observation data, which was then used to investigate the effects of baseline distance between optical observatories and the simulated white noise. We generated the optical observations with white noise to simulate the actual observation, estimated the orbits with several combinations of observation data from the observatories of various baseline differences, and compared the estimated orbits to check the improvement of precision. As a result, the effect of the baseline distance in combined optical GEO satellite observation is obvious but small compared to the observation resolution limit of optical GEO observation.

  17. Main medical results of extended flights on space station Mir in 1986-1990 (United States)

    Grigoriev, A. I.; Bugrov, S. A.; Bogomolov, V. V.; Egorov, A. D.; Polyakov, V. V.; Tarasov, I. K.; Shulzhenko, E. B.

    During 1986-1990 seven prime spacecrews (16 cosmonauts) have flow on-board the Mir orbital complex. The longest space mission duration was 366 days. The principal objectives of the medical tasks were the maintenance of good health and performance of the spacecrews and conducting medical research programs which included study of the cardiovascular, motor, endocrine, blood, immune, and metabolic systems. Results obtained point to the ability of humans to readily adapt to a year-long stay in space and maintain good health and performance. Readaptation had a similar course as after other previous long-term space flights of up to 8 months in duration. Primary body system changes were not qualitatively different from findings after flights aboard the Salyut 6 and 7 space stations. In this case, during and after an 11-12 month flight, body system alterations were even less severe which was a result of adequate countermeasure use, their systematic and creative employment and maintenance of required environments to support life and work in space.

  18. Studies of Geomagnetic Pulsations Using Magnetometer Data from the CHAMP Low-Earth-Orbit Satellite and Ground-Based Stations: a Review

    Directory of Open Access Journals (Sweden)

    P R Sutcliffe


    Full Text Available We review research on geomagnetic pulsations carried out using magnetic field measurements from the CHAMP low-Earth-orbit (LEO satellite and ground-based stations in South Africa and Hungary. The high quality magnetic field measurements from CHAMP made it possible to extract and clearly resolve Pi2 and Pc3 pulsations in LEO satellite data. Our analyses for nighttime Pi2 pulsations are indicative of a cavity mode resonance. However, observations of daytime Pi2 pulsation events identified in ground station data show no convincing evidence of their occurrence in CHAMP data. We also studied low-latitude Pc3 pulsations and found that different types of field line resonant structure occur, namely discrete frequencies driven by a narrow band source and L-dependent frequencies driven by a broad band source.

  19. Tropical Epiphytic Orchids as an Object of Space Botany Investigations and a Design Element for Spacecraft Flight Decks and Orbital Stations (United States)

    Cherevchenko, T. M.; Zaimenko, N. V.

    Epiphytic orchids are shown to be more stable in a long stay on board an orbital station than terrestrial species. Simulations revealed that the activity of native growth stimulators (free auxins and gibberellines) under the prolonged clinostating conditions varied in epiphytic orchids to a lesser extent than in terrestrial orchids. This factor, together with a weaker geotropic reaction, seems to be a cause of their stability in microgravitation conditions. The authors found also that orchids with the monopodial type of shoot system branching are less stable at microgravity than the sympodial species.

  20. Monographs in Aerospace History Series No. 11. Together in Orbit: The Origins of International Participation in the Space Station (United States)

    Logsdon, John M.


    This essay is a history and analysis of the steps leading to the origins of the space station partnership between the United States and its closest allies. It traces the process that led to the decision to invite other countries to participate in the project and their reasons for accepting that invitation. Not covered in this account are the difficult negotiations during the 1984-1988 period that led first to an initial set of agreements that allowed the prospective partners to work together during the early stages of the space station program and then to the final set of agreements creating the original space station partnership. Also, the 1993 invitation to the Russian Federation to join the original partners is not discussed, nor are the subsequent negotiations to revise the 1988 agreements.

  1. Speckle Interferometry at the USNO Flagstaff Station: Observations Obtained in 2003-2004 and 17 New Orbits (United States)


    visual binaries from the Washington Double Star Catalog2 (WDS) and Fourth Interferometric Catalog3 which were too close to easily resolve in Washington...yr) was published just as speckle interferometry was beginning to make a significant impact in the field of double star astrometry. Although his orbit... double star program. Thanks also to Blaise Canzian, Hugh Harris, Joan Martini, Alice Monet, Jeff Pier, and all the staff of the USNO Flagstaff

  2. The AMS-02 detector on the International Space Station - The status after the first 5 years on orbit

    Directory of Open Access Journals (Sweden)

    Duranti Matteo


    Full Text Available The Alpha Magnetic Spectrometer, AMS-02, detector is operating on the International Space Station (ISS since May the 19th, 2011. More than 80 billion events have been collected by the instrument in the first 5 years of data taking. This unprecedented amount of data is being used to perform accurate measurements of the different Cosmic Rays (CR components. In this contribution a review of the published results will be presented.

  3. Structural Verification of the First Orbital Wonder of the World - The Structural Testing and Analysis of the International Space Station (ISS) (United States)

    Zipay, John J.; Bernstein, Karen S.; Bruno, Erica E.; Deloo, Phillipe; Patin, Raymond


    The International Space Station (ISS) can be considered one of the structural engineering wonders of the world. On par with the World Trade Center, the Colossus of Rhodes, the Statue of Liberty, the Great Pyramids, the Petronas towers and the Burj Khalifa skyscraper of Dubai, the ambition and scope of the ISS structural design, verification and assembly effort is a truly global success story. With its on-orbit life projected to be from its beginning in 1998 to the year 2020 (and perhaps beyond), all of those who participated in its development can consider themselves part of an historic engineering achievement representing all of humanity. The structural design and verification of the ISS could be the subject of many scholarly papers. Several papers have been written on the structural dynamic characterization of the ISS once it was assembled on-orbit [1], but the ground-based activities required to assure structural integrity and structural life of the individual elements from delivery to orbit through assembly and planned on-orbit operations have never been totally summarized. This paper is intended to give the reader an overview of some of the key decisions made during the structural verification planning for the elements of the U.S. On-Orbit Segment (USOS) as well as to summarize the many structural tests and structural analyses that were performed on its major elements. An effort is made for this paper to be summarily comprehensive, but as with all knowledge capture efforts of this kind, there are bound to be errors of omission. Should the reader discover any of these, please feel free to contact the principal author. The ISS (Figure 1) is composed of pre-integrated truss segments and pressurized elements supplied by NASA, the Russian Federal Space Agency (RSA), the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). Each of these elements was delivered to orbit by a launch vehicle and connected to one another either robotically or

  4. International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System Keep Out Zone On-Orbit Problems (United States)

    Williams, David E.


    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system performance can be impacted by operations on ISS. This is especially important for the Temperature and Humidity Control (THC) and for the Fire Detection and Suppression (FDS) subsystems. It is also more important for Node 1 since it has become a convenient area for many crew tasks and for stowing hardware prior to Shuttle arrival. This paper will discuss the current requirements for ECLS keep out zones in Node 1; the issues with stowage in Node 1 during Increment 7 and how they impacted the keep out zone requirements; and the solution during Increment 7 and 8 for maintaining the keep out zones in Node 1.

  5. Bounding the risk of crew loss following orbital debris penetration of the International Space Station at assembly stages 1J and 1E (United States)

    Evans, S.; Lewis, H.; Williamsen, J.; Evans, H.; Bohl, W.


    Orbital debris impacts on the International Space Station occur frequently. To date, none of the impacting particles has been large enough to penetrate manned pressurized volumes. We used the Manned Spacecraft Crew Survivability code to evaluate the risk to crew of penetrations of pressurized modules at two assembly stages: after Flight 1J, when the pressurized elements of Kibo, the Japanese Experiment Module, are present, and after Flight 1E, when the European Columbus Module is present. Our code is a Monte-Carlo simulation of impacts on the Station that considers several potential event types that could lead to crew loss. Among the statistics tabulated by the program is the probability of death of one or more crew members in the event of a penetration, expressed as the risk factor, R. This risk factor is dependent on details of crew operations during both ordinary circumstances and decompression emergencies, as well as on details of internal module configurations. We conducted trade studies considering these procedure and configuration details to determine the bounds on R at the 1J and 1E stages in the assembly sequence. Here we compare the R-factor bounds, and procedures could that reduce R at these stages. Published by Elsevier Ltd on behalf of COSPAR.

  6. Independent Review of U.S. and Russian Probabilistic Risk Assessments for the International Space Station Mini Research Module #2 Micrometeoroid and Orbital Debris Risk (United States)

    Squire, Michael D.


    The Mini-Research Module-2 (MRM-2), a Russian module on the International Space Station, does not meet its requirements for micrometeoroid and orbital debris probability of no penetration (PNP). To document this condition, the primary Russian Federal Space Agency ISS contractor, S.P. Korolev Rocket and Space Corporation-Energia (RSC-E), submitted an ISS non-compliance report (NCR) which was presented at the 5R Stage Operations Readiness Review (SORR) in October 2009. In the NCR, RSC-E argued for waiving the PNP requirement based on several factors, one of which was the risk of catastrophic failure was acceptably low at 1 in 11,100. However, NASA independently performed an assessment of the catastrophic risk resulting in a value of 1 in 1380 and believed that the risk at that level was unacceptable. The NASA Engineering and Safety Center was requested to evaluate the two competing catastrophic risk values and determine which was more accurate. This document contains the outcome of the assessment.

  7. Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations Ⅱ: COMS Case with Analysis of Actual Observation Data

    Directory of Open Access Journals (Sweden)

    Ju Young Son


    Full Text Available We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS, a Geostationary Earth Orbit (GEO satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO of the Korea Astronomy and Space Science Institute (KASI, Optical Wide field Patrol (OWL at KASI, and the Chungbuk National University Observatory (CNUO from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

  8. Relative motion of orbiting bodies (United States)

    Butikov, Eugene I.


    A problem of relative motion of orbiting bodies is investigated on the example of the free motion of any body ejected from the orbital station that stays in a circular orbit around the earth. An elementary approach is illustrated by a simulation computer program and supported by a mathematical treatment based on approximate differential equations of the relative orbital motion.

  9. The role of a space patrol of solar X-ray radiation in the provisioning of the safety of orbital and interplanetary manned space flights (United States)

    Avakyan, S. V.; Kovalenok, V. V.; Savinykh, V. P.; Ivanchenkov, A. S.; Voronin, N. A.; Trchounian, A.; Baranova, L. A.


    In interplanetary flight, after large solar flares, cosmonauts are subjected to the action of energetic solar protons and electrons. These energetic particles have an especially strong effect during extravehicular activity or (in the future) during residence on the surface of Mars, when they spend an extended time there. Such particles reach the orbits of the Earth and of Mars with a delay of several hours relative to solar X-rays and UV radiation. Therefore, there is always time to predict their appearance, in particular, by means of an X-ray-UV radiometer from the apparatus complex of the Space Solar Patrol (SSP) that is being developed by the co-authors of this paper. The paper discusses the far unexplored biophysical problem of manned flight to Mars, scheduled for the next decade. In long-term manned space flights on the orbital stations "Salyut" Soviet cosmonaut crews from three of the co-authors (cosmonauts V.V. Kovalenok, A.S. Ivanchenkov, and V.P. Savinykh) had repeatedly observed the effect of certain geophysical conditions on the psychological state of each crew. These effects coincide with the increased intensity of global illumination in the upper ionosphere space on flight altitudes (300-360 km). It is important that during all of these periods, most of the geomagnetic pulsations were completely absent. Possible ways to study the synergistic effects of the simultaneous absence of the geomagnetic field, the magnetic pulsations and the microwave radiation of the terrestrial ionosphere are considered for a flight to Mars.

  10. Space Station fluid management logistics (United States)

    Dominick, Sam M.


    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  11. Development of preliminary design concept for a multifunction display and control system for the Orbiter crew station. Task 4: Design concept recommendation (United States)

    Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.


    Application of multifunction display and control systems to the NASA Orbiter spacecraft offers the potential for reducing crew workload and improving the presentation of system status and operational data to the crew. A design concept is presented for the application of a multifunction display and control system (MFDCS) to the Orbital Maneuvering System and Electrical Power Distribution and Control System on the Orbiter spacecraft. The MFDCS would provide the capability for automation of procedures, fault prioritization and software reconfiguration of the MFDCS data base. The MFDCS would operate as a stand-alone processor to minimize the impact on the current Orbiter software. Supervisory crew command of all current functions would be retained through the use of several operating modes in the system. Both the design concept and the processes followed in defining the concept are described.

  12. Orbital maneuvers and space rendezvous (United States)

    Butikov, Eugene I.


    Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.

  13. Orbital Debris: A Policy Perspective (United States)

    Johnson, Nicholas L.


    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  14. Space Station operations (United States)

    Gray, R. H.


    An evaluation of the success of the Space Station will be based on the service provided to the customers by the Station crew, the productivity of the crew, and the costs of operation. Attention is given to details regarding Space Station operations, a summary of operational philosophies and requirements, logistics and resupply operations, prelaunch processing and launch operations, on-orbit operations, aspects of maintainability and maintenance, habitability, and questions of medical care. A logistics module concept is considered along with a logistics module processing timeline, a habitability module concept, and a Space Station rescue mission.

  15. Plotting Orbital Trajectories For Maneuvers (United States)

    Brody, Adam R.


    Interactive Orbital Trajectory Planning Tool (EIVAN) computer program is forward-looking interactive orbit-trajectory-plotting software tool for use with proximity operations (operations occurring within 1-km sphere of space station) and other maneuvers. Developed to plot resulting trajectories, to provide better comprehension of effects of orbital mechanics, and to help user develop heuristics for planning missions on orbit. Program runs with Microsoft's Excel for execution on MacIntosh computer running MacIntosh OS.

  16. The Canadian Space Agency, Space Station, Strategic Technologies for Automation and Robotics Program technology development activity in protection of materials from the low Earth orbit space environment (United States)

    Francoeur, J. R.


    The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.

  17. On the existence of debris clouds in the Space Station orbit: Final results of the EuroMir 1995 impact detector (United States)

    Maag, Carl R.; Deshpande, Sunil P.; Johnson, Nicholas L.


    A flight experiment flown onboard the Mir space station as a part of the Euromir 95 mission is considered. The aim of the experiment was to develop a greater understanding of the effects of the space environment on materials. In addition to the active enumeration of particle impacts and trajectories, the aim was to capture hypervelocity particles for their return to earth. Postflight measurements were performed to determine the flux density, diameters and subsequent effects on various optical thermal control and structural materials. Sensors actively measured the atomic oxygen flux, the contamination depostion and their effects during the mission. Two clouds of small particles were detected during a period of 100 days onboard Mir. It is concluded that the measured momenta of these particles suggests that their size and velocity are such that they cause damage to optics and thermal control surfaces.

  18. An On-Board TLD System for Dose Monitoring on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Apathy, I.; Deme, S.; Bodnar, L.; Csoeke, A.; Hejja, I


    This institute has developed and manufactured a series of thermoluminescence dosemeter (TLD) systems for spacecraft, consisting of a set of bulb dosemeters and a small, compact TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A new implementation of the system will be placed on several segments of the ISS as the contribution of Hungary to this international enterprise. The well proven CaSO{sub 4}:Dy dosemeters will be used for routine dosimetry of the astronauts and in biological experiments. The mean LET value will be measured by LiF dosemeters while doses caused by neutrons are planned to be determined by {sup 6}LiF/{sup 7}LiF dosemeter pairs and moderators. A detailed description of the system is given. (author)

  19. Fire Stations (United States)

    Department of Homeland Security — Fire Stations in the United States Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their...

  20. [Orbital cellulitis]. (United States)

    Mouriaux, F; Rysanek, B; Babin, E; Cattoir, V


    Orbital cellulitis is uncommon in ophthalmologic practice. The majority of cases arise from direct spread of sinus infection or eyelid infection. Clinically, orbital cellulitis is divided into two forms: the preseptal form, anterior to the orbital septum, and the retroseptal form, posterior to the orbital septum. Management and prognosis differ widely between the two types. The retroseptal form or "true" orbital cellulitis is a severe disease with potentially disastrous consequences for vision and survival. Clinical examination and urgent CT scanning are indispensable for correct diagnosis, evaluation of severity, surgical planning and antibiotic selection. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. Station Capacity

    DEFF Research Database (Denmark)

    Landex, Alex


    Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore......, this paper presents methods to analyze station capacity. Four methods to analyze station capacity are developed. The first method is an adapted UIC 406 capacity method that can be used to analyze switch zones and platform tracks at stations that are not too complex. The second method examines the need...... the probability of conflicts and the minimum headway times into account. The last method analyzes how optimal platform tracks are used by examining the arrival and departure pattern of the trains. The developed methods can either be used separately to analyze specific characteristics of the capacity of a station...

  2. Amtrak Stations (United States)

    Department of Homeland Security — Updated database of the Federal Railroad Administration's (FRA) Amtrak Station database. This database is a geographic data set containing Amtrak intercity railroad...

  3. MMOD-IMLI: Integrated Thermal Insulation and Micrometeoroid/Orbital Debris Protection Project (United States)

    National Aeronautics and Space Administration — For NASA extended missions in Low Earth Orbit (LEO), Micrometeoroid and Orbital Debris (MMOD) protection for spacecraft, space stations and orbiting fuel depots is...


    African Journals Online (AJOL)

    Aim: The purpose of this study was to assess the prevalence of paranasal sinusitis as a cause of orbital cellulitis and to identify the commonest sinus(es) involved in our setting. Methods: A retrospective review of the case notes of 47 patients with orbital cellulitis admitted into the ophthalmic ward of the University College ...

  5. Orbital velocity


    Modestino, Giuseppina


    The trajectory and the orbital velocity are determined for an object moving in a gravitational system, in terms of fundamental and independent variables. In particular, considering a path on equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The case of the planets of the solar system is presented.

  6. Predictive Attitude Maintenance For A Space Station (United States)

    Hattis, Philip D.


    Paper provides mathematical basis for predictive management of angular momenta of control-moment gyroscopes (CMG's) to control attitude of orbiting space station. Numerical results presented for pitch control of proposed power-tower space station. Based on prior orbit history and mathematical model of density of atmosphere, predictions made of requirements on dumping and storage of angular momentum in relation to current loading state of CMG's and to acceptable attitude tolerances.

  7. USSR space life sciences digest

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C.S.; Donnelly, K.L.


    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  8. USSR Space Life Sciences Digest (United States)

    Lewis, C. S. (Editor); Donnelly, K. L. (Editor)


    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  9. The Hot Orbit: Orbital Cellulitis (United States)

    Chaudhry, Imtiaz A.; Al-Rashed, Waleed; Arat, Yonca O.


    Orbital cellulitis is an uncommon condition previously associated with severe complications. If untreated, orbital cellulitis can be potentially sight and life threatening. It can affect both adults and children but has a greater tendency to occur in the pediatric age group. The infection most commonly originates from sinuses, eyelids or face, retained foreign bodies, or distant soources by hematogenous spread. It is characterized by eyelid edema, erythema, chemosis, proptosis, blurred vision, fever, headache, and double vision. A history of upper respiratory tract infection prior to the onset is very common especially in children. In the era prior to antibiotics, vision loss from orbital cellulitis was a dreaded complication. Currently, imaging studies for detection of orbital abcess, the use of antibiotics and early drainage have mitigated visual morbidity significantly. The purpose of this review is to describe current investigative strategies and management options in the treatment of orbital cellulitis, establish their effectiveness and possible complications due to late intervention. PMID:22346113

  10. Foreign body orbital cyst

    DEFF Research Database (Denmark)

    Yazdanfard, Younes; Heegard, Steffen; Fledelius, Hans C.


    Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology......Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology...

  11. Arduino adventures escape from Gemini station

    CERN Document Server

    Kelly, James Floyd


    Arduino Adventures: Escape from Gemini Station provides a fun introduction to the Arduino microcontroller by putting you (the reader) into the action of a science fiction adventure story.  You'll find yourself following along as Cade and Elle explore Gemini Station-an orbiting museum dedicated to preserving and sharing technology throughout the centuries. Trouble ensues. The station is evacuated, including Cade and Elle's class that was visiting the station on a field trip. Cade and Elle don't make it aboard their shuttle and are trapped on the station along with a friendly artificial intellig

  12. STS-97 Onboard Photograph - International Space Station (United States)


    This image of the International Space Station in orbit was taken from the Space Shuttle Endeavour prior to docking. Most of the Station's components are clearly visible in this photograph. They are the Node 1 or Unity Module docked with the Functional Cargo Block or Zarya (top) that is linked to the Zvezda Service Module. The Soyuz spacecraft is at the bottom.

  13. MOOSE: Manned On-Orbit Servicing Equipment (United States)

    Budinoff, J.; Leontsinis, N.; Lane, J.; Singh, R.; Angelone, K.; Boswell, C.; Chamberlain, I.; Concha, M.; Corrodo, M.; Custodio, O.

    The ability to service satellites has thus far been limited to low earth orbit platforms within reach of the Space Shuttle. Other orbits, such as geosynchronous orbits containing high-value spacecraft have not been attainable by a servicing vehicle. The useful life of a satellite can be extended by replacing spent propellant and damaged orbital replacement units, forestalling the need for eventual replacement. This growing need for satellite on-orbits servicing can be met by the Manned On-Orbit Servicing Equipment (MOOSE). Missions requiring orbit transfer capability, precision manipulation and maneuvering, and man-in-the-loop control can be accomplished using MOOSE. MOOSE is a flexible, reusable, single operator, aerobraking spacecraft designed to refuel, repair, and service orbiting spacecraft. MOOSE will be deployed from Space Station Freedom, (SSF), where it will be stored, resupplied, and refurbished.

  14. Space station synergetic RAM-logistics analysis (United States)

    Dejulio, Edmund T.; Leet, Joel H.


    NASA's Space Station Maintenance Planning and Analysis (MP&A) Study is a step in the overall Space Station Program to define optimum approaches for on-orbit maintenance planning and logistics support. The approach used in the MP&A study and the analysis process used are presented. Emphasis is on maintenance activities and processes that can be accomplished on orbit within the known design and support constraints of the Space Station. From these analyses, recommendations for maintainability/maintenance requirements are established. The ultimate goal of the study is to reduce on-orbit maintenance requirements to a practical and safe minimum, thereby conserving crew time for productive endeavors. The reliability, availability, and maintainability (RAM) and operations performance evaluation models used were assembled and developed as part of the MP&A study and are described. A representative space station system design is presented to illustrate the analysis process.

  15. Observation Station (United States)

    Rutherford, Heather


    This article describes how a teacher integrates science observations into the writing center. At the observation station, students explore new items with a science theme and use their notes and questions for class writings every day. Students are exposed to a variety of different topics and motivated to write in different styles all while…

  16. Triple Difference Approach to Low Earth Orbiter Precision Orbit Determination (United States)

    Kwon, Jay-Hyoun; Grejner-Brzezinska, Dorota A.; Yom, Jae-Hong; Cheon, Lee-Dong


    A precise kinematic orbit determination (P-KOD) procedure for Low Earth Orbiter(LEO) using the GPS ion-free triple differenced carrier phases is presented. Because the triple differenced observables provide only relative information, the first epoch's positions of the orbit should be held fixed. Then, both forward and backward filtering was executed to mitigate the effect of biases of the first epoch's position. P-KOD utilizes the precise GPS orbits and ground stations data from International GPS Service (IGS) so that the only unknown parameters to be solved are positions of the satellite at each epoch. Currently, the 3-D accuracy of P-KOD applied to CHAMP (CHAllenging Minisatellite Payload) shows better than 35 cm compared to the published rapid scientific orbit (RSO) solution from GFZ (GeoForschungsZentrum Potsdam). The data screening for cycle slips is a particularly challenging procedure for LEO, which moves very fast in the middle of the ionospheric layer. It was found that data screening using SNR (signal to noise ratio) generates best results based on the residual analysis using RSO. It is expected that much better accuracy are achievable with refined prescreening procedure and optimized geometry of the satellites and ground stations.

  17. Problems and concepts of space station guidance, navigation, and control (United States)

    Guha, A. K.; Craig, M.

    The Space Station System is defined as a network of space and ground assets which work together to support a variety of missions including commercial missions, science and applications missions, and technology development missions. The elements of the Space Station System include a Space Station Base, Space Platforms, Free Flyers, a Teleoperator Manuevering System (TMS), Orbital Transfer Vehicles (OTV), Orbiter Berthing Equipment, and Ground Support Equipment and Facilities. Guidance, navigation, and control (GNC) subsystem requirements are considered along with configuration trades.

  18. Human factors in space station architecture 1: Space station program implications for human factors research (United States)

    Cohen, M. M.


    The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.

  19. Inflammation of the Orbit (United States)

    ... Glaucoma (Video) Macular Degeneration Additional Content Medical News Inflammation of the Orbit (Inflammatory Orbital Pseudotumor) By James ... Introduction to Eye Socket Disorders Cavernous Sinus Thrombosis Inflammation of the Orbit Orbital Cellulitis Preseptal Cellulitis Tumors ...

  20. Doses due to extra-vehicular activity on space stations

    Energy Technology Data Exchange (ETDEWEB)

    Deme, S.; Apathy, I.; Feher, I. [KFKI Atomic Energy Research Institute, Budapest (Hungary); Akatov, Y.; Arkhanguelski, V. [Institute of Biomedical Problems, State Scientific Center, Moscow (Russian Federation); Reitz, G. [DLR Institute of Aerospace Medicine, Cologne, Linder Hohe (Germany)


    One of the many risks of long duration space flight is the dose from cosmic radiation, especially during periods of intensive solar activity. At such times, particularly during extra-vehicular activity (E.V.A.), when the astronauts are not protected by the wall of the spacecraft, cosmic radiation is a potentially serious health threat. Accurate dose measurement becomes increasingly important during the assembly of large space objects. Passive integrating detector systems such as thermoluminescent dosimeters (TLDs) are commonly used for dosimetric mapping and personal dosimetry on space vehicles. K.F.K.I. Atomic Energy Research Institute has developed and manufactured a series of thermoluminescent dosimeter systems, called Pille, for measuring cosmic radiation doses in the 3 {mu}Gy to 10 Gy range, consisting of a set of CaSO{sub 4}:Dy bulb dosimeters and a small, compact, TLD reader suitable for on-board evaluation of the dosimeters. Such a system offers a solution for E.V.A. dosimetry as well. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations, on the Space Shuttle, and most recently on several segments of the International Space Station (I.S.S.). The Pille system was used to make the first measurements of the radiation exposure of cosmonauts during E.V.A.. Such E.V.A. measurements were carried out twice (on June 12 and 16, 1987) by Y. Romanenko, the commander of the second crew of Mir. During the E.V.A. one of the dosimeters was fixed in a pocket on the outer surface of the left leg of his space-suit; a second dosimeter was located inside the station for reference measurements. The advanced TLD system Pille 96 was used during the Nasa-4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the exposure of two of the astronauts during their E.V.A. activities. The extra doses of two E.V.A. during the Euromir 95 and one E.V.A. during the Nasa4 experiment

  1. Geostationary Orbit Surveillance Using the Unscented Kalman Filter and the Analytical Orbit Model

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Roh


    Full Text Available A strategy for geostationary orbit (or geostationary earth orbit [GEO] surveillance based on optical angular observations is presented in this study. For the dynamic model, precise analytical orbit model developed by Lee et al. (1997 is used to improve computation performance and the unscented Kalman filer (UKF is applied as a real-time filtering method. The UKF is known to perform well under highly nonlinear conditions such as surveillance in this study. The strategy that combines the analytical orbit propagation model and the UKF is tested for various conditions like different level of initial error and different level of measurement noise. The dependencies on observation interval and number of ground station are also tested. The test results shows that the GEO orbit determination based on the UKF and the analytical orbit model can be applied to GEO orbit tracking and surveillance effectively.

  2. Space station needs, attributes and architectural options study. Final executive review (United States)


    Identification and validation of missions, the benefits of manned presence in space, attributes and architectures, space station requirements, orbit selection, space station architectural options, technology selection, and program planning are addressed.

  3. Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes (United States)

    Sośnica, Krzysztof; Prange, Lars; Kaźmierski, Kamil; Bury, Grzegorz; Drożdżewski, Mateusz; Zajdel, Radosław; Hadas, Tomasz


    The space segment of the European Global Navigation Satellite System (GNSS) Galileo consists of In-Orbit Validation (IOV) and Full Operational Capability (FOC) spacecraft. The first pair of FOC satellites was launched into an incorrect, highly eccentric orbital plane with a lower than nominal inclination angle. All Galileo satellites are equipped with satellite laser ranging (SLR) retroreflectors which allow, for example, for the assessment of the orbit quality or for the SLR-GNSS co-location in space. The number of SLR observations to Galileo satellites has been continuously increasing thanks to a series of intensive campaigns devoted to SLR tracking of GNSS satellites initiated by the International Laser Ranging Service. This paper assesses systematic effects and quality of Galileo orbits using SLR data with a main focus on Galileo satellites launched into incorrect orbits. We compare the SLR observations with respect to microwave-based Galileo orbits generated by the Center for Orbit Determination in Europe (CODE) in the framework of the International GNSS Service Multi-GNSS Experiment for the period 2014.0-2016.5. We analyze the SLR signature effect, which is characterized by the dependency of SLR residuals with respect to various incidence angles of laser beams for stations equipped with single-photon and multi-photon detectors. Surprisingly, the CODE orbit quality of satellites in the incorrect orbital planes is not worse than that of nominal FOC and IOV orbits. The RMS of SLR residuals is even lower by 5.0 and 1.5 mm for satellites in the incorrect orbital planes than for FOC and IOV satellites, respectively. The mean SLR offsets equal -44.9, -35.0 , and -22.4 mm for IOV, FOC, and satellites in the incorrect orbital plane. Finally, we found that the empirical orbit models, which were originally designed for precise orbit determination of GNSS satellites in circular orbits, provide fully appropriate results also for highly eccentric orbits with variable

  4. Cycler orbit between Earth and Mars (United States)

    Byrnes, Dennis V.; Longuski, James M.; Aldrin, Buzz


    A periodic orbit between Earth and Mars has been discovered that, after launch, permits a space vehicle to cycle back and forth between the planets with moderate maneuvers at irregular intervals. A Space Station placed in this cycler orbit could provide a safe haven from radiation and comfortable living quarters for astronauts en route to Earth or Mars. The orbit is largely maintained by gravity assist from Earth. Numerical results from multiconic optimization software are presented for a 15-year period from 1995 through 2010.

  5. Machine vision for real time orbital operations (United States)

    Vinz, Frank L.


    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  6. Space Shuttle Orbiter-Illustration (United States)


    This illustration is an orbiter cutaway view with callouts. The orbiter is both the brains and heart of the Space Transportation System (STS). About the same size and weight as a DC-9 aircraft, the orbiter contains the pressurized crew compartment (which can normally carry up to seven crew members), the huge cargo bay, and the three main engines mounted on its aft end. There are three levels to the crew cabin. Uppermost is the flight deck where the commander and the pilot control the mission. The middeck is where the gallery, toilet, sleep stations, and storage and experiment lockers are found for the basic needs of weightless daily living. Also located in the middeck is the airlock hatch into the cargo bay and space beyond. It is through this hatch and airlock that astronauts go to don their spacesuits and marned maneuvering units in preparation for extravehicular activities, more popularly known as spacewalks. The Space Shuttle's cargo bay is adaptable to hundreds of tasks. Large enough to accommodate a tour bus (60 x 15 feet or 18.3 x 4.6 meters), the cargo bay carries satellites, spacecraft, and spacelab scientific laboratories to and from Earth orbit. It is also a work station for astronauts to repair satellites, a foundation from which to erect space structures, and a hold for retrieved satellites to be returned to Earth. Thermal tile insulation and blankets (also known as the thermal protection system or TPS) cover the underbelly, bottom of the wings, and other heat-bearing surfaces of the orbiter to protect it during its fiery reentry into the Earth's atmosphere. The Shuttle's 24,000 individual tiles are made primarily of pure-sand silicate fibers, mixed with a ceramic binder. The solid rocket boosters (SRB's) are designed as an in-house Marshall Space Flight Center project, with United Space Boosters as the assembly and refurbishment contractor. The solid rocket motor (SRM) is provided by the Morton Thiokol Corporation.

  7. Evolution of the Space Station Robotic Manipulator (United States)

    Razvi, Shakeel; Burns, Susan H.


    The Space Station Remote Manipulator System (SSRMS), Canadarm2, was launched in 2001 and deployed on the International Space Station (ISS). The Canadarm2 has been instrumental in ISS assembly and maintenance. Canadarm2 shares its heritage with the Space Shuttle Arm (Canadarm). This article explores the evolution from the Shuttle Canadarm to the Space Station Canadarm2 design, which incorporates a 7 degree of freedom design, larger joints, and changeable operating base. This article also addresses phased design, redundancy, life and maintainability requirements. The design of Canadarm2 meets unique ISS requirements, including expanded handling capability and the ability to be maintained on orbit. The size of ISS necessitated a mobile manipulator, resulting in the unique capability of Canadarm2 to relocate by performing a walk off to base points located along the Station, and interchanging the tip and base of the manipulator. This provides the manipulator with reach and access to a large part of the Station, enabling on-orbit assembly of the Station and providing support to Extra-Vehicular Activity (EVA). Canadarm2 is evolving based on on-orbit operational experience and new functionality requirements. SSRMS functionality is being developed in phases to support evolving ISS assembly and operation as modules are added and the Station becomes more complex. Changes to sustaining software, hardware architecture, and operations have significantly enhanced SSRMS capability to support ISS mission requirements. As a result of operational experience, SSRMS changes have been implemented for Degraded Joint Operations, Force Moment Sensor Thermal Protection, Enabling Ground Controlled Operations, and Software Commutation. Planned Canadarm2 design modifications include: Force Moment Accommodation, Smart Safing, Separate Safing, and Hot Backup. In summary, Canadarm2 continues to evolve in support of new ISS requirements and improved operations. It is a tribute to the design that

  8. Space Tourism: Orbital Debris Considerations (United States)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.


    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  9. Linked Station Neighbors (United States)

    Federal Communications Commission — This file that is a subset of the Linked-Station Set file. This file specifies, for each U.S. or impeding Canadian station part of a linked station set, the set of...

  10. STS-102 Onboard Photograph-International Space Station (United States)


    One of the astronauts aboard the Space Shuttle Discovery took this photograph, from the aft flight deck of the Discovery, of the International Space Station (ISS) in orbit. The photo was taken after separation of the orbiter Discovery from the ISS after several days of joint activities and an important crew exchange.

  11. Canadian Meteor Orbit Radar (CMOR

    Directory of Open Access Journals (Sweden)

    A. R. Webster


    Full Text Available The radar system described here (CMOR comprises a basic 5-element receiving system, co-located with a pulsed transmitter, specifically designed to observe meteor echoes and to determine their position in space with an angular resolution of ~1° and a radial resolution of ~3 km. Two secondary receiving sites, a few km distant and arranged to form approximately a right angle with the base station, allow the determination of the velocity (speed and direction of the meteor that, together with the time of occurrence, lead to an estimate of the orbit of the original meteoroid. Some equipment details are presented along with a method used to determine the orbits. Representative echoes are shown and observations on the 2002 Leonid shower presented.

  12. Picard Trajectory Approximation Iteration for Efficient Orbit Propagation (United States)


    AFRL-OSR-VA-TR-2015-0203 Picard Trajectory Approximation Iteration for Efficient Orbit Propagation John Junkins TEXAS ENGINEERING EXPERIMENT STATION...Junkins, J., “Terminal Convergence Approximation Modified Chebyshev Picard Iteration for Efficient Numerical Integration of Orbital Trajectories ...problem, separated by an orbital period (these differ only in sign and along a particular Keplerian u trajectory , these sign switches occur when the

  13. Physiology of chimpanzees in orbit. Part 2: Interface document (United States)

    Firstenberg, A.


    Interface requirements are presented for the design and development of an earth orbiting experiment to be known as POCO, Physiology of Chimpanzees in Orbit. The POCO experiment may be designed to operate within an orbiting space station (provided artificial gravity measures are not employed), a Saturn 4-B workshop, an Apollo command module or service module, a Saturn-1B spacecraft LM adapter, or aboard one of the presently conceived appendages connected by an umbilical to a space station. This document sets forth the experiment definition and requirements and describes the hardware under development to accomplish these objectives.

  14. Space station needs, attributes and architectural options study review report (United States)


    A manned space station (SS) produces a significant net economic benefit over its cost, as well as providing substantial social and performance benefits. The largest space station benefits arise from the ability of the SS to warehouse parts, orbit replacement units (ORUs) and fuel and thereby increase the Space Transportation System (STS) load factor. Substantial other benefits are made possibly by the basing of a returnable orbital transfer vehicles (ROTV) and the servicing of geosynchronous Earth orbit (GEO) satellites at the SS. It is recommended that a manned space station be placed in a 28.5 degree inclination orbit in 1990. This SS can be designed to grow, to be maintained and to incorporate new technology as it becomes available. It should be augmented with unmanned space platforms at both 28.5 degree and polar inclinations. These platforms are designed to have very high commonality with the SS resource models.

  15. ORION: A Supersynchronous Transfer Orbit mission (United States)

    Walters, I. M.; Baker, J. F.; Shurmer, I. M.


    ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).

  16. ORION: A Supersynchronous Transfer Orbit mission (United States)

    Walters, I. M.; Baker, J. F.; Shurmer, I. M.


    ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).

  17. Space Station data management system architecture (United States)

    Mallary, William E.; Whitelaw, Virginia A.


    Within the Space Station program, the Data Management System (DMS) functions in a dual role. First, it provides the hardware resources and software services which support the data processing, data communications, and data storage functions of the onboard subsystems and payloads. Second, it functions as an integrating entity which provides a common operating environment and human-machine interface for the operation and control of the orbiting Space Station systems and payloads by both the crew and the ground operators. This paper discusses the evolution and derivation of the requirements and issues which have had significant effect on the design of the Space Station DMS, describes the DMS components and services which support system and payload operations, and presents the current architectural view of the system as it exists in October 1986; one-and-a-half years into the Space Station Phase B Definition and Preliminary Design Study.

  18. Preseptal Cellulitis, Orbital Cellulitis, Orbital Abscess

    Directory of Open Access Journals (Sweden)

    Rana Altan Yaycıoğlu


    Full Text Available Patients with orbital infections present to our clinic usually with unilateral pain, hyperemia, and edema of the eyelids. The differentiation between preseptal and orbital cellulitis is utmost important in that the second requires hospitalization. Since in orbital cellulitis, the tissues posterior to the orbital septum are involved, signs such as conjunctival chemosis, limited eye movement, decreased vision, as well as afferent pupil defect secondary to optic nerve involvement may also be observed. Prompt intravenous antibiotic treatment should be started, and surgical drainage may be performed if patient shows failure to improve in 48 hours despite optimal management. Without treatment, the clinical course may progress to subperiosteal or orbital abscess, and even to cavernous sinus thrombosis. (Turk J Ophthalmol 2012; 42: Supplement 52-6

  19. Space station related investigations in Europe (United States)

    Wienss, W.; Vallerain, E.


    Studies pertaining to the definition of Europe's role in the Space Station program are described, with consideration given to such elements as pressurized modules as laboratories for materials processing and life sciences, unpressurized elements, and service vehicles for on-orbit maintenance and repair activities. Candidate elements were selected against such criteria as clean interfaces, the satisfaction of European user needs, new technology items, and European financial capabilities; and their technical and programmatic implications were examined. Different scenarios were considered, ranging from a fully Space-Station-dependent case to a completely autonomous, free-flying man-tendable configuration. Recommendations on a collaboration between Europe and the United States are presented.

  20. Transneptunian Orbit Computation (United States)

    Virtanen, J.; Tancredi, G.; Bernstein, G. M.; Spahr, T.; Muinonen, K.

    We review the orbit computation problem for the transneptunian population. For these distant objects, the problem is characterized by their short observed orbital arcs, which are known to be coupled with large uncertainties in orbital elements. Currently, the observations of even the best observed objects, such as the first-ever transneptunian object (TNO), Pluto, cover only a fraction of their revolution. Furthermore, of the some 1200 objects discovered since 1992, roughly half have observations from only one opposition. To ensure realistic analyses of the population, e.g., in the derivation of unbiased orbital distributions or correlations between orbital and physical properties, realistic estimation of orbital uncertainties is important. We describe the inverse problem of orbit computation, emphasizing the short-arc problem and its statistical treatment. The complete solution to the problem can be given in terms of the orbital-element probability density function (p.d.f.), which then serves as a starting point for any further analysis, where knowledge of orbital uncertainties is required. We give an overview of the variety of computational techniques developed for TNO orbital uncertainty estimation in the recent years. After presenting the current orbital distribution, we demonstrate their application to several prediction problems, such as classification, ephemeris prediction, and dynamical analysis of objects. We conclude with some future prospects for TNO orbit computation concerning the forthcoming next-generation surveys, including the anticipated evolution of TNO orbital uncertainties over the coming decades.

  1. ASC Champ Orbit Model

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif


    This documents describes a test of the implementation of the ASC orbit model for the Champ satellite.......This documents describes a test of the implementation of the ASC orbit model for the Champ satellite....

  2. Lunar Orbiter Photo Gallery (United States)

    National Aeronautics and Space Administration — The Lunar Orbiter Photo Gallery is an extensive collection of over 2,600 high- and moderate-resolution photographs produced by all five of the Lunar Orbiter...

  3. Water Level Station History (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Images contain station history information for 175 stations in the National Water Level Observation Network (NWLON). The NWLON is a network of long-term,...

  4. Fire Stations - 2009 (United States)

    Kansas Data Access and Support Center — Fire Stations in Kansas Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their jobs is...

  5. Hammond Bay Biological Station (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  6. Weather Radar Stations (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  7. Fire Stations - 2007 (United States)

    Kansas Data Access and Support Center — Fire Station Locations in Kansas Any location where fire fighters are stationed at or based out of, or where equipment that such personnel use in carrying out their...

  8. Streamflow Gaging Stations (United States)

    Department of Homeland Security — This map layer shows selected streamflow gaging stations of the United States, Puerto Rico, and the U.S. Virgin Islands, in 2013. Gaging stations, or gages, measure...

  9. Newport Research Station (United States)

    Federal Laboratory Consortium — The Newport Research Station is the Center's only ocean-port research facility. This station is located at Oregon State University's Hatfield Marine Science Center,...

  10. Big Game Reporting Stations (United States)

    Vermont Center for Geographic Information — Point locations of big game reporting stations. Big game reporting stations are places where hunters can legally report harvested deer, bear, or turkey. These are...

  11. Reference Climatological Stations (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reference Climatological Stations (RCS) network represents the first effort by NOAA to create and maintain a nationwide network of stations located only in areas...

  12. On-orbit structural health monitoring (United States)

    Rogowski, Robert S.


    On-orbit structural health monitoring aboard space platforms requires the development of sensor systems for assessing impact damage from particles and debris, the effects of atomic oxygen erosion, and the integrity of power systems, storage tanks, pressure vessels, and major structural elements. The task of implementing such a smart structure diagnostic system during the initial phase of the NASA Space Station Freedom is evaluated, with a view to more complete smart structures implementation in the course of station evolution. The data processing/cataloguing task may ultimately require AI and neural networks.

  13. Introducing Earth's Orbital Eccentricity (United States)

    Oostra, Benjamin


    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  14. Idiopathic granulomatous orbital inflammation

    NARCIS (Netherlands)

    Mombaerts, I.; Schlingemann, R. O.; Goldschmeding, R.; Koornneef, L.


    PURPOSE: Granulomatous orbital inflammation may occur as an isolated condition of unknown origin. These idiopathic granulomatous lesions are believed to belong to the orbital pseudotumor group by some authors, whereas others consider them sarcoidosis limited to the orbit. The aim of this study is to

  15. Deployable Debris Shields For Space Station (United States)

    Christiansen, Eric L.; Cour-Palais, Burton G.; Crews, Jeanne


    Multilayer shields made of lightweight sheet materials deployed from proposed Space Station Freedom for additional protection against orbiting debris. Deployment mechanism attached at each location on exterior where extra protection needed. Equipment withdraws layer of material from storage in manner similar to unfurling sail or extending window shade. Number of layers deployed depends on required degree of protection, and could be as large as five.

  16. Space Station Freedom primary power wiring requirements (United States)

    Hill, Thomas J.


    The Space Station Freedom (SSF) Program requirements are a 30 year reliable service life in low Earth orbit in hard vacuum or pressurized module service without detrimental degradation. Specific requirements are outlined in this presentation for SSF primary power and cable insulation. The primary power cable status and the WP-4 planned cable test program are also reviewed along with Rocketdyne-WP04 prime insulation candidates.

  17. Families of Keplerian orbits

    Energy Technology Data Exchange (ETDEWEB)

    Butikov, Eugene I [St Petersburg State University, St Petersburg (Russian Federation)


    Various properties of Keplerian orbits traced by satellites that are launched from one and the same spatial point with different initial velocities are discussed. Two families of elliptical orbits are investigated, namely the sets of orbits produced by a common direction but different magnitudes of the initial velocities, and by a common magnitude but various directions of the initial velocities. For the latter family, the envelope of all the orbits is found, which is the boundary of the spatial region occupied by the orbits.

  18. Families of Keplerian orbits

    CERN Document Server

    Butikov, E I


    Various properties of Keplerian orbits traced by satellites that are launched from one and the same spatial point with different initial velocities are discussed. Two families of elliptical orbits are investigated, namely the sets of orbits produced by a common direction but different magnitudes of the initial velocities, and by a common magnitude but various directions of the initial velocities. For the latter family, the envelope of all the orbits is found, which is the boundary of the spatial region occupied by the orbits.

  19. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph


    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  20. Extravehicular activity at geosynchronous earth orbit (United States)

    Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William


    The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.

  1. INTERACT Station Catalogue - 2015

    DEFF Research Database (Denmark)

    INTERACT stations are located in all major environmental envelopes of the Arctic providing an ideal platform for studying climate change and its impact on the environment and local communities. Since alpine environments face similar changes and challenges as the Arctic, the INTERACT network also...... includes some alpine stations located outside the Arctic. The INTERACT research stations provide an ideal platform for circumarctic research and monitoring. Activities span from small short term research projects to larger long term monitoring programmes. The stations are thus visited by many researchers...... and research groups. Therefore, INTERACT has produced a catalogue of research stations including descriptions of the physical setting, facilities and services offered at the stations. It is our hope that this catalogue will help researchers identify research stations that suit their specific needs. The 2015...


    Brody, A. R.


    The Interactive Orbital Trajectory planning Tool, EIVAN, is a forward looking interactive orbit trajectory plotting tool for use with Proximity Operations (operations occurring within a one kilometer sphere of the space station) and other maneuvers. The result of vehicle burns on-orbit is very difficult to anticipate because of non-linearities in the equations of motion governing orbiting bodies. EIVAN was developed to plot resulting trajectories, to provide a better comprehension of orbital mechanics effects, and to help the user develop heuristics for onorbit mission planning. EIVAN comprises a worksheet and a chart from Microsoft Excel on a Macintosh computer. The orbital path for a user-specified time interval is plotted given operator burn inputs. Fuel use is also calculated. After the thrust parameters (magnitude, direction, and time) are input, EIVAN plots the resulting trajectory. Up to five burns may be inserted at any time in the mission. Twenty data points are plotted for each burn and the time interval can be varied to accommodate any desired time frame or degree of resolution. Since the number of data points for each burn is constant, the mission duration can be increased or decreased by increasing or decreasing the time interval. The EIVAN program runs with Microsoft's Excel for execution on a Macintosh running Macintosh OS. A working knowledge of Excel is helpful, but not imperative, for interacting with EIVAN. The program was developed in 1989.

  3. Artist's Concept of International Space Station (ISS) (United States)


    Pictured is an artist's concept of the International Space Station (ISS) with solar panels fully deployed. In addition to the use of solar energy, the ISS will employ at least three types of propulsive support systems for its operation. The first type is to reboost the Station to correct orbital altitude to offset the effects of atmospheric and other drag forces. The second function is to maneuver the ISS to avoid collision with oribting bodies (space junk). The third is for attitude control to position the Station in the proper attitude for various experiments, temperature control, reboost, etc. The ISS, a gateway to permanent human presence in space, is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation by cooperation of sixteen countries.

  4. Operations research investigations of satellite power stations (United States)

    Cole, J. W.; Ballard, J. L.


    A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components.

  5. STS-104 Onboard Photograph-International Space Station (United States)


    This International Space Station (ISS) image was taken by the STS-104 crew during a fly-around inspection of the ISS after the installment of the Joint Airlock. The inspection occurred shortly after the orbiter Atlantis undocked from the ISS. The Canadarm2, or Space Station Remote Manipulator System (SSRMS), appears to be pointed toward the newly-installed airlock on the station's starboard side. The STS-104 mission marked the completion of the second phase of the station assembly. Since the begirning in July of 2000, 77 tons of hardware have been added to the complex, including the Russian Zvezda Module, the Z1 Truss Assembly, the Pressurized Mating Adapter 3, the P6 Truss and its 240-foot long solar arrays, the U.S. Laboratory Destiny, the Canadarm2, and finally the Quest Airlock. The launch of the Space Shuttle Orbiter Atlantis, STS-104 mission, occurred on July 21, 2001.

  6. STS-111 Onboard Photo of the International Space Station (United States)


    Backdropped against the blackness of space is the International Space Station (ISS), as viewed from the approching Space Shuttle Orbiter Endeavour, STS-111 mission, in June 2002. Expedition Five replaced Expedition Four crew after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  7. French Meteor Network for High Precision Orbits of Meteoroids (United States)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.


    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  8. Neonatal orbital abscess

    Directory of Open Access Journals (Sweden)

    Khalil M Al-Salem


    Full Text Available Orbital complications due to ethmoiditis are rare in neonates. A case of orbital abscess due to acute ethmoiditis in a 28-day-old girl is presented. A Successful outcome was achieved following antimicrobial therapy alone; spontaneous drainage of the abscess occurred from the lower lid without the need for surgery. From this case report, we intend to emphasize on eyelid retraction as a sign of neonatal orbital abscess, and to review all the available literature of similar cases.

  9. Amtrak Rail Stations (National) (United States)

    Department of Transportation — Updated database of the Federal Railroad Administration's (FRA) Amtrak Station database. This database is a geographic data set containing Amtrak intercity railroad...

  10. Hekinan thermal power station

    Energy Technology Data Exchange (ETDEWEB)



    Hekinan thermal power station is situated at the port of Kinuura in Aichi Prefecture, Japan. Unit 1 began commercial operation in October 1991, Unit 2 in June 1992 and Unit 3 in April 1993. This brochure gives the specification of the main facilities of the power station, shows its layout; illustrates its pollution control equipment, gives specifications of its flue gas treatment systems and of its large steam turbine, describes its coal handling facilities and gives their specifications, and mentions the power station`s automated control system.

  11. Cooperative Station History Forms (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Various forms, photographs and correspondence documenting the history of Cooperative station instrumentation, location changes, inspections, and...

  12. Family of Orbiters (United States)


    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time. All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet. Phoenix will land just south of Mars's north polar ice cap.

  13. Conceptual design of a manned orbital transfer vehicle (United States)

    Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark


    With the advent of the manned space station, man now requires a spacecraft based on the space station with the ability to deploy, recover, and repair satellites quickly and economically. Such a craft would prolong and enhance the life and performance of many satellites. A basic design was developed for an orbital tansfer vehicle (OTV). The basic design criteria are discussed. The design of the OTV and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures. The basic concepts in each of the areas are summarized.

  14. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.


    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  15. Free space laser communication experiments from Earth to the Lunar Reconnaissance Orbiter in lunar orbit. (United States)

    Sun, Xiaoli; Skillman, David R; Hoffman, Evan D; Mao, Dandan; McGarry, Jan F; McIntire, Leva; Zellar, Ronald S; Davidson, Frederic M; Fong, Wai H; Krainak, Michael A; Neumann, Gregory A; Zuber, Maria T; Smith, David E


    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  16. Evolutionary space station fluids management strategies (United States)


    Results are summarized for an 11-month study to define fluid storage and handling strategies and requirements for various specific mission case studies and their associated design impacts on the Space Station. There are a variety of fluid users which require a variety of fluids and use rates. Also, the cryogenic propellants required for NASA's STV, Planetary, and Code Z missions are enormous. The storage methods must accommodate fluids ranging from a high pressure gas or supercritical state fluid to a sub-cooled liquid (and superfluid helium). These requirements begin in the year 1994, reach a maximum of nearly 1800 metric tons in the year 2004, and trail off to the year 2018, as currently planned. It is conceivable that the cryogenic propellant needs for the STV and/or Lunar mission models will be met by LTCSF LH2/LO2 tanksets attached to the SS truss structure. Concepts and corresponding transfer and delivery operations have been presented for STV propellant provisioning from the SS. A growth orbit maneuvering vehicle (OMV) and associated servicing capability will be required to move tanksets from delivery launch vehicles to the SS or co-orbiting platforms. Also, appropriate changes to the software used for OMV operation are necessary to allow for the combined operation of the growth OMV. To support fluid management activities at the Space Station for the experimental payloads and propellant provisioning, there must be truss structure space allocated for fluid carriers and propellant tanksets, and substantial beam strengthening may be required. The Station must have two Mobile Remote Manipulator Systems (MRMS) and the growth OMV propellant handling operations for the STV at the SS. Propellant needs for the Planetary Initiatives and Code Z mission models will most likely be provided by co-orbiting propellant platform(s). Space Station impacts for Code Z mission fluid management activities will be minimal.

  17. Secure base stations

    NARCIS (Netherlands)

    Bosch, Peter; Brusilovsky, Alec; McLellan, Rae; Mullender, Sape J.; Polakos, Paul


    With the introduction of the third generation (3G) Universal Mobile Telecommunications System (UMTS) base station router (BSR) and fourth generation (4G) base stations, such as the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) Evolved Node B (eNB), it has become important to

  18. Station Climatic Summaries, Asia (United States)


    274 MALAYSIA SINGAPORE APRT 486940 8505 (OCDS) ................................................... 278 NORTH KOREA CHANGJON/ONSEIRI 470610 6809 (CB...526 BURSA 171160 8709 (OCDS) ................................................... 528 CIGLI/IZMIR 172180...SUMMARY * STATION: SINGAPORE AIRPORT, MALAYSIA STATION #: 486940 ICAO ID: WSSS LOCATION: 01022N, 10400E ELEVATION (FEET): 21 LST - GMT +8 PREPARED BY

  19. "Inventive" Learning Stations (United States)

    Jarrett, Olga


    Learning stations can be used for myriad purposes--to teach concepts, integrate subject matter, build interest, and allow for inquiry--the possibilities are limited only by the imagination of the teacher and the supplies available. In this article, the author shares suggestions and a checklist for setting up successful learning stations. In…

  20. SPS rectifier stations

    CERN Multimedia

    CERN PhotoLab


    The first of the twelves SPS rectifier stations for the bending magnets arrived at CERN at the end of the year. The photograph shows a station with the rectifiers on the left and in the other three cubicles the chokes, capacitors and resistor of the passive filter.

  1. Orbital ordering and frustrations

    NARCIS (Netherlands)

    Khomskii, D.I.; Mostovoy, M.V.


    Orbital ordering occurs in many transition metal compounds with Jahn–Teller ions (Cu2+, Mn3+, low-spin Ni3+, Ti3+ etc). It plays an important role in these materials. At the same time, exchange interactions in orbitally degenerate systems are inherently frustrated, even in materials with simple


    African Journals Online (AJOL)

    commenced on topical chloramphenicol therapy. The x-ray showed a left orbital soft tissue mass but no orbital enlargement and the swab showed no growth. ... proliferating neural bundles and some neural bundles lined by pigmented choroidal epithelium. Also seen are abundant fibrous tissues scattered within the.

  3. Central Station Design Options

    DEFF Research Database (Denmark)


    . The work identifies the architecture, sizing and siting of prospective Central Stations in Denmark, which can be located at shopping centers, large car parking lots or gas stations. Central Stations are planned to be integrated in the Danish distribution grid. The Danish island of Bornholm, where a high...... penetration of wind power is present, is considered as special case. The distribution grid in Denmark is built using larger secondary distribution transformers (e.g. 630 kVA) which in general allows higher flexibility for the installation of Central Stations, compared to Bornholm’s distribution grid...... kWh battery-EV is not feasible in Bornholm at the 0.4 kV level, due to predominantly small size secondary distribution transformers, in the range of 100 - 200 kVA. This is possible at the 10kV level (MV level), if the Fast Charging station is equipped with its own dedicated transformer. With DC...

  4. [STEM on Station Education (United States)

    Lundebjerg, Kristen


    The STEM on Station team is part of Education which is part of the External Relations organization (ERO). ERO has traditional goals based around BHAG (Big Hairy Audacious Goal). The BHAG model is simplified to a saying: Everything we do stimulates actions by others to advance human space exploration. The STEM on Station education initiate is a project focused on bringing off the earth research and learning into classrooms. Educational resources such as lesson plans, activities to connect with the space station and STEM related contests are available and hosted by the STEM on Station team along with their partners such as Texas Instruments. These educational activities engage teachers and students in the current happenings aboard the international space station, inspiring the next generation of space explorers.

  5. Capacity at Railway Stations

    DEFF Research Database (Denmark)

    Landex, Alex


    special focus when conducting UIC 406 capacity analyses.This paper describes how the UIC 406 capacity method can be expounded for stations. Commonly for the analyses of the stations it is recommended to include the entire station including the switch zone(s) and all station tracks. By including the switch...... zone(s) the possible conflicts with other trains (also in the opposite direction) are taken into account leading to more trustworthy results. Although the UIC 406 methodology proposes that the railway network should be divided into line sections when trains turn around and when the train order...... is changed, this paper recommends that the railway lines are not always be divided. In case trains turn around on open (single track) line, the capacity consumption may be too low if a railway line is divided. The same can be the case if only few trains are overtaken at an overtaking station. For dead end...

  6. Peripheral orbit model

    CERN Document Server

    Hara, Yasuo


    Peripheral orbit model, in which an incoming hadron is assumed to revolve in a peripheral orbit around a target hadron, is discussed. The non-diffractive parts of two-body reaction amplitudes of hadrons are expressed in terms of the radius, width an absorptivity of the orbit. The radius of the orbit is about 1 fm and the width of the orbit is determined by the range of the interaction between the hadrons. The model reproduces all available experimental data on differential cross-sections and polarizations of $K^{-}p\\to K^{-}p$ and $\\bar K^{\\circ}n$ reactions for all angles successfully. This contribution is not included in the proceedings since it will appear in Progress of Theoretical Physics Vol. 51 (1974) No 2. Any person interested in the subject may apply for reprints to the author.

  7. A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments (United States)

    Hancock, Thomas M., III


    This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.

  8. Expected Improvement in NIMA Precise Orbit and Clock Estimates Due to Adding Crosslink Ranging Data

    National Research Council Canada - National Science Library

    Merrigan, Michael J; Swift, Everett R


    .... This study addresses the expected improvement in the National Imagery and Mapping Agency (NIMA) precise orbit and clock estimates with the inclusion of crosslink ranging data with the station tracking data...

  9. Orbit Stabilization of Nanosat

    Energy Technology Data Exchange (ETDEWEB)



    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  10. Orbital cellulitis in children. (United States)

    Nageswaran, Savithri; Woods, Charles R; Benjamin, Daniel K; Givner, Laurence B; Shetty, Avinash K


    To review the epidemiology and management of orbital cellulitis in children. The medical records of children orbital cellulitis and confirmed by computed tomography scan were reviewed. A literature search for additional studies for systematic review was also conducted. Forty-one children with orbital cellulitis were identified. The mean age was 7.5 years (range, 10 months to 16 years), and 30 (73%) were male (male:female ratio = 2.7). All cases of orbital cellulitis were associated with sinusitis; ethmoid sinusitis was present in 40 (98%) patients. Proptosis and/or ophthalmoplegia was documented in 30 (73%), and 34 (83%) had subperiosteal and/or orbital abscesses. Twenty-nine (71%) had surgical drainage and 12 (29%) received antibiotic therapy only. The mean duration of hospitalization was 5.8 days. The mean duration of antibiotic therapy was 21 days. Orbital cellulitis occurs throughout childhood and in similar frequency among younger and older children. It is twice as common among males as females. Selected cases of orbital cellulitis, including many with subperiosteal abscess, can be treated successfully without surgical drainage.

  11. Analysis of the process of the determination of station coordiantes by the satellite laser ranging based on results of the Borowiec SLR station in 1993.5-2000.5. Part 2: Determination of the station coordinates (United States)

    Schillak, Stanisaw

    Part 2 of the paper gives a description of the method applied and results of determination of the station coordinates on the basis of the laser ranging data on the example of the SLR station in Borowiec. The orbital method applied was based on a few assumptions: the orbit was determined from the laser ranging data provided by the best 13 stations of fixed coordinates in the ITRF97 system, the range biases and weighting of the stations were disregarded, the Borowiec station coordinates were determined from the monthly arcs obtained on the basis of the combined results of LAGEOS-1 and LAGEOS-2 observations, the satellite acceleration was determined every 5 days, the normal points and passes not satisfying the statistical criteria were rejected. The orbit was computed using the program GEODYN-II. The accuracy of the orbit was 18 mm. The coordinates of the Borowiec SLR station and the movement of tectonic plate were determined in the period 1993.5-2000.5. The stability of the station coordinates and the standard deviation of their determination in this period increased from 30 to 10 mm and from 10 to 4 mm, respectively. The coordinates determined were in good agreement with the Borowiec GPS results (horizontal component 1-2 mm, vertical component 8 mm). The movement of the Eurasian tectonic plate determined was consistent with the NNR-NUVEL1A model to an accuracy of a few millimetres.

  12. The international space station as a free flyer servicing node (United States)

    Antol, Jeffrey; Headley, David E.


    The International Space Station will provide a multitude of opportunities for an expanding customer base to make use of this international resource. One such opportunity is servicing of various visiting vehicles that are in a similar orbit to the station. Servicing may include change-out of payloads, replenishment of consumables, repair, and refurbishment operations. Previous studies have been conducted in which ``paper'' free flyers have been assessed against the station's ability to accommodate them. Over the last several months though, an already flown free flyer, EURECA, was assessed as a real-life visiting free flyer design reference mission. Issues such as capture/berthing, servicing, logistics support, and stowage were assessed for station design and operational approaches. This paper will highlight critical visiting vehicle design considerations, identify station issues, and provide recommendations for accommodation of a wide range of visiting vehicle requirements of the future.

  13. Waste Transfer Stations

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund


    tion and transport is usually the most costly part of any waste management system; and when waste is transported over a considerable distance or for a long time, transferring the waste from the collection vehicles to more efficient transportation may be economically beneficial. This involves...... a transfer station where the transfer takes place. These stations may also be accessible by private people, offering flexibility to the waste system, including facilities for bulky waste, household hazardous waste and recyclables. Waste transfer may also take place on the collection route from small...... describes the main features of waste transfer stations, including some considerations about the economical aspects on when transfer is advisable....

  14. Space station operations management (United States)

    Cannon, Kathleen V.


    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  15. Spacecraft Orbits for Earth/Mars-Lander Radio Relay (United States)

    Noreen, Gary; Diehl, Roger; Neelon, Joseph


    A report discusses a network of spacecraft, in orbit around Mars, used to relay radio communications between Earth stations and mobile exploratory robots (rovers) as well as stationary scientific instruments that have been landed on the Mars surface. The relay spacecraft include two already in orbit plus several others planned to arrive at Mars in the years 2004 through 2008. A major portion of the report is devoted to the orbit of the G. Macroni Orbiter, which is in the midst of an iterative design process and is intended to be the first Mars orbiter designed primarily for radio relay. Candidate orbits are analyzed with a view toward choosing one that maximizes the amount of time available for communication with surface units, taking account of visibility as a function of position, the limit on communication distance at low power, and the fact that surface units can transmit more easily when they are in sunlight. Two promising new orbits for Mars relay satellites are identified: a 1/2-sol apoapsis-at-constant-time-of-day equatorial orbit and a 1/4-sol apoapsis-at-constant-time-of-day, critical-inclination orbit.

  16. International Space Station Crew Return Vehicle: X-38. Educational Brief. (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The International Space Station (ISS) will provide the world with an orbiting laboratory that will have long-duration micro-gravity experimentation capability. The crew size for this facility will depend upon the crew return capability. The first crews will consist of three astronauts from Russia and the United States. The crew is limited to three…

  17. Astronauts Carr and Gibson in the wardroom of the Orbital Workshop (United States)


    Astronaut Gerald P. Carr, right, Skylab 4 commander, enjoys a meal aboard the orbiting Skylab space station in this photographic reproduction from a television transmission of November 28, 1973. Scientist-Astronaut Edward G. Gibson, science pilot for the third manned Skylab flight, demonstrates the zero gravity environment by turning upside down. The food station is in the wardroom of the Crew Quarters in the Orbital Workshop (OWS).

  18. The Coverage Analysis for Low Earth Orbiting Satellites at Low Elevation


    Shkelzen Cakaj; Bexhet Kamo; Algenti Lala; Alban Rakipi


    Low Earth Orbit (LEO) satellites are used for public networking and for scientific purposes. Communication via satellite begins when the satellite is positioned in its orbital position. Ground stations can communicate with LEO satellites only when the satellite is in their visibility region. The duration of the visibility and the communication vary for each LEO satellite pass over the station, since LEO satellites move too fast over the Earth. The satellite coverage area is defined as a regio...

  19. Orbital cystic neurinoma. (United States)

    Tokugawa, J; Nakao, Y; Mori, K; Maeda, M


    A 64-year-old woman presented with a 6-month history of exophthalmus of her right eye. She had no neurological deficit except for the exophthalmus and numbness in the right side of her forehead (frontal nerve territory). Neuro-imaging demonstrated a cystic mass in the right orbit. The tumour was totally removed by microsurgical transcranial surgery. The histological diagnosis was neurinoma. The origin of the tumour was considered to be the frontal nerve. Only two other cases of orbital cystic neurinoma have been reported. This rare clinical entity should be included in the differential diagnosis of a cystic mass in the orbit.

  20. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias


    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  1. Orbit Determination Error Analysis Results for the Triana Sun-Earth L2 Libration Point Mission (United States)

    Marr, G.


    Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination error analysis results are presented for all phases of the Triana Sun-Earth L1 libration point mission and for the science data collection phase of a future Sun-Earth L2 libration point mission. The Triana spacecraft was nominally to be released by the Space Shuttle in a low Earth orbit, and this analysis focuses on that scenario. From the release orbit a transfer trajectory insertion (TTI) maneuver performed using a solid stage would increase the velocity be approximately 3.1 km/sec sending Triana on a direct trajectory to its mission orbit. The Triana mission orbit is a Sun-Earth L1 Lissajous orbit with a Sun-Earth-vehicle (SEV) angle between 4.0 and 15.0 degrees, which would be achieved after a Lissajous orbit insertion (LOI) maneuver at approximately launch plus 6 months. Because Triana was to be launched by the Space Shuttle, TTI could potentially occur over a 16 orbit range from low Earth orbit. This analysis was performed assuming TTI was performed from a low Earth orbit with an inclination of 28.5 degrees and assuming support from a combination of three Deep Space Network (DSN) stations, Goldstone, Canberra, and Madrid and four commercial Universal Space Network (USN) stations, Alaska, Hawaii, Perth, and Santiago. These ground stations would provide coherent two-way range and range rate tracking data usable for orbit determination. Larger range and range rate errors were assumed for the USN stations. Nominally, DSN support would end at TTI+144 hours assuming there were no USN problems. Post-TTI coverage for a range of TTI longitudes for a given nominal trajectory case were analyzed. The orbit determination error analysis after the first correction maneuver would be generally applicable to any libration point mission utilizing a direct trajectory.

  2. TV Analog Station Transmitters (United States)

    Department of Homeland Security — This file is an extract from the Consolidated Database System (CDBS) licensed by the Media Bureau. It consists of Analog Television Stations (see Rule Part47 CFR...

  3. ASOS Station Photos (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The images contained in this library are of stations in the Automated Surface Observing System (ASOS) network. These images were taken between 1998-2001 for the ASOS...

  4. Signal Station Inspection Reports (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Handwritten reports resulting from detailed inspections of US Army Signal Service Stations, 1871-1889. Features reported included instrument exposure and condition,...

  5. Active Marine Station Metadata (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Active Marine Station Metadata is a daily metadata report for active marine bouy and C-MAN (Coastal Marine Automated Network) platforms from the National Data...

  6. Master Station History Report (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Standard/Legacy MSHR, formally identified as the DSI-9767 dataset, is the legacy dataset/report sorted by NCDC Station ID and period of record. This...

  7. Materials Test Station (United States)

    Federal Laboratory Consortium — When completed, the Materials Test Station at the Los Alamos Neutron Science Center will meet mission need. MTS will provide the only fast-reactor-like irradiation...

  8. Natural Weathering Exposure Station (United States)

    Federal Laboratory Consortium — The Corps of Engineers' Treat Island Natural Weathering Exposure Station is a long-term natural weathering facility used to study concrete durability. Located on the...

  9. USRCRN Station Information (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Documentation of United States Regional Climate Reference Network (USRCRN) installations in 2009. Installations documented are for USRCRN pilot project stations in...

  10. Station Management Plan (United States)

    US Fish and Wildlife Service, Department of the Interior — The following plan is the result of a recent initiative in Region 5 to produce general management guidance based on stated objectives for individual field stations....

  11. "Central Station" Londonis

    Index Scriptorium Estoniae


    Londoni galeriis Milch seitsme läti, leedu ja eesti kunstniku projekt "Central Station". Kuraatorid Lisa Panting, Sally Tallant. Eestist osalevad Hanno Soans (Catarina Campinoga koostöös valminud video), Kiwa, Kai Kaljo

  12. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab


    Electrostatic pickup station, with 4 interleaved electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TT70, TTL2). See also 7904075.

  13. Mukilteo Research Station (United States)

    Federal Laboratory Consortium — Research at the Mukilteo Research Station focuses on understanding the life cycle of marine species and the impacts of ecosystem stressors on anadromous and marine...

  14. Maine Field Station (United States)

    Federal Laboratory Consortium — In 2000 NOAA's National Marine Fisheries Service established the Maine Field Station in Orono, ME to have more direct involvement in the conservation of the living...

  15. Routes and Stations (United States)

    Department of Homeland Security — he Routes_Stations table is composed of fixed rail transit systems within the Continental United States, Alaska, Hawaii, the District of Columbia, and Puerto Rico....

  16. Public Transit Stations (United States)

    Department of Homeland Security — fixed rail transit stations within the Continental United States, Alaska, Hawaii, the District of Columbia, and Puerto Rico. The modes of transit that are serviced...

  17. FEMA DFIRM Station Start (United States)

    Minnesota Department of Natural Resources — This table contains information about station starting locations. These locations indicate the reference point that was used as the origin for distance measurements...

  18. Space Station Freedom pressurized element interior design process (United States)

    Hopson, George D.; Aaron, John; Grant, Richard L.


    The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described.

  19. Biofilms On Orbit and On Earth: Current Methods, Future Needs (United States)

    Vega, Leticia


    Biofilms have played a significant role on the effectiveness of life support hardware on the Space Shuttle and International Space Station (ISS). This presentation will discuss how biofilms impact flight hardware, how on orbit biofilms are analyzed from an engineering and research perspective, and future needs to analyze and utilize biofilms for long duration, deep space missions.

  20. Trajectory and orbit of the EN200204 Laskarzew fireball


    Spurny, Pavel; Olech, Arkadiusz; Kedzierski, Piotr


    The fireball of -10 mag was observed over Poland on February 20, 2004 at 18:54 UT. Except many visual observations the event was caught by two photographic stations: one in the Czech Republic and one in Poland. A description, ground track map, atmospheric trajectory and orbital data for the fireball are presented.

  1. Space Station galley design (United States)

    Trabanino, Rudy; Murphy, George L.; Yakut, M. M.


    An Advanced Food Hardware System galley for the initial operating capability (IOC) Space Station is discussed. Space Station will employ food hardware items that have never been flown in space, such as a dishwasher, microwave oven, blender/mixer, bulk food and beverage dispensers, automated food inventory management, a trash compactor, and an advanced technology refrigerator/freezer. These new technologies and designs are described and the trades, design, development, and testing associated with each are summarized.

  2. Congenital orbital teratoma

    Directory of Open Access Journals (Sweden)

    Shereen Aiyub


    Full Text Available We present a case of mature congenital orbital teratoma managed with lid-sparing exenteration and dermis fat graft. This is a case report on the management of congenital orbital teratoma. A full-term baby was born in Fiji with prolapsed right globe which was surrounded by a nonpulsatile, cystic mass. Clinical and imaging features were consistent with congenital orbital teratoma. Due to limited surgical expertise, the patient was transferred to Adelaide, Australia for further management. The patient underwent a lid-sparing exenteration with frozen section control of the apical margin. A dermis fat graft from the groin was placed beneath the lid skin to provide volume. Histopathology revealed mature tissues from each of the three germ cell layers which confirmed the diagnosis of mature teratoma. We describe the successful use of demis fat graft in socket reconstruction following lid-sparing exenteration for congenital orbital teratoma.

  3. Orbital heat rate package (United States)

    Lovin, J. K.; Spradley, L. W.


    Package consisting of three separate programs used to accurately predict temperature distribution of spacecraft in planetary orbit is invaluable tool for design and analysis of other structures that must function in complex thermal environment.

  4. Neonatal orbital abscess

    Directory of Open Access Journals (Sweden)

    Pratik Y Gogri


    Full Text Available Orbital abscess generally occurs in older children but it can rarely affect infants and neonates too. We report a case of community acquired methicillin resistant staphylococcus aureus (CA-MRSA neonatal orbital abscess in a 12-day-old term female neonate with no significant past medical history or risk factor for developing the infection. The case highlights the importance of consideration of CA-MRSA as a causative agent of neonatal orbital cellulitis even in a neonate without any obvious predisposing condition. Prompt initiation of appropriate medical therapy against MRSA and surgical drainage of the abscess prevents life threatening complications of orbital cellulitis which more often tend to be fatal in neonates.

  5. International Space Station End-of-Life Probabilistic Risk Assessment (United States)

    Duncan, Gary W.


    The International Space Station (ISS) end-of-life (EOL) cycle is currently scheduled for 2020, although there are ongoing efforts to extend ISS life cycle through 2028. The EOL for the ISS will require deorbiting the ISS. This will be the largest manmade object ever to be de-orbited therefore safely deorbiting the station will be a very complex problem. This process is being planned by NASA and its international partners. Numerous factors will need to be considered to accomplish this such as target corridors, orbits, altitude, drag, maneuvering capabilities etc. The ISS EOL Probabilistic Risk Assessment (PRA) will play a part in this process by estimating the reliability of the hardware supplying the maneuvering capabilities. The PRA will model the probability of failure of the systems supplying and controlling the thrust needed to aid in the de-orbit maneuvering.

  6. Enhanced Master Station History Report (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Enhanced Master Station History Report (EMSHR) is a compiled list of basic, historical information for every station in the station history database, beginning...

  7. Gas Stations, US, 2010, NAVTEQ (United States)

    U.S. Environmental Protection Agency — The Gas_Stations dataset is derived from the Navteq 'AUTOSVC' SDC layer (FAC_TYPE=5540) and contains gas stations and petrol stations. This NAVTEQ dataset is...

  8. Three Orbital Burns to Molniya Orbit Via Shuttle_Centaur G Upper Stage (United States)

    Williams, Craig H.


    An unclassified analytical trajectory design, performance, and mission study was done for the 1982 to 1986 joint National Aeronautics and Space Administration (NASA)-United States Air Force (USAF) Shuttle/Centaur G upper stage development program to send performance-demanding payloads to high orbits such as Molniya using an unconventional orbit transfer. This optimized three orbital burn transfer to Molniya orbit was compared to the then-baselined two burn transfer. The results of the three dimensional trajectory optimization performed include powered phase steering data and coast phase orbital element data. Time derivatives of the orbital elements as functions of thrust components were evaluated and used to explain the optimization's solution. Vehicle performance as a function of parking orbit inclination was given. Performance and orbital element data was provided for launch windows as functions of launch time. Ground track data was given for all burns and coasts including variation within the launch window. It was found that a Centaur with fully loaded propellant tanks could be flown from a 37 deg inclination low Earth parking orbit and achieve Molniya orbit with comparable performance to the baselined transfer which started from a 57 deg inclined orbit: 9,545 versus 9,552 lb of separated spacecraft weight, respectively. There was a significant reduction in the need for propellant launch time reserve for a 1 hr window: only 78 lb for the three burn transfer versus 320 lb for the two burn transfer. Conversely, this also meant that longer launch windows over more orbital revolutions could be done for the same amount of propellant reserve. There was no practical difference in ground tracking station or airborne assets needed to secure telemetric data, even though the geometric locations of the burns varied considerably. There was a significant adverse increase in total mission elapsed time for the three versus two burn transfer (12 vs. 1-1/4 hr), but could be

  9. Three Orbital Burns to Molniya Orbit via Shuttle Centaur G Upper Stage (United States)

    Williams, Craig H.


    An unclassified analytical trajectory design, performance, and mission study was done for the 1982-86 joint NASA-USAF Shuttle/Centaur G upper stage development program to send performance-demanding payloads to high orbits such as Molniya using an unconventional orbit transfer. This optimized three orbital burn transfer to Molniya orbit was compared to the then-baselined two burn transfer. The results of the three dimensional trajectory optimization performed include powered phase steering data and coast phase orbital element data. Time derivatives of the orbital elements as functions of thrust components were evaluated and used to explain the optimization's solution. Vehicle performance as a function of parking orbit inclination was given. Performance and orbital element data was provided for launch windows as functions of launch time. Ground track data was given for all burns and coasts including variation within the launch window. It was found that a Centaur with fully loaded propellant tanks could be flown from a 37deg inclination low Earth parking orbit and achieve Molniya orbit with comparable performance to the baselined transfer which started from a 57deg inclined orbit: 9,545 lb vs. 9,552 lb of separated spacecraft weight respectively. There was a significant reduction in the need for propellant launch time reserve for a one hour window: only 78 lb for the three burn transfer vs. 320 lb for the two burn transfer. Conversely, this also meant that longer launch windows over more orbital revolutions could be done for the same amount of propellant reserve. There was no practical difference in ground tracking station or airborne assets needed to secure telemetric data, even though the geometric locations of the burns varied considerably. There was a significant adverse increase in total mission elapsed time for the three vs. two burn transfer (12 vs. 11/4 hrs), but could be accommodated by modest modifications to Centaur systems. Future applications were

  10. The Princess Elisabeth Station (United States)

    Berte, Johan


    Aware of the increasing impact of human activities on the Earth system, Belgian Science Policy Office (Belspo) launched in 1997 a research programme in support of a sustainable development policy. This umbrella programme included the Belgian Scientific Programme on Antarctic Research. The International Polar Foundation, an organization led by the civil engineer and explorer Alain Hubert, was commissioned by the Belgian Federal government in 2004 to design, construct and operate a new Belgian Antarctic Research Station as an element under this umbrella programme. The station was to be designed as a central location for investigating the characteristic sequence of Antarctic geographical regions (polynia, coast, ice shelf, ice sheet, marginal mountain area and dry valleys, inland plateau) within a radius of 200 kilometers (approx.124 miles) of a selected site. The station was also to be designed as "state of the art" with respect to sustainable development, energy consumption, and waste disposal, with a minimum lifetime of 25 years. The goal of the project was to build a station and enable science. So first we needed some basic requirements, which I have listed here; plus we had to finance the station ourselves. Our most important requirement was that we decided to make it a zero emissions station. This was both a philosophical choice as we thought it more consistent with Antarctic Treaty obligations and it was also a logistical advantage. If you are using renewable energy sources, you do not have to bring in all the fuel.

  11. Orbital interactions in chemistry

    CERN Document Server

    Albright, Thomas A; Whangbo, Myung-Hwan


    Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions

  12. The Lunar Orbital Prospector (United States)

    Redd, Frank J.; Cantrell, James N.; McCurdy, Greg


    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  13. Solar dynamic power for Space Station Freedom (United States)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.


    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  14. Servicing capability for the evolutionary Space Station (United States)

    Thomas, Edward F.; Grems, Edward G., III; Corbo, James E.


    Since the beginning of the Space Station Freedom (SSF) program the concept of on-orbit servicing of user hardware has been an integral part of the program implementation. The user servicing system architecture has been divided into a baseline and a growth phase. The baseline system consists of the following hardware elements that will support user servicing - flight telerobotic servicer, crew and equipment translation aid, crew intravehicular and extravehicular servicing support, logistics supply system, mobile servicing center, and the special purpose dextrous manipulator. The growth phase incorporates a customer servicing facility (CSF), a station-based orbital maneuvering vehicle and an orbital spacecraft consumables resupply system. The requirements for user servicing were derived from the necessity to service attached payloads, free flyers and coorbiting platforms. These requirements include: orbital replacement units (ORU) and instrument changeout, National Space Transportation System cargo bay loading and unloading, contamination control and monitoring, thermal protection, payload berthing, storage, access to SSF distributed systems, functional checkout, and fluid replenishment. The baseline user servicing capabilities accommodate ORU and instrument changeout. However, this service is limited to attached payloads, either in situ or at a locally adjacent site. The growth phase satisfies all identified user servicing requirements by expanding servicing capabilities to include complex servicing tasks for attached payloads, free-flyers and coorbiting platforms at a dedicated, protected Servicing site. To provide a smooth evolution of user servicing the SSF interfaces that are necessary to accommodate the growth phase have been identified. The interface requirements on SSF have been greatly simplified by accommodating the growth servicing support elements within the CSF. This results in a single SSF interface: SSF to the CSF.

  15. Validation of GNSS orbits using SLR observations (United States)

    Urschl, C.; Gurtner, W.; Hugentobler, U.; Schaer, S.; Beutler, G.

    Satellite Laser Ranging (SLR) observations allow for a completely independent validation of orbits derived using microwave measurements as provided by the International GPS Service (IGS). The orbit validation is based on the difference between the observed range (SLR measurements) and the computed range (assuming that the satellite positions are know from the IGS). The resulting range residuals are primarily an indicator for the radial accuracy of the microwave orbits. This validation method is well-known and several validation results have been published in the last 10 years. The IGS analysis center CODE (Center for Orbit Determination in Europe) provides on a routine base daily range residuals for all GNSS satellites observed by both, SLR and microwave techniques. We present results of our recent range residual analysis for two GPS satellites (PRN G05, G06) and three GLONASS satellites (PRN R03, R22, R24). Microwave orbits provided by IGS and CODE are used as well as SLR normal point observations of 13 globally distributed sites. The resulting range residual time series of about 3.3 years, starting in January 2001, for GPS satellites and of about 10 months, starting in June 2003, for GLONASS satellites are analyzed. The comparison of the range residuals with previous analysis results shows the impact of several improvements, i.e., the increasing quality of the microwave orbit as well as the use of new laser retroreflector arrays on GLONASS satellites launched after 1995. The validation of the CODE orbits shows a standard deviation of 2.7 cm for the GPS satellites and of 4.9 cm for the GLONASS satellites. A bias of about -5.8 cm for GPS satellites and of -2.3 cm for GLONASS satellites between the SLR measurements and the microwave orbits was determined. The cause of these biases is not yet fully understood. Pass-specific systematics in the range residuals were found, but it was not possible to assign them to station- or satellite-specific error sources

  16. Fuzzy logic in autonomous orbital operations (United States)

    Lea, Robert N.; Jani, Yashvant


    Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.

  17. The accuracy of station positions determined from inhomogeneous laser ranging data (United States)

    Kuzmicz-Cieslak, Magdalena; Schillak, Stanislaw

    The paper presents positions of 34 Satellite Laser Ranging (SLR) stations as determined in the ITRF97 system from the LAGEOS-2 laser ranging data. Three different variants of data selection were used to determine the coordinates of the stations. The calculations were performed with the use of the GEODYN II and SOLVE programs on the basis of monthly orbital arcs for 1999. The accuracy of the results for a given station strongly depends on a number and quality of observations. Preferably at least 50 of normal points per station in one month should be used for coordinates determination. The variant of orbit determination from 16 the best stations is more accurate than from all 34 stations.

  18. Orbital debris removal and meteoroid deflection (United States)

    Campbell, Jonathan W.; Taylor, Charles R.; Smalley, Larry L.; Dickerson, Thomas


    Orbital debris in low-Earth orbit in the size range from 1 to 10 cm in diameter can be detected but not tracked reliably enough to be avoided by spacecraft. It can cause catastrophic damage even to a shielded spacecraft. With adaptive optics, a ground-based pulsed laser ablating the debris surface can produce enough propulsion in several hundred pulses to cause such debris to reenter the atmosphere. A single laser station could remove all of the 1 - 10 cm debris in three years or less. A technology demonstration of laser space propulsion is proposed which would pave the way for the implementation of such a debris removal system. The cost of the proposed demonstration is comparable with the estimated annual cost of spacecraft operations in the present orbital debris environment. Orbital debris is not the only space junk that is deleterious to the Earth's environment. Collisions with asteroids have caused major havoc to the Earth's biosphere many times in the ancient past. Since the possibility still exists for major impacts of asteroids with the Earth, it shown that it is possible to scale up the systems to prevent these catastrophic collisions providing sufficient early warning is available from new generation space telescopes plus deep space radar tracking.

  19. [Orbital complications of sinusitis]. (United States)

    Šuchaň, M; Horňák, M; Kaliarik, L; Krempaská, S; Koštialová, T; Kovaľ, J


    Orbital complications categorised by Chandler are emergency. They need early diagnosis and agresive treatment. Stage and origin of orbital complications are identified by rhinoendoscopy, ophtalmologic examination and CT of orbite and paranasal sinuses. Periorbital cellulitis and early stage of orbital cellulitis can be treated conservatively with i. v. antibiotics. Monitoring of laboratory parameters and ophtalmologic symptoms is mandatory. Lack of improvement or worsening of symptoms within 24-48 hours and advanced stages of orbital complications are indicated for surgery. The purpose of the study is to evaluate epidemiology, clinical features and management of sinogenic orbital complications. Retrospective data of 8 patients with suspicion of orbital complication admited to hospital from 2008 to 2013 were evaluated. Patients were analyzed in terms of gender, age, CT findings, microbiology, clinical features, stage and treatment. Male and female were afected in rate 1,66:1. Most of patients were young adult in 3rd. and 4th. decade of life (62,5 %). Acute and chronic sinusitis were cause of orbital complication in the same rate. The most common origin of orbital complication was ethmoiditis (62,5 %), than maxillary (25 %) and frontal (12,5 %) sinusitis. Polysinusitis with affection of ethmoidal, maxillary and frontal sinuses (75 %) was usual CT finding. Staphylococcus epidermidis and Staphylococcus aureus were etiological agens in half of cases. Periorbital oedema (100 %), proptosis, chemosis (50 %), diplopia and glaucoma (12,5 %) were observed. Based on examinations, diagnosis of periorbital oedema/preseptal cellulitis was made in 3 (37,5 %), orbital cellulitis in 3 (37,5 %) and subperiosteal abscess in 2 cases (25 %). All patients underwent combined therapy - i. v. antibiotics and surgery within 24 hours. Eradication of disease from ostiomeatal complex (OMC), drainage of affected sinuses and drainage of subperiosteal abscess were done via fuctional endonasal

  20. Orbital complications of rhinosinusitis. (United States)

    Sijuwola, Oo; Adeyemo, Aa; Adeosun, Aa


    Suppurative extension of rhinosinusitis to the orbit is a complication that often results from delay in diagnosis and, or inadequate treatment. These complications may range from preseptal cellulitis, orbital cellulitis, orbital abscesses, and subperiosteal abscesses to intracranial extension with a threat to both vision and life. This study aims to review the clinical profile, treatment modalities and outcome of orbital complications of rhinosinusitis in Ibadan, Nigeria. A retrospective review of the charts of patients with orbital complications of rhinosinusitis managed in the departments of Otorhinolaryngology and Ophthalmology, University College Hospital, Ibadan over a five year period (Feb 2002- Jan 2007) was carried out .The diagnosis of rhinosinusitis was based on history, physical examination, plain x ray and CT scan findings and antral puncture. Demographic data, clinical presentation and treatment were evaluated. A total of 24 patients were reviewed in the study. There were 13males and 11females (M/F, 1:1). The age range was 8months to 75years, 14 (58.3%) patients were children and while 10 (41.7%) patients were adults. 75% of the patients were seen during the dry season (November to February). The duration of symptoms ranged from one day to three weeks. Involvement of one eye occurred in 14 patients (58.3%); right eye (4), left eye (10). Both eyes were involved in 10 patients (41.7%). Non-axial proptosis was seen in 8 patients (33.3%). It was infero-lateral in 6 patients (25%) and infero-nasal in two (8.3%) patients. Orbital cellulitis was seen in 10 (41.7%) patients, 6 (25%) patients had preseptal cellulitis while 8 (33%) patients had orbital abscess. Cavernous sinus thrombosis was seen in 3 (12.5%) patients. The cases with preseptal and orbital cellulitis were effectively managed by intravenous antibiotics. Orbital abscesses were drained surgically with complete resolution. Sinus surgical procedures were done in 10(41.7%) patients. This group of

  1. Automatic Planning Research Applied To Orbital Construction (United States)

    Park, William T.


    Artificial intelligence research on automatic planning could result in a new class of management aids to reduce the cost of constructing the Space Station, and would have economically important spinoffs to terrestrial industry as well. Automatic planning programs could be used to plan and schedule launch activities, material deliveries to orbit, construction procedures, and the use of machinery and tools. Numerous automatic planning programs have been written since the 1050's. We describe PARPLAN, a recently-developed experimental automatic planning program written in the AI language Prolog, that can generate plans with parallel activities.

  2. A polar orbit for the Mars Global Network Mission (United States)

    Knocke, Philip


    The purpose of the Global Network Mission (GNM) is to deploy simple landers on the Martian surface in late 1998. The objective is to create a globally distributed network of ground stations which will collect environmental data, perhaps for as long as several years. The GNM presents unique mission design challenges, which are addressed by the following essay. The GNM mission concept calls for two carrier spacecraft, each equipped with a number of simple landers. Some of the landers may be deployed from approach, either to reduce carrier mass prior to orbit insertion, or to reach latitudes not available from the carrier orbit. The remaining landers are deployed from orbit. One configuration for the Global Network Mission was proposed in a report from the Exploration Precursors Task Team to the Office of Space Science and Applications. This formed the basis of a previous orbit design for the GNM. This mission scenario is used as a point of reference, but results from the current study are generally applicable to a wide range of GNM mission variants. The analysis concluded that a 1/5 sol, polar orbit with a periapse altitude of 275 km offers the best circumstances for orbital deployment of the Global Network Mission landers. It allows easy polar access at nominal entry angles, and global dispersal of landing sites at lighting angles suitable for descent imaging. The polar orbit allows the option of deploying all the landers from orbit. A wait interval of 160 days after arrival is required before deployment can commence.

  3. A Tapestry of Orbits (United States)

    King-Hele, D. G.


    Satellites as they cross the night sky look like moving stars, which can be accurately tracked by an observer with binoculars as well as by giant radars and large cameras. These observations help to determine the satellite's orbit, which is sensitive to the drag of the upper atmosphere and to any irregularities in the gravity field of the Earth. Analysis of the orbit can be used to evaluate the density of the upper atmosphere and to define the shape of the Earth. Desmond King-Hele was the pioneer of this technique of orbit analysis, and this book tells us how the research began, before the launch of Sputnik in 1957. For thirty years King-Hele and his colleagues at the Royal Aircraft Establishment, Farnborough, developed and applied the technique to reveal much about the Earth and air at a very modest cost. In the 1960s the upper-atmosphere density was thoroughly mapped out for 100 to 2000 km, revealing immense variation of density with solar activity and between day and night. In the 1970s and 1980s a picture of the upper-atmosphere winds emerged, and the profile of the pear-shaped Earth was accurately charted. The number of satellites now orbiting the earth is over 5000. This book is the story of how this inexpensive research of their orbits developed to yield a rich harvest of knowledge about the Earth and its atmosphere, in a scientific narrative that is enlivened with many personal experiences.

  4. Extended duration orbiter (EDO) insignia (United States)


    Extended duration orbiter (EDO) insignia incorporates a space shuttle orbiter with payload bay doors (PLBDs) open and a spacelab module inside. Trailing the orbiter are the initials EDO. The EDO-modified Columbia, Orbiter Vehicle (OV) 102, will be flown for the first EDO mission, STS-50.

  5. Elliptical Orbit Performance Computer Program (United States)

    Myler, T.


    Elliptical Orbit Performance (ELOPE) computer program for analyzing orbital performance of space boosters uses orbit insertion data obtained from trajectory simulation to generate parametric data on apogee and perigee altitudes as function of payload data. Data used to generate presentation plots that display elliptical orbit performance capability of space booster.

  6. Separating Station-Dependent from Regionally-Coherent GPS Draconitics in Station Positions (United States)

    Santamaría-Gómez, A.; Rebischung, P.; Ray, J.


    Spurious periodic oscillations of the station positions coincident with harmonics of the GPS draconitic year (about 351.2 d) are mostly coherent up to at least continental scales and are thought to be mainly related to corresponding effects in the GPS orbits. Possible sources could be deficiencies in the available models for sub-daily variations of the Earth orientation or solar radiation-induced satellite accelerations. Multipath near the ground antennas may also propagate into the draconitic harmonics in station positions due to the ground path repeat period being about four minutes shorter than the typical 24-hr data sampling interval. Separating such contributions might enable future mitigation strategies. However, detection and quantification of the multipath contribution is challenging as it depends on the local environment of each ground antenna, i.e., it is not spatially homogeneous and it can also vary in time. We analyzed the draconitic harmonics in station positions from the IGS second reprocessing campaign. Differences in the draconitics among eight contributing Analysis Centers were analyzed and deemed not statistically significant. The IGS combined time series were then used to assess station-dependent draconitics by differencing station pairs at different separation bins up to 2000 km. Differences in harmonic amplitude and phase were considered.

  7. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits (United States)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David


    The ARTEMIS mission, part of the THEMIS extended mission, is the first to fly spacecraft in the Earth-Moon Lissajous regions. In 2009, two of the five THEMIS spacecraft were redeployed from Earth-centered orbits to arrive in Earth-Moon Lissajous orbits in late 2010. Starting in August 2010, the ARTEMIS P1 spacecraft executed numerous stationkeeping maneuvers, initially maintaining a lunar L2 Lissajous orbit before transitioning into a lunar L1 orbit. The ARTEMIS P2 spacecraft entered a L1 Lissajous orbit in October 2010. In April 2011, both ARTEMIS spacecraft will suspend Lissajous stationkeeping and will be maneuvered into lunar orbits. The success of the ARTEMIS mission has allowed the science team to gather unprecedented magnetospheric measurements in the lunar Lissajous regions. In order to effectively perform lunar Lissajous stationkeeping maneuvers, the ARTEMIS operations team has provided orbit determination solutions with typical accuracies on the order of 0.1 km in position and 0.1 cm/s in velocity. The ARTEMIS team utilizes the Goddard Trajectory Determination System (GTDS), using a batch least squares method, to process range and Doppler tracking measurements from the NASA Deep Space Network (DSN), Berkeley Ground Station (BGS), Merritt Island (MILA) station, and United Space Network (USN). The team has also investigated processing of the same tracking data measurements using the Orbit Determination Tool Kit (ODTK) software, which uses an extended Kalman filter and recursive smoother to estimate the orbit. The orbit determination results from each of these methods will be presented and we will discuss the advantages and disadvantages associated with using each method in the lunar Lissajous regions. Orbit determination accuracy is dependent on both the quality and quantity of tracking measurements, fidelity of the orbit force models, and the estimation techniques used. Prior to Lissajous operations, the team determined the appropriate quantity of tracking

  8. Telephony Earth Station (United States)

    Morris, Adrian J.; Kay, Stan

    The Telephony Earth Station (TES), a digital full-mesh SCPC (single channel per carrier) system designed for satellite voice and data transmission is described. As compared to companded FM, the advanced speech compression and forward error correction techniques used by TES better achieve the quality, power, and bandwidth ideal for each application. In addition, the TES offers a fully demand-assigned voice call setup, handles point-to-point data channels, supports a variety of signaling schemes, and does not require any separate pilot receivers at the station, while keeping costs low through innovative technology and packaging. The TES can be used for both C-band and Ku-band (domestic or international) applications, and is configurable either as an VSAT (very small aperture terminal) using an SSPA, or as a larger station depending on the capacity requirements. A centralized DAMA processor and network manager is implemented using a workstation.

  9. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up....... A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling...

  10. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others


    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  11. The organized Space Station (United States)

    Lew, Leong W.

    Space Station organization designers should consider the onboard stowage system to be an integral part of the environment structured for productive working conditions. In order to achieve this, it is essential to use an efficient inventory control system able to track approximately 50,000 items over a 90-day period, while maintaining peak crew performance. It is noted that a state-of-the-art bar-code inventory management system cannot satisfy all Space Station requirements, such as the location of a critical missing item.

  12. [Secondary orbital lymphoma]. (United States)

    Basanta, I; Sevillano, C; Álvarez, M D


    A case is presented of an 85 year-old Caucasian female with lymphoma that recurred in the orbit (secondary ocular adnexal lymphoma). The orbital tumour was a diffuse large B-cell lymphoma according to the REAL classification (Revised European-American Lymphoma Classification). Orbital lymphomas are predominantly B-cell proliferations of a variety of histological types, and most are low-grade tumours. Patients are usually middle-aged or elderly, and it is slightly more common in women. A palpable mass, proptosis and blepharoptosis are the most common signs of presentation. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  13. The accuracy of orbit estimation for the low-orbit satellites LARETS and WESTPAC (United States)

    Rutkowska, Milena

    The LARETS satellite was launched on September 26, 2004, into a circular orbit at an altitude of 690 km and with an inclination of 98.2°. This mission is a successor to the WESTPAC satellite which was launched to an altitude of 835 km six years before. The study is based on the observations taken by the global network of laser stations during the period from December 30, 2003 to March 17, 2004 for LARETS. This study is aimed at the precise orbit computation of LARETS. The experience acquired during the orbit estimation of WESTPAC was applied to the orbit investigation of LARETS. The WESTPAC was merely used for reference and initial parameters of the force model [Rutkowska, M., Noomenn, R., Global orbit analysis of the satellite WESTPAC, Adv. Space Res., 30(2), 265-270, 2002]. The orbit of LARETS was estimated with an rms-of-fit to the SLR measurements of 3.9 cm, using the following computation model: the CSR TEG-4 gravity field up to degree and order (200,200), the Ray tide model, the MSIS86 model for atmospheric density [Hedin, A.E., MSIS-86 Thermospheric Model, J. Geophys. Res., 92 (A5), 4649-4662, 1987], and the solution of 8-hourly CD-values. It has been verified that the modeling of the gravity field up to degree and order (100,100) which gives the same rms-of-fit value. Estimated orbits for both satellites are compared to each other in Fig. 2. All computations are performed with the NASA program GEODYN II [Eddy, W.F, McCarthy, J.J., Pavlis, D.E., Marshall, J.A., Luthce, S.B., Tsaoussi, L.S., GEODYN II System Operations Manual, vol. 1-5, ST System Corp., Lanham MD, USA, 1990].

  14. Preseptal Cellulitis Or Orbital Cellulitis? (United States)

    Lim, L T; Miller, D; Ah-Kee, E Y; Ferguson, A


    Preseptal cellulitis and orbital cellulitis can both present with increasing swelling, tenderness and redness around the eye, but their management differs. Preseptal cellulitis is more common and much less aggressive than orbital cellulitis. In contrast, orbital cellulitis is a medical emergency requiring urgent management. In this article, we provide a systematic approach to distinguish between preseptal cellulitis and orbital cellulitis at presentation, as the distinction between the two entities and the prompt recognition of orbital cellulitis can be potentially life-saving.

  15. Preliminary orbit determination (United States)

    Taff, L. G.; Belkin, B.; Schweiter, G.; Sommar, K.

    The problem of intercontinental ballistic missile reentry vehicle orbit determination from incomplete passive (i.e., angles-only) or active (i.e., distance plus angles) information is presented. Launch location and time and impact location and time to complete the computation of an orbital element set are utilized. In addition, it is possible to construct a good estimate of the variance of the key quantity in the angles only case; namely the computed topocentric distance. This type of observation/information situation is enlarged to include a complete discussion of single-point differential correction.

  16. Pediatric Orbital Fractures (United States)

    Oppenheimer, Adam J.; Monson, Laura A.; Buchman, Steven R.


    It is wise to recall the dictum “children are not small adults” when managing pediatric orbital fractures. In a child, the craniofacial skeleton undergoes significant changes in size, shape, and proportion as it grows into maturity. Accordingly, the craniomaxillofacial surgeon must select an appropriate treatment strategy that considers both the nature of the injury and the child's stage of growth. The following review will discuss the management of pediatric orbital fractures, with an emphasis on clinically oriented anatomy and development. PMID:24436730

  17. [Orbital complications of rhinosinusitis]. (United States)

    Stojanović, J; Ilić, N; Belić, B; Zivić, L; Stanković, P; Erdevicki, L; Jovanović, S


    Orbital complications were observed in 53 patients (1.35%, n=53/3912 of all treated patients; 11.04%, n= 53/480 of hospitalized patients). Complications in the orbit can occur in 3-5% of adults with the inflammatory condition of sinuses, while the percentage in children ranges from 0.5-8%. The objective of our work was to determine the frequency of the occurence of orbital complications of the rhinosinal inflammatory origin in a group of adults and children. The retrospective analysis of patients treated of rhinosinusitis in the period 1992 to 2007, in the Clinical Center in Kragujevac. In the period of 15 years, a total number of 3912 patients were treated for inflamatory conditions of paranasal cavities. Orbital complications were found in 53 patients (1.35%, n=53/3912 of all treated patients). The number of children showing orbital complications caused by rhinosinusitis was 0.79%, while the number of adults was 1,88%. Acute rhinosinusitis in children was manifested as orbital complication in 14 patients (n=14/15, 93.33%), while 33 adults (n=33/38, 86.84%) had the exarcerbation of the chronic rhinosinusitis at the time of diagnosis of orbital complication. 80% of examined children had the maxillary and ethmoid sinus infected (n=12/15), while the adults most often had polysinusitis (n=22/38, 57.89%). In the juvenile age the most frequent complication was the cellulitis of the orbite (n=7/15, 46.66%), while in the adults it was the subperiostal absces (n=14/38, 36.84%). The adults were mostly treated surgically (n=31/38, 81.58%), while the children were treated by using conservative treatment (n=13/15, 86.67%). There were no cases of mortality. The prevention of complications is based on the adequate and timely treatment of acute sinusitis in children, as well as the curative treatment of chronical processes in adults.

  18. Satellite orbit predictor (United States)

    Friedman, Morton l.; Garrett, James, Major

    An analog aid to determine satellite coverage of Emergency Locator Transmitters Emergency Position Indicating Radio Beacon (ELT/EPIRB) distress incidence is discussed. The satellite orbit predictor is a graphical aid for determining the relationship between the satellite orbit, antenna coverage of the spacecraft and coverage of the Local User Terminal. The predictor allows the user to quickly visualize if a selected position will probably be detected and is composed of a base map and a satellite track overlay for each satellite.A table of equator crossings for each satellite is included.

  19. International Space Station Lithium-Ion Battery (United States)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia


    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  20. Space Station Water Quality (United States)

    Willis, Charles E. (Editor)


    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  1. Galileo Station Keeping Strategy (United States)

    Perez-Cambriles, Antonio; Bejar-Romero, Juan Antonio; Aguilar-Taboada, Daniel; Perez-Lopez, Fernando; Navarro, Daniel


    This paper presents analyses done for the design and implementation of the Maneuver Planning software of the Galileo Flight Dynamics Facility. The station keeping requirements of the constellation have been analyzed in order to identify the key parameters to be taken into account in the design and implementation of the software.

  2. Kiowa Creek Switching Station

    Energy Technology Data Exchange (ETDEWEB)


    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  3. Summit Station Skiway Review (United States)


    operating procedures (SOPs) for future construction and maintenance efforts. DISCLAIMER: The contents of this report are not to be used for...Runway Construction .......................................................... 22 Appendix B: Rammsonde Instructions...13. Snow accumulation at Summit Station in the Bamboo Forest. .......................................... 13 Figure 14. Strength of Summit skiway

  4. Electrostatic pickup station

    CERN Multimedia

    CERN PhotoLab


    Electrostatic pickup station, with 4 electrodes, to measure beam position in the horizontal and vertical plane. This type is used in the transfer lines leaving the PS (TT2, TTL2, TT70). See also 8206063, where the electrode shapes are clearly visible.

  5. Designing a Weather Station (United States)

    Roman, Harry T.


    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  6. The Lunar orbit paradox

    Directory of Open Access Journals (Sweden)

    Tomić Aleksandar S.


    Full Text Available Newton's formula for gravity force gives greather force intensity for atraction of the Moon by the Sun than atraction by the Earth. However, central body in lunar (primary orbit is the Earth. So appeared paradox which were ignored from competent specialist, because the most important problem, determination of lunar orbit, was inmediately solved sufficiently by mathematical ingeniosity - introducing the Sun as dominant body in the three body system by Delaunay, 1860. On this way the lunar orbit paradox were not canceled. Vujičić made a owerview of principles of mechanics in year 1998, in critical consideration. As an example for application of corrected procedure he was obtained gravity law in some different form, which gave possibility to cancel paradox of lunar orbit. The formula of Vujičić, with our small adaptation, content two type of acceleration - related to inertial mass and related to gravity mass. So appears carried information on the origin of the Moon, and paradox cancels.

  7. Myxoma of the orbit.

    Directory of Open Access Journals (Sweden)

    Rambhatla Saptagirish


    Full Text Available Myxomas are rare, benign neoplasms of mesenchymal origin that usually develop in soft tissues. As the clinical manifestations are non-specific, it is difficult to diagnose the tumour without biopsy and histopathological examination. We report a case of orbital myxoma with histopathological correlation.

  8. A Neptune Orbiter Mission (United States)

    Wallace, R. A.; Spilker, T. R.


    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  9. NASA's Orbital Space Plane Risk Reduction Strategy (United States)

    Dumbacher, Dan


    This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.

  10. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian


    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  11. [Analysis of variation of orbital openings in contemporary skulls]. (United States)

    Gawlikowska-Sroka, Aleksandra


    The size and symmetry of the eye-socket have puzzled many medical and biological scientists. The orbit is a very complicated skull part because of the great number of bones involved in its structure, and its specific physiological function. The aim of our study was to estimate variations in the shape, size and position of the orbital openings in contemporary human skulls by using computer software. The material consisted of 80 male human skulls of the European population from the beginning of the 20th century. X-ray photographs were taken in the P-A projection, then the images were scanned and calibrated by means of MicroStation 95 Academic Edition software. Tools for measuring the vector elements were used to assess measurements: n-mf, mf-ml, mf-ek, spa--sbk and the area of the orbital opening. The orbital index and the index of morphological asymmetry were assessed. Michalski's tables were used to establish orbit features. The statistical analysis was performed using the Statistica computer software package. Measurements of the eye--socket position in relation to the mid-line were significantly more frequently larger on the left-hand side, which means a more lateral position of orbits on that side. The measurements of breadth, height and area were more frequently larger on the right side. The asymmetry index was significant for orbit width. The majority of the examined orbits were classified as hypsikonch, according to the orbital index. According to Michalski's scale, the dominant size data described orbital openings in the European population from the West Pomeranian region. The awareness of variability in this area is necessary for the correct interpretation of patients' examination results, reconstruction planning, in forensic medicine, and anthropology.

  12. Geosynchronous inclined orbits for high-latitude communications (United States)

    Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.


    We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.

  13. Diuble Station Observation of Telescopic Meteors in Mykolaiv

    Directory of Open Access Journals (Sweden)

    Kulichenko, M.O.


    Full Text Available Meteor research using TV CCD unintensified techniques was started in 2011 in Nikolaev astronomical observatory (RI «NAO». The method of meteor registration is based on the combined observation method developed at RI «NAO». The main accent of the research is made on the precise astrometry and meteoroid orbits calculation. In 2013 first double station meteors with low baseline were observed. Estimation of uncertainties of visible radiant equatorial coordinates, geocentric velocity and heliocentric meteoroid orbit parameters was carried out.

  14. Space Station Control Moment Gyroscope Lessons Learned (United States)

    Gurrisi, Charles; Seidel, Raymond; Dickerson, Scott; Didziulis, Stephen; Frantz, Peter; Ferguson, Kevin


    Four 4760 Nms (3510 ft-lbf-s) Double Gimbal Control Moment Gyroscopes (DGCMG) with unlimited gimbal freedom about each axis were adopted by the International Space Station (ISS) Program as the non-propulsive solution for continuous attitude control. These CMGs with a life expectancy of approximately 10 years contain a flywheel spinning at 691 rad/s (6600 rpm) and can produce an output torque of 258 Nm (190 ft-lbf)1. One CMG unexpectedly failed after approximately 1.3 years and one developed anomalous behavior after approximately six years. Both units were returned to earth for failure investigation. This paper describes the Space Station Double Gimbal Control Moment Gyroscope design, on-orbit telemetry signatures and a summary of the results of both failure investigations. The lessons learned from these combined sources have lead to improvements in the design that will provide CMGs with greater reliability to assure the success of the Space Station. These lessons learned and design improvements are not only applicable to CMGs but can be applied to spacecraft mechanisms in general.

  15. Unusual Sclerosing Orbital Pseudotumor Infiltrating Orbits and Maxillofacial Regions

    Directory of Open Access Journals (Sweden)

    Huseyin Toprak


    Full Text Available Idiopathic orbital pseudotumor (IOP is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI features that help to exclude other entities during differential diagnoses.

  16. Conceptual planning for Space Station life sciences human research project (United States)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.


    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  17. Sun Interference Predictions for the Kompsat TT&C Station


    Byoung-Sun Lee


    The Sun interference event predictions for the KOMPSAT TT&C station were performed to analyze the frequency of the event and the impact on the TT&C link. The KOMPSAT orbit was propagated including only J2 geopotential term for maintaining the Sun-synchronism and no other perturbations were included. Local time of ascending node of the KOMPSAT satellite was set to 10h50m00s. The TT&C station was assumed to locate in Taejon and have 9 meter antenna for S-band link. One year of simulation from 1...

  18. Battery charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Bergey, M.


    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  19. Low Earth Orbit Satellite’s Orbit Propagation and Determination (United States)


    Institute of Technology Email: Abstract This paper represents orbit propagation and determination of Low Eearth Orbit(LEO...Arichandran, S. H. Tan, T. Bretschneider, High – Presicion Onboard Orbit Determination for Small Satellites - the GPS-Based XNS on X-SAT. 6th Symposium on

  20. Local orbitals by minimizing powers of the orbital variance

    DEFF Research Database (Denmark)

    Jansik, Branislav; Høst, Stinne; Kristensen, Kasper


    is obtained. For increasing power exponents, the penalty for delocalized orbitals is increased and smaller maximum orbital spreads are encountered. Calculations on superbenzene, C60, and a fragment of the titin protein show that for a power exponent equal to one, delocalized outlier orbitals may...

  1. Concept of H-II orbiting plane, HOPE (United States)

    Akimoto, Toshio; Ito, Tetsuichi; Miyaba, Hiroshi

    An unmanned winged vehicle to be lauched by the H-II rocket, the H-II Orbiting Plane (HOPE), is described. HOPE will be launched into a 250-km altitude orbit, will remain in space for 1 to 3 days (performing experiments or rendezvous and docking to the space station), and will then return to land on a runway automatically. A double delta wing design was selected, along with tip fins for the tail. Trade-off studies were performed for airframe structural materials, thermal protection system materials, the guidance, navigation, and control system, and the development of fuel cells.

  2. Determination of the orbit of the CHAMP satellite based on the laser observations (United States)

    Lejba, P.

    This work presents the results of orbit determination of the CHAMP satellite from observations of 14 the best SLR stations for year 2002 All computations were based on the Earth combined gravity field model EIGEN-CG01C Reigber et al 2005 In computations was taken the orbital programme GEODYN-II created and accesibled by NASA The got RMS value of the orbit of the CHAMP satellite is better than 30 cm The obtained results show that the orbit of the CHAMP satellite is highly perturbed by the Earth s gravity field and by the atmosphere of the Earth

  3. Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter (United States)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Kerr, Justin H.


    An overview of significant Micrometeoroid and Orbital Debris (MMOD) impacts on the Payload Bay Door radiators, wing leading edge reinforced carbon-carbon panels and crew module windows will be presented, along with a discussion of the techniques NASA has implemented to reduce the risk from MMOD impacts. The concept of "Late Inspection" of the Nose Cap and Wing leading Edge (WLE) Reinforced Carbon Carbon (RCC) regions will be introduced. An alternative mated attitude with the International Space Station (ISS) on shuttle MMOD risk will also be presented. The significant threat mitigation effect of these two techniques will be demonstrated. The wing leading edge impact detection system, on-orbit repair techniques and disabled vehicle contingency plans will also be discussed.

  4. A fuzzy clustering application to precise orbit determination (United States)

    Soto, Jesus; Vigo Aguiar, M. Isabel; Flores-Sintas, Antonio


    In recent years, fuzzy logic techniques have been successfully applied in geodesy problems, in particular to GPS. The aim of this work is to test a fuzzy-logic method with an enhanced probability function as a tool to provide a reliable criteria for weighting scheme for satellite-laser-ranging (SLR) station observations, seeking to optimize their contribution to the precise orbit determination (POD) problem. The data regarding the stations were provided by the International Laser Ranging Service (ILRS), NASA/Crustal Dynamics Data Information System (CDDIS) provided the satellite data for testing the method. The software for processing the data is GEODYN II provided by NASA/Goddard Space Flight Center (GSFC). Factors to be considered in the fuzzy-logic clustering are: the total number of LAGEOS passes during the past 12 months, the stability measure of short- and long-term biases, the percentage of LAGEOS normal points that were accepted in CSR weekly LAGEOS analysis, and the RMS uncertainty of the station coordinates. A fuzzy-logic statistical method allows classifying the stations through a clear `degree of belonging' to each station group. This degree of belonging translates into a suitable weight to be assigned to each station in the global solutionE The first tests carried out showed improvements in the RMS of the global POD solution as well as individual stations, to within a few millimeters. We expect further work would lead to further improvements.

  5. Weigh-in-Motion Stations (United States)

    Department of Homeland Security — The data included in the GIS Traffic Stations Version database have been assimilated from station description files provided by FHWA for Weigh-in-Motion (WIM), and...

  6. Automatic Traffic Recorder (ATR) Stations (United States)

    Department of Homeland Security — The data included in the GIS Traffic Stations Version database have been assimilated from station description files provided by FHWA for Weigh-in-Motion (WIM), and...

  7. Emergency Medical Service (EMS) Stations (United States)

    Kansas Data Access and Support Center — EMS Locations in Kansas The EMS stations dataset consists of any location where emergency medical services (EMS) personnel are stationed or based out of, or where...

  8. Preseptal and orbital cellulitis

    Directory of Open Access Journals (Sweden)

    Emine Akçay


    Full Text Available Preseptal cellulitis (PC is defined as an inflammation of the eyelid and surrounding skin, whereas orbital cellulitis (OC is an inflammation of the posterior septum of the eyelid affecting the orbit and its contents. Periorbital tissues may become infected as a result of trauma (including insect bites or primary bacteremia. Orbital cellulitis generally occurs as a complication of sinusitis. The most commonly isolated organisms are Staphylococcus aureus, Streptococcus pneumoniae, S. epidermidis, Haempphilus influenzae, Moraxella catarrhalis and S. pyogenes. The method for the diagnosis of OS and PS is computed tomography. Using effective antibiotics is a mainstay for the treatment of PC and OC. There is an agreement that surgical drainage should be performed in cases of complete ophthalmoplegia or significant visual impairment or large abscesses formation. This infections are also at a greater risk of acute visual loss, cavernous sinus thrombosis, meningitis, cerebritis, endophthalmitis, and brain abscess in children. Early diagnosis and appropriate treatment are crucial to control the infection. Diagnosis, treatment, management and complications of PC and OC are summarized in this manuscript. J MicrobiolInfect Dis 2014; 4(3: 123-127

  9. Orbits of four double stars

    Directory of Open Access Journals (Sweden)

    Novaković B.


    Full Text Available We present orbits of four double stars. Orbits of stars WDS 23516+4205 = ADS 17050 and WDS 18239+5848 = ADS 11336 were calculated for the first time. Orbits of double stars WDS 02022+3643 = ADS 1613 and WDS 18443+3940 = ADS 11635 were revised. We have also determined their masses, dynamical parallaxes and ephemerides.

  10. Orbital Cellulitis of Odontogenic Origin. (United States)

    Yan, William; Chakrabarti, Rahul; Choong, Jessica; Hardy, Thomas


    Odontogenic orbital cellulitis, although uncommon, has the potential to cause severe vision loss if unsuspected and untreated. Compared to non-odontogenic bacteriology, odontogenic orbital abscesses typically feature a heavy mixed growth with anaerobic organisms. We review the literature and discuss the case of a 26-year-old male who presented with anaerobic orbital cellulitis for treatment.

  11. Retinoblastoma associated orbital cellulitis (United States)

    Mullaney, P.; Karcioglu, Z.; Huaman, A.; Al-Mesfer, S.


    AIM—Preseptal and orbital cellulitis are rare presenting features of intraocular retinoblastoma. The objectives of this study were to determine the frequency of retinoblastoma associated cellulitis, as well as to review its clinical and histopathological features.
METHODS—The medical records of 292 retinoblastoma patients in the King Khaled Eye Specialist Hospital in Riyadh, Saudi Arabia were reviewed. Those indicating a history of, or presenting with, cellulitis were retrieved and their clinical, radiological, and histopathological variables were assessed. Patients with definite extraocular tumour extension on clinical or radiological examination were excluded.
RESULTS—14 patients were found to have retinoblastoma associated cellulitis (4.8%); nine had bilateral and five had unilateral retinoblastoma. Conjunctival and blood cultures were performed in 10 cases and were negative. 10 children were treated with intravenous steroids, often in conjunction with antibiotics, resulting in a prompt decrease in inflammation. Three other children were treated with antibiotics alone and one received no treatment. Computed tomographic scanning depicted large intraocular tumours occupying between 80% and 100% of the globe in each case. In eight patients, periocular inflammation was radiologically interpreted as possible extraocular extension. In one patient serial computed tomographic scanning showed a reduction in intraocular calcification over time which occurred in the presence of cellulitis. 12 patients underwent enucleation and histopathological examination revealed large necrotic, poorly differentiated tumours associated with uveal involvement and early optic nerve invasion. Focal perilimbal destruction was seen in one patient, and in another peripapillary extrascleral extension was present. 12 patients are alive with a mean follow up of 56.4 months.
CONCLUSIONS—Radiological evaluation of scleral integrity may be hindered by periocular inflammatory

  12. Orbital Cellulitis Following Orbital Blow-out Fracture. (United States)

    Byeon, Je Yeon; Choi, Hwan Jun


    Orbital cellulitis and abscess have been described in the literature as complication that usually occur secondary to infection in the maxillary, ethmoidal, and frontal sinuses. If left untreated, it can lead to blindness, cavernous sinus thrombosis, meningitis, or cerebral abscess. Orbital fractures are a common sequela of blunt orbital trauma, but are only rarely associated with orbital cellulitis. So, the authors present rare orbital cellulitis after orbital blow-out fracture. A 55-year-old Asian complains of severe orbital swelling and pain on the left side. These symptoms had started 2 days earlier and worsened within the 24 hours before hospital admission resulting in visual disturbances such as diplopia and photophobia. Contrast-enhanced computed tomography scan showed considerable soft tissue swelling and abscess formation on the left side. Patient was subjected to surgical drainage under general anesthesia in the operation room. In this case, the postoperative period was uneventful and the rapid improvement of symptoms was remarkable. In conclusion, the abscess of the orbit is a surgical emergency in patients whose impairment of vision or ocular symptoms cannot be controlled with medical therapy using antibiotics. In our case, orbital cellulitis can occur after blunt orbital trauma without predisposing sinusitis. Early and prompt diagnosis and surgical drainage before severe loss of visual acuity rescue or recover the vision in case of orbital cellulitis.

  13. Build Your Own Space Station (United States)

    Bolinger, Allison


    This presentation will be used to educate elementary students on the purposes and components of the International Space Station and then allow them to build their own space stations with household objects and then present details on their space stations to the rest of the group.

  14. Air and radiation monitoring stations

    CERN Multimedia



    CERN has around 100 monitoring stations on and around its sites. New radiation measuring stations, capable of detecting even lower levels of radiation, were installed in 2014. Two members of HE-SEE group (Safety Engineering and Environment group) in front of one of the new monitoring stations.

  15. Analysis of the Accuracy of Beidou Combined Orbit Determination Enhanced by LEO and ISL

    Directory of Open Access Journals (Sweden)

    FENG Laiping


    Full Text Available In order to improve the precision of BeiDou orbit determination under the conditions of regional ground monitoring station and make good use of increasingly rich on-board data and upcoming ISL technology, a method of BeiDou precision orbit determination is proposed which combines the use of ground monitoring stations data, low earth orbit satellite(LEOs data and Inter-Satellite Link(ISL data. The effects of assisting data of LEOs and ISL on the precision orbit determination of navigation satellite are discussed. Simulation analysis is carried out mainly from the number of LEOs, orbit slot configuration and ISL. The results show that the orbit precision of BeiDou will greatly improve about 73% with a small number of LEOs, while improvement of clock bias is not remarkable; the uniform orbit slot configuration of the same number of LEOs has a modest effect on the accuracy of combined orbit determination; compared with LEOs, the increase of ISL will significantly improve the accuracy of orbit determination with a higher efficiency.

  16. A simulation facility for testing Space Station assembly procedures (United States)

    Hajare, Ankur R.; Wick, Daniel T.; Shehad, Nagy M.


    NASA plans to construct the Space Station Freedom (SSF) in one of the most hazardous environments known to mankind - space. It is of the utmost importance that the procedures to assemble and operate the SSF in orbit are both safe and effective. This paper describes a facility designed to test the integration of the telerobotic systems and to test assembly procedures using a real-world robotic arm grappling space hardware in a simulated microgravity environment.

  17. Southeast Regional Experiment Station (United States)


    This is the final report of the Southeast Regional Experiment Station project. The Florida Solar Energy Center (FSEC), a research institute of the University of Central Florida (UCF), has operated the Southeast Regional Experiment Station (SE RES) for the US Department of Energy (DOE) since September 1982. Sandia National Laboratories, Albuquerque (SNLA) provides technical program direction for both the SE RES and the Southwest Regional Experiment Station (SW RES) located at the Southwest Technology Development Institute at Las Cruces, New Mexico. This cooperative effort serves a critical role in the national photovoltaic program by conducting system evaluations, design assistance and technology transfer to enhance the cost-effective utilization and development of photovoltaic technology. Initially, the research focus of the SE RES program centered on utility-connected PV systems and associated issues. In 1987, the SE RES began evaluating amorphous silicon (a-Si) thin-film PV modules for application in utility-interactive systems. Stand-alone PV systems began receiving increased emphasis at the SE RES in 1986. Research projects were initiated that involved evaluation of vaccine refrigeration, water pumping and other stand-alone power systems. The results of this work have led to design optimization techniques and procedures for the sizing and modeling of PV water pumping systems. Later recent research at the SE RES included test and evaluation of batteries and charge controllers for stand-alone PV system applications. The SE RES project provided the foundation on which FSEC achieved national recognition for its expertise in PV systems research and related technology transfer programs. These synergistic products of the SE RES illustrate the high visibility and contributions the FSEC PV program offers to the DOE.

  18. Omicron space habitat—research stage II (United States)

    Doule, Ondřej; Šálený, Vratislav; Hérin, Benoît; Rousek, Tomáš


    The design presented in this paper is in response to the revolution in private space activities, the increasing public interest in commercial flights to space and the utilization of structures such as space hotels or private orbital habitats. The baseline for the Omicron design concept is the Russian Salyut derived space station module. Salyut was the first space station to orbit the Earth. Its unique design and technical features were what made the development of space stations Salyut 1-7, MIR and the International Space Station (ISS) Zwezda service module possible. Due to its versatility and the reliable operating launch vehicle Proton, this space module series has the potential to be adapted for space hotel development. This paper proposes a conceptual design of the space habitat called Omicron, with particular focus on interior design for the microgravity environment. The Omicron concepts address the needs of space tourism with a strong emphasis on the safety and comfort of the spaceflight participants. The Omicron habitat supports three inhabitants in nominal conditions (e.g., two passengers and one astronaut). The habitat provides a flexible interior, facilities and spaces dynamically transforming in order to accommodate various types of activities, which will be performed in an organically formed interior supporting spatial orientation and movement in microgravity. The future development potential of Omicron is also considered. The baseline version is composed solely of one rigid module with an inverted cupola for observations. An alternative version offers more space using an inflatable structure. Finally, a combination of multiple Omicron modules enables the creation of a larger orbital habitat. The Omicron's subsystems support a few days visit by trained passengers. The transport to the habitat would be provided e.g., by the Soyuz TMA spacecraft carried by the Soyuz launch vehicle in the early stage of Omicron's development, before a fully reusable

  19. Submerged AUV Charging Station (United States)

    Jones, Jack A.; Chao, Yi; Curtin, Thomas


    Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder

  20. Korea Geodetic VLBI Station Sejong (United States)

    Yi, S.; Moon, Y.; Kim, S.; Lee, J.; Joo, H. e.; Oh, H.


    The Sejong VLBI station has been constructed by the National Geographic Information Institute (NGII) in the Republic of Korea. It took approximately four years from 2008 to the end of 2011. In February 2012, we successfully carried out a fringe-test with the Kashima 11-m antenna of the National Institute of Information and Communications Technology (NICT) in Japan. In March, the Sejong station was accepted as an IVS network station by acceptance of the IVS Directing Board which was held at the 7th IVS General Meeting in Spain. This report summarizes activities of the Sejong station as a new IVS Network Station.

  1. International Space Station Lithium-Ion Battery Start-Up (United States)

    Dalton, Penni J.; North, Tim; Bowens, Ebony; Balcer, Sonia


    International Space Station Lithium-Ion Battery Start-Up.The International Space Station (ISS) primary Electric Power System (EPS) was originally designed to use Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. As the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. The first set of 6 Li-ion battery replacements were launched in December 2016 and deployed in January 2017. This paper will discuss the Li-ion battery on-orbit start-up and the status of the Li-Ion cell and ORU life cycle testing.

  2. Ground Contact Analysis for Korea’s Fictitious Lunar Orbiter Mission

    Directory of Open Access Journals (Sweden)

    Young-Joo Song


    Full Text Available In this research, the ground contact opportunity for the fictitious low lunar orbiter is analyzed to prepare for a future Korean lunar orbiter mission. The ground contact opportunity is basically derived from geometrical relations between the typical ground stations at the Earth, the relative positions of the Earth and Moon, and finally, the lunar orbiter itself. Both the cut-off angle and the orbiter’s Line of Sight (LOS conditions (weather orbiter is located at near or far side of the Moon seen from the Earth are considered to determine the ground contact opportunities. Four KOMPSAT Ground Stations (KGSs are assumed to be Korea’s future Near Earth Networks (NENs to support lunar missions, and world-wide separated Deep Space Networks (DSNs are also included during the contact availability analysis. As a result, it is concluded that about 138 times of contact will be made between the orbiter and the Daejeon station during 27.3 days of prediction time span. If these contact times are converted into contact duration, the duration is found to be about 8.55 days, about 31.31% of 27.3 days. It is discovered that selected four KGSs cannot provide continuous tracking of the lunar orbiter, meaning that international collaboration is necessary to track Korea’s future lunar orbiter effectively. Possible combinations of world-wide separated DSNs are also suggested to compensate for the lack of contact availability with only four KGSs, as with primary and backup station concepts. The provided algorithm can be easily modified to support any type of orbit around the Moon, and therefore, the presented results could aid further progress in the design field of Korea’s lunar orbiter missions.

  3. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou


    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  4. Precise orbit determination of Beidou Satellites at GFZ (United States)

    Deng, Zhiguo; Ge, Maorong; Uhlemann, Maik; Zhao, Qile


    In December 2012 the Signal-In-Space Interface Control Document (ICD) of the BeiDou Navigation Satellite System (BeiDou system) was published. Currently the initial BeiDou regional navigation satellite system consisting of 14 satellites was completed, and provides observation data of five Geostationary-Earth-Orbit (GEO)satellites, five Inclined-GeoSynchronous-Orbit (IGSO) satellites and four Medium-Earth-Orbit (MEO) satellites. The Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences (GFZ) contributes as one of the analysis centers to the International GNSS Service (IGS) since many years. In 2012 the IGS began the "Multi GNSS EXperiment" (MGEX), which supports the new GNSS, such as Galileo, Compass, and QZSS. Based on tracking data of BeiDou-capable receivers from the MGEX and chinese BeiDou networks up to 45 global distributed stations are selected to estimate orbit and clock parameters of the GPS/BeiDou satellites. Some selected results from the combined GPS/BeiDou data processing with 10 weeks of data from 2013 are shown. The quality of the orbit and clock products are assessed by means of orbit overlap statistics, clock stabilities as well as an independent validation with SLR measurements. At the end an outlook about GFZ AC's future Multi-GNSS activities will be given.

  5. Draper Station Analysis Tool (United States)

    Bedrossian, Nazareth; Jang, Jiann-Woei; McCants, Edward; Omohundro, Zachary; Ring, Tom; Templeton, Jeremy; Zoss, Jeremy; Wallace, Jonathan; Ziegler, Philip


    Draper Station Analysis Tool (DSAT) is a computer program, built on commercially available software, for simulating and analyzing complex dynamic systems. Heretofore used in designing and verifying guidance, navigation, and control systems of the International Space Station, DSAT has a modular architecture that lends itself to modification for application to spacecraft or terrestrial systems. DSAT consists of user-interface, data-structures, simulation-generation, analysis, plotting, documentation, and help components. DSAT automates the construction of simulations and the process of analysis. DSAT provides a graphical user interface (GUI), plus a Web-enabled interface, similar to the GUI, that enables a remotely located user to gain access to the full capabilities of DSAT via the Internet and Webbrowser software. Data structures are used to define the GUI, the Web-enabled interface, simulations, and analyses. Three data structures define the type of analysis to be performed: closed-loop simulation, frequency response, and/or stability margins. DSAT can be executed on almost any workstation, desktop, or laptop computer. DSAT provides better than an order of magnitude improvement in cost, schedule, and risk assessment for simulation based design and verification of complex dynamic systems.

  6. The particulate environment surrounding the space station: Estimates from the PACS data (United States)

    Green, Byron David


    The objectives of the Particle Analysis Cameras for Shuttle (PACS) experiment (flown on STS-61C) are described and the experiment results are discussed in reference to the expected Space Station environment. Estimates of the sources of particulates surrounding the Space Station were made based on the existing orbital observations data base. Particulates surrounding the shuttle are mostly event related or from the residual release of mass (dust) brought to orbit from the ground. The particulates surrounding the Space Station are likely to arise from additional sources such as operations, docking, erosion, and abrasion. Thus, scaling of the existing data base to long-duration missions in low-Earth orbit requires analysis, modeling, and simulation testing.

  7. MISS- Mice on International Space Station (United States)

    Falcetti, G. C.; Schiller, P.


    The use of rodents for scientific research to bridge the gap between cellular biology and human physiology is a new challenge within the history of successful developments of biological facilities. The ESA funded MISS Phase A/B study is aimed at developing a design concept for an animal holding facility able to support experimentation with mice on board the International Space Station (ISS).The MISS facility is composed of two main parts:1. The MISS Rack to perform scientific experiments onboard the ISS.2. The MISS Animals Transport Container (ATC) totransport animals from ground to orbit and vice- versa.The MISS facility design takes into account guidelines and recommendations used for mice well-being in ground laboratories. A summary of the MISS Rack and MISS ATC design concept is hereafter provided.

  8. STS-98 Onboard Photograph-International Space Station (United States)


    The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  9. Operability of Space Station Freedom's meteoroid/debris protection system (United States)

    Kahl, Maggie S.; Stokes, Jack W.


    The design of Space Station Freedom's external structure must not only protect the spacecraft from the hazardous environment, but also must be compatible with the extra vehicular activity system for assembly and maintenance. The external procedures for module support are utility connections, external orbital replaceable unit changeout, and maintenance of the meteoroid/debris shields and multilayer insulation. All of these interfaces require proper man-machine engineering to be compatible with the extra vehicular activity and manipulator systems. This paper discusses design solutions, including those provided for human interface, to the Space Station Freedom meteoroid/debris protection system. The system advantages and current access capabilities are illustrated through analysis of its configuration over the Space Station Freedom resource nodes and common modules, with emphasis on the cylindrical sections and endcones.

  10. Geo satellite attitude and orbit control: fixed orbit control thrasters


    Ermoshkin, Yu; V. Raevsky; Urusov, V.


    The paper describes the enhanced application ofhigh-economical electro-jet orbit control thrusters for geostationary satellites; in particular, generation of controlling moments to the benefit of satellite attitude determination and control subsystems in the course of orbit control maneuvers ongoing. The scheme with thrusters fixed on a satellite body is analyzed. Possible orbit control session procedures are proposed on the basis of controlling moments generation. Advantages and disadvantage...

  11. The SLR stations coordinates determined from monthly arcs of lageos-1 and lageos-2 laser ranging in 1999-2001 (United States)

    Schillak, S.; Wnuk, E.


    Determination of the stations coordinates and control of their stability is one of the most important tasks of the satellite geodesy and geodynamics. The paper is a continuation of earlier works on the stability of coordinates of the laser stations in the years 1999 and 2000 and reports the position determinations of all SLR stations active in the years 1999-2001 calculated in the ITRF2000 system on the basis of observations of LAGEOS-1 and LAGEOS-2 satellites. The calculations were made using the NASA GEODYN-II orbital program. The station coordinates were determined from the monthly arcs separately for each station. RMS of all 36 month arcs was stable and equal to 17 mm on average. The final stability of the SLR stations coordinates in the three years varied from 4 mm for the most stable station to a few centimetres for less stable ones. Real shifts in the positions of the stations Tateyama and Arequipa were detected.

  12. A Typical Presentation of Orbital Pseudotumor Mimicking Orbital Cellulitis

    Directory of Open Access Journals (Sweden)

    J. Ayatollahi


    Full Text Available Introduction: Orbital pseudotumor, also known as idiopathic orbital inflammatory syndrome (IOIS, is a benign, non- infective inflammatory condition of the orbit without identifiable local or systemic causes. The disease may mimics a variety of pathologic conditions. We pre-sent a case of pseudotumor observed in a patient admitted under the name of orbital celluli-ties. Case Report: A 26-year-old woman reffered to our hospital with the history of left ocular pain and headache 2 days before her visit.. Ophthalmological examination of the patient was normal except for the redness and lid edema, mild chemosis and conjunctival injection. Gen-eral assessment was normal but a low grade fever was observed. She was hospitalized as an orbital cellulitis patient. She was treated with intravenous antibiotics. On the third day , sud-denly diplopia, proptosis in her left eye and ocular pain in her right side appeared. MRI re-vealed bilateral enlargement of extraocular muscles. Diagnosis of orbital pseudotumor was made and the patient was treated with oral steroid.She responded promptly to the treatment. Antibiotics were discontinued and steroid was tapered in one month period under close fol-low up. Conclusion: The clinical features of orbital pseudotumor vary widely . Orbital pseudotumor and orbital cellulitis can occasionally demonstrate overlapping features.. Despite complete physical examination and appropriate imaging, sometimes correct diagnosis of the disease would be difficult (Sci J Hamadan Univ Med Sci 2013; 20 (3:256-259

  13. WINCS on-orbit performance results (United States)

    Nicholas, Andrew C.; Herrero, Fred A.; Stephan, Andrew W.; Finne, Theodore


    The Winds-Ions-Neutral Composition Suite (WINCS) instrument, also known as the Small Wind and Temperature Spectrometer (SWATS), was designed and developed jointly by the Naval Research Laboratory (NRL) and NASA/Goddard Space Flight Center (GSFC) for ionosphere-thermosphere investigations in orbit between 120 and 550 km altitude. The WINCS instrument houses four spectrometers in a single package with size, weight, and power compatible with a CubeSat. These spectrometers provide the following measurements: neutral winds, neutral temperature, neutral density, neutral composition, ion drifts, ion temperature, ion density and ion composition. The instrument is currently operating on the International Space Station and on the STP-Sat3 spacecraft. Data from the Ion-Drift Temperature-Spectrometer (IDTS) are used to compute the ion drift, temperature, and density in the presence of large changes in spacecraft potential. A summary is given of future flight manifests.

  14. Magnetic docking aid for orbiter to ISS docking (United States)

    Schneider, William C.; Nagy, Kornel; Schliesing, John A.


    The present docking system for the Orbiter uses mechanical capture latches that are actuated by contact forces. The forces are generated when the two approaching masses collide at the docking mechanism. There is always a trade-off between having high enough momentum to effect capture and low enough momentum to avoid structural overload or unacceptable angular displacements. The use of the present docking system includes a contact thrusting maneuver that causes high docking loads to be included into Space Station. A magnetic docking aid has been developed to reduce the load s during docking. The magnetic docking aid is comprised of two extendible booms that are attached adjacent to the docking structure with electromagnets attached on the end of the boom. On the mating vehicle, two steel plates are attached. As the Orbiter approaches Space Station, the booms are extended, and the magnets attach to the actuated (without thrusting), by slowly driving the extendible booms to the stowed position, thus reacting the load into the booms. This results in a docking event that has lower loads induced into Space Station structure. This method also greatly simplifies the Station berthing tasks, since the Shuttle Remote Manipulation System (SRMS) arm need only place the element to be berthed on the magnets (no load required), rather than firing the Reaction Control System (RCS) jets to provide the required force for capture latch actuation. The Magnetic Docking Aid was development testing on a six degree-of-freedom (6 DOF) system at JSC.

  15. Innovative Railway Stations (United States)

    Rzepnicka, Sylwia; Załuski, Daniel


    In relation to modern demographic trends, evolving technologies and environment-friendly solutions increases the potential of rail considered as sustainable form of public transport. Contemporary tendencies of designing railway stations in Europe are focused on lowering energy consumption and reducing carbon emission. The main goal of the designers is to create a friendly and intuitive space for its users and at the same time a building that uses renewable energy sources and minimizes negative impact on the environment by the increase of biologically active areas, reuse of rainwater and greywater, innovative heating and cooling solutions and reduction of energy losses. The optimisation of a life circle in railway architecture introduces new approach to passenger service. Examples mentioned in the content of this article help to synthesize changes in approach to the design within the context of sustainability.

  16. Mapping orbits around the asteroid 2001SN263 (United States)

    Prado, Antonio F. B. A.


    The present paper has the goal of mapping orbits, with respect to the perturbations, for a spacecraft traveling around the asteroid 2001SN263. This asteroid is a triple system, which center of mass is in an elliptic orbit around the Sun. The perturbations considered in the present model are the ones due to the oblateness of the central body, the gravity field of the two satellite bodies (Beta and Gamma), the Sun, the Moon, the asteroids Vesta, Pallas and Ceres and all the planets of the Solar System. This mapping is important, because it shows the relative importance of each force for a given orbit for the spacecraft, helping to make a decision about which forces need to be included in the model for a given accuracy and nominal orbit. Another important application of this type of mapping is to find orbits that are less perturbed, since it is expected that those orbits have good potential to require a smaller number of station-keeping maneuvers. Simulations under different conditions are made to find those orbits. The main reason to study those trajectories is that, currently, there are several institutions in Brazil studying the possibility to make a mission to send a spacecraft to this asteroid (the so-called ASTER mission), because there are many important scientific studies that can be performed in that system. The results showed that Gamma is the main perturbing body, followed by Beta (10 times smaller) and the group Sun-Mars-oblateness of Alpha, with perturbations 1000 times weaker than the effects of Gamma. The other bodies have perturbations 107 times smaller. The results also showed that circular and polar orbits are less perturbed, when compared to elliptical and equatorial orbits. Regarding the semi-major axis, an internal orbit is the best choice, followed by a larger external orbit. The inclination of the orbit plays an important role, and there are values for the inclination where the perturbations show minimum and maximum values, so it is important to

  17. New Orbits for 18 Binaries (United States)

    Cvetković, Z.; Pavlović, R.


    Orbital elements of 18 visual binaries are computed using the measurements collected in the Fourth Catalog of Interferometric Measurements of Binary Stars; 15 orbits are determined for the first time and three orbits are revised. Eleven of the binaries, denoted as HDS, were discovered during the Hipparcos mission. The remaining binaries were discovered a few years earlier or later than 1991. All studied pairs are close, and all measured separations are less than 0\\buildrel{\\prime\\prime}\\over{.} 46. The shortest orbital period is 10 years and the longest orbital period is 127 years. Dynamical parallaxes and total masses of systems are derived from the orbital elements. We also give absolute magnitudes, spectral types, and (O-C) residuals in θ and ρ.

  18. Physics Research on the International Space Station

    CERN Multimedia

    CERN. Geneva


    The International Space Station (ISS) is orbiting Earth at an altitude of around 400 km. It has been manned since November 2000 and currently has a permanent crew of six. On-board ISS science is done in a wide field of sciences, from fundamental physics to biology and human physiology. Many of the experiments utilize the unique conditions of weightlessness, but also the views of space and the Earth are exploited. ESA’s (European Space Agency) ELIPS (European Programme Life and Physical sciences in Space) manages some 150 on-going and planned experiments for ISS, which is expected to be utilized at least to 2020. This presentation will give a short introduction to ISS, followed by an overview of the science field within ELIPS and some resent results. The emphasis, however, will be on ISS experiments which are close to the research performed at CERN. Silicon strip detectors like ALTEA are measuring the flux of ions inside the station. ACES (Atomic Clock Ensemble in Space) will provide unprecedented global ti...

  19. Analysis Procedures for Two Station Television Meteors (United States)

    Hawkes, R. L.; Mason, K. I.; Fleming, D. E. B.; Stultz, C. T.


    This paper describes techniques for trajectory, light curve and orbital analysis of image intensified television meteors recorded at two stations. It will be argued that simple partial screen reference star fitting is preferable to higher order whole screen fits, and that only modest improvements in accuracy result from additional reference stars. The coordinate transformations and triangulation procedures are expressed exclusively in vector-matrix format. A simulation program has been developed for estimation of probable errors in radiants, heights and speeds. Heights accurate to about 0.2 km can be obtained even with moderate (26 km) baselines. Because of the difficulty in defining a common fiducial point for the meteor head in different frames, velocities are usually in error by at least several percent. One technique for obtaining photometric measures from the digitized sequences will be described - accuracies of the order of +-0.20M can be obtained in a relative sense, with absolute accuracies no worse than double that value. The techniques are illustrated with actual two station data.

  20. Orbital science's 'Bermuda Triangle' (United States)

    Sherrill, Thomas J.


    The effects of a part of the inner Van Allen belt lying closest to the earth, known as the South Atlantic Anomaly (SAA) upon spacecraft including the Hubble Space Telescope (HST), are discussed. The area consists of positively charged ions and electrons from the Van Allen Belt which become trapped in the earth's dipole field. Contor maps representing the number of protons per square centimeter per second having energies greater than 10 million electron volts are presented. It is noted that the HST orbit causes it to spend about 15 percent of its time in the SAA, but that, unlike the experience with earlier spacecraft, the satellite's skin, internal structure, and normal electronic's packaging provides sufficient protection against eletrons, although some higher energy protons still get through. Various charged particle effects which can arise within scientific instruments including fluorescence, Cerenkov radiation, and induced radioactivity are described.

  1. Orbital Eccrine Hidrocystoma

    Directory of Open Access Journals (Sweden)

    Deniz Marangoz


    Full Text Available A 29-year-old female patient presented with a painless mass on her upper eyelid medially. She noticed the mass 4 years earlier and it had increased in size over time. She had no diplopia, eyelid swelling, skin lesion overlying the mass, or visual disturbances. On ocular examination, eye movements and funduscopy were normal. The mass was movable and painless with palpation. Magnetic resonance imaging with contrast showed a 12x8x7 mm well-circumscribed cystic lesion with no contrast dye appearance. Surgical removal was performed delicately and no capsular rupture occured. Pathological examination revealed an eccrine hidrocystoma. Our aim is to underline that eccrine hidrocystoma should be included in differential diagnosis of orbital masses.

  2. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B


    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  3. CDDIS_DORIS_products_orbit (United States)

    National Aeronautics and Space Administration — Precise satellite orbits derived from analysis of Doppler Orbitography by Radiopositioning Integrated on Satellite (DORIS) data. These products are the generated by...

  4. Photochemical Assessment Monitoring Stations (PAMS) (United States)

    U.S. Environmental Protection Agency — Photochemical Assessment Monitoring Stations (PAMS). This file provides information on the numbers and distribution (latitude/longitude) of air monitoring sites...

  5. Orbital Evolution and Orbital Phase Resolved Spectroscopy of the ...

    Indian Academy of Sciences (India)

    tra in the 3–20 keV energy range were fitted with a power law and a high ... acceleration method and also depends on any anisotropy in the stellar wind structure. .... Orbital Evolution and Orbital Phase Resolved Spectroscopy. 415. Figure 3. (a) Pulse arrival time delays measured from the RXTE-PCA observation in 2003,.

  6. Station History Of The Seismic Station In Ahmadu Bello University ...

    African Journals Online (AJOL)

    The data were used to create the station history plots which display the travel times, the distance time curve and events location on a world seismicity map with Zaria as the center. KEY WORDS: History, Events, Station, Teleseismic, Travel time. Global Journal of Pure and Applied Sciences Vol.11(2) 2005: 309-315.

  7. Stanwell power station project

    Energy Technology Data Exchange (ETDEWEB)

    Mills, David R; J Dey, Christopher [University of Sidney, Sidney (Australia); Morrison, Graham L [University of New South Wales, Sidney (Australia)


    This paper describes the Compact Linear Fresnel Reflector (CLFR) being developed for installation at the Stanwell power station in Queensland Australia. Stanwell Corporation Limited (SCL). Solahart International, Solsearch Pty. Ltd. And the universities of Sidney and New South Wales are cooperating in the project, and this first plant being partly funded by the Australian Greenhouse Office. The solar plant will be attached to a 1440 MW(e) coal fired plant. The 17000 m{sup 2} array will be the largest array in Australia, producing a peak of 13 MW of thermal energy which will offset the use of coal in the generation of electricity. It will use direct steam generation and will feed either steam or hot water at 265 Celsius degrees directly into the power station preheating cycle. The CLFR system, first developed by the University of Sidney and Solsearch Pty. Ltd., is simple and offers small reflector size, low structural cost, fixed receiver geometry. Initial installed plant costs are approximately US$1000 per kWe, but this includes the effect of high up-front design costs and the cost should drop substantially in the second and subsequent plants. [Spanish] Proyecto de la Planta Electrica Stanwell este articulo describe el Reflector Lineal Compacto Fresnel (CLFR, siglas en ingles) que se esta desarrollando para la instalacion de la planta electrica Stanwell en Queensland, Australia. La Corporacion Stanwell Limited (SCL), Solahart International, Solsearch Pty. Ltd., las universidades de Sidney y de New South Wales estan cooperando en este proyecto, y esta primera planta esta parcialmente auspiciada por la Australian Greenhouse Office. La planta solar sera anexa a una planta de carbon de 1440 MW(e). Este arreglo de 17000 m{sup 2} sera el mayor en Australia y producira un maximo de 13 MW en energia termica la cual contrarrestara el uso del carbon en la generacion de electricidad. Utilizara generacion con vapor directo y alimentara ya sea vapor o agua caliente a 265 grados

  8. Orbital Chondroma: A rare mesenchymal tumor of orbit

    Directory of Open Access Journals (Sweden)

    Ruchi S Kabra


    Full Text Available While relatively common in the skeletal system, cartilaginous tumors are rarely seen originating from the orbit. Here, we report a rare case of an orbital chondroma. A 27-year-old male patient presented with a painless hard mass in the superonasal quadrant (SNQ of left orbit since 3 months. On examination, best-corrected visual acuity of both eyes was 20/20, with normal anterior and posterior segment with full movements of eyeballs and normal intraocular pressure. Computerized tomography scan revealed well defined soft tissue density lesion in SNQ of left orbit. Patient was operated for anteromedial orbitotomy under general anesthesia. Mass was excised intact and sent for histopathological examination (HPE. HPE report showed lobular aggregates of benign cartilaginous cells with mild atypia suggesting of benign cartilaginous tumor - chondroma. Very few cases of orbital chondroma have been reported in literature so far.

  9. Swedish encapsulation station review

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven Olof; Brunzell, P.; Heibel, R.; McCarthy, J.; Pennington, C.; Rusch, C.; Varley, G. [NAC International, Zuerich (Switzerland)


    In the Encapsulation Station (ES) Review performed by NAC International, a number of different areas have been studied. The main objectives with the review have been to: Perform an independent review of the cost estimates for the ES presented in SKB`s document `Plan 1996`. This has been made through comparisons between the ES and BNFL`s Waste Encapsulation Plant (WEP) at Sellafield as well as with the CLAB facility. Review the location of the ES (at the CLAB site or at the final repository) and its interaction with other parts of the Swedish system for spent fuel management. Review the logistics and plant capacity of the ES. Identify important safety aspects of the ES as a basis for future licensing activities. Based on NAC International`s experience of casks for transport and storage of spent fuel, review the basic design of the copper/steel canister and the transport cask. This review insides design, manufacturing, handling and licensing aspects. Perform an overall comparison between the ES project and the CLAB project with the objective to identify major project risks and discuss their mitigation 19 refs, 9 figs, 35 tabs

  10. Plasmablastic lymphoma mimicking orbital cellulitis.

    NARCIS (Netherlands)

    Barkhuysen, R.; Merkx, M.A.W.; Weijs, W.L.J.; Gerlach, N.L.; Berge, S.J.


    INTRODUCTION: Orbital cellulitis is an uncommon, potentially devastating condition that, when not promptly and adequately treated, can lead to serious sequelae. The presenting clinical signs are proptosis, swelling, ophthalmoplegia, pain and redness of the peri-orbital tissues. A number of cases

  11. Diffractive molecular-orbital tomography (United States)

    Zhai, Chunyang; Zhu, Xiaosong; Lan, Pengfei; Wang, Feng; He, Lixin; Shi, Wenjing; Li, Yang; Li, Min; Zhang, Qingbin; Lu, Peixiang


    High-order-harmonic generation in the interaction of femtosecond lasers with atoms and molecules opens the path to molecular-orbital tomography and to probe the electronic dynamics with attosecond-Ångström resolutions. Molecular-orbital tomography requires both the amplitude and phase of the high-order harmonics. Yet the measurement of phases requires sophisticated techniques and represents formidable challenges at present. Here we report a scheme, called diffractive molecular-orbital tomography, to retrieve the molecular orbital solely from the amplitude of high-order harmonics without measuring any phase information. We have applied this method to image the molecular orbitals of N2, CO2, and C2H2 . The retrieved orbital is further improved by taking account the correction of Coulomb potential. The diffractive molecular-orbital tomography scheme, removing the roadblock of phase measurement, significantly simplifies the molecular-orbital tomography procedure and paves an efficient and robust way to the imaging of more complex molecules.

  12. Orbit Modeller - Virtual Astronomical Laboratory (United States)

    Avdyushev, V. A.; Banshchikova, M. A.; Bordovitsyna, T. V.; Chuvashov, I. N.; Ryabova, G. O.


    We present a virtual astronomical laboratory project - "Orbit Modeller" (OM). This should be an interactive web-tool enabling one to simulate numerically the orbital motion of any celestial body within or beyond the solar system. Another function of OM is a repository of old observations and documents.

  13. Endoscopic treatment of orbital tumors. (United States)

    Signorelli, Francesco; Anile, Carmelo; Rigante, Mario; Paludetti, Gaetano; Pompucci, Angelo; Mangiola, Annunziato


    Different orbital and transcranial approaches are performed in order to manage orbital tumors, depending on the location and size of the lesion within the orbit. These approaches provide a satisfactory view of the superior and lateral aspects of the orbit and the optic canal but involve risks associated with their invasiveness because they require significant displacement of orbital structures. In addition, external approaches to intraconal lesions may also require deinsertion of extraocular muscles, with subsequent impact on extraocular mobility. Recently, minimally invasive techniques have been proposed as valid alternative to external approaches for selected orbital lesions. Among them, transnasal endoscopic approaches, "pure" or combined with external approaches, have been reported, especially for intraconal lesions located inferiorly and medially to the optic nerve. The avoidance of muscle detachment and the shortness of the surgical intraorbital trajectory makes endoscopic approach less invasive, thus minimizing tissue damage. Endoscopic surgery decreases the recovery time and improves the cosmetic outcome not requiring skin incisions. The purpose of this study is to review and discuss the current surgical techniques for orbital tumors removal, focusing on endoscopic approaches to the orbit and outlining the key anatomic principles to follow for safe tumor resection.

  14. Generating realistic synthetic meteoroid orbits (United States)

    Vida, Denis; Brown, Peter G.; Campbell-Brown, Margaret


    Context. Generating a synthetic dataset of meteoroid orbits is a crucial step in analysing the probabilities of random grouping of meteoroid orbits in automated meteor shower surveys. Recent works have shown the importance of choosing a low similarity threshold value of meteoroid orbits, some pointing out that the recent meteor shower surveys produced false positives due to similarity thresholds which were too high. On the other hand, the methods of synthetic meteoroid orbit generation introduce additional biases into the data, thus making the final decision on an appropriate threshold value uncertain. Aims. As a part of the ongoing effort to determine the nature of meteor showers and improve automated methods, it was decided to tackle the problem of synthetic meteoroid orbit generation, the main goal being to reproduce the underlying structure and the statistics of the observed data in the synthetic orbits. Methods. A new method of generating synthetic meteoroid orbits using the Kernel Density Estimation method is presented. Several types of approaches are recommended, depending on whether one strives to preserve the data structure, the data statistics or to have a compromise between the two. Results. The improvements over the existing methods of synthetic orbit generation are demonstrated. The comparison between the previous and newly developed methods are given, as well as the visualization tools one can use to estimate the influence of different input parameters on the final data.

  15. Density-orbital embedding theory

    NARCIS (Netherlands)

    Visscher, L.; Gritsenko, O.


    In the article density-orbital embedding (DOE) theory is proposed. DOE is based on the concept of density orbital (DO), which is a generalization of the square root of the density for real functions and fractional electron numbers. The basic feature of DOE is the representation of the total

  16. Measuring Scars of Periodic Orbits

    CERN Document Server

    Kaplan, L


    The phenomenon of periodic orbit scarring of eigenstates of classically chaotic systems is attracting increasing attention. Scarring is one of the most important ``corrections'' to the ideal random eigenstates suggested by random matrix theory. This paper discusses measures of scars and in so doing also tries to clarify the concepts and effects of eigenfunction scarring. We propose a new, universal scar measure which takes into account an entire periodic orbit and the linearized dynamics in its vicinity. This measure is tuned to pick out those structures which are induced in quantum eigenstates by unstable periodic orbits and their manifolds. It gives enhanced scarring strength as measured by eigenstate overlaps and inverse participation ratios, especially for longer orbits. We also discuss off-resonance scars which appear naturally on either side of an unstable periodic orbit.

  17. Plasmablastic lymphoma mimicking orbital cellulitis (United States)

    Merkx, Matthias A. W.; Weijs, Willem L. J.; Gerlach, Niek L.; Bergé, Stefaan J.


    Introduction Orbital cellulitis is an uncommon, potentially devastating condition that, when not promptly and adequately treated, can lead to serious sequelae. The presenting clinical signs are proptosis, swelling, ophthalmoplegia, pain and redness of the peri-orbital tissues. A number of cases have been reported in which these symptoms have been mistakenly interpreted as being secondary to an orbital infection whilst, in fact, other pathology was present. Discussion We add another case in which, on clinical grounds and after radiological assessment and laboratory tests, a working diagnosis of orbital cellulitis of the left eye was made. It was only after histopathological analysis of a soft tissue specimen from the maxillary sinus that a diagnosis of an AIDS-related plasmablastic lymphoma was made. The patient was referred to the department of haematology where chemotherapeutic treatment for the lymphoma and the HIV infection was started. This case report adds another differential diagnosis of orbital cellulitis to the existing literature. PMID:18597126

  18. STS-96 Onboard Photo: Departing From the International Space Station (ISS) (United States)


    This STS-96 onboard photo of the International Space Station (ISS) was taken from Orbiter Discovery during a fly-around following separation of the two spacecraft. STS-96, the second Space Station assembly and resupply flight, launched on May 27, 1999 for an almost 10 day mission. The Shuttle's SPACEHAB double module carried internal and resupply cargo for station outfitting. Evident in the photo is the newly mounted Russian cargo crane, known as STRELA, which was carried aboard the shuttle in the integrated Cargo Carrir (ICC).

  19. International Systems Integration on the International Space Station (United States)

    Gerstenmaier, William H.; Ticker, Ronald L.


    Over the next few months, the International Space Station (ISS), and human spaceflight in general, will undergo momentous change. The European Columbus and Japanese Kibo Laboratories will be added to the station joining U.S. and Russian elements already on orbit. Columbus, Jules Vernes Automated Transfer Vehicle (ATV) and Kibo Control Centers will soon be joining control centers in the US and Russia in coordinating ISS operations and research. The Canadian Special Purpose Dexterous Manipulator (SPDM) will be performing extra vehicular activities that previously only astronauts on EVA could do, but remotely and with increased safety. This paper will address the integration of these international elements and operations into the ISS, both from hardware and human perspectives. Interoperability of on-orbit systems and ground control centers and their human operators from Europe, Japan, Canada, Russia and the U.S. pose significant and unique challenges. Coordination of logistical support and transportation of crews and cargo is also a major challenge. As we venture out into the cosmos and inhabit the Moon and other planets, it's the systems and operational experience and partnership development on ISS, humanity's orbiting outpost that is making these journeys possible.

  20. High-precision repeat-groundtrack orbit design and maintenance for Earth observation missions (United States)

    He, Yanchao; Xu, Ming; Jia, Xianghua; Armellin, Roberto


    The focus of this paper is the design and station keeping of repeat-groundtrack orbits for Sun-synchronous satellites. A method to compute the semimajor axis of the orbit is presented together with a station-keeping strategy to compensate for the perturbation due to the atmospheric drag. The results show that the nodal period converges gradually with the increase of the order used in the zonal perturbations up to J_{15}. A differential correction algorithm is performed to obtain the nominal semimajor axis of the reference orbit from the inputs of the desired nodal period, eccentricity, inclination and argument of perigee. To keep the satellite in the proximity of the repeat-groundtrack condition, a practical orbit maintenance strategy is proposed in the presence of errors in the orbital measurements and control, as well as in the estimation of the semimajor axis decay rate. The performance of the maintenance strategy is assessed via the Monte Carlo simulation and the validation in a high fidelity model. Numerical simulations substantiate the validity of proposed mean-elements-based orbit maintenance strategy for repeat-groundtrack orbits.

  1. Managing NASA's International Space Station Logistics and Maintenance Program (United States)

    Butina, Anthony


    The International Space Station's Logistics and Maintenance program has had to develop new technologies and a management approach for both space and ground operations. The ISS will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines - it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally completed in 2006. It has over 6,000 orbital replaceable units (ORU), and spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors. From conception to operation, the ISS requires a unique approach in all aspects of development and operations. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station for both space and ground operations. It started with the basic support concept developed for Department of Defense systems, and then it was tailored for the unique requirements of a manned space vehicle. Space logistics is a new concept that has wide reaching consequences for both space travel and life on Earth. This paper discusses what type of organization has been put into place to support both space and ground operations and discusses each element of that organization. In addition, some of the unique operations approaches this organization has had to develop is discussed.

  2. Lissajous Orbit Control for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission (United States)

    Roberts, Craig; Case, Sarah; Reagoso, John


    DSCOVR Lissajous Orbit sized such that orbit track never extends beyond 15 degrees from Earth-Sun line (as seen from Earth). Requiring delta-V maneuvers, control orbit to obey a Solar Exclusion Zone (SEZ) cone of half-angle 4 degrees about the Earth-Sun line. Spacecraft should never be less than 4 degrees from solar center as seen from Earth. Following Lissajous Orbit Insertion (LOI), DSCOVR should be in an opening phase that just skirts the 4-degree SEZ. Maximizes time to the point where a closing Lissajous will require avoidance maneuvers to keep it out of the SEZ. Station keeping maneuvers should take no more than 15 minutes.

  3. Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit (United States)

    Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.


    Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.

  4. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis

    Directory of Open Access Journals (Sweden)

    Sumeet Jain


    Full Text Available Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events.

  5. Orbital Infarction due to Sickle Cell Disease without Orbital Pain

    Directory of Open Access Journals (Sweden)

    Cameron L. McBride


    Full Text Available Sickle cell disease is a hemoglobinopathy that results in paroxysmal arteriolar occlusion and tissue infarction that can manifest in a plurality of tissues. Rarely, these infarcted crises manifest in the bony orbit. Orbital infarction usually presents with acute onset of periorbital tenderness, swelling, erythema, and pain. Soft tissue swelling can result in proptosis and attenuation of extraocular movements. Expedient diagnosis of sickle cell orbital infarction is crucial because this is a potentially sight-threatening entity. Diagnosis can be delayed since the presentation has physical and radiographic findings mimicking various infectious and traumatic processes. We describe a patient who presented with sickle cell orbital crisis without pain. This case highlights the importance of maintaining a high index of suspicion in patients with known sickle cell disease or of African descent born outside the United States in a region where screening for hemoglobinopathy is not routine, even when the presentation is not classic.

  6. SPHERES Mars Orbiting Sample Return External Orbiting Capture Project (United States)

    National Aeronautics and Space Administration — NASA's Mars Sample Return (MSR) mission scenario utilizes a small Orbiting Sample (OS) satellite, launched from the surface of Mars, which will rendezvous with an...

  7. 47 CFR 97.109 - Station control. (United States)


    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station control. 97.109 Section 97.109... SERVICE Station Operation Standards § 97.109 Station control. (a) Each amateur station must have at least one control point. (b) When a station is being locally controlled, the control operator must be at the...

  8. 47 CFR 80.519 - Station identification. (United States)


    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 80.519 Section 80.519... MARITIME SERVICES Private Coast Stations and Marine Utility Stations § 80.519 Station identification. (a.... In lieu of the identification of the station by voice, the official call sign may be transmitted by...

  9. 47 CFR 73.787 - Station identification. (United States)


    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station identification. 73.787 Section 73.787... International Broadcast Stations § 73.787 Station identification. (a) A licensee of an international broadcast station shall make station identification announcement (call letters and location), at the beginning and...

  10. Reprocessing the Elliptical Orbiting Galileo Satellites E14 and E18: Preliminary Results (United States)

    Männel, Benjamin


    In August 2014, the two Galileo satellites FOC-1 (E18) and FOC-2 (E14) were - due to a technical problem - launched into a wrong, elliptic orbit. In a recovery mission a series of orbit maneuvers were performed to raise the perigee to an altitude where both spacecrafts could be introduced to the Galileo navigation service. After this period of orbit maintenance both satellites started to transmit navigation signals at November 29, 2014 (E18) and March 17, 2015 (E14). However, as it was not possible to recover the nominal orbits due to propellant limitations, both spacecrafts orbit the Earth with a numerical eccentricity of 0.16 and an inclination of 50.2°. Very soon, it was assumed that both satellites could be highly useful for studies on general relativity, especially as the Galileo spacecrafts are equipped with very stable passive hydrogen masers. A prerequisite for dedicated studies in this field are highly accurate satellite orbits and clock corrections. Preliminary results for orbit and satellite clock determination will be presented based on an initial reprocessing over the past 2.5 years. The presentation focuses firstly on orbit modeling aspects with respect to the elliptically orbits. Secondly the derived clock corrections for the on-board passive clocks are assessed with respect to the reference clock at ground stations. The results will be discussed also with respect to the proposed Galileo-based studies on the gravitational redshift.

  11. JSC Orbital Debris Website Description (United States)

    Johnson, Nicholas L.


    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  12. Servicing of the future European stations/platforms through European means (United States)

    Eymar, P.; Peyrin, Y.; Cougnet, C.; Brudieu, P.; Dutto, P.

    In order to get a better knowledge of servicing problems and scenarii of the future European In Orbit Infrastructure, CNES (French Space Agency) decided to fund two separate servicing analysis, respectively conducted by Aérospatiale and MATRA. Aérospatiale work deals with several possible manned stations, taking into account a previous study, while MATRA work deals with polar platform aspects. The first part (Servicing of manned Space Stations) deals with a possible optimization of the roles to be played both by the future Ariane 5 launcher in automatic mode and by the Hermes Spaceplane for the servicing of some future manned space stations: the Columbus pressurized module on the U.S. Space Station, a non-evolutive one-module autonomous station and a multi-module one with a growth capability. After having identified the potential cargoes required for the maintenance and servicing of these stations (analysis of payloads, maintenance ORUs, consumales, crew exchange) and the possible frequencies of such a servicing, it is intended to show how it can be achieved through European means. Established scenarii make use of the Ariane 5 launcher combined either with the Hermes vehicle or with an automated payload. Solutions using payload carriers and/or logistic modules are examined, and possible impacts on stations and/or vehicles are identified further, following investigations on orbital transfer operations. The second part (Servicing of polar platforms) describes the possible scenarii of in-orbit implementation and servicing of a polar platform (number of Ariane 5 launches, modes of transfer, type of service vehicles, servicing orbit, …). This part is focused on the in-orbit operation to exchange on ORU (Orbital Replaceable Unit), once both platform and Hermes (or other servicing vehicle) are attached. After a review of the main tasks to be performed and the possible means to be used as manipulator or EVA, the paper describes the scenario (extraction of an ORU

  13. VT Data - Electric Charging Stations (United States)

    Vermont Center for Geographic Information — Locations of Electric Charging Stations provided by the NREL national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy....

  14. Interior Alaska Gravity Station Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...

  15. WVU Hydrogen Fuel Dispensing Station

    Energy Technology Data Exchange (ETDEWEB)

    Davis, William [West Virginia University Research Corporation, Morgantown, WV (United States)


    The scope of this project was changed during the course of the project. Phase I of the project was to construct a site similar to the site at Central West Virginia Regional Airport in Charleston, WV to show that duplication of the site was a feasible method of conducting hydrogen stations. Phase II of the project was necessitated due to a lack of funding that was planned for the development of the station in Morgantown. The US Department of Energy determined that the station in Charleston would be dismantled and moved to Morgantown and reassembled at the Morgantown site. This necessitated storage of the components of the station for almost a year at the NAFTC Headquarters which caused a number of issues with the equipment that will be discussed in later portions of this report. This report will consist of PHASE I and PHASE II with discussions on each of the tasks scheduled for each phase of the project.

  16. Gravity Station Data for Spain (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  17. High Power Orbit Transfer Vehicle

    National Research Council Canada - National Science Library

    Gulczinski, Frank


    ... from Virginia Tech University and Aerophysics, Inc. to examine propulsion requirements for a high-power orbit transfer vehicle using thin-film voltaic solar array technologies under development by the Space Vehicles Directorate (dubbed PowerSail...

  18. Management of odontogenic orbital cellulitis. (United States)

    DeCroos, F C; Liao, J C; Ramey, N A; Li, I


    This work describes a series of patients with odontogenic orbital cellulitis (OOC), focusing on rate of abscess formation, need for surgical intervention, and imaging findings helpful for rapid diagnosis. Review of a current case and 22 patients with OOC from the scientific literature demonstrated periapical lucency as the most commonly (36.4%) reported finding on facial and orbital computerized tomography (CT) scan. Orbital abscess occurred in 72.7% of cases, and tooth extraction and/or abscess drainage was required in 95.5% of cases reviewed for control of infection. The current case presented with periapical lucency on CT scan, developed orbital abscess despite broad spectrum antibiotic therapy, and required multiple surgical interventions for disease resolution. Though our patient regained excellent vision, OOC often can result in severe vision loss. Periapical lucency on CT can help identify this atypical origin of cellulitis that is strongly associated with abscess formation and need for surgical intervention.

  19. Determination of orbits and SLR stations’ coordinates on the basis of laser observations of the satellites Starlette and Stella (United States)

    Lejba, P.; Schillak, S.; Wnuk, E.

    Orbits of two low satellites Starlette and Stella have been determined on the basis of the observational data collected in 2001 from the best 14 Satellite Laser Ranging stations. The coordinates of seven SLR stations have been determined in the ITRF2000 coordinates frame and compared with the results calculated for the same stations on the basis of Lageos data. All the calculations have been made assuming two models of the Earth gravity field EGM96 and EIGEN-GRACE02S. It has been shown that the best results of satellite orbits determination are obtained with the latest model of the Earth gravity field proposed on the basis of the GRACE mission results. With respect to the results obtained assuming the EGM96 model, the improvement reaches 10-50% both in the values of orbital RMS, and the station coordinates. All the calculations have been performed with the use of GEODYN-II program. The RMS of the orbits of Starlette and Stella varies from 1.02 to 1.90 cm. Such RMS values permit determination of the laser stations to a high accuracy. The results presented in this work show that the data obtained for low satellites such as Starlette or Stella can be successfully applied for determination of the SLR station coordinates.

  20. Conveying International Space Station Science (United States)

    Goza, Sharon P.


    Over 1,000 experiments have been completed, and others are being conducted and planed on the International Space Station (ISS). In order to make the information on these experiments accessible, the IGOAL develops mobile applications to easily access this content and video products to convey high level concepts. This presentation will feature the Space Station Research Explorer as well as several publicly available video examples.

  1. Summit Station Skiway Cost Analysis (United States)


    ER D C/ CR RE L TR -1 6- 9 Engineering for Polar Operations, Logistics , and Research (EPOLAR) Summit Station Skiway Cost Analysis Co ld...and Research (EPOLAR) ERDC/CRREL TR-16-9 July 2016 Summit Station Skiway Cost Analysis Terry D. Melendy Cold Regions Research and Engineering...snapshot at the current operating costs . We collected alternative skiway concepts, such as those at the NEEM camp, from the NEEM logistics and project

  2. Internationalization of the Space Station (United States)

    Lottmann, R. V.


    Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.

  3. Space stations systems and utilization

    CERN Document Server

    Messerschmid, Ernst


    The design of space stations like the recently launched ISS is a highly complex and interdisciplinary task. This book describes component technologies, system integration, and the potential usage of space stations in general and of the ISS in particular. It so adresses students and engineers in space technology. Ernst Messerschmid holds the chair of space systems at the University of Stuttgart and was one of the first German astronauts.

  4. Tsukuba 32-m VLBI Station (United States)

    Kawabata, Ryoji; Kurihara, Shinobu; Fukuzaki, Yoshihiro; Kuroda, Jiro; Tanabe, Tadashi; Mukai, Yasuko; Nishikawa, Takashi


    The Tsukuba 32-m VLBI station is operated by the Geospatial Information Authority of Japan. This report summarizes activities of the Tsukuba 32-m VLBI station in 2012. More than 200 sessions were observed with the Tsukuba 32-m and other GSI antennas in accordance with the IVS Master Schedule of 2012. We have started installing the observing facilities that will be fully compliant with VLBI2010 for the first time in Japan.

  5. Thermal Radiator Pointing for International Space Station (United States)

    Green, Scott


    In order to provide thermal radiation environments that result in adequate beat rejection, the single-phase, liquid ammonia (NH3) heat rejection system on the International Space Station (ISS) requires that its two thermal radiator wings be dynamically rotated as the ISS travels through its orbit. This paper discusses the closed-loop, thermal radiator pointing system that is used on ISS to ensure adequate heat rejection by the radiators, while preventing freezing of the ammonia under low heat loads and cold-environmental conditions. Although initial designs used an open-loop approach for radiator pointing, concerns about performance robustness, algorithm complexity, memory requirements, and sustaining support drove the development of a more robust, simpler, closed-loop system. Hence, the challenge of the closed-loop system was to utilize existing sensors, actuators and computers to fit into the existing hardware and software architecture of the ISS. Using a proportional-integral (PI) control architecture with limited output and an anti-windup integrator, the temperature of the ammonia coming out of the radiator is measured and controlled by adjusting the radiator wing orientation. The radiator wing orientation for the local minimum environment is fed forward to the control system, and the closed-loop controller is used to generate a bias off of that local minimum environment in order to heat up the ammonia when necessary to avoid freezing. In the earth's shadow, the controller is suspended and the radiator wing is oriented to face the earth, the local maximum thermal environment which further prevents freezing of the ammonia. This control architecture is shown to provide adequate heat rejection and avoid freezing of the ammonia, even though the physical system consists of large transport delays and time-varying dynamics which change dramatically due to orbit motion and variable heat loads.

  6. International Space Station External Contamination Environment for Space Science Utilization (United States)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica


    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  7. The Interaction between SKYLON and the International Space Station (United States)

    Hempsell, M.

    As part of the overall test flight programme of the SKYLON launch system it is planned to include 16 flights to the ISS in order to verify SKYLON's ability to interact with orbital facilities. These flights will test SKYLON equipped with two support systems, the SOFI (SKYLON Orbital Facility Interface), for unpressurised attachment, and the SPLM (SKYLON Passenger/ Logistics Module), for pressurised crew and logistics delivery. The issues involved with integrating the SKYLON test programme with the ISS are explored. Over the course of one year these flights could deliver almost 90 tonnes and 16 station crew but this is not without some problems. The number of flights and the quantity of logistics threaten to overwhelm the ISS, it would require a new docking system to be mounted on the ISS, and the fact they are test flights rather than operational flights may limit the support role they can undertake.

  8. Orbital operations study. Executive summary (United States)

    Hogan, L. R.


    A summary of the analyses of the orbital operations study is presented. Objectives, scope of study, and technical documentation format are discussed. A summary of the mission analyses including generic mission models, element pair interactions, and interfacing activities are presented. The analyses associated with each interfacing activity are also summarized. Significant implications derived during the course of the study on the EOS orbiter, space tug, RAM, and MSS are indicated.

  9. Hey] What's Space Station Freedom? (United States)

    Vonehrenfried, Dutch

    This video, 'Hey] What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.

  10. Hey! What's Space Station Freedom? (United States)

    Vonehrenfried, Dutch


    This video, 'Hey! What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.

  11. Impact of ITRS 2014 realizations on altimeter satellite precise orbit determination (United States)

    Zelensky, Nikita P.; Lemoine, Frank G.; Beckley, Brian D.; Chinn, Douglas S.; Pavlis, Despina E.


    This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l'Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1-2 mm RMS radial difference between 1992-2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3-4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual

  12. Microbiological profile of orbital abscess

    Directory of Open Access Journals (Sweden)

    N Suneetha


    Full Text Available Background: Knowledge of the culture and sensitivity pattern is necessary, for the institution of appropriate empirical antibiotic therapy in orbital abscess. Objective: The objective of this study is to describe culture and sensitivity patterns of specimens from the orbit and surrounding structures. Materials and Methods: Retrospectively the medical records of 56 cases of orbital abscess were reviewed. Results: Cultures were positive in 38/56 (68.8% orbital specimens and the organisms included Staphylococcus aureus 18, Streptococci 7, Pseudomonas aeruginosa 3, 2 each of Enterobactersp, Escherichia coli, Proteus mirabilis, Acinetobacter sp. and 1 each of Actinomyces israelii, Diptheroids, Coagulase negative Staphylococcus, Citrobacter freundii, Methicillin-resistant S. aureus and Enterococcus faecalis. Four had polymicrobial infection. Culture of purulent nasal discharge, swabs taken from foci of infection on the face, and blood cultures were done in 26/56, and positive cultures were obtained in 16/26 (61.5% specimens. In 12 patients, there was a concurrence in the organism cultured from the orbit and from cultures from other sites. Gram-negative organisms were associated with increased ocular morbidity. Conclusion: Gram-positive cocci, especially S. aureus are the most common organisms isolated from orbital abscesses. Infections by Gram-negative organisms were associated with more complications. Empirical intravenous antibiotic therapy should have a broad spectrum of activity effective against a wide range of Staphylococcal organisms and Gram-negative bacilli.

  13. An environment for the integration and test of the Space Station distributed avionics systems (United States)

    Barry, Thomas; Scheffer, Terrance; Small, L. R.


    An approach to supplying an environment for the integration and test of the Space Station distributed avionics systems is described. Background is included on the development of this concept including the lessons learned from Space Shuttle experience. The environment's relationship to the process flow of the Space-Station verification, from systems development to on-orbit verification, is presented. The uses of the environment's hardware implementation, called Data Management System (DMS) kits, are covered. It is explained how these DMS kits provide a development version of the space-station operational environment and how this environment allows system developers to verify their systems performance, fault detection, and recovery capability. Conclusions on how the use of the DMS kits, in support of this concept, will ensure adequate on-orbit test capability are included.

  14. A Deep Space Orbit Determination Software: Overview and Event

    Directory of Open Access Journals (Sweden)

    Youngkwang Kim


    Full Text Available This paper presents an overview of deep space orbit determination software (DSODS, as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP, event prediction (EP, data simulation (DS, and orbit determination (OD modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT as a third-party software component for highfidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK. Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.

  15. 47 CFR 73.6016 - Digital Class A TV station protection of TV broadcast stations. (United States)


    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital Class A TV station protection of TV... Class A TV station protection of TV broadcast stations. Digital Class A TV stations must protect... existing Class A TV station or to change the facilities of a digital Class A TV station will not be...

  16. On Orbit and Beyond Psychological Perspectives on Human Spaceflight

    CERN Document Server


    As we stand poised on the verge of a new era of spaceflight, we must rethink every element, including the human dimension. This book explores some of the contributions of psychology to yesterday’s great space race, today’s orbiter and International Space Station missions, and tomorrow’s journeys beyond Earth’s orbit. Early missions into space were typically brief, and crews were small, often drawn from a single nation. As international cooperation in space exploration has increased over the decades, the challenges of communicating across cultural boundaries and dealing with interpersonal conflicts have become all the more important, requiring different coping skills and sensibilities than “the right stuff” expected of early astronauts. As astronauts travel to asteroids or establish a permanent colony on the Moon, with the eventual goal of reaching Mars, the duration of expeditions will increase markedly, as will the psychosocial stresses. Away from their home planet for extended times, future spac...

  17. Analysis of Errors in a Special Perturbations Satellite Orbit Propagator

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M.; Jones, J.P.


    We performed an analysis of error densities for the Special Perturbations orbit propagator using data for 29 satellites in orbits of interest to Space Shuttle and International Space Station collision avoidance. We find that the along-track errors predominate. These errors increase monotonically over each 36-hour prediction interval. The predicted positions in the along-track direction progressively either leap ahead of or lag behind the actual positions. Unlike the along-track errors the radial and cross-track errors oscillate about their nearly zero mean values. As the number of observations per fit interval decline the along-track prediction errors, and amplitudes of the radial and cross-track errors, increase.

  18. The Space Debris Environment for the ISS Orbit (United States)

    Theall, Jeff; Liou, Jer-Chyi; Matney, Mark; Kessler, Don


    With thirty-five planned missions over the next five years, the International Space Station (ISS) will be the focus for manned space activity. At least 6 different vehicles will transport crew and supplies to and from the nominally 400 km, 51.6 degree orbit. When completed, the ISS will be the largest space structure ever assembled and hence the largest target for space debris. Recent work at the Johnson Space Center has focused on updating the existing space debris models. The Orbital Debris Engineering Model, has been restructured to take advantage of state of the art desktop computing capability and revised with recent measurements from Haystack and Goldstone radars, additional analysis of LDEF and STS impacts, and the most recent SSN catalog. The new model also contains the capability to extrapolate the current environment in time to the year 2030. A revised meteoroid model based on the work of Divine has also been developed, and is called the JSC Meteoroid Model. The new model defines flux on the target per unit angle per unit speed, and for Earth orbit, includes the meteor showers. This paper quantifies the space debris environment for the ISS orbit from natural and anthropogenic sources. Particle flux and velocity distributions as functions of size and angle are be given for particles 10 microns and larger for altitudes from 350 to 450 km. The environment is projected forward in time until 2030.

  19. Earth-Mars transfers through Moon Distant Retrograde Orbits (United States)

    Conte, Davide; Di Carlo, Marilena; Ho, Koki; Spencer, David B.; Vasile, Massimiliano


    This paper focuses on the trajectory design which is relevant for missions that would exploit the use of asteroid mining in stable cis-lunar orbits to facilitate deep space missions, specifically human Mars exploration. Assuming that a refueling "gas station" is present at a given lunar Distant Retrograde Orbit (DRO), ways of departing from the Earth to Mars via that DRO are analyzed. Thus, the analysis and results presented in this paper add a new cis-lunar departure orbit for Earth-Mars missions. Porkchop plots depicting the required C3 at launch, v∞ at arrival, Time of Flight (TOF), and total Δ V for various DRO departure and Mars arrival dates are created and compared with results obtained for low Δ V Low Earth Orbit (LEO) to Mars trajectories. The results show that propellant-optimal trajectories from LEO to Mars through a DRO have higher overall mission Δ V due to the additional stop at the DRO. However, they have lower Initial Mass in LEO (IMLEO) and thus lower gear ratio as well as lower TOF than direct LEO to Mars transfers. This results in a lower overall spacecraft dry mass that needs to be launched into space from Earth's surface.

  20. Gravity Recovery and Interior Laboratory Mission (GRAIL) Orbit Determination (United States)

    You, Tung-Han; Antreasian, Peter; Broschart, Stephen; Criddle, Kevin; Higa, Earl; Jefferson, David; Lau, Eunice; Mohan, Swati; Ryne, Mark; Keck, Mason


    Launched on 10 September 2011 from the Cape Canaveral Air Force Station, Florida, the twin-spacecraft Gravity Recovery and Interior Laboratory (GRAIL) has the primary mission objective of generating a lunar gravity map with an unprecedented resolution via the Ka-band Lunar Gravity Ranging System (LGRS). After successfully executing nearly 30 maneuvers on their six-month journey, Ebb and Flow (aka GRAIL-A and GRAIL-B) established the most stringent planetary formation orbit on 1 March 2012 of approximately 30 km x 90 km in orbit size. This paper describes the orbit determination (OD) filter configurations, analyses, and results during the Trans-Lunar Cruise, Orbit Period Reduction, and Transition to Science Formation phases. The maneuver reconstruction strategies and their performance will also be discussed, as well as the navigation requirements, major dynamic models, and navigation challenges. GRAIL is the first mission to generate a full high-resolution gravity field of the only natural satellite of the Earth. It not only enables scientists to understand the detailed structure of the Moon but also further extends their knowledge of the evolutionary histories of the rocky inner planets. Robust and successful navigation was the key to making this a reality.

  1. Reproduction on orbit by plants in the Brassicaceae family (United States)

    Musgrave, Mary E.; Kuang, Anxiu; Xiao, Ying; Matthews, Sharon W.


    Previous studies on growth and development during spaceflight had indicated that the transition from vegetative to reproductive growth was particularly difficult for plants. Our objective has been to study how the spaceflight environment impacts the different steps in plant reproduction. This goal has been pursued in two general ways: by using plants that had been pre-grown to the flowering stage on earth, and by using plants that developed completely on orbit. Our objectives have been met by a combination of experiments that required essentially no crew time on orbit, and those that required an extensive commitment of crew time. The plants chosen for the studies were closely related members of the family Brassicaceae: Arabidopsis thaliana and Brassica rapa. In a series of short-duration experiments with Arabidopsis on the space shuttle we found that depletion of carbon dioxide in closed chambers resulted in aborted development of both the male and female reproductive apparatus in microgravity. Normal development was restored by addition of carbon dioxide or by providing air flow. A subsequent shuttle experiment with Brassica utilizing hardware that provides a vigorous air flow confirmed embryo development following pollination on orbit. Brassica plants grown from seed on the Mir space station produced seed that germinated and grew when replanted on orbit. Future experiments will determine effects of multiple generations in space.

  2. International Network of Passive Correlation Ranging for Orbit Determination of a Geostationary Satellite (United States)

    Kaliuzhnyi, Mykola; Bushuev, Felix; Shulga, Oleksandr; Sybiryakova, Yevgeniya; Shakun, Leonid; Bezrukovs, Vladislavs; Moskalenko, Sergiy; Kulishenko, Vladislav; Malynovskyi, Yevgen


    An international network of passive correlation ranging of a geostationary telecommunication satellite is considered in the article. The network is developed by the RI "MAO". The network consists of five spatially separated stations of synchronized reception of DVB-S signals of digital satellite TV. The stations are located in Ukraine and Latvia. The time difference of arrival (TDOA) on the network stations of the DVB-S signals, radiated by the satellite, is a measured parameter. The results of TDOA estimation obtained by the network in May-August 2016 are presented in the article. Orbital parameters of the tracked satellite are determined using measured values of the TDOA and two models of satellite motion: the analytical model SGP4/SDP4 and the model of numerical integration of the equations of satellite motion. Both models are realized using the free low-level space dynamics library OREKIT (ORbit Extrapolation KIT).

  3. Performance Evaluation of Orbit Determination System during Initial Phase of INSAT-3 Mission (United States)

    Subramanian, B.; Vighnesam, N. V.

    INSAT-3C is the second in the third generation of ISRO's INSAT series of satellites that was launched by ARIANE-SPACE on 23 January 2002 at 23 h 46 m 57 s (lift off time in U.T). The ARIANE-4 Flight Nr.147 took off from Kourou in French Guyana and injected the 2750-kg communications satellite in a geostationary transfer orbit of (571 X 35935) km with an inclination of 4.007 deg at 00 h 07 m 48 s U.T on 24 January 2002 (1252 s after lift off). The satellite was successfully guided into its intended geostationary position of 74 deg E longitude by 09 February 2002 after a series of four firings of its Liquid Apogee Motor (LAM) and four station acquisition (STAQ) maneuvers. Six distinct phases of the mission were categorized based on the orbit characteristics of the INSAT- 3C mission, namely, the pre-launch phase, the launch phase, transfer orbit phase, intermediate orbit phase, drift orbit phase and synchronous orbit phase. The orbit with a perigee height of 571 km at injection of the satellite, was gradually raised to higher orbits with perigee height increasing to 9346 km after Apogee Motor Firing #1 (AMF #1), 18335 km after AMF #2, 32448 km after AMF #3 and 35493 km after AMF #4. The North and South solar panels and the reflectors were deployed at this stage of the mission and the attitude of the satellite with respect to the three axes was stabilized. The Orbit Determination System (ODS) that was used in the initial phase of the mission played a crucial role in realizing the objectives of the mission. This system which consisted of Tracking Data Pre-Processing (TDPP) software, Ephemeris Generation (EPHGEN) software and the Orbit Determination (OD) software, performed rigorously and its results were used for planning the AMF and STAQ strategies with a greater degree of accuracy. This paper reports the results of evaluation of the performance of the apogee-motor firings employed to place the satellite in its intended position where it is collocated with INSAT-1D

  4. Orbital, subconjunctival, and subcutaneous emphysema after an orbital floor fracture

    Directory of Open Access Journals (Sweden)

    Ababneh OH


    Full Text Available Osama H Ababneh Department of Ophthalmology, The University of Jordan and Jordan University Hospital, Amman, Jordan Abstract: A 16-year-old boy presented to the emergency department with the complaint of a sudden, painful left eye and proptosis after an episode of sneezing. A few hours earlier, he had sustained a blunt trauma to the left orbit as the result of a fistfight. The initial examination showed subcutaneous and subconjunctival emphysema. Visual acuity in the left eye was 20/30 (0.67, the pupils were reactive with no relative afferent pupillary defect, and there were mild limitations in levoduction and supraduction. A slit-lamp examination showed normal anterior and posterior segments with an intraocular pressure of 26 mmHg. An orbital computed tomography scan showed orbital, subconjunctival, and subcutaneous emphysema associated with a small fracture of the orbital floor. Following conservative management with broad-spectrum oral antibiotics, a topical antiglaucoma drug, and lubricating eye drops, the patient improved dramatically within one week. Keywords: emphysema, orbital fracture, trauma

  5. Degradation of Spacesuit Fabrics in Low Earth Orbit (United States)

    Gaier, James R.; Baldwin, Sammantha M.; Folz, Angela D.; Waters, Deborah L.; McCue, Terry R.; Jaworske, Donald A.; Clark, Gregory W.; Rogers, Kerry J.; Batman, Brittany; Bruce, John; hide


    Six samples of pristine and dust-abraded outer layer spacesuit fabrics were included in the Materials International Space Station Experiment-7, in which they were exposed to the wake-side low Earth orbit environment on the International Space Station (ISS) for 18 months in order to determine whether abrasion by lunar dust increases radiation degradation. The fabric samples were characterized using optical microscopy, optical spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and tensile testing before and after exposure on the ISS. Comparison of pre- and post-flight characterizations showed that the environment darkened and reddened all six fabrics, increasing their integrated solar absorptance by 7 to 38 percent. There was a decrease in the ultimate tensile strength and elongation to failure of lunar dust abraded Apollo spacesuit fibers by a factor of four and an increase in the elastic modulus by a factor of two.

  6. Results and Analysis of BDS Precise Orbit Determination with the Enhancement of Fengyun-3C

    Directory of Open Access Journals (Sweden)

    ZENG Tian


    Full Text Available Global navigation satellite system occultation sounder (GNOS Fengyun-3C was launched successfully on September 23, 2013, which carried GPS/BDS receiver for the first time. This provides the convenience to study the enhancement results of low earth orbiter satellite (LEO to BDS precise orbit determination (POD. First the data characteristics and code observation noise of GNOS are analyzed. Then the enhancement experiments in the case of global and regional ground observation stations layout are processed with four POD schemes: BDS single system, GPS/BDS double system, BDS single system with GNOS observations, GPS/BDS double system with GNOS observations. The precision of BDS orbits and clock are compared via overlapping arcs. Results show that in the case of global station layout the along directional precision of GEO satellite has the biggest improvement, with the improvement percentage 60%. Then the precision of cross direction and the along direction of remaining satellites shows the second biggest improvement. The orbit precision of only BDS POD in part of arcs some satellite even suffers a slight decline. The root mean square (RMS of overlapping clock difference of visible arcs in GPS/BDS POD experiments is improved 0.1 ns level. As to the experiments of regional station layout with 7 ground observation stations, the orbit and clock overlapping precision and orbit predicting precision are analyzed. Results show that the predicting precision of BDS GEO satellites in the along direction is improved 85%. The remaining also has a substantial improvement, with the average percentage 21.7%. RMS of overlapping clock difference of visible arcs is improved 0.5 ns level.

  7. Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter (United States)

    Slojkowski, Steven; Lowe, Jonathan; Woodburn, James


    Since launch, the FDF has performed daily OD for LRO using the Goddard Trajectory Determination System (GTDS). GTDS is a batch least-squares (BLS) estimator. The tracking data arc for OD is 36 hours. Current operational OD uses 200 x 200 lunar gravity, solid lunar tides, solar radiation pressure (SRP) using a spherical spacecraft area model, and point mass gravity for the Earth, Sun, and Jupiter. LRO tracking data consists of range and range-rate measurements from: Universal Space Network (USN) stations in Sweden, Germany, Australia, and Hawaii. A NASA antenna at White Sands, New Mexico (WS1S). NASA Deep Space Network (DSN) stations. DSN data was sparse and not included in this study. Tracking is predominantly (50) from WS1S. The OD accuracy requirements are: Definitive ephemeris accuracy of 500 meters total position root-mean-squared (RMS) and18 meters radial RMS. Predicted orbit accuracy less than 800 meters root sum squared (RSS) over an 84-hour prediction span.

  8. Microbiology of pediatric orbital cellulitis. (United States)

    McKinley, Steven H; Yen, Michael T; Miller, Aaron M; Yen, Kimberly G


    To evaluate the microbiology of pediatric orbital cellulitis associated with sinusitis. Retrospective review of medical records of pediatric patients treated for orbital cellulitis. All pediatric patients treated for orbital cellulitis associated with sinusitis at Texas Children's Hospital between December 1, 2001 and September 30, 2005 were reviewed. Data collected included patient age, history, microbiology results, and surgical intervention. Thirty-eight cases were identified. Fifteen cases required medical management, whereas 23 patients received a combination of medical and surgical intervention. Three patients had multiple surgical procedures performed. Of the procedures performed, four were sinus irrigation, 12 were sinusotomy and drainage, nine were orbitotomy with drainage of abscess, and one was craniotomy with drainage of abscess. Surgical aspirate specimens yielded a higher positive culture result rate with 9/9 of orbital abscesses and 13/16 of sinus aspirates demonstrating a positive yield. Two of the 27 blood cultures had a positive yield. Staphylococcus species was the most common organism isolated. Methicillin-resistant S. aureus (MRSA) represented 73% of S. aureus isolates. Streptococcus species was the next most common pathogen. Three cultures yielded Haemophilus species with one being positive for H. influenzae. Organisms responsible for causing pediatric orbital cellulitis are evolving, with Staphylococcus followed by Streptococcus species being the most common pathogens. The occurrence of MRSA in pediatric orbital cellulitis is increasing, and empiric antimicrobial therapy should be directed against these organisms if they are prevalent in the community. Sinus and orbital abscess aspirates yielded the greatest number of positive cultures, though these invasive surgical procedures should be performed only when clinically indicated.

  9. Complex researches aboard the international space station (United States)

    Pokhyl, Yu. A.

    Special Research and Development Bureau SRDB is a general organizer on Ukrainian part of three Ukrainian- Russian joint experiments to be implemented aboard the Russian segment of International Space Station RS-ISS Experiment Material- Friction It is proposed to carry out a series of comparative tribological research under conditions of orbital flight aboard the ISS versus those in on- ground laboratory conditions To meet these objectives there will be employed a special onboard 6-module Space- borne tribometer- facility The on- ground research will be implemented under conditions of laboratory simulation of Space environmental factors Results thus obtained would enable one to forecast a behavior of friction pairs as well as functional safety and lifetime of the space- vehicle This experiment will also enable us determine an adequacy of tribological results obtained under conditions of outer Space and on- ground simulation Experiment Penta- Fatigue It is proposed to develop fabricate and deliver aboard the RS-ISS a facility intended for studies of SEF- influence on characteristics of metallic and polymeric materials resistance to fatigue destruction Such a project to be implemented in outer Space for the first ever time would enable us to estimate the parameter of cosmic lifetime for constructional materials due to such mechanical characteristic as fatigue strength so as to enable selection of specific sorts of constructional materials appropriate to service in Space technologies At the same time

  10. The Biotechnology Facility for International Space Station (United States)

    Goodwin, Thomas; Lundquist, Charles; Hurlbert, Katy; Tuxhorn, Jennifer


    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput. With the BTF, dedicated ground support, and a community of investigators, the goals of the Cellular Biotechnology Program at Johnson Space Center are to: Support approximately 400 typical investigator experiments during the nominal design life of BTF (10 years). Support a steady increase in investigations per year, starting with stationary bioreactor experiments and adding rotating bioreactor experiments at a later date. Support at least 80% of all new cellular biotechnology investigations selected through the NASA Research Announcement (NRA) process. Modular components - to allow sequential and continuous experiment operations without cross-contamination Increased cold storage capability (+4 C, -80 C, -180 C). Storage of frozen cell culture inoculum - to allow sequential investigations. Storage of post-experiment samples - for return of high quality samples. Increased number of cell cultures per investigation, with replicates - to provide sufficient number of samples for data analysis and publication of results in peer-reviewed scientific journals.

  11. Featured Image: Globular Cluster Orbits (United States)

    Kohler, Susanna


    This figure (click for the full view) shows the meridional galactic orbits of 12 globular clusters that orbit the Milky Way. The recent release of stellar parallax data from Gaia allowed a team of scientists at Dartmouth College to improve measurements of a number of galactic globular clusters very old clusters of stars that can either orbit within the galactic disk and bulge or more distantly in the galactic halo. In a recent publication led by Erin OMalley, the team presents their findings and combines their new measurements for the clusters with proper motions from past studies to calculate the orbits that these globulars take. These calculations show us whether the clusters reside in the galactic disk and bulge (as only NGC 104 does in the sample shown here, since its orbit is confined to 8 kpc radially and 4 kpc vertically of the galactic center), or if they are halo clusters. To learn more about the authors work, you can check out the paper below!CitationErin M. OMalley et al 2017 ApJ 838 162. doi:10.3847/1538-4357/aa6574

  12. Orbital positioning and stationkeeping of geostationary satellites (United States)

    Donat, H.

    Orbit, launcher, and satellite related constraints on launch windows are reviewed. The flight sequence and orbital position optimization of spin and three axis stabilized satellites are described. Geostationary orbit perturbations and evolution, and orbit correction are considered. North-south and east-west stationkeeping strategies are outlined. Stationkeeping of Telecom-1 and TDF-1 is illustrated.


    African Journals Online (AJOL)

    Dr. NWaorgu

    Abstract. Background: Orbital cellulitis is an infection of the orbital soft tissues behind the orbital septum. Primary sinus infection is the most common cause of orbital cellulites. It is an ocular emergency that threatens not only vision but also life from complications such as meningitis, cavernous sinus thrombosis, and brain ...

  14. Understanding Pediatric Bacterial Preseptal and Orbital Cellulitis


    Gonzalez, Mithra O.; Durairaj, Vikram D.


    Pediatric preseptal and orbital cellulitis are infectious disorders that result in periorbital inflammation. Preseptal cellulitis is often associated with breaches in the skin barrier whereas orbital cellulitis is commonly associated with paranasal sinusitis. Orbital cellulitis may be associated with subperiosteal abscess. It is important to distinguish between preseptal from orbital cellulitis. Clinical examination and diagnostic imaging are useful in determining appropriate management. Pati...

  15. Microgravity: an ideal environment for cardiac force measuring

    Directory of Open Access Journals (Sweden)

    Roman М. Baevsky


    Full Text Available In the article main principles of ballistocardiography are considered. Special attention is paid to registration of the spatial ballistocardiogramm. There exist two principles of ballistocardiography: dynamic and seismic. In the event of dynamic ballistocardiography body displacements align to an extent with shifting of the general center of body gravity. Ideal conditions for ballistocardiogram acquisition could be reached if rigidity of internal body relations had an infinitely large value, while rigidity of external relations was nearing the zero. Then displacements of the entire body would depend only on the forces imparted by the cardiovascular system. Microgravity is the only environment providing these ideal conditions for ballistocardiography. Microgravity allows effective application of the dynamic BCG principle to recording pulse-induced body movements corresponding to the center of mass displacements. This kindled interest of the first researchers in space medicine in ballistocardiographic investigations during space flight. Since free flying requires enough space, the investigations became possible only with construction of orbital stations. The first in-space ballistocardiogram was recorded on December 26, 1977 from Yu. Romanenko, commander of the first expedition to the Russian OS Salyut-6. The data about ballistocardiographic researches at orbital stations Salyut and MIR which were conducted to 70-90th years is presented. The first attempt the spatial ballistocardiogramm registration has been made in 1984 during the Soviet - Indian flight on OS Salyut-7. The first records spatial ballistocardiogramm have been made during space experiment "Vector" on OS the MIR in 1990. New experiment "Cardiovector" on the ISS is being prepared for 2014-16.

  16. The Eccentric Behavior of Nearly Frozen Orbits (United States)

    Sweetser, Theodore H.; Vincent, Mark A.


    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  17. 47 CFR 95.119 - Station identification. (United States)


    ... station identification is the call sign assigned to the GMRS station or system. (c) A unit number may be... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 95.119 Section 95.119... SERVICES General Mobile Radio Service (GMRS) § 95.119 Station identification. (a) Except as provided in...

  18. 47 CFR 73.1201 - Station identification. (United States)


    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station identification. 73.1201 Section 73.1201... Rules Applicable to All Broadcast Stations § 73.1201 Station identification. (a) When regularly required. Broadcast station identification announcements shall be made: (1) At the beginning and ending of each time...

  19. 47 CFR 25.206 - Station identification. (United States)


    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Station identification. 25.206 Section 25.206... Technical Standards § 25.206 Station identification. The requirement for transmission of station identification is waived for all radio stations licensed under this part with the exception of satellite uplinks...

  20. 47 CFR 95.1305 - Station identification. (United States)


    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 95.1305 Section 95.1305... SERVICES Multi-Use Radio Service (MURS) General Provisions § 95.1305 Station identification. A MURS station is not required to transmit a station identification announcement. ...

  1. 47 CFR 97.119 - Station identification. (United States)


    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 97.119 Section 97.119... SERVICE Station Operation Standards § 97.119 Station identification. (a) Each amateur station, except a... keyed by an automatic device used only for identification, the speed must not exceed 20 words per minute...

  2. 47 CFR 95.1127 - Station identification. (United States)


    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 95.1127 Section 95.1127... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1127 Station identification. A WMTS station is not required to transmit a station identification announcement. ...

  3. 47 CFR 95.1205 - Station identification. (United States)


    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 95.1205 Section 95.1205... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1205 Station identification. A station is not required to transmit a station identification announcement. ...

  4. 47 CFR 95.1005 - Station identification. (United States)


    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 95.1005 Section 95.1005... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1005 Station identification. An LPRS station is not required to transmit a station identification announcement. ...

  5. Autonomous Electrical Vehicles’ Charging Station

    Directory of Open Access Journals (Sweden)

    Józef Paska


    Full Text Available This paper presents a model of an autonomous electrical vehicles’ charging station. It consists of renewable energy sources: wind turbine system, photovoltaic cells, as well as an energy storage, load, and EV charging station. In order to optimise the operating conditions, power electronic converters were added to the system. The model was implemented in the Homer Energy programme. The first part of the paper presents the design assumptions and technological solutions. Further in the paper simulation results are discussed and analysed, and then problems observed in the simulation and possible solutions.

  6. Business earth stations for telecommunications (United States)

    Morgan, Walter L.; Rouffet, Denis

    The current status of technology for small commercial satellite-communication earth stations is reviewed on the basis of an application study undertaken in the U.S. and Europe. Chapters are devoted to an overview of satellite communication networks, microterminal design and hardware implementation, microterminal applications, the advantages of microterminals, typical users, services provided, the U.S. market for small earth stations, network operators, and the economics of satellite and terrestrial communication services. Consideration is given to the operation of a microterminal network, standards and regulations, technological factors, space-segment requirements, and insurance aspects. Diagrams, graphs, tables of numerical data, and a glossary of terms are provided.

  7. DGPS ground station integrity monitoring (United States)

    Skidmore, Trent A.; Vangraas, Frank


    This paper summarizes the development of a unique Differential Global Positioning System (DGPS) ground station integrity monitor which can offer improved availability over conventional code-differential monitoring systems. This monitoring technique, called code/carrier integrity monitoring (CCIM), uses the highly stable integrated Doppler measurement to smooth the relatively noisy code-phase measurements. The pseudorange correction is therefore comprised of the integrated Doppler measurement plus the CCIM offset. The design and operational results of a DGPS ground station integrity monitor are reported. A robust integrity monitor is realized which is optimized for applications such as the Special Category I (SCAT-I) defined in the RTCA Minimum Aviation System Performance Standards.

  8. Aerocapture Design Study for a Titan Polar Orbiter (United States)

    Nixon, C. A.; Kirchman, F.; Esper, J.; Folta, D.; Mashiku, A.


    In 2014 a team at NASA Goddard Space Flight Center (GSFC) studied the feasibility of using active aerocapture to reduce the chemical ΔV requirements for inserting a small scientific satellite into Titan polar orbit. The scientific goals of the mission would be multi-spectral imaging and active radar mapping of Titan's surface and subsurface. The study objectives were to: (i) identify and select from launch window opportunities and refine the trajectory to Titan; (ii) study the aerocapture flight path and refine the entry corridor; (iii) design a carrier spacecraft and systems architecture; (iv) develop a scientific and engineering plan for the orbital portion of the mission. Study results include: (i) a launch in October 2021 on an Atlas V vehicle, using gravity assists from Earth and Venus to arrive at Titan in January 2031; (ii) initial aerocapture via an 8-km wide entry corridor to reach an initial 350-6000 km orbit, followed by aerobraking to reach a 350-1500 km orbit, and a periapse raise maneuver to reach a final 1500 km circular orbit; (iii) a three-part spacecraft system consisting of a cruise stage, radiator module, and orbiter inside a heat shield; (iv) a 22-month mission including station keeping to prevent orbital decay due to Saturn perturbations, with 240 Gb of compressed data returned. High-level issues identified include: (i) downlink capability - realistic downlink rates preclude the desired multi- spectral, global coverage of Titan's surface; (ii) power - demise of the NASA ASRG (Advanced Stirling Radioisotope Generator) program, and limited availability at present of MMRTGs (Multi-Mission Radioisotope Generators) needed for competed outer planet missions; (iii) thermal - external radiators must be carried to remove 4 kW of waste heat from MMRTGs inside the aeroshell, requiring heat pipes that pass through the aeroshell lid, compromising shielding ability; (iv) optical navigation to reach the entry corridor; (v) the NASA requirement of continuous

  9. Relative Orbit Elements for Satellites in Elliptical Orbits (United States)


    flying missions [9, 35, 63, 75, 95, 107, 111], such as the European PRISMA mission [22], NASA’s Magnetosphere Multiscale mission [21, 34, 62, 80, 109...Magnetosphere Multiscale (MMS) Mission, 1999. [22] D’Amico, S., Gill, E., and Montenbruck, O., “Relative Orbit Control Design for the PRISMA Formation

  10. Assessing Terra Disposal Orbit Candidates from an Orbital Debris Perspective (United States)

    Abraham, Andrew J.; Thompson, Roger C.; Mantziaras, Dimitrios C.


    The NASA Terra satellite is reaching the end of its mission life. Because the satellite resides in the 705 km Earth Science Constellation, disposal strategies need to be considered to remove it from this densely populated operational orbit. Of critical importance was the need to examine the future potential risk to other satellite residents of the 705 km constellation due to an unexpected breakup event of the Terra satellite post-disposal. This study quantifies the comparative risk of debris impacts associated with the two leading candidate disposal orbits (701 km vs. 686 km) and characterizes the suitability of each orbit for the purpose of long-term spacecraft disposal. The increase in collision risk to any member of the 705 km Earth Science Constellation is very modest. The long-term, average, total risk (including the ambient background risk) due to a Terra breakup at a disposal of -19 km (i.e., 686 km) relative to the 705 km constellation is 9.7 × 10(exp -6) impacts/day versus 1.0 × 10(exp -5) impacts/day for a disposal of only -4 km (i.e., 701 km). For perspective, note that the nominal space background risk to the 705 km constellation is 9.2 × 10(exp -6) impacts/day which implies a very modest increase in risk (approximately 3% difference between the two cases) due to a Terra breakup in either disposal orbit.

  11. AA, closed orbit observation pickup

    CERN Multimedia


    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The small ones, like the one we see here, were inserted into the vacuum chamber of the BLG (long and narrow) bending magnets. See also 8001372, 8010042, 8010045

  12. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab


    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The wide ones (very wide indeed: 70 cm), like the one we see here, were placed inside the vacuum chamber of the wide quadrupoles QFW, at maximum dispersion. See also 8001372, 8001383, 8010045

  13. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab


    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The small ones, like the one we see here, were inserted into the vacuum chamber of the BLG (long and narrow) bending magnets. Werner Sax contemplates his achievement. See also 8001383, 8010042, 8010045.

  14. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab


    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The wide ones (very wide indeed: 70 cm), like the one we see here, were placed inside the vacuum chamber of the wide quadrupoles, QFW, at maximum dispersion. See also 8001372,8001383, 8010042

  15. Orbital resonances around black holes. (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja


    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  16. Single-Station Sigma for the Iranian Strong Motion Stations (United States)

    Zafarani, H.; Soghrat, M. R.


    In development of ground motion prediction equations (GMPEs), the residuals are assumed to have a log-normal distribution with a zero mean and a standard deviation, designated as sigma. Sigma has significant effect on evaluation of seismic hazard for designing important infrastructures such as nuclear power plants and dams. Both aleatory and epistemic uncertainties are involved in the sigma parameter. However, ground-motion observations over long time periods are not available at specific sites and the GMPEs have been derived using observed data from multiple sites for a small number of well-recorded earthquakes. Therefore, sigma is dominantly related to the statistics of the spatial variability of ground motion instead of temporal variability at a single point (ergodic assumption). The main purpose of this study is to reduce the variability of the residuals so as to handle it as epistemic uncertainty. In this regard, it is tried to partially apply the non-ergodic assumption by removing repeatable site effects from total variability of six GMPEs driven from the local, Europe-Middle East and worldwide data. For this purpose, we used 1837 acceleration time histories from 374 shallow earthquakes with moment magnitudes ranging from M w 4.0 to 7.3 recorded at 370 stations with at least two recordings per station. According to estimated single-station sigma for the Iranian strong motion stations, the ratio of event-corrected single-station standard deviation ( Φ ss) to within-event standard deviation ( Φ) is about 0.75. In other words, removing the ergodic assumption on site response resulted in 25% reduction of the within-event standard deviation that reduced the total standard deviation by about 15%.

  17. Orbital-only models: ordering and excitations (United States)

    van den Brink, Jeroen


    We consider orbital-only models in Mott insulators, where the orbital orbital interactions are either due to Jahn Teller distortions or due to the Kugel Khomskii superexchange. This leads to highly anisotropic and frustrated orbital Hamiltonians. For two-fold degenerate eg systems, both types of orbital interactions lead to the same form of the Hamiltonian—the 120° model. In both cases, the predicted symmetry of the orbital ordering is the same, although different from the one observed experimentally. The orbital operators that appear in the two kinds of orbital-only Hamiltonians are different. In the case of superexchange, the orbital degrees of freedom are represented by quantum pseudo-spin 1/2 operators. But when the interactions are Jahn Teller mediated and the coupling with the lattice is strong, the orbital operators are essentially classical pseudospins. Thus as a function of the relative coupling strengths, a quantum-to-classical crossover is expected. For three-fold degenerate t2g orbitals, the Jahn Teller coupling gives rise to a particular type of orbital compass models. We point out that fluctuations—whether due to quantum effects or finite temperature—are of prime importance for ordering in the 120° and orbital compass models. The fluctuations generally generate a gap in the orbital excitation spectrum. These orbital excitations—orbitons—are hybrid excitations that carry both a lattice Jahn Teller and a magnetic Kugel Khomskii character.

  18. An innovative approach to supplying an environment for the integration and test of the Space Station distributed avionics systems (United States)

    Barry, Thomas; Scheffer, Terrance; Small, L. R.


    This paper describes an innovative approach to supplying an environment for the integration and testing of the Space Station distributed avionics systems. The environment's relationship to the process flow of the Space Station verification from systems development to on-orbit verification is presented. This paper also describes the uses of the environment's hardware implementation called Data Management System (DMS) kits. The way in which this environment allows system developers to independently verify their system's performance, fault detection, and recovery capability is explained.

  19. A rare case of orbital granulomatous inflammation from explosive hydraulic oil masquerading as orbital cellulitis. (United States)

    Cheema, Marvi; Roelofs, Kelsey; Jivraj, Imran; West, Robert; Rasmussen, Steve; Chan, Audrey


    The differential diagnosis for acute orbital inflammation is broad. We report a case of granulomatous orbital inflammation due to high-pressure oil injury to the orbit presenting as an atypical orbital cellulitis. Here we review the presentation and treatment of orbital inflammation from oil.

  20. Utilization of common pressurized modules on the Space Station Freedom (United States)

    Mazanek, Daniel D.; Heck, Michael L.; Gould, Marston J.


    During the preliminary design review of Space Station Freedom elements and subsystems, it was shown that reductions of cost, weight, and on-orbit integration and verification would be necessary in order to meet program constraints, particularly nominal Orbiter payload launch capability. At that time, the Baseline station consisted of four resource nodes and two 44 ft modules. In this study, the viability of a common module which maintains crew and payload accommodation is assessed. The size, transportation, and orientation of modules and the accommodation of system racks and user experiments are considered and compared to baseline. Based on available weight estimates, a module pattern consisting of six 28 ft common elements with three radial and two end ports is shown to be nearly optimal. Advantageous characteristics include a reduction in assembly flights, dual egress from all elements, logical functional allocation, no adverse impacts to international partners, favorable airlock, cupola, ACRV (Assured Crew Return Vehicle), and logistics module accommodation, and desirable flight attitude and control characteristics.

  1. Integration by parts. [associated with Space Station Freedom (United States)

    Barry, Thomas; Scheffer, Terrance J.


    This paper describes the unique integration and verification challenges associated with the Space Station Freedom and an approach to solve these problems using Data Management Systems (DMS) Kits. These DMS Kits will help alleviate the complex integration problems inherent in building, assembling and testing the Space Station. Particular emphasis has been placed on utilizing the capabilities and services of the on-board DMS to provide the integration and verification tools, not only for the DMS but for the other on-board distributed systems as well. DMS Kits are provided to system/software developers across the program. These DMS Kits provide a common set of integration and verification tools and hardware. Each system developer can then utilize, through the kits, a simulation of the complete data processing environment which will be available on orbit. The paper describes the evolution of the integration process from the system level to the final integration of multiple launch packages. DMS Kits are used throughout this process, which addresses both the ground and on-orbit aspects of the problem.

  2. The Medicina Station Status Report (United States)

    Orfei, Alessandro; Orlati, Andrea; Maccaferri, Giuseppe


    General information about the Medicina Radio Astronomy Station, the 32-m antenna status, and the staff in charge of the VLBI observations is provided. In 2012, the data from geodetic VLBI observations were acquired using the Mark 5A recording system with good results. Updates of the hardware were performed and are briefly described.

  3. Mobile Lunar Laser Ranging Station (United States)

    Intellect, 1977


    Harlan Smith, chairman of the University of Texas's Astronomy Department, discusses a mobile lunar laser ranging station which could help determine the exact rates of movement between continents and help geophysicists understand earthquakes. He also discusses its application for studying fundamental concepts of cosmology and physics. (Editor/RK)

  4. Space station molecular sieve development (United States)

    Chang, C.; Rousseau, J.


    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  5. Delay distributions in railway stations

    NARCIS (Netherlands)

    Goverde, R.M.P.; Hansen, I.A.; Hooghiemstra, G.; Lopuhaa, H.P.


    The estimation of the precise arrival and departure times of trains at stations is done by means of a software tool that extracts the occupation and clearance times of each train per track section of the Dutch Railways‘ network. The software tool was applied to the whole automatically collected set

  6. Performance of Existing Hydrogen Stations

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Christopher D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peters, Michael C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)


    In this presentation, the National Renewable Energy Laboratory presented aggregated analysis results on the performance of existing hydrogen stations, including performance, operation, utilization, maintenance, safety, hydrogen quality, and cost. The U.S. Department of Energy funds technology validation work at NREL through its National Fuel Cell Technology Evaluation Center (NFCTEC).

  7. "Artificial intelligence" at streamgaging stations (United States)

    R. B. Thomas


    Two types of problems are related to collecting hydrologic data at stream gaging stations. One includes the technical/logistical questions associated with measuring and transferring data for processing. Effort spent on these problems ranges from improving devices for sensing data to using electronic data loggers.

  8. Remote input/output station

    CERN Multimedia


    A general view of the remote input/output station installed in building 112 (ISR) and used for submitting jobs to the CDC 6500 and 6600. The card reader on the left and the line printer on the right are operated by programmers on a self-service basis.

  9. Total Stations : the Surveyor's Workhorse

    NARCIS (Netherlands)

    Lemmens, M.J.P.M.


    A total station is an angle measuring device, also known as a theodolite, integrated with an electronic distance measurement (EDM) unit. The integration provides the ability to measure horizontal and vertical angles as well as slope distances using the same device at the same time, which benefits

  10. Role of the Space Station in Private Development of Space (United States)

    Uhran, M. L.


    The International Space Station (ISS) is well underway in the assembly process and progressing toward completion. In February 2001, the United States laboratory "Destiny" was successfully deployed and the course of space utilization, for laboratory-based research and development (R&D) purposes, entered a new era - continuous on-orbit operations. By completion, the ISS complex will include pressurized laboratory elements from Europe, Japan, Russia and the U.S., as well as external platforms which can serve as observatories and technology development test beds serviced by a Canadian robotic manipulator. The international vision for a continuously operating, full service R&D complex in the unique environment of low-Earth orbit is becoming increasingly focused. This R&D complex will offer great opportunities for economic return as the basic research program proceeds on a global scale and the competitive advantages of the microgravity and ultravacuum environments are elucidated through empirical studies. In parallel, the ISS offers a new vantage point, both as a source for viewing of Earth and the Cosmos and as the subject of view for a global population that has grown during the dawning of the space age. In this regard, the ISS is both a working laboratory and a powerful symbol for human achievement in science and technology. Each of these aspects bears consideration as we seek to develop the beneficial attributes of space and pursue innovative approaches to expanding this space complex through private investment. Ultimately, the success of the ISS will be measured by the outcome at the end of its design lifetime. Will this incredible complex be de-orbited in a fiery finale, as have previous space platforms? Will another, perhaps still larger, space station be built through global government funding? Will the ISS ownership be transferred to a global, non-government organization for refurbishment and continuation of the mission on a privately financed basis? Steps taken

  11. Spacecraft Station-Keeping Trajectory and Mission Design Tools (United States)

    Chung, Min-Kun J.


    Two tools were developed for designing station-keeping trajectories and estimating delta-v requirements for designing missions to a small body such as a comet or asteroid. This innovation uses NPOPT, a non-sparse, general-purpose sequential quadratic programming (SQP) optimizer and the Two-Level Differential Corrector (T-LDC) in LTool (Libration point mission design Tool) to design three kinds of station-keeping scripts: vertical hovering, horizontal hovering, and orbiting. The T-LDC is used to differentially correct several trajectory legs that join hovering points. In a vertical hovering, the maximum and minimum range points must be connected smoothly while maintaining the spacecrafts range from a small body, all within the law of gravity and the solar radiation pressure. The same is true for a horizontal hover. A PatchPoint is an LTool class that denotes a space-time event with some extra information for differential correction, including a set of constraints to be satisfied by T-LDC. Given a set of PatchPoints, each with its own constraint, the T-LDC differentially corrects the entire trajectory by connecting each trajectory leg joined by PatchPoints while satisfying all specified constraints at the same time. Vertical and horizontal hover both are needed to minimize delta-v spent for station keeping. A Python I/F to NPOPT has been written to be used from an LTool script. In vertical hovering, the spacecraft stays along the line joining the Sun and a small body. An instantaneous delta-v toward the anti- Sun direction is applied at the closest approach to the small body for station keeping. For example, the spacecraft hovers between the minimum range (2 km) point and the maximum range (2.5 km) point from the asteroid 1989ML. Horizontal hovering buys more time for a spacecraft to recover if, for any reason, a planned thrust fails, by returning almost to the initial position after some time later via a near elliptical orbit around the small body. The mapping or

  12. Orbitally excited charm - strange mesons

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, Penelope A. [Illinois Inst. of Technology, Chicago, IL (United States)


    This thesis describes an attempt to measure the properties of mesons containing a charm quark and a strange quark in a state of orbital angular momentum L > 0, and compare these with the predictions of theoretical models based on heavy quark effective theory.


    Energy Technology Data Exchange (ETDEWEB)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.; Bentley, J. S.; Zhao, Jinglin, E-mail: [Department of Astronomy and Australian Centre for Astrobiology, School of Physics, University of New South Wales, NSW 2052 (Australia)


    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.


    African Journals Online (AJOL)

    calcification encasing a deformed globe (computerized axial tomography scan). A lid-sparing modified exenteration with temporalis muscle transplant/split skin graft was performed. Histopathology reports on biopsy tissues revealed derivatives of all three germ cell layers consistent with the diagnosis of orbital teratoma.

  15. Getting a Crew into Orbit (United States)

    Riddle, Bob


    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  16. Optimal Reorientation Of Spacecraft Orbit

    Directory of Open Access Journals (Sweden)

    Chelnokov Yuriy Nikolaevich


    Full Text Available The problem of optimal reorientation of the spacecraft orbit is considered. For solving the problem we used quaternion equations of motion written in rotating coordinate system. The use of quaternion variables makes this consideration more efficient. The problem of optimal control is solved on the basis of the maximum principle. An example of numerical solution of the problem is given.

  17. Orbital abscess: Management and outcome

    Directory of Open Access Journals (Sweden)

    N Suneetha


    Full Text Available Purpose: To discuss the diagnosis, management and outcome of various types of orbital abscess. Methods: The medical records of 13 patients diagnosed and treated for orbital abscess were reviewed. The sources of infection included: paranasal sinusitis (n = 5, odontogenic origin of infection (n = 4, one each, temporal fossa abscess, palatal abscess, furuncle on the nose, and secondary to retrobulbar injection of steroid. Computed tomographic scans revealed the presence of an abscess in all 13 cases. Associated findings on CT scan included: sinus disease (n = 8, cavernous sinus thrombosis (n = 2 and subdural empyema (n = 2. All patients were treated with intensive, multiple, intravenous antibiotics and early surgical drainage. Results: Purulent material collected surgically from the orbit cultured Staphylococcus aureus (n = 3, two each Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter species and one each β-haemolytic Streptococci, Citrobacter frundi and Enterobacter. Final visual acuity was good in 6 patients (6/12 - 6/6 and no light perception in 6 others. Visual acuity could not be recorded in the infant. The other complications were intracranial abscess (n = 4, cavernous sinus thrombosis (n = 2 and restricted ocular motility (n = 1. Conclusions: A high index of suspicion is necessary, along with early institution of appropriate diagnostic imaging, and aggressive medical and surgical treatment for a favourable outcome in cases of orbital abscess.

  18. Retinoblastoma presenting with orbital cellulitis. (United States)

    Walinjkar, Jaydeep; Krishnakumar, S; Gopal, Lingam; Ramesh, Anita; Khetan, Vikas


    To study the effectiveness of pre-enucleation steroids in reducing inflammation in patients with retinoblastoma presenting as orbital cellulitis. Medical records of consecutive retinoblastoma patients presenting at a single tertiary eye care center during a period of 3 years were retrospectively reviewed. For those who presented with orbital cellulitis, clinical, radiological, and histopathological variables were assessed. The effect of pre-enucleation steroids was noted in this group of patients. Of 260 retinoblastoma cases reviewed, 14 had retinoblastoma-associated cellulitis (5.39%). Of these 14 patients, 4 received neoadjuvant chemotherapy and were excluded from the series. Of the remaining 10 cases (mean age at presentation, 14.2 months; mean follow-up, 16.4 months), 9 presented with orbital cellulitis and were included in the study. Radiological imaging depicted intraocular tumors occupying 80% to 100% of the globe in each case. All patients underwent enucleation. Five children received pre-enucleation systemic steroids (mean, 5.4 days), which resulted in a prompt decrease in inflammation. Postenucleation chemotherapy was administered in 4 (6 cycles) and external beam radiation therapy in 1 patient with high-risk histopathological characteristics. Advanced necrotic retinoblastoma with anterior segment involvement may present as orbital cellulitis. Pre-enucleation systemic steroids can aid in the surgical management of these tumors. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  19. DOT strategies versus orbiter strategies

    NARCIS (Netherlands)

    Rutten, R.J.


    The Dutch Open Telescope is a high-resolution solar imager coming on-line at La Palma. The definition of the DOT science niche, strategies, and requirements resemble Solar Orbiter considerations and deliberations. I discuss the latter in the light of the former, and claim that multi-line observation

  20. 47 CFR 73.6018 - Digital Class A TV station protection of DTV stations. (United States)


    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital Class A TV station protection of DTV... TV station protection of DTV stations. Digital Class A TV stations must protect the DTV service that... application for digital operation of an existing Class A TV station or to change the facilities of a digital...

  1. In-orbit assessment of laser retro-reflector efficiency onboard high orbiting satellites (United States)

    Wilkinson, Matthew; Appleby, Graham


    The navigation and geodetic satellites that orbit the Earth at altitudes of approximately 20,000 km are tracked routinely by many of the Satellite Laser Ranging (SLR) stations of the International Laser Ranging Service (ILRS). In order to meet increasing demands on SLR stations for daytime and nighttime observations, any new mission needs to ensure a strong return signal so that the target is easily acquirable. The ILRS has therefore set a minimum effective cross-section of 100 million square metres for the on-board laser retro-reflector arrays (LRAs) and further recommends the use of 'uncoated' cubes in the arrays. Given the large number of GNSS satellites that are currently supported by SLR, it is informative to make an assessment of the relative efficiencies of the various LRAs employed. This paper uses the laser ranging observations themselves to deduce and then compare the efficiencies of the LRAs on the COMPASS-M1 navigation satellite, two satellites from the GPS and three from the GLONASS constellations, the two GIOVE test satellites from the upcoming Galileo constellation, the two Etalon geodetic spheres and the geosynchronous communications test satellite, ETS-8. All the LRAs on this set of satellites employ back-coated retro-reflector cubes, except those on the COMPASS-M1 and ETS-8 vehicles which are uncoated. A measure of return signal strength, and thus of LRA-efficiency, is calculated using the laser-range full-rate data archive from 2007 to 2010, scaled to remove the effects of variations in satellite range, atmospheric attenuation and retro-reflector target total surface area. Observations from five SLR stations are used in this study; they are Herstmonceux (UK), Yarragadee (Australia), Monument Peak and McDonald (USA) and Wettzell (Germany). Careful consideration is given to the treatment of the observations from each station in order to take account of local working practices and system upgrades. The results show that the uncoated retro

  2. Oxygen regimen in the human peripheral tissue during space flights (United States)

    Haase, H.; Kovalenko, E. A.; Vacek, A.; Bobrovnickij, M. P.; Jarsumbeck, B.; Semencov, V. N.; Sarol, Z.; Hideg, J.; Zlatarev, K.

    A survey of the results of the experiment "Oxygen," carried out within the scope of the INTERKOSMOS program in members of the permanent crews and of international visiting expeditions to the Soviet orbital station Salyut-6, is given. During the 7-day space flights of the international visiting expeditions a significant decrease in pO 2 ic by 3.28 kPa was observed. Local oxygen utilization reduced significantly by 0.44 kPa. During hyperventilation testing after return to earth a statistically significant decrease in the peak value by 1.39 kPa was noted. In the long-term crews of the orbital station Salyut-6 the highest decrease in pO 2 ic of 3.8 kPa and the absolutely lowest value of 3.4 ± 0.5 kPa during space flight were observed. The decrease in local oxygen utilization during the flight of 0.8 kPa/min was greater than that of the visiting crews. The results indicate the importance of investigating the dynamics of the oxygen regimen for medical control of the crew members both during the space flight and during the readaptation phase after return to earth.

  3. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX (United States)

    Tolker-Nielsen, Toni; Oppenhauser, Gotthard


    The Semi conductor Inter satellite Link EXperiment, SILEX, consists of two terminals, one terminal embarked on the French LEO observation satellite SPOT4 and one terminal embarked on ESA's GEO telecommunication satellite ARTEMIS. The objective of SILEX is to perform optical communication experiments in orbit and on an operational basis transmit SPOT4 Earth observation data to ARTEMIS, which will relay the data to ground via its Ka band feeder link. SPOT4 was successfully launched on 22nd March 1998. The ARTEMIS launch on 12th July 2001 left ARTEMIS in an orbit with too low apogee, necessitating orbit raising to a circular parking orbit, altitude 31000 km, using a large fraction of the chemical propellant on board. The remaining 5000 km to GEO stationary orbit will be achieved using the low thrust innovative electric propulsion system necessitating specific attitude control software. The final orbit raising will last about 6 months and the expected lifetime of ARTEMIS after station acquisition is 5 years. While waiting for the establishment of the new attitude control software and the beginning of the final orbit raising maneuvers a test program has been undertaken to characterize the performances of the SILEX system. Testing was performed every fifth day when ARTEMIS was visible over Europe. The test program involves Optical Ground Station acquisition and tracking, inter-satellite link acquisition and tracking, bit error rate measurements and transmission of Earth observation data. The paper reports on results of the in orbit testing, giving comparisons with predictions. The conclusion of the test program is that the SILEX system has excellent performances qualifying the system for operational use by SPOTIMAGE in parallel with a detailed technological experimentation program involving the two SILEX terminals, ESA's optical ground station on Tenerife, and also NASDA's OICETS, once ARTEMIS has acquired its final orbital position.

  4. The Coupled Orbit-Attitude Dynamics and Control of Electric Sail in Displaced Solar Orbits

    National Research Council Canada - National Science Library

    Mingying Huo; He Liao; Yanfang Liu; Naiming Qi


    .... The results of stability analysis show that only some of the orbits are marginally stable. For unstable displaced orbits, linear quadratic regulator is employed to control the coupled attitude-orbit...

  5. [Orbital mycetoma: a case report]. (United States)

    Gueye, N N; Seck, S M; Diop, Y; Ndiaye Sow, M N; Agboton, G; Diakhaté, M; Dieng, M; Dieng, M T


    Mycetomas are pathological processes through which exogenous fungal or actinomycotic etiological agents produce grains. These etiological agents live in the soil and plants of endemic areas. They are introduced traumatically, primarily into the foot. The orbital location is rare. We report the case of a 17-year-old student admitted for progressive left proptosis over 2 years, following penetrating trauma by a fork in a rural setting. Examination revealed a heterogenous orbital mass with multiple fistulae, producing pus and black grains, and suggested, due to the color of the grains, a diagnosis of fungal mycetoma. MRI revealed a destructive process at the level of the lamina papracea of the ethmoid and the orbital floor. Anatomopathological examination confirmed the fungal nature of the infection, while culture in Sabouraud's medium was inconclusive. The outcome was favorable after exenteration and debridementof the ipsilateral maxillary sinus and nasal cavities, along with 4 months of ketoconazole. No recurrence has been observed for 14 months after surgery. Mycetomas are endemic to northwest Africa. Most frequently located in the foot, they are seldom seen in the orbit. The color of the grains provides a clue as to the etiology. Black-grain mycetomas are always fungal and are treated surgically--essentially like cancer--as the persistence of a single grain will cause a recurrence. The orbital location of a mycetoma is rare. In the present case report, the concept of port of entry, the clinical appearance, and the color of the grains guided the diagnosis. The histological examination of the surgical specimen confirmed the diagnosis. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. International Space Station Data Collection for Disaster Response (United States)

    Stefanov, William L.; Evans, Cynthia A.


    Remotely sensed data acquired by orbital sensor systems has emerged as a vital tool to identify the extent of damage resulting from a natural disaster, as well as providing near-real time mapping support to response efforts on the ground and humanitarian aid efforts. The International Space Station (ISS) is a unique terrestrial remote sensing platform for acquiring disaster response imagery. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous sensor systems in higher altitude polar orbits. NASA remote sensing assets on the station began collecting International Disaster Charter (IDC) response data in May 2012. The initial NASA ISS sensor systems responding to IDC activations included the ISS Agricultural Camera (ISSAC), mounted in the Window Observational Research Facility (WORF); the Crew Earth Observations (CEO) Facility, where the crew collects imagery using off-the-shelf handheld digital cameras; and the Hyperspectral Imager for the Coastal Ocean (HICO), a visible to near-infrared system mounted externally on the Japan Experiment Module Exposed Facility. The ISSAC completed its primary mission in January 2013. It was replaced by the very high resolution ISS SERVIR Environmental Research and Visualization System (ISERV) Pathfinder, a visible-wavelength digital camera, telescope, and pointing system. Since the start of IDC response in 2012 there have been 108 IDC activations; NASA sensor systems have collected data for thirty-two of these events. Of the successful data collections, eight involved two or more ISS sensor systems responding to the same event. Data has also been collected by International Partners in response to natural disasters, most notably JAXA and

  7. Work/control stations in Space Station weightlessness (United States)

    Willits, Charles


    An ergonomic integration of controls, displays, and associated interfaces with an operator, whose body geometry and dynamics may be altered by the state of weightlessness, is noted to rank in importance with the optimal positioning of controls relative to the layout and architecture of 'body-ported' work/control stations applicable to the NASA Space Station Freedom. A long-term solution to this complex design problem is envisioned to encompass the following features: multiple imaging, virtual optics, screen displays controlled by a keyboard ergonomically designed for weightlessness, cursor control, a CCTV camera, and a hand-controller featuring 'no-grip' vernier/tactile positioning. This controller frees all fingers for multiple-switch actuations, while retaining index/register determination with the hand controller. A single architectural point attachment/restraint may be used which requires no residual muscle tension in either brief or prolonged operation.

  8. Solitary extramedullary plasmacytoma of the maxillary antrum and orbit presenting as acute bacterial orbital cellulitis. (United States)

    Kelly, S. P.; Lloyd, I. C.; Anderson, H.; Joyce, P. W.; Pace-Balzan, A.


    Orbital involvement by plasma cell tumours is rare. Orbital tumours do not generally present as an acute orbital inflammatory disease in adults, though tumours such as rhabdomyosarcoma may cause clinical signs similar to an acute orbital cellulitis in children. We describe a patient with bacterial orbital cellulitis and sinusitis who was found to have an extra-medullary plasmacytoma of the maxillary antrum and orbit and coexisting testicular seminoma. Images PMID:1854702

  9. Precision Analysis of LEO Satellite Orbit Prediction

    Directory of Open Access Journals (Sweden)

    WANG Yafei


    Full Text Available The accuracy of different fitting intervals on the predicted orbit of different arc lengths was analyzed by using the dynamic fitting method and taken HY-2A satellite as an example. According to two orbit products, one was the precise orbit obtained by CNES and the other was rapid orbit computed by adopting zero-different reduced dynamic method, obtaining the precise predicted orbit. By the results, we can get that the 3DRMS is near 6dm by using 12h or 24h fitting orbit to forecast 12h arc; the 3DRMS is near 1m when forecasting 24h arc.

  10. Demonstrating High-Accuracy Orbital Access Using Open-Source Tools (United States)

    Gilbertson, Christian; Welch, Bryan


    Orbit propagation is fundamental to almost every space-based analysis. Currently, many system analysts use commercial software to predict the future positions of orbiting satellites. This is one of many capabilities that can replicated, with great accuracy, without using expensive, proprietary software. NASAs SCaN (Space Communication and Navigation) Center for Engineering, Networks, Integration, and Communications (SCENIC) project plans to provide its analysis capabilities using a combination of internal and open-source software, allowing for a much greater measure of customization and flexibility, while reducing recurring software license costs. MATLAB and the open-source Orbit Determination Toolbox created by Goddard Space Flight Center (GSFC) were utilized to develop tools with the capability to propagate orbits, perform line-of-sight (LOS) availability analyses, and visualize the results. The developed programs are modular and can be applied for mission planning and viability analysis in a variety of Solar System applications. The tools can perform 2 and N-body orbit propagation, find inter-satellite and satellite to ground station LOS access (accounting for intermediate oblate spheroid body blocking, geometric restrictions of the antenna field-of-view (FOV), and relativistic corrections), and create animations of planetary movement, satellite orbits, and LOS accesses. The code is the basis for SCENICs broad analysis capabilities including dynamic link analysis, dilution-of-precision navigation analysis, and orbital availability calculations.

  11. The impact of integrated water management on the Space Station propulsion system (United States)

    Schmidt, George R.


    The water usage of elements in the Space Station integrated water system (IWS) is discussed, and the parameters affecting the overall water balance and the water-electrolysis propulsion-system requirements are considered. With nominal IWS operating characteristics, extra logistic water resupply (LWR) is found to be unnecessary in the satisfaction of the nominal propulsion requirements. With the consideration of all possible operating characteristics, LWR will not be required in 65.5 percent of the cases, and for 17.9 percent of the cases LWR can be eliminated by controlling the stay time of theShuttle Orbiter orbiter.

  12. Kinematic positioning of LEO and GPS satellites and IGS stations on the ground (United States)

    Švehla, Dražen; Rothacher, Markus

    For the first time, we publish results with the kinematic positioning of the GPS satellites and make comparisons with the kinematic positioning of LEO satellites and IGS stations on the ground. We show that LEO point-positioning is possible by means of GPS satellite clocks estimated solely based on phase GPS measurements. In sequel, we introduce a fourth approach in precise orbit determination, which we call reduced-kinematic POD, where kinematic position differences in time are constrained to corresponding differences in a priori dynamic orbit.

  13. Artist concept cutaway view of OV-105 docked with Space Station Freedom (SSF) (United States)


    This cutaway drawing shows Endeavour, Orbiter Vehicle (OV) 105, 'docked' with Space Station Freedom (SSF) and includes the 28 day configuration of the extended duration orbiter (EDO) pallet. The 16 day configuration has cryogenic fuel (hydrogen and oxygen) tanks on the aft face of the pallet. The 28 day configuration will add tanks to the front face of the pallet as well. The drawing also depicts the pressure tunnel which will be used for crew passage into SSF's node. The cupola is shown attached to the node next to OV-105's crew compartment. The cupola will assist in crew viewing.

  14. Microbial Monitoring of the International Space Station (United States)

    Pierson, Duane L.; Botkin, Douglas J.; Bruce, Rebekah J.; Castro, Victoria A.; Smith, Melanie J.; Oubre, Cherie M.; Ott, C. Mark


    microbial growth. Air filtration can dramatically reduce the number of airborne bacteria, fungi, and particulates in spacecraft breathing air. Waterborne bacteria can be reduced to acceptable levels by thermal inactivation of bacteria during water processing, along with a residual biocide, and filtration at the point of use can ensure safety. System design must include onboard capability to achieve recovery of the system from contamination. Robust housekeeping procedures that include periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Food for consumption in space must be thoroughly tested for excessive microbial content and pathogens before launch. Thorough preflight examination of flight crews, consumables, payloads, and the environment can greatly reduce pathogens in spacecraft. Many of the lessons learned from the Space Shuttle and previous programs were applied in the early design phase of the International Space Station, resulting in the safest space habitat to date. This presentation describes the monitoring program for the International Space Station and will summarize results from preflight and on-orbit monitoring.

  15. The MSFC space station/space operations mechanism test bed (United States)

    Sutton, William G.; Tobbe, Patrick A.

    The Space Station/Space Operations Mechanism Test Bed consists of the following: a hydraulically driven, computer controlled Six Degree-of-Freedom Motion System (6DOF); a six degree-of-freedom force and moment sensor; remote driving stations with computer generated or live TV graphics; and a parallel digital processor that performs calculations to support the real time simulation. The function of the Mechanism Test Bed is to test docking and berthing mechanisms for Space Station Freedom and other orbiting space vehicles in a real time, hardware-in-the-loop simulation environment. Typically, the docking and berthing mechanisms are composed of two mating components, one for each vehicle. In the facility, one component is attached to the motion system, while the other component is mounted to the force/moment sensor fixed in the support structure above the 6DOF. The six components of the contact forces/moments acting on the test article and its mating component are measured by the force/moment sensor.

  16. Thermal Examination of an Orbiting Cryogenic Fuel Depot (United States)

    Hull, Patrick V.; Canfield, Steven L.; Carrington, Connie; Fikes, John


    For many years NASA has been interested in the storage and transfer of cryogenic fuels in space. Lunar, L2 and other chemical propulsive space vehicle missions now have staged refueling needs that a fuel depot would satisfy. The depot considered is located in lower earth orbit. Many considerations must go into designing and building such a station. Multi-layer insulation systems, thermal shielding and low conductive structural supports are the principal means of protecting the system from excessive heat loss due to boiloff. This study focuses on the thermal losses associated with storing LH2 in a passively cooled fuel depot in a lower earth equatorial orbit. The corresponding examination looks at several configurations of the fuel depot. An analytical model has been developed to determine the thermal advantages and disadvantages of three different fuel depot configurations. Each of the systems consists of three Boeing rocket bodies arranged in various configurations. The first two configurations are gravity gradient stabilized while the third one is a spin-stabilized concept. Each concept was chosen for self-righting capabilities as well as the fuel settling capabilities, however the purpose of this paper is to prove which of the three concepts is the most efficient passively cooled system. The specific areas to be discussed are the heating time from the fusion temperature to the vaporization temperature and the amount of boiloff for a specific number of orbits. Each of the previous points is compared using various sun exposed surface areas of the tanks.

  17. GNSS satellite transmit power and its impact on orbit determination (United States)

    Steigenberger, Peter; Thoelert, Steffen; Montenbruck, Oliver


    Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50-240 W were obtained, 20-135 W for GLONASS, 95-265 W for Galileo, and 130-185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1-27 mm depending on the transmit power, the satellite mass, and the orbital period.

  18. DRAGONS - A Micrometeoroid and Orbital Debris Impact Sensor (United States)

    Liou, J. -C.; Corsaro, R.; Giovane, F.; Anderson, C.; Sadilek, A.; Burchell, M.; Hamilton, J.


    The Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is intended to be a large area impact sensor for in situ measurements of micrometeoroids and orbital debris (MMOD) in the millimeter or smaller size regime. These MMOD particles are too small to be detected by ground-based radars and optical telescopes, but are still large enough to be a serious safety concern for human space activities and robotic missions in the low Earth orbit (LEO) region. The nominal detection area of a DRAGONS unit is 1 m2, consisting of several independently operated panels. The approach of the DRAGONS design is to combine different particle impact detection principles to maximize information that can be extracted from detected events. After more than 10 years of concept and technology development, a 1 m2 DRAGONS system has been selected for deployment on the International Space Station (ISS) in August 2016. The project team achieved a major milestone when the Preliminary Design Review (PDR) was completed in May 2015. Once deployed on the ISS, this multi-year mission will provide a unique opportunity to demonstrate the MMOD detection capability of the DRAGONS technologies and to collect data to better define the small MMOD environment at the ISS altitude.

  19. Transmission of microwave beamed-power from an orbiting space station to the ground

    Energy Technology Data Exchange (ETDEWEB)

    Welch, R.M. (Johannes Gutenberg Univ., Mainz, Germany); Davis, J.M.; Cox, S.K.


    Transmission efficiencies and surface power densities are calculated from the interaction of a 10 GW microwave beam with rain clouds. Computations are made as a function of (a) frequency (2.45 to 10 GHz); (b) beam nadir angle; (c) raindrop size distribution; and (d) cloud shape. Scattered surface power densities outside of the receiving rectenna do not exceed 10 2/ for frequencies of 2.45 and 3.3 GHz, even for extremely heavy rainfall rates. At higher frequencies exposure levels outside of the rectenna may reach 100 2/, or two orders of magnitude less than the US safety standard. From the standpoint of public health and safety, the scattering of microwaves by rain clouds is not a serious problem, with scattered fluxes outside of the rectenna much smaller than sidelobe fluxes. Beam losses due to absorption in rain clouds are significant in some cases, with absorption losses far more important than scattering losses. The amount of scattering increases with increasing microwave frequency, increasing drop size and drop concentration and increasing nadir angle of the beam.

  20. A Comparison of Ionospheric Model Performance for International Space Station Orbits (United States)


    low solar EUV flux, the lowest thermospheric densities ever recorded occurred during this period ( Emmert et al., 2010). Additionally, there was...iss floating potential measurement unit, Plasma Science, IEEE Transactions on, 36 (5), 2301–2308, iD: 1. Emmert , J. T., J. L. Lean, and J. M. Picone...that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it

  1. A quick report of ETALON Campaign 90 at Tokyo SLR station. (United States)

    Kunimori, H.; Takahashi, F.

    Tokyo Satellite laser Ranging (SLR) station joined the International Earth Rotation Service (IERS) ETALON extensive observation program (ETALON Campaign) from September to November in 1990, after the station was established in January 1990 by Communications Research Laboratory (CRL), Japan. 46 passes with 53000 shots in total were obtained during the campaign and their ranging precisions were estimated 1 cm for normal point. The analysis of data will be conducted at CSR of Texas University after collection of all of the data there. CRL is also developing an analysis program for short arc solution by modification of Kashima Orbit Determiantion System.

  2. Space Station tethered elevator system (United States)

    Haddock, Michael H.; Anderson, Loren A.; Hosterman, K.; Decresie, E.; Miranda, P.; Hamilton, R.


    The optimized conceptual engineering design of a space station tethered elevator is presented. The tethered elevator is an unmanned, mobile structure which operates on a ten-kilometer tether spanning the distance between Space Station Freedom and a platform. Its capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The report discusses the potential uses, parameters, and evolution of the spacecraft design. Emphasis is placed on the elevator's structural configuration and three major subsystem designs. First, the design of elevator robotics used to aid in elevator operations and tethered experimentation is presented. Second, the design of drive mechanisms used to propel the vehicle is discussed. Third, the design of an onboard self-sufficient power generation and transmission system is addressed.

  3. The International Space Station Habitat (United States)

    Watson, Patricia Mendoza; Engle, Mike


    The International Space Station (ISS) is an engineering project unlike any other. The vehicle is inhabited and operational as it is constructed. The habitability resources available to the crew are the sleep quarters, the galley, the waste and hygiene compartment, and exercise equipment. These items are mainly in the Russian Service Module and their placement is awkward for the crew to use and work around. ISS assembly will continue with the truss build and the addition of the International Partner Laboratories. Prior to the addition of the International Partner Laboratories. Node 2 will be added. The Node 2 module will provide additional stowage volume and room for more crew sleep quarters. The purpose of the ISS is to perform research and a major area of emphasis is on the effects of long duration space flight on humans, as result of this research the habitability requirements for the International Space Station crews will be determined.

  4. Aiming at a 1-cm orbit for low earth orbiters : Reduced-dynamic and kinematic precise orbit determination

    NARCIS (Netherlands)

    Visser, P.N.A.M.; Van den IJssel, J.


    The computation of high-accuracy orbits is a prerequisite for the success of Low Earth Orbiter (LEO) missions such as CHAMP, GRACE and GOCE. The mission objectives of these satellites cannot be reached without computing orbits with an accuracy at the few cm level. Such a level of accuracy might be

  5. Fortaleza Station Report for 2012 (United States)

    Kaufmann, Pierre; Pereira de Lucena, A. Macilio; Sombra da Silva, Adeildo


    This is a brief report about the activities carried out at the Fortaleza geodetic VLBI station (ROEN: R´adio Observat´orio Espacial do Nordeste), located in Eus´ebio, CE, Brazil, during the period from January until December 2012. The observing activities were resumed in May after the major maintenance that comprised the azimuth bearing replacement. The total observational experiments consisted of 103 VLBI sessions and continuous GPS monitoring recordings.

  6. Package power stations for export

    Energy Technology Data Exchange (ETDEWEB)


    The cheap and efficient generation of power is an essential requirement for the success and prosperity of any community and is especially important to third world countries. It is therefore logical that the more technologically advanced nations should seek to produce power stations for the developing countries. Power plant can now be designed into a packaged form that may be readily exported and commissioned. This valuable and interesting collection of papers were originally presented at a seminar organised by the Power Industries Division of the Institution of Mechanical Engineers. Topics considered include the developing world market for packaged power stations using indigenous fuels; multi-fuel systems for power generation; packaging, modularisation, and containerisation of equipment for power boilers for export; compact coal-fired industrial plant; rural woodburning power stations; biomass gasification based power generation technology and potential; gas fed reciprocating engine development; packaged heavy duty gas turbines for power generation; and criteria for assessing the appropriateness of package power technologies in developing countries.

  7. Robustness analysis method for orbit control (United States)

    Zhang, Jingrui; Yang, Keying; Qi, Rui; Zhao, Shuge; Li, Yanyan


    Satellite orbits require periodical maintenance due to the presence of perturbations. However, random errors caused by inaccurate orbit determination and thrust implementation may lead to failure of the orbit control strategy. Therefore, it is necessary to analyze the robustness of the orbit control methods. Feasible strategies which are tolerant to errors of a certain magnitude can be developed to perform reliable orbit control for the satellite. In this paper, first, the orbital dynamic model is formulated by Gauss' form of the planetary equation using the mean orbit elements; the atmospheric drag and the Earth's non-spherical perturbations are taken into consideration in this model. Second, an impulsive control strategy employing the differential correction algorithm is developed to maintain the satellite trajectory parameters in given ranges. Finally, the robustness of the impulsive control method is analyzed through Monte Carlo simulations while taking orbit determination error and thrust error into account.

  8. Assessment and management of orbital cellulitis. (United States)

    Amin, Nikul; Syed, Irfan; Osborne, Sarah


    Orbital cellulitis is a medical emergency requiring multidisciplinary team involvement. Early diagnosis and intervention is imperative to avoid serious complications. This article provides an evidence-based approach to the assessment and management of patients with orbital cellulitis.

  9. SILEX in-orbit performances (United States)

    Planche, Gilles; Chorvalli, Vincent


    PASTEL embarked on-board SPOT4, French LEO earth observation satellite, and OPALE mounted on-board ARTEMIS, European GEO telecommunication satellite are the key components of SILEX (Semi-conductor Inter-satellite Link Experiment) system. Launched in March 1998, PASTEL terminal was first verified via star tracking. Then, first SILEX optical communication was successfully performed in December 2001 with ARTEMIS at 31000 km. Following 12 months ARTEMIS orbit rising, SILEX commissioning phase was successfully achieved in spring 2003. Today, more than hundred successful optical communications have been achieved. On 1st of October 2003, the SILEX optical link was declared fully operational by the European and French space agencies. After a recall of SILEX architecture, design and on-ground verification, this paper reports on in-orbit results.

  10. Has Nemesis' orbit been detected? (United States)

    Delsemme, A. H.


    The orbital angular momenta of 126 very young comets are calculated from the orbital data of Marsden and Roemer (1982) and analyzed statistically. A large anisotropy is detected in a plane almost perpendicular to the ecliptic and shown to have a characteristic dissipation lifetime of 10-30 Myr. Dynamic evolution computations indicate that the impulse which produced the anisotropy is that of a very slow massive (10-90 Jupiter mass) body, which is bound to the solar system, passed its 15,000-35,000-AU perihelion about 2-15 Myr ago, and has period 5-50 Myr. It is suggested that this body could well be identical to Nemesis, the object proposed to explain mass faunal extinctions.

  11. The Orbiting Primate Experiment (OPE) (United States)

    Bourne, G. H.; Debourne, M. N. G.; Mcclure, H. M.


    Instrumentation and life support systems are described for an experiment to determine the physiological effects of long term space flight on unrestrained, minimally instrumented rhesus macaques flown in orbit for periods up to six months or one year. On return from orbit, vestibular, cardiovascular, and skeletal muscle function will be tested. Blood chemistry and hematological studies will be conducted as well as tests of the immunological competence of selected animals. Nasal, rectal, and throat swabs will be used for bacterial and viral studies, and histopathological and histochemical investigations will be be made of all organs using light and electron microscopy. The experiment is being considered as a payload for the biomedical experiment scientific satellite.

  12. Omics Research on the International Space Station (United States)

    Love, John


    The International Space Station (ISS) is an orbiting laboratory whose goals include advancing science and technology research. Completion of ISS assembly ushered a new era focused on utilization, encompassing multiple disciplines such as Biology and Biotechnology, Physical Sciences, Technology Development and Demonstration, Human Research, Earth and Space Sciences, and Educational Activities. The research complement planned for upcoming ISS Expeditions 45&46 includes several investigations in the new field of omics, which aims to collectively characterize sets of biomolecules (e.g., genomic, epigenomic, transcriptomic, proteomic, and metabolomic products) that translate into organismic structure and function. For example, Multi-Omics is a JAXA investigation that analyzes human microbial metabolic cross-talk in the space ecosystem by evaluating data from immune dysregulation biomarkers, metabolic profiles, and microbiota composition. The NASA OsteoOmics investigation studies gravitational regulation of osteoblast genomics and metabolism. Tissue Regeneration uses pan-omics approaches with cells cultured in bioreactors to characterize factors involved in mammalian bone tissue regeneration in microgravity. Rodent Research-3 includes an experiment that implements pan-omics to evaluate therapeutically significant molecular circuits, markers, and biomaterials associated with microgravity wound healing and tissue regeneration in bone defective rodents. The JAXA Mouse Epigenetics investigation examines molecular alterations in organ specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight. Lastly, Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), NASA's first foray into human omics research, applies integrated analyses to assess biomolecular responses to physical, physiological, and environmental stressors associated

  13. Nutrition Research: Basis for Station Requirements (United States)

    Lane, Helen W.; Rice, Barbara; Smith, Scott M.


    Prior to the Shuttle program, all understanding of nutritional needs in space came from Skylab metabolic research. Because Shuttle flights were short, most less than 14 days, research focused on major nutritional issues: energy (calories), protein and amino acids, water and electrotypes, with some more general physiology studies that related to iron and calcium. Using stable isotope tracer studies and diet intake records, we found that astronauts typically did not consume adequate calories to meet energy expenditure. To monitor energy and nutrient intake status and provide feedback to the flight surgeon and the astronauts, the International Space Station (ISS) program implemented a weekly food frequency questionnaire and routine body mass measurements. Other Shuttle investigations found that protein turnover was higher during flight, suggesting there was increased protein degradation and probably concurrent increase in protein synthesis, and this occurred even in cases of adequate protein and caloric intake. These results may partially explain some of the loss of leg muscle mass. Fluid and electrolyte flight studies demonstrated that water intake, like energy intake, was lower than required. However, sodium intakes were elevated during flight and likely related to other concerns such as calcium turnover and other health-related issues. NASA is making efforts to have tasty foods with much lower salt levels to reduce sodium intake and to promote fluid intake on orbit. Red blood cell studies conducted on the Shuttle found decreased erythrogenesis and increased serum ferritin levels. Given that the diet is high in iron there may be iron storage health concerns, especially related to the role of iron in oxidative damage, complicated by the stress and radiation. The Shuttle nutrition research lead to new monitoring and research on ISS. These data will be valuable for future NASA and commercial crewed missions.

  14. Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region

    NARCIS (Netherlands)

    Givoni, M.; Rietveld, P.


    Promoting the use of rail is an important element in sustainable transport policy. One of the most important decisions to make in planning the railway network is on the number of stations to provide. Stations are the access points to rail services and while each additional station increases rail's

  15. Comparison of the reduced dynamical orbit parametrization and precise non-conservative orbit force modeling for DORIS satellites (United States)

    Stepanek, P.; Rodriguez-Solano, C.; Filler, V.; Hugentobler, U.


    The focus of the studies is the analysis of the comparison between two different approaches for LEO satellite orbit estimation employing DORIS measurements. The first one is the reduced-dynamical model, based on the orbit modeling by using the empirical and the pseudo-stochastic parameters. The second approach includes the attitude models and the CNES-developed satellite macromodels, with modeling of non-conservative acceleration, i.e., Sun radiation pressure, Earth radiation pressure and atmospheric drag. Both approaches are used at analysis centers providing DORIS solutions. The reduced-dynamical modeling is currently used by the GOP analysis center, which achieves similar accuracy of the free-network solutions as the other centers utilizing a precise non-conservative force modeling. The GOP works with a modified version of the Bernese GPS Software that has not included the non-conservative modeling. This limitation is now overcome by the new scientific modification of the software, which opens the unique possibility to compare both approaches by using the same software platform. We compare external and internal precision of the estimated orbits. We also analyze the individual satellite free-network DORIS solutions and time-series of derived parameters, i.e., station coordinates, TRF scale, the geocenter variations and the Earth rotation parameters. The studies highlight the main differences in the results that should answer the question whether the modeling of non-conservative forces including the CNES box-wing satellite models actually brings a significant improvement to the DORIS solutions.

  16. Gauge Freedom in Orbital Mechanics


    Efroimsky, Michael


    In orbital and attitude dynamics the coordinates and the Euler angles are expressed as functions of the time and six constants called elements. Under disturbance, the constants are endowed with time dependence. The Lagrange constraint is then imposed to guarantee that the functional dependence of the perturbed velocity on the time and constants stays the same as in the undisturbed case. Constants obeying this condition are called osculating elements. The constants chosen to be canonical are c...

  17. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob


    the research taking place in the biology laboratory. This should promote contribu-tions to the grid, and thereby mediate the appropriation of the grid technology. GridOrbit visualizes the activity in the grid, shows information about the different active projects, and supports a messaging functionality where...... people comment on projects. Our work explores the usage of interactive technologies as enablers for the appropriation of an otherwise invisible infrastructure....

  18. Orbital assembly and maintenance study (United States)

    Gorman, D.; Grant, C.; Kyrias, G.; Lord, C.; Rombach, J.; Salis, M.; Skidmore, R.; Thomas, R.


    The requirements, conceptual design, tradeoffs, procedures, and techniques for orbital assembly of the support structure of the microwave power transmission system and the radio astronomy telescope are described. Thermal and stress analyses, packaging, alignment, and subsystems requirements are included along with manned vs. automated and transportation tradeoffs. Technical and operational concepts for the manned and automated maintenance of satellites were investigated and further developed results are presented.

  19. Understanding Pediatric Bacterial Preseptal and Orbital Cellulitis (United States)

    Gonzalez, Mithra O.; Durairaj, Vikram D.


    Pediatric preseptal and orbital cellulitis are infectious disorders that result in periorbital inflammation. Preseptal cellulitis is often associated with breaches in the skin barrier whereas orbital cellulitis is commonly associated with paranasal sinusitis. Orbital cellulitis may be associated with subperiosteal abscess. It is important to distinguish between preseptal from orbital cellulitis. Clinical examination and diagnostic imaging are useful in determining appropriate management. Patients are usually treated with broad spectrum antibiotics and surgery when indicated. PMID:20616919

  20. A new kinematical definition of orbital eccentricity

    Directory of Open Access Journals (Sweden)

    Ninković S.


    Full Text Available A new concept of orbital eccentricity is given. The dimensionless quantities proposed in the present paper to serve as orbital eccentricities have a kinematical nature. The purpose is to use them in describing the motion for the case of three-dimensional orbits. A comparison done for nearly planar orbits shows that the values of the eccentricities proposed here do not differ significantly from those corresponding to the eccentricities of geometric nature usually applied.

  1. Extended Duration Orbiter Medical Project (United States)

    Leach, C. S.; Pool, S. L.; Sawin, C. F.; Nicogossian, A. E.


    The Extended Duration Orbiter (EDO) program addresses a need for more time to perform experiments and other tasks during Space Shuttle missions. As a part of this program, the Extended Duration Orbiter Medical Project (EDOMP) has been instituted to obtain information about physiologic effects of extending mission duration and the effectiveness of countermeasures against factors that might compromise crew health, safety, or performance on extended-duration missions. Only those investigations that address and characterize operational problems, develop countermeasures, or evaluate the effectiveness of countermeasures will be pursued. The EDOMP investigations will include flight-associated Detailed Supplementary Objectives as well as ground-based studies simulating the influence of microgravity. Investigator teams have been formed in the following areas: biomedical physiology, cardiovascular and fluid/electrolyte physiology, environmental health, muscle and exercise physiology, and neurophysiology. Major operational questions must be answered in each of these areas, and investigations have been designed to answer them. The EDO program will proceed only after countermeasures have been shown to be effective in preventing or mitigating the adverse changes they have been designed to attenuate. The program is underway and will continue on each Shuttle flight as the manifest builds toward a 16-day orbital flight.

  2. Open System of Agile Ground Stations Project (United States)

    National Aeronautics and Space Administration — There is an opportunity to build the HETE-2/TESS network of ground stations into an innovative and powerful Open System of Agile Stations, by developing a low-cost...

  3. HSIP Fire Stations in New Mexico (United States)

    Earth Data Analysis Center, University of New Mexico — Fire Stations in New Mexico Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their jobs is...

  4. Stability of Coordinates of The Slr Stations On A Basis of Lageos-1 and Lageos-2 Laser Ranging In 2000 (United States)

    Schillak, S.; Wnuk, E.

    Determination of the stations coordinates and the control of their stability is one of the most important task in the satellite geodesy and geodynamics. This work is continu- ation of the similar paper about coordinates stability of the all SLR stations in 1999. The paper present results of positions determination for all SLR stations in 2000 cal- culated in the ITRF2000 system on the basis of data provided by the LAGEOS-1 and LAGEOS-2 laser ranging. The calculations were performed with the usage of the GEODYN II program. Coordinates of the stations were determined from monthly arcs for 2000. Typical RMS of (O-C) values for the monthly orbital arcs was on a level of 1.7 cm. The final stability of the geocentric coordinates of SLR stations per one year for all components varies from 5 millimetres to several centimetres.

  5. GALILEO Precise Orbit and Clock Determinaiton using GPS and GALILEO Combined Processing Strategy (United States)

    Cui, Hongzheng; Tang, Geshi; Song, Baiyan; Liu, Huicui; Han, Chao; Ge, Maorong


    The GALILEO system-still in its development phase-will be Europe's GNSS, and the in-orbit validation (IOV) phase has begun with launch of two IOV satellites, IOV-1 (E11) and IOV-2 (E12). High precise data processing is the precondition for upgrading navigation precision, monitoring and assessment of GNSS Open services, and expanding the application region for satellite navigation system. BACC is doing the work about operation and maintenance the iGMAS (international GNSS Monitoring and Assessment Service) Analysis Center (BAC), and producing the precision products to the users with equivalent accuracy to well-known institutes, such as IGS and CODE including precise satellite orbit and clock, tracking station coordinate and receiver clock, Zenith Total Delay (ZTD), Earth Orientation Parameter (EOP) parameters, global and statistical integrity and Ionospheric map, and this study just focuses on the combined orbit and clock. For GALILEO in the initial deployment phase, in order to take advantage of GPS observation and mature models to do joint orbit determination in a unified time and space frame to improve the orbit of other systems, and use the GPS orbit and clock from joint solution as the external check, we adopt combined orbit determination of GPS and GALILEO fixing firstly the coordinate of station, receiver clock and tropospheric parameters using GPS precise ephemeris and clock, and seting inter-system bias (ISB) between GPS and GALILEO as a parameter to be estimated. The observation data from a network of multi-GNSS capable receivers from the MGEX tracking network and a regional multi-GNSS network operated by China from day 321 to 334 in 2013, and the satellite force models and GFZ standard observation modeling except Yaw-control model are used in three day solution. For impact analysis, we compare the GPS orbit and clock to IGS final orbit and clock products to evaluate the accuracy, and the accuracy of GALILEO orbit and clock and can be validated by checking

  6. Molecular Orbitals and the Atomistics of Fracture. (United States)


    dominantly a N-N bonding orbital the N-Fe interaction is non- bonding. The b2 orbital in the Fe4 cluster is d-d w-bonding between nearest neig ;hbo and...distance. This is the distance which is realized when there is no electron density in a N-3 antibonding orbital. In this cluster son of the electron

  7. Classification of Stellar Orbits Near Corotation (United States)

    Breet, Jessica; Daniel, Kathryne J.; Bryn Mawr College Galaxy Lab


    The process of radial migration is frequently invoked as an important process to spiral galaxy evolution, but the physical properties that determine the efficiency of radial migration are poorly defined. In order for a star to migrate radially it must first be trapped in a resonant orbit at the corotation radius of a spiral pattern. Stars in such trapped orbits have changing average orbital radii — and thus orbital angular momenta — without any change in orbital eccentricity. It follows that transient spiral patterns can permanently rearrange the distribution of orbital angular momentum in the disk without kinematically heating it. It is also known that orbits can also have a significant dynamical response at Lindblad Resonances (LRs), where the Ultraharmonic Lindblad Resonances (ULRs) have a lesser impact on the disk. The goal of our project is to examine and constrain the efficiency of radial migration via an investigation into whether or not stars in trapped orbits have a dynamical response at the ULRs. We produced a dataset of nearly 105 orbits with initial conditions across a range of radii and 2-D velocities. We then classified these orbits into four categories based on analytic criteria for whether or not they are in trapped orbits and/or cross the ULR over 1 gigayear. Preliminary investigations show that trapped orbits that also meet the ULR have a chaotic response, putting a potential limit on the efficiency of radial migration.

  8. Periodic Orbits and Deformed Shell Structure


    Arita, K.; Magner, A. G.; Matsuyanagi, K.


    Relationship between quantum shell structure and classical periodic orbits is briefly reviewed on the basis of semi-classical trace formula. Using the spheroidal cavity model, it is shown that three-dimensional periodic orbits, which are born out of bifurcation of planar orbits at large prolate deformations, generate the superdeformed shell structure.

  9. On Directional Measurement Representation in Orbit Determination (United States)


    Precision Orbit Determination (OD) is often critical for successful satellite operations supporting a wide variety of missions. Directional or angles only...representations. The three techniques are then compared experimentally for a geostationary and a low Earth orbit satellite using simulated data to evaluate their... Orbit Determination (OD) is often critical for successful satellite operations supporting a wide variety of missions. Precision OD involves

  10. Cesium's Off-the-Map Valence Orbital

    NARCIS (Netherlands)

    Goesten, Maarten G.; Rahm, Martin; Bickelhaupt, F. Matthias; Hensen, Emiel J.M.


    The Td-symmetric [CsO4]+ ion, featuring Cs in an oxidation state of 9, is computed to be a minimum. Cs uses outer core 5s and 5p orbitals to bind the oxygen atoms. The valence Cs 6s orbital lies too high to be involved in bonding, and contributes to Rydberg levels only. From a molecular orbital

  11. A study of space station needs, attributes and architectural options. Final briefing: Cost working group discussion session (United States)


    The economic factors involved in the design and utilization of the space station are investigated. Topics include the economic benefits associated with research and production, the orbit transfer vehicle, and satellite servicing. Program costs and design options are examined. The possibilities of financing from the private sector are discussed.

  12. Preliminary Products of Precise Orbit Determination Using Satellite Laser Ranging Observations for ILRS AAC

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim


    Full Text Available In this study, we present preliminary results of precise orbit determination (POD using satellite laser ranging (SLR observations for International Laser Ranging Service (ILRS Associate Analysis Center (AAC. Using SLR normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2, the NASA/GSFC GEODYN II software are utilized for POD. Weekly-based orbit determination strategy is applied to process SLR observations and the post-fit residuals check, and external orbit comparison are performed for orbit accuracy assessment. The root mean square (RMS value of differences between observations and computations after final iteration of estimation process is used for post-fit residuals check. The result of ILRS consolidated prediction format (CPF is used for external orbit comparison. Additionally, we performed the precision analysis of each ILRS station by post-fit residuals. The post-fit residuals results show that the precisions of the orbits of LAGEOS-1 and LAGEOS-2 are 0.9 and 1.3 cm, and those of ETALON-1 and ETALON-2 are 2.5 and 1.9 cm, respectively. The orbit assessment results by ILRS CPF show that the radial accuracies of LAGEOS-1 and LAGEOS-2 are 4.0 cm and 5.3 cm, and the radial accuracies of ETALON-1 and ETALON-2 are 30.7 cm and 7.2 cm. These results of station precision analysis confirm that the result of this study is reasonable to have implications as preliminary results for administrating ILRS AAC.

  13. Feasibility Study of Data Receiving Station in Korea For CSA UV Space Telescope Project

    Directory of Open Access Journals (Sweden)

    Myung-Kook Jee


    Full Text Available We present a feasibility study of a data receiving station in Korea to be used for a 50 cm UV space telescope proposed by CSA. The feasibility was investigated by examining the spacecraft visibility from four different cities in Korea, based on the orbital characteristics of the proposed spacecraft, i.e. inclination of 28.5 deg and circular orbit altitude of 690km. The satellite can be accessed from Korea about 4 times a day, each pass having the duration of 6 to 9 minutes depending on the elevation mask and the latitude of each site. Provided that the X-Band signal can be retrieved from 10 deg elevation, this study demonstrates that a ground station placed in any of the four cities can be used for a reasonable backup downlink of the science data gathered by the proposed UV space telescope.

  14. In-Orbit Test Results of the Optical Intersatellite Link, SILEX. A Milestone in Satellite Communication (United States)

    Tolker-Nielsen, T.; Oppenhaeuser, G.


    The Semi conductor Inter satellite Link EXperiment, SILEX, consists of two terminals, one terminal embarked on the French LEO observation satellite SPOT4 and one terminal embarked on ESA's GEO telecommunication satellite ARTEMIS. The objective of SILEX is to perform optical communication experiments in orbit and on an operational basis transmit SPOT4 Earth observation data to ARTEMIS, which will relay the data to ground via its Ka band feeder link. SPOT4 was successfully launched on 22nd March 1998. The ARTEMIS launch on 12th July 2001 left ARTEMIS in an orbit with too low apogee, necessitating orbit raising to a circular parking orbit, altitude 31000km, using a large fraction of the chemical propellant on board. The remaining 5000km to GEO stationary orbit will be achieved using the low thrust innovative electric propulsion system necessitating specific attitude control software. The final orbit raising will last about 6 months and the expected lifetime of ARTEMIS after station acquisition is 5 years. While waiting for the establishment of the new attitude control software and the beginning of the final orbit raising maneuvers a test program has been undertaken in November/December 2001 to characterize the performances of the SILEX system. Testing was performed every fifth day when ARTEMIS was visible over Europe. The test program involves Optical Ground Station acquisition and tracking, inter-satellite link acquisition and tracking, bit error rate measurements and transmission of Earth observation data. The paper reports on results of the in orbit testing, giving comparisons with predictions. The conclusion of the test program is that the SILEX system has excellent performances qualifying the system for operational use by SPOTIMAGE in parallel with a detailed technological experimentation program involving the two SILEX terminals, ESA's optical ground station on Tenerife, and also NASDA's OICETS, once ARTEMIS has acquired its final orbital position. The results

  15. The orbital record in stratigraphy (United States)

    Fischer, Alfred G.


    Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity

  16. Canadian Meteor Orbit Radar (CMOR)


    Webster, A. R.; P. G. Brown; Jones, J.; Ellis, K.J.; Campbell-Brown, M.


    International audience; The radar system described here (CMOR) comprises a basic 5-element receiving system, co-located with a pulsed transmitter, specifically designed to observe meteor echoes and to determine their position in space with an angular resolution of ~1° and a radial resolution of ~3 km. Two secondary receiving sites, a few km distant and arranged to form approximately a right angle with the base station, allow the determination of the velocity (speed and direction) of the meteo...

  17. 78 FR 67309 - Earth Stations Aboard Aircraft (United States)


    ... COMMISSION 47 CFR Part 25 Earth Stations Aboard Aircraft AGENCY: Federal Communications Commission. ACTION... collection associated with the Commission's Earth Station Aboard Aircraft, Report and Order (Order), which adopted licensing and service rules for Earth Stations Aboard Aircraft (ESAA) communicating with Fixed...

  18. 47 CFR 97.207 - Space station. (United States)


    ... space station licensee has assessed and limited the amount of debris released in a planned manner during... space station becoming a source of debris by collisions with large debris or other operational space... 47 Telecommunication 5 2010-10-01 2010-10-01 false Space station. 97.207 Section 97.207...

  19. 30 CFR 57.12085 - Transformer stations. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Transformer stations. 57.12085 Section 57.12085 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.12085 Transformer stations. Transformer stations shall be enclosed to prevent persons...

  20. 47 CFR 95.835 - Station identification. (United States)


    ... SERVICES 218-219 MHz Service System Requirements § 95.835 Station identification. No RTU or CTS is required to transmit a station identification announcement. ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 95.835 Section 95.835...

  1. 47 CFR 90.735 - Station identification. (United States)


    ....735 Station identification. (a) Except for nationwide systems authorized in the 220-222 MHz band, station identification is required pursuant to § 90.425 of this part. (b) Trunked systems shall employ an... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 90.735 Section 90.735...

  2. 47 CFR 90.647 - Station identification. (United States)


    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 90.647 Section 90.647..., 851-869 Mhz, 896-901 Mhz, and 935-940 Mhz Bands § 90.647 Station identification. (a) Conventional... at 30 minute intervals. Such station identification shall be made on the lowest frequency in the base...

  3. 47 CFR 87.107 - Station identification. (United States)


    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 87.107 Section 87.107... Operating Requirements and Procedures Operating Procedures § 87.107 Station identification. (a) Aircraft... an airport to another location in that airport may be identified by a station identification...

  4. 47 CFR 101.213 - Station identification. (United States)


    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 101.213 Section 101.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Operational Requirements § 101.213 Station identification. Stations in these services are exempt...

  5. 47 CFR 22.313 - Station identification. (United States)


    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Station identification. 22.313 Section 22.313... Operational and Technical Requirements Operational Requirements § 22.313 Station identification. The licensee... identified in accordance with the requirements of this section. (a) Station identification is not required...

  6. Space teleoperations technology for Space Station evolution (United States)

    Reuter, Gerald J.


    Viewgraphs on space teleoperations technology for space station evolution are presented. Topics covered include: shuttle remote manipulator system; mobile servicing center functions; mobile servicing center technology; flight telerobotic servicer-telerobot; flight telerobotic servicer technology; technologies required for space station assembly; teleoperation applications; and technology needs for space station evolution.

  7. Lunar Station: The Next Logical Step in Space Development (United States)

    Pittman, Robert Bruce; Harper, Lynn; Newfield, Mark; Rasky, Daniel J.


    The International Space Station (ISS) is the product of the efforts of sixteen nations over the course of several decades. It is now complete, operational, and has been continuously occupied since November of 20001. Since then the ISS has been carrying out a wide variety of research and technology development experiments, and starting to produce some pleasantly startling results. The ISS has a mass of 420 metric tons, supports a crew of six with a yearly resupply requirement of around 30 metric tons, within a pressurized volume of 916 cubic meters, and a habitable volume of 388 cubic meters. Its solar arrays produce up to 84 kilowatts of power. In the course of developing the ISS, many lessons were learned and much valuable expertise was gained. Where do we go from here? The ISS offers an existence proof of the feasibility of sustained human occupation and operations in space over decades. It also demonstrates the ability of many countries to work collaboratively on a very complex and expensive project in space over an extended period of time to achieve a common goal. By harvesting best practices and lessons learned, the ISS can also serve as a useful model for exploring architectures for beyond low-­- earth-­-orbit (LEO) space development. This paper will explore the concept and feasibility for a Lunar Station. The Station concept can be implemented by either putting the equivalent capability of the ISS down on the surface of the Moon, or by developing the required capabilities through a combination of delivered materials and equipment and in situ resource utilization (ISRU). Scenarios that leverage existing technologies and capabilities as well as capabilities that are under development and are expected to be available within the next 3-­5 years, will be examined. This paper will explore how best practices and expertise gained from developing and operating the ISS and other relevant programs can be applied to effectively developing Lunar Station.

  8. Precision orbit raising trajectories. [solar electric propulsion orbital transfer program (United States)

    Flanagan, P. F.; Horsewood, J. L.; Pines, S.


    A precision trajectory program has been developed to serve as a test bed for geocentric orbit raising steering laws. The steering laws to be evaluated have been developed using optimization methods employing averaging techniques. This program provides the capability of testing the steering laws in a precision simulation. The principal system models incorporated in the program are described, including the radiation environment, the solar array model, the thrusters and power processors, the geopotential, and the solar system. Steering and array orientation constraints are discussed, and the impact of these constraints on program design is considered.

  9. An optical survey for space debris on highly eccentric and inclined MEO orbits (United States)

    Silha, J.; Schildknecht, T.; Hinze, A.; Flohrer, T.; Vananti, A.


    Optical surveys for space debris in high-altitude orbits have been conducted since more than ten years. Originally these efforts concentrated mainly on the geostationary region (GEO). Corresponding observation strategies, processing techniques and cataloguing approaches have been developed and successfully applied. The ESA GEO surveys, e.g., resulted in the detection of a significant population of small-size debris and later in the discovery of high area-to-mass ratio objects in GEO-like orbits. Comparably less experience (both, in terms of practical observation and strategy definition) is available for eccentric orbits that (at least partly) are in the MEO region, in particular for the Molniya-type orbits. Different survey and follow-up strategies for searching space debris objects in highly-eccentric MEO orbits, and to acquire orbits which are sufficiently accurate to catalog such objects and to maintain their orbits over longer time spans were developed. Simulations were performed to compare the performance of different survey and cataloguing strategies. Eventually, optical observations were conducted in the framework of an ESA study using ESA's Space Debris Telescope (ESASDT) the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. Thirteen nights of surveys of Molniya-type orbits were performed between January and August 2013. Eventually 255 surveys were performed during these thirteen nights corresponding to about 47 h of observations. In total 30 uncorrelated faint objects were discovered. On average one uncorrelated object was found every 100 min of observations. Some of these objects show a considerable brightness variation and have a high area-to-mass ratio as determined in the orbit estimation process.

  10. Level II Documentation of Launch Complex 31/32, Cape Canaveral Air Force Station, Florida (United States)


    stations when the satellite passed close enough overhead. The second type of satellite featured a “recoverable” system in which a capsule loaded with...project. NASA used a modified Titan II as the booster for Project Gemini capsules and a Mercury capsule – twice the size of earlier capsules was used...large inhabitable structure into orbit around the earth for use in collecting scientific data. Apollo- Soyuz was a cooperative project between the

  11. Space Environment Data Acquisition with the Kibo Exposed Facility on the International Space Station (ISS

    Directory of Open Access Journals (Sweden)

    T Obara


    Full Text Available The Space Environment Data Acquisition equipment (SEDA, which was mounted on the Exposed Facility (EF of the Japanese Experiment Module (JEM, also known as "Kibo" on the International Space Station (ISS, was developed to measure the space environment along the orbit of the ISS. This payload module, called the SEDA-Attached Payload (AP, began to measure the space environment in August 2009. This paper reports the mission objectives, instrumentation, and current status of the SEDA-AP.

  12. Management of preseptal and orbital cellulitis (United States)

    Lee, Seongmu; Yen, Michael T.


    Orbital cellulitis describes an infection involving the soft tissues posterior to the orbital septum, including the fat and muscle within the bony orbit. This condition may be associated with severe sight and life-threatening complications. Despite significant advances in antimicrobial therapies and diagnostic technologies, the management of orbital cellulitis often remains challenging, and rapid diagnosis and prompt initiation of therapy are important in minimizing complications and optimizing outcomes. This review summarizes the distinctive characteristics of preseptal and orbital cellulitis, with a focus on anatomic considerations, predisposing conditions, approaches to evaluation, and management strategies. PMID:23960899

  13. Linear magnetoelectric effect by orbital magnetism. (United States)

    Scaramucci, A; Bousquet, E; Fechner, M; Mostovoy, M; Spaldin, N A


    We use symmetry analysis and first-principles calculations to show that the linear magnetoelectric effect can originate from the response of orbital magnetic moments to the polar distortions induced by an applied electric field. Using LiFePO(4) as a model compound we show that spin-orbit coupling partially lifts the quenching of the 3d orbitals and causes small orbital magnetic moments (μ((L)) ≈ 0.3 μ(B)) parallel to the spins of the Fe(2+) ions. An applied electric field E modifies the size of these orbital magnetic moments inducing a net magnetization linear in E.

  14. [Orbital emphysema: radiologic and ophthalmologic findings]. (United States)

    Solanas-Álava, Susana; Rodríguez-Marco, Nelson Arturo; Artigas-Martín, José María; Fernández-Larripa, Sonia


    Orbital emphysema, or the presence of air in orbital tissues, is normally associated with an injury although it can arise when a Valsalva maneuver causes an increase in upper airway pressure. This potential complication of an orbital wall fracture, usually in the ethmoid bone, occurs in 50% of such cases. On fracture, air passes from the nasal fossa, sinuses, or subcutaneous tissue. The condition is benign and transient in most cases, and loss of vision is rare. No protocol for treating orbital emphysema with serious complications in which vision is affected has been established. We report 9 cases of orbital emphysema, describing events leading to the fractures, radiologic findings, and treatments.


    Putney, B.


    range rate. The observation errors considered are bias, timing, transit time, tracking station location, polar motion, solid earth tidal displacement, ocean loading displacement, tropospheric and ionospheric refraction, and space plasma. The force model elements considered are the earth's potential, the gravitational constant, solid earth tides, polar radiation pressure, earth reflected radiation, atmospheric drag, and thrust errors. The errors are propagated along the satellite orbital path. The ORAN program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 570K of 8-bit bytes. The ORAN program was developed in 1973 and was last updated in 1980.

  16. The Lunar Space Tug: A sustainable bridge between low Earth orbits and the Cislunar Habitat (United States)

    Mammarella, M.; Paissoni, C. A.; Viola, N.; Denaro, A.; Gargioli, E.; Massobrio, F.


    The International Space Station is the first space human outpost and over the last 15 years, it has represented a peculiar environment where science, technology and human innovation converge together in a unique microgravity and space research laboratory. With the International Space Station entering the second part of its life and its operations running steadily at nominal pace, the global space community is starting planning how the human exploration could move further, beyond Low-Earth-Orbit. According to the Global Exploration Roadmap, the Moon represents the next feasible path-way for advances in human exploration towards the nal goal, Mars. Based on the experience of the ISS, one of the most widespread ideas is to develop a Cislunar Station in preparation of long duration missions in a deep space environment. Cislunar space is de ned as the area of deep space under the influence of Earth-Moon system, including a set of special orbits, e.g. Earth-Moon Libration points and Lunar Retrograde Orbit. This habitat represents a suitable environment for demonstrating and testing technologies and capabilities in deep space. In order to achieve this goal, there are several crucial systems and technologies, in particular related to transportation and launch systems. The Orion Multi-Purpose Crew Vehicle is a reusable transportation capsule designed to provide crew transportation in deep space missions, whereas NASA is developing the Space Launch System, the most powerful rocket ever built, which could provide the necessary heavy-lift launch capability to support the same kind of missions. These innovations would allow quite-fast transfers from Earth to the Cislunar Station and vice versa, both for manned and unmanned missions. However, taking into account the whole Concept of Operations for both the growth and sustainability of the Cislunar Space Station, the Lunar Space Tug can be considered as an additional, new and fundamental element for the mission architecture. The

  17. Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites (United States)

    Lejba, P.; Schillak, S.


    The positions and velocities of the four Satellite Laser Ranging (SLR) stations: Yarragadee (7090), Greenbelt (7105), Graz (7839) and Herstmonceux (7840) from 5-year (2001-2005) SLR data of low orbiting satellites (LEO): Ajisai, Starlette and Stella were determined. The orbits of these satellites were computed from the data provided by 20 SLR stations. All orbital computations were performed by means of NASA Goddard’s GEODYN-II program. The geocentric coordinates were transformed to the topocentric North-South, East-West and Vertical components in reference to ITRF2005. The influence of the number of normal points per orbital arc and the empirical acceleration coefficients on the quality of station coordinates was studied. To get standard deviation of the coordinates determination lower than 1 cm, the number of the normal points per site had to be greater than 50. The computed positions and velocities were compared to those derived from LAGEOS-1/LAGEOS-2 data. Three parameters were used for this comparison: station coordinates stability, differences from ITRF2005 positions and velocities. The stability of coordinates of LEO satellites is significantly worse (17.8 mm) than those of LAGEOS (7.6 mm), the better results are for Ajisai (15.4 mm) than for Starlette/Stella (20.4 mm). The difference in positions between the computed values and ITRF2005 were little bit worse for Starlette/Stella (6.6 mm) than for LAGEOS (4.6 mm), the results for Ajisai were five times worse (29.7 mm) probably due to center of mass correction of this satellite. The station velocities with some exceptions were on the same level (≈1 mm/year) for all satellites. The results presented in this work show that results from Starlette/Stella are better than those from Ajisai for station coordinates determination. We can applied the data from LEO satellites, especially Starlette and Stella for determination of the SLR station coordinates but with two times lower accuracy than when using LAGEOS

  18. Neutron proton crystallography station (PCS)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory


    The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

  19. Space Station Electrical Power System (United States)

    Labus, Thomas L.; Cochran, Thomas H.


    The purpose of this paper is to describe the design of the Space Station Electrical Power System. This includes the Photovoltaic and Solar Dynamic Power Modules as well as the Power Management and Distribution System (PMAD). In addition, two programmatic options for developing the Electrical Power System will be presented. One approach is defined as the Enhanced Configuration and represents the results of the Phase B studies conducted by the NASA Lewis Research Center over the last two years. Another option, the Phased Program, represents a more measured approach to reaching about the same capability as the Enhanced Configuration.

  20. Orbital analysis of two-color laser ranging (United States)

    Schillak, S. R.


    The poster presents the results of analysis of Zimmerwald SLR data for two colors 423nm and 846 nm. Two-color laser ranging were performed by Zimmerwald SLR station from August 2002 to January 2008. The results in each color were treated as two independent stations 7810 Blue and 7810 Infrared. The station positions were determined by NASA Goddard's orbital program GEODYN-II from results of LAGEOS-1 and LAGEOS-2 satellites. The NEU positions stability were equal to 3.5 mm (N), 3.2 mm (E), 16.5 mm (U) for blue and 3.2 mm (N), 2.9 mm (E), 14.6 (U) for infrared. In the period of study were 47 common monthly points for both colors. The difference between N, E, U components in blue and infrared for common points were equal to 0.8×2.0 mm, 0.4×1.9 mm and -4.8×8.7 mm respectively. The differences between Range Biases for both colors independently for LAGEOS-1 and LAGEOS-2 were equal to -5.7×8.6 mm and for -5.0×9.5 mm respectively. The same for both satellites annual wave with amplitude 10 mm was detected. This effect can to be explain by differences in atmospheric correction for each color. This same analysis for station Concepcion (7405) couldn't to be performed due to only 8 common points. In future very important should be laser ranging in two-colors 532 nm and 1064 nm for confirmation presented here results, especially that a new sensitive APD detectors for 1064 nm are now available. The atmospheric correction is critical for SLR accuracy upgrading.