WorldWideScience

Sample records for salty basin water

  1. Hydrochemical Characteristics and Formation of the Saline or Salty Springs in Eastern Sichuan Basin of China

    Science.gov (United States)

    Zhou, X.

    2017-12-01

    Saline or salty springs provide important information on the hydrogeochemical processes and hydrology within subsurface aquifers. More than 20 saline and salty springs occur in the core of anticlines in the eastern Sichuan Basin in southwestern China where the Lower and Middle Triassic carbonates outcrop. Water samples of 8 saline and salty springs (including one saline hot spring) were collected for analyses of the major and minor constituents, trace elements and stable oxygen and hydrogen isotopes. The TDS of the springs range from 4 to 83 g/L, and they are mainly of Cl-Na type. Sr, Ba and Li are the predominant trace elements. The δ2H and δ18O of the water samples indicate that they are of meteoric origin. The source of salinity of the springs originates from dissolution of minerals in the carbonates, including halite, gypsum, calcite and dolomite. The formation mechanism of the springs is that groundwater receives recharge from infiltration of precipitation, undergoes shallow or deep circulation in the core of the anticline and incongruent dissolution of the salt-bearing carbonates occurs, and emerges in the river valley in the form of springs with relatively high TDS. The 8 springs can be classified into 4 springs of shallow groundwater circulation and 4 springs of deep groundwater circulation according to the depth of groundwater circulation, 7 springs of normal temperature and 1 hot spring according to temperature. There are also 2 up-flow springs: the carbonate aquifers are overlain by relatively impervious sandstone and shale, groundwater may flows up to the ground surface through the local portion of the overlying aquiclude where fractures were relatively well developed, and emerges as an up-flow spring. Knowledge of the hydrochemical characteristics and the geneses of the saline and salty springs are of important significance for the utilization and preservation of the springs.

  2. Why is the ocean salty?

    Science.gov (United States)

    Swenson, Herbert

    1994-01-01

    All water, even rain water, contains dissolved chemicals which scientists call "salts." But not all water tastes salty. Water is fresh or salty according to individual judgment, and in making this decision man is more convinced by his sense of taste than by a laboratory test. It is one's taste buds that accept one water and reject another.

  3. A simulation study of homogeneous ice nucleation in supercooled salty water

    Science.gov (United States)

    Soria, Guiomar D.; Espinosa, Jorge R.; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2018-06-01

    We use computer simulations to investigate the effect of salt on homogeneous ice nucleation. The melting point of the employed solution model was obtained both by direct coexistence simulations and by thermodynamic integration from previous calculations of the water chemical potential. Using a seeding approach, in which we simulate ice seeds embedded in a supercooled aqueous solution, we compute the nucleation rate as a function of temperature for a 1.85 NaCl mol per water kilogram solution at 1 bar. To improve the accuracy and reliability of our calculations, we combine seeding with the direct computation of the ice-solution interfacial free energy at coexistence using the Mold Integration method. We compare the results with previous simulation work on pure water to understand the effect caused by the solute. The model captures the experimental trend that the nucleation rate at a given supercooling decreases when adding salt. Despite the fact that the thermodynamic driving force for ice nucleation is higher for salty water for a given supercooling, the nucleation rate slows down with salt due to a significant increase of the ice-fluid interfacial free energy. The salty water model predicts an ice nucleation rate that is in good agreement with experimental measurements, bringing confidence in the predictive ability of the model. We expect that the combination of state-of-the-art simulation methods here employed to study ice nucleation from solution will be of much use in forthcoming numerical investigations of crystallization in mixtures.

  4. Super-Maxwellian helium evaporation from pure and salty water

    International Nuclear Information System (INIS)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L.; Nathanson, Gilbert M.

    2016-01-01

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient

  5. Super-Maxwellian helium evaporation from pure and salty water

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L., E-mail: skinner@chem.wisc.edu, E-mail: nathanson@chem.wisc.edu; Nathanson, Gilbert M., E-mail: skinner@chem.wisc.edu, E-mail: nathanson@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  6. Environmental engineering interventions to control the expansion of salty lakes and marshes in siwa oasis.

    Science.gov (United States)

    El-Naggar, Hesham M

    2010-01-01

    The main activity in Siwa Oasis society is the agriculture, it depends on the groundwater. The agricultural drainage water and the unused saline water of naturally flowing springs are poured into four main salty lakes. This leads to an increase in the surface area of the saltwater lakes, marshes and rise in water table levels. to investigate some environmental engineering interventions to control the expansion of saltwater surface area in Siwa Oasis. Field visits, observation sheets and questionnaire survey with farmers were carried out to find out the main environmental problems in the Oasis. Environmental survey was carried out to collect different rocks and stones samples as natural construction materials from the desert that surrounds Siwa Oasis. Physical analyses, chemical composition and principal mechanical parameters were conducted on the collected samples. After the analysis, the safa rocks were the best natural construction materials in the Siwa Oasis. So, it could be used to build a construction wall around the salty lakes and marshes. Walls could convert the lakes into basins. The water will be evaporated at high rate during summer season by solar energy. After evaporation, the remaining salty rock named "karshef" can be easily collected from the lakes to be used as a low cost construction material for traditional building houses in Siwa Oasis. Therefore, the water level of lakes will be reduced to dryness and land could be reused as agricultural land. Among different rocks, safa rocks proved to be the best natural construction materials to construct a defense wall around the lakes and marshes. They will save about 80% of the concrete cost. The formed karshef rocks from the lakes will be used in the construction of the traditional building houses which will save about 90% of the concrete buildings. This intervention will save energy as it exchanges fuel consuming man-made material such as cement with naturally made material. This can reduce the green

  7. Variation in saltiness perception of soup with respect to soup serving temperature and consumer dietary habits.

    Science.gov (United States)

    Kim, Jeong-Weon; Samant, Shilpa S; Seo, Yoojin; Seo, Han-Seok

    2015-01-01

    Little is known about the effect of serving temperature on saltiness perception in food products such as soups that are typically consumed at high temperature. This study focused on determining whether serving temperature modulates saltiness perception in soup-base products. Eight trained panelists and 62 untrained consumers were asked to rate saltiness intensities in salt water, chicken broth, and miso soup, with serving temperatures of 40, 50, 60, 70, and 80 °C. Neither trained nor untrained panelists were able to find significant difference in the saltiness intensity among salt water samples served at these five different temperatures. However, untrained consumers (but not trained panelists) rated chicken broth and miso soup to be significantly less salty when served at 70 and/or 80 °C compared to when served at 40 to 60 °C. There was an interaction between temperature-related perceived saltiness and preference; for example, consumers who preferred soups served at lower temperatures found soups served at higher temperatures to be less salty. Consumers who frequently consumed hot dishes rated soup samples served at 60 °C as saltier than consumers who consumed hot dishes less frequently. This study demonstrates that soup serving temperature and consumer dietary habits are influential factors affecting saltiness perception of soup. Published by Elsevier Ltd.

  8. Bright Soil Near 'McCool': Salty Deja Vu?

    Science.gov (United States)

    2006-01-01

    While driving eastward toward the northwestern flank of 'McCool Hill,' the wheels of NASA's Mars Exploration Rover Spirit churned up the largest amount of bright soil discovered so far in the mission. This image from Spirit's navigation camera, taken on the rover's 787th Martian day, or sol, of exploration (March 21, 2006), shows the strikingly light tone and large extent of the deposit. A few days earlier, Spirit's wheels unearthed a small patch of light-toned material informally named 'Tyrone.' In images from Spirit's panoramic camera, 'Tyrone' strongly resembled both 'Arad' and 'Paso Robles,' two patches of light-toned soils discovered earlier in the mission. Spirit found 'Paso Robles' in 2005 while climbing 'Cumberland Ridge' on the western slope of 'Husband Hill.' In early January 2006, the rover discovered 'Arad' on the basin floor just south of 'Husband Hill.' Spirit's instruments confirmed that those soils had a salty chemistry dominated by iron-bearing sulfates. Spirit's miniature thermal emission spectrometer is analyzing this most recent discovery, and researchers will compare it with those other deposits. These discoveries indicate that light-toned soil deposits might be widely distributed on the flanks and valley floors of the 'Columbia Hills' region in Gusev Crater on Mars. The salts may record the past presence of water, as they are easily mobilized and concentrated in liquid solution.

  9. Enhancing saltiness in emulsion based foods

    Directory of Open Access Journals (Sweden)

    Lad Mita

    2012-07-01

    Full Text Available Abstract Background The concept of enhancing saltiness perception in emulsions and a liquid food formulated with the emulsions (ambient vegetable soup through increasing salt concentration in the continuous phase while retaining the fat content of the (aqueous continuous product was evaluated. This was accomplished by increasing the droplet phase volume using duplex emulsion technology. Viscosity and droplet size distribution was measured. Saltiness evaluation was based on simple paired comparison testing (2-Alternate Forced Choice tests, BS ISO 5495:2007. Results Single and duplex emulsions and emulsion-based products had comparable mean oil droplet diameters (25 to 30 μm; however, viscosity of the duplex emulsion systems was considerably higher. Sensory assessment of saltiness of emulsion pairs (2AFC indicated duplex technology enhanced saltiness perception compared to a single emulsion product at the same salt content (6.3 g/100 g in both simple emulsions and the formulated food product (P = 0.0596 and 0.0004 respectively although assessors noted the increased viscosity of the duplex systems. The formulated food product also contained pea starch particles which may have aided product mixing with saliva and thus accelerated tastant transport to the taste buds. Lowering salt content in the duplex systems (to levels of aqueous phase salt concentration similar to the level in the single systems resulted in duplex systems being perceived as less salty than the single system. It appears that the higher viscosity of the duplex systems could not be “overruled” by enhanced mixing through increased droplet phase volume at lowered salt content. Conclusions The results showed that salt reduction may be possible despite the added technology of duplex systems increasing the overall measured viscosity of the product. The changes in viscosity behavior impact mouthfeel, which may be exploitable in addition to the contribution towards salt

  10. Hydrochemical evaluation of groundwater quality in the Çavuşçayı basin, Sungurlu-Çorum, Turkey

    Science.gov (United States)

    Çelik, Mehmet; Yıldırım, Turgut

    2006-06-01

    The purpose of this study is to investigate the quality and usage possibility of groundwater in the Çavuşçayı basin and suggest the best water structure for the groundwater use. Results from hydrochemical analyses reveal that groundwater is mostly affected by salty (Na+ Cl-) waters of the Incik Formation and brackish (Ca2+, Mg2+ SO{4/2-}) waters of the Bayındır Formation. The Alibaba saltpan discharged (2 l/s) from the Incik Formation is used for salt production. In the basin, salinity risk increases with depth and along the groundwater flow direction. Therefore, shallow water and trenches opened in the alluvium aquifer at the east of the basin were determined to yield suitable water with no Na+ and Cl- contamination. Following the heavy rainy period, waters of less salinity and conductivity are possibly used for agriculture.

  11. On the Mediterranean Sea inter-basin exchanges and nutrient dynamics

    Science.gov (United States)

    Rupolo, V.; Ribera D'Alcalà, M.; Iudicone, D.; Artale, V.

    2009-04-01

    The Mediterranean Sea is an evaporative basin in which the deficit of water is supplied by the inflow from the Gibraltar Strait of Atlantic Water. The net result of the air sea interactions in the entire basin is an outflow at Gibraltar of a salty water that is mainly constituted by the Levantin Intermediate Water, formed in the eastern part of the basin. Despite this simplified pattern, the circulation in the Mediterranean is rather complex. Most of the Mediterranean sub-basins are characterized by water mass formation processes and the presence of sills and straits strongly influence both the spreading and the mixing of intermediate and deep waters. In this context a Lagrangian diagnostics applied to numerical results was used to quantify mass transport in the main pathways of the upper and lower cells of the Mediterranean thermohaline circulation as they results from OGCM simulations. Lagrangian diagnostics reveals to be very useful to quantify both transports between different regions and the associated spectrum of transit times by means of pdf distribution of particles transit times between the different regions of the basin. This method is very effective to estimate the contribution of different water masses in isopycnal and diapycnal transformation processes and in reconstructing the fate of tracers. We use here these previous results on the basin circulation for better understanding the nutrient dynamics within the basin where the inputs from the different sources (atmosphere, runoff and open ocean) have similar order of magnitude. This, to the aim of building scenarios on the impact of climate driven changes in elemental fluxes to the basin on the internal nutrient dynamics.

  12. Visibility in the Netherlands during New Year's fireworks: The role of soot and salty aerosol products

    Science.gov (United States)

    ten Brink, Harry; Henzing, Bas; Otjes, René; Weijers, Ernie

    2018-01-01

    The visibility on New Year's nights in the Netherlands is low during stagnant weather. This is due to the scattering and absorption of light by the aerosol-smoke from the fireworks. We made an assessment of the responsible aerosol-species. The investigation took place during the New Year's night of 2009. Measurements were made at a regional site in the centre of the country away from specific local sources. An Integrating Nephelometer measured the light-scattering by the inherent compounds after removal of water from the aerosol by drying the air. The actual light-scattering was determined in an open-air scatterometer; it was a factor of five higher than the ;dry; value. The difference in actual and ;dry; light-scattering can only be explained by water-uptake of the salty hygroscopic components of the aerosol. This hypothesis is substantiated by measurements of the composition of the aerosol. The size-dependent concentrations of the salty ionic species were determined on-line with a MARGA-;sizer;. These components were for a large part in particles in the size range that most effectively scatter light. The ;dry; light-scattering was exerted by the inorganic salt components and the sooty carbonaceous material alike. However, the salty products from the fireworks are hygroscopic and take up water at the high relative humidities occurring that night. This explains the fivefold larger light-scattering by the wet ambient aerosol as compared to that by the dry aerosol in the integrating nephelometer. The visibility, which is the inverse of the open-air scattering, is thus indirectly governed by the salty products of the fireworks due to their uptake of water. Under stagnant weather conditions during New Year's nights in the Netherlands both the aerosol concentrations and the relative humidity are high; this implies that the ionic species govern the low visibilities in general, be it via their uptake of water.

  13. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  14. Bottom water circulation in Cascadia Basin

    Science.gov (United States)

    Hautala, Susan L.; Paul Johnson, H.; Hammond, Douglas E.

    2009-10-01

    A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below ˜2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.

  15. Gas-Microjet Reactive Scattering: Collisions of HCl and DCl with Cool Salty Water.

    Science.gov (United States)

    Faust, Jennifer A; Sobyra, Thomas B; Nathanson, Gilbert M

    2016-02-18

    Liquid microjets provide a powerful means to investigate reactions of gases with salty water in vacuum while minimizing gas-vapor collisions. We use this technique to explore the fate of gaseous HCl and DCl molecules impinging on 8 molal LiCl and LiBr solutions at 238 K. The experiments reveal that HCl or DCl evaporate infrequently if they become thermally accommodated at the surface of either solution. In particular, we observe minimal thermal desorption of HCl following HCl collisions and no distinct evidence for rapid, interfacial DCl→HCl exchange following DCl collisions. These results imply that surface thermal motions are not generally strong enough to propel momentarily trapped HCl or DCl back into the gas phase before they ionize and disappear into solution. Instead, only HCl and DCl molecules that scatter directly from the surface escape entry. These recoiling molecules transfer less energy upon collision to LiBr/H2O than to LiCl/H2O, reflecting the heavier mass of Br(-) than of Cl(-) in the interfacial region.

  16. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  17. Biomethanation of salty cheese whey using multichamber anaerobic bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Chirag; Madamwar, Datta [Sardar Patel Univ., Gujarat (India)

    1998-07-01

    To obtain enriched methane content and improve anaerobic digestion of salty cheese whey after diluting with total dairy waste water, a multichamber anaerobic bioreactor has been developed using different combination of bedding materials in different chambers. Best performance has been obtained at 37''oC under the combination of polystyrene chips, pumice stones and PVC beads as supporting materials, and operating at 2 day hydraulic retention time. Maximum gas production of 3.2 litre/litre of digester/day with methane content of 68% and 83% reduction in COD have been noticed. (Author)

  18. Hydrogeochemistry and isotopic study of ground and surface water in the Ayensu Basin of the Central Region

    International Nuclear Information System (INIS)

    Zakaria, N.

    2010-01-01

    The Central Region is a water stressed area. Some of the boreholes drilled by the people become salty and therefore resort to surface waters which are most of the time affected by water borne diseases. The main aim of the study is to understand the hydrogeochemical and isotopic hydrology of the Ayensu Basin. It mainly used hydrochemistry, environmental isotopes and Piper diagrams to obtain an understanding of the functioning of the system. 23 borehole samples, 2 samples from hand dug wells and 4 samples form the River Ayensu were taken from the Ayensu Basin. The samples were analyzed for physical parameters, major ions as well as trace elements using spectrophotometer, atomic absorption spectrophotometry (AAS) and Neutron activation analysis. The results showed that the groundwater in the study is fresh (TDS 75.2-804mg/l) and generally mildly acidic to neutral (pH 5.53-7.21). The ground water quality of the study area was good since most of the parameters measured were within the World Health Organisation (WHO) recommended values. However, a few, such as aluminium, manganese and iron showed elevated concentrations in most of the samples. The Piper trilinear diagram shows the major water types as mainly Na-Cl, Na-HC0 3 -Cl, Na-Cl-SO 4 and Na-Mg-Cl. A plot of δ 18 O versus δ 2 H showed the groundwaters clustering along the local meteoric water line indicating that groundwaters do not undergo significant evaporation before recharge. The trace element concentrations were found to be generally low with Al being the highest, followed by copper and manganese, cadmium was found to be below the detection limit of 0.001mg/l. Concentrations of Cr, Zn, and As were also very small. (au)

  19. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution.

    Science.gov (United States)

    Degefu, Dagmawi Mulugeta; Weijun, He; Zaiyi, Liao; Liang, Yuan; Zhengwei, Huang; Min, An

    2018-02-01

    Currently fresh water scarcity is an issue with huge socio-economic and environmental impacts. Transboundary river and lake basins are among the sources of fresh water facing this challenge. Previous studies measured blue water scarcity at different spatial and temporal resolutions. But there is no global water availability and footprint assessment done at country-basin mesh based spatial and monthly temporal resolutions. In this study we assessed water scarcity at these spatial and temporal resolutions. Our results showed that around 1.6 billion people living within the 328 country-basin units out of the 560 we assessed in this study endures severe water scarcity at least for a month within the year. In addition, 175 country-basin units goes through severe water scarcity for 3-12 months in the year. These sub-basins include nearly a billion people. Generally, the results of this study provide insights regarding the number of people and country-basin units experiencing low, moderate, significant and severe water scarcity at a monthly temporal resolution. These insights might help these basins' sharing countries to design and implement sustainable water management and sharing schemes.

  20. Mine water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Komissarov, S V

    1980-10-01

    This article discusses composition of chemical compounds dissolved or suspended in mine waters in various coal basins of the USSR: Moscow basin, Kuzbass, Pechora, Kizelovsk, Karaganda, Donetsk and Chelyabinsk basins. Percentage of suspended materials in water depending on water source (water from water drainage system of dust suppression system) is evaluated. Pollution of mine waters with oils and coli bacteria is also described. Recommendations on construction, capacity of water settling tanks, and methods of mine water treatment are presented. In mines where coal seams 2 m or thicker are mined a system of two settling tanks should be used: in the upper one large grains are settled, in the lower one finer grains. The upper tank should be large enough to store mine water discharged during one month, and the lower one to store water discharged over two months. Salty waters from coal mines mining thin coal seams should be treated in a system of water reservoirs from which water evaporates (if climatic conditions permit). Mine waters from mines with thin coal seams but without high salt content can be treated in a system of long channels with water plants, which increase amount of oxygen in treated water. System of biological treatment of waste waters from mine wash-houses and baths is also described. Influence of temperature, sunshine and season of the year on efficiency of mine water treatment is also assessed. (In Russian)

  1. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  2. A framework model for water-sharing among co-basin states of a river basin

    Science.gov (United States)

    Garg, N. K.; Azad, Shambhu

    2018-05-01

    A new framework model is presented in this study for sharing of water in a river basin using certain governing variables, in an effort to enhance the objectivity for a reasonable and equitable allocation of water among co-basin states. The governing variables were normalised to reduce the governing variables of different co-basin states of a river basin on same scale. In the absence of objective methods for evaluating the weights to be assigned to co-basin states for water allocation, a framework was conceptualised and formulated to determine the normalised weighting factors of different co-basin states as a function of the governing variables. The water allocation to any co-basin state had been assumed to be proportional to its struggle for equity, which in turn was assumed to be a function of the normalised discontent, satisfaction, and weighting factors of each co-basin state. System dynamics was used effectively to represent and solve the proposed model formulation. The proposed model was successfully applied to the Vamsadhara river basin located in the South-Eastern part of India, and a sensitivity analysis of the proposed model parameters was carried out to prove its robustness in terms of the proposed model convergence and validity over the broad spectrum values of the proposed model parameters. The solution converged quickly to a final allocation of 1444 million cubic metre (MCM) in the case of the Odisha co-basin state, and to 1067 MCM for the Andhra Pradesh co-basin state. The sensitivity analysis showed that the proposed model's allocation varied from 1584 MCM to 1336 MCM for Odisha state and from 927 to 1175 MCM for Andhra, depending upon the importance weights given to the governing variables for the calculation of the weighting factors. Thus, the proposed model was found to be very flexible to explore various policy options to arrive at a decision in a water sharing problem. It can therefore be effectively applied to any trans-boundary problem where

  3. Water security evaluation in Yellow River basin

    Science.gov (United States)

    Jiang, Guiqin; He, Liyuan; Jing, Juan

    2018-03-01

    Water security is an important basis for making water security protection strategy, which concerns regional economic and social sustainable development. In this paper, watershed water security evaluation index system including 3 levels of 5 criterion layers (water resources security, water ecological security and water environment security, water disasters prevention and control security and social economic security) and 24 indicators were constructed. The entropy weight method was used to determine the weights of the indexes in the system. The water security index of 2000, 2005, 2010 and 2015 in Yellow River basin were calculated by linear weighting method based on the relative data. Results show that the water security conditions continue to improve in Yellow River basin but still in a basic security state. There is still a long way to enhance the water security in Yellow River basin, especially the water prevention and control security, the water ecological security and water environment security need to be promoted vigorously.

  4. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    Science.gov (United States)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  5. Saltiness enhancement by the characteristic flavor of dried bonito stock.

    Science.gov (United States)

    Manabe, M

    2008-08-01

    There is a pressing need for the development of ways of preparing palatable salt-reduced foods to reduce the salt intake of the Japanese population. The salt-reducing effect of the characteristic flavors other than umami of dried bonito stock, which is widely used in everyday Japanese food, was examined by sensory evaluation. In the 1st sensory evaluation, the effect was evaluated in a model solution. The saltiness of 0.80% NaCl solution was equivalent to that of 0.12% monosodium glutamate (MSG) solution containing 0.81% NaCl and dried bonito stock containing 0.68% NaCl. Saltiness enhancement could not be found when MSG solution was used, but was found with 6% dried bonito stock. The 2nd evaluation examined whether the effect was valid for 2 everyday Japanese foods--traditional Japanese clear soup (sumashi-jiru) and steamed egg custard (tamagodoufu). Although enhancement of saltiness by dried bonito stock could not be clearly demonstrated in the soup, a change in NaCl concentration within 15% did not affect the palatability of the soup. However, dried bonito stock not only enhanced the saltiness but also improved the palatability of steamed egg custard. These findings are expected to be useful for improving the palatability of salt-reduced food.

  6. Water and Benefit Sharing in Transboundary River Basins

    Science.gov (United States)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  7. Characteristic mega-basin water storage behavior using GRACE.

    Science.gov (United States)

    Reager, J T; Famiglietti, James S

    2013-06-01

    [1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km 2 ), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world's largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤  E f  ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation.

  8. Hydrogeology and water quality of the Chakari Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Flanagan, Sarah M.; Chalmers, Ann T.

    2014-01-01

    The hydrogeology and water quality of the Chakari Basin, a 391-square-kilometer (km2) watershed near Kabul, Afghanistan, was assessed by the U.S. Geological Survey and the Afghanistan Geological Survey to provide an understanding of the water resources in an area of Afghanistan with considerable copper and other mineral resources. Water quality, chemical, and isotopic samples were collected at eight wells, four springs, one kareze, and the Chakari River in a basin-fill aquifer in the Chakari Basin by the Afghanistan Geological Survey. Results of water-quality analyses indicate that some water samples in the basin had concentrations of chemical constituents that exceeded World Health Organization guidelines for nitrate, sodium, and dissolved solids and some of the samples also had elevated concentrations of trace elements, such as copper, selenium, strontium, uranium, and zinc. Chemical and isotopic analyses, including for tritium, chlorofluorocarbons, and carbon-14, indicate that most wells contain water with a mixture of ages from young (years to decades) to old (several thousand years). Three wells contained groundwater that had modeled ages ranging from 7,200 to 7,900 years old. Recharge from precipitation directly on the basin-fill aquifer, which covers an area of about 150 km2, is likely to be very low (7 × 10-5 meters per day) or near zero. Most recharge to this aquifer is likely from rain and snowmelt on upland areas and seepage losses and infiltration of water from streams crossing the basin-fill aquifer. It is likely that the older water in the basin-fill aquifer is groundwater that has travelled along long and (or) slow flow paths through the fractured bedrock mountains surrounding the basin. The saturated basin-fill sediments in most areas of the basin are probably about 20 meters thick and may be about 30 to 60 meters thick in most areas near the center of the Chakari Basin. The combination of low recharge and little storage indicates that groundwater

  9. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  10. Columbia Basin residents' view on water : final report

    International Nuclear Information System (INIS)

    Ronalds, L.

    2005-01-01

    Currently, there is no strategic plan for water management in the Columbia Basin to ensure that long-term water quality and quantity issues are addressed according to residents' values and views. The Columbia Basin Trust was therefore created to address water management issues. It devised a comprehensive water information questionnaire and sent it to a broad range of respondents that fell within the Canadian portion of the Columbia Basin. These included municipal, regional, provincial and federal government agencies; community and watershed groups; industry and agriculture groups; recreation and tourism groups; and, First Nations groups. The most prevalent concern among the respondents pertained to issues surrounding domestic water consumption, and the most widespread water issue in the Columbia Basin was that of water conservation. The state of aquatic ecosystems was also of significant importance to respondents. Respondents also expressed concern for the cost of providing potable water and for the sustainability of rivers and their tributaries within the Basin. The survey also found a concern for the fluctuating reservoir levels within the Basin and the protection of drinking water from contamination. In order to address the wide range of water related issues, respondents indicated that an education program should be implemented to address the general nature of the hydrologic cycle; how much water is being used for toilets, lawn watering, and showers; the cost of potable water; the importance of water on a local and global level; the importance and nature of watersheds; the ways people influence and pollute water; the challenges of cleaning up contaminated water sources; the community's water sources; the role of water in sustaining food growth; and, challenges and consequences of other communities that experience severe water quality and quantity issues. It was suggested that the education program should address a water conservation plan, including conservation

  11. Enhancement of Saltiness Perception by Monosodium Glutamate Taste and Soy Sauce Odor: A Near-Infrared Spectroscopy Study.

    Science.gov (United States)

    Onuma, Takuya; Maruyama, Hiroaki; Sakai, Nobuyuki

    2018-02-26

    Previous studies have reported that the umami taste of monosodium l-glutamate (MSG) and salty-smelling odors (e.g., soy sauce, bacon, sardines) enhance the perception of saltiness. This study aimed to investigate the neural basis of the enhancement of saltiness in human participants using functional near-infrared spectroscopy (fNIRS). University students who had passed a taste panel test participated in this study. Sodium chloride solutions were presented with or without either 0.10% MSG or the odor of soy sauce. The participants were asked to drink a cup of the stimulus and to evaluate only saltiness intensity in Experiment 1, as well as other sensory qualities in Experiment 2, and temporal brain activity was measured using fNIRS. In Experiment 3, the participants were asked to evaluate saltiness intensity using the time-intensity (TI) method, and the response of the parotid salivary glands was measured using fNIRS. The fNIRS data showed that the added MSG and soy sauce enhanced the hemodynamic response in temporal brain regions, including the frontal operculum, but no effect on the hemodynamic salivary responses was detected. These results indicate that the perceived enhancement of saltiness occurs in the brain region that is involved in central gustatory processing. Furthermore, the results of the sensory evaluations suggest that enhancement of saltiness by the addition of MSG is mainly based on fusion of the salty-like property of MSG and saltiness of NaCl, whereas enhancement by the addition of soy sauce odor is mainly based on modulation of the temporal dynamics of saltiness perception.

  12. Determination of saltiness from the laws of thermodynamics--estimating the gas constant from psychophysical experiments.

    Science.gov (United States)

    Norwich, K H

    2001-10-01

    One can relate the saltiness of a solution of a given substance to the concentration of the solution by means of one of the well-known psychophysical laws. One can also compare the saltiness of solutions of different solutes which have the same concentration, since different substances are intrinsically more salty or less salty. We develop here an equation that relates saltiness both to the concentration of the substance (psychophysical) and to a distinguishing physical property of the salt (intrinsic). For a fixed standard molar entropy of the salt being tasted, the equation simplifies to Fechner's law. When one allows for the intrinsic 'noise' in the chemoreceptor, the equation generalizes to include Stevens's law, with corresponding decrease in the threshold for taste. This threshold reduction exemplifies the principle of stochastic resonance. The theory is validated with reference to experimental data.

  13. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Basin Conservation Advisory Group, Yakima River Basin Water Enhancement Project, established by the... Water Conservation Program. DATES: The meeting will be held on Tuesday, August 21, 2012, from 1 p.m. to... the implementation of the Water Conservation Program, including the applicable water conservation...

  14. Eco-environmental impact of inter-basin water transfer projects: a review.

    Science.gov (United States)

    Zhuang, Wen

    2016-07-01

    The objective reality of uneven water resource distribution and imbalanced water demand of the human society makes it inevitable to transfer water. It has been an age-old method to adopt the inter-basin water transfers (IBTs) for alleviating and even resolving the urgent demand of the water-deficient areas. A number of countries have made attempts and have achieved enormous benefits. However, IBTs inevitably involve the redistribution of water resources in relevant basins and may cause changes of the ecological environment in different basins. Such changes are two-sided, namely, the positive impacts, including adding new basins for water-deficient areas, facilitating water cycle, improving meteorological conditions in the recipient basins, mitigating ecological water shortage, repairing the damaged ecological system, and preserving the endangered wild fauna and flora, as well as the negative impacts, including salinization and aridification of the donor basins, damage to the ecological environment of the donor basins and the both sides of the conveying channel system, increase of water consumption in the recipient basins, and spread of diseases, etc. Because IBTs have enormous ecological risk, it is necessary to comprehensively analyze the inter-basin water balance relationship, coordinate the possible conflicts and environmental quality problems between regions, and strengthen the argumentation of the ecological risk of water transfer and eco-compensation measures. In addition, there are some effective alternative measures for IBTs, such as attaching importance to water cycle, improving water use efficiency, developing sea water desalination, and rainwater harvesting technology, etc.

  15. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    Science.gov (United States)

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  16. Shedding the waters : institutional change and water control in the Lerma-Chapala Basin, Mexico

    OpenAIRE

    Wester, P.

    2008-01-01

    Water resources development has led to water overexploitation in many river basins around the world. This is clearly the case in the Lerma-Chapala Basin in central Mexico, where excessive surface water use nearly resulted in the drying up of Lake Chapala, one of the world’s largest shallow lakes. It is also a basin in which many of the policies prescribed in international water debates were pioneered. This thesis investigates the histories and relationships between water overexploitation, wat...

  17. The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics

    Science.gov (United States)

    Martín-Martín, Manuel; Estévez, Antonio; Martín-Rojas, Ivan; Guerrera, Francesco; Alcalá, Francisco J.; Serrano, Francisco; Tramontana, Mario

    2018-03-01

    The Agost Basin is characterized by a Miocene-Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E-W to N-S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results

  18. Water reform in the Murray-Darling Basin

    Science.gov (United States)

    Connell, Daniel; Grafton, R. Quentin

    2011-12-01

    In Australia's Murray-Darling Basin the Australian and state governments are attempting to introduce a system of water management that will halt ongoing decline in environmental conditions and resource security and provide a robust foundation for managing climate change. This parallels similar efforts being undertaken in regions such as southern Africa, the southern United States, and Spain. Central to the project is the Australian government's Water Act 2007, which requires the preparation of a comprehensive basin plan expected to be finalized in 2011. This paper places recent and expected developments occurring as part of this process in their historical context and examines factors that could affect implementation. Significant challenges to the success of the basin plan include human resource constraints, legislative tensions within the Australian federal system, difficulties in coordinating the network of water-related agencies in the six jurisdictions with responsibilities in the Murray-Darling Basin, and social, economic, and environmental limitations that restrict policy implementation.

  19. The Volta Basin Water Allocation System: assessing the impact of small-scale reservoir development on the water resources of the Volta basin, West Africa

    Directory of Open Access Journals (Sweden)

    R. Kasei

    2009-08-01

    Full Text Available In the Volta Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. There is an ongoing debate on the impact of further development of small and medium scale reservoirs on the water level of Lake Volta, which is essential for hydropower generation at the Akosombo power plant. The GLOWA Volta Project (GVP has developed a Volta Basin Water Allocation System (VB-WAS, a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the joint climate-hydrological modeling approach (MM5/WaSiM-ETH serve as input data for a river basin management model (MIKE BASIN. MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. The impact of the expansion of small and medium scale reservoirs on the stored volume of Lake Volta has been quantified and assessed in comparison with the impact of climate variability on the water resources of the basin.

  20. Sustainability of water-supply at military installations, Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Verstraeten, Ingrid M.; Linkov, Igor

    2014-01-01

    The Kabul Basin, including the city of Kabul, Afghanistan, is host to several military installations of Afghanistan, the United States, and other nations that depend on groundwater resources for water supply. These installations are within or close to the city of Kabul. Groundwater also is the potable supply for the approximately four million residents of Kabul. The sustainability of water resources in the Kabul Basin is a concern to military operations, and Afghan water-resource managers, owing to increased water demands from a growing population and potential mining activities. This study illustrates the use of chemical and isotopic analysis, groundwater flow modeling, and hydrogeologic investigations to assess the sustainability of groundwater resources in the Kabul Basin.Water supplies for military installations in the southern Kabul Basin were found to be subject to sustainability concerns, such as the potential drying of shallow-water supply wells as a result of declining water levels. Model simulations indicate that new withdrawals from deep aquifers may have less of an impact on surrounding community water supply wells than increased withdrawals from near- surface aquifers. Higher rates of recharge in the northern Kabul Basin indicate that military installations in that part of the basin may have fewer issues with long-term water sustainability. Simulations of groundwater withdrawals may be used to evaluate different withdrawal scenarios in an effort to manage water resources in a sustainable manner in the Kabul Basin.

  1. KE Basin water dispositioning engineering study

    International Nuclear Information System (INIS)

    Hunacek, G.S.; Gahir, S.S.

    1994-01-01

    This engineering study is a feasibility study of KE Basin water treatment to an acceptable level and dispositioning the treated water to Columbia River, ground through ETF or to air through evaporation

  2. Water resources of the Cook Inlet Basin, Alaska

    Science.gov (United States)

    Freethey, Geoffrey W.; Scully, David R.

    1980-01-01

    Ground-water and surface-water systems of Cook Inlet basin, Alaska, are analyzed. Geologic and topographic features that control the movement and regional availability of ground water are explained and illustrated. Five aquifer systems beneath the most populous areas are described. Estimates of ground-water yield were determined for the region by using ground-water data for the populated areas and by extrapolating known subsurface conditions and interpreting subsurface conditions from surficial features in the other areas. Area maps of generalized geology, Quaternary sediment thickness, and general availability of ground water are shown. Surface-water resources are summarized by describing how basin characteristics affect the discharge in streams. Seasonal trend of streamflow for three types of streams is described. Regression equations for 4 streamflow characteristics (annual, monthly minimum, and maximum discharge) were obtained by using gaging station streamflow characteristics and 10 basin characteristics. In the 24 regression equations presented, drainage area is the most significant basin characteristic, but 5 others are used. Maps of mean annual unit runoff and minimum unit yield for 7 consecutive days with a recurrence interval of 10 years are shown. Historic discharge data at gaging stations is tabulated and representative low-flow and flood-flow frequency curves are shown. (USGS)

  3. Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2012-11-01

    The paper describes the application of a new Water Accounting Plus (WA+) framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3). The "landscape ET" (depletion directly from rainfall) was 344 km3 (69% of total consumption). "Blue water" depletion ("utilized flow") was 158 km3 (31%). Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3), of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha-1 and 7.8 t ha-1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast declining storage.

  4. Mapping Water Resources, Allocation and Consumption in the Mills River Basin

    Science.gov (United States)

    Hodes, J.; Jeuland, M. A.; Barros, A. P.

    2014-12-01

    Mountain basins and the headwaters of river basins along the foothills of major mountain ranges are undergoing rapid environmental change due to urban development, land acquisition by investors, population increase, and climate change. Classical water infrastructure in these regions is primarily designed to meet human water demand associated with agriculture, tourism, and economic development. Often overlooked and ignored is the fundamental interdependence of human water demand, ecosystem water demand, water rights and allocation, and water supply. A truly sustainable system for water resources takes into account ecosystem demand along with human infrastructure and economic demand, as well as the feedbacks that exist between them. Allocation policies need to take into account basin resilience that is the amount of stress the system can handle under varying future scenarios. Changes in stress on the system can be anthropogenic in the form of population increase, land use change, economic development, or may be natural in the form of climate change and decrease in water supply due to changes in precipitation. Mapping the water rights, supply, and demands within the basin can help determine the resiliency and sustainability of the basin. Here, we present a coupled natural human system project based in the French Broad River Basin, in the Southern Appalachians. In the first phase of the project, we are developing and implementing a coupled hydro-economics modeling framework in the Mills River Basin (MRB), a tributary of the French Broad. The Mills River Basin was selected as the core basin for implementing a sustainable system of water allocation that is adaptive and reflects the interdependence of water dependent sectors. The headwaters of the Mills River are in the foothills of the Appalachians, and are currently under substantial land use land cover (LULC) change pressure for agricultural purposes. In this regard, the MRB is representative of similar headwater

  5. Surface-water resources of Polecat Creek basin, Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1956-01-01

    A compilation of basic data on surface waters in Polecat Creek basin is presented on a monthly basis for Heyburn Reservoir and for Polecat Creek at Heyburn, Okla. Chemical analyses are shown for five sites in the basin. Correlation of runoff records with those for nearby basins indicates that the average annual runoff of the basin above gaging station at Heyburn is 325 acre-feet per square mile. Estimated duration curves of daily flow indicate that under natural conditions there would be no flow in Polecat Creek at Heyburn (drainage area, 129 square miles) about 16 percent of the time on an average, and that the flow would be less than 3 cubic feet per second half of the time. As there is no significant base flow in the basin, comparable low flows during dry-weather periods may be expected in other parts of the basin. During drought periods Heyburn Reservoir does not sustain a dependable low-water flow in Polecat Creek. Except for possible re-use of the small sewage effluent from city of Sapulpa, dependable supplies for additional water needs on the main stem will require development of supplemental storage. There has been no regular program for collection of chemical quality data in the basin, but miscellaneous analyses indicate a water of suitable quality for municipal and agricultural uses in Heyburn Reservoir and Polecat Creek near Heyburn. One recent chemical analysis indicates the possibility of a salt pollution problem in the Creek near Sapulpa. (available as photostat copy only)

  6. Quantification of water resources uncertainties in the Luvuvhu sub-basin of the Limpopo river basin

    Science.gov (United States)

    Oosthuizen, N.; Hughes, D.; Kapangaziwiri, E.; Mwenge Kahinda, J.; Mvandaba, V.

    2018-06-01

    In the absence of historical observed data, models are generally used to describe the different hydrological processes and generate data and information that will inform management and policy decision making. Ideally, any hydrological model should be based on a sound conceptual understanding of the processes in the basin and be backed by quantitative information for the parameterization of the model. However, these data are often inadequate in many sub-basins, necessitating the incorporation of the uncertainty related to the estimation process. This paper reports on the impact of the uncertainty related to the parameterization of the Pitman monthly model and water use data on the estimates of the water resources of the Luvuvhu, a sub-basin of the Limpopo river basin. The study reviews existing information sources associated with the quantification of water balance components and gives an update of water resources of the sub-basin. The flows generated by the model at the outlet of the basin were between 44.03 Mm3 and 45.48 Mm3 per month when incorporating +20% uncertainty to the main physical runoff generating parameters. The total predictive uncertainty of the model increased when water use data such as small farm and large reservoirs and irrigation were included. The dam capacity data was considered at an average of 62% uncertainty mainly as a result of the large differences between the available information in the national water resources database and that digitised from satellite imagery. Water used by irrigated crops was estimated with an average of about 50% uncertainty. The mean simulated monthly flows were between 38.57 Mm3 and 54.83 Mm3 after the water use uncertainty was added. However, it is expected that the uncertainty could be reduced by using higher resolution remote sensing imagery.

  7. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    Science.gov (United States)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  8. Sharing water and benefits in transboundary river basins

    Science.gov (United States)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  9. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins

    Science.gov (United States)

    Li, Xin; Cheng, Guodong; Ge, Yingchun; Li, Hongyi; Han, Feng; Hu, Xiaoli; Tian, Wei; Tian, Yong; Pan, Xiaoduo; Nian, Yanyun; Zhang, Yanlin; Ran, Youhua; Zheng, Yi; Gao, Bing; Yang, Dawen; Zheng, Chunmiao; Wang, Xusheng; Liu, Shaomin; Cai, Ximing

    2018-01-01

    Endorheic basins around the world are suffering from water and ecosystem crisis. To pursue sustainable development, quantifying the hydrological cycle is fundamentally important. However, knowledge gaps exist in how climate change and human activities influence the hydrological cycle in endorheic basins. We used an integrated ecohydrological model, in combination with systematic observations, to analyze the hydrological cycle in the Heihe River Basin, a typical endorheic basin in arid region of China. The water budget was closed for different landscapes, river channel sections, and irrigation districts of the basin from 2001 to 2012. The results showed that climate warming, which has led to greater precipitation, snowmelt, glacier melt, and runoff, is a favorable factor in alleviating water scarcity. Human activities, including ecological water diversion, cropland expansion, and groundwater overexploitation, have both positive and negative effects. The natural oasis ecosystem has been restored considerably, but the overuse of water in midstream and the use of environmental flow for agriculture in downstream have exacerbated the water stress, resulting in unfavorable changes in surface-ground water interactions and raising concerns regarding how to fairly allocate water resources. Our results suggest that the water resource management in the region should be adjusted to adapt to a changing hydrological cycle, cropland area must be reduced, and the abstraction of groundwater must be controlled. To foster long-term benefits, water conflicts should be handled from a broad socioeconomic perspective. The findings can provide useful information on endorheic basins to policy makers and stakeholders around the world.

  10. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.|info:eu-repo/dai/nl/341387819; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has

  11. Salty vs. Fresh Water

    KAUST Repository

    Peinemann, Klaus-Viktor

    2012-01-01

    One possibility of obtaining sustainable energy from seawater is the use of osmosis. The key to this technology is the development of efficient membranes which allow water to pass through, but not salt. © 2013 Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Salty vs. Fresh Water

    KAUST Repository

    Peinemann, Klaus-Viktor

    2012-11-14

    One possibility of obtaining sustainable energy from seawater is the use of osmosis. The key to this technology is the development of efficient membranes which allow water to pass through, but not salt. © 2013 Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Water resources of the Chad Basin Region

    Directory of Open Access Journals (Sweden)

    Franklyn R. Kaloko

    2013-07-01

    Full Text Available River basin development is seen as a very effective means of improving agricultural productivity. In the Chad Basin area of the Sahelian Zone of the West African Sub-Region, the water resources have been harnessed to ensure viable agricultural programmes for Nigeria. However,the resultant successes have met by many problems that range from physical to socio-economic and of which water losses have been the most threatening. The study has called for the use of Hexa.deconal (C1-OH film on the water surface of the Chad as a means of reducing evaporation.

  14. Water utilization in the Snake River Basin

    Science.gov (United States)

    Hoyt, William Glenn; Stabler, Herman

    1935-01-01

    The purpose of this report is to describe the present utilization of the water in the Snake River Basin with special reference to irrigation and power and to present essential facts concerning possible future utilization. No detailed plan of development is suggested. An attempt has been made, however, to discuss features that should be taken into account in the formulation of a definite plan of development. On account of the size of the area involved, which is practically as large as the New England States and New York combined, and the magnitude of present development and future possibilities, considerable details have of necessity been omitted. The records of stream flow in the basin are contained in the reports on surface water supply published annually by the Geological Survey. These records are of the greatest value in connection with the present and future regulation and utilization of the basin's largest asset water.

  15. Shedding the waters : institutional change and water control in the Lerma-Chapala Basin, Mexico

    NARCIS (Netherlands)

    Wester, P.

    2008-01-01

    Water resources development has led to water overexploitation in many river basins around the world. This is clearly the case in the Lerma-Chapala Basin in central Mexico, where excessive surface water use nearly resulted in the drying up of Lake Chapala, one of the world’s largest shallow lakes. It

  16. ADJUSTMENT OF MORPHOMETRIC PARAMETERS OF WATER BASINS BASED ON DIGITAL TERRAIN MODELS

    Directory of Open Access Journals (Sweden)

    Krasil'nikov Vitaliy Mikhaylovich

    2012-10-01

    Full Text Available The authors argue that effective use of water resources requires accurate morphometric characteristics of water basins. Accurate parameters are needed to analyze their condition, and to assure their appropriate control and operation. Today multiple water basins need their morphometric characteristics to be adjusted and properly stored. The procedure employed so far is based on plane geometric horizontals depicted onto topographic maps. It is described in the procedural guidelines issued in respect of the «Application of water resource regulations governing the operation of waterworks facilities of power plants». The technology described there is obsolete due to the availability of specialized software. The computer technique is based on a digital terrain model. The authors provide an overview of the technique implemented at Rybinsk and Gorkiy water basins in this article. Thus, the digital terrain model generated on the basis of the field data is used at Gorkiy water basin, while the model based on maps and charts is applied at Rybinsk water basin. The authors believe that the software technique can be applied to any other water basin on the basis of the analysis and comparison of morphometric characteristics of the two water basins.

  17. Water resources inventory of Connecticut Part 10: Lower Connecticut River basin

    Science.gov (United States)

    Weiss, Lawrence A.; Bingham, James W.; Thomas, Mendall P.

    1982-01-01

    public-supply wells did have water that had high sodium concentrations or objectionable iron and manganese concentrations, but these are not considered health hazards in the concentrations found in the water samples. Streams, wetlands, and some aquifers along the sough boundary of the basin contain salty water because of tidal movement or extensive ground-water withdrawals. High sediment concentrations also occur as a result of tidal influence in this area.

  18. Ecohydrological Controls on Intra-Basin Alpine Subarctic Water Balances

    Science.gov (United States)

    Carey, S. K.; Ziegler, C. M.

    2007-12-01

    In the mountainous Canadian subarctic, elevation gradients control the disposition of vegetation, permafrost, and characteristics of the soil profile. How intra-basin ecosystems combine to control catchment-scale water and biogeochimcal cycling is uncertain. To this end, a multi-year ecohydrological investigation was undertaken in Granger Basin (GB), a 7.6 km2 sub-basin of the Wolf Creek Research Basin, Yukon Territory, Canada. GB was divided into four sub-basins based on the dominant vegetation and permafrost status, and the timing and magnitude of hydrological processes were compared using hydrometric and hydrochemical methods. Vegetation plays an important role in end-of-winter snow accumulation as snow redistribution by wind is controlled by roughness length. In sub-basins of GB with tall shrubs, snow accumulation is enhanced compared with areas of short shrubs and tundra vegetation. The timing of melt was staggered with elevation, although melt-rates were similar among the sub-basins. Runoff was enhanced at the expense of infiltration in tall shrub areas due to high snow water equivalent and antecedent soil moisture. In the high-elevation tundra sub-basin, thin soils with cold ground temperatures resulted in increased surface runoff. For the freshet period, the lower and upper sub-basins accounted for 81 % of runoff while accounting for 58 % of the total basin area. Two-component isotopic hydrograph separation revealed that during melt, pre-event water dominated in all sub-basins, yet those with greater permafrost disposition and taller shrubs had increased event-water. Dissolved organic carbon (DOC) spiked prior to peak freshet in each sub-basin except for the highest with thin soils, and was associated with flushing of surficial organic soils. For the post-melt period, all sub-basins have similar runoff contributions. Solute and stable isotope data indicate that in sub-basins dominated by permafrost, supra-permafrost runoff pathways predominate as flow

  19. Water resources inventory of Connecticut Part 2: Shetucket River Basin

    Science.gov (United States)

    Thomas, Mendall P.; Bednar, Gene A.; Thomas, Chester E.; Wilson, William E.

    1967-01-01

    The Shetucket River basin has a relatively abundant supply of water of generally good quality which is derived from precipitation that has fallen on the basin. Annual precipitation has ranged from about 30 inches to 75 inches and has averaged about 45 inches over a 35-year period. Approximately 20 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the basin in the Shetucket River or as underflow through the deposits beneath. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the basins whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced streamflow and lowered groundwater levels. The mean monthly storage of water in the basin on an average is 3.5 inches higher in November than it is in June.

  20. Water-energy-food nexus in Large Asian River Basins

    OpenAIRE

    Keskinen, Marko; Varis, Olli

    2016-01-01

    The water-energy-food nexus ("nexus") is promoted as an approach to look at the linkages between water, energy and food. The articles of Water's Special Issue "Water-Energy-Food Nexus in Large Asian River Basins" look at the applicability of the nexus approach in different regions and rivers basins in Asia. The articles provide practical examples of the various roles and importance of water-energy-food linkages, but also discuss the theoretical aspects related to the nexus. While it is eviden...

  1. Evaluation of water resource economics within the Pasco Basin, Washington

    International Nuclear Information System (INIS)

    Leaming, G.F.

    1981-01-01

    The Columbia River basalt beneath the Hanford Site in south-central Washington is being considered for possible use as a terminal repository medium for high-level nuclear waste. Such underground storage would require that the facility be contiguous to at least a portion of the ambient groundwater system of the Pasco Basin. This report attempts to evaluate the economic factors and conditions related to the water resources of the Pasco Basin and the probable economic effects associated with selected hypothetical changes in local water demand and supply as a basis for eventual selection of credible water supply alternatives and more detailed analyses of the consequences of such alternative selection. It is most likely that total demand for water for consumptive uses in the Pasco Basin will increase from nearly 2.0 million acre-feet per year in 1980 to almost 2.8 million acre-feet in 2010, with total demand slightly more than 3.6 million acre-feet per year in 2080. The Columbia River and other surface streams constitute the source of more than 99 percent of the water available each year for all uses, both consumptive and non-consumptive, in the Pasco Basin. It is estimated that pumped groundwater accounted for 3 percent of the value of all water supplied to consumers of water in the Pasco Basin in 1980. Groundwater's share of the total cost is proportionately higher than groundwater's share of total use because it is generally more costly to acquire than is surface water and the value of water is considered equivalent to its cost of acquisition. Because groundwater represents such a small part of the total water supply and demand within the Pasco Basin, it is concluded that if the development of a nuclear waste repository on the Hanford Site were to result in changes in the groundwater supply during the next 100 years, the economic impact on the overall water supply picture for the entire basin would be insignificant

  2. Meteorological, stream-discharge, and water-quality data for water year 1992 from two basins in Central Nevada

    International Nuclear Information System (INIS)

    McKinley, P.W.; Oliver, T.A.

    1995-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is studying Yucca Mountain, Nevada, as a potential repository for high level nuclear waste. As part of the Yucca Mountain Site Project, the analog recharge study is providing data for the evaluation of recharge to the Yucca Mountain ground-water system given a cooler and wetter climate than currently exists. The current and climatic conditions are favorable to the isolation of radioactive waste. Because waste isolation from the accessible environment for 10,000 years is necessary, climatic change and the potential for increased ground-water recharge need to be considered as part of the characterization of the potential repository. Therefore, two small basins, measuring less than 2 square miles, were studied to determine the volume of precipitation available for recharge to ground water. The semiarid 3-Springs Basin is located to the east of Kawich Peak in the Kawich Range east of Tonopah, Nevada. Stewart Basin is a subalpine drainage basin north of Arc Dome in the Toiyabe Range north of Tonopah, Nevada. The purpose of this publication is to make available the meteorological, stream-discharge, and water-quality data collected during the study. Meteorological data collected include air temperature, soil temperature, solar radiation, and relative humidity. Stream-discharge data were collected from the surface-water outlet of each basin. Water-quality data are chemical analyses of water samples collected from surface- and ground-water sources. Each basin has a meteorological station located in the lower and upper reaches of the basin. Hydrologic records include stream-discharge and water-quality data from the lower meteorological site and water-quality data from springs within the basins

  3. Transboundary water issues: The Ganga-Brahmaputra-Meghna River Basin

    International Nuclear Information System (INIS)

    Roy, Debasri; Goswami, A.B.; Bose, Balaram

    2004-01-01

    Sharing of water of transboundary rivers among riparian nations has become a cause of major concern in different parts of the globe for quite sometime. The issue in the recent decades has been transformed into a source of international tensions and disputes resulting in strained relationships between riparian nations. Conflicts over sharing of water of the international rivers, like the Tigris, Euphrates and Jordan in the Middle East, the Nile in Northern Africa, the Mekong in South-East Asia, the Ganga-Brahmaputra-Meghna in the Indian subcontinent are widely known. The present paper discusses the water sharing -issue in the Ganga- Brahmaputra-Meghna basin located in the Indian sub continent covering five sovereign countries (namely India, Nepal, China, Bhutan and Bangladesh). Rapidly growing population, expanding agricultural and industrial activities besides the impacts of climate change have resulted in stressed condition in the arena of fresh water availability in the basin. Again occurrence of arsenic in sub-surface water in the lower reaches of the basin in India and Bangladesh has also added a new dimension to the problem. All the rivers of the GBM system exhibit wide variations between peak and lean flows as major part of the basin belongs to the monsoon region, where 80%-90 % of annual rainfall is concentrated in 4-5 months of South -West monsoon in the subcontinent. Over and above, the rivers in GBM system carry huge loads of sediments along with the floodwater and receive huge quantum of different kinds of wastes contaminating the water of the rivers. Again high rate of sedimentation of the major rivers and their tributaries have been affecting not only the carrying capacity of the rivers but also drastically reduced their retention capacity. Almost every year during monsoon about 27% and nearly 60% of the GBM basin lying in India and Bangladesh respectively experience flood. The year round navigation in many rivers has also been affected. All these have

  4. Salty Food Preference and Intake and Risk of Gastric Cancer: The JACC Study

    Directory of Open Access Journals (Sweden)

    Mitsumasa Umesawa

    2016-02-01

    Full Text Available Background: High sodium intake is a potential risk factor of gastric cancer. However, limited information is available on the relationship between salty food preference or intake and risk of gastric cancer. The aim of the present study was to determine the association between these variables among the Japanese population. Methods: Between 1988 and 1990, 15 732 men and 24 997 women aged 40–79 years old with no history of cancer or cardiovascular disease completed a lifestyle questionnaire that included information about food intake. The subjects were enrolled in the Japan Collaborative Cohort (JACC Study for Evaluation of Cancer Risk Sponsored by Monbusho. After a median follow-up of 14.3 years, 787 incident gastric cancers were documented. We examined the associations between salty food preference and intake and gastric cancer incidence using the Cox proportional hazard model. Results: The risk of gastric cancer among subjects with a strong preference for salty food was approximately 30% higher than among those who preferred normal-level salty food (hazard ratio [HR] 1.31; 95% confidence interval [CI], 1.02–1.67. The risk of gastric cancer in subjects who consumed 3 and ≥4 bowls/day of miso soup was approximately 60% higher than in those who consumed less miso soup (HR 1.67; 95% CI, 1.16–2.39 and HR 1.64; 95% CI, 1.11–2.42, respectively. Sodium intake correlated positively and linearly with risk of gastric cancer (P for trend = 0.002. Conclusions: The present study showed that salty food preference, consumption of large quantities of miso soup, and high sodium intake were associated with increased risk of gastric cancer among Japanese people.

  5. Water Accounting Plus for Water Resources Reporting and River Basin Planning

    NARCIS (Netherlands)

    Karimi, P.

    2014-01-01

    This thesis introduces Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. WA+ is a simple, yet comprehensive and understandable water accounting framework that provides a

  6. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  7. Assessment the Economic Damage of Inter-Basin Water Transfer on Cropping Pattern and Farmers’ Income Situation in the Origin Basin (Case Study: Water Transfer of Alamoutrood to Qazvin Plain

    Directory of Open Access Journals (Sweden)

    A. Parhizkari

    2016-03-01

    Full Text Available Introduction: Sustainable management of water resources is one of the most important disturbances of current century and many scientists and investigators have already started to pay attention to it from last decade and early 21st century. Iran is in the semi-arid region and thus disproportionate distribution of water resources, so atmospheric precipitation and soil in the country, along with factors such as climate change, drought, environmental protection, ecological special situation, maintain the current pattern of population distribution provides various challenges. Industry and agriculture sectors create a regional balance tailored to the development needs on the one hand and focusing on distribution balanced and optimal management of water resources on the other hand. Transfer of water between river basins (watersheds, catchments, which is basically a hydrological category, different from the notion of transferring water over political boundaries, usually called transboundary water transfer. Interbasin water transfer usually implies large hydraulic engineering structures, conduits, canals, dams, pumping stations, and consequently shares the mistrust which meets large scale infrastructural solutions in water management, often criticized and opposed with the argument that one should first try to reduce water wastage, before embarking into costly investments. Inter-basin water transfer in fact is physical transfer of water from one basin to another basin. This transfer (Inter-basin water transfer despite the elimination of shortcomings in the transmission destination areas, can the source of many changes in the cropping pattern, and farmers gross profit. Natural environment, migration, reduction of dependency to agriculture, small industries in the origin basins all requires assessments before the implementation of the water transfer projects. In Iran also water transfer from regions with high rainfall to arid regions has been performed by

  8. Water quality of the Swatara Creek Basin, PA

    Science.gov (United States)

    McCarren, Edward F.; Wark, J.W.; George, J.R.

    1964-01-01

    The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and

  9. Influence of salty food preference on daily salt intake in primary care

    Directory of Open Access Journals (Sweden)

    Takamura K

    2014-04-01

    Full Text Available Kazuhiro Takamura,1 Masanobu Okayama,2 Taro Takeshima,2 Shinji Fujiwara,3 Masanori Harada,4 Junichi Murakami,5 Masahiko Eto,6 Eiji Kajii21Department of Community Medicine, Obstetrics and Gynecology, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan; 2Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan; 3Mima City National Health Insurance Koyadaira Clinic, Mima, Tokushima, Japan; 4Department of Support of Rural Health Care, Yamaguchi Grand Medical Center, Hofu, Yamaguchi, Japan; 5Division of Chest Surgery, Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan; 6Department of Internal Medicine, Wakuya Medical and Welfare Center, Wakuya, Miyagi, JapanPurpose: A salt preference questionnaire may be a convenient and cost-effective method for predicting salt intake; however, the influence of salt preference on daily salt intake is unclear. This study aimed at revealing the effectiveness of the salt preference question in determining the daily salt intake in primary care outpatients.Patients and methods: This cross-sectional study included 1,075 outpatients (men, n=436, 40.6% at six primary care institutions in Japan. Primary outcomes included a salty food preference assessed by using one question and a daily salt intake, assessed using early morning second urine samples. Multivariate analyses determined the relationships between the salt intake and the two salt preference levels.Results: The mean age was 67.6±14.6 years, and 594 (55.3% preferred salty foods. The daily salt intake was 12.3±4.0 g per day and 11.4±3.7 g per day in the salt preference and nonsalt preference groups, respectively (P<0.001. A salt intake <10 g per day was consumed by 169 (28.5% and 181 (37.6% patients (P=0.001, respectively, and <6 g salt per day was consumed by 28 (4.7% and 26 (5.4% patients (P=0.606, respectively. The patients

  10. Water equivalent of snow survey of the Red River Basin and Heart/Cannonball River Basin, March 1978

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1979-10-01

    The water equivalent of accumulated snow was estimated in the Red River and Heart/Cannonball River basins and surrounding areas in North Dakota during the period 8 to 17 March 1978. A total of 570 km were flown, covering a 274 km section of the Red River Basin watershed. These lines had been surveyed in March 1974. Twelve flight lines were flown over the North Dakota side of the Red River from a point 23 km south of the Canadian border southward to the city of Fargo, North Dakota. The eight flight lines flown over the Minnesota side of the Red River extended from 23 km south of the Canadian border southward to Breckenridge, Minnesota. Using six flight lines, a total of 120 km were flown in the Heart/Cannonball River Basin, an area southwest of the city of Bismark, North Dakota. This was the first such flight in the Heart/Cannonball River Basin area. Computed weighted average water equivalents on each flight line in the Red River Basin ranged from 4.8 cm to 12.7 cm of water, averaging 7.6 cm for all lines. In the Heart/Cannonball River Basin, the weighted water equivalent ranged from 8.9 cm to 19.1 cm of water, averaging 12.7 cm for all lines. The method used employs the measurement of the natural gamma rays both before and after snow covers the ground

  11. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  12. Chemical and environmental isotope study of the basaltic aquifer systems of Yarmouk Basin (Syria)

    International Nuclear Information System (INIS)

    Kattan, Z.

    1994-08-01

    The water in the fissured basalt aquifer system, the Upper Jurassic aquifer of the Yarmouk Basin and the atmospheric precipitation have been investigated using chemical and environmental isotope techniques. The groundwaters flowing through the different aquifers are differentiated by their chemical ratios and their isotopic compositions. The evolution of chemical facies of groundwater from the recharge area towards the basin outlet is characterized by increasing of sodium and magnesium contents as a result of silicate leaching. The stable isotope compositions of precipitation and mountainous spring waters match the Mediterranean Meteoric Water Line, while the groundwaters from the central zone and from the major springs of the Yarmouk Basin are mixtures of freshwater, which is isotopically depleted and salty groundwater of Laja plateau area. The interpretations of tritium and radiocarbon ( 14 C) data indicate that the recharge zones of the groundwater in the Yarmouk Basin occur on the high-land of more than 1000 m of altitude. The residence time of the mountainous springs is short (of about 40 years or less). However, water ages corrected by Vogel's concept and Gonfiantini's Model show, in general, a range from 1000 to 11000 years for the central zone groundwater. The groundwater moves from the Mt. Hermon and Mt. Arab towards the central zone and from the north-east (i.e. the Laja plateau) towards south-west (i.e. the major springs). The radiometric flow velocities range from 20 to 60 m/year within the central zone, while the flow velocities from both sides of Mt. Hermon and Mt. Arab are lower (1-7 m/year). (author). 43 refs., 37 figs., 6 tabs

  13. Impact of storm water on groundwater quality below retention/detention basins.

    Science.gov (United States)

    Zubair, Arif; Hussain, Asif; Farooq, Mohammed A; Abbasi, Haq Nawaz

    2010-03-01

    Groundwater from 33 monitoring of peripheral wells of Karachi, Pakistan were evaluated in terms of pre- and post-monsoon seasons to find out the impact of storm water infiltration, as storm water infiltration by retention basin receives urban runoff water from the nearby areas. This may increase the risk of groundwater contamination for heavy metals, where the soil is sandy and water table is shallow. Concentration of dissolved oxygen is significantly low in groundwater beneath detention basin during pre-monsoon season, which effected the concentration of zinc and iron. The models of trace metals shown in basin groundwater reflect the land use served by the basins, while it differed from background concentration as storm water releases high concentration of certain trace metals such as copper and cadmium. Recharge by storm water infiltration decreases the concentration and detection frequency of iron, lead, and zinc in background groundwater; however, the study does not point a considerable risk for groundwater contamination due to storm water infiltration.

  14. Coastal freshwater resources management in the frame of climate change: application to three basins (Italy, Morocco, Portugal)

    Science.gov (United States)

    Masson, E.; Antonellini, M.; Dentinho, T.; Khattabi, A.

    2009-04-01

    Climate change becomes an increasing constraint in IWRM and many effects are expected in coastal watersheds like sea level rise and its consequences (i.e. beach erosion, salt water intrusion, soil salinization, groundwater and surface water pollution…) or water budget changes (i.e. seasonal and inter-annual fluctuations) and an increase of extreme events (i.e. floods, rainfalls and droughts). Beside this physical changes one can also observed the increase of water demand in coastal areas due to population growth and development of tourism activities. Both effects (e.g. physical and socio-economical) must be included into any coastal freshwater management option for a mid-term / long-term approach to set water mass/basin management plans as expected in European countries by the WDF or elsewhere in an IWRM objective. The Waterknow project funded by EraNet-Circle-Med program aims to develop a tool to help decisions makers in the implementation of IWRM plans in coastal areas that will have to cope with climate change effects and socio-economical pressures. This interdisciplinary project is applied to three basins (e.g. Fiumi Uniti Bevano, Italy; Terceira Island, Portugal and Taheddart, Morocco) and seeks to integrate and to develop research achievements in coastal hydrogeology, economical and land use modeling in each basin. In the Fiumi Uniti Bevano basin, a detailed hydrogeological survey was performed during the summer 2008. Twenty auger holes with an average spacing of 350 m where drilled with the objective of determining the top groundwater quality in the coastal aquifer. At the same time, we collected the chemical and physical parameters of the surface waters. The data collected in the field show that a fresh groundwater lens is still present in the aquifer of the backshore area below the coastal dunes and that the surface water is all brackish to salty. In the northern part of the study area, the fresh groundwater lens in the backshore zone is missing, as

  15. Conceptual model of water resources in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early

  16. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    Directory of Open Access Journals (Sweden)

    Francisco Suárez

    2014-08-01

    Full Text Available Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeholders and water users face an intense competition for limited freshwater resources. This work develops an integrated water resource management model to investigate the water-energy nexus in reducing water stress in the Copiapó River basin, an arid, highly vulnerable basin in northern Chile. The model was utilized to characterize groundwater and surface water resources, and water demand and uses. Different management scenarios were evaluated to estimate future resource availability, and compared in terms of energy requirements and costs for desalinating seawater to eliminate the corresponding water deficit. Results show a basin facing a very complex future unless measures are adopted. When a 30% uniform reduction of water consumption is achieved, 70 GWh over the next 30 years are required to provide the energy needed to increase the available water through seawater desalination. In arid basins, this energy could be supplied by solar energy, thus addressing water shortage problems through integrated water resource management combined with new technologies of water production driven by renewable energy sources.

  17. Water resources of the Yadkin-Pee Dee River Basin, North Carolina

    Science.gov (United States)

    Fish, Robert Eugene; LeGrand, H.E.; Billingsley, G.A.

    1957-01-01

    Sufficient water is available in the basin of the Yadkin and Pee Dee Rivers to meet present requirements and those for many years to come if water use increases at about the present rate. Data presented in this report show that the average annual streamflow from approximately 82 percent of the basin area during the 25-year period, 1929-53, was about 6,200 mgd, representing essentially the total available water supply. Comparison of the available water supply to the estimated withdrawal use (excluding water power) of both surface and ground water of 600 mgd indicates the relative utilization of the water resources of the basin at present. If proper pollution controls are observed and practiced so that water in the various streams may be reused several times, the potential water available is even greater than indicated by the above comparison. Preliminary studies indicate that the quantity of water now being withdrawn from ground-water reservoirs in the basin is only a fraction of the total that may be obtained from this source. Twenty-eight of the 64 municipalities having public water-supply systems use surface water; however, as the largest cities in the area use surface supplies, about 85 percent of the water used for public supplies is from surface sources. Of the 20 complete-record stream-gaging stations now in operation in this area 7 have been in operation for 24 years or longer. Periodic measurements of the rate of flow have been made at 31 additional sites on streams scattered widely over the basin. All available streamflow data including those for 1953 are summarized in either graphic or tabular form, or both. Because of the critically low flows occurring during the drought of 1954, several illustrations include data for 1954 and the early months of 1955 for comparison with the minima of previous years. Adequate water for domestic use is available from wells throughout the basin. The consolidated rocks of the Piedmont furnish water for small industries and

  18. Movement of water infiltrated from a recharge basin to wells.

    Science.gov (United States)

    O'Leary, David R; Izbicki, John A; Moran, Jean E; Meeth, Tanya; Nakagawa, Brandon; Metzger, Loren; Bonds, Chris; Singleton, Michael J

    2012-01-01

    Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 µg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers. Ground Water © 2011, National Ground Water Association. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  19. Water resource management model for a river basin

    OpenAIRE

    Jelisejevienė, Emilija

    2005-01-01

    The objective is to develop river basin management model that ensures integrated analysis of existing water resource problems and promotes implementation of sustainable development principles in water resources management.

  20. Basin Economic Allocation Model (BEAM): An economic model of water use developed for the Aral Sea Basin

    Science.gov (United States)

    Riegels, Niels; Kromann, Mikkel; Karup Pedersen, Jesper; Lindgaard-Jørgensen, Palle; Sokolov, Vadim; Sorokin, Anatoly

    2013-04-01

    The water resources of the Aral Sea basin are under increasing pressure, particularly from the conflict over whether hydropower or irrigation water use should take priority. The purpose of the BEAM model is to explore the impact of changes to water allocation and investments in water management infrastructure on the overall welfare of the Aral Sea basin. The BEAM model estimates welfare changes associated with changes to how water is allocated between the five countries in the basin (Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan and Uzbekistan; water use in Afghanistan is assumed to be fixed). Water is allocated according to economic optimization criteria; in other words, the BEAM model allocates water across time and space so that the economic welfare associated with water use is maximized. The model is programmed in GAMS. The model addresses the Aral Sea Basin as a whole - that is, the rivers Syr Darya, Amu Darya, Kashkadarya, and Zarafshan, as well as the Aral Sea. The model representation includes water resources, including 14 river sections, 6 terminal lakes, 28 reservoirs and 19 catchment runoff nodes, as well as land resources (i.e., irrigated croplands). The model covers 5 sectors: agriculture (crops: wheat, cotton, alfalfa, rice, fruit, vegetables and others), hydropower, nature, households and industry. The focus of the model is on welfare impacts associated with changes to water use in the agriculture and hydropower sectors. The model aims at addressing the following issues of relevance for economic management of water resources: • Physical efficiency (estimating how investments in irrigation efficiency affect economic welfare). • Economic efficiency (estimating how changes in how water is allocated affect welfare). • Equity (who will gain from changes in allocation of water from one sector to another and who will lose?). Stakeholders in the region have been involved in the development of the model, and about 10 national experts, including

  1. Water withdrawals, wastewater discharge, and water consumption in the Apalachicola-Chattahoochee-Flint River Basin, 2005, and water-use trends, 1970-2005

    Science.gov (United States)

    Marella, Richard L.; Fanning, Julia L.

    2011-01-01

    The Apalachicola-Chattahoochee-Flint (ACF) River Basin covers about 20,500 square miles that drains parts of Alabama, Florida, and Georgia. The basin extends from its headwaters northern Georgia to the Gulf of Mexico. Population in the basin was estimated to be 3.7 million in 2005, an increase of about 41 percent from the 1990 population of 2.6 million. In 2005, slightly more than 721,000 acres of crops were irrigated within the basin. In 2005, the total amount of water withdrawn in the ACF River Basin was about 1,990 million gallons per day (Mgal/d). Of this, surface water accounted for 1,591 Mgal/d (80 percent) and groundwater accounted for 399 Mgal/d (20 percent). Surface water was the primary water source of withdrawals in the northern and central parts of the basin, and groundwater was the primary source in the southern part. The largest surface-water withdrawals was from Cobb County, Georgia (410 Mgal/d, mostly from the Chattahoochee River and Lake Alatoona), and the largest groundwater withdrawals was from Dougherty County, Georgia (38 Mgal/d, mostly from the Upper Floridan aquifer system).

  2. Exploring Future Water Shortage for Large River Basins under Different Water Allocation Strategies

    NARCIS (Netherlands)

    Yan, Dan; Yao, Mingtian; Ludwig, Fulco; Kabat, Pavel; Huang, He Qing; Hutjes, Ronald W.A.; Werners, Saskia E.

    2018-01-01

    Climate change and socio-economic development increase variations in water availability and water use in the Pearl River Basin (PRB), China. This can potentially result in conflicts over water resources between water users, and cause water shortage in the dry season. To assess and manage water

  3. Modeling Surface Water Flow in the Atchafalaya Basin

    Science.gov (United States)

    Liu, K.; Simard, M.

    2017-12-01

    While most of the Mississippi River Delta is sinking due to insufficient sediment supply and subsidence, the stable wetlands and the prograding delta systems in the Atchafalaya Basin provide a unique opportunity to study the constructive interactions between riverine and marine forcings and their impacts upon coastal morphology. To better understand the hydrodynamics in this region, we developed a numerical modeling system for the water flow through the river channel - deltas - wetlands networks in the Atchafalaya Basin. Determining spatially varying model parameters for a large area composed of such diverse land cover types poses a challenge to developing an accurate numerical model. For example, the bottom friction coefficient can not be measured directly and the available elevation maps for the wetlands in the basin are inaccurate. To overcome these obstacles, we developed the modeling system in three steps. Firstly, we modeled river bathymetry based on in situ sonar transects and developed a simplified 1D model for the Wax Lake Outlet using HEC-RAS. Secondly, we used a Bayesian approach to calibrate the model automatically and infer important unknown parameters such as riverbank elevation and bottom friction coefficient through Markov Chain Monte Carlo (MCMC) simulations. We also estimated the wetland elevation based on the distribution of different vegetation species in the basin. Thirdly, with the lessons learnt from the 1D model, we developed a depth-averaged 2D model for the whole Atchafalaya Basin using Delft3D. After calibrations, the model successfully reproduced the water levels measured at five gauges in the Wax Lake Outlet and the modeled water surface profile along the channel agreed reasonably well with our LIDAR measurements. In addition, the model predicted a one-hour delay in tidal phase from the Wax Lake Delta to the upstream gauge. In summary, this project presents a procedure to initialize hydrology model parameters that integrates field

  4. Geometrical constraint on the localization of deep water formation

    Science.gov (United States)

    Ferreira, D.; Marshall, J.

    2008-12-01

    That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and

  5. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    Science.gov (United States)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  6. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    Science.gov (United States)

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  7. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  8. Confluence and redistribution of Atlantic water in the Nansen, Amundsen and Makarov basins

    Directory of Open Access Journals (Sweden)

    U. Schauer

    Full Text Available The waters in the Eurasian Basin are conditioned by the confluence of the boundary flow of warm, saline Fram Strait water and cold low salinity water from the Barents Sea entering through the St. Anna Trough. Hydrographic sections obtained from RV Polarstern during the summer of 1996 (ACSYS 96 across the St. Anna Trough and the Voronin Trough in the northern Kara Sea and across the Nansen, Amundsen and Makarov basins allow for the determination of the water mass properties of the two components and the construction of a qualitative picture of the circulation both within the Eurasian Basin and towards the Canadian Basin. At the confluence north of the Kara Sea, the Fram Strait branch is displaced from the upper to the lower slope and it forms a sharp front to the Barents Sea water at depths between 100 m and greater than 1000 m. This front disintegrates downstream along the basin margin and the two components are largely mixed before the boundary current reaches the Lomonosov Ridge. Away from the continental slope, the presence of interleaving structures coherent over wide distances is consistent with low lateral shear. The return flow along the Nansen Gakkel Ridge, if present at all, seems to be slow and the cold water below a deep mixed layer there indicates that the Fram Strait Atlantic water was not covered with a halocline for about a decade. Anomalous water mass properties in the interior of the Eurasian Basin can be attributed to isolated lenses rather than to baroclinic flow cores. Eddies have probably detached from the front at the confluence and migrated into the interior of the basin. One deep (2500 m lens of Canadian Basin water, with an anticyclonic eddy signature, must have spilled through a gap of the Lomonosov Ridge. During ACSYS 96, no clear fronts between Eurasian and Canadian intermediate waters, such as those observed further north in 1991 and 1994, were found at the Siberian side of the Lomonosov Ridge. This indicates that

  9. Confluence and redistribution of Atlantic water in the Nansen, Amundsen and Makarov basins

    Directory of Open Access Journals (Sweden)

    U. Schauer

    2002-02-01

    Full Text Available The waters in the Eurasian Basin are conditioned by the confluence of the boundary flow of warm, saline Fram Strait water and cold low salinity water from the Barents Sea entering through the St. Anna Trough. Hydrographic sections obtained from RV Polarstern during the summer of 1996 (ACSYS 96 across the St. Anna Trough and the Voronin Trough in the northern Kara Sea and across the Nansen, Amundsen and Makarov basins allow for the determination of the water mass properties of the two components and the construction of a qualitative picture of the circulation both within the Eurasian Basin and towards the Canadian Basin. At the confluence north of the Kara Sea, the Fram Strait branch is displaced from the upper to the lower slope and it forms a sharp front to the Barents Sea water at depths between 100 m and greater than 1000 m. This front disintegrates downstream along the basin margin and the two components are largely mixed before the boundary current reaches the Lomonosov Ridge. Away from the continental slope, the presence of interleaving structures coherent over wide distances is consistent with low lateral shear. The return flow along the Nansen Gakkel Ridge, if present at all, seems to be slow and the cold water below a deep mixed layer there indicates that the Fram Strait Atlantic water was not covered with a halocline for about a decade. Anomalous water mass properties in the interior of the Eurasian Basin can be attributed to isolated lenses rather than to baroclinic flow cores. Eddies have probably detached from the front at the confluence and migrated into the interior of the basin. One deep (2500 m lens of Canadian Basin water, with an anticyclonic eddy signature, must have spilled through a gap of the Lomonosov Ridge. During ACSYS 96, no clear fronts between Eurasian and Canadian intermediate waters, such as those observed further north in 1991 and 1994, were found at the Siberian side of the Lomonosov Ridge. This indicates that

  10. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    Science.gov (United States)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  11. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    OpenAIRE

    Loizeau Sébastien; Rossier Yvan; Gaudet Jean-Paul; Refloch Aurore; Besnard Katia; Angulo-Jaramillo Rafael; Lassabatere Laurent

    2017-01-01

    Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration c...

  12. Sampling and Analysis Plan for the 105-N Basin Water

    International Nuclear Information System (INIS)

    R.O. Mahood

    1997-01-01

    This sampling and analysis plan defines the strategy, and field and laboratory methods that will be used to characterize 105-N Basin water. The water will be shipped to the 200 Area Effluent Treatment Facility for treatment and disposal as part of N Reactor deactivation. These analyses are necessary to ensure that the water will meet the acceptance criteria of the ETF, as established in the Memorandum of Understanding for storage and treatment of water from N-Basin (Appendix A), and the characterization requirements for 100-N Area water provided in a letter from ETF personnel (Appendix B)

  13. Criticality evaluations of scrambled fuel in water basin storage

    International Nuclear Information System (INIS)

    Fast, E.

    1989-01-01

    Fuel stored underwater in the Idaho Chemical Processing Plant basins has been subjected to the usual criticality safety evaluations to assure safe storage configurations. Certain accident or emergency conditions, caused by corrosion or a seismic event, could change the fuel configuration and environment to invalidate previous calculations. Consideration is given here to such contingencies for fuel stored in three storage basins. One basin has fuel stored in racks, on a generally flat floor. In the other two basins, the fuel is stored on yokes and in baskets suspended from a monorail system. The floor is ribbed with 30.48-cm-thick and 80-cm-high concrete barriers across the basin width and spaced 30.48 cm apart. The suspended fuel is typically down to 15 cm above the floor of the channel between the concrete barriers. These basins each have 29 channels of 18 positions maximum per channel for a total of 522 possible positions, which are presently 77 and 49% occupied. The three basins are hydraulically interconnected. Several scenarios indicate possible changes in the fuel configuration. An earthquake could rupture a basin wall or floor, allowing the water to drain from all basins. All levels of water would fall to the completely drained condition. Suspended fuel could drop and fall over within the channel. Corrosion might weaken the support systems or cause leaks in sealed fuel canisters. Calculations were made with the KENO-IV criticality program and the library of mostly Hansen-Roach 16-energy-group neutron cross sections

  14. GRACE-based estimates of water discharge over the Yellow River basin

    Directory of Open Access Journals (Sweden)

    Qiong Li

    2016-05-01

    Full Text Available As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP, discharge of the Yellow River basin are estimated from the water balance equation. While comparing the results with discharge from GLDAS model and in situ measurements, the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin.

  15. Forecasting domestic water demand in the Haihe river basin under changing environment

    Science.gov (United States)

    Wang, Xiao-Jun; Zhang, Jian-Yun; Shahid, Shamsuddin; Xie, Yu-Xuan; Zhang, Xu

    2018-02-01

    A statistical model has been developed for forecasting domestic water demand in Haihe river basin of China due to population growth, technological advances and climate change. Historical records of domestic water use, climate, population and urbanization are used for the development of model. An ensemble of seven general circulation models (GCMs) namely, BCC-CSM1-1, BNU-ESM, CNRM-CM5, GISS-E2-R, MIROC-ESM, PI-ESM-LR, MRI-CGCM3 were used for the projection of climate and the changes in water demand in the Haihe River basin under Representative Concentration Pathways (RCPs) 4.5. The results showed that domestic water demand in different sub-basins of the Haihe river basin will gradually increase due to continuous increase of population and rise in temperature. It is projected to increase maximum 136.22 × 108 m3 by GCM BNU-ESM and the minimum 107.25 × 108 m3 by CNRM-CM5 in 2030. In spite of uncertainty in projection, it can be remarked that climate change and population growth would cause increase in water demand and consequently, reduce the gap between water supply and demand, which eventually aggravate the condition of existing water stress in the basin. Water demand management should be emphasized for adaptation to ever increasing water demand and mitigation of the impacts of environmental changes.

  16. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  17. Basin-wide water accounting based on remote sensing data : An application for the Indus Basin

    NARCIS (Netherlands)

    Karimi, P.; Bastiaanssen, W.G.M.; Molden, D.; Cheema, M.J.M.

    2013-01-01

    The paper demonstrates the application of a new water accounting plus (WA+) framework to produce information on depletion of water resources, storage change, and land and water productivity in the Indus basin. It shows how satellite-derived estimates of land use, rainfall, evaporation (E),

  18. Impact of Water Scarcity on the Fenhe River Basin and Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Weiwei Shao

    2017-01-01

    Full Text Available This study produced a drought map for the Fenhe River basin covering the period from 150 BC to 2012 using regional historical drought records. Based on meteorological and hydrological features, the characteristics and causes of water scarcity in the Fenhe River basin were examined, along with their impact on the national economy and ecological environment. The effects of water scarcity in the basin on the national economy were determined from agricultural, industrial, and domestic perspectives. The impact on aquatic ecosystems was ascertained through an evolution trend analysis of surface water systems, including rivers, wetlands, and slope ecosystems, and subterranean water systems, including groundwater and karst springs. As a result of these analyses, strategies are presented for coping with water scarcity in this basin, including engineering countermeasures, such as the construction of a water network in Shanxi, and the non-engineering approach of groundwater resource preservation. These comprehensive coping strategies are proposed with the aim of assisting the prevention and control of water scarcity in the arid and semi-arid areas of China.

  19. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    Science.gov (United States)

    Zhao, T. H.; Yin, Z.; Song, Y. Z.

    2012-11-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  20. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    International Nuclear Information System (INIS)

    Zhao, T h; Yin, Z; Song, Y Z

    2012-01-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  1. Water reuse in river basins with multiple users: A literature review

    Science.gov (United States)

    Simons, G. W. H. (Gijs); Bastiaanssen, W. G. M. (Wim); Immerzeel, W. W. (Walter)

    2015-03-01

    Unraveling the interaction between water users in a river basin is essential for sound water resources management, particularly in a context of increasing water scarcity and the need to save water. While most attention from managers and decision makers goes to allocation and withdrawals of surface water resources, reuse of non-consumed water gets only marginal attention despite the potentially significant volumes. As a consequence, claims of water saving are often grossly exaggerated. It is the purpose of this paper to explore the processes associated with water reuse in a river basin among users of varying nature and review existing methods for directly or indirectly describing non-consumed water, recoverable flow and/or water reuse. First a conceptual representation of processes surrounding water withdrawals and associated definitions is discussed, followed by a section on connectivity between individual withdrawals and the complex dynamics arising from dependencies and tradeoffs within a river basin. The current state-of-the-art in categorizing basin hydrological flows is summarized and its applicability to a water system where reuse occurs is explored. The core of the paper focuses on a selection and demonstration of existing indicators developed for assessing water reuse and its impacts. It is concluded that although several methods for analyses of water reuse and recoverable flows have been developed, a number of essential aspects of water reuse are left out of existing indicators. Moreover, a proven methodology for obtaining crucial quantitative information on recoverable flows is currently lacking. Future studies should aim at spatiotemporal tracking of the recoverable portion of water withdrawals and showing the dependency of multiple water users on such flows to water policy makers.

  2. Forecasting domestic water demand in the Haihe river basin under changing environment

    Directory of Open Access Journals (Sweden)

    X.-J. Wang

    2018-02-01

    Full Text Available A statistical model has been developed for forecasting domestic water demand in Haihe river basin of China due to population growth, technological advances and climate change. Historical records of domestic water use, climate, population and urbanization are used for the development of model. An ensemble of seven general circulation models (GCMs namely, BCC-CSM1-1, BNU-ESM, CNRM-CM5, GISS-E2-R, MIROC-ESM, PI-ESM-LR, MRI-CGCM3 were used for the projection of climate and the changes in water demand in the Haihe River basin under Representative Concentration Pathways (RCPs 4.5. The results showed that domestic water demand in different sub-basins of the Haihe river basin will gradually increase due to continuous increase of population and rise in temperature. It is projected to increase maximum 136.22  ×  108 m3 by GCM BNU-ESM and the minimum 107.25  ×  108 m3 by CNRM-CM5 in 2030. In spite of uncertainty in projection, it can be remarked that climate change and population growth would cause increase in water demand and consequently, reduce the gap between water supply and demand, which eventually aggravate the condition of existing water stress in the basin. Water demand management should be emphasized for adaptation to ever increasing water demand and mitigation of the impacts of environmental changes.

  3. Water use efficiency at basin and farm scales

    Science.gov (United States)

    Ehsan Goodarzi; Lotfollah Ziaei; Saeid Eslamian

    2016-01-01

    The available water resources in basins are becoming scarce while demands for water are considerably increasing among various sectors due to economic and population growths. Water deficiency is becoming a main constraint for sustainable regional development and it is the primary motivation in creating water to supply user requirements in particular for agricultural ...

  4. Arsenic occurrence in water bodies in Kharaa river basin

    Directory of Open Access Journals (Sweden)

    Azzaya T

    2018-02-01

    Full Text Available Distribution of arsenic (As and its compound and related toxicology are serious concerns nowadays. Gold mining activity is one of the anthropogenic sources of environmental contamination regarding As and other heavy metals. In Mongolia, the most productive gold mining sites are placed in the Kharaa river basin. A hundred water samples were collected from river, spring and deep wells in this river basin. Along with total As and its species-As(III and As(V, examination of concentration levels of other key parameters, 21 heavy metals with pH, total hardness, electric conductivity, anion and cations, was also carried out. In respect to the permissible limit formulated by the Mongolian National Drinking water quality standard (MNS 0900:2005, As10 µg/l, the present study showed that most of samples were found no contamination. In Kharaa river basin, an average concentration of total As in surface water was 4.04 µg/l with wide range in 0.07−30.30 µg/l whereas it was 2.24 µg/l in groundwater. As analysis in surface water in licensed area of Gatsuurt gold mining showed a mean concentration with 24.90 µg/l presenting higher value than that of value in river basin by 6 orders of magnitude and it was 2 times higher than permissible level as well. In Boroo river nearby Boroo gold mining area, As concentration in water was ranged in 6.05−6.25 µg/l. Ammonia pollution may have present at estuary of Zuunmod river in Mandal sum with above the permissible level described in national water quality standard. Geological formation of the rocks and minerals affected to change of heavy metal concentration, especially As and uranium (U at spring water nearby Gatsuurt-Boroo improved road.

  5. Water Level Fluctuations in the Congo Basin Derived from ENVISAT Satellite Altimetry

    Directory of Open Access Journals (Sweden)

    Mélanie Becker

    2014-09-01

    Full Text Available In the Congo Basin, the elevated vulnerability of food security and the water supply implies that sustainable development strategies must incorporate the effects of climate change on hydrological regimes. However, the lack of observational hydro-climatic data over the past decades strongly limits the number of studies investigating the effects of climate change in the Congo Basin. We present the largest altimetry-based dataset of water levels ever constituted over the entire Congo Basin. This dataset of water levels illuminates the hydrological regimes of various tributaries of the Congo River. A total of 140 water level time series are extracted using ENVISAT altimetry over the period of 2003 to 2009. To improve the understanding of the physical phenomena dominating the region, we perform a K-means cluster analysis of the altimeter-derived river level height variations to identify groups of hydrologically similar catchments. This analysis reveals nine distinct hydrological regions. The proposed regionalization scheme is validated and therefore considered reliable for estimating monthly water level variations in the Congo Basin. This result confirms the potential of satellite altimetry in monitoring spatio-temporal water level variations as a promising and unprecedented means for improved representation of the hydrologic characteristics in large ungauged river basins.

  6. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  7. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  8. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  9. Graphical user interface for accessing water-quality data for the Devils Lake basin, North Dakota

    Science.gov (United States)

    Ryberg, Karen R.; Damschen, William C.; Vecchia, Aldo V.

    2005-01-01

    Maintaining the quality of surface waters in the Devils Lake Basin in North Dakota is important for protecting the agricultural resources, fisheries, waterfowl and wildlife habitat, and recreational value of the basin. The U.S. Geological Survey, in cooperation with local, State, and Federal agencies, has collected and analyzed water-quality samples from streams and lakes in the basin since 1957, and the North Dakota Department of Health has collected and analyzed water-quality samples from lakes in the basin since 2001. Because water-quality data for the basin are important for numerous reasons, a graphical user interface was developed to access, view, and download the historical data for the basin. The interface is a web-based application that is available to the public and includes data through water year 2003. The interface will be updated periodically to include data for subsequent years.

  10. The water footprint of agricultural products in European river basins

    International Nuclear Information System (INIS)

    Vanham, D; Bidoglio, G

    2014-01-01

    This work quantifies the agricultural water footprint (WF) of production (WF prod, agr ) and consumption (WF cons, agr ) and the resulting net virtual water import (netVW i, agr ) of 365 European river basins for a reference period (REF, 1996–2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WF cons, agr, tot exceeds the WF prod, agr, tot (resulting in positive netVW i, agr, tot values), are found along the London–Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WF prod, agr, tot exceeds the WF cons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WF cons, agr, tot of most river basins decreases (max −32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max −46%) in WF cons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed. (letters)

  11. Water Clarity Simulant for K East Basin Filtration Testing

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Andrew J.

    2006-01-20

    This document provides a simulant formulation intended to mimic the behavior of the suspended solids in the K East (KE) Basin fuel storage pool. The simulant will be used to evaluate alternative filtration apparatus to improve Basin water clarity and to possibly replace the existing sandfilter. The simulant was formulated based on the simulant objectives, the key identified parameters important to filtration, the composition and character of the KE Basin suspended sludge particles, and consideration of properties of surrogate materials.

  12. Water level fluctuations in the Congo basin derived from ENVISAT satellite altimetry

    OpenAIRE

    Becker, M.; da Silva, J. S.; Calmant, Stéphane; Robinet, V.; Linguet, L.; Seyler, Frédérique

    2014-01-01

    In the Congo Basin, the elevated vulnerability of food security and the water supply implies that sustainable development strategies must incorporate the effects of climate change on hydrological regimes. However, the lack of observational hydro-climatic data over the past decades strongly limits the number of studies investigating the effects of climate change in the Congo Basin. We present the largest altimetry-based dataset of water levels ever constituted over the entire Congo Basin. This...

  13. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    Science.gov (United States)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  14. Water resources in the Big Lost River Basin, south-central Idaho

    Science.gov (United States)

    Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.

    1970-01-01

    The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the

  15. Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin

    Science.gov (United States)

    Peng, H.; Jia, Y.; Qiu, Y.

    2011-12-01

    The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin

  16. A market-based approach to share water and benefits in transboundary river basins

    Science.gov (United States)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-04-01

    The equitable sharing of benefits in transboundary river basins is necessary to reach a consensus on basin-wide development and management activities. Benefit sharing arrangements must be collaboratively developed to be perceived as efficient, as well as equitable, in order to be considered acceptable to all riparian countries. The current literature falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. In this methodology (i) a hydro-economic model is used to efficiently allocate scarce water resources to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges are equitably redistributed as monetary compensation to users. The amount of monetary compensation, for each water user, is determined through the application of a sharing method developed by stakeholder input, based on a stakeholder vision of fairness, using an axiomatic approach. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The technique ensures economic efficiency and may lead to more equitable solutions in the sharing of benefits in transboundary river basins because the definition of the sharing rule is not in question, as would be the case if existing methods, such as game theory, were applied, with their inherent definitions of fairness.

  17. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China

    Science.gov (United States)

    Lin, Jingjing; Ma, Rui; Hu, Yalu; Sun, Ziyong; Wang, Yanxin; McCarter, Colin P. R.

    2018-03-01

    The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114 × 104 m3/year in 2017 to 11,875 × 104 m3/year in 2021, and to 17,039 × 104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277 × 104 m3/year in 2017 to 1857 × 104 m3/year in 2021, and to 510 × 104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.

  18. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    Directory of Open Access Journals (Sweden)

    Loizeau Sébastien

    2017-09-01

    Full Text Available Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration cycles in an experimental basin of 11869 m2 in a pumping field at Crepieux-Charmy (Lyon, France. A first experiment, conducted in summer 2011, showed a strong increase in infiltration rate; which was linked to a potential increase in ground water temperature or a potential dissolution of air entrapped at the beginning of the infiltration. A second experiment was conducted in summer, to inject cold water instead of warm water, and also revealed an increase in infiltration rate. This increase was linked to air dissolution in the soil. A final experiment was conducted in spring with no temperature contrast and no entrapped air (soil initially water-saturated, revealing a constant infiltration rate. Modeling and analysis of experiments revealed that air entrapment and cold water temperature in the soil could substantially reduce infiltration rate over the first infiltration cycles, with respective effects of similar magnitude. Clearly, both water temperature change and air entrapment must be considered for an accurate assessment of the infiltration rate in basins.

  19. Water-quality assessment of the lower Illinois River Basin; environmental setting

    Science.gov (United States)

    Warner, Kelly L.

    1998-01-01

    The lower Illinois River Basin (LIRB) encompasses 18,000 square miles of central and western Illinois. Historical and recent information from Federal, State, and local agencies describing the physiography, population, land use, soils, climate, geology, streamflow, habitat, ground water, water use, and aquatic biology is summarized to describe the environmental setting of the LIRB. The LIRB is in the Till Plains Section of the Central Lowland physiographic province. The basin is characterized by flat topography, which is dissected by the Illinois River. The drainage pattern of the LIRB has been shaped by many bedrock and glacial geologic processes. Erosion prior to and during Pleistocene time created wide and deep bedrock valleys. The thickest deposits and most major aquifers are in buried bedrock valleys. The Wisconsinan glaciation, which bisects the northern half of the LIRB, affects the distribution and characteristics of glacial deposits in the basin. Agriculture is the largest land use and forested land is the second largest land use in the LIRB. The major urban areas are near Peoria, Springfield, Decatur, and Bloomington-Normal. Soil type and distribution affect the amount of soil erosion, which results in sedimentation of lakes and reservoirs in the basin. Rates of soil erosion of up to 2 percent per year of farmland soil have been measured. Many of the 300 reservoirs, lakes, and wetlands are disappearing because of sedimentation resulting from agriculture activities, levee building, and urbanization. Sedimentation and the destruction of habitat appreciably affect the ecosystem. The Illinois River is a large river-floodplain ecosystem where biological productivity is enhanced by annual flood pulses that advance and retreat over the flood plain and temporarily expand backwater and flood-plain lakes. Ground-water discharge to streams affects the flow and water quality of the streams. The water budget of several subbasins show variability in ground-water

  20. Phase II modification of the Water Availability Tool for Environmental Resources (WATER) for Kentucky: The sinkhole-drainage process, point-and-click basin delineation, and results of karst test-basin simulations

    Science.gov (United States)

    Taylor, Charles J.; Williamson, Tanja N.; Newson, Jeremy K.; Ulery, Randy L.; Nelson, Hugh L.; Cinotto, Peter J.

    2012-01-01

    This report describes Phase II modifications made to the Water Availability Tool for Environmental Resources (WATER), which applies the process-based TOPMODEL approach to simulate or predict stream discharge in surface basins in the Commonwealth of Kentucky. The previous (Phase I) version of WATER did not provide a means of identifying sinkhole catchments or accounting for the effects of karst (internal) drainage in a TOPMODEL-simulated basin. In the Phase II version of WATER, sinkhole catchments are automatically identified and delineated as internally drained subbasins, and a modified TOPMODEL approach (called the sinkhole drainage process, or SDP-TOPMODEL) is applied that calculates mean daily discharges for the basin based on summed area-weighted contributions from sinkhole drain-age (SD) areas and non-karstic topographically drained (TD) areas. Results obtained using the SDP-TOPMODEL approach were evaluated for 12 karst test basins located in each of the major karst terrains in Kentucky. Visual comparison of simulated hydrographs and flow-duration curves, along with statistical measures applied to the simulated discharge data (bias, correlation, root mean square error, and Nash-Sutcliffe efficiency coefficients), indicate that the SDPOPMODEL approach provides acceptably accurate estimates of discharge for most flow conditions and typically provides more accurate simulation of stream discharge in karstic basins compared to the standard TOPMODEL approach. Additional programming modifications made to the Phase II version of WATER included implementation of a point-and-click graphical user interface (GUI), which fully automates the delineation of simulation-basin boundaries and improves the speed of input-data processing. The Phase II version of WATER enables the user to select a pour point anywhere on a stream reach of interest, and the program will automatically delineate all upstream areas that contribute drainage to that point. This capability enables

  1. Water use and quality of fresh surface-water resources in the Barataria-Terrebonne Basins, Louisiana

    Science.gov (United States)

    Johnson-Thibaut, Penny M.; Demcheck, Dennis K.; Swarzenski, Christopher M.; Ensminger, Paul A.

    1998-01-01

    Approximately 170 Mgal/d (million gallons per day) of ground- and surface-water was withdrawn from the Barataria-Terrebonne Basins in 1995. Of this amount, surface water accounted for 64 percent ( 110 MgaVd) of the total withdrawal rates in the basins. The largest surface-water withdrawal rates were from Bayou Lafourche ( 40 Mgal/d), Bayou Boeuf ( 14 MgaVd), and the Gulf Intracoastal Waterway (4.2 Mgal/d). The largest ground-water withdrawal rates were from the Mississippi River alluvial aquifer (29 Mgal/d), the Gonzales-New Orleans aquifer (9.5 Mgal/d), and the Norco aquifer (3.6 MgaVd). The amounts of water withdrawn in the basins in 1995 differed by category of use. Public water suppliers within the basins withdrew 41 Mgal/d of water. The five largest public water suppliers in the basins withdrew 30 Mgal/d of surface water: Terrebonne Waterworks District 1 withdrew the largest amount, almost 15 MgaVd. Industrial facilities withdrew 88 Mgal/d, fossil-fuel plants withdrew 4.7 MgaVd, and commercial facilities withdrew 0.67 MgaVd. Aggregate water-withdrawal rates, compiled by parish for aquaculture (37 Mgal/d), livestock (0.56 Mgal/d), rural domestic (0.44 MgaVd), and irrigation uses (0.54 MgaVd), totaled about 38 MgaVd in the basins. Ninety-five percent of aquaculture withdrawal rates, primarily for crawfish and alligator farming, were from surface-water sources. >br> Total water-withdrawal rates increased 221 percent from 1960–95. Surface-water withdrawal rates have increased by 310 percent, and ground-water withdrawal rates have increased by 133 percent. The projection for the total water-withdrawal rates in 2020 is 220 MgaVd, an increase of 30 percent from 1995. Surface-water withdrawal rates would account for 59 percent of the total, or 130 Mgal/d. Surface-water withdrawal rates are projected to increase by 20 percent from 1995 to 2020. Analysis of water-quality data from the Mississippi River indicates that the main threats to surface water resources are

  2. Irrigation efficiency and water-policy implications for river basin resilience

    Science.gov (United States)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2014-04-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  3. Water use in the Apalachicola-Chattahoochee-Flint River Basin, Alabama, Florida, and Georgia, 2010, and water-use trends, 1985-2010

    Science.gov (United States)

    Lawrence, Stephen J.

    2016-02-25

    The Apalachicola-Chattahoochee-Flint (ACF) River Basin encompasses about 20,230 square miles in parts of Alabama, Florida, and Georgia. Increasing population growth and agricultural production from the 1970s to 2010 has prompted increases in water-resources development and substantially increased water demand in the basin. Since the 1980s, Alabama, Florida, Georgia, and the U.S. Army Corps of Engineers are parties to litigation concerning water management in the ACF River Basin.

  4. Comprehensive Characterization of Droughts to Assess the Effectiveness of a Basin-Wide Integrated Water Management in the Yakima River Basin

    Science.gov (United States)

    Demissie, Y.; Mortuza, M. R.; Li, H. Y.

    2017-12-01

    Better characterization and understanding of droughts and their potential links to climate and hydrologic factors are essential for water resources planning and management in drought-sensitive but agriculturally productive regions like the Yakima River Basin (YKB) in Washington State. The basin is semi-arid and heavily relies on a fully appropriated irrigation water for fruit and crop productions that worth more than 3 billion annually. The basin experienced three major droughts since 2000 with estimated 670 million losses in farm revenue. In response to these and expected worsening drought conditions in the future, there is an ongoing multi-agency effort to adopt a basin-wide integrated water management to ensure water security during severe droughts. In this study, the effectiveness of the proposed water management plan to reduce the frequency and severity of droughts was assessed using a new drought index developed based on the seasonal variations of precipitation, temperature, snow accumulation, streamflow, and reservoir storages. In order to uncover the underlying causes of the various types of droughts observed during the 1961-2016, explanatory data analysis using deep learning was conducted for the local climate and hydrologic data including total water supply available, as well as global climatic phenomenon (El Niño/Southern Oscillation, Pacific Decadal Oscillation and North Atlantic Oscillation). The preliminary results showed that besides shortage in annual precipitation, various combinations of climate and hydrologic factors are responsible for the different drought conditions in the basin. Particularly, the winter snowpack, which provides about 2/3 of the surface water in the basin along with the carryover storage from the reservoirs play an important role during both single- and multiple-year drought events. Besides providing the much-needed insights about characteristics of droughts and their contributing factors, the outcome of the study is expected

  5. A stochastic approach for the description of the water balance dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    S. Manfreda

    2008-09-01

    Full Text Available The present paper introduces an analytical approach for the description of the soil water balance dynamics over a schematic river basin. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance. This equation can be solved assuming known the spatial distribution of the soil moisture over the basin transforming the two-dimensional problem in space in a one dimensional one. This assumption is particularly true in the case of humid and semihumid environments, where spatial redistribution becomes dominant producing a well defined soil moisture pattern. The model allowed to derive the probability density function of the saturated portion of a basin and of its relative saturation. This theory is based on the assumption that the soil water storage capacity varies across the basin following a parabolic distribution and the basin has homogeneous soil texture and vegetation cover. The methodology outlined the role played by the soil water storage capacity distribution of the basin on soil water balance. In particular, the resulting probability density functions of the relative basin saturation were found to be strongly controlled by the maximum water storage capacity of the basin, while the probability density functions of the relative saturated portion of the basin are strongly influenced by the spatial heterogeneity of the soil water storage capacity. Moreover, the saturated areas reach their maximum variability when the mean rainfall rate is almost equal to the soil water loss coefficient given by the sum of the maximum rate of evapotranspiration and leakage loss in the soil water balance. The model was tested using the results of a continuous numerical simulation performed with a semi-distributed model in order to validate the proposed theoretical distributions.

  6. Subproject plan for demonstration of 3M technology for treatment of N Basin water

    International Nuclear Information System (INIS)

    Plastino, J.C.

    1996-02-01

    A dissolved radionuclides removal demonstration is being conducted at the 105-N Basin as part of the 100-N Area Projects' policy of aggressively integrating innovative technologies to achieve more cost effective, faster, and/or safer deactivation operations. This subproject plan demonstrates new technology (marketed by the 3M trademark Company) that absorbs specific ions from water. The demonstration will take place at the spent fuel basin at the N Reactor facility. The 105-N Basin contains 1 million gal of water consisting of approximately 32 Ci of dissolved 90 Sr at a concentration of 8.4 uCi/L and 7.3 Ci of dissolved 137 Cs at a concentration of 1.92 uCi/L. The Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement [Ecology et al. 1990]) Milestone M-16-01E-T2 requires the initiation of pretreatment and removal of all N Reactor fuel storage basin waters by September 30, 1996, pursuant to the N Reactor Deactivation Program Plan (WHC 1993). 105-N Basin dewatering is on the critical path for overall deactivation of N Reactor by March 1997. The 105-N Basin Deactivation Program Plan (BHI 1995) includes removing debris, hardware, algae and sediment from the basin, followed by pretreatment (filtration) and removal of the 1005-N Basin water. Final water removal is currently scheduled for September 30, 1996. The recommended method of the 105-N Basin water is the treatment of the water at the Effluent Treatment Facility (ETF) in the 200 East Area. The demonstration of the 3M technology could be a feasible treatment alternative to the ETF if the ETF is not available to meet the project schedule or if additional pretreatment is needed to reduce the inventory of radioactive species to be handled at the ETF. Demonstration of this technology could be of value for other fuel basins at the Hanford Site and possibly other US Department of Energy (DOE) sites and non- DOE nuclear power plants

  7. Availability of water resources in the rio Bermudez micro-basin. Central Region of Costa Rica

    International Nuclear Information System (INIS)

    Hernando Echevarria, L.; Orozco Montoya, R.

    2015-01-01

    The Rio Bermudez micro-basin makes up part of the principal hydrological resource area in the Central Region of Costa Rica. For this reason a study was done to determine the availability of hydrological resources in said micro-basin to identify areas with potential water availability problems. A monthly water balance was calculated using land use, geomorphology and climate parameters. From these water balance studies, the amount of available water was calculated and classified into four categories, however, in this micro-basin, only three categories were identified: high, medium and moderate water availability. No areas were identified with low water availability, indicating availability is sufficient; however, there is increasing demand on water resources because over half of the micro-basin area is classified as having moderate water availability. (Author)

  8. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    Directory of Open Access Journals (Sweden)

    N. Oosthuizen

    2018-05-01

    Full Text Available The demand for water resources is rapidly growing, placing more strain on access to water and its management. In order to appropriately manage water resources, there is a need to accurately quantify available water resources. Unfortunately, the data required for such assessment are frequently far from sufficient in terms of availability and quality, especially in southern Africa. In this study, the uncertainty related to the estimation of water resources of two sub-basins of the Limpopo River Basin – the Mogalakwena in South Africa and the Shashe shared between Botswana and Zimbabwe – is assessed. Input data (and model parameters are significant sources of uncertainty that should be quantified. In southern Africa water use data are among the most unreliable sources of model input data because available databases generally consist of only licensed information and actual use is generally unknown. The study assesses how these uncertainties impact the estimation of surface water resources of the sub-basins. Data on farm reservoirs and irrigated areas from various sources were collected and used to run the model. Many farm dams and large irrigation areas are located in the upper parts of the Mogalakwena sub-basin. Results indicate that water use uncertainty is small. Nevertheless, the medium to low flows are clearly impacted. The simulated mean monthly flows at the outlet of the Mogalakwena sub-basin were between 22.62 and 24.68 Mm3 per month when incorporating only the uncertainty related to the main physical runoff generating parameters. The range of total predictive uncertainty of the model increased to between 22.15 and 24.99 Mm3 when water use data such as small farm and large reservoirs and irrigation were included. For the Shashe sub-basin incorporating only uncertainty related to the main runoff parameters resulted in mean monthly flows between 11.66 and 14.54 Mm3. The range of predictive uncertainty changed to between 11.66 and 17

  9. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  10. Water-scarcity patterns : spatiotemporal interdependencies between water use and water availability in a semi-arid river basin

    NARCIS (Netherlands)

    van Oel, P.R.

    2009-01-01

    This thesis addresses the interdependencies between water use and water availability and describes a model that has been developed to improve understanding of the processes that drive changes and variations in the spatial and temporal distribution of water resources in a semi-arid river basin. These

  11. Salt reduction in vegetable soup does not affect saltiness intensity and liking in the elderly and children.

    Science.gov (United States)

    Gonçalves, Carla; Monteiro, Sérgio; Padrão, Patrícia; Rocha, Ada; Abreu, Sandra; Pinho, Olívia; Moreira, Pedro

    2014-01-01

    Reduction of added salt levels in soups is recommended. We evaluated the impact of a 30% reduction of usual added salt in vegetable soups on elderly and children's saltiness and liking evaluation. Subjects were elderly and recruited from two public nursing homes (29 older adults, 79.7±8.9 years), and preschool children recruited from a public preschool (49 children, 4.5±1.3 years). This study took place in institutional lunchrooms. Through randomization and crossover, the subjects participated in two sensory evaluation sessions, on consecutive days, to assess perceived saltiness intensity (elderly sample) and liking (elderly and children samples) of a vegetable soup with baseline salt content and with a 30% salt reduction. Elderly rated perceived liking through a 10 cm visual analogue scale ['like extremely' (1) to 'dislike extremely' (10)] and children through a five-point facial scale ['dislike very much' (1) to 'like very much' (5)]. After 30% added salt reduction in vegetable soup, there were no significant differences in saltiness noted by the elderly (p=0.150), and in perceived liking by children (p=0.160) and elderly (p=0.860). A 30% salt reduction in vegetable soup may be achieved without compromising perceived saltiness and liking in children and the elderly.

  12. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  13. Agricultural Water Use Sustainability Assessment in the Tarim River Basin under Climatic Risks

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2018-02-01

    Full Text Available Proper agricultural water management in arid regions is the key to tackling climatic risks. However, an effective assessment of the current response to climate change in agricultural water use is the precondition for a group adaptation strategy. The paper, taking the Tarim River basin (TRB as an example, aims to examine the agricultural water use sustainability of water resource increase caused by climatic variability. In order to describe the response result, groundwater change has been estimated based on the Gravity Recovery and Climate Experiment (GRACE and the Global Land Data Assimilation System (GLDAS–Noah land surface model (NOAH data. In order to better understand the relationship between water resource increase and agricultural water consumption, an agricultural water stress index has been established. Agricultural water stress has been in a severe state during the whole period, although it alleviated somewhat in the mid–late period. This paper illustrates that an increase in water supply could not satisfy agricultural production expansion. Thus, seasonal groundwater loss and a regional water shortage occurred. Particularly in 2008 and 2009, the sharp shortage of water supply in the Tarim River basin directly led to a serious groundwater drop by nearly 20 mm from the end of 2009 to early 2010. At the same time, a regional water shortage led to water scarcity for the whole basin, because the water consumption, which was mainly distributed around Source Rivers, resulted in break-off discharge in the mainstream. Therefore, current agricultural development in the Tarim River basin is unsustainable in the context of water supply under climatic risks. Under the control of irrigation, spatial and temporal water allocation optimization is the key to the sustainable management of the basin.

  14. Optimal allocation of land and water resources to achieve Water, Energy and Food Security in the upper Blue Nile basin

    Science.gov (United States)

    Allam, M.; Eltahir, E. A. B.

    2017-12-01

    Rapid population growth, hunger problems, increasing energy demands, persistent conflicts between the Nile basin riparian countries and the potential impacts of climate change highlight the urgent need for the conscious stewardship of the upper Blue Nile (UBN) basin resources. This study develops a framework for the optimal allocation of land and water resources to agriculture and hydropower production in the UBN basin. The framework consists of three optimization models that aim to: (a) provide accurate estimates of the basin water budget, (b) allocate land and water resources optimally to agriculture, and (c) allocate water to agriculture and hydropower production, and investigate trade-offs between them. First, a data assimilation procedure for data-scarce basins is proposed to deal with data limitations and produce estimates of the hydrologic components that are consistent with the principles of mass and energy conservation. Second, the most representative topography and soil properties datasets are objectively identified and used to delineate the agricultural potential in the basin. The agricultural potential is incorporated into a land-water allocation model that maximizes the net economic benefits from rain-fed agriculture while allowing for enhancing the soils from one suitability class to another to increase agricultural productivity in return for an investment in soil inputs. The optimal agricultural expansion is expected to reduce the basin flow by 7.6 cubic kilometres, impacting downstream countries. The optimization framework is expanded to include hydropower production. This study finds that allocating water to grow rain-fed teff in the basin is more profitable than allocating water for hydropower production. Optimal operation rules for the Grand Ethiopian Renaissance dam (GERD) are identified to maximize annual hydropower generation while achieving a relatively uniform monthly production rate. Trade-offs between agricultural expansion and hydropower

  15. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  16. Ecosystem based river basin management planning in critical water catchment in Mongolia

    Science.gov (United States)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  17. Irrigation efficiency and water-policy implications for river-basin resilience

    Science.gov (United States)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2013-07-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface- and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river-basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly examines policy frameworks in three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  18. Radioactivity measurement in soils, sediments and water from Salihli Basin, western Turkey

    International Nuclear Information System (INIS)

    Bakac, M.; Kumru, M.N.

    2001-01-01

    Full text: Salihli Basin (about 3500 km 2 ), which is located latitude 38 deg 25' - 38 deg 35' North and longitude 27 deg 58' - 28 deg 25' East, is found on the river of Gediz the second longest river in Aegean Sea. The Gediz river originates in the vicinity of Murat Mountain and flows into the Aegean Sea in western Turkey. Gediz river carries industry effluents and mine discharges frequently inundates its flood plains. Salihli Basin is also one of the flood plain basins which has these properties The bedrock structure of the basin is composed mainly of metamorphic and volcanic rocks of the Palaeozoic, Mesozoic and Neogene ages. Uranium deposits in the Koprubasi area (Salihli Basin) of western Turkey occur in fluvial sedimentary rocks, which Lire underlaid by high-grade metamorphic rocks of the Menderes Massif. In the present study, soil, sediment and water samples were collected from the basin, its environment and riverbank. Sediment and soil samples were analysed for uranium, thorium and potassium by gamma-spectroscopy method; for radium by collector chamber method. Water samples were analysed for radium by collector chamber method. Moreover, groundwaters and streams' soils, sediments and waters within the basin were analysed for above natural radioactive elements. The objective of this, study is to determine the level of natural radioactivity in Salihli Basin. Uranium, thorium, potassium und radium concentrations and their frequency distributions were plotted graphically

  19. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    Science.gov (United States)

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  20. Resilience in Transboundary Water Governance: the Okavango River Basin

    Directory of Open Access Journals (Sweden)

    Olivia O. Green

    2013-06-01

    Full Text Available When the availability of a vital resource varies between times of overabundance and extreme scarcity, management regimes must manifest flexibility and authority to adapt while maintaining legitimacy. Unfortunately, the need for adaptability often conflicts with the desire for certainty in legal and regulatory regimes, and laws that fail to account for variability often result in conflict when the inevitable disturbance occurs. Additional keys to resilience are collaboration among physical scientists, political actors, local leaders, and other stakeholders, and, when the commons is shared among sovereign states, collaboration between and among institutions with authority to act at different scales or with respect to different aspects of an ecological system. At the scale of transboundary river basins, where treaties govern water utilization, particular treaty mechanisms can reduce conflict potential by fostering collaboration and accounting for change. One necessary element is a mechanism for coordination and collaboration at the scale of the basin. This could be satisfied by mechanisms ranging from informal networks to the establishment of an international commission to jointly manage water, but a mechanism for collaboration at the basin scale alone does not ensure sound water management. To better guide resource management, study of applied resilience theory has revealed a number of management practices that are integral for adaptive governance. Here, we describe key resilience principles for treaty design and adaptive governance and then apply the principles to a case study of one transboundary basin where the need and willingness to manage collaboratively and iteratively is high - the Okavango River Basin of southwest Africa. This descriptive and applied approach should be particularly instructive for treaty negotiators, transboundary resource managers, and should aid program developers.

  1. ALEXI analysis of water consumption in the Nile Basin

    Science.gov (United States)

    Remote sensing can be used to generate diagnostic estimates of evapotranspiration (ET) that provide information regarding consumptive water use across landscapes. These satellite-based assessments can be a valuable complement to prognostic simulations of basin-scale water budgets, providing an inde...

  2. K-Basins particulate water content, and behavior

    International Nuclear Information System (INIS)

    DUNCAN, D.R.

    1999-01-01

    This analysis summarizes the state of knowledge of K-basins spent nuclear fuel oxide (film, particulate or sludge) and its chemically bound water in order to estimate the associated multi-canister overpack (MCO) water inventory and to describe particulate dehydration behavior. This information can be used to evaluate the thermal and chemical history of an MCO and its contents during cold vacuum drying (CVD), shipping, and interim storage

  3. K-Basins particulate water content, and behavior

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, D.R.

    1999-02-25

    This analysis summarizes the state of knowledge of K-basins spent nuclear fuel oxide (film, particulate or sludge) and its chemically bound water in order to estimate the associated multi-canister overpack (MCO) water inventory and to describe particulate dehydration behavior. This information can be used to evaluate the thermal and chemical history of an MCO and its contents during cold vacuum drying (CVD), shipping, and interim storage.

  4. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    International Nuclear Information System (INIS)

    DERUSSEAU, R.R.

    2000-01-01

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP)

  5. Energy development and water options in the Yellowstone River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  6. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    International Nuclear Information System (INIS)

    Evans, S. K.

    2007-01-01

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve 'clean closure' of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems

  7. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S. K.

    2007-11-07

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

  8. Water Budget Closure Based on GRACE Measurements and Reconstructed Evapotranspiration Using GLDAS and Water Use Data over the Yellow River and Changjiang River Basins

    Science.gov (United States)

    Lv, M.; Ma, Z.; Yuan, X.

    2017-12-01

    It is important to evaluate the water budget closure on the basis of the currently available data including precipitation, evapotranspiration (ET), runoff, and GRACE-derived terrestrial water storage change (TWSC) before using them to resolve water-related issues. However, it remains challenging to achieve the balance without the consideration of human water use (e.g., inter-basin water diversion and irrigation) for the estimation of other water budget terms such as the ET. In this study, the terrestrial water budget closure is tested over the Yellow River Basin (YRB) and Changjiang River Basin (CJB, Yangtze River Basin) of China. First, the actual ET is reconstructed by using the GLDAS-1 land surface models, the high quality observation-based precipitation, naturalized streamflow, and the irrigation water (hereafter, ETrecon). The ETrecon, evaluated using the mean annual water-balance equation, is of good quality with the absolute relative errors less than 1.9% over the two studied basins. The total basin discharge (Rtotal) is calculated as the residual of the water budget among the observation-based precipitation, ETrecon, and the GRACE-TWSC. The value of the Rtotal minus the observed total basin discharge is used to evaluate the budget closure, with the consideration of inter-basin water diversion. After the ET reconstruction, the mean absolute imbalance value reduced from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year over the YRB and CJB, respectively. The estimation-to-observation ratios of total basin discharge improved from 180.8% to 86.8% over the YRB, and from 67.0% to 101.1% over the CJB. The proposed ET reconstruction method is applicable to other human-managed river basins to provide an alternative estimation.

  9. Water and Fisheries: The Sensitivity of Water Supply in the Tana River Basin to Climate Change

    International Nuclear Information System (INIS)

    Inima, A.K.

    1998-01-01

    Wether climatic change would cause water supply in the dry areas of the earth to diminish or not is a major question. The main objective of this study was to determine wether the water supply in the Tana river Basin of Kenya would diminish in quality as a result of climate change. The Tana River Basin is the immense economic importance to Kenya and is the lifeline of Kenya's electricity supply, accounting for about 70% of the country's electricity supply. The basin houses about 30% of the country's population and 38% of the total irrigable land. A diminished water supply in this content would, therefore, hamper the economic development of the country.Kenya receives, on average, an annual rainfall of 600 mm, and hence classified as arid to semi-arid. This makes it vulnerable to adverse effects of climate change

  10. Quality of surface waters in the lower Columbia River Basin

    Science.gov (United States)

    Santos, John F.

    1965-01-01

    This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the

  11. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level.

    Science.gov (United States)

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2016-11-15

    One of the main challenges in water management is to determine how the current water use can condition its availability to future generations and hence its sustainability. This study proposes the use of the Water Footprint (WF) indicator to assess the environmental sustainability in water resources management at the river basin level. The current study presents the methodology developed and applies it to a case study. The WF is a relatively new indicator that measures the total volume of freshwater that is used as a production factor. Its application is ever growing in the evaluation of water use in production processes. The calculation of the WF involves water resources (blue), precipitation stored in the soil (green) and pollution (grey). It provides a comprehensive assessment of the environmental sustainability of water use in a river basin. The methodology is based upon the simulation of the anthropised water cycle, which is conducted by combining a hydrological model and a decision support system. The methodology allows the assessment of the environmental sustainability of water management at different levels, and/or ex-ante analysis of how the decisions made in water planning process affect sustainability. The sustainability study was carried out in the Segura River Basin (SRB) in South-eastern Spain. The SRB is among the most complex basins in Europe, given its special peculiarities: competition for the use, overexploitation of aquifers, pollution, alternative sources, among others. The results indicate that blue water use is not sustainable due to the generalised overexploitation of aquifers. They also reveal that surface water pollution, which is not sustainable, is mainly caused by phosphate concentrations. The assessment of future scenarios reveals that these problems will worsen if no additional measures are implemented, and therefore the water management in the SRB is environmentally unsustainable in both the short- and medium-term. Copyright © 2016

  12. Tidal-Induced Ocean Dynamics as Cause of Enceladus' Tiger Stripe Pattern

    Science.gov (United States)

    Vermeersen, B. L.; Maas, L. R.; van Oers, S.; Rabitti, A.; Jara-Orue, H.

    2013-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. Indeed, later Cassini observations have shown that salty water jets originate from the tiger stripes [e.g., Hansen et al., Science, 311, 1422-1425, 2006; Postberg et al., Nature, 474, 620-622, 2011]. The periodic activity of the tiger stripe faults shows a strong correlation with tidal forcing. Jets emanating from specific fault lines seem to be triggered at those places of the faults where tidal-induced stresses are largest immediately following closest orbital approach with Saturn [e.g., Hurford et al., Nature, 447, 292-294, 2007]. Thus jet activity seems to be directly induced by tidal forcing. However, this does not explain the characteristic regular pattern of the stripes themselves. Here we explore the possibility that this pattern is formed and maintained by induced, tidally and rotationally driven, fluid motions in the ocean underneath the icy surface of the tiger-stripe region. The remarkable spatial regularity of Enceladus' SPT fault lines is reminiscent of that observed at the surface of confined density-stratified fluids by the action of induced internal gravity waves. Theoretical analysis, numerical simulations and laboratory water tank experiments all indicate that wave attractors - particular limit orbits to which waves are focused in a fluid basin - naturally emerge in gravitationally (radial salt concentration or temperature differences) or rotationally stratified confined fluids as a function of forcing periodicity and fluid basin geometry [Maas et al., Nature, 338, 557-561, 1997]. We have found that ocean dynamical wave attractors induced by tidal-effective forcing

  13. Characterization of water quality for streams in the southern Yampa River basin, northwestern Colorado. Water Resources Investigation

    International Nuclear Information System (INIS)

    Parker, R.S.

    1991-01-01

    Historically, the Yampa River basin in northwestern Colorado has been an area of coal-mining development. Coal mining generally has been developed in the southern part of the basin and at lower elevations. The purpose of the report is to characterize the stream water quality by summarizing selected major dissolved constituents for the streams that drain the southern part of the Yampa River basin. Characterization is done initially by providing a statistical summary of the constituents for individual water-quality sites in the study area. These statistical summaries can be used to help assess water-quality within specified stream reaches. Water-quality data are available for sites on most perennial streams in the study area, and these data provide the best information about the immediate stream reach. Water-quality data from all sites are combined into regions, and linear-regression equations between dissolved constituents and specific conductance are calculated. Such equations provide an estimate of the water-quality relations within these regions. The equations also indicate an increase in error as individual sites are combined

  14. Climate Change Impacts on Water Availability and Use in the Limpopo River Basin

    Directory of Open Access Journals (Sweden)

    Tingju Zhu

    2012-01-01

    Full Text Available This paper analyzes the effects of climate change on water availability and use in the Limpopo River Basin of Southern Africa, using a linked modeling system consisting of a semi-distributed global hydrological model and the Water Simulation Module (WSM of the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT. Although the WSM simulates all major water use sectors, the focus of this study is to evaluate the implications of climate change on irrigation water supply in the catchments of the Limpopo River Basin within the four riparian countries: Botswana, Mozambique, South Africa, and Zimbabwe. The analysis found that water resources of the Limpopo River Basin are already stressed under today’s climate conditions. Projected water infrastructure and management interventions are expected to improve the situation by 2050 if current climate conditions continue into the future. However, under the climate change scenarios studied here, water supply availability is expected to worsen considerably by 2050. Assessing hydrological impacts of climate change is crucial given that expansion of irrigated areas has been postulated as a key adaptation strategy for Sub-Saharan Africa. Such expansion will need to take into account future changes in water availability in African river basins.

  15. Managing water quality under drought conditions in the Llobregat River Basin.

    Science.gov (United States)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín

    2015-01-15

    The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Long-Term Ground-Water Levels and Transmissivity in the Blackstone River Basin, Northern Rhode Island

    Science.gov (United States)

    Eggleston, Jack R.; Church, Peter E.; Barbaro, Jeffrey R.

    2007-01-01

    Ground water provides about 7.7 million gallons per day, or 28 percent of total water use in the Rhode Island part of the Blackstone River Basin. Primary aquifers in the basin are stratified glacial deposits, composed mostly of sand and gravel along valley bottoms. The ground-water and surface-water system in the Blackstone River Basin is under stress due to population growth, out-of-basin water transfers, industrialization, and changing land-use patterns. Streamflow periodically drops below the Aquatic Base Flow standard, and ground-water withdrawals add to stress on aquatic habitat during low-flow periods. Existing hydrogeologic data were reviewed to examine historical water-level trends and to generate contour maps of water-table altitudes and transmissivity of the sand and gravel aquifer in the Blackstone River Basin in Rhode Island. On the basis of data from four long-term observation wells, water levels appear to have risen slightly in the study area during the past 55 years. Analysis of available data indicates that increased rainfall during the same period is a likely contributor to the water-level rise. Spatial patterns of transmissivity are shown over larger areas and have been refined on the basis of more detailed data coverage as compared to previous mapping studies.

  17. Salt reduction in vegetable soup does not affect saltiness intensity and liking in the elderly and children

    Directory of Open Access Journals (Sweden)

    Carla Gonçalves

    2014-10-01

    Full Text Available Study background: Reduction of added salt levels in soups is recommended. We evaluated the impact of a 30% reduction of usual added salt in vegetable soups on elderly and children's saltiness and liking evaluation. Methods: Subjects were elderly and recruited from two public nursing homes (29 older adults, 79.7±8.9 years, and preschool children recruited from a public preschool (49 children, 4.5±1.3 years. This study took place in institutional lunchrooms. Through randomization and crossover, the subjects participated in two sensory evaluation sessions, on consecutive days, to assess perceived saltiness intensity (elderly sample and liking (elderly and children samples of a vegetable soup with baseline salt content and with a 30% salt reduction. Elderly rated perceived liking through a 10 cm visual analogue scale [‘like extremely’ (1 to ‘dislike extremely’ (10] and children through a five-point facial scale [‘dislike very much’ (1 to ‘like very much’ (5]. Results: After 30% added salt reduction in vegetable soup, there were no significant differences in saltiness noted by the elderly (p=0.150, and in perceived liking by children (p=0.160 and elderly (p=0.860. Conclusions: A 30% salt reduction in vegetable soup may be achieved without compromising perceived saltiness and liking in children and the elderly.

  18. Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets

    Science.gov (United States)

    Liu, Wenbin; Sun, Fubao; Li, Yanzhong; Zhang, Guoqing; Sang, Yan-Fang; Lim, Wee Ho; Liu, Jiahong; Wang, Hong; Bai, Peng

    2018-01-01

    The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of in situ hydro-climatic observations. In this study, we investigate the seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982-2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations). A water balance-based two-step procedure, which considers the changes in basin-scale water storage on the annual scale, is also adopted to calculate actual ET. The results indicated that precipitation (mainly snowfall from mid-autumn to next spring), which are mainly concentrated during June-October (varied among different monsoons-impacted basins), was the major contributor to the runoff in TP basins. The P, ET and Q were found to marginally increase in most TP basins during the past 30 years except for the upper Yellow River basin and some sub-basins of Yalong River, which were mainly affected by the weakening east Asian monsoon. Moreover, the aridity index (PET/P) and runoff coefficient (Q/P) decreased slightly in most basins, which were in agreement with the warming and moistening climate in the Tibetan Plateau. The results obtained demonstrated the usefulness of integrating multi-source datasets to hydrological applications in the data-sparse regions. More generally, such an approach might offer helpful insights into understanding the water and energy budgets and sustainability of water resource management practices of data-sparse regions in a changing environment.

  19. Numerical assessment of water-saving irrigation on the water cycle at the oasis of the Manas River Basin

    OpenAIRE

    he

    2018-01-01

    As the birthplace of water-saving technology under mulch drip irrigation in China, the Manas River Basin (MRB) has developed into the largest oasis farming area in Xinjiang and the fourth largest irrigated agricultural area in China. This study presents systematic evaluation the effect of water-saving technologies on precipitation, runoff, infiltration and evapotranspiration in this basin. A model of the regional water cycle was developed for quantitatively assessing groundwater balance and g...

  20. Groundwater and surface water interaction in a basin surrounded by steep mountains, central Japan

    Science.gov (United States)

    Ikeda, Koichi; Tsujimura, Maki; Kaeriyama, Toshiaki; Nakano, Takanori

    2015-04-01

    Mountainous headwaters and lower stream alluvial plains are important as water recharge and discharge areas from the view point of groundwater flow system. Especially, groundwater and surface water interaction is one of the most important processes to understand the total groundwater flow system from the mountain to the alluvial plain. We performed tracer approach and hydrometric investigations in a basin with an area 948 square km surrounded by steep mountains with an altitude from 250m to 2060m, collected 258 groundwater samples and 112 surface water samples along four streams flowing in the basin. Also, Stable isotopes ratios of oxygen-18 (18O) and deuterium (D) and strontium (Sr) were determined on all water samples. The 18O and D show distinctive values for each sub-basin affected by different average recharge altitudes among four sub-basins. Also, Sr isotope ratio shows the same trend as 18O and D affected by different geological covers in the recharge areas among four sub-basins. The 18O, D and Sr isotope values of groundwater along some rivers in the middle stream region of the basin show close values as the rivers, and suggesting that direct recharge from the river to the shallow groundwater is predominant in that region. Also, a decreasing trend of discharge rate of the stream along the flow supports this idea of the groundwater and surface water interaction in the basin.

  1. Not enough fruit and vegetables or too many cookies, candies, salty snacks, and soft drinks?

    Science.gov (United States)

    Cohen, Deborah A; Sturm, Roland; Scott, Molly; Farley, Thomas A; Bluthenthal, Ricky

    2010-01-01

    There are many contributors to obesity, including excess consumption of "discretionary calories" (foods high in sugar and fat and low in essential nutrients), lack of fruit/vegetable consumption, and insufficient physical activity. This study contrasted physical activity, fruit/vegetable consumption, and discretionary calorie consumption from selected foods relative to the 2005 dietary guidelines. We conducted a cross-sectional survey in 228 urban census tracts in Los Angeles County (LAC) and Southern Louisiana (SL) and estimated calories in the past 24 hours from fruit, vegetables, cookies, candy, salty snacks, sweetened soda, and alcohol among 2,767 participants. The population-weighted mean daily intake of calories from candy, cookies, salty snacks, soda, and alcohol was 438 in LAC and 617 in SL. Alcohol comprised a small portion of the calories consumed. Reported discretionary calorie consumption from a small set of items exceeded guidelines by more than 60% in LAC and 120% in SL. In contrast, the mean consumption of fruit and vegetables fell 10% short in LAC and 20% in SL. There was significant heterogeneity in consumption of cookies, candy, salty snacks, and soda across income, gender, and race. The overconsumption of discretionary calories was much greater than the underconsumption of fruit and vegetables. This finding suggests that unless the excessive consumption of salty snacks, cookies, candy, and sugar-sweetened beverages is curtailed, other interventions focusing on increasing physical activity and fruit and vegetable consumption will have a limited impact on obesity control. It may be politically more expedient to promote an increase in consumption of healthy items rather than a decrease in consumption of unhealthy items, but it may be far less effective.

  2. Fruit and snack consumption related to sweet, sour and salty taste preferences

    NARCIS (Netherlands)

    Sijtsema, S.J.; Reinders, M.J.; Hiller, S.; Guardia, D.

    2012-01-01

    Purpose – To better understand fruit consumption and its determinants this paper aims to explore the relationship between the consumption of different types of fruit and other snacks and consumer taste preferences for sweet, salty and sour is explored. Design/methodology/approach – Respondents

  3. On analysis of hydrogeological characteristics and the origin of thermal water in Quan'an basin

    International Nuclear Information System (INIS)

    Tang Shiyao; Wang Lianshe; Jiang Weibing

    2010-01-01

    Thermal water development of Quan'an Basin , in order to understand the hydrogeological characteristics and formation of geothermal water of the basin. This paper in the light of the occurrence of groundwater conditions, physical properties of water and hydraulic characteristics of the Basin, it described the characters of geology and hrydrogeology. According to the circumstances of tectonic movement activities, study on the formation of geothermal water and existing environmental in the west of basin Zhou Di and Nuan Shui Tang area, fracture formed by multi-period tectonic movements and fissures with deep hot water is the main reason for the formation of hot geothermal water. It analyzed the composition of the undergroundwater of the hydrogen, oxygen stable isotopes, escaping gas, water and chemical composition, it came to the conclusion that the relationship between atmospheric precipitation and geothermal water was intimate, the geothermal water supply from atmospheric precipitation. Futhermore, the long-term water dynamics observations results showed that the relationship between atmospheric precipitation and inflow of geothermal water was closed. (authors)

  4. INVESTIGATION OF THE PERFORMANCE OF AN ATMOSPHERIC COOLING TOWER USING FRESH AND SALTED WATER

    Directory of Open Access Journals (Sweden)

    A Haddad

    2012-01-01

    Full Text Available Cooling towers are extensively used to evacuate large quantities of heat at modest temperatures through a change of phase of the flowing cooling fluid. Based on this classical principle, the present study investigates the influence of salty water on the heat exchange produced. For that purpose, experiments are carried out using fresh and salty water. Furthermore, a comparison with the results produced through an approach involving the solution of energy equation involving the flow of air on an evaporating film of fluid. The detailed results show a preponderance of fresh water over the salty.

  5. Estimating Major Crop Water Productivity at Neyshabour Basin and Optimize Crop Area

    Directory of Open Access Journals (Sweden)

    Yavar Pourmohamad

    2017-06-01

    Full Text Available Introductionin current situation when world is facing massive population, producing enough food and adequate income for people is a big challenge specifically for governors. This challenge gets even harder in recent decades, due to global population growth which was projected to increase to 7.8 billion in 2025. Agriculture as the only industry that has ability to produce food is consuming 90 percent of fresh water globally. Despite of increasing for food demand, appropriate agricultural land and fresh water resources are restricted. To solve this problem, one is to increase water productivity which can be obtain by irrigation. Iran is not only exempted from this situation but also has more critical situation due to its dry climate and inappropriate precipitation distribution spatially and temporally, also uneven distribution of population which is concentrate in small area. The only reasonable solution by considering water resources limitation and also restricted crop area is changing crop pattern to reach maximum or at least same amount of income by using same or less amount of water. The purpose of this study is to assess financial water productivity and optimize farmer’s income by changing in each crop acreage at basin and sub-basin level with no extra groundwater withdrawals, also in order to repair the damages which has enforce to groundwater resources during last decades a scenario of using only 80percent of renewable water were applied and crop area were optimize to provide maximum or same income for farmers. Materials and methodsThe Neyshabour basin is located in northeast of Iran, the total geographical area of basin is 73,000 km2 consisting of 41,000 km2 plain and the rest of basin is mountains. This Basin is a part of Kalshoor catchment that is located in southern part of Binaloud heights and northeast of KavirMarkazi. In this study whole Neyshabour basin were divided into 199 sub-basins based on pervious study.Based on official

  6. Carrying capacity of water resources in Bandung Basin

    Science.gov (United States)

    Marganingrum, D.

    2018-02-01

    The concept of carrying capacity is widely used in various sectors as a management tool for sustainable development processes. This idea has also been applied in watershed or basin scale. Bandung Basin is the upstream of Citarum watershed known as one of the national strategic areas. This area has developed into a metropolitan area loaded with various environmental problems. Therefore, research that is related to environmental carrying capacity in this area becomes a strategic issue. However, research on environmental carrying capacity that has been done in this area is still partial either in water balance terminology, land suitability, ecological footprint, or balance of supply and demand of resources. This paper describes the application of the concept of integrated environmental carrying capacity in order to overcome the increasing complexity and dynamic environmental problems. The sector that becomes the focus of attention is the issue of water resources. The approach method to be carried out is to combine the concept of maximum balance and system dynamics. The dynamics of the proposed system is the ecological dynamics and population that cannot be separated from one another as a unity of the Bandung Basin ecosystem.

  7. Assessing Climate Change Impacts on Water Allocation in Karkheh River Basin

    Science.gov (United States)

    Davtalabsabet, R.; Madani, K.; Massah, A.; Farajzadeh, M.

    2013-12-01

    Rahman Davtalab1, 2, Kaveh Madani2, Alireza Massah3, Manouchehr Farajzadeh1 1Department of Geography, Tarbiat Modares University, Tehran, Iran 2Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA 3Department of Irrigation and Drainage Engineering, College of Abureyhan , University of Tehran, Iran Abstract Karkheh river basin, with an area of 50,000 km2 is located, in southwest Iran. This basin supplies water for major agricultural activities and large hydropower production in five Iranian provinces with the total population of four million people. Due to development and population growth, this large trans-boundary basin is incapable of meeting the water demands of the five riparian provinces, causing water allocation conflicts in the region. The situation has been exacerbated by the frequent droughts and is expected to worsen further by climate change. This study evaluates the impacts of climate change on water supply reliability and allocation in this basin. First, outputs of several General Circulation Models (GCMs) under different emission scenarios for different future time horizons are statistically downscaled. Then multiple river flow time series (RFTS) are generated by feeding GCM outputs into a HEC-HMS model, using the Soil Moisture Accounting (SMA). Given a wide range of variations in GCM outputs and the resulting RFTS, the Ward's method is used to identity different RFTS clusters. Clustering helps with increasing the ability of the modeler to test a range of possible future conditions while reducing the redundancies in input data. Karkheh river basin's ability to meet the growing demand under decreasing flows is evaluated for each RFTS cluster representative. Results indicate that Karkheh river flow might decrease by 50% toward the end of the century. This would decrease the reliability of agricultural water deliveries from 78-95% to less than 50%. While currently hydropower dams can only

  8. Probabilistic evaluation of the water footprint of a river basin: Accounting method and case study in the Segura River Basin, Spain.

    Science.gov (United States)

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2018-06-15

    In the current study a method for the probabilistic accounting of the water footprint (WF) at the river basin level has been proposed and developed. It is based upon the simulation of the anthropised water cycle and combines a hydrological model and a decision support system. The methodology was carried out in the Segura River Basin (SRB) in South-eastern Spain, and four historical scenarios were evaluated (1998-2010-2015-2027). The results indicate that the WF of the river basin reached 5581 Mm 3 /year on average in the base scenario, with a high variability. The green component (3231 Mm 3 /year), mainly generated by rainfed crops (62%), was responsible for the great variability of the WF. The blue WF (1201 Mm 3 /year) was broken down into surface water (56%), renewable groundwater (20%) and non-renewable groundwater (24%), and it showed the generalized overexploitation of aquifers. Regarding the grey component (1150 Mm 3 /year), the study reveals that wastewater, especially phosphates (90%), was the main culprit producing water pollution in surface water bodies. The temporal evolution of the four scenarios highlighted the successfulness of the water treatment plans developed in the river basin, with a sharp decrease in the grey WF, as well as the stability of the WF and its three components in the future. So, the accounting of the three components of the WF in a basin was integrated into the management of water resources, it being possible to predict their evolution, their spatial characterisation and even their assessment in probabilistic terms. Then, the WF was incorporated into the set of indicators that usually is used in water resources management and hydrological planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATERBASIN WATER HIGH EFFICIENCY ION EXCHANGE WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the Basin Water System was conducted over a 54-day period between April 4, 2005 and May 28, 2005. The test was conducted at the Elsinore Valley Municipal Water District (EVMWD) Corydon Street Well in Lake Elsinore, California. The source water was a raw gr...

  10. Assessing the influence of climate change and inter-basin water diversion on Haihe River basin, eastern China: a coupled model approach

    Science.gov (United States)

    Xia, Jun; Wang, Qiang; Zhang, Xiang; Wang, Rui; She, Dunxian

    2018-04-01

    The modeling of changes in surface water and groundwater in the areas of inter-basin water diversion projects is quite difficult because surface water and groundwater models are run separately most of the time and the lack of sufficient data limits the application of complex surface-water/groundwater coupling models based on physical laws, especially for developing countries. In this study, a distributed surface-water and groundwater coupling model, named the distributed time variant gain model-groundwater model (DTVGM-GWM), was used to assess the influence of climate change and inter-basin water diversion on a watershed hydrological cycle. The DTVGM-GWM model can reflect the interaction processes of surface water and groundwater at basin scale. The model was applied to the Haihe River Basin (HRB) in eastern China. The possible influences of climate change and the South-to-North Water Diversion Project (SNWDP) on surface water and groundwater in the HRB were analyzed under various scenarios. The results showed that the newly constructed model DTVGM-GWM can reasonably simulate the surface and river runoff, and describe the spatiotemporal distribution characteristics of groundwater level, groundwater storage and phreatic recharge. The prediction results under different scenarios showed a decline in annual groundwater exploitation and also runoff in the HRB, while an increase of groundwater storage and groundwater level after the SNWDP's operation. Additionally, as the project also addresses future scenarios, a slight increase is predicted in the actual evapotranspiration, soil water content and phreatic recharge. This study provides valuable insights for developing sustainable groundwater management options for the HRB.

  11. The Process of Creation and Consolidation Committees for Hydrographic Basin Management Water Resources

    Directory of Open Access Journals (Sweden)

    Mario Marcos Lopes Lopes

    2011-06-01

    Full Text Available Water is among the most precious goods in Earth's environmental heritage, however, the economic activities have caused the contamination and degradation of surface and underground springs. Consequently, emerges the need to reconcile the development and the management of natural resources. Several national and international conferences have been taken place to spread this idea. In Brazil, this new model of water resources management is beginning to be implanted, culminating in the approval of The State Water Resources Policy and, later, in the National Water Resources Policy. This legislation takes the river basin as a regional unity of water planning and management. The objective of this work is to present the evolution of the process of organization and creation of river basin committees. Literature search as well as documentary analysis (minutes, decisions were used as research methodology. The experience of basin committees is considered an innovation for considering deliberative groups with effectively deliberative actions, incorporating guiding principles favoring shared management, taking as a support basis decentralization, integration and participation in the destiny of water resources in each region of the river basin. However, it is also necessary to intensify the involvement of users and other segments of society so that these groups can really work as "Water Parliament".

  12. Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas

    Science.gov (United States)

    Sophocleous, M.A.; Koelliker, J.K.; Govindaraju, R.S.; Birdie, T.; Ramireddygari, S.R.; Perkins, S.P.

    1999-01-01

    The objective of this article is to develop and implement a comprehensive computer model that is capable of simulating the surface-water, ground-water, and stream-aquifer interactions on a continuous basis for the Rattlesnake Creek basin in south-central Kansas. The model is to be used as a tool for evaluating long-term water-management strategies. The agriculturally-based watershed model SWAT and the ground-water model MODFLOW with stream-aquifer interaction routines, suitably modified, were linked into a comprehensive basin model known as SWATMOD. The hydrologic response unit concept was implemented to overcome the quasi-lumped nature of SWAT and represent the heterogeneity within each subbasin of the basin model. A graphical user-interface and a decision support system were also developed to evaluate scenarios involving manipulation of water fights and agricultural land uses on stream-aquifer system response. An extensive sensitivity analysis on model parameters was conducted, and model limitations and parameter uncertainties were emphasized. A combination of trial-and-error and inverse modeling techniques were employed to calibrate the model against multiple calibration targets of measured ground-water levels, streamflows, and reported irrigation amounts. The split-sample technique was employed for corroborating the calibrated model. The model was run for a 40 y historical simulation period, and a 40 y prediction period. A number of hypothetical management scenarios involving reductions and variations in withdrawal rates and patterns were simulated. The SWATMOD model was developed as a hydrologically rational low-flow model for analyzing, in a user-friendly manner, the conditions in the basin when there is a shortage of water.

  13. Water Balance in the Amazon Basin from a Land Surface Model Ensemble

    Science.gov (United States)

    Getirana, Augusto C. V.; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hong-Yi; Decharme, Bertrand; Zhang, Zhengqiu; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; hide

    2014-01-01

    Despite recent advances in land surfacemodeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-ofthe- art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 18 spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to matchmonthly Global Precipitation Climatology Project (GPCP) andGlobal Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l'Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets andGravity Recovery and ClimateExperiment (GRACE)TWSestimates in two subcatchments of main tributaries (Madeira and Negro Rivers).At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day(exp -1) and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.

  14. Integrated modeling of water quantity and quality in the Araguari River basin, Brazil

    OpenAIRE

    Salla, Marcio Ricardo; Paredes-Arquiola, Javier; Solera, Abel; Álvarez, Joaquín Andreu; Pereira, Carlos Eugênio; Alamy Filho, José Eduardo; De Oliveira, André Luiz

    2014-01-01

    The Araguari River basin has a huge water resource potential. However, population and industrial growth have generated numerous private and collective conflicts of interest in the multiple uses of water, resulting in the need for integrated management of water quantity and quality at the basin scale. This study used the AQUATOOL Decision Support System. The water balance performed by the SIMGES module for the period of October 2006 to September 2011 provided a good representation of the reali...

  15. Adaptation to changing water resources in the Ganges basin, northern India

    International Nuclear Information System (INIS)

    Moors, Eddy J.; Groot, Annemarie; Biemans, Hester; Terwisscha van Scheltinga, Catharien; Siderius, Christian; Stoffel, Markus; Huggel, Christian; Wiltshire, Andy; Mathison, Camilla; Ridley, Jeff; Jacob, Daniela; Kumar, Pankaj

    2011-01-01

    An ensemble of regional climate model (RCM) runs from the EU HighNoon project are used to project future air temperatures and precipitation on a 25 km grid for the Ganges basin in northern India, with a view to assessing impact of climate change on water resources and determining what multi-sector adaptation measures and policies might be adopted at different spatial scales. The RCM results suggest an increase in mean annual temperature, averaged over the Ganges basin, in the range 1-4 o C over the period from 2000 to 2050, using the SRES A1B forcing scenario. Projections of precipitation indicate that natural variability dominates the climate change signal and there is considerable uncertainty concerning change in regional annual mean precipitation by 2050. The RCMs do suggest an increase in annual mean precipitation in this region to 2050, but lack significant trend. Glaciers in headwater tributary basins of the Ganges appear to be continuing to decline but it is not clear whether meltwater runoff continues to increase. The predicted changes in precipitation and temperature will probably not lead to significant increase in water availability to 2050, but the timing of runoff from snowmelt will likely occur earlier in spring and summer. Water availability is subject to decadal variability, with much uncertainty in the contribution from climate change. Although global social-economic scenarios show trends to urbanization, locally these trends are less evident and in some districts rural population is increasing. Falling groundwater levels in the Ganges plain may prevent expansion of irrigated areas for food supply. Changes in socio-economic development in combination with projected changes in timing of runoff outside the monsoon period will make difficult choices for water managers. Because of the uncertainty in future water availability trends, decreasing vulnerability by augmenting resilience is the preferred way to adapt to climate change. Adaptive policies are

  16. Salty-snack eating, television or video-game viewing, and asthma symptoms among 10- to 12-year-old children: the PANACEA study.

    Science.gov (United States)

    Arvaniti, Fotini; Priftis, Kostas N; Papadimitriou, Anastasios; Yiallouros, Panayiotis; Kapsokefalou, Maria; Anthracopoulos, Michael B; Panagiotakos, Demosthenes B

    2011-02-01

    Salty-snack consumption, as well as the amount of time children spend watching television or playing video games, have been implicated in the development of asthma; however, results are still conflicting. The aim of this work was to evaluate the association of salty-snack eating and television/video-game viewing with childhood asthma symptoms. Cross-sectional study. Seven hundred children (323 male), 10 to 12 years old, from 18 schools located in the greater area of Athens were enrolled. Children and their parents completed questionnaires, which evaluated, among other things, dietary habits. Adherence to the Mediterranean diet was evaluated using the KIDMED (Mediterranean Diet Quality Index for Children and Adolescents) score. The association of children's characteristics with asthma symptoms was performed by calculating the odds ratios and corresponding 95% confidence intervals. Overall lifetime prevalence of asthma symptoms was 23.7% (27.6% boys, 20.4% girls; P=0.03). Forty-eight percent of children reported salty-snack consumption (≥ 1 times/week). Salty-snack consumption was positively associated with the hours of television/video-game viewing (P=0.04) and inversely with the KIDMED score (P=0.02). Consumption of salty snacks (>3 times/week vs never/rare) was associated with a 4.8-times higher likelihood of having asthma symptoms (95% confidence interval: 1.50 to 15.8), irrespective of potential confounders. The associations of salty-snack eating and asthma symptoms were more prominent in children who watched television or played video games >2 hours/day. In addition, adherence to the Mediterranean diet was inversely associated with the likelihood of asthma symptoms. Unhealthy lifestyle behaviors, such as salty-snack eating and television/video-game viewing were strongly associated with the presence of asthma symptoms. Future interventions and public health messages should be focused on changing these behaviors from the early stages of life. Copyright © 2011

  17. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    Science.gov (United States)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case

  18. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    Science.gov (United States)

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride

  19. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Science.gov (United States)

    2010-04-01

    ... Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of... CODE AND ADMINISTRATIVE MANUAL-PART III WATER QUALITY REGULATIONS § 410.1 Basin regulations—Water Code and Administrative Manual—Part III Water Quality Regulations. (a) The Water Code of the Delaware River...

  20. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

  1. Water Accounting Plus (WA+) - a water accounting procedure for complex river basins based on satellite measurements

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.

    2012-11-01

    Coping with the issue of water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links hydrological flows to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper we introduce Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use on the water cycle is described explicitly by defining land use groups with common characteristics. Analogous to financial accounting, WA+ presents four sheets including (i) a resource base sheet, (ii) a consumption sheet, (iii) a productivity sheet, and (iv) a withdrawal sheet. Every sheet encompasses a set of indicators that summarize the overall water resources situation. The impact of external (e.g. climate change) and internal influences (e.g. infrastructure building) can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used for 3 out of the 4 sheets, but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  2. Effect of the settlement of sediments on water infiltration in two urban infiltration basins

    OpenAIRE

    LASSABATERE, Laurent; ANGULO JARAMILLO, R; GOUTALAND, David; LETELLIER, Laetitia; GAUDET, JP; WINIARSKI, Thierry; DELOLME, C

    2010-01-01

    The sealing of surfaces in urban areas makes storm water management compulsory. The suspended solids from surface runoff water accumulate in infiltration basins and may impact on water infiltration. This paper describes a study of the effect of the settlement of sedimentary layers on the water infiltration capacity of two urban infiltrations basins. In situ water infiltration experiments were performed (1) to quantify the effect of sediment on water infiltration at local scale and (2) to deri...

  3. Water Accounting Plus for sustainable water management in the Volta river basin, West Africa

    Science.gov (United States)

    Dembélé, Moctar; Schaefli, Bettina; Mariéthoz, Grégroire; Ceperley, Natalie; Zwart, Sander J.

    2017-04-01

    Water Accounting Plus (WA+) is a standard framework that provides estimates of manageable and unmanageable water flows, stocks, consumption among users, and interactions with land use. The water balance terms are estimated based on remotely sensed data from online open access databases. The main difference with other methods is the use of spatiotemporal data, limiting the errors due to the use of static data. So far, no studies have incorporated climate change scenarios in the WA+ framework to assess future water resources, which would be desirable for developing mitigation and adaptation policies. Moreover WA+ has been implemented using remote sensing data while hydrological models data can also be used as inputs for projections on the future water accounts. This study aims to address the above challenges by providing quantified information on the current and projected state of the Volta basin water resources through the WA+ framework. The transboundary Volta basin in West Africa is vulnerable to floods and droughts that damage properties and take lives. Residents are dependent on subsistence agriculture, mainly rainfed, which is sensitive to changes and variation in the climate. Spatially, rainfall shows high spatiotemporal variability with a south-north gradient of increasing aridity. As in many basins in semi-arid environments, most of the rainfall in the Volta basin returns to the atmosphere. The competition for scarce water resources will increase in the near future due to the combined effects of urbanization, economic development, and rapid population growth. Moreover, upstream and downstream countries do not agree on their national priorities regarding the use of water and this brings tensions among them. Burkina Faso increasingly builds small and medium reservoirs for small-scale irrigation, while Ghana seeks to increase electricity production. Information on current and future water resources and uses is thus fundamental for water actors. The adopted

  4. Santa Lucia River basin. Development of water resources

    International Nuclear Information System (INIS)

    1970-01-01

    The main objective of this study was to orient the development of water resources of the Santa Lucia River basin to maximum benefit in accordance with the priorities established by Government in relation to the National Development Plans

  5. Availability of ground water in the lower Pawcatuck River basin, Rhode Island

    Science.gov (United States)

    Gonthier, Joseph B.; Johnston, Herbert E.; Malmberg, Glenn T.

    1974-01-01

    The lower Pawcatuck River basin in southwestern Rhode Island is an area of about 169 square miles underlain by crystalline bedrock over which lies a relatively thin mantle of glacial till and stratified drift. Stratified drift, consisting dominantly of sand and gravel, occurs in irregularly shaped linear deposits that are generally less than a mile wide and less than 125 feet thick; these deposits are found along the Pawcatuck River, its tributaries, and abandoned preglacial channels. Deposits of stratified sand and gravel constitute the principal aquifer in the lower Pawcatuck basin and the only one capable of sustaining yields of 100 gallons per minute or more to individual wells. Water available for development in this aquifer consists of water in storage--potential ground-water runoff to streams--plus infiltration that can be induced from streams. Minimum annual ground-water runoff from the sand and gravel aquifer is calculated to be at least 1.17 cubic feet per second per square mile, or 0.76 million gallons per day per square mile. Potential recharge by induced infiltration is estimated to range from about 250 to 600 gallons per day per linear foot of streambed for the principal streams. In most areas, induced infiltration from streams constitutes the major source of water potentially available for development by wells. Because subsurface hydraulic connection in the sand and gravel aquifer is poor in several places, the deposits are conveniently divisible into several ground-water reservoirs. The potential yield from five of the most promising ground-water reservoirs is evaluated by means of mathematical models. Results indicate that continuous withdrawals ranging from 1.3 to 10.3 million gallons per day, and totaling 31 million gallons per day, are obtainable from these reservoirs. Larger yields may be recovered by different well placement, spacing, construction and development, pumping practice, and so forth. Withdrawals at the rates indicated will reduce

  6. Testing water demand management scenarios in a water-stressed basin in South Africa: application of the WEAP model

    Science.gov (United States)

    Lévite, Hervé; Sally, Hilmy; Cour, Julien

    Like many river basins in South Africa, water resources in the Olifants river basin are almost fully allocated. Respecting the so-called “reserve” (water flow reservation for basic human needs and the environment) imposed by the Water Law of 1998 adds a further dimension, if not difficulty, to water resources management in the basin, especially during the dry periods. Decision makers and local stakeholders (i.e. municipalities, water users’ associations, interest groups), who will soon be called upon to work together in a decentralized manner within Catchment Management Agencies (CMAs) and Catchment Management Committees (CMCs), must therefore be able to get a rapid and simple understanding of the water balances at different levels in the basin. This paper seeks to assess the pros and cons of using the Water Evaluation and Planning (WEAP) model for this purpose via its application to the Steelpoort sub-basin of the Olifants river. This model allows the simulation and analysis of various water allocation scenarios and, above all, scenarios of users’ behavior. Water demand management is one of the options discussed in more detail here. Simulations are proposed for diverse climatic situations from dry years to normal years and results are discussed. It is evident that the quality of data (in terms of availability and reliability) is very crucial and must be dealt with carefully and with good judgment. Secondly, credible hypotheses have to be made about water uses (losses, return flow) if the results are to be meaningfully used in support of decision-making. Within the limits of data availability, it appears that some water users are not able to meet all their requirements from the river, and that even the ecological reserve will not be fully met during certain years. But the adoption of water demand management procedures offers opportunities for remedying this situation during normal hydrological years. However, it appears that demand management alone will not

  7. Evaluating the Impacts of Urbanization on Hydrological Processes and Water Resources by Comparing Two Neighboring Basins

    Science.gov (United States)

    Shao, M.; Zhao, G.; Gao, H.

    2017-12-01

    Texas, the fastest growing state in the US, has seen significant land cover/land use change due to urbanization over the past decades. With most of the region being arid/semi-arid, water issues are unprecedentedly pressing. Among the 15 major river basins, two adjacent river basins located in south-central Texas—the San Antonio River Basin (SARB) and the Guadalupe River Basin (GRB)—form an ideal testbed for evaluating the impacts of urbanization on both hydrological processes and water resources. These two basins are similar in size and in climate pattern, but differ in terms of urbanization progress. In SARB, where the city of San Antonio is located, the impervious area has increased from 0.6% (1929) to 7.8% (2011). In contrast, there is little land cover change in the GRB. With regard to the underground components, both basins intersect with the Edward Aquifer (more than 15% of basin area in both cases). The Edward Aquifer acts as one of the major municipal water supplies for San Antonio, and as the water source for local agricultural uses (and for the surrounding habitat). This aquifer has the characteristic of being highly sensitive to changes in surface water conditions, like the descending trend of the underground water table due to over exploitation. In this study, a distributed hydrologic model—DHSVM (the Distributed Hydrology Soil Vegetation Model)—is used to compare the hydrologic characteristics (and their impacts on water resources) over the two basins. With a 200m spatial resolution, the model is calibrated and validated during the historical period over both basins. The objectives of the comparisons are two-fold: First, the urbanization effects on peak flows are evaluated for selected extreme rainfall events; Second, the Edward Aquifer recharge rate from surface water under flood and/or drought conditions within the two basins is analyzed. Furthermore, future urbanization scenarios are tested to provide information relevant to decision making.

  8. Key issues for determining the exploitable water resources in a Mediterranean river basin.

    Science.gov (United States)

    Pedro-Monzonís, María; Ferrer, Javier; Solera, Abel; Estrela, Teodoro; Paredes-Arquiola, Javier

    2015-01-15

    One of the major difficulties in water planning is to determine the water availability in a water resource system in order to distribute water sustainably. In this paper, we analyze the key issues for determining the exploitable water resources as an indicator of water availability in a Mediterranean river basin. Historically, these territories are characterized by heavily regulated water resources and the extensive use of unconventional resources (desalination and wastewater reuse); hence, emulating the hydrological cycle is not enough. This analysis considers the Jucar River Basin as a case study. We have analyzed the different possible combinations between the streamflow time series, the length of the simulation period and the reliability criteria. As expected, the results show a wide dispersion, proving the great influence of the reliability criteria used for the quantification and localization of the exploitable water resources in the system. Therefore, it is considered risky to provide a single value to represent the water availability in the Jucar water resource system. In this sense, it is necessary that policymakers and stakeholders make a decision about the methodology used to determine the exploitable water resources in a river basin. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    Science.gov (United States)

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be

  10. Final hazard classification for N basin water filtration and sediment relocation operations

    International Nuclear Information System (INIS)

    Pisarcik, D.J.; Kretzschmar, S.P.

    1996-02-01

    This document provides an auditable safety analysis and hazard classification for the filtration of basin water and the relocation of 105-N basin solids to the North Cask Pit within the basin complex. This report assesses the operation of the Water Filtration System and the Remotely Operated Sediment Extraction Equipment (ROSEE). These activities have an activity hazard classification of radiological. Inventories of potentially releasable nonradioactive hazardous materials are far below the reportable quantities of 40 CFR 302. No controls are required to maintain the releasable inventories of these materials below the reportable quantities. Descriptive material is included to provide a general understanding of the water filtration and sediment relocation processes. All equipment will be operated as described in work instructions and/or applicable procedures. Special controls associated with these activities are as follows: (1) A leak inspection of the ROSEE system shall be performed at least once every 5-hour period of sediment relocation operation. (2) A berm must be in place around the North Cask Pit to redirect a potential abovewater ROSEE system leak back to the basin

  11. Development of a stream–aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin

    International Nuclear Information System (INIS)

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-01-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream–aquifer relationship under these future scenarios. The Arbúcies River basin (116 km 2 ) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  12. Hydrogeology, water resources, and water budget of the upper Rio Hondo Basin, Lincoln County, New Mexico, 2010

    Science.gov (United States)

    Darr, Michael J.; McCoy, Kurt J.; Rattray, Gordon W.; Durall, Roger A.

    2014-01-01

    The upper Rio Hondo Basin occupies a drainage area of 585 square miles in south-central New Mexico and comprises three general hydrogeologic terranes: the higher elevation “Mountain Block,” the “Central Basin” piedmont area, and the lower elevation “Hondo Slope.” As many as 12 hydrostratigraphic units serve as aquifers locally and form a continuous aquifer on the regional scale. Streams and aquifers in the basin are closely interconnected, with numerous gaining and losing stream reaches across the study area. In general, the aquifers are characterized by low storage capacity and respond to short-term and long-term variations in recharge with marked water-level fluctuations on short (days to months) and long (decadal) time scales. Droughts and local groundwater withdrawals have caused marked water-table declines in some areas, whereas periodically heavy monsoons and snowmelt events have rapidly recharged aquifers in some areas. A regional-scale conceptual water budget was developed for the study area in order to gain a basic understanding of the magnitude of the various components of input, output, and change in storage. The primary input is watershed yield from the Mountain Block terrane, supplying about 38,200 to 42,300 acre-feet per year (acre-ft/yr) to the basin, as estimated by comparing the residual of precipitation and evapotranspiration with local streamgage data. Streamflow from the basin averaged about 21,200 acre-ft/yr, and groundwater output left the basin at an estimated 2,300 to 5,700 acre-ft/yr. The other major output (about 13,500 acre-ft/yr) was by public water supply, private water supply, livestock, commercial and industrial uses, and the Bonito Pipeline. The residual in the water budget, the difference between the totals of the input and output terms or the potential change in storage, ranged from -2,200 acre-ft/yr to +5,300 acre-ft/yr. There is a high degree of variability in precipitation and consequently in the water supply; small

  13. Water reuse in river basins with multiple users : A literature review

    NARCIS (Netherlands)

    Simons, G. W H (Gijs); Bastiaanssen, W. G M (Wim); Immerzeel, W. W (Walter)

    2015-01-01

    Unraveling the interaction between water users in a river basin is essential for sound water resources management, particularly in a context of increasing water scarcity and the need to save water. While most attention from managers and decision makers goes to allocation and withdrawals of surface

  14. Water pollution control in river basin by interactive fuzzy interval multiobjective programming

    Energy Technology Data Exchange (ETDEWEB)

    Chang, N.B.; Chen, H.W. [National Cheng-Kung Univ., Tainan (Taiwan, Province of China). Dept. of Environmental Engineering; Shaw, D.G.; Yang, C.H. [Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Economics

    1997-12-01

    The potential conflict between protection of water quality and economic development by different uses of land within river basins is a common problem in regional planning. Many studies have applied multiobjective decision analysis under uncertainty to problems of this kind. This paper presents the interactive fuzzy interval multiobjective mixed integer programming (IFIMOMIP) model to evaluate optimal strategies of wastewater treatment levels within a river system by considering the uncertainties in decision analysis. The interactive fuzzy interval multiobjective mixed integer programming approach is illustrated in a case study for the evaluation of optimal wastewater treatment strategies for water pollution control in a river basin. In particular, it demonstrates how different types of uncertainty in a water pollution control system can be quantified and combined through the use of interval numbers and membership functions. The results indicate that such an approach is useful for handling system complexity and generating more flexible policies for water quality management in river basins.

  15. Quantifying Changes in Accessible Water in the Colorado River Basin

    Science.gov (United States)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  16. Earth observation based assessment of the water production and water consumption of Nile Basin agro-ecosystems

    Science.gov (United States)

    Bastiaanssen, Wim G.M.; Karimi, Poolad; Rebelo, Lisa-Maria; Duan, Zheng; Senay, Gabriel; Muthuwatte, Lal; Smakhtin, Vladimir

    2014-01-01

    The increasing competition for water resources requires a better understanding of flows, fluxes, stocks, and the services and benefits related to water consumption. This paper explains how public domain Earth Observation data based on Moderate Resolution Imaging Spectroradiometer (MODIS), Second Generation Meteosat (MSG), Tropical Rainfall Measurement Mission (TRMM) and various altimeter measurements can be used to estimate net water production (rainfall (P) > evapotranspiration (ET)) and net water consumption (ET > P) of Nile Basin agro-ecosystems. Rainfall data from TRMM and the Famine Early Warning System Network (FEWS-NET) RainFall Estimates (RFE) products were used in conjunction with actual evapotranspiration from the Operational Simplified Surface Energy Balance (SSEBop) and ETLook models. Water flows laterally between net water production and net water consumption areas as a result of runoff and withdrawals. This lateral flow between the 15 sub-basins of the Nile was estimated, and partitioned into stream flow and non-stream flow using the discharge data. A series of essential water metrics necessary for successful integrated water management are explained and computed. Net water withdrawal estimates (natural and humanly instigated) were assumed to be the difference between net rainfall (Pnet) and actual evapotranspiration (ET) and some first estimates of withdrawals—without flow meters—are provided. Groundwater-dependent ecosystems withdraw large volumes of groundwater, which exceed water withdrawals for the irrigation sector. There is a strong need for the development of more open-access Earth Observation databases, especially for information related to actual ET. The fluxes, flows and storage changes presented form the basis for a global framework to describe monthly and annual water accounts in ungauged river basins.

  17. Water Accounting Plus (WA+) – a water accounting procedure for complex river basins based on satellite measurements

    NARCIS (Netherlands)

    Karimi, P.; Bastiaanssen, W.G.M.; Molden, D.

    2013-01-01

    Coping with water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land

  18. Surface-water hydrology of the Little Black River basin, Missouri and Arkansas, before water-land improvement practices

    Science.gov (United States)

    Berkas, W.R.; Femmer, Suzanne R.; Mesko, T.O.; Thompson, B.W.

    1987-01-01

    The U. S. Department of Agriculture, Soil Conservation Service, in accordance with Public Law 566, is implementing various types of water-land improvement practices in the Little Black River basin in southeastern Missouri. These practices are designed, in part, to decrease the suspended sediment (SS) transport in the basin, decrease flood damage in the basin, and improve drainage in the agricultural area. The general features of the basin, such as geology, groundwater hydrology, soils, land use, water use, and precipitation are described; surface water quantity, quality, and suspended sediment discharge are also described. The aquifers are the Mississippi River valley alluvial aquifer, which can yield about 3,500 gal/min to properly constructed wells, and the Ozark and St. Francois aquifers, which can yield from about 30 to 500 gal/min to properly constructed wells. Soils in the area have formed in loess and cherty residuum in the uplands or have formed in alluvial sediment in the lowlands. About 93% of the estimated 3 billion gal/year of water used in the basin is for crop irrigation. The average monthly precipitation varies slightly throughout the year, with an average annual precipitation of about 47 inches. Water quality data were collected at seven stations. Specific conductance values ranged from 50 to 400 microsiemens/cm at 25 C. Water temperatures ranged from 0.0 C in the winter to 33.5 C in summer. pH values ranged from 6.4 to 8.5 units. Dissolved oxygen concentrations ranged from 2.2 to 12.8 ml/l. Total nitrogen concentrations ranged from 0.13 to 2.20 ml/l as nitrogen, with organic nitrogen as the most abundant form. Phosphorus concentrations ranged from zero to 0.29 ml/l as phosphorus. Bacterial counts were largest during storm runoff in the basin with livestock waste as the significant contributor. For the period from October 1, 1980, to September 30, 1984, the average annual SS discharge ranged from 2,230 tons/yr in the headwater areas to 27,800 tons

  19. Effect of Heavy Consumption of Alcoholic Beverages on the Perception of Sweet and Salty Taste.

    Science.gov (United States)

    Silva, Camile S; Dias, Vaneria R; Almeida, Juliane A Regis; Brazil, Jamile M; Santos, Ramon A; Milagres, Maria P

    2016-05-01

    To determine the threshold index of sweet and salty tastes in alcoholics undergoing treatment. Taste threshold was assessed using type 3-Alternative Forced Choice in a control group (92 non-alcoholic volunteers) and a test group (92 alcoholics in therapy). The test group completed a structured questionnaire on lifestyle and habits. Significant difference were found between the threshold rates found in the test (3.78) and control groups (1.39). In the salty stimulus, no significant difference was noted in the threshold detection between the control (0.17) and test groups (0.30). A significant correlation was observed between the index Pearson's threshold to sweet taste in the test group and their reported alcohol consumption. The test group reported characteristics such as loss of appetite (93%), weight loss during consumption (62%) and weight gain after quitting drinking (72%). That the alcoholic group reported less sensitivity to sweet taste suggests that drinking habits may influence choice of foods, with a greater preference for foods with higher sucrose concentration. This contribute to poor health, because excess consumption of sugar raises risk for several diseases. No conclusive results were found for the salty stimulus. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  20. Time series current meter data from buoys in the North Atlantic as part of the Deep Circulation in the Gulf of Maine Field Program from platforms GYRE and MARY LOUISE between July 25th, 1985 and August 2nd, 1987 (NODC Accession 0053940)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A two-year field study to investigate the deep flow between the major basins in the Gulf of Maine. This deep flow of warm-salty Slope water is an important driving...

  1. A Preliminary Study of Water Quality Index in Terengganu River Basin, Malaysia

    International Nuclear Information System (INIS)

    Suratman, S.; Mohd, S.M.I.; Hee, Y.Y.; Bedurus, E.A.; Latif, M.T.

    2015-01-01

    The Malaysian Department of Environment-Water Quality Index (DOE-WQI) was determined for the Terengganu River basin which is located at the coastal water of the southern South China Sea between July and October 2008. Monthly samplings were carried out at ten sampling stations within the basin. Six parameters listed in DOE-WQI were measured based on standard methods: pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS) and ammonical nitrogen (AN). The results indicated the impact of various anthropogenic activities which contribute to high values of BOD, COD, TSS and AN at middle and downstream stations, as compared with the upstream of the basin. The reverses were true for the pH and DO values. The DOE-WQI ranged from 71.5-94.6 % (mean 86.9 %), which corresponded to a classification status range from slightly polluted to clean. With respect to the Malaysia National Water Quality Standards (NWQS), the level of most of the parameters measured remained at Class I which is suitable for the sustainable conservation of the natural environment, for water supply without treatment and as well as for very sensitive aquatic species. It is suggested that monitoring should be carried out continuously for proper management of this river basin. (author)

  2. Land Water Storage within the Congo Basin Inferred from GRACE Satellite Gravity Data

    Science.gov (United States)

    Crowley, John W.; Mitrovica, Jerry X.; Bailey, Richard C.; Tamisiea, Mark E.; Davis, James L.

    2006-01-01

    GRACE satellite gravity data is used to estimate terrestrial (surface plus ground) water storage within the Congo Basin in Africa for the period of April, 2002 - May, 2006. These estimates exhibit significant seasonal (30 +/- 6 mm of equivalent water thickness) and long-term trends, the latter yielding a total loss of approximately 280 km(exp 3) of water over the 50-month span of data. We also combine GRACE and precipitation data set (CMAP, TRMM) to explore the relative contributions of the source term to the seasonal hydrological balance within the Congo Basin. We find that the seasonal water storage tends to saturate for anomalies greater than 30-44 mm of equivalent water thickness. Furthermore, precipitation contributed roughly three times the peak water storage after anomalously rainy seasons, in early 2003 and 2005, implying an approximately 60-70% loss from runoff and evapotranspiration. Finally, a comparison of residual land water storage (monthly estimates minus best-fitting trends) in the Congo and Amazon Basins shows an anticorrelation, in agreement with the 'see-saw' variability inferred by others from runoff data.

  3. Evaluating the hydrological functioning and the supply of water provisioning services to support the ecosystem-water-food-energy nexus in the Arno river basin

    Science.gov (United States)

    Pacetti, Tommaso; Willaarts, Barbara; Caporali, Enrica; Schroeder Esselbach, Boris

    2017-04-01

    Water, flowing in a basin, underpins key provisioning ecosystem services like freshwater supply, food and energy production. River basin management largely determines the type of water-related ecosystem services (WES) that are provided and the extent to which trade-offs and synergies might arise. Gaining insights on the ecohydrological behavior of a basin and on the conflicting anthropic pressures on the available water resources allows to identify the most important WES, as well as the existence of WES supply and demand hotspots. This information is crucial for water resources management and, in the context of the European Union, also required to comply with the requirements of the Water Framework Directive (WFD). The purpose of this research is to quantify the provisioning WES in the upstream part of the Arno river basin (Central Italy) and identify WES hotspots and fluxes. Current information on how water is allocated in the Arno basin remains scarce, despite the increasing water demand by some sectors, particularly irrigation, and a number of emerging conflicts among users. It is expected that research outputs can support the improvement of the existing management framework, moving from the classical DPSIR (Driving forces, Pressure, State, Impact e Response) approach, where impacts must be reduced or mitigated, to a more proactive framework to support the sustainability of the Arno basin and meet the different policy goals. The eco-hydrological model SWAT (Soil Water Assessment Tool) is applied to spatially quantify the provision of WES. The preliminary results of this research indicate that the highest amount of water yield, i.e. net amount of water that contributes to streamflow and represents the main blue water fund, originates in the northern part of the basin, characterized by forest areas. In contrast, the southern part of the basin, which is mainly agriculturally used, gives a minor contribution to the overall water yield, in direct proportion to the

  4. The main factors of water pollution in Danube River basin

    Directory of Open Access Journals (Sweden)

    Carmen Gasparotti

    2014-05-01

    Full Text Available The paper proposed herewith aims to give an overview on the pollution along the Danube River. Water quality in Danube River basin (DRB is under a great pressure due to the diverse range of the human activities including large urban center, industrial, agriculture, transport and mining activities. The most important aspects of the water pollution are: organic, nutrient and microbial pollution, , hazardous substances, and hydro-morphological alteration. Analysis of the pressures on the Danube River showed that a large part of the Danube River is subject to multiple pressures and there are important risks for not reaching good ecological status and good chemical status of the water in the foreseeable future. In 2009, the evaluation based on the results of the Trans National Monitoring Network showed for the length of water bodies from the Danube River basin that 22% achieved good ecological status or ecological potential and 45% river water bodies achieved good chemical status. Another important issue is related to the policy of water pollution.

  5. Climate change impacts on water availability in the Red River Basin and critical areas for future water conservation

    Science.gov (United States)

    Zamani Sabzi, H.; Moreno, H. A.; Neeson, T. M.; Rosendahl, D. H.; Bertrand, D.; Xue, X.; Hong, Y.; Kellog, W.; Mcpherson, R. A.; Hudson, C.; Austin, B. N.

    2017-12-01

    Previous periods of severe drought followed by exceptional flooding in the Red River Basin (RRB) have significantly affected industry, agriculture, and the environment in the region. Therefore, projecting how climate may change in the future and being prepared for potential impacts on the RRB is crucially important. In this study, we investigated the impacts of climate change on water availability across the RRB. We used three down-scaled global climate models and three potential greenhouse gas emission scenarios to assess precipitation, temperature, streamflow and lake levels throughout the RRB from 1961 to 2099 at a spatial resolution of 1/10°. Unit-area runoff and streamflow were obtained using the Variable Infiltration Capacity (VIC) model applied across the entire basin. We found that most models predict less precipitation in the western side of the basin and more in the eastern side. In terms of temperature, the models predict that average temperature could increase as much as 6°C. Most models project slightly more precipitation and streamflow values in the future, specifically in the eastern side of the basin. Finally, we analyzed the projected meteorological and hydrologic parameters alongside regional water demand for different sectors to identify the areas on the RRB that will need water-environmental conservation actions in the future. These hotspots of future low water availability are locations where regional environmental managers, water policy makers, and the agricultural and industrial sectors must proactively prepare to deal with declining water availability over the coming decades.

  6. Yeast-Leavened Laminated Salty Baked Goods: Flour and Dough Properties and Their Relationship with Product Technological Quality.

    Science.gov (United States)

    de la Horra, Ana E; Steffolani, María Eugenia; Barrera, Gabriela N; Ribotta, Pablo D; León, Alberto E

    2015-12-01

    The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products.

  7. Yeast-Leavened Laminated Salty Baked Goods: Flour and Dough Properties and Their Relationship with Product Technological Quality

    Directory of Open Access Journals (Sweden)

    Alberto E. León

    2015-01-01

    Full Text Available The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products.

  8. Mapping localised freshwater anomalies in the brackish paleo-lake sediments of the Machile–Zambezi Basin with transient electromagnetic sounding, geoelectrical imaging and induced polarisation

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Christiansen, Anders Vest; Fiandaca, Gianluca

    2015-01-01

    A recent airborne TEM survey in the Machile–Zambezi Basin of south western Zambia revealed high electrical resistivity anomalies (around 100 Ωm) in a low electrical resistivity (below 13 Ωm) background. The near surface (0–40 m depth range) electrical resistivity distribution of these anomalies...... appeared to be coincident with superficial features related to surface water such as alluvial fans and flood plains. This paper describes the application of transient electromagnetic soundings (TEM) and continuous vertical electrical sounding (CVES) using geo-electrics and time domain induced polarisation...... thins out and deteriorates in water quality further inland. It is postulated that the freshwater lens originated as a result of interaction between the Zambezi River and the salty aquifer in a setting in which evapotranspiration is the net climatic stress. Similar high electrical resistivity bodies were...

  9. A Comprehensive plan of improving water quality considering water system - concentrated on a basin of the Han River

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jee Yong; Moon, Hyun Joo; Yum, Kyu Jin; Kim, Eun Jung; Lee, Young Soon; Kim, Kang Suk; Lee, Chang Hee; Shin, Eun Sung; Kim, Jee Hoon [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    The contents of this study are following: reviewing the present policy on land use in basin to improve the water quality of water supply source in Paldang and so on; improvement policy on land use in basin; management scheme of pollutant into Paldang; the variety and quantity of toxic substances, a control of particular pollutant; management of polluted deposit in Paldang; the control of efficient environment investment in upper stream of Paldang; financial assistance for damaged region; and purchasing land of sensitivity region for protecting water supply. 32 refs., 13 figs., 124 tabs.

  10. Estimating water storage changes and sink terms in Volta Basin from satellite missions

    Directory of Open Access Journals (Sweden)

    Vagner G. Ferreira

    2014-01-01

    Full Text Available The insufficiency of distributed in situ hydrological measurements is a major challenge for hydrological studies in many regions of the world. Satellite missions such as the Gravity Recovery and Climate Experiment (GRACE and the Tropical Rainfall Measurement Mission (TRMM can be used to improve our understanding of water resources beyond surface water in poorly gauged basins. In this study we combined GRACE and TRMM to investigate monthly estimates of evaporation plus runoff (sink terms using the water balance equation for the period from January 2005 to December 2010 within the Volta Basin. These estimates have been validated by comparison with time series of sink terms (evaporation plus surface and subsurface runoff from the Global Land Data Assimilation System (GLDAS. The results, for the period under consideration, show strong agreement between both time series, with a root mean square error (RMSE of 20.2 mm/month (0.67 mm/d and a correlation coefficient of 0.85. This illustrates the ability of GRACE to predict hydrological quantities, e.g. evaporation, in the Volta Basin. The water storage change data from GRACE and precipitation data from TRMM all show qualitative agreement, with evidence of basin saturation at approximately 73 mm in the equivalent water column at the annual and semi-annual time scales.

  11. Water Accounting Plus (WA+ – a water accounting procedure for complex river basins based on satellite measurements

    Directory of Open Access Journals (Sweden)

    P. Karimi

    2013-07-01

    Full Text Available Coping with water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links depletion to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper, we introduce Water Accounting Plus (WA+, which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use and landscape evapotranspiration on the water cycle is described explicitly by defining land use groups with common characteristics. WA+ presents four sheets including (i a resource base sheet, (ii an evapotranspiration sheet, (iii a productivity sheet, and (iv a withdrawal sheet. Every sheet encompasses a set of indicators that summarise the overall water resources situation. The impact of external (e.g., climate change and internal influences (e.g., infrastructure building can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used to acquire a vast amount of required data but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  12. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    1986-09-01

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  13. The Effect of Alongcoast Advection on Pacific Northwest Shelf and Slope Water Properties in Relation to Upwelling Variability

    Science.gov (United States)

    Stone, Hally B.; Banas, Neil S.; MacCready, Parker

    2018-01-01

    The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin-scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N-50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well-explained (R2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large-scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large-scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale.

  14. The making of salty ice

    International Nuclear Information System (INIS)

    Bove, L.E.

    2009-01-01

    Full text: It is widely accepted that ice, no matter what phase, is unable to incorporate large amount of salt into its structure. This conclusion is based on the observation that upon freezing of saltwater, ice expels the salt almost entirely into brine, a fact which can be exploited to desalinate seawater. Here we show, by neutron diffraction under high pressure, that this behaviour is not an intrinsic physico-chemical property of ice phases. We demonstrate that substantial am mounts of dissolved LiCl can be built homogeneously into the ice VII structure if it is produced by recrystallisation of its glassy state under pressure [1]. Such highly doped or alloyed ice VII has significantly different structural properties compared to pure ice VII, such as a 8% larger unit cell volume, 5 times larger displacement factors, an absence of a transition to an ordered ice VIII structure, plasticity, and most likely ionic conductivity. Our study suggests that there could be a whole new class of salty ices based on various kinds of solutes and high pressure ice forms. (author)

  15. seasonal variation in water quality of orle river basin, sw nigeria.

    African Journals Online (AJOL)

    LUCY

    The seasonal variation of water quality of Orle River and its tributatries in S.W. Nigeria was investigated forthnightly or two ... KEYWORD: water quality, river basin, wet and dry seasons; pollution. ..... Environmental Modeling and Software,.

  16. Management of water use in the Paraíba River, PB, Brazil basin based on water grants and charge models

    Directory of Open Access Journals (Sweden)

    Márcia Araújo de Almeida

    2016-11-01

    Full Text Available One of the challenges in the management of water resources is to advance water distribution mechanisms to allow them to balance the basin's available water with the demands of its various economic sectors. This research evaluated the combined use of a model of grant optimization with a proposed model of charging for the use of raw water in order to assist decision makers in the distribution of water of the Acauã Reservoir, located in the basin of the Paraiba River in the State of Paraiba, Brazil. The grant model allowed optimizing the achievement of the demand requests according to water use priorities defined in four scenarios, balancing demand and availability. It was shown that it can be used in decision-making processes in the evaluation of new grant requests in basins controlled by reservoirs. The proposed charging model incorporated various profiles of water users using various coefficients which enabled the definition of the amount to be charged to encourage the rational use of water, not just a tax collection mechanism.

  17. The Indus basin in the framework of current and future water resources management

    Directory of Open Access Journals (Sweden)

    A. N. Laghari

    2012-04-01

    Full Text Available The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries – Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation. Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions – and especially groundwater extractions – have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer season (as well as sugar cane, cotton, maize and other crops and wheat during the rabi (dry, winter season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1 reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater and water demands; (2 water quality conservation and investment in wastewater infrastructure; (3 the use of alternative water resources like the recycling of wastewater and desalination; (4

  18. The Indus basin in the framework of current and future water resources management

    Science.gov (United States)

    Laghari, A. N.; Vanham, D.; Rauch, W.

    2012-04-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries - Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation). Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions - and especially groundwater extractions - have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer) season (as well as sugar cane, cotton, maize and other crops) and wheat during the rabi (dry, winter) season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1) reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater) and water demands; (2) water quality conservation and investment in wastewater infrastructure; (3) the use of alternative water resources like the recycling of wastewater and desalination; (4) land use

  19. North Atlantic near-surface salinity contrasts and intra-basin water vapor transfer

    Science.gov (United States)

    Reagan, J. R.; Seidov, D.; Boyer, T.

    2017-12-01

    The geographic distribution of near-surface salinity (NSS) in the North Atlantic is characterized by a very salty (>37) subtropical region contrasting with a much fresher (NSS. Additional results and potential implications will be presented and discussed.

  20. River water quality assessment using environmentric techniques: case study of Jakara River Basin.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar

    2013-08-01

    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future

  1. Simulation of blue and green water resources in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2014-09-01

    Full Text Available The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool, calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program based on river discharge in the Wei River basin (WRB. Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain, one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  2. Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China.

    Science.gov (United States)

    Zhao, Xu; Yang, Hong; Yang, Zhifeng; Chen, Bin; Qin, Yan

    2010-12-01

    The virtual water strategy which advocates importing water intensive products and exporting products with low water intensity is gradually accepted as one of the options for solving water crisis in severely water scarce regions. However, if we count the virtual water embodied in imported products as the water saved for a region, we might overestimate the saving by including the virtual water that is later re-exported in association with the proceeded products made from the originally imported products. This problem can be avoided by accounting for the saved water through calculating water footprint (WF) in domestic final consumptive products. In this paper, an input-output analysis (IOA) based on the water footprint accounting framework is built to account for WF and virtual water trade of final consumptive products in the water stressed Haihe River basin in China for the year 1997, 2000, and 2002. The input-output transaction tables of the three years are constructed. The results show WF of 46.57, 44.52, and 42.71 billion m(3) for the three years, respectively. These volumes are higher than the water used directly in the corresponding years in the basin. A WF intensity (WFI) indicator is then used to assess if the economic activities in the basin are consistent with the virtual water strategy. The temporal change of the WFI is also decomposed by the index number analysis method. The results showed that the basin was silently importing virtual water through the trade of raw and processed food commodities under the background of the whole economic circulation.

  3. Negotiating Surface Water Allocations to Achieve a Soft Landing in the Closed Lerma-Chapala Basin, Mexico

    NARCIS (Netherlands)

    Wester, P.; Vargas-Velázquez, S.; Mollard, E.; Silva-Ochoa, P.

    2008-01-01

    The Lerma-Chapala basin exemplifies the challenges posed by basin closure, where surface water allocation mechanisms, lack of environmental flows and access to water are critical issues. Underlying these issues is a need for accurate water accounting that is transparent and publicly available. This

  4. Oil, gas potential in shallow water: Peru`s continental shelf basins

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Rivero, F.; Keeling, J.A.; Hay-Roe, H. [BPZ and Associates Inc., Houston, TX (United States)

    1998-11-16

    This third article of a series highlights the three sedimentary basins that underlie the 16 million acres of continental shelf adjacent to a 650-mile stretch of Peruvian coastline. This area lies roughly between the ports of Chiclayo and Pisco. These basins offer a variety of reservoirs, traps, and source-rock potential in water depths of less than 1,000 ft. They are characterized by a thick sequence of Neogene strata, underlain by Paleogene, Mesozoic, and Upper Paleozoic sediments down to as much as 7 sec two-way time on modern seismic records. In some places the sedimentary section may reach an aggregate thickness in excess of 50,000 ft. From north to south these contiguous shelf basins are the Sechura-Salaverry, Huacho, and Pisco basins. All three basins are described.

  5. Geohydrology and water utilization in the Willcox Basin, Graham and Cochise Counties, Arizona

    Science.gov (United States)

    Brown, S.G.; Schumann, Herbert H.

    1969-01-01

    The Willcox basin is an area of interior drainage in the northern part of Sulphur Springs Valley, Cochise and Graham Counties, Ariz. The basin comprises about 1,500 square miles, of which the valley floor occupies about 950 square miles. The basin probably formed during middle and late Tertiary time, when the area was subjected to large-scale faulting accompanied by the uplift of the mountain ranges that presently border it. During and after faulting, large quantities of alluvium were deposited in the closed basin. The rocks in the basin are divided into two broad groups--the rocks of the mountain blocks, of Precambrian through Tertiary age, and the rocks of the basin, of Tertiary and Quaternary age. The mountain blocks consist of igneous, metamorphic, and sedimentary rocks; the water-bearing characteristics of these rocks depend primarily on their degree of weathering and fracturing. Even in areas where these rocks are fractured and jointed, only small amounts of water have been developed. The rocks of the basin consist of moderately consolidated alluvium, poorly consolidated alluvium, and unconsolidated alluvium. The water-bearing characteristics of the moderately and poorly consolidated alluvium are not well known. The unconsolidated alluvium underlies most of the valley floor and consists of two facies, stream deposits and lake beds associated with the old playa. The lenticular sand and gravel layers interbedded in silt- and clay-size material of the unconsolidated alluvium constitute the principal aquifer in the basin. The other aquifers, which yield less water, consist of beds of poorly to moderately consolidated sand- and gravel-size material; these beds occur in both the poorly consolidated and moderately consolidated alluvium. In the Stewart area the median specific capacity of wells per 100 feet of saturated unconsolidated alluvium was 20 gallons per minute, and in the Kansas Settlement area the specific capacity of wells penetrating the poorly and

  6. Water resources of the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Izbicki, John A.

    2000-01-01

    By 2020, demand for water in the Blackstone River Basin is expected to be 52 million gallons per day, one-third greater than the demand of 39 million gallons per day in 1980. Most of this increase is expected to be supplied by increased withdrawals of ground water from stratified-drift aquifers in the eastern and northern parts of the basin. Increased withdrawals from stratified-drift aquifers along the Blackstone River and in the western part of the basin also are expected.The eastern and northern parts of the Blackstone River Basin contain numerous small, discontinuous aquifers which, as a group, comprise the largest ground-water resource of the study area. Fifteen aquifers, ranging in areal extent from 0.57 to 4.3 square miles, were identified. These aquifers have maximum saturated thicknesses ranging from less than 10 feet to 105 feet and maximum transmissivities ranging from less than 1,000 to more than 20,000 feet squared per day. Yields of nine study aquifers were estimated by use of digital ground-water-flow models. Yields depend on the hydraulic properties of the aquifer and the amount of streamflow available for depletion by wells. If streamflow is maintained at 98-percent duration, long-term yields from the aquifers that would be expected to be equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, and long-term yields equaled or exceeded 95 percent of the time range from 0.06 to 1.0 million gallons per day. If streamflow is maintained at 99.5-percent duration, long-term yields equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, long-term yields equaled or exceeded 95 percent of the time range from 0.04 to 1.4 million gallons per day, and longterm yields equaled or exceeded 98 percent of the time range from 0.02 to 0.39 million gallons per day. Maintaining streamflow at 98-percent duration is a more restrictive criterion than maintaining streamflow at 99.5-percent duration. The

  7. Importance of isotope hydrology techniques in water resources management: A case study of the Makutupora basin in Tanzania

    International Nuclear Information System (INIS)

    Senguji, F.H.

    1999-01-01

    Makutupora groundwater basin has been the main source of water supply for Dodoma town since 1950s. the water is mainly used for domestic water supply to over one million inhabitants, for industrial purposes and livestock watering. Conventional hydrogeological investigations have been carried out in the basin to gather information on the groundwater potential of the basin to meet the ever-increasing demand for water. However, firm conclusions could not be reached with conventional methods. This paper highlights on the isotope techniques applied in an integrated manner with conventional hydrogeological methods to study the groundwater regime of the Makutupora basin. Results of isotope techniques have provided adequate information on recharge locations, recharge rates and age of groundwater in the basin, that is very important and open up prospects for further investigations using isotope techniques. The ongoing investigation in the basin regarding pollution and depletion of the groundwater resource, has not succeeded in defining specific pumping limits or groundwater protection zones. Isotope data are sought to provide a clear basis for regulatory and future groundwater management in the Makutupora basin. (author)

  8. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  9. Water exchange estimates derived from forcing for the hydraulically coupled basins surrounding Aespoe island and adjacent coastal water

    International Nuclear Information System (INIS)

    Engqvist, A.

    1997-08-01

    A numerical model study based on representative physical forcing data (statistically averaged from approximately 10 years) has been performed of the Aespoe area, subdivided into five separate basins, interconnected by four straits and connected to the Baltic coast through three straits. The water exchange of the shallow Borholmsfjaerden, with comparatively small section areas of its straits, is dominated by the sea level variations while the baroclinic exchange components (estuarine and intermediary circulation) also contribute. The average transit retention time (averaged over the basin volume for a full year cycle) is found to be a little over 40 days for exogenous water (i.e. coastal water and freshwater combined); this measure of the water exchange is comparable to the combined average of an ensemble consisting of 157 similarly analyzed basins distributed along the Swedish east and west coasts. The exchange mechanisms and model assumptions are discussed. The consequences for the retention times by short- and long-term variations of the forcing is also analyzed. The standard deviation (SD) of the retention time during an average year (intra-annual variation) is greater than the SD between years (interannual variation) for all basins except Borholmsfjaerden for which these two measures are in parity. The range of the retention times that results from an extreme combination of forcing factor variation between years is found to be greater the farther a particular basin is located from the coast, measured as the minimal number of separating straits. The results of an earlier investigation are also reviewed

  10. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin.

    Science.gov (United States)

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-12-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  11. Sensitivity of water resources in the Delaware River basin to climate variability and change

    Science.gov (United States)

    Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.

    1994-01-01

    Because of the greenhouse effect, projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climate change; and presents the results of sensitivity analyses of how climate change might affect water resources in the Delaware River basin. Sensitivity analyses suggest that potentially serious shortfalls of certain water resources in the basin could result if some scenarios for climate change come true . The results of model simulations of the basin streamflow demonstrate the difficulty in distinguishing the effects that climate change versus natural climate variability have on streamflow and water supply . The future direction of basin changes in most water resources, furthermore, cannot be precisely determined because of uncertainty in current projections of regional temperature and precipitation . This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant . The sensitivity analyses could be useful in developing contingency plans for evaluating and responding to changes, should they occur.

  12. The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China.

    Science.gov (United States)

    Di, Hui; Liu, Xingpeng; Zhang, Jiquan; Tong, Zhijun; Ji, Meichen

    2018-03-15

    Water environmental risk is the probability of the occurrence of events caused by human activities or the interaction of human activities and natural processes that will damage a water environment. This study proposed a water environmental risk index (WERI) model to assess the water environmental risk in the Yinma River Basin based on hazards, exposure, vulnerability, and regional management ability indicators in a water environment. The data for each indicator were gathered from 2000, 2005, 2010, and 2015 to assess the spatial and temporal variations in water environmental risk using particle swarm optimization and the analytic hierarchy process (PSO-AHP) method. The results showed that the water environmental risk in the Yinma River Basin decreased from 2000 to 2015. The risk level of the water environment was high in Changchun, while the risk levels in Yitong and Yongji were low. The research methods provide information to support future decision making by the risk managers in the Yinma River Basin, which is in a high-risk water environment. Moreover, water environment managers could reduce the risks by adjusting the indicators that affect water environmental risks.

  13. Spatial variability of hillslope water balance, wolf creek basin, subarctic yukon

    Science.gov (United States)

    Carey, Sean K.; Woo, Ming-Ko

    2001-11-01

    A hydrological study was conducted between 1997 and 1999 in the subalpine open woodland of the Wolf Creek Basin, Yukon, to assess the interslope water balance variability. The water balance during the snowmelt and summer periods on four hillslopes revealed strong contrasts in process magnitudes and highlighted important factors including frost, vegetation, soils and microclimate that controlled vertical and lateral fluxes of water. Snow accounted for approximately half the annual water input, while differences in accumulation among hillslopes were related to interception properties of vegetation. Available energy at the snow surface controlled the melt sequence and the snow on some slopes disappeared up to two months earlier than others. Snowmelt runoff was confined to slopes with ice-rich substrates that inhibited deep percolation, with the runoff magnitude governed by the snow storage and the antecedent moisture of the desiccated organic soils prior to melt. During summer, evapotranspiration exceeded rainfall, largely sustained by water from the soil moisture reservoir recharged during the melt period. Differences in net radiation on slopes controlled the potential evapotranspiration, with the actual rates limited by the phenology of the deciduous forests and shrubs. Evapotranspiration was further suppressed on slopes where the organic soils became dry in late summer. Summer runoff was confined to slopes with porous organic layers overlying mineral soils to form a two-layer flow system: (1) quickflow in the surface organic layer and (2) slowflow in the mineral soil. Differences in the rates of flow were related to the position of the water table which may rise into the organic layer to activate quickflow. The presence of ice-rich frost and permafrost impeded vertical drainage and indirectly regulated the position of the water table. The location of the hillslope within a basin influenced recharge and discharge dynamics. Slope segments with large inflows sustained

  14. Impact of climate evolution and land use changes on water yield in the ebro basin

    Directory of Open Access Journals (Sweden)

    J. I. López-Moreno

    2011-01-01

    Full Text Available In this study the climatic and hydrological trends across 88 sub-basins of the Ebro River basin were analyzed for the period 1950–2006. A new database of climate information and river flows for the entire basin facilitated a spatially distributed assessment of climate-runoff relationships. It constitutes the first assessment of water yield evolution across the whole Ebro basin, a very representative example of large Mediterranean rivers. The results revealed a marked decrease in river discharges in most of the sub-basins. Moreover, a number of changes in the seasonality of the river regime was found, resulting from dam regulation and a decrease in snowpack in the headwaters. Significant and positive trends in temperature were observed across most of the basin, whereas most of the precipitation series showed negative coefficients, although the decrease in magnitude was low. The time evolution of the residuals from empirical models that relate climate and runoff in each sub-basin provided evidence that climate alone does not explain the observed decrease in river discharge. Thus, changes in water yield are associated with an increase in evapotranspiration rates in natural vegetation, growth of which has expanded as a consequence of land abandonment in areas where agricultural activities and livestock pressure have decreased. In the lowlands of the basin the decrease in water yield has been exacerbated by increased water consumption for domestic, industrial and agricultural uses. Climate projections for the end of the 21st century suggest a reduced capacity for runoff generation because of increasing temperature and less precipitation. Thus, the maintenance of water supply under conditions of increasing demand presents a challenging issue requiring appropriate coordination amongst politicians and managers.

  15. Phosphorus and water budgets in an agricultural basin.

    Science.gov (United States)

    Faridmarandi, Sayena; Naja, Ghinwa M

    2014-01-01

    Water and phosphorus (P) budgets of a large agricultural basin located in South Florida (Everglades Agricultural Area, EAA) were computed from 2005 to 2012. The annual surface outflow P loading from the EAA averaged 157.2 mtons originating from Lake Okeechobee (16.4 mtons, 10.4%), farms (131.0 mtons, 83.4%), and surrounding basins (9.8 mtons, 6.2%) after attenuation. Farms, urban areas, and the adjacent C-139 basin contributed 186.1, 15.6, and 3.8 mtons/yr P to the canals, respectively. The average annual soil P retention was estimated at 412.5 mtons. Water and P budgets showed seasonal variations with high correlation between rainfall and P load in drainage and surface outflows. Moreover, results indicated that the canals acted as a P sink storing 64.8 mtons/yr. To assess the P loading impact of farm drainage on the canals and on the outflow, dimensionless impact factors were developed. Sixty-two farms were identified with a high and a medium impact factor I1 level contributing 44.5% of the total drainage P load to the canals, while their collective area represented less than 23% of the EAA area (172 farms). Optimizing the best management practice (BMP) strategies on these farms could minimize the environmental impacts on the downstream sensitive wetlands areas.

  16. Potential ground water resources of Hat Yai Basin in Peninsular Thailand by gravity study

    Directory of Open Access Journals (Sweden)

    Warawutti Lohawijarn

    2005-05-01

    Full Text Available Residual gravity anomaly with a minimum of about -140 mm s-2 with approximately NS trend and a limited axial length was observed over Hat Yai Basin in Peninsular Thailand. The modeled Hat Yai basin is about 1 km deep at its deepest, 60 km long and 20 km wide. The porosity of basin sediment and the amount of potential ground water reserves within the basin are estimated to be 39% and 121.7±0.8 km3 respectively, assuming full saturation. Within the topmost 80 m of ground where the present extraction is concentrated, the estimated ground water reserve is 12.5±0.5 km3.

  17. Climate change impacts on snow water availability in the Euphrates-Tigris basin

    Directory of Open Access Journals (Sweden)

    M. Özdoğan

    2011-09-01

    Full Text Available This study investigates the effects of projected climate change on snow water availability in the Euphrates-Tigris basin using the Variable Infiltration Capacity (VIC macro scale hydrologic model and a set of regional climate-change outputs from 13 global circulation models (GCMs forced with two greenhouse gas emission scenarios for two time periods in the 21st century (2050 and 2090. The hydrologic model produces a reasonable simulation of seasonal and spatial variation in snow cover and associated snow water equivalent (SWE in the mountainous areas of the basin, although its performance is poorer at marginal snow cover sites. While there is great variation across GCM outputs influencing snow water availability, the majority of models and scenarios suggest a significant decline (between 10 and 60 percent in available snow water, particularly under the high-impact A2 climate change scenario and later in the 21st century. The changes in SWE are more stable when multi-model ensemble GCM outputs are used to minimize inter-model variability, suggesting a consistent and significant decrease in snow-covered areas and associated water availability in the headwaters of the Euphrates-Tigris basin. Detailed analysis of future climatic conditions point to the combined effects of reduced precipitation and increased temperatures as primary drivers of reduced snowpack. Results also indicate a more rapid decline in snow cover in the lower elevation zones than the higher areas in a changing climate but these findings also contain a larger uncertainty. The simulated changes in snow water availability have important implications for the future of water resources and associated hydropower generation and land-use management and planning in a region already ripe for interstate water conflict. While the changes in the frequency and intensity of snow-bearing circulation systems or the interannual variability related to climate were not considered, the simulated

  18. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    Science.gov (United States)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  19. Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China

    Directory of Open Access Journals (Sweden)

    C. F. Zang

    2012-08-01

    Full Text Available In arid and semi-arid regions freshwater resources have become scarcer with increasing demands from socio-economic development and population growth. Until recently, water research and management has mainly focused on blue water but ignored green water. Furthermore, in data poor regions hydrological flows under natural conditions are poorly characterised but are a prerequisite to inform future water resources management. Here we report on spatial and temporal patterns of both blue and green water flows that can be expected under natural conditions as simulated by the Soil and Water Assessment Tool (SWAT for the Heihe river basin, the second largest inland river basin in Northwest China. Calibration and validation at two hydrological stations show good performance of the SWAT model in modelling hydrological processes. The total green and blue water flows were 22.05–25.51 billion m3 in the 2000s for the Heihe river basin. Blue water flows are larger in upstream sub-basins than in downstream sub-basins mainly due to high precipitation and a large amount of snow and melting water in upstream. Green water flows are distributed more homogeneously among different sub-basins. The green water coefficient was 87%–89% in the 2000s for the entire river basin, varying from around 80%–90% in up- and mid-stream sub-basins to above 90% in downstream sub-basins. This is much higher than reported green water coefficients in many other river basins. The spatial patterns of green water coefficients were closely linked to dominant land covers (e.g. snow cover upstream and desert downstream and climate conditions (e.g. high precipitation upstream and low precipitation downstream. There are no clear consistent historical trends of change in green and blue water flows and the green water coefficient at both the river basin and sub-basin levels. This study provides insights into green and blue water endowments under natural conditions for the entire

  20. Basin Irrigation Design with Multi-Criteria Analysis Focusing on Water Saving and Economic Returns: Application to Wheat in Hetao, Yellow River Basin

    Directory of Open Access Journals (Sweden)

    Qingfeng Miao

    2018-01-01

    Full Text Available The sustainability of the Hetao Irrigation System, located in the water scarce upper Yellow River basin, is a priority considering the need for water saving, increased water productivity, and higher farmers’ incomes. The upgrading of basin irrigation, the main irrigation method, is essential and includes the adoption of precise land levelling, cut-off management, improved water distribution uniformity, and adequate irrigation scheduling. With this objective, the current study focuses on upgrading wheat basin irrigation through improved design using a decision support system (DSS model, which considers land parcels characteristics, crop irrigation scheduling, soil infiltration, hydraulic simulation, and environmental and economic impacts. Its use includes outlining water saving scenarios and ranking alternative designs through multi-criteria analysis considering the priorities of stakeholders. The best alternatives concern flat level basins with a 100 and 200 m length and inflow rates between 2 and 4 L s−1 m−1. The total irrigation cost of designed projects, including the cost of the autumn irrigation, varies between 2400 and 3300 Yuan ha−1; the major cost component is land levelling, corresponding to 33–46% of total irrigation costs. The economic land productivity is about 18,000 Yuan ha−1. The DSS modelling defined guidelines to be applied by an extension service aimed at implementing better performing irrigation practices, and encouraged a good interaction between farmers and the Water Users Association, thus making easier the implementation of appropriate irrigation management programs.

  1. Optimally managing water resources in large river basins for an uncertain future

    Science.gov (United States)

    Edwin A. Roehl, Jr.; Conrads, Paul

    2014-01-01

    Managers of large river basins face conflicting needs for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting local economies for years. The Savannah River Basin’s coastal area contains municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent since the 1970s. There is a planned deepening of the harbor that includes flow-alteration features to minimize further migration of salinity. The effectiveness of the flow-alteration features will only be known after they are constructed. One of the challenges of basin management is the optimization of water use through ongoing development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to significantly reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the

  2. The last will be first : Water transfers from agriculture to cities in the Pangani river basin, Tanzania

    NARCIS (Netherlands)

    Komakech, H.C.; Van der Zaag, P.; Koppen, B.

    2012-01-01

    Water transfers to growing cities in sub-Sahara Africa, as elsewhere, seem inevitable. But absolute water entitlements in basins with variable supply may seriously affect many water users in times of water scarcity. This paper is based on research conducted in the Pangani river basin, Tanzania.

  3. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    武强; 董东林; 石占华; 武雄; 孙卫东; 叶责钧; 李树文; 刘金韬

    2000-01-01

    The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage,

  4. Tulare Lake Basin Hydrology and Hydrography: A Summary of the Movement of Water and Aquatic Species

    Science.gov (United States)

    Summary of the historic and current hydrology of the Tulare Lake Basin (Basin) describing past, present and potential future movement of water out of the Basin, and potential movement of bioiogical organisms and toxicants within and outside of the Basin.

  5. Comparative Research on River Basin Management in the Sagami River Basin (Japan and the Muda River Basin (Malaysia

    Directory of Open Access Journals (Sweden)

    Lay Mei Sim

    2018-05-01

    Full Text Available In the world, river basins often interwoven into two or more states or prefectures and because of that, disputes over water are common. Nevertheless, not all shared river basins are associated with water conflicts. Rivers in Japan and Malaysia play a significant role in regional economic development. They also play a significant role as water sources for industrial, domestic, agricultural, aquaculture, hydroelectric power generation, and the environment. The research aim is to determine the similarities and differences between the Sagami and Muda River Basins in order to have a better understanding of the governance needed for effectively implementing the lessons drawn from the Sagami River Basin for improving the management of the Muda River Basin in Malaysia. This research adopts qualitative and quantitative approaches. Semi-structured interviews were held with the key stakeholders from both basins and show that Japan has endeavored to present policy efforts to accommodate the innovative approaches in the management of their water resources, including the establishment of a river basin council. In Malaysia, there is little or no stakeholder involvement in the Muda River Basin, and the water resource management is not holistic and is not integrated as it should be. Besides that, there is little or no Integrated Resources Water Management, a pre-requisite for sustainable water resources. The results from this comparative study concluded that full support and participation from public stakeholders (meaning the non-government and non-private sector stakeholders is vital for achieving sustainable water use in the Muda River Basin. Integrated Water Resources Management (IWRM approaches such as the introduction of payments for ecosystems services and the development of river basin organization in the Muda River Basin should take place in the spirit of political willingness.

  6. Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Taher, Mohammad R.

    2013-01-01

    The Kabul Basin, which includes the city of Kabul, Afghanistan, with a population of approximately 4 million, has several Afghan, United States, and international military installations that depend on groundwater resources for a potable water supply. This study examined groundwater levels in the Kabul Basin from 2004 to 2012. Groundwater levels have increased slightly in rural areas of the Kabul Basin as a result of normal precipitation after the drought of the early 2000s. However, groundwater levels have decreased in the city of Kabul due to increasing water use in an area with limited recharge. The rate of groundwater-level decrease in the city is greater for the 2008–2012 period (1.5 meters per year (m/yr) on average) than for the 2004–2008 period (0–0.7 m/yr on average). The analysis, which is corroborated by groundwater-flow modeling and a non-governmental organization decision-support model, identified groundwater-level decreases and associated implications for groundwater sustainability in the city of Kabul. Military installations in the city of Kabul (the Central Kabul subbasin) are likely to face water management challenges resulting from long-term groundwater sustainability concerns, such as the potential drying of shallow water-supply wells. Installations in the northern part of the Kabul Basin may have fewer issues with long-term water sustainability. Groundwater-level monitoring and groundwater-flow simulation can be valuable tools for assessing groundwater management options to improve the sustainability of water resources in the Kabul Basin.

  7. Selecting quantitative water management measures at the river basin scale in a global change context

    Science.gov (United States)

    Girard, Corentin; Rinaudo, Jean-Daniel; Caballero, Yvan; Pulido-Velazquez, Manuel

    2013-04-01

    One of the main challenges in the implementation of the Water Framework Directive (WFD) in the European Union is the definition of programme of measures to reach the good status of the European water bodies. In areas where water scarcity is an issue, one of these challenges is the selection of water conservation and capacity expansion measures to ensure minimum environmental in-stream flow requirements. At the same time, the WFD calls for the use of economic analysis to identify the most cost-effective combination of measures at the river basin scale to achieve its objective. With this respect, hydro-economic river basin models, by integrating economics, environmental and hydrological aspects at the river basin scale in a consistent framework, represent a promising approach. This article presents a least-cost river basin optimization model (LCRBOM) that selects the combination of quantitative water management measures to meet environmental flows for future scenarios of agricultural and urban demand taken into account the impact of the climate change. The model has been implemented in a case study on a Mediterranean basin in the south of France, the Orb River basin. The water basin has been identified as in need for quantitative water management measures in order to reach the good status of its water bodies. The LCRBOM has been developed using GAMS, applying Mixed Integer Linear Programming. It is run to select the set of measures that minimizes the total annualized cost of the applied measures, while meeting the demands and minimum in-stream flow constraints. For the economic analysis, the programme of measures is composed of water conservation measures on agricultural and urban water demands. It compares them with measures mobilizing new water resources coming from groundwater, inter-basin transfers and improvement in reservoir operating rules. The total annual cost of each measure is calculated for each demand unit considering operation, maintenance and

  8. Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World.

    Science.gov (United States)

    Wang, Ranran; Zimmerman, Julie

    2016-05-17

    As the fifth global water footprint assessment, this study enhanced previous estimates of national blue water consumption (including fresh surface and groundwater) and main economic activities with (1) improved spatial and sectoral resolution and (2) quantified the impacts of virtual water trade on water use and water stress at both the national and basin level. In 2007, 1194 Gm(3) of blue water was consumed globally for human purposes. The consuming (producing) of primary and manufactured goods and services from the sectors of "Primary Crops and Livestock", "Primary Energy and Minerals", "Processed Food and Beverages", "Non-food Manufactured Products", "Electricity", "Commercial and Public Services", and "Households" accounted for 33% (91%), ∼ 0% (1%), 37% (water consumption, respectively. The considerable differences in sectoral water consumption accounted for by the two perspectives (consumption- vs production-based) highlight the significance of the water consumed indirectly, upstream in the supply chain (i.e., > 70% of total blue water consumption) while offering additional insights into the water implications of critical interconnected economic activities, such as the water-energy nexus. With 145 Gm(3) (12%) of the blue water consumption embedded in the goods and services traded internationally, 89 countries analyzed were net blue water importers at the national level. On the basin level, the impacts of virtual water trade on water stress were statistically significant for basins across the world and within 104 countries; virtual water trade mitigated water stress for the basins within 85 of the 104 countries, including all of those where there are moderate and greater water stress countrywide (except Italy).

  9. Water quality trends in the Delaware River Basin (USA) from 1980 to 2005.

    Science.gov (United States)

    Kauffman, Gerald J; Homsey, Andrew R; Belden, Andrew C; Sanchez, Jessica Rittler

    2011-06-01

    In 1940, the tidal Delaware River was "one of the most grossly polluted areas in the United States." During the 1950s, water quality was so poor along the river at Philadelphia that zero oxygen levels prevented migration of American shad leading to near extirpation of the species. Since then, water quality in the Delaware Basin has improved with implementation of the 1961 Delaware River Basin Compact and 1970s Federal Clean Water Act Amendments. At 15 gages along the Delaware River and major tributaries between 1980 and 2005, water quality for dissolved oxygen, phosphorus, nitrogen, and sediment improved at 39%, remained constant at 51%, and degraded at 10% of the stations. Since 1980, improved water-quality stations outnumbered degraded stations by a 4 to 1 margin. Water quality remains good in the nontidal river above Trenton and, while improved, remains fair to poor for phosphorus and nitrogen in the tidal estuary near Philadelphia and in the Lehigh and Schuylkill tributaries. Water quality is good in heavily forested watersheds (>50%) and poor in highly cultivated watersheds. Water quality recovery in the Delaware Basin is coincident with implementation of environmental laws enacted in the 1960s and 1970s and is congruent with return of striped bass, shad, blue crab, and bald eagle populations.

  10. Watershed prioritization in the upper Han River basin for soil and water conservation in the South-to-North Water Transfer Project (middle route) of China.

    Science.gov (United States)

    Wu, Haibing

    2018-01-01

    Watershed prioritization with the objective of identifying critical areas to undertake soil and water conservation measures was conducted in the upper Han River basin, the water source area of approximately 95,000 km 2 for the middle route of China's South-to-North Water Transfer Project. Based on the estimated soil erosion intensity in uplands and clustering analysis of measured nutrient concentrations in rivers, the basin was grouped into very-high-, high-, moderate-, and low-priority regions for water and soil conservation, respectively. The results indicated that soil erosion was primarily controlled by topography, and nutrients in rivers were associated with land use and land cover in uplands. Also, there was large spatial disparity between soil erosion intensity in the uplands and nutrient concentrations in the rivers across the basin. Analysis was then performed to prioritize the basin by the integration of the soil erosion intensity and water quality on a GIS platform in order to identify critical areas for water and soil conservation in the basin. The identified high-priority regions which occupy 5.74% of the drainage areas need immediate attention for soil and water conservation treatments, of which 5.28% is critical for soil erosion prevention and 0.46% for water conservation. Understandings of the basin environment and pollutant loading with spatial explicit are critical to the soil and water resource conservation for the interbasin water transfer project.

  11. Environmental setting and its relations to water quality in the Kanawha River basin

    Science.gov (United States)

    Messinger, Terence; Hughes, C.A.

    2000-01-01

    spring and least in the autumn. About 61 percent of the basin's population use surface water from public supply for their domestic needs; about 30 percent use self-supplied ground water, and about nine percent use ground water from public supply. In 1995, total withdrawal of water in the basin was about 1,130 Mgal/d. Total consumptive use was about 118 Mgal/d. Surface water in the Blue Ridge Province is usually dilute (less than 100 mg/L dissolved solids) and well aerated. Dissolved- solids concentrations in streams of the Valley and Ridge Province at low flow are typically greater (150-180 mg/L) than those in the Blue Ridge Province. The Appalachian Plateaus Province contains streams with the most dilute (less than 30 mg/L dissolved solids) and least dilute (more than 500 mg/L dissolved solids) water in the basin. Coal mining has degraded more miles of streams in the basin than any other land use. Streams that receive coal-mine drainage may be affected by sedimentation, and typically contain high concentrations of sulfate, iron, and manganese. Other major water-quality issues include inadequate domestic sewage treatment, present and historic disposal of industrial wastes, and logging, which results in the addition of sediment, nutrients, and other constituents to the water. One hundred eighteen fish species are reported from the Kanawha River system downstream from Kanawha Falls. Of these, 15 are listed as possible, probable, or known introductions. None of these fish species is endemic to the Kanawha River Basin. The New River system has only 46 native fishes, the lowest ratio of native fishes to drainage area of any river system in the eastern United States, and the second-highest proportion of endemic fish species (eight of 46) of any river system in the eastern United States.

  12. Balancing competing water needs in Morocco's Saiss basin

    International Development Research Centre (IDRC) Digital Library (Canada)

    CCAA

    to meet the needs, a research team led by Al Akhawayn University is working with local communities and authorities to examine whether managing the demand for water can protect the basin's future in the context of growth and climate change. The focus of ... cases pitting upstream communities against their downstream.

  13. Web-Based Water Accounting Scenario Platform to Address Uncertainties in Water Resources Management in the Mekong : A Case Study in Ca River Basin, Vietnam

    Science.gov (United States)

    Apirumanekul, C.; Purkey, D. R.; Pudashine, J.; Seifollahi-Aghmiuni, S.; Wang, D.; Ate, P.; Meechaiya, C.

    2017-12-01

    Rapid economic development in the Mekong Region is placing pressure on environmental resources. Uncertain changes in land-use, increasing urbanization, infrastructure development, migration patterns and climate risks s combined with scarce water resources are increasing water demand in various sectors. More appropriate policies, strategies and planning for sustainable water resource management are urgently needed. Over the last five years, Vietnam has experienced more frequent and intense droughts affecting agricultural and domestic water use during the dry season. The Ca River Basin is the third largest river basin in Vietnam with 35% of its area located in Lao PDR. The delta landscape comprises natural vegetation, forest, paddy fields, farming and urban areas. The Ca River Basin is experiencing ongoing water scarcity that impacts on crop production, farming livelihoods and household water consumption. Water scarcity is exacerbated by uncertainties in policy changes (e.g. changes in land-use, crop types), basin development (e.g. reservoir construction, urban expansion), and climate change (e.g. changes in rainfall patterns and onset of monsoon). The Water Evaluation And Planning (WEAP) model, with inputs from satellite-based information and institutional data, is used to estimate water supply, water use and water allocation in various sectors (e.g. household, crops, irrigation and flood control) under a wide range of plausible future scenarios in the Ca River Basin. Web-Based Water Allocation Scenario Platform is an online implementation of WEAP model structured in terms of a gaming experience. The online game, as an educational tool, helps key agencies relevant to water resources management understand and explore the complexity of integrated system of river basin under a wide range of scenarios. Performance of the different water resources strategies in Ca River Basin (e.g. change of dam operation to address needs in various sectors, construction of dams, changes

  14. Current and projected water demand and water availability estimates under climate change scenarios in the Weyib River basin in Bale mountainous area of Southeastern Ethiopia

    Science.gov (United States)

    Serur, Abdulkerim Bedewi; Sarma, Arup Kumar

    2017-07-01

    This study intended to estimate the spatial and temporal variation of current and projected water demand and water availability under climate change scenarios in Weyib River basin, Bale mountainous area of Southeastern Ethiopia. Future downscaled climate variables from three Earth System Models under the three RCP emission scenarios were inputted into ArcSWAT hydrological model to simulate different components of water resources of a basin whereas current and projected human and livestock population of the basin is considered to estimate the total annual water demand for various purposes. Results revealed that the current total annual water demand of the basin is found to be about 289 Mm3, and this has to increase by 83.47% after 15 years, 200.67% after 45 years, and 328.78% after 75 years by the 2020s, 2050s, and 2080s, respectively, from base period water demand mainly due to very rapid increasing population (40.81, 130.80, and 229.12% by the 2020s, 2050s, and 2080s, respectively) and climatic variability. The future average annual total water availability in the basin is observed to be increased by ranging from 15.04 to 21.61, 20.08 to 23.34, and 16.21 to 39.53% by the 2020s, 2050s, and 2080s time slice, respectively, from base period available water resources (2333.39 Mm3). The current water availability per capita per year of the basin is about 3112.23 m3 and tends to decline ranging from 11.78 to 17.49, 46.02 to 47.45, and 57.18 to 64.34% by the 2020s, 2050s, and 2080s, respectively, from base period per capita per year water availability. This indicated that there might be possibility to fall the basin under water stress condition in the long term.

  15. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    CSIR Research Space (South Africa)

    Oosthuizen, Nadia

    2017-07-01

    Full Text Available frica Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin Nadia Oosthuizen1,2, Denis A. Hughes2, Evison Kapangaziwiri1, Jean-Marc Mwenge Kahinda1, and Vuyelwa Mvandaba1,2 1...

  16. Incidental potable water reuse in a Catalonian basin: living downstream

    Directory of Open Access Journals (Sweden)

    R. Mujeriego

    2017-09-01

    Full Text Available A preliminary assessment of incidental potable water reuse (IPR in the Llobregat River basin has been conducted by estimating the dilution factor of treated effluent discharges upstream of six river flow measurement sections. IPR in the Llobregat River basin is an everyday occurrence, because of the systematic discharge of treated effluents upstream of river sections used as drinking water sources. Average river flows at the Sant Joan Despí measurement section increased from 400,000 m3/d (2007 to 864,000 m3/d (2008 and to 931,000 m3/d (2013, while treated effluent discharges upstream of that section ranged from 109,000 m3/d to 114,000 m3/d in those years. The highest degree of IPR occurs downstream of the Abrera and Sant Joan Despí flow measurement sections, from where about half of the drinking water supplied to the Barcelona Metropolitan Area is abstracted. Based on average annual flows, the likelihood that drinking water produced from that river stretch contained treated effluent varied from 25% (2007 to 13% (2008 and to 12% (2013. Water agencies and drinking water production utilities have strived for decades to ensure that drinking water production satisfies applicable quality requirements and provides the required public health protection.

  17. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    OpenAIRE

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-01-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second...

  18. Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin, Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06

    Science.gov (United States)

    Fulton, John W.; Risser, Dennis W.; Regan, R. Steve; Walker, John F.; Hunt, Randall J.; Niswonger, Richard G.; Hoffman, Scott A.; Markstrom, Steven

    2015-08-17

    This report describes the results of a study by the U.S. Geological Survey in cooperation with ClearWater Conservancy and the Pennsylvania Department of Environmental Protection to develop a hydrologic model to simulate a water budget and identify areas of greater than average recharge for the Spring Creek Basin in central Pennsylvania. The model was developed to help policy makers, natural resource managers, and the public better understand and manage the water resources in the region. The Groundwater and Surface-water FLOW model (GSFLOW), which is an integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Groundwater Flow Model (MODFLOW-NWT), was used to simulate surface water and groundwater in the Spring Creek Basin for water years 2000–06. Because the groundwater and surface-water divides for the Spring Creek Basin do not coincide, the study area includes the Nittany Creek Basin and headwaters of the Spruce Creek Basin. The hydrologic model was developed by the use of a stepwise process: (1) develop and calibrate a PRMS model and steady-state MODFLOW-NWT model; (2) re-calibrate the steady-state MODFLOW-NWT model using potential recharge estimates simulated from the PRMS model, and (3) integrate the PRMS and MODFLOW-NWT models into GSFLOW. The individually calibrated PRMS and MODFLOW-NWT models were used as a starting point for the calibration of the fully coupled GSFLOW model. The GSFLOW model calibration was done by comparing observations and corresponding simulated values of streamflow from 11 streamgages and groundwater levels from 16 wells. The cumulative water budget and individual water budgets for water years 2000–06 were simulated by using GSFLOW. The largest source and sink terms are represented by precipitation and evapotranspiration, respectively. For the period simulated, a net surplus in the water budget was computed where inflows exceeded outflows by about 1.7 billion cubic feet (0.47 inches per year over the basin area

  19. Relation between ground water and surface water in the Hillsborough River basin, west-central Florida

    Science.gov (United States)

    Wolansky, R.M.; Thompson, T.H.

    1987-01-01

    The relation between groundwater and surface water in the Hillsborough River basin was defined through the use of: seismic-reflection profiling along selected reaches of the Hillsborough River, and evaluation of streamflow, rainfall, groundwater levels, water quality, and geologic data. Major municipal well fields in the basin are Morris Bridge and Cypress Creek where an averages of 15.3 and 30.0 million gal/day (mgd), respectively, were pumped in 1980. Mean annual rainfall for the study area is 53.7 inches. Average rainfall for 1980, determined from eight rainfall stations, was 49.7 inches. Evapotranspiration, corrected for the 5% of the basin that is standing water, was 35.7 in/year. The principal geohydrologic units in the basin are the surficial aquifer, the intermediate aquifer and confining beds, the Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. Total pumpage of groundwater in 1980 was 98.18 mgd. The surficial aquifer and the intermediate aquifer are not used for major groundwater supply in the basin. Continuous marine seismic-reflection data collected along selected reaches of the Hillsborough River were interpreted to define the riverbed profile, the thickness of surficial deposits, and the top of persistent limestone. Major areas of groundwater discharge near the Hillsborough River and its tributaries are the wetlands adjacent to the river between the Zephyrhills gaging stations and Fletcher Avenue and the wetlands adjacent to Cypress Creek. An estimated 20 mgd seeps upward from the Upper Floridan aquifer within those wetland areas. The runoff/sq mi is greater at the Zephyrhills station than at Morris Bridge. However, results of groundwater flow models and potentiometric-surface maps indicate that groundwater is flowing upward along the Hillsborough River between the Zephyrhills gage and the Morris Bridge gage. This upward leakage is lost to evapotranspiration. An aquifer test conducted in 1978 at the Morris Bridge well

  20. Water Isotope framework for lake water balance monitoring and modelling in the Nam Co Basin, Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Shichang Kang

    2017-08-01

    New hydrological insights: A water isotope framework for the Nam Co basin, including the Local Meteoric Water Line, limiting isotopic composition of evaporation and two hypothetical evaporation trajectories, is established. We further applied the isotope mass balance model to estimate the overall isotopic composition of input water to the Nam Co, the evaporation over inputs ratios (E/I for three consecutive years, and the water yields (Wy, depth equivalent runoff at a basin scale. Our results clearly suggest a positive water budget (i.e., E/I < 1, providing another line of evidence that the subsurface leakage from Nam Co is likely. The discrepancy between isotope-based water yields estimations and field-based runoff observations suggest that, compared to the well-studied Nyainqentanglha Mountains and southwestern mountains, the ridge-and-valley landscape in the western highlands and northwestern hogbacks are possibly low yields area, which should draw more research attentions in future hydrological investigations.

  1. Salt-water encroachment in southern Nassau and southeastern Queens Counties, Long Island, New York

    Science.gov (United States)

    Lusczynski, N.J.; Swarzenski, Wolfgang V.

    1966-01-01

    Test drilling, extraction of water from cores, electric logging, water sampling, and water-level measurements from 1958 to 1961 provided a suitable basis for a substantial refinement in the definition of the positions, chloride concentrations, and rates of movement of salty water in the intermediate and deep deposits of southern Nassau County and southeastern Queens County. Filter-press, centrifugal, and dilution methods were used to extract water from cores for chloride analysis at the test-drilling sites. Chloride analysis of water extracted by these methods, chloride analyses of water from wells, and the interpretation of electric logs helped to define the chloride content of the salty water. New concepts of environmental-water head and zerovels, developed during the investigation, proved useful for defining hydraulic gradients and ratee of flow in ground water of variable density in a vertical direction and in horizontal and inclined planes, respectively. Hydraulic gradients in and between fresh and salty water were determined from water levels from data at individual and multiple-observation wells. Salty ground water occurs in southern Nassau and southeastern Queens Counties as three wedgelike extensions that project landward in unconsolidated deposits from a main body of salty water that lies seaward of the barrier beaches in Nassau County and of Jamaica Bay in Queens County. Salty water occurs not only in permeable deposits but also in the shallow and deep clay deposits. The highest chloride content of the salty ground water in the main body and the wedges is about 16,000 ppm, which is about 1,000 to 2,000 ppm less than the chloride content of ocean water. The shallow salty water in the Pleistocene and Recent deposits is connected freely with the bays, tidal estuaries, and ocean. The intermediate wedge is found only in the southwestern part of Nassau County in the upper part of the Magothy (?) Formation, in the Jamneco Gravel, and in the overlying clay

  2. Evaluation of water quality at the source of streams of the Sinos River Basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    T Benvenuti

    Full Text Available The Sinos River Basin (SRB is located in the northeastern region of the state of Rio Grande do Sul (29º20' to 30º10'S and 50º15' to 51º20'W, southern Brazil, and covers two geomorphologic provinces: the southern plateau and the central depression. It is part of the Guaíba basin, has an area of approximately 800 km2 and contains 32 counties. The basin provides drinking water for 1.6 million inhabitants in one of the most important industrial centres in Brazil. This study describes different water quality indices (WQI used for the sub-basins of three important streams in the SRB: Pampa, Estância Velha/Portão and Schmidt streams. Physical, chemical and microbiological parameters assessed bimonthly using samples collected at each stream source were used to calculate the Horton Index (HI, the Dinius Index (DI and the water quality index adopted by the US National Sanitation Foundation (NSF WQI in the additive and multiplicative forms. These indices describe mean water quality levels at the streams sources. The results obtained for these 3 indexes showed a worrying scenario in which water quality has already been negatively affected at the sites where three important sub-basins in the Sinos River Basin begin to form.

  3. Water-quality assessment of the Central Arizona Basins, Arizona and northern Mexico; environmental setting and overview of water quality

    Science.gov (United States)

    Cordy, Gail E.; Rees, Julie A.; Edmonds, Robert J.; Gebler, Joseph B.; Wirt, Laurie; Gellenbeck, Dorinda J.; Anning, David W.

    1998-01-01

    The Central Arizona Basins study area in central and southern Arizona and northern Mexico is one of 60 study units that are part of the U.S. Geological Survey's National Water-Quality Assessment program. The purpose of this report is to describe the physical, chemical, and environmental characteristics that may affect water quality in the Central Arizona Basins study area and present an overview of water quality. Covering 34,700 square miles, the study area is characterized by generally north to northwestward-trending mountain ranges separated by broad, gently sloping alluvial valleys. Most of the perennial rivers and streams are in the northern part of the study area. Rivers and streams in the south are predominantly intermittent or ephemeral and flow in response to precipitation such as summer thunderstorms. Effluent-dependent streams do provide perennial flow in some reaches. The major aquifers in the study area are in the basin-fill deposits that may be as much as 12,000 feet thick. The 1990 population in the study area was about 3.45 million, and about 61 percent of the total was in Maricopa County (Phoenix and surrounding cities). Extensive population growth over the past decade has resulted in a twofold increase in urban land areas and increased municipal water use; however, agriculture remains the major water use. Seventy-three percent of all water with drawn in the study area during 1990 was used for agricultural purposes. The largest rivers in the study area-the Gila, Salt, and Verde-are perennial near their headwaters but become intermittent downstream because of impoundments and artificial diversions. As a result, the Central Arizona Basins study area is unique compared to less arid basins because the mean surface-water outflow is only 528 cubic feet per second from a total drainage area of 49,650 square miles. Peak flows in the northern part of the study area are the result of snowmelt runoff; whereas, summer thunderstorms account for the peak flows in

  4. Geology and ground-water resources of the Douglas basin, Arizona, with a section on chemical quality of the ground water

    Science.gov (United States)

    Coates, Donald Robert; Cushman, R.L.; Hatchett, James Lawrence

    1955-01-01

    The Douglas basin is part of a large northwest-trending intermontane valley, known as the Sulphur Spring Valley, which lies in southeastern Arizona, and extends into northeastern Sonora, Mexico. Maturely dissected mountains rise abruptly from long alluvial slopes and culminate in peaks 3,000 to 4,000 feet above the valley floor, Bedrock in the mountain areas confines drainage on the east and west, and an arc of low hills to the north separates the basin from the Willcox basin of the Sulphur Spring Valley. Drainage of the 1,200 square miles in the Douglas basin is southward into Mexico through Whitewater Draw. The mountains include igneous, metamorphic, and sedimentary rocks ranging in age from pre-Cambrian to Tertiary, including Paleozoic and Mesozoic sedimentary rocks that total about 10,000 feet in thickness. The older rocks have been metamorphosed, and all the bedrock has been affected by igneous intrusion, largely in Mesozoic time, and by structural movements, largely in Cenozoic time and extending into the Quaternary period. By the early part of Cenozoic time the major structural features were formed, and mountain ranges had been uplifted above the valley trough along northwest-trending fault zones. Since that time the physiographic features have resulted through erosion of the mountain blocks and the deposition, in places, of more than 2,800 feet of unconsolidated rock debris in the valley. Ground-water supplies of the Douglas basin are developed largely in the saturated zone of the valley-fill sediments. The ground water in the valley fill occurs in thin lenses and strata of sand and gravel, which are interbedded with large thicknesses of silt and day. Scattered gypsum beds and extensive caliche deposits appear at the surface and occur within the valley fill at various depths. Although the valley-fill sediments are as much as 2,800 feet thick, the uppermost 300 feet or so are the most permeable. Ground water originates as precipitation in the mountain areas

  5. Relationships between water and gas chemistry in mature coalbed methane reservoirs of the Black Warrior Basin

    Science.gov (United States)

    Pashin, Jack C.; McIntyre-Redden, Marcella R.; Mann, Steven D.; Kopaska-Merkel, David C.; Varonka, Matthew S.; Orem, William H.

    2014-01-01

    Water and gas chemistry in coalbed methane reservoirs of the Black Warrior Basin reflects a complex interplay among burial processes, basin hydrodynamics, thermogenesis, and late-stage microbial methanogenesis. These factors are all important considerations for developing production and water management strategies. Produced water ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride brine. The hydrodynamic framework of the basin is dominated by structurally controlled fresh-water plumes that formed by meteoric recharge along the southeastern margin of the basin. The produced water contains significant quantities of hydrocarbons and nitrogen compounds, and the produced gas appears to be of mixed thermogenic-biogenic origin.Late-stage microbial methanogenesis began following unroofing of the basin, and stable isotopes in the produced gas and in mineral cements indicate that late-stage methanogenesis occurred along a CO2-reduction metabolic pathway. Hydrocarbons, as well as small amounts of nitrate in the formation water, probably helped nourish the microbial consortia, which were apparently active in fresh to hypersaline water. The produced water contains NH4+ and NH3, which correlate strongly with brine concentration and are interpreted to be derived from silicate minerals. Denitrification reactions may have generated some N2, which is the only major impurity in the coalbed gas. Carbon dioxide is a minor component of the produced gas, but significant quantities are dissolved in the formation water. Degradation of organic compounds, augmented by deionization of NH4+, may have been the principal sources of hydrogen facilitating late-stage CO2 reduction.

  6. Cooperative and adaptive transboundary water governance in Canada's Mackenzie River Basin: status and prospects

    Directory of Open Access Journals (Sweden)

    Michelle Morris

    2016-03-01

    Full Text Available Canada's Mackenzie River Basin (MRB is one of the largest relatively pristine ecosystems in North America. Home to indigenous peoples for millennia, the basin is also the site of increasing resource development, notably fossil fuels, hydroelectric power resources, minerals, and forests. Three provinces, three territories, the Canadian federal government, and Aboriginal governments (under Canada's constitution, indigenous peoples are referred to as "Aboriginal" have responsibilities for water in the basin, making the MRB a significant setting for cooperative, transboundary water governance. A framework agreement that provides broad principles and establishes a river basin organization, the MRB Board, has been in place since 1997. However, significant progress on completing bilateral agreements under the 1997 Mackenzie River Basin Transboundary Waters Master Agreement has only occurred since 2010. We considered the performance of the MRB Board relative to its coordination function, accountability, legitimacy, and overall environmental effectiveness. This allowed us to address the extent to which governance based on river basin boundaries, a bioregional approach, could contribute to adaptive governance in the MRB. Insights were based on analysis of key documents and published studies, 19 key informant interviews, and additional interactions with parties involved in basin governance. We found that the MRB Board's composition, its lack of funding and staffing, and the unwillingness of the governments to empower it to play the role envisioned in the Master Agreement mean that as constituted, the board faces challenges in implementing a basin-wide vision. This appears to be by design. The MRB governments have instead used the bilateral agreements under the Master Agreement as the primary mechanism through which transboundary governance will occur. A commitment to coordinating across the bilateral agreements is needed to enhance the prospects for

  7. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  8. Estimates of ground-water recharge rates for two small basins in central Nevada

    International Nuclear Information System (INIS)

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins, two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation, stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most reliable results are those derived from a reduced form of the chloride-ion model because they reflect integrated, basinwide processes in terms of only three measured variables: precipitation amount, precipitation chemistry, and streamflow chemistry

  9. Use of cosmogenic 35S for comparing ages of water from three alpine-subalpine basins in the Colorado Front Range

    Science.gov (United States)

    Sueker, J.K.; Turk, J.T.; Michel, R.L.

    1999-01-01

    High-elevation basins in Colorado are a major source of water for the central and western United States; however, acidic deposition may affect the quality of this water. Water that is retained in a basin for a longer period of time may be less impacted by acidic deposition. Sulfur-35 (35S), a short-lived isotope of sulfur (t( 1/2 ) = 87 days), is useful for studying short-time scale hydrologic processes in basins where biological influences and water/rock interactions are minimal. When sulfate response in a basin is conservative, the age of water may be assumed to be that of the dissolved sulfate in it. Three alpine-subalpine basins on granitic terrain in Colorado were investigated to determine the influence of basin morphology on the residence time of water in the basins. Fern and Spruce Creek basins are glaciated and accumulate deep snowpacks during the winter. These basins have hydrologic and chemical characteristics typical of systems with rapid hydrologic response times. The age of sulfate leaving these basins, determined from the activity of 35S, averages around 200 days. In contrast, Boulder Brook basin has broad, gentle slopes and an extensive cover of surficial debris. Its area above treeline, about one-half of the basin, is blown free of snow during the winter. Variations in flow and solute concentrations in Boulder Brook are quite small compared to Fern and Spruce Creeks. After peak snowmelt, sulfate in Boulder Brook is about 200 days older than sulfate in Fern and Spruce Creeks. This indicates a substantial source of older sulfate (lacking 35S) that is probably provided from water stored in pore spaces of surficial debris in Boulder Brook basin.

  10. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  11. Distributed modeling of landsurface water and energy budgets in the inland Heihe river basin of China

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2009-10-01

    Full Text Available A distributed model for simulating the land surface hydrological processes in the Heihe river basin was developed and validated on the basis of considering the physical mechanism of hydrological cycle and the artificial system of water utilization in the basin. Modeling approach of every component process was introduced from 2 aspects, i.e., water cycle and energy cycle. The hydrological processes include evapotranspiration, infiltration, runoff, groundwater flow, interaction between groundwater and river water, overland flow, river flow and artificial cycle processes of water utilization. A simulation of 21 years from 1982 to 2002 was carried out after obtaining various input data and model parameters. The model was validated for both the simulation of monthly discharge process and that of daily discharge process. Water budgets and spatial and temporal variations of hydrological cycle components as well as energy cycle components in the upper and middle reach Heihe basin (36 728 km2 were studied by using the distributed hydrological model. In addition, the model was further used to predict the water budgets under the future land surface change scenarios in the basin. The modeling results show: (1 in the upper reach watershed, the annual average evapotranspiration and runoff account for 63% and 37% of the annual precipitation, respectively, the snow melting runoff accounts for 19% of the total runoff and 41% of the direct runoff, and the groundwater storage has no obvious change; (2 in the middle reach basin, the annual average evapotranspiration is 52 mm more than the local annual precipitation, and the groundwater storage is of an obvious declining trend because of irrigation water consumption; (3 for the scenario of conservation forest construction in the upper reach basin, although the evapotranspiration from interception may increase, the soil evaporation may reduce at the same time, therefore the total evapotranspiration may not

  12. Regional water table (2016) in the Mojave River and Morongo groundwater basins, southwestern Mojave Desert, California

    Science.gov (United States)

    Dick, Meghan; Kjos, Adam

    2017-12-07

    From January to April 2016, the U.S. Geological Survey (USGS), the Mojave Water Agency, and other local water districts made approximately 1,200 water-level measurements in about 645 wells located within 15 separate groundwater basins, collectively referred to as the Mojave River and Morongo groundwater basins. These data document recent conditions and, when compared with older data, changes in groundwater levels. A water-level contour map was drawn using data measured in 2016 that shows the elevation of the water table and general direction of groundwater movement for most of the groundwater basins. Historical water-level data stored in the USGS National Water Information System (https://waterdata.usgs.gov/nwis/) database were used in conjunction with data collected for this study to construct 37 hydrographs to show long-term (1930–2016) and short-term (1990–2016) water-level changes in the study area.

  13. A framework for identifying water management typologies for agent based modeling of water resources and its application in the Boise River Basin, USA.

    Science.gov (United States)

    Kaiser, K. E.; Flores, A. N.; Hillis, V.; Moroney, J.; Schneider, J.

    2017-12-01

    Modeling the management of water resources necessitates incorporation of complex social and hydrologic dynamics. Simulation of these socio-ecological systems requires characterization of the decision-making process of relevant actors, the mechanisms through which they exert control on the biophysical system, their ability to react and adapt to regional environmental conditions, and the plausible behaviors in response to changes in those conditions. Agent based models (ABMs) are a useful tool in simulating these complex adaptive systems because they can dynamically couple hydrological models and the behavior of decision making actors. ABMs can provide a flexible, integrated framework that can represent multi-scale interactions, and the heterogeneity of information networks and sources. However, the variability in behavior of water management actors across systems makes characterizing agent behaviors and relationships challenging. Agent typologies, or agent functional types (AFTs), group together individuals and/or agencies with similar functional roles, management objectives, and decision-making strategies. AFTs have been used to represent archetypal land managers in the agricultural and forestry sectors in large-scale socio-economic system models. A similar typology of water actors could simplify the representation of water management across river basins, and increase transferability and scaling of resulting ABMs. Here, we present a framework for identifying and classifying major water actors and show how we will link an ABM of water management to a regional hydrologic model in a western river basin. The Boise River Basin in southwest Idaho is an interesting setting to apply our AFT framework because of the diverse stakeholders and associated management objectives which include managing urban growth pressures and water supply in the face of climate change. Precipitation in the upper basin supplies 90% of the surface water used in the basin, thus managers of the

  14. Water poverty in upper Bagmati River Basin in Nepal

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2017-04-01

    The WPI was calculated for the upper Bagmati river Basin together with High–Medium–Low category scale and interpretations. WPI intensity scale depicts Sundarijal and Lubhu are in a range of very low water poverty, which means the water situation is better in these two areas. Daman region has a medium level, meaning this region is located into poor-accessible water zone. Kathmandu, Sankhu and Thankot have a low to medium low WPI, what characterize them as neutral. WPI can be used as an effective tool in integrated water resources management and water use master plan for meeting sustainable development goals. Based on the observation, the water agencies required to focus over water-poverty interface, water for sanitation, hygiene and health, water for production and employment generation, sustainable environmental management, gender equality, and water rights.

  15. Causes and possible solutions to water resource conflicts in the Okavango River Basin: The case of Angola, Namibia and Botswana

    Science.gov (United States)

    Mbaiwa, Joseph E.

    This paper reviews available literature concerning water resources use in the Okavango River Basin (ORB). It describes a number of common arguments regarding possibilities for the emergence of violent conflict in and among Basin states, particularly those states party to the Okavango River Basin Commission (Okacom)-Angola, Botswana and Namibia. The paper presents data concerning present and future water demands and examines a number of formal, institutional steps taken by global and regional actors to facilitate sustainable development, natural resources management and peaceful cooperation in the Basin. Contrary to trends in much of the literature, the paper suggests that there is great scope for enhanced inter-state cooperation in the Basin. It argues that to achieve sustainable utilisation of water resources and avoid violent conflict in the ORB, an integrated management plan for the entire basin needs to be developed. In addition, each basin member-state should observe international and regional conventions and treaties governing the use of water resources when designing national water development projects that require the use of water from the ORB.

  16. Landsat Evapotranspiration for Historical Field-scale Water Use (1984-2015) in the Upper Rio Grande River Basin

    Science.gov (United States)

    Senay, G. B.; Schauer, M.; Singh, R. K.; Friedrichs, M.

    2017-12-01

    Field-scale water use maps derived from evapotranspiration (ET) can characterize water use patterns and the impacts of water management decisions. This project generated historical (1984-2015) Landsat-based ET maps for the entire Upper Rio Grande basin which makes this one of the largest regions in the United States with remotely sensed historical ET at Landsat resolution. More than 10,000 Landsat images spanning 32 years were processed using the Operational Simplified Surface Energy Balance (SSEBop) model which integrates weather data and remotely sensed images to estimate monthly and annual ET. Time-series analysis focused on three water-intensive study areas within the basin: the San Luis Valley in Colorado, irrigated fields along the Rio Grande River near Albuquerque, NM, and irrigated fields near Las Cruces, NM. Preliminary analysis suggests land use changes result in declining water use in irrigated areas of the basin which corresponds with increases in land surface temperatures. Time-series analysis of water use patterns at multiple temporal and spatial scales demonstrates the impact of water management decisions on the availability of water in the basin. Comparisons with cropland data from the USDA (NASS CDL) demonstrate how water use for particular crop types changes over time in response to land use changes and shifts in water management. This study illustrates a useful application of "Big Data" earth observation science for quantifying impacts of climate and land use changes on water availability within the United States as well as applications in planning water resource allocation, managing water rights, and sustaining agricultural production in the Upper Rio Grande basin.

  17. Maintaining healthy rivers and lakes through water diversion from Yangtze River to Taihu Lake in Taihu Basin

    Directory of Open Access Journals (Sweden)

    Wu Haoyun

    2008-09-01

    Full Text Available On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtze River to Taihu Lake in solving the water problem and establishing a harmonious eco-environment in the Taihu Basin is performed. The water quantity and water quality conjunctive dispatching decision-making support system, which ensures flood control, water supply and eco-aimed dispatching, is built by combining the water diversion with flood control dispatching and strengthening water resources monitoring and forecasting. With the practice and effect assessment, measures such as setting the integrated basin management format, further developing water diversion and improving the hydraulic engineering projects system and water monitoring system are proposed in order to maintain healthy rivers and guarantee the development of the economy and society in the Taihu Basin.

  18. Toxicity of water and sediment from stormwater retarding basins to Hydra hexactinella

    DEFF Research Database (Denmark)

    Rosenkrantz, Rikke Tjørnhøj; Pollino, Carmel A.; Nugegoda, Dayanthi

    2008-01-01

    of 50 ml/L and 100 ml/L, while the 7 h pulse exposure caused a significant increase in the mean population growth rate compared to the control. Water samples from the two other retarding basins were found non-toxic to H. hexactinella. This is the first study to employ sediment tests with Hydra spp....... on stormwater sediments and a lower population growth rate was observed for organisms exposed to sediment from the Avoca St retarding basins. The behavioral study showed that H. hexactinella tended to avoid the sediment-water interface when exposed to sediment from all retarding basins, compared...... to the reference sediment. Further work is needed to determine the long-term effects of stormwater polluted sediments and acute effects due to organism exposure to short-term high concentrations during rain events. (C) 2008 Elsevier Ltd. All rights reserved....

  19. A basin-scale approach for assessing water resources in a semiarid environment: San Diego region, California and Mexico

    Directory of Open Access Journals (Sweden)

    L. E. Flint

    2012-10-01

    Full Text Available Many basins throughout the world have sparse hydrologic and geologic data, but have increasing demands for water and a commensurate need for integrated understanding of surface and groundwater resources. This paper demonstrates a methodology for using a distributed parameter water-balance model, gaged surface-water flow, and a reconnaissance-level groundwater flow model to develop a first-order water balance. Flow amounts are rounded to the nearest 5 million cubic meters per year.

    The San Diego River basin is 1 of 5 major drainage basins that drain to the San Diego coastal plain, the source of public water supply for the San Diego area. The distributed parameter water-balance model (Basin Characterization Model was run at a monthly timestep for 1940–2009 to determine a median annual total water inflow of 120 million cubic meters per year for the San Diego region. The model was also run specifically for the San Diego River basin for 1982–2009 to provide constraints to model calibration and to evaluate the proportion of inflow that becomes groundwater discharge, resulting in a median annual total water inflow of 50 million cubic meters per year. On the basis of flow records for the San Diego River at Fashion Valley (US Geological Survey gaging station 11023000, when corrected for upper basin reservoir storage and imported water, the total is 30 million cubic meters per year. The difference between these two flow quantities defines the annual groundwater outflow from the San Diego River basin at 20 million cubic meters per year. These three flow components constitute a first-order water budget estimate for the San Diego River basin. The ratio of surface-water outflow and groundwater outflow to total water inflow are 0.6 and 0.4, respectively. Using total water inflow determined using the Basin Characterization Model for the entire San Diego region and the 0.4 partitioning factor, groundwater outflow from the San Diego region, through

  20. MECHANISMS CONTROLLING SURFACE WATER QUALITY IN THE COBRAS RIVER SUB-BASIN, NORTHEASTERN BRAZIL

    Directory of Open Access Journals (Sweden)

    ALEXANDRE DE OLIVEIRA LIMA

    2017-01-01

    Full Text Available Stream water quality is dependent on many factors, including the source and quantity of the streamflow and the types of geology and soil along the path of the stream. This study aims to evaluate the origin and the mechanisms controlling the input of ions that effect surface water quality in the sub-basin of the Rio das Cobras, Rio Grande do Norte state, Northeastern Brazil. Thirteen ponds were identified for study: three in the main river and ten in the tributaries between, thus covering the whole area and lithology of the sub-basin. The samples were collected at two different times (late dry and rainy periods in the hydrological years 2009 and 2010, equating to total of four collection times. We analyzed the spatial and seasonal behavior of water quality in the sub-basin, using Piper diagrams, and analyzed the source of the ions using Guibbs diagram and molar ratios. With respect to ions, we found that water predominate in 82% sodium and 76% bicarbonate water (cations and anions, respectively. The main salinity control mechanism was related to the interaction of the colloidal particles (minerals and organic sediment with the ions dissolved in water. Based on the analysis of nitrates and nitrites there was no evidence of contamination from anthropogenic sources.

  1. Uranium in spring water and bryophytes at Basin Creek in central Idaho

    International Nuclear Information System (INIS)

    Shacklette, H.T.; Erdman, J.A.

    1982-01-01

    Arkosic sandstones and conglomerates of Tertiary age beneath the Challis Volcanics of Eocene age at Basin Creek, 10 km northeast of Stanley, Idaho, contain uranium-bearing vitrainized carbon fragments. The economic potential of these sandstones and conglomerates is currently being assessed. Water from 22 springs and associated bryophytes were sampled; two springs were found to contain apparently anomalous concentrations (normalized) of uranium. Water from a third spring contained slightly anomalous amounts of uranium, and two species of mosses at the spring contained anomalous uranium and high levels of both cadmium and lead. Water from a fourth spring was normal for uranium, but the moss from the water contained a moderate uranium level and highly anomalous concentrations of lead, germanium, and thallium. These results suggest that, in the Basin Creek area, moss sampling at springs may give a more reliable indication of uranium occurrence than would water sampling. (Auth.)

  2. Water in the face of afforestation in the Nile Basin (Invited)

    Science.gov (United States)

    Gebrehiwot, S. G.

    2013-12-01

    Abstract The Nile is the longest river in the world with catchment area of more than 3 × 106 km2 that is home to a fast growing population of some 2 × 107 people. The specific runoff of the River Nile is far less than that of other major world rivers. Much of the rain falling on the catchment, ca 86%, is lost to evapotranspiration which in turn account for the relatively low specific runoff. Afforestation in the Nile Basin is one the major developmental activities in Africa with more than 80% the continent's tree plantation located in the basin. National and continental greening programs, biofuel production, land acquisition and carbon trade are some of the reasons behind the large scale afforestation. Given the complex relationship between forests and water availability, afforestation program needs to give proper consideration to their influence on water availability. Background studies in the Basin indicate that the low flow is highly dependent on the availability of grassland and woodland land covers; while the concurrent biofuel plantation and land investments have been carried out in the areas of grasslands and woodlands, as remote sensing analysis shown. The same studies on the Basin, as well as other studies from similar areas elsewhere in the world suggest that forest impacts on hydrology tend to be localized, where there may also be regional climatic impacts. So, afforestation programs in the Nile Basin need to embrace local impacts with special focus to grasslands and woodlands.

  3. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  4. Satellite Retrieval of Atmospheric Water Budget over Gulf of Mexico- Caribbean Basin: Seasonal Variability

    Science.gov (United States)

    Smith, Eric A.; Santos, Pablo; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5 Imager and the DMSP 7-channel passive microwave radiometer (SSM/I) have been acquired for the Gulf of Mexico-Caribbean Sea basin. Whereas the methodology is being tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the SSM/I passive microwave signals in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, we have sought to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is partly validated by first cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. More fundamental validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithm to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin. Total columnar atmospheric water budget results will be presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98, October-98, and January-1999. These results are used to emphasize

  5. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Science.gov (United States)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  6. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-05-01

    Full Text Available Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  7. Mineral waters of the Pannonian basin spas in the Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Klimo Atila

    2011-01-01

    Full Text Available Introduction. The fact itself that thermo-mineral waters and mud have healing effects has always attracted attention throughout the history to exploit, explore and study their benefit on the human body. Modern lifestyle and the speed of life endanger man’s psycho-physical health. This is why people more often return to old time proven values, the nature and natural health resorts. Objective. To establish hydro-geological conditions for the formation of mineral water and to summarize their balneological characteristics in spas, i.e., in rehabilitation centres of the Pannonian basin of the Republic of Serbia, where underground waters are still actively exploited for balneotherapy. Methods. By retrospective descriptive analysis, a recapitulation of hydro-geological conditions for the formation of mineral waters was made and their balneological characteristics were established in eight spas of the Pannonian basin. Results. The healing spas of the Pannonian basin are predominated by HCO3 (2.9 g/l - 4.6% milival, iodic (up to 6.5 mg/l, slightly alkaline (pH up to 8.1 thermal-mineral water (temperature up to 72°C, bounty to 36.6 l/s with a significant content of Br (up to 8.1 mg/l, Fe (to 6.0 mg/l, metaboron (up to 60 mg/l and metasilicon acid (up to 95 mg/l. They are used for external application, bathing and showering. Conclusion. Once the Pannonian Sea (the Paratethys, today a wide plain terrain is a tectonic depression of the lower Pannonian pont age with compact type aquifers. In the geological column of sedimentary rocks a large underground aquifer was formed with free water of high mineralization, high temperature and geothermal properties above the average in relation to the European hydrogeological standards. Therefore, the Pannonian basin can be rightly called a thermal valley with the predominance of sodium hydro-carbonate (alkaline iodine healing water of enviable abundance and reserves.

  8. Temporal and Spatial Variation of Water Yield Modulus in the Yangtze River Basin in Recent 60 Years

    Science.gov (United States)

    Shi, Xiaoqing; Weng, Baisha; Qin, Tianling

    2018-01-01

    The Yangtze River Basin is the largest river basin of Asia and the third largest river basin of the world, the gross water resources amount ranks first in the river basins of the country, and it occupies an important position in the national water resources strategic layout. Under the influence of climate change and human activities, the water cycle has changed. The temporal and spatial distribution of precipitation in the basin is more uneven and the floods are frequent. In order to explore the water yield condition in the Yangtze River Basin, we selected the Water Yield Modulus (WYM) as the evaluation index, then analyzed the temporal and spatial evolution characteristics of the WYM in the Yangtze River Basin by using the climate tendency method and the M-K trend test method. The results showed that the average WYM of the Yangtze River Basin in 1956-2015 are between 103,600 and 1,262,900 m3/km2, with an average value of 562,300 m3/km2, which is greater than the national average value of 295,000 m3/km2. The minimum value appeared in the northwestern part of the Tongtian River district, the maximum value appeared in the northeastern of Dongting Lake district. The rate of change in 1956-2015 is between -0.68/a and 0.79/a, it showed a downward trend in the western part but not significantly, an upward trend in the eastern part reached a significance level of α=0.01. The minimum value appeared in the Tongtian River district, the largest value appeared in the Hangjia Lake district, and the average tendency rate is 0.04/a in the whole basin.

  9. Managing water scarcity in the Magdalena river basin in Colombia.An economic assessment

    Science.gov (United States)

    Bolivar Lobato, Martha Isabel; Schneider, Uwe A.

    2014-05-01

    Key words: global change, water scarcity, river basin In Colombia, serious water conflicts began to emerge with the economic development in the 70ies and 80ies and the term "water scarcity" became a common word in this tropical country. Despite a mean annual runoff of 1840 mm, which classifies Colombia as a water rich country, shortfalls in fresh water availability have become a frequent event in the last two decades. One reason for the manifestation of water scarcity is the long-held perception of invulnerable water abundance, which has delayed technical and political developments to use water more efficiently. The Magdalena watershed is the most important and complex area in Colombia, because of its huge anthropogenic present, economic development and increasing environmental problems. This river basin has a total area of 273,459 km2, equivalent to 24% of the territory of the country. It is home to 79% of the country's population (32.5 million of inhabitants) and approximately 85% of Gross Domestic Product of Colombia is generated in this area. Since the economic development of the 1970s and 1980s, large changes in land cover and related environmental conditions have occurred in the Magdalena basin. These changes include deforestation, agricultural land expansion, soil degradation, lower groundwater and increased water pollution. To assess the consequences of geophysical alteration and economic development, we perform an integrated analysis of water demand, water supply, land use changes and possible water management strategies. The main objective of this study is to determine how global and local changes affect the balance between water supply and demand in the Magdalena river basin in Colombia, the consequences of different water pricing schemes, and the social benefits of public or private investments into various water management infrastructures. To achieve this goal, a constrained welfare maximization model has been developed. The General Algebraic Modeling

  10. Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment

    Science.gov (United States)

    A Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment was published in 2010, and a Strawman Proposal was developed in 2012 by the Coalition for Urban/Rural Environmental Stewardship, California Water Resources Board, EPA.

  11. Practical Significance of Basin Water Market Construction on Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On the basis of introducing the concept of water market and the water market research in cluding both domestic market and foreign market,the system design features of water market are analyzed.The features include the prior distribution of agricultural water right,the close construction of market structure,reasonable price of water obtaining right and water pollution-discharge right and scientific stipulation of total volume of water use and total volume of pollution drainage.The practical significances of basin water market construction on Chinese agricultural production are revealed,which clover safeguarding the safety of agricultural water;effectively alleviating agricultural drought;saving the agricultural production water and improving the quality of agricultural products.

  12. Availability of ground water in the middle Merrimack River basin, central and southern New Hampshire

    Science.gov (United States)

    Cotton, J.E.

    1976-01-01

    Sufficient amounts of water to supply single family homes are available from the bedrock aquifer nearly everywhere in the middle Merrimack River basin in central and southern New Hampshire. Relatively this and narrow, unconsolidated aquifers of sand or sand and gravel commonly capable of yielding more than 200 gallons per minute to properly located and constructed wells are found only in major stream valleys. The map provides a preliminary assessment of the availability of ground water in the basin, as determined by estimating the capability of the aquifers to store and transmit water. On the map, aquifers are rated as having high, medium, or low potential to yield water. Ground water in the middle Merrimack River basin is generally of good chemical quality. Most of it is clear and colorless, contains no suspended matter and practically no bacteria, water may be affected by land-use practices. Degradation of water quality may occur in unsewered residential and village areas, near solid-waste-disposal sites, agricultural land, and major highways. (Woodard-USGS)

  13. Ribeira do Iguape basin water quality assessment for drinking water supply

    International Nuclear Information System (INIS)

    Cotrim, Marycel Elena Barboza

    2006-01-01

    Ribeira do Iguape Basin, located in the Southeast region of Sao Paulo state, is the largest remaining area of Mata Atlantica which biodiversity as rich as Amazon forest , where the readiness of water versus demand is extremely positive. With sparse population density and economy almost dependent on banana agriculture, the region is still well preserved. To water supply SABESP (Sao Paulo State Basic Sanitation Company). Ribeira do Iguape Businesses Unit - RR, uses different types of water supplies. In the present work, in order to ascertain water quality for human consumption, major and minor elements were evaluated in various types of water supply (surface and groundwater's as well as the drinking water supplied). Forty three producing systems were monitored: 18 points of surface waters and treated distributed water, 10 points of groundwater and 15 points of surface water in preserved areas, analyzing 30 elements. Bottom sediments (fraction -1 and 172 μg.g -1 , respectively. Data revealed that trace elements concentration in the sediment were below PEL (Probable Effect Level - probable level of adverse effect to the biological community), exception for Pb in Sete Barras and Eldorado. (author)

  14. Water, Energy, and Food Nexus: Modeling of Inter-Basin Resources Trading

    Science.gov (United States)

    KIm, T. W.; Kang, D.; Wicaksono, A.; Jeong, G.; Jang, B. J.; Ahn, J.

    2016-12-01

    The water, energy, and food (WEF) nexus is an emerging issue in the concern of fulfilling the human requirements with a lack of available resources. The WEF nexus concept arises to develop a sustainable resources planning and management. In the concept, the three valuable resources (i.e. water, energy, and food) are inevitably interconnected thus it becomes a challenge for researchers to understand the complicated interdependency. A few studies have been committed for interpreting and implementing the WEF nexus using a computer based simulation model. Some of them mentioned that a trade-off is one alternative solution that can be taken to secure the available resources. Taking a concept of inter-basin water transfer, this study attempts to introduce an idea to develop a WEF nexus model for inter-basin resources trading simulation. Using the trading option among regions (e.g., cities, basins, or even countries), the model provides an opportunity to increase overall resources availability without draining local resources. The proposed model adopted the calculation process of an amount of water, energy, and food from a nation-wide model, with additional input and analysis process to simulate the resources trading between regions. The proposed model is applied for a hypothetic test area in South Korea for demonstration purposes. It is anticipated that the developed model can be a decision tool for efficient resources allocation for sustainable resources management. Acknowledgements This study was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of the Korean government.

  15. Chemical quality of surface waters in Devils Lake basin, North Dakota

    Science.gov (United States)

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has

  16. Hydrogeologic framework, groundwater and surface-water systems, land use, pumpage, and water budget of the Chamokane Creek basin, Stevens County, Washington

    Science.gov (United States)

    Kahle, Sue C.; Taylor, William A.; Lin, Sonja; Sumioka, Steven S.; Olsen, Theresa D.

    2010-01-01

    A study of the water resources of the unconsolidated groundwater system of the Chamokane Creek basin was conducted to determine the hydrogeologic framework, interactions of shallow and deep parts of the groundwater system with each other and the surface-water system, changes in land use and land cover, and water-use estimates. Chamokane Creek basin is a 179 mi2 area that borders and partially overlaps the Spokane Indian Reservation in southern Stevens County in northeastern Washington State. Aquifers within the Chamokane Creek basin are part of a sequence of glaciofluvial and glaciolacustrine sediment that may reach total thicknesses of about 600 ft. In 1979, most of the water rights in the Chamokane Creek basin were adjudicated by the United States District Court requiring regulation in favor of the Spokane Tribe of Indians' senior water right. The Spokane Tribe, the State of Washington, and the United States are concerned about the effects of additional groundwater development within the basin on Chamokane Creek. Information provided by this study will be used to evaluate the effects of potential increases in groundwater withdrawals on groundwater and surface-water resources within the basin. The hydrogeologic framework consists of six hydrogeologic units: The Upper outwash aquifer, the Landslide Unit, the Valley Confining Unit, the Lower Aquifer, the Basalt Unit, and the Bedrock Unit. The Upper outwash aquifer occurs along the valley floors of the study area and consists of sand, gravel, cobbles, boulders, with minor silt and (or) clay interbeds in places. The Lower aquifer is a confined aquifer consisting of sand and gravel that occurs at depth below the Valley confining unit. Median horizontal hydraulic conductivity values for the Upper outwash aquifer, Valley confining unit, Lower aquifer, and Basalt unit were estimated to be 540, 10, 19, and 3.7 ft/d, respectively. Many low-flow stream discharge measurements at sites on Chamokane Creek and its tributaries

  17. Geospatial data to support analysis of water-quality conditions in basin-fill aquifers in the southwestern United States

    Science.gov (United States)

    McKinney, Tim S.; Anning, David W.

    2009-01-01

    The Southwest Principal Aquifers study area consists of most of California and Nevada and parts of Utah, Arizona, New Mexico, and Colorado; it is about 409,000 square miles. The Basin-fill aquifers extend through about 201,000 square miles of the study area and are the primary source of water for cities and agricultural communities in basins in the arid and semiarid southwestern United States (Southwest). The demand on limited ground-water resources in areas in the southwestern United States has increased significantly. This increased demand underscores the importance of understanding factors that affect the water quality in basin-fill aquifers in the region, which are being studied through the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. As a part of this study, spatial datasets of natural and anthropogenic factors that may affect ground-water quality of the basin-fill aquifers in the southwestern United States were developed. These data include physical characteristics of the region, such as geology, elevation, and precipitation, as well as anthropogenic factors, including population, land use, and water use. Spatial statistics for the alluvial basins in the Southwest have been calculated using the datasets. This information provides a foundation for the development of conceptual and statistical models that relate natural and anthropogenic factors to ground-water quality across the Southwest. A geographic information system (GIS) was used to determine and illustrate the spatial distribution of these basin-fill variables across the region. One hundred-meter resolution raster data layers that represent the spatial characteristics of the basins' boundaries, drainage areas, population densities, land use, and water use were developed for the entire Southwest.

  18. Geochemical conditions and the occurrence of selected trace elements in groundwater basins used for public drinking-water supply, Desert and Basin and Range hydrogeologic provinces, 2006-11: California GAMA Priority Basin Project

    Science.gov (United States)

    Wright, Michael T.; Fram, Miranda S.; Belitz, Kenneth

    2015-01-01

    The geochemical conditions, occurrence of selected trace elements, and processes controlling the occurrence of selected trace elements in groundwater were investigated in groundwater basins of the Desert and Basin and Range (DBR) hydrogeologic provinces in southeastern California as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA PBP is designed to provide an assessment of the quality of untreated (raw) groundwater in the aquifer systems that are used for public drinking-water supply. The GAMA PBP is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory.

  19. Optimizing basin-scale coupled water quantity and water quality management with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth......-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water...... quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen...

  20. Assessing Climate Change Impacts on Water Resources in the Songhua River Basin

    Directory of Open Access Journals (Sweden)

    Fengping Li

    2016-09-01

    Full Text Available The Songhua River Basin (SRB in Northeast China is one of the areas most sensitive to global climate change because of its high-latitude location. In this study, we conducted a modeling assessment on the potential change of water resources in this region for the coming three decades using the Soil and Water Assessment Tool (SWAT. First, we calibrated and validated the model with historical streamflow records in this basin. Then, we applied the calibrated model for the period from 2020 to 2049 with the projected and downscaled climatic data under two emission scenarios (RCP 4.5 and RCP 8.5. The study results show: (1 The SWAT model performed very well for both the calibration and validation periods in the SRB; (2 The projected temperatures showed a steady, significant increase across the SRB under both scenarios, especially in two sub-basins, the Nenjiang River Basin (NRB and the Lower SRB (LSRB. With regard to precipitation, both scenarios showed a decreasing trend in the NRB and LSRB but an increasing trend in the Upper Songhua River Basin (USRB; and (3, generally, the hydrologic modeling suggested a decreasing trend of streamflow for 2020–2049. Compared to baseline conditions (1980–2009, the streamflow in the NRB and LSRB would decrease by 20.3%–37.8%, while streamflow in the USRB would experience an increase of 9.68%–17.7%. These findings provide relevant insights into future surface water resources, and such information can be helpful for resource managers and policymakers to develop effective eco-environment management plans and strategies in the face of climate change.

  1. Studying Basin Water Balance Variations at Inter- and Intra-annual Time Scales Based On the Budyko Hypothesis and GRACE Gravimetry Satellite Observations

    Science.gov (United States)

    Shen, H.

    2017-12-01

    Increasing intensity in global warming and anthropogenic activities has triggered significant changes over regional climates and landscapes, which, in turn, drive the basin water cycle and hydrological balance into a complex and unstable state. Budyko hypothesis is a powerful tool to characterize basin water balance and hydrological variations at long-term average scale. However, due to the absence of basin water storage change, applications of Budyko theory to the inter-annual and intra-annual time scales has been prohibited. The launch of GRACE gavimetry satellites provides a great opportunity to quantify terrestrial water storage change, which can be further introduced into the Budyko hypothesis to reveal the inter- and intra-annual response of basin water components under impacts of climate variability and/or human activities. This research targeted Hai River Basin (in China) and Murray-Darling Basin (in Australia), which have been identified with a continuous groundwater depletion trend as well as impacts by extreme climates in the past decade. This can help us to explore how annual or seasonal precipitation were redistributed to evapotranspiration and runoff via changing basin water storage. Moreover, the impacts of vegetation on annual basin water balance will be re-examined. Our results are expected to provide deep insights about the water cycle and hydrological behaviors for the targeted basins, as well as a proof for a consideration of basin water storage change into the Budyko model at inter- or intra-annual time steps.

  2. Availability of Water in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Coplen, T.B.; Plummer, Niel; Rezai, M.T.; Verstraeten, Ingrid M.

    2010-01-01

    The availability of water resources is vital to the social and economic well being and rebuilding of Afghanistan. Kabul City currently (2010) has a population of nearly 4 million and is growing rapidly as a result of periods of relative security and the return of refugees. Population growth and recent droughts have placed new stresses on the city's limited water resources and have caused many wells to become contaminated, dry, or inoperable in recent years. The projected vulnerability of Central and West Asia to climate change (Cruz and others, 2007; Milly and others, 2005) and observations of diminishing glaciers in Afghanistan (Molnia, 2009) have heightened concerns for future water availability in the Kabul Basin of Afghanistan.

  3. Soil water content, runoff and soil loss prediction in a small ungauged agricultural basin in the Mediterranean region using the Soil and Water Assessment Tool

    OpenAIRE

    Ramos Martín, Ma. C. (Ma. Concepción); Martínez Casasnovas, José Antonio

    2015-01-01

    The aim of the present work was to evaluate the possibilities of using sub-basin data for calibration of the Soil and Water Assessment Tool (SWAT) model in a small (46 ha) ungauged basin (i.e. where the water flow is not systematically measured) and its response. This small basin was located in the viticultural Anoia-Penedès region (North-east Spain), which suffers severe soil erosion. The data sources were: daily weather data from an observatory located close to the basin; a detailed soil ma...

  4. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    Science.gov (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2017-05-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  5. Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.

    1997-01-01

    The West Valley Creek Basin drains 20.9 square miles in the Piedmont Physiographic Province of southeastern Pennsylvania and is partly underlain by carbonate rocks that are highly productive aquifers. The basin is undergoing rapid urbanization that includes changes in land use and increases in demand for public water supply and wastewater disposal. Ground water is the sole source of supply in the basin.West Valley Creek flows southwest in a 1.5-mile-wide valley that is underlain by folded and faulted carbonate rocks and trends east-northeast, parallel to regional geologic structures. The valley is flanked by hills underlain by quartzite and gneiss to the north and by phyllite and schist to the south. Surface water and ground water flow from the hills toward the center of the valley. Ground water in the valley flows west-southwest parallel to the course of the stream. Seepage investigations identified losing reaches in the headwaters area where streams are underlain by carbonate rocks and gaining reaches downstream. Tributaries contribute about 75 percent of streamflow. The ground-water and surface-water divides do not coincide in the carbonate valley. The ground-water divide is about 0.5 miles west of the surface-water divide at the eastern edge of the carbonate valley. Underflow to the east is about 1.1 inches per year. Quarry dewatering operations at the western edge of the valley may act partly as an artificial basin boundary, preventing underflow to the west. Water budgets for 1990, a year of normal precipitation (45.8 inches), and 1991, a year of sub-normal precipitation (41.5 inches), were calculated. Streamflow was 14.61 inches in 1990 and 12.08 inches in 1991. Evapotranspiration was estimated to range from 50 to 60 percent of precipitation. Base flow was about 62 percent of streamflow in both years. Exportation by sewer systems was about 3 inches from the basin and, at times, equaled base flow during the dry autumn of 1991. Recharge was estimated to be 18

  6. Salty sisters: The women of halophiles

    Directory of Open Access Journals (Sweden)

    Bonnie K. Baxter

    2014-06-01

    Full Text Available A history of halophile research reveals the commitment of scientists to uncovering the secrets of the limits of life, in particular life in high salt concentration and under extreme osmotic pressure. During the last 40 years, halophile scientists have indeed made important contributions to extremophile research, and prior international halophiles congresses have documented both the historical and the current work. During this period of salty discoveries, female scientists, in general, have grown in number worldwide. But those who worked in the field when there were small numbers of women sometimes saw their important contributions overshadowed by their male counterparts. Recent studies suggest that modern female scientists experience gender bias in matters such as conference invitations and even representation among full professors. In the field of halophilic microbiology, what is the impact of gender bias? How has the participation of women changed over time? What do women uniquely contribute to this field? What are factors that impact current female scientists to a greater degree? This essay emphasizes the herstory (not history of halophile discovery.

  7. Evaluación de los humedales naturales como sistemas potenciales para la depuración de hidrocarburos en la cuenca del pastaza loreto - Perú, 2007-2008

    OpenAIRE

    Pastor Rojas, Rosalinda

    2008-01-01

    Permanent stemmed, flowing, sweet, salty or shallow (less than 6 m deep), are not only the most productive worldwide but those which would allow biorepair environments contaminated by sewage, tailings and petrochemicals by using their several purifying components. This research deals with the assessment of wetlands located in the Pastaza basin with potential for the purification of water bodies of the Pastaza basin polluted by hydrocarbons.The physiographic features of soils and plant communi...

  8. Ecotoxicological evaluation of water of the hydrographic Basin of the Una River using the bioindicator Ceriodaphnia dubia

    Directory of Open Access Journals (Sweden)

    Tatiane Alves

    2013-12-01

    Full Text Available The majority of the Una River Basin is located in Taubaté County and contributes significantly to its water supply. The main goal of this research was to evaluate the water quality of the Una River using the microcrustacean C. dubia as bioindicator for tests of chronic and acute toxicity. Bimonthly water samples were obtained from each of six localities throughout the Una Basin, from March to October, 2011. Physical-chemical water parameters such as pH, electrical conductivity, hardness, dissolved oxygen and precipitation were measured and correlated to the C. dubia reproductive rates. No significant relationships were found between the water’s electrical conductivity and precipitation with respect to bioindicator reproductive rates. However, at the Sete Voltas, Antas and Rocinha Sub-Basins, significant interactions were detected between some water parameters and reproductive rates, suggesting that water may constrain the reproduction of C. dubia. Acute toxicity was not detected in any of the six sites, while chronic toxicity was recorded at Rocinha, Sete Voltas, Antas, Médio and Baixo Una Sub-Basins. In general, the water quality of the Una Basin, as indicated by the absence of acute toxicity, still remains in an acceptable conservation condition. Caution is needed, however, since slight pollution sources are causing chronic toxicity in some localities. In addition, as the microcrustacean C. dubia, appeared to be a reliable bioindicator in this investigation, we suggest that it be used for continuous water quality monitoring programs.

  9. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    Science.gov (United States)

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  10. Evaluation of Agricultural Crops Water Footprint with Application of Climate Change in Urmia Lake basin

    Directory of Open Access Journals (Sweden)

    majid montaseri

    2017-02-01

    Full Text Available Introduction: The water footprint index as a complete indicator represents the actual used water in agriculture based on the climate condition, the amount of crop production, the people consumption pattern, the agriculture practices and water efficiency in any region. The water footprint in agricultural products is divided to three components, including green, blue and gray water footprint. Green water footprint is rainwater stored in soil profile and on vegetation. Blue water refers to water in rivers, lakes and aquifers which is used for irrigation purposes. Gray water footprint refers to define as the volume of contaminated water. The water footprint in arid and semiarid regions with high water requirement for plants and limited fresh water resources has considerable importance and key role in the planning and utilization of limited water resources in these regions. On the other hand, increasing the temperature and decreasing the rainfall due to climate change, are two agents which affect arid and semiarid regions. Therefore, in this research the water footprint of agriculturalcrop production in Urmia Lake basin, with application of climate change for planning, stable operating and crop pattern optimizing, was evaluated to reduce agricultural water consumption and help supplying water rights of Urmia Lake. Materials and Methods:Urmia Lake basin, as one of the main sextet basins in Iran, is located in the North West of Iran and includes large sections of West Azerbaijan, East Azerbaijan and Kurdistan areas. Thirteen major rivers are responsible to drain surface streams in Urmia Lake basin and these rivers after supplying agriculture and drinking water and residential areas in the flow path, are evacuated to the Lake. Today because of non-observance of sustainable development concept, increasing water use in different parts and climate change phenomena in Urmia Lake basin the hydrologic balance was perturbed, and Urmia Lake has been lost 90% of

  11. Spatio-Temporal Variation in Water Quality of Orle River Basin, S.W. ...

    African Journals Online (AJOL)

    Spatio-Temporal Variation in Water Quality of Orle River Basin, S.W. Nigeria. ... Abstract. The water quality of small streams in Auchi area of Edo State, S.W. Nigeria was investigated with a view to ... and ecosystems. The study was carried out

  12. The politics of water payments and stakeholder participation in the Limpopo River Basin, Mozambique

    NARCIS (Netherlands)

    Alba, Rossella; Bolding, Alex; Ducrot, Raphaëlle

    2017-01-01

    Drawing from the experience of the Limpopo River Basin in Mozambique, the chapter analyses the articulation of a water rights framework in the context of decentralised river basin governance and IWRM-inspired reforms. The nexus between financial autonomy, service provision, stakeholder participation

  13. The politics of water payments and stakeholder participation in the Limpopo River Basin, Mozambique

    NARCIS (Netherlands)

    Alba, R.; Bolding, J.A.; Ducrot, R.

    2016-01-01

    Drawing from the experience of the Limpopo River Basin in Mozambique, the paper analyses the articulation of a water rights framework in the context of decentralised river basin governance and IWRM-inspired reforms. The nexus between financial autonomy, service provision, stakeholder participation

  14. Water quality and quantity and simulated surface-water and groundwater flow in the Laurel Hill Creek Basin, southwestern Pennsylvania, 1991–2007

    Science.gov (United States)

    Galeone, Daniel G.; Risser, Dennis W.; Eicholtz, Lee W.; Hoffman, Scott A.

    2017-07-10

    Laurel Hill Creek is considered one of the most pristine waterways in southwestern Pennsylvania and has high recreational value as a high-quality cold-water fishery; however, the upper parts of the basin have documented water-quality impairments. Groundwater and surface water are withdrawn for public water supply and the basin has been identified as a Critical Water Planning Area (CWPA) under the State Water Plan. The U.S. Geological Survey, in cooperation with the Somerset County Conservation District, collected data and developed modeling tools to support the assessment of water-quality and water-quantity issues for a basin designated as a CWPA. Streams, springs, and groundwater wells were sampled for water quality in 2007. Streamflows were measured concurrent with water-quality sampling at main-stem sites on Laurel Hill Creek and tributaries in 2007. Stream temperatures were monitored continuously at five main-stem sites from 2007 to 2010. Water usage in the basin was summarized for 2003 and 2009 and a Water-Analysis Screening Tool (WAST) developed for the Pennsylvania State Water Plan was implemented to determine whether the water use in the basin exceeded the “safe yield” or “the amount of water that can be withdrawn from a water resource over a period of time without impairing the long-term utility of a water resource.” A groundwater and surface-water flow (GSFLOW) model was developed for Laurel Hill Creek and calibrated to the measured daily streamflow from 1991 to 2007 for the streamflow-gaging station near the outlet of the basin at Ursina, Pa. The CWPA designation requires an assessment of current and future water use. The calibrated GSFLOW model can be used to assess the hydrologic effects of future changes in water use and land use in the basin.Analyses of samples collected for surface-water quality during base-flow conditions indicate that the highest nutrient concentrations in the main stem of Laurel Hill Creek were at sites in the

  15. Water pollution and environmental governance systems of the Tai and Chao Lake Basins in China in an international perspective

    NARCIS (Netherlands)

    Lei Qiu; M.P. van Dijk (Meine Pieter); H. Wang (Huimin)

    2015-01-01

    markdownabstractThe Tai and Chao Lake basins are currently facing a serious water pollution crisis associated with the absence of an effective environmental governance system. The water pollution and the water governance system of the two basins will be compared. The reasons for water pollution in

  16. Whose waters? Large-scale agricultural development and water grabbing in the Wami-Ruvu River Basin, Tanzania

    Directory of Open Access Journals (Sweden)

    Aurelia van Eeden

    2016-10-01

    Full Text Available In Tanzania like in other parts of the global South, in the name of 'development' and 'poverty eradication' vast tracts of land have been earmarked by the government to be developed by investors for different commercial agricultural projects, giving rise to the contested land grab phenomenon. In parallel, Integrated Water Resources Management (IWRM has been promoted in the country and globally as the governance framework that seeks to manage water resources in an efficient, equitable and sustainable manner. This article asks how IWRM manages the competing interests as well as the diverse priorities of both large and small water users in the midst of foreign direct investment. By focusing on two commercial sugar companies operating in the Wami-Ruvu River Basin in Tanzania and their impacts on the water and land rights of the surrounding villages, the article asks whether institutional and capacity weaknesses around IWRM implementation can be exploited by powerful actors that seek to meet their own interests, thus allowing water grabbing to take place. The paper thus highlights the power, interests and alliances of the various actors involved in the governance of water resources. By drawing on recent conceptual insights from the water grabbing literature, the empirical findings suggest that the IWRM framework indirectly and directly facilitates the phenomenon of water grabbing to take place in the Wami-Ruvu River Basin in Tanzania.

  17. Estimates of ground-water recharge rates for two small basins in central Nevada

    Science.gov (United States)

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins. two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. The first model uses a traditional approach to quantify watershed hydrology through a precipitation-runoff modeling system that accounts for the spatial variability of hydrologic inputs, processes, and responses (outputs) using a dailycomputational time step. The second model is based on the conservative nature of the dissolved chloride ion in selected hydrologic environments, and its use as a natural tracer allows the computation of acoupled, water and chloride-ion, mass-balance system of equations to estimate available water (sum ofsurface runoff and groundwater recharge). Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most

  18. Film mass transfer coefficient for the prediction of volatile organic compound evaporation rate from open water basin

    OpenAIRE

    Charun Bunyakan; Preyaporn Tongsoi; Chakrit Tongurai

    2001-01-01

    The evaporation of volatile organic compounds(VOCs) from treatment, storage, disposal facility(TSDF) is an important air pollution issue because of the evaporation quantity and toxicity and/or carcinogenicity. This paper concerns VOC evaporation from open water basins such as the equalization basin and nonaerate surface impoundments in a wastewater treatment plant. The amount of VOCs evaporation from open water basins can be predicted by using the two-film model that requires two mass transfe...

  19. Environment, poverty and health linkages in the Wami River basin: A search for sustainable water resource management

    Science.gov (United States)

    Madulu, Ndalahwa F.

    The Wami Rivers basin is an important area due to its diversified use which benefits a multi-diversity of stakeholders. While large scale irrigated sugar production is the main issue of concern upstream, there are other equally important socio-economic activities which include biodiversity and environmental conservation, domestic water supply, livestock water needs, and fishing. A large water supply project has just been completed downstream of the Wami River to provide water for the Chalinze township and surrounding villages. Other important undertakings include irrigated rice farming in Dakawa area, livestock keeping activities, and the establishment of the Sadani National Park (SANAPA) and the Wami-Mbiki Wildlife Management Area (WMA). The Wami River basin forms significant parts of both the Wami-Mbiki WMA and the SANAPA wildlife conservation areas. Regardless of its importance, the basin is increasingly being degraded through deforestation for agricultural expansion, timber, and more important charcoal making. The basin is also being polluted through disposal of excess molasses from the sugar industry, and use of poisonous substances and herbs in fishing. The worsening environmental condition in the basin has become a health threat to both people in the surrounding villages and wildlife. To a large extent, such changes are intensifying poverty levels among the local population. These changes are raising concerns about the long-term environmental sustainability and health implications of the current water use competition and conflicts in the basin. The purpose of this paper is to examine the main water resource use conflicts and how they affect environmental sustainability in the long-run. It also intends to establish linkages between wildlife management, pastoralism, agricultural activities and how such linkages influence poverty alleviation efforts in the basin. An attempt has been made to examine the environmental and health implications of human activities

  20. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    Science.gov (United States)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  1. Toxicity of Water Samples Collected in the Vicinity of F and H Seepage Basin 1990-1995

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bowers, B.

    1996-09-01

    Water and contaminants from the F- and H-Area Seepage Basins outcrop as shallow groundwater seeps down gradient from the basins. In 1990, 1991, 1993, 1994, and 1995, toxicity tests were performed on water collected from a number of these seeps, as well as from several locations in Fourmile Branch and several uncontaminated reference locations.

  2. Climate Change, the Energy-water-food Nexus, and the "New" Colorado River Basin

    Science.gov (United States)

    Middleton, R. S.; Bennett, K. E.; Solander, K.; Hopkins, E.

    2017-12-01

    Climate change, extremes, and climate-driven disturbances are anticipated to have substantial impacts on regional water resources, particularly in the western and southwestern United States. These unprecedented conditions—a no-analog future—will result in challenges to adaptation, mitigation, and resilience planning for the energy-water-food nexus. We have analyzed the impact of climate change on Colorado River flows for multiple climate and disturbance scenarios: 12 global climate models and two CO2 emission scenarios (RCP 4.5 and RCP 8.5) from the Intergovernmental Panel on Climate Change's Coupled Model Intercomparison Study, version 5, and multiple climate-driven forest disturbance scenarios including temperature-drought vegetation mortality and insect infestations. Results indicate a wide range of potential streamflow projections and the potential emergence of a "new" Colorado River basin. Overall, annual streamflow tends to increase under the majority of modeled scenarios due to projected increases in precipitation across the basin, though a significant number of scenarios indicate moderate and potentially substantial reductions in water availability. However, all scenarios indicate severe changes in seasonality of flows and strong variability across headwater systems. This leads to increased fall and winter streamflow, strong reductions in spring and summer flows, and a shift towards earlier snowmelt timing. These impacts are further exacerbated in headwater systems, which are key to driving Colorado River streamflow and hence water supply for both internal and external basin needs. These results shed a new and important slant on the Colorado River basin, where an emergent streamflow pattern may result in difficulties to adjust to these new regimes, resulting in increased stress to the energy-water-food nexus.

  3. Hydrothermal and hydrochemical operating conditions of the cooling water basin of the Lithuanian thermalelectric station. Gidrotermicheskii i gidrokhimicheskii rezhim vodokhranilishcha - okhladitela Litovskoi GRES

    Energy Technology Data Exchange (ETDEWEB)

    Lasinskas, M

    1981-01-01

    Complex studies of the cooling water storage basin and its drainage system are described. Physical and geographical conditions (terrain, soil, vegetation, etc) of the drainage system and their influence on processes within the water basin are discussed. Inflow and discharge parts of the water balance, particularly the evaporation of hot water from the basin surface, are discussed. Data of long-term measurements of thermal conditions, heat exchange processes and their relation to the effectivity of the thermalelectric plant are presented. Heat balance of the water basin was determined. The influence of the Lithuanian Hydro upon precipitation, physical and chemical operating conditions of the water storage basin, and drainage and ground water was studied. The characteristics of the chemical composition of bottom sediments, intensity of current sedimentation processes and sediment accumulation in the water storage basin are given.

  4. Surface-water-quality assessment of the upper Illinois River basin in Illinois, Indiana, and Wisconsin; project description

    Science.gov (United States)

    Mades, D.M.

    1987-01-01

    In 1986, the U.S. Geological Survey began a National Water-Quality Assessment program to (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation's surface- and ground-water resources; (2) define, where possible, trends in water quality; and (3) identify and describe the relations of both status and trends in water quality to natural factors and the history of land use and land- and waste-management activities. The program is presently in a pilot phase that will test and modify, as necessary, concepts and approaches in preparation for possible full implementation of the program in the future. The upper Illinois River basin is one of four basins selected to test the concepts and approaches of the surface-water-quality element of the national program. The basin drains 10,949 square miles of Illinois, Indiana, and Wisconsin. Three principal tributaries are the Kankakee and Des Plaines Rivers that join to form the Illinois River and the Fox River. Land use is predominantly agricultural; about 75 percent of the basin is cultivated primarily for production of corn and soybeans. About 13 percent of the basin is urban area, most of which is located in the Chicago metropolitan area. The population of the basin is about 7 million. About 6 million people live in the Des Plaines River basin. Many water-quality issues in the upper Illinois River basin are related to sediment, nutrients, potentially toxic inorganic and organic constituents, and to water-management practices. Occurrence of sediment and the chemical constituents in the rivers and lakes within the basin has the potential to adversely affect the water's suitability for aquatic life, recreation, or, through the consumption of fish, human health. The upper Illinois River basin project consists of five major activities. The first activity--analysis of existing information and preparation of a report that describes

  5. Electrophysiological studies of salty taste modification by organic acids in the labellar taste cell of the blowfly.

    Science.gov (United States)

    Murata, Yoshihiro; Kataoka-Shirasugi, Naoko; Amakawa, Taisaku

    2002-01-01

    Using the labellar salt receptor cells of the blowfly, Phormia regina, we electrophysiologically showed that the response to NaCl and KCl aqueous solutions was enhanced and depressed by acetic, succinic and citric acids. The organic acid concentrations at which the most enhanced salt response (MESR) was obtained were found to be different: 0.05-1 mM citric acid, 0.5-2 mM succinic acid and 5-50 mM acetic acid. Moreover, the degree of the salt response was not always dependent on the pH values of the stimulating solutions. The salt response was also enhanced by HCl (pH 3.5-3.0) only when the NaCl concentration was greater than the threshold, indicating that the salty taste would be enhanced by the comparatively lower concentrations of hydrogen ions. Another explanation for the enhancement is that the salty taste may also be enhanced by undissociated molecules of the organic acids, because the MESRs were obtained at the pH values lower than the pKa(1) or pKa(2) values of these organic acids. On the other hand, the salty taste could be depressed by both the lower pH range (pH 2.5-2.0) and the dissociated organic anions from organic acid molecules with at least two carboxyl groups.

  6. Water Quality in the Tanana River Basin, Alaska, Water Years 2004-06

    Science.gov (United States)

    Moran, Edward H.

    2007-01-01

    OVERVIEW This report contains water-quality data collected from 84 sites in Tanana River basin during water years 2004 through 2006 (October 2003 through September 2006) as part of a cooperative study between the U.S. Geological Survey (USGS) and Alaska Department of Environmental Conservation (ADEC) Alaska Monitoring and Assessment Program (AKMAP), supported in part through the U.S. Environmental Protection Agency (USEPA) Office of Water, Cooperative Assistance Agreement X7-97078801. A broad range of chemical analyses are presented for 93 sets of samples collected at 59 tributaries to the Tanana River and at 25 locations along the mainstem. These data are to provide a means to assess baseline characteristics and establish indicators that are ecologically important, affordable, and relevant to society.

  7. Water resources during drought conditions and postfire water quality in the upper Rio Hondo Basin, Lincoln County, New Mexico, 2010-13

    Science.gov (United States)

    Sherson, Lauren R.; Rice, Steven E.

    2015-07-16

    Stakeholders and water-resource managers in Lincoln County, New Mexico, have had long-standing concerns over the impact of population growth and groundwater withdrawals. These concerns have been exacerbated in recent years by extreme drought conditions and two major wildfires in the upper Rio Hondo Basin, located in south-central New Mexico. The U.S. Geological Survey (USGS), in cooperation with Lincoln County, initiated a study in 2006 to assess and characterize water resources in the upper Rio Hondo Basin. Data collected during water years 2010–13 are presented and interpreted in this report. All data presented in this report are described in water years unless stated otherwise.

  8. The role of stakeholders in Murray-Darling Basin water management: How do irrigators make water use decisions and how can this influence water policy?

    Science.gov (United States)

    Douglas, E. M.; Wheeler, S. A.; Smith, D. J.; Gray, S.; Overton, I. C.; Crossman, N. D.; Doody, T.

    2014-12-01

    Water stress and overallocation are at the forefront of water management and policy challenges in Australia, especially in the Murray Darling Basin (MDB). Farmland within the MDB generates 40 percent of Australia's total agricultural production and utilizes 60 percent of all irrigation water withdrawn nationally. The Murray Darling Basin Plan, drafted in 2008 and enacted in November 2012, has at its core the establishment of environmentally sustainable diversion limits based on a threshold of water extraction which, if exceeded, would cause harm to key environmental assets in the MDB. The overall goal of the Plan is to balance economic, social and environmental outcomes within the Basin. Because irrigated agriculture is the major water user in the MDB, it is important to understand the factors that influence irrigation water use. We applied a mental modeling approach to assessing farmer water use decisions. The approach allowed us to solicit and document farmer insights into the multifaceted nature of irrigation water use decisions in the MDB. Following are a few insights gained from the workshops: 1) For both environmental and economic reasons, irrigators in the MDB have become experts in water use and water efficiency. Water managers and government officials could benefit by partnering with farmers and incorporating this expertise into water management decisions. 2) Irrigators in the MDB may have been misperceived when it comes to accepting policy change. Many, if not most, of the farmers we talked to understood the need for, or at least the inevitability of, governmental policies and regulations. But a lack of accountability and predictability has added to the uncertainty in farming decisions. 3) Irrigators in the MDB subscribe to the concept of environmental sustainability, although they might not always agree with how the concept is implemented. Farmers should be recognized for their significant investments in the long-term sustainability of their farms and

  9. EVALUATION OF WATER POLLUTION STATUS IN SIRET HYDROGRAPHICAL BASIN (SUCEAVA REGION DUE TO AGRICULTURAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The study presents data concerning the water pollution status of Siret hydrographical basin (i.e. surface and ground waters, lakes in Suceava County area (different controlling/monitoring sections due to agricultural productive activities, especially regarding some quality indicators (nitrogen-based nutrient concentrations evaluated for 2008. These data are recommending the necessity of continuous monitoring of water quality in the Siret River hydrographical basin, in all existing control sections, for identification of any pollution episodes, non-reported by polluters to the local environmental regulators.

  10. Modeling and Optimization of Recycled Water Systems to Augment Urban Groundwater Recharge through Underutilized Stormwater Spreading Basins.

    Science.gov (United States)

    Bradshaw, Jonathan L; Luthy, Richard G

    2017-10-17

    Infrastructure systems that use stormwater and recycled water to augment groundwater recharge through spreading basins represent cost-effective opportunities to diversify urban water supplies. However, technical questions remain about how these types of managed aquifer recharge systems should be designed; furthermore, existing planning tools are insufficient for performing robust design comparisons. Addressing this need, we present a model for identifying the best-case design and operation schedule for systems that deliver recycled water to underutilized stormwater spreading basins. Resulting systems are optimal with respect to life cycle costs and water deliveries. Through a case study of Los Angeles, California, we illustrate how delivering recycled water to spreading basins could be optimally implemented. Results illustrate trade-offs between centralized and decentralized configurations. For example, while a centralized Hyperion system could deliver more recycled water to the Hansen Spreading Grounds, this system incurs approximately twice the conveyance cost of a decentralized Tillman system (mean of 44% vs 22% of unit life cycle costs). Compared to existing methods, our model allows for more comprehensive and precise analyses of cost, water volume, and energy trade-offs among different design scenarios. This model can inform decisions about spreading basin operation policies and the development of new water supplies.

  11. Performance of a pilot-scale constructed wetland system for treating simulated ash basin water.

    Science.gov (United States)

    Dorman, Lane; Castle, James W; Rodgers, John H

    2009-05-01

    A pilot-scale constructed wetland treatment system (CWTS) was designed and built to decrease the concentration and toxicity of constituents of concern in ash basin water from coal-burning power plants. The CWTS was designed to promote the following treatment processes for metals and metalloids: precipitation as non-bioavailable sulfides, co-precipitation with iron oxyhydroxides, and adsorption onto iron oxides. Concentrations of Zn, Cr, Hg, As, and Se in simulated ash basin water were reduced by the CWTS to less than USEPA-recommended water quality criteria. The removal efficiency (defined as the percent concentration decrease from influent to effluent) was dependent on the influent concentration of the constituent, while the extent of removal (defined as the concentration of a constituent of concern in the CWTS effluent) was independent of the influent concentration. Results from toxicity experiments illustrated that the CWTS eliminated influent toxicity with regard to survival and reduced influent toxicity with regard to reproduction. Reduction in potential for scale formation and biofouling was achieved through treatment of the simulated ash basin water by the pilot-scale CWTS.

  12. Intra-basin variability of snowmelt water balance calculations in a subarctic catchment

    Science.gov (United States)

    McCartney, Stephen E.; Carey, Sean K.; Pomeroy, John W.

    2006-03-01

    The intra-basin variability of snowmelt and melt-water runoff hydrology in an 8 km2 subarctic alpine tundra catchment was examined for the 2003 melt period. The catchment, Granger Creek, is within the Wolf Creek Research Basin, Yukon, which is typical of mountain subarctic landscapes in northwestern Canada. The study catchment was segmented into nine internally uniform zones termed hydrological response units (HRUs) based on their similar hydrological, physiographic, vegetation and soil properties. Snow accumulation exhibited significant variability among the HRUs, with greatest snow water equivalent in areas of tall shrub vegetation. Melt began first on southerly exposures and at lower elevations, yet average melt rates for the study period varied little among HRUs with the exception of those with steep aspects. In HRUs with capping organic soils, melt water first infiltrated this surface horizon, satisfying its storage capacity, and then percolated into the frozen mineral substrate. Infiltration and percolation into frozen mineral soils was restricted where melt occurred rapidly and organic soils were thin; in this case, melt-water delivery rates exceeded the frozen mineral soil infiltration rate, resulting in high runoff rates. In contrast, where there were slower melt rates and thick organic soils, infiltration was unlimited and runoff was suppressed. The snow water equivalent had a large impact on runoff volume, as soil storage capacity was quickly surpassed in areas of deep snow, diverting the bulk of melt water laterally to the drainage network. A spatially distributed water balance indicated that the snowmelt freshet was primarily controlled by areas with tall shrub vegetation that accumulate large quantities of snow and by alpine areas with no capping organic soils. The intra-basin water balance variability has important implications for modelling freshet in hydrological models.

  13. Short overview of water scarcity in the basins of the Upper Tietê River and PCJ

    Directory of Open Access Journals (Sweden)

    Luciana Cordeiro de Souza Fernandes

    2015-12-01

    Full Text Available Water scarcity in the region of the Alto Tietê basin and Piracicaba, Capivari and Jundiaí basins (PCJ, southeastern Brazil, it is a concrete fact that should be faced. In our view it is not a simple water crisis, but a water collapse a decade advertised, which shows an inconsistent and ineffective planning, a lack of political management and the flagrant absence of compliance with the legal grounds brought by the National Water Resources Policy Act (Federal Law n. 9433/97.

  14. The economic value of drought information for water management under climate change: a case study in the Ebro basin

    Directory of Open Access Journals (Sweden)

    S. Quiroga

    2011-03-01

    Full Text Available Drought events in the Mediterranean are likely to increase in frequency, duration and intensity due to climate change, thereby affecting crop production. Information about drought is valuable for river basin authorities and the farmers affected by their decisions. The economic value of this information and the resulting decisions are of interest to these two stakeholder groups and to the information providers. Understanding the dynamics of extreme events, including droughts, in future climate scenarios for the Mediterranean is being improved continuously. This paper analyses the economic value of information on drought events taking into account the risk aversion of water managers. We consider the effects of drought management plans on rice production in the Ebro river basin. This enables us to compute the willingness to compensate the river basin authority for more accurate information allowing for better decision-making. If runoff is reduced, river basin planners can consider the reduction of water allocation for irrigation in order to eliminate the risk of water scarcity. Alternately, river basin planners may decide to maintain water allocation and accept a reduction of water supply reliability, leaving farmers exposed to drought events. These two alternatives offer different risk levels for crop production and farmers' incomes which determine the value of this information to the river basin authority. The information is relevant for the revision of River Basin Management Plans of the Water Framework Directive (WFD within the context of climate change.

  15. Temporal and spatial changes in water quality of the indus basin

    International Nuclear Information System (INIS)

    Bhutta, M.N.; Ahmad, N.; Khan, M.Z.

    2007-01-01

    Total useable water supply for agriculture is essentially fixed and is a limiting factor for increasing agriculture production. The objectives of this paper are to evaluate water quality of rivers, drains and groundwater. Suggestions are made for controlling pollution and for sustainable use of water. The scope of the paper is limited to the Indus Basin. The criteria based on TDS, SAR and RSC was used to categorize water as useable, marginal and hazardous quality for agricultural use. Data of different water quality surveys from 1959 to 2003 were used for the study. Spatial changes of groundwater quality indicate saline water intrusion towards fresh groundwater pockets. Temporal changes of groundwater quality also show deterioration of water quality over long periods. Canal supplies need to be increased to reduce reliance on groundwater which indirectly help sustainable use of groundwater. River water quality at Kotri, the lowest point in the Indus River system, is suitable for irrigation through out the year, However, pollution is a serious issue particularly during low flow periods. During the year 2004 about 40 persons died in Hyderabad due to pollution in drinking water the source of which was the River Indus. Municipal and Industrial effluents are being disposed into rivers, drains and canals without treatment which is not only detrimental to crops, human beings, livestock and marine life but also a potential threat to environment. Out of 143 outfall drains of the Indus Basin, the effluent quality of 53 drains is useable, 46 marginal and 44 hazardous. A large number of farmers are using drainage effluent for agriculture. There is no monitoring of land and water for such use. Provincial irrigation department and environment protection agencies should provide technical guidance and support to the farmers, using the drainage effluent. The Environment Act should be strictly implemented. Provincial Irrigation and Drainage Authorities (PIDA's) must work with

  16. Evaluating the State of Water Management in the Rio Grande/Bravo Basin

    Science.gov (United States)

    Ortiz Partida, Jose Pablo; Sandoval-Solis, Samuel; Diaz Gomez, Romina

    2017-04-01

    Water resource modeling tools have been developed for many different regions and sub-basins of the Rio Grande/Bravo (RGB). Each of these tools has specific objectives, whether it is to explore drought mitigation alternatives, conflict resolution, climate change evaluation, tradeoff and economic synergies, water allocation, reservoir operations, or collaborative planning. However, there has not been an effort to integrate different available tools, or to link models developed for specific reaches into a more holistic watershed decision-support tool. This project outlines promising next steps to meet long-term goals of improved decision support tools and modeling. We identify, describe, and synthesize water resources management practices in the RGB basin and available water resources models and decision support tools that represent the RGB and the distribution of water for human and environmental uses. The extent body of water resources modeling is examined from a perspective of environmental water needs and water resources management and thereby allows subsequent prioritization of future research and monitoring needs for the development of river system modeling tools. This work communicates the state of the RGB science to diverse stakeholders, researchers, and decision-makers. The products of this project represent a planning tool to support an integrated water resources management framework to maximize economic and social welfare without compromising vital ecosystems.

  17. Evaluation of Water Security in Kathmandu Valley before and after Water Transfer from another Basin

    OpenAIRE

    Bhesh Raj Thapa; Hiroshi Ishidaira; Vishnu Prasad Pandey; Tilak Mohan Bhandari; Narendra Man Shakya

    2018-01-01

    Kathmandu Upatyaka Khanepani Limited (KUKL) has planned to harness water from outside the valley from Melamchi as an inter-basin project to supply water inside the ring road (core valley area) of the Kathmandu Valley (KV). The project, called the “Melamchi Water Supply Project (MWSP)”, is expected to have its first phase completed by the end of September 2018 and its second phase completed by the end of 2023 to supply 170 MLD (million liters a day) through the first phase and an additional 34...

  18. Evaluation of water resources monitoring networks: study applied to surface waters in the Macaé River Basin

    Directory of Open Access Journals (Sweden)

    Carolina Cloris Lopes Benassuly

    2012-04-01

    Full Text Available Knowledge of hydrological phenomena is required in water resources monitoring, in order to structure the water management, focusing on ensuring its multiple uses while allowing that resource´s control and conservation. The effectiveness of monitoring depends on adequate information systems design and proper operation conditions. Data acquisition, treatment and analysis are vital for establishing management strategies, thus monitoring systems and networks shall be conceived according to their main objectives, and be optimized in terms of location of data stations. The generated data shall also model hydrological behavior of the studied basin, so that data interpolation can be applied to the whole basin. The present work aimed to join concepts and methods that guide the structuring of hydrologic monitoring networks of surface waters. For evaluating historical series characteristics as well as work stations redundancy, the entropy method was used. The Macaé River Basin’s importance is related to the public and industrial uses of water in the region that is responsible for more than 80% of Brazilian oil and gas production, what justifies the relevance of the research made. This study concluded that despite of its relatively short extension, the Macaé River Basin should have higher monitoring network density, in order to provide more reliable management data. It also depicted the high relevancy of stations located in its upper course.

  19. Environmental setting and natural factors and human influences affecting water quality in the White River Basin, Indiana

    Science.gov (United States)

    Schnoebelen, Douglas J.; Fenelon, Joseph M.; Baker, Nancy T.; Martin, Jeffrey D.; Bayless, E. Randall; Jacques, David V.; Crawford, Charles G.

    1999-01-01

    The White River Basin drains 11,349 square miles of central and southern Indiana and is one of 59 Study Units selected for water-quality assessment as part of the U.S. Geological Survey's National WaterQuality Assessment Program. Defining the environmental setting of the basin and identifying the natural factors and human influences that affect water quality are important parts of the assessment.

  20. Agricultural Water Conservation in the Colorado River Basin: Alternatives to Permanent Fallowing Research Synthesis and Outreach Workshops

    Science.gov (United States)

    Udall, B. H.; Peterson, G.

    2017-12-01

    As increasing water scarcity occurs in the Colorado River Basin, water users have been looking for new sources of supply. The default solution is to transfer water from the cheapest and most plentiful source — agriculture — to supply new water demands in the region. However, if pursued in haste, and without sufficient information, the likely outcome may be permanent fallowing, along with serious economic disruption to agricultural communities, loss of valuable farmland, loss of important amenity values, and a loss of a sense of place in many rural communities within the basin. This project was undertaken to explore ways to minimize harm to agriculture if transfers out of agriculture were to occur. Four detailed synthesis reports of the four common methods used to temporarily transfer water from agriculture were produced by the project. The water saving methods covered by the reports are: (1) Deficit Irrigation of Alfalfa and other Forages; (2) Rotational Fallowing; (3) Crop Switching; and (4) Irrigation Efficiency and Water Conservation After the reports were drafted, three workshops were held, one in the Upper Basin in Grand Junction on November 4, 2016, one in the Lower Basin in Tucson on March 29, 2017, and one in Washington, DC on May 16, 2017 to disseminate the findings. Over 100 people attended these workshops.

  1. Consumptive Water Use Analysis of Upper Rio Grande Basin in Southern Colorado.

    Science.gov (United States)

    Dubinsky, Jonathan; Karunanithi, Arunprakash T

    2017-04-18

    Water resource management and governance at the river basin scale is critical for the sustainable development of rural agrarian regions in the West. This research applies a consumptive water use analysis, inspired by the Water Footprint methodology, to the Upper Rio Grande Basin (RGB) in south central Colorado. The region is characterized by water stress, high dessert conditions, declining land health, and a depleting water table. We utilize region specific data and models to analyze the consumptive water use of RGB. The study reveals that, on an average, RGB experiences three months of water shortage per year due to the unsustainable extraction of groundwater (GW). Our results show that agriculture accounts for 77% of overall water consumption and it relies heavily on an aquifer (about 50% of agricultural consumption) that is being depleted over time. We find that, even though potato cultivation provides the most efficient conversion of groundwater resources into economic value (m 3 GW/$) in this region, it relies predominantly (81%) on the aquifer for its water supply. However, cattle, another important agricultural commodity produced in the region, provides good economic value but also relies significantly less on the aquifer (30%) for water needs. The results from this paper are timely to the RGB community, which is currently in the process of developing strategies for sustainable water management.

  2. Assessment of the water supply:demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives.

    Science.gov (United States)

    Boithias, Laurie; Acuña, Vicenç; Vergoñós, Laura; Ziv, Guy; Marcé, Rafael; Sabater, Sergi

    2014-02-01

    Spatial differences in the supply and demand of ecosystem services such as water provisioning often imply that the demand for ecosystem services cannot be fulfilled at the local scale, but it can be fulfilled at larger scales (regional, continental). Differences in the supply:demand (S:D) ratio for a given service result in different values, and these differences might be assessed with monetary or non-monetary metrics. Water scarcity occurs where and when water resources are not enough to meet all the demands, and this affects equally the service of water provisioning and the ecosystem needs. In this study we assess the value of water in a Mediterranean basin under different global change (i.e. both climate and anthropogenic changes) and mitigation scenarios, with a non-monetary metric: the S:D ratio. We computed water balances across the Ebro basin (North-East Spain) with the spatially explicit InVEST model. We highlight the spatial and temporal mismatches existing across a single hydrological basin regarding water provisioning and its consumption, considering or not, the environmental demand (environmental flow). The study shows that water scarcity is commonly a local issue (sub-basin to region), but that all demands are met at the largest considered spatial scale (basin). This was not the case in the worst-case scenario (increasing demands and decreasing supply), as the S:D ratio at the basin scale was near 1, indicating that serious problems of water scarcity might occur in the near future even at the basin scale. The analysis of possible mitigation scenarios reveals that the impact of global change may be counteracted by the decrease of irrigated areas. Furthermore, the comparison between a non-monetary (S:D ratio) and a monetary (water price) valuation metrics reveals that the S:D ratio provides similar values and might be therefore used as a spatially explicit metric to valuate the ecosystem service water provisioning. © 2013.

  3. Integrated water resources management : A case study in the Hehei river basin, China

    Science.gov (United States)

    Jia, Siqi; Deng, Xiangzheng

    2017-04-01

    The lack of water resources experienced in different parts of the world has now been recognized and analyzed by different international organizations such as WHO, the World Bank, etc. Add to this the growing urbanization and the fast socio-economic development, the water supply of many urban areas is already or will be severely threatened. Recently published documents from the UN Environmental Program confirms that severe water shortage affects 400 million people today and will affect 4 billion people by 2050. Water nowadays is getting scarce, and access to clean drinking water and water for agricultural usage is unequally distributed. The biggest opportunity and challenge for future water management is how to achieve water sustainability to reduce water consumption. Integrated Water Resources Management (IWRM) is a process which promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. We take the Heibe river basin where agriculture water there accounted for 90% of total water consumption as an example to study the impacts of IWRM on regional water resources. We calculated the elasticity of substitution values between labor and land, water by each irrigation areas to find the variable elastic value among irrigation areas, and the water-use efficiency based on NPP estimation with the C-fix model and WUE estimation with NPP and ET. The empirical analysis indicated that the moderate scale of farmland is 0.27-0.53hm2 under the condition of technical efficiency of irrigation water and production. Agricultural water use accounted for 94% of the social and economic water consumption in 2012, but water efficiency and water productivity were both at a low stage. In conclusion, land use forms at present in Heihe river basin have a detrimental impact on the availability of ecological water use. promoting water

  4. Post-wildfire recovery of water yield in the Sydney Basin water supply catchments: An assessment of the 2001/2002 wildfires

    Science.gov (United States)

    Heath, J. T.; Chafer, C. J.; van Ogtrop, F. F.; Bishop, T. F. A.

    2014-11-01

    Wildfire is a recurring event which has been acknowledged by the literature to impact the hydrological cycle of a catchment. Hence, wildfire may have a significant impact on water yield levels within a catchment. In Australia, studies of the effect of fire on water yield have been limited to obligate seeder vegetation communities. These communities regenerate from seed banks in the ground or within woody fruits and are generally activated by fire. In contrast, the Sydney Basin is dominated by obligate resprouter communities. These communities regenerate from fire resistant buds found on the plant and are generally found in regions where wildfire is a regular occurrence. The 2001/2002 wildfires in the Sydney Basin provided an opportunity to investigate the impacts of wildfire on water yield in a number of catchments dominated by obligate resprouting communities. The overall aim of this study was to investigate whether there was a difference in water yield post-wildfire. Four burnt subcatchments and 3 control subcatchments were assessed. A general additive model was calibrated using pre-wildfire data and then used to predict post-wildfire water yield using post-wildfire data. The model errors were analysed and it was found that the errors for all subcatchments showed similar trends for the post-wildfire period. This finding demonstrates that wildfires within the Sydney Basin have no significant medium-term impact on water yield.

  5. Re-plumbing the Terrestrial Hydrosphere: Scope and Impact of Major Inter-basin Water Transfers

    Science.gov (United States)

    Shikhmacheva, K. V.; Vorosmarty, C. J.; Fekete, B. M.; Afshari, S.; Aside, B.; Chibisova, Y.; Dopson, I.; Link, H.; Mouden, A.

    2013-12-01

    The availability of water has become one of the main concerns in modern history and it is an important policymaking strategy. Increasing population, agricultural intensification, rapid urbanization, industrial expansion and environmental changes increase water demand on region and global scales. Inter-Basin Water Transfer (IBWT) is an important element of satisfying immediate water requirements. The complex engineering structures divert water flow between watersheds, thus ';re-plumbing' terrestrial hydrosphere. We report here an analysis of inter-basin water transfer for the Northeast region, which is a part of an NSF funded project entitled 'The NorthEast Regional Earth System Model (NE-RESM).' In addition, this work is also a part of a global IBWT study. First, we present the IBWT geo-referenced assembled data set, derived from from maps, published documents and online resources. The information in the data base was classified by project name, diverted volume, source location, usage, status of construction, transport distance and purpose. The key feature of the dataset is geo-location of the projects, that allows further analysis of the hydrologic impact of each of the projects as well as their collective significance. Upon completion of the data-collection phase, the inputs were verified using RiverGIS and ArcGIS software. In addition, we investigated some key measures of IBWT distortion of regional-scale hydrology as well as their socio-economic impacts across the Northeast region. We calculated several indicators to assess these impacts, for example the donor-to-recipient basin flow ratio, which represents the 'gain' and 'loss' of water relative to the natural flow on a basin scale. Elements of the regional IBWT data base will be incorporated into the regional-scale Water Balance Model (WBM), and linked to the operation of reservoirs and dams. While focused on the Northeastern U.S., we believe that this data, its testing and applications will yield broad use

  6. Monitoring Changes in Croplands Due to Water Stress in the Krishna River Basin Using Temporal Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Venkata Ramana Murthy Reddi

    2017-10-01

    Full Text Available Remote sensing-based assessments of large river basins such as the Krishna, which supplies water to many states in India, are useful for operationally monitoring agriculture, especially basins that are affected by abiotic stress. Moderate-Resolution Imaging Spectroradiometer (MODIS time series products can be used to understand cropland changes at the basin level due to abiotic stresses, especially water scarcity. Spectral matching techniques were used to identify land use/land cover (LULC areas for two crop years: 2013–2014, which was a normal year, and 2015–2016, which was a water stress year. Water stress-affected crop areas were categorized into three classes—severe, moderate and mild—based on the normalized difference vegetation index (NDVI and intensity of damage assessed through field sampling. Furthermore, ground survey data were used to assess the accuracy of MODIS-derived classification individual products. Water inflows into and outflows from the Krishna river basin during the study period were used as direct indicators of water scarcity/availability in the Krishna Basin. Furthermore, ground survey data were used to assess the accuracy of MODIS-derived LULC classification of individual year products. Rainfall data from the tropical rainfall monitoring mission (TRMM was used to support the water stress analysis. The nine LULC classes derived using the MODIS temporal imagery provided overall accuracies of 82% for the cropping year 2013–2014 and 85% for the year 2015–2016. Kappa values are 0.78 for 2013–2014 and 0.82 for 2015–2016. MODIS-derived cropland areas were compared with national statistics for the cropping year 2013–2014 with a R2 value of 0.87. Results show that both rainfed and irrigated areas in 2015–2016 saw significant changes that will have significant impacts on food security. It has been also observed that the farmers in the basin tend to use lower inputs and labour per ha during drought years. Among

  7. Water management for development of water quality in the Ruhr River basin.

    Science.gov (United States)

    Klopp, R

    2000-01-01

    On the Ruhr, a small river running through hilly country and with a mean flow of 76 m3/s, 27 water works use the method of artificial groundwater recharge to produce 350 million m3 of drinking water annually. On the basis of a special act, the Ruhr River Association is responsible for water quality and water quantity management in the Ruhr basin. The present 94 municipal sewage treatment plants ensure that the raw water is sufficiently good to be turned into drinking water. In the Ruhr's lower reaches, where dry weather results in a 20% share of the entire water flow being treated wastewater, comparatively high concentration of substances of domestic or industrial origin are likely, including substances which municipal wastewater treatment measures cannot entirely remove. These substances include ammonium, coliform bacteria or pathogens, boron and organic trace substances. Although water treatment measures have greatly contributed to the considerable improvement of the Ruhr's water quality in the last few decades, it is desirable to continue to aim at a high standard of drinking water production technologies since the Ruhr is a surface water body influenced by anthropogenic factors. However, in the case of substances infiltrating into drinking water, legislation is required if a reduction of pollution appears to be necessary.

  8. Circumpolar Deep Water transport and current structure at the Amundsen Sea shelf break

    Science.gov (United States)

    Assmann, Karen M.; Wåhlin, Anna K.; Heywood, Karen J.; Jenkins, Adrian; Kim, Tae Wan; Lee, Sang Hoon

    2017-04-01

    The West Antarctic Ice Sheet has been losing mass at an increasing rate over the past decades. Ocean heat transport to the ice-ocean interface has been identified as an important contributor to this mass loss and the role it plays in ice sheet stability makes it crucial to understand its drivers in order to make accurate future projections of global sea level. While processes closer to the ice-ocean interface modulate this heat transport, its ultimate source is located in the deep basin off the continental shelf as a core of relatively warm, salty water underlying a colder, fresher shallow surface layer. To reach the marine terminating glaciers and the base of floating ice shelves, this warm, salty water mass must cross the bathymetric obstacle of the shelf break. Glacial troughs that intersect the Amundsen shelf break and deepen southwards towards the ice shelf fronts have been shown to play an important role in transporting warm, salty Circumpolar Deep Water (CDW) towards the ice shelves. North of the shelf break, circulation in the Amundsen Sea occupies an intermediate regime between the eastward Antarctic Circumpolar Current that impinges on the shelf break in the Bellingshausen Sea and the westward southern limb of the Ross Gyre that follows the shelf break in the Ross Sea. Hydrographic and mooring observations and numerical model results at the mouth of the central shelf break trough leading to Pine Island and Thwaites Glaciers show a westward wind-driven shelf break current overlying an eastward undercurrent that turns onto the shelf in the trough. It is thought that the existence of the latter feature facilitates the on-shelf transport of CDW. A less clearly defined shelf break depression further west acts as the main pathway for CDW to Dotson and eastern Getz Ice shelves. Model results indicate that a similar eastward undercurrent exists here driving the on-shelf transport of CDW. Two moorings on the upper slope east of the trough entrance show a

  9. Emergence and Evolution of Endogenous Water Institutions in an African River Basin: Local Water Governance and State Intervention in the Pangani River Basin, Tanzania

    NARCIS (Netherlands)

    Komakech, C.H.

    2013-01-01

    Water management challenges in basins of Sub-Saharan Africa and in other parts of the world are increasing due to rapid urbanisation, poverty and food insecurity, energy demands, and climate change. Nearly half of the world population live in cities, and this is estimated to reach two-thirds of the

  10. Emergence and Evolution of Endogenous Water Institutions in an African River Basin : Local Water Governance and State Intervention in the Pangani River Basin, Tanzania

    NARCIS (Netherlands)

    Komakech, C.H.

    2013-01-01

    Water management challenges in basins of Sub-Saharan Africa and in other parts of the world are increasing due to rapid urbanisation, poverty and food insecurity, energy demands, and climate change. Nearly half of the world population live in cities, and this is estimated to reach two-thirds of the

  11. Water Induced Hazard Mapping in Nepal: A Case Study of East Rapti River Basin

    Science.gov (United States)

    Neupane, N.

    2010-12-01

    This paper presents illustration on typical water induced hazard mapping of East Rapti River Basin under the DWIDP, GON. The basin covers an area of 2398 sq km. The methodology includes making of base map of water induced disaster in the basin. Landslide hazard maps were prepared by SINMAP approach. Debris flow hazard maps were prepared by considering geology, slope, and saturation. Flood hazard maps were prepared by using two approaches: HEC-RAS and Satellite Imagery Interpretation. The composite water-induced hazard maps were produced by compiling the hazards rendered by landslide, debris flow, and flood. The monsoon average rainfall in the basin is 1907 mm whereas maximum 24 hours precipitation is 456.8 mm. The peak discharge of the Rapati River in the year of 1993 at station was 1220 cu m/sec. This discharge nearly corresponds to the discharge of 100-year return period. The landslides, floods, and debris flows triggered by the heavy rain of July 1993 claimed 265 lives, affected 148516 people, and damaged 1500 houses in the basin. The field investigation and integrated GIS interpretation showed that the very high and high landslide hazard zones collectively cover 38.38% and debris flow hazard zone constitutes 6.58%. High flood hazard zone occupies 4.28% area of the watershed. Mitigation measures are recommendated according to Integrated Watershed Management Approach under which the non-structural and structural measures are proposed. The non-structural measures includes: disaster management training, formulation of evacuation system (arrangement of information plan about disaster), agriculture management practices, protection of water sources, slope protections and removal of excessive bed load from the river channel. Similarly, structural measures such as dike, spur, rehabilitation of existing preventive measures and river training at some locations are recommendated. The major factors that have contributed to induce high incidences of various types of mass

  12. Potential Impacts of Climate Change on Water Resources in the Kunhar River Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Rashid Mahmood

    2016-01-01

    Full Text Available Pakistan is one of the most highly water-stressed countries in the world and its water resources are greatly vulnerable to changing climatic conditions. The present study investigates the possible impacts of climate change on the water resources of the Kunhar River basin, Pakistan, under A2 and B2 scenarios of HadCM3, a global climate model. After successful development of the hydrological modeling system (HEC-HMS for the basin, streamflow was simulated for three future periods (2011–2040, 2041–2070, and 2071–2099 and compared with the baseline period (1961–1990 to explore the changes in different flow indicators such as mean flow, low flow, median flow, high flow, flow duration curves, temporal shift in peaks, and temporal shifts in center-of-volume dates. From the results obtained, an overall increase in mean annual flow was projected in the basin under both A2 and B2 scenarios. However, while summer and autumn showed a noticeable increase in streamflow, spring and winter showed decreased streamflow. High and median flows were predicted to increase, but low flow was projected to decrease in the future under both scenarios. Flow duration curves showed that the probability of occurrence of flow is likely to be more in the future. It was also noted that peaks were predicted to shift from June to July in the future, and the center-of-volume date—the date at which half of the annual flow passes—will be delayed by about 9–17 days in the basin, under both A2 and B2 scenarios. On the whole, the Kunhar basin will face more floods and droughts in the future due to the projected increase in high flow and decrease in low flow and greater temporal and magnitudinal variations in peak flows. These results highlight how important it is to take cognizance of the impact of climate change on water resources in the basin and to formulate suitable policies for the proper utilization and management of these resources.

  13. Occurrence of antibiotic compounds in source water and finished drinking water from the upper Scioto River Basin, Ohio, 2005-6

    Science.gov (United States)

    Finnegan, Dennis P.; Simonson, Laura A.; Meyer, Michael T.

    2010-01-01

    The occurrence of antibiotics in surface water and groundwater in urban basins has become a topic of increasing interest in recent years. Little is known about the occurrence, fate, or transport of these compounds and the possible health effects in humans and aquatic life. The U.S. Geological Survey, in cooperation with the City of Columbus, Division of Power and Water, did a study to provide a synoptic view of the occurrence of antibiotics in source and finished waters in the upper Scioto River Basin. Water samples were collected seasonally-winter (December 2005), spring (May 2006), summer (August 2006) and fall (October 2006)-at five surface-water sites, one groundwater site, and three water-treatment plants (WTPs). Within the upper Scioto River Basin, sampling at each WTP involved two sampling sites: a source-water intake site and a finished-water site. One or more antibiotics were detected at 11 of the 12 sampling sites. Of the 49 targeted antibiotic compounds, 12 (24 percent) were detected at least one time for a total of 61 detections overall. These compounds were azithromycin, tylosin, erythromycin-H2O, erythromycin, roxithromycin, ciprofloxacin, ofloxacin, sulfamethazine, sulfamethoxazole, iso-chlorotetracycline, lincomycin, and trimethoprim. Detection results were at low levels, with an overall median of 0.014 (u or mu)g/L. Hap Cremean WTP had the fewest detections, with two source-water detections of sulfamethoxazole and azithromycin and no detections in the finished water. Of the total of 61 detections, 31 were in the winter sample run. Sulfamethoxazale and azithromycin detections represent 41 percent of all antibiotic detections. Azithromycin was detected only in the winter sample. Some antibiotics, such as those in the quinoline and tetracycline families, dissipate more quickly in warm water, which may explain why they were detected in the cool months (winter, spring, and fall) and not in the summer. Antibiotic data collected during this study were

  14. Impact of Climate Change on Water Resources in the Guadalquivir River Basin

    Science.gov (United States)

    Yeste Donaire, P.; García-Valdecasas-Ojeda, M.; Góngora García, T. M.; Gámiz-Fortis, S. R.; Castro-Diez, Y.; Esteban-Parra, M. J.

    2017-12-01

    Climate change has lead to a decrease of precipitation and an increase of temperature in the Mediterranean Basin during the last fifty years. These changes will be more intense over the course of the 21thcentury according to global climate projections. As a consequence, water resources are expected to decrease, particularly in the Guadalquivir River Basin. This study focuses on the hydrological response of the Guadalquivir River Basin to the climate change. For this end, firstly, the implementation of the Variable Infiltration Capacity (VIC) model in the Basin was carried out. The VIC model was calibrated with a dataset of daily precipitation, temperature and streamflow for the period 1990-2000. Precipitation and temperature data were extracted from SPAIN02, a dataset that covers the Peninsular Spain at 0.11º of spatial resolution. Streamflow data were gathered for a representative subset of gauging stations in the basin. These data were provided by the Spanish Center for Public Work Experimentation and Study (CEDEX). Subsequently, the VIC model was validated for the period 2000-2005 in order to verify that the model outputs fit well with the observational data. After the validation of the VIC model for present climate, secondly, the effect of climate change on the Guadalquivir River Basin will be analyzed by developing several simulations of the streamflow for future climate. Precipitation and temperature data will be obtained in this case from future projections coming from high resolution (at 0.088º) simulations carried out with the Weather Research and Forecasting (WRF) model for the Iberian Peninsula. These last simulations will be driven under two different Representative Concentration Pathway (RCP) scenarios, RCP 4.5 and RCP 8.5 for the periods 2021-50 and 2071-2100. The first results of this work show that the VIC model outputs are in good agreement with the observed streamflow for both the calibration and validation periods. In the context of climate

  15. Environmental Setting and Effects on Water Quality in the Great and Little Miami River Basins, Ohio and Indiana

    Science.gov (United States)

    Debrewer, Linda M.; Rowe, Gary L.; Reutter, David C.; Moore, Rhett C.; Hambrook, Julie A.; Baker, Nancy T.

    2000-01-01

    The Great and Little Miami River Basins drain approximately 7,354 square miles in southwestern Ohio and southeastern Indiana and are included in the more than 50 major river basins and aquifer systems selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Principal streams include the Great and Little Miami Rivers in Ohio and the Whitewater River in Indiana. The Great and Little Miami River Basins are almost entirely within the Till Plains section of the Central Lowland physiographic province and have a humid continental climate, characterized by well-defined summer and winter seasons. With the exception of a few areas near the Ohio River, Pleistocene glacial deposits, which are predominantly till, overlie lower Paleozoic limestone, dolomite, and shale bedrock. The principal aquifer is a complex buried-valley system of sand and gravel aquifers capable of supporting sustained well yields exceeding 1,000 gallons per min-ute. Designated by the U.S. Environmental Protection Agency as a sole-source aquifer, the Buried-Valley Aquifer System is the principal source of drinking water for 1.6 million people in the basins and is the dominant source of water for southwestern Ohio. Water use in the Great and Little Miami River Basins averaged 745 million gallons per day in 1995. Of this amount, 48 percent was supplied by surface water (including the Ohio River) and 52 percent was supplied by ground water. Land-use and waste-management practices influence the quality of water found in streams and aquifers in the Great and Little Miami River Basins. Land use is approximately 79 percent agriculture, 13 percent urban (residential, industrial, and commercial), and 7 percent forest. An estimated 2.8 million people live in the Great and Little Miami River Basins; major urban areas include Cincinnati and Dayton, Ohio. Fertilizers and pesticides associated with agricultural activity, discharges from municipal and

  16. Automatic design of basin-specific drought indexes for highly regulated water systems

    Science.gov (United States)

    Zaniolo, Marta; Giuliani, Matteo; Castelletti, Andrea Francesco; Pulido-Velazquez, Manuel

    2018-04-01

    Socio-economic costs of drought are progressively increasing worldwide due to undergoing alterations of hydro-meteorological regimes induced by climate change. Although drought management is largely studied in the literature, traditional drought indexes often fail at detecting critical events in highly regulated systems, where natural water availability is conditioned by the operation of water infrastructures such as dams, diversions, and pumping wells. Here, ad hoc index formulations are usually adopted based on empirical combinations of several, supposed-to-be significant, hydro-meteorological variables. These customized formulations, however, while effective in the design basin, can hardly be generalized and transferred to different contexts. In this study, we contribute FRIDA (FRamework for Index-based Drought Analysis), a novel framework for the automatic design of basin-customized drought indexes. In contrast to ad hoc empirical approaches, FRIDA is fully automated, generalizable, and portable across different basins. FRIDA builds an index representing a surrogate of the drought conditions of the basin, computed by combining all the relevant available information about the water circulating in the system identified by means of a feature extraction algorithm. We used the Wrapper for Quasi-Equally Informative Subset Selection (W-QEISS), which features a multi-objective evolutionary algorithm to find Pareto-efficient subsets of variables by maximizing the wrapper accuracy, minimizing the number of selected variables, and optimizing relevance and redundancy of the subset. The preferred variable subset is selected among the efficient solutions and used to formulate the final index according to alternative model structures. We apply FRIDA to the case study of the Jucar river basin (Spain), a drought-prone and highly regulated Mediterranean water resource system, where an advanced drought management plan relying on the formulation of an ad hoc state index is used

  17. Does the Limpopo River Basin have sufficient water for massive irrigation development in the plains of Mozambique?

    Science.gov (United States)

    van der Zaag, Pieter; Juizo, Dinis; Vilanculos, Agostinho; Bolding, Alex; Uiterweer, Nynke Post

    This paper verifies whether the water resources of the transboundary Limpopo River Basin are sufficient for the planned massive irrigation developments in the Mozambique part of this basin, namely 73,000 ha, in addition to existing irrigation (estimated at 9400 ha), and natural growth of common use irrigation (4000 ha). This development includes the expansion of sugar cane production for the production of ethanol as a biofuel. Total additional water requirements may amount to 1.3 × 10 9 m 3/a or more. A simple river basin simulation model was constructed in order to assess different irrigation development scenarios, and at two storage capacities of the existing Massingir dam. Many uncertainties surround current and future water availability in the Lower Limpopo River Basin. Discharge measurements are incomplete and sometimes inconsistent, while upstream developments during the last 25 years have been dramatic and future trends are unknown. In Mozambique it is not precisely known how much water is currently consumed, especially by the many small-scale users of surface and shallow alluvial groundwater. Future impacts of climate change increase existing uncertainties. Model simulations indicate that the Limpopo River does not carry sufficient water for all planned irrigation. A maximum of approx. 58,000 ha of irrigated agriculture can be sustained in the Mozambican part of the basin. This figure assumes that Massingir will be operated at increased reservoir capacity, and implies that only about 44,000 ha of new irrigation can be developed, which is 60% of the envisaged developments. Any additional water use would certainly impact downstream users and thus create tensions. Some time will elapse before 44,000 ha of new irrigated land will have been developed. This time could be used to improve monitoring networks to decrease current uncertainties. Meanwhile the four riparian Limpopo States are preparing a joint river basin study. In this study a methodology could be

  18. Process for the treatment of salt water

    Energy Technology Data Exchange (ETDEWEB)

    Hull, R J

    1966-06-12

    A procedure is described for the treatment of salty or brackish water for the production of steam, which is directly utilized afterward, either in a condensed form as sweet water or deoxidized for injection into oil formations for raising the temperature thereof and other uses. The water-purification treatment is continuous, and is of the type in which the salty or brackish water is passed in direct heat exchange relationship with the steam produced for preheating the water up to a temperature where some of the dissolved ions of calcium and magnesium are precipitated in the form of insoluble salts. In the passage of the preheated water being purified, a zone is created for the completion of the reaction. A part of the water is retained in this reaction zone while the other part is being passed in indirect heat exchange relationship with a heating means, for converting this part of the water into steam. All of the steam obtained in the latter described heat exchange is utilized in the water purification, and/or added to the produced steam, as first noted.

  19. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin

    Science.gov (United States)

    Du, Liuying; Rajib, Adnan; Merwade, Venkatesh

    2018-07-01

    Looking only at climate change impacts provides partial information about a changing hydrologic regime. Understanding the spatio-temporal nature of change in hydrologic processes, and the explicit contributions from both climate and land use drivers, holds more practical value for water resources management and policy intervention. This study presents a comprehensive assessment on the spatio-temporal trend of Blue Water (BW) and Green Water (GW) in a 490,000 km2 temperate mid-latitude basin (Ohio River Basin) over the past 80 years (1935-2014), and from thereon, quantifies the combined as well as relative contributions of climate and land use changes. The Soil and Water Assessment Tool (SWAT) is adopted to simulate hydrologic fluxes. Mann-Kendall and Theil-Sen statistical tests are performed on the modeled outputs to detect respectively the trend and magnitude of changes at three different spatial scales - the entire basin, regional level, and sub-basin level. Despite the overall volumetric increase of both BW and GW in the entire basin, changes in their annual average values during the period of simulation reveal a distinctive spatial pattern. GW has increased significantly in the upper and lower parts of the basin, which can be related to the prominent land use change in those areas. BW has increased significantly only in the lower part, likely being associated with the notable precipitation change there. Furthermore, the simulation under a time-varying climate but constant land use scenario identifies climate change in the Ohio River Basin to be influential on BW, while the impact is relatively nominal on GW; whereas, land use change increases GW remarkably, but is counterproductive on BW. The approach to quantify combined/relative effects of climate and land use change as shown in this study can be replicated to understand BW-GW dynamics in similar large basins around the globe.

  20. THE MAIN NUTRIENTS CONCENTRATION FROM INTRA TISSUE WATER OF BENTHOS ORAGANISMS FROM MURES BASIN

    Directory of Open Access Journals (Sweden)

    DANA POPA

    2008-05-01

    Full Text Available In the hydrographic basin of Mures river, aboard an altitude gradient, were taken samples of intra tissue waters from benthonic organisms for research the nutrients concentrations. The reference point was represented by a dairy caw farm where the agricultural fields of this is applied the organic fertilization with manure. The intra tissue water samples from benthonic organisms were prelevated in spring and autumn and the prelevate dates are the same with spread manure dates. At the intra tissue water level, concentrations value of N and P are bigger at the second data prelevations than first data prelevations and we can conclude that the benthonic oligochetas activity increase, more than, they density increase in Mures basin. The high concentrations of NH4 show as that Mures basin is a zone characterized by high degree of anoxia and this fact is supported by significant differences between seasonal prelevations. The explication is the manifestation to the cumulated and at distance effects of introduction in water to some organic products, very probably washed from neighborhoods agricultural field. Were calculated values of Student test for seasonal comparisons and were founded significant differences between nutrients concentration values at first and second prelevations.

  1. Ground-water availability from surficial aquifers in the Red River of the North Basin, Minnesota

    Science.gov (United States)

    Reppe, Thomas H.C.

    2005-01-01

    Population growth and commercial and industrial development in the Red River of the North Basin in Minnesota, North Dakota, and South Dakota have prompted the Bureau of Reclamation, U.S. Department of the Interior, to evaluate sources of water to sustain this growth. Nine surficial-glacial (surficial) aquifers (Buffalo, Middle River, Two Rivers, Beach Ridges, Pelican River, Otter Tail, Wadena, Pineland Sands, and Bemidji-Bagley) within the Minnesota part of the basin were identified and evaluated for their ground-water resources. Information was compiled and summarized from published studies to evaluate the availability of ground water. Published information reviewed for each of the aquifers included location and extent, physical characteristics, hydraulic properties, ground-water and surface-water interactions, estimates of water budgets (sources of recharge and discharge) and aquifer storage, theoretical well yields and actual ground-water pumping data, recent (2003) ground-water use data, and baseline ground-water-quality data.

  2. Pre-screening tectonic heat flows for basin modelling - Some implications for deep water exploration in the mediterranean

    NARCIS (Netherlands)

    Wees, J.D. van; Bertotti, G.; David, P.; Bergen, F. van; Cloetingh, S.

    2007-01-01

    Basin modelling results can be very sensitive to (paleo-)temperature uncertainties. For frontier basins, in particular for deep water settings, the thermal signature of the basin is poorly constrained, as data from wells are lacking. This may lead to wrong heat flow assumptions if these are

  3. Simulation of Salinity Distribution in Soil Under Drip Irrigation Tape with Saline Water Using SWAP Model

    Directory of Open Access Journals (Sweden)

    M. Tabei

    2016-02-01

    Full Text Available Introduction: The to be limited available water amount from one side and to be increased needs of world population from the other side have caused increase of cultivation for products. For this reason, employing new irrigation ways and using new water resources like using the uncommon water (salty water, water drainage are two main strategies for regulating water shortage conditions. On the other side, accumulation of salts on the soil surface in dry regions having low rainfall and much evaporation, i.e. an avoidable case. As doing experiment for determining moisture distribution form demands needs a lot of time and conducting desert experiments are costly, stimulator models are suitable alternatives in answering the problem concerning moving and saltiness distribution. Materials and Methods: In this research, simulation of soil saltiness under drip irrigation was done by the SWAP model and potency of the above model was done in comparison with evaluated relevant results. SWAP model was performed based on measured data in a corn field equipped with drip irrigation system in the farming year 1391-92 in the number one research field in the engineering faculty of water science, ShahidChamran university of Ahvaz and hydraulic parameters of soil obtained from RETC . Statistical model in the form of a random full base plan with four attendants for irrigating water saltiness including salinity S1 (Karoon River water with salinity 3 ds/m as a control treatment, S2 (S1 +0/5, S3 (S1 +1 and S4 (S1 +1/5 dS/m, in 3 repetition and in 3 intervals of 10 cm emitter, 20 cm emitters on the stack, at a depth of 0-90 cm (instead of each 30 cm from soil surface and intervals of 30, 60 and 90 days after modeling cultiviation was done. The cultivation way was done handheld in plots including four rows of 3 m in distance of 75 cm rows and with denseness of 80 bushes in a hectar. Drip irrigation system was of type strip with space of 20 cm pores. Results and Discussion

  4. Yield and quality of ground water from stratified-drift aquifers, Taunton River basin, Massachusetts : executive summary

    Science.gov (United States)

    Lapham, Wayne W.; Olimpio, Julio C.

    1989-01-01

    Water shortages are a chronic problem in parts of the Taunton River basin and are caused by a combination of factors. Water use in this part of the Boston metropolitan area is likely to increase during the next decade. The Massachusetts Division of Water Resources projects that about 50% of the cities and towns within and on the perimeter of the basin may have water supply deficits by 1990 if water management projects are not pursued throughout the 1980s. Estimates of the long-term yield of the 26 regional aquifers indicate that the yields of the two most productive aquifers equal or exceed 11.9 and 11.3 cu ft/sec, 90% of the time, respectively, if minimum stream discharge is maintained at 99.5% flow duration. Eighteen of the 26 aquifers were pumped for public water supply during 1983. Further analysis of the yield characteristics of these 18 aquifers indicates that the 1983 pumping rate of each of these 18 aquifers can be sustained at least 70% of the time. Selected physical properties and concentrations of major chemical constituents in groundwater from the stratified-drift aquifers at 80 sampling sites were used to characterize general water quality in aquifers throughout the basin. The pH of the groundwater ranged from 5.4 to 7.0. Natural elevated concentrations of Fe and Mn in water in the stratified-drift aquifers are present locally in the basin. Natural concentrations of these two metals commonly exceed the limits of 0.3 mg/L for Fe and 0.05 mg/L for Mn recommended for drinking water. Fifty-one analyses of selected trace metals in groundwater samples from stratified-drift aquifers throughout the basin were used to characterize trace metal concentrations in the groundwater. Of the 10 constituents sampled that have US EPA limits recommended for drinking water, only the Pb concentration in water at one site (60 micrograms/L) exceeded the recommended limit of 50 micrograms/L. Analyses of selected organic compounds in water in the stratified-drift aquifers at 74

  5. EFFICACY OF FILTRATION PROCESSES TO OBTAIN WATER CLARITY AT K EAST SPENT NUCLEAR FUEL (SNF) BASIN

    International Nuclear Information System (INIS)

    DUNCAN JB

    2006-01-01

    The objective is to provide water clarity to the K East Basin via filtration processes. Several activities are planned that will challenge not only the capacity of the existing ion exchange modules to perform as needed but also the current filtration system to maintain water clarity. Among the planned activities are containerization of sludge, removal of debris, and hydrolasing the basin walls to remove contamination

  6. EFFICACY OF FILTRATION PROCESSES TO OBTAIN WATER CLARITY AT K EAST SPENT NUCLEAR FUEL (SNF) BASIN

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB

    2006-09-28

    The objective is to provide water clarity to the K East Basin via filtration processes. Several activities are planned that will challenge not only the capacity of the existing ion exchange modules to perform as needed but also the current filtration system to maintain water clarity. Among the planned activities are containerization of sludge, removal of debris, and hydrolasing the basin walls to remove contamination.

  7. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  8. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  9. Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control.

    Science.gov (United States)

    Bangash, Rubab F; Passuello, Ana; Sanchez-Canales, María; Terrado, Marta; López, Alfredo; Elorza, F Javier; Ziv, Guy; Acuña, Vicenç; Schuhmacher, Marta

    2013-08-01

    The Mediterranean basin is considered one of the most vulnerable regions of the world to climate change and such changes impact the capacity of ecosystems to provide goods and services to human society. The predicted future scenarios for this region present an increased frequency of floods and extended droughts, especially at the Iberian Peninsula. This paper evaluates the impacts of climate change on the water provisioning and erosion control services in the densely populated Mediterranean Llobregat river basin of. The assessment of ecosystem services and their mapping at the basin scale identify the current pressures on the river basin including the source area in the Pyrenees Mountains. Drinking water provisioning is expected to decrease between 3 and 49%, while total hydropower production will decrease between 5 and 43%. Erosion control will be reduced by up to 23%, indicating that costs for dredging the reservoirs as well as for treating drinking water will also increase. Based on these data, the concept for an appropriate quantification and related spatial visualization of ecosystem service is elaborated and discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. An agent-based model for water management and planning in the Lake Naivasha basin, Kenya

    Science.gov (United States)

    van Oel, Pieter; Mulatu, Dawit; Odongo, Vincent; Onyando, Japheth; Becht, Robert; van der Veen, Anne

    2013-04-01

    A variety of human and natural processes influence the ecological and economic state of the Lake Naivasha basin. The ecological wealth and recent economic developments in the area are strongly connected to Lake Naivasha which supports a rich variety of flora, mammal and bird species. Many human activities depend on clean freshwater from the lake whereas recently the freshwater availability of good quality is seriously influenced by water abstractions and the use of fertilizers in agriculture. Management alternatives include those aiming at limiting water abstractions and fertilizer use. A possible way to achieve reduced use of water and fertilizers is the introduction of Payment for Environmental Services (PES) schemes. As the Lake Naivasha basin and its population have experienced increasing pressures various disputes and disagreements have arisen about the processes responsible for the problems experienced, and the effectively of management alternatives. Beside conflicts of interest and disagreements on responsibilities there are serious factual disagreements. To share scientific knowledge on the effects of the socio-ecological system processes on the Lake Naivasha basin, tools may be used that expose information at temporal and spatial scales that are meaningful to stakeholders. In this study we use a spatially-explicit agent-based modelling (ABM) approach to depict the interactions between socio-economic and natural subsystems for supporting a more sustainable governance of the river basin resources. Agents consider alternative livelihood strategies and decide to go for the one they perceive as likely to be most profitable. Agents may predict and sense the availability of resources and also can observe economic performance achieved by neighbouring agents. Results are presented at the basin and subbasin level to provide relevant knowledge to Water Resources Users Associations which are important collective forums for water management through which PES schemes

  11. Modeling the hydrologic effects of land and water development interventions: a case study of the upper Blue Nile river basin

    Science.gov (United States)

    Haregeweyn, Nigussie; Tsunekawa, Atsushi; Tsubo, Mitsuru; Meshesha, Derege; Adgo, Enyew; Poesen, Jean; Schütt, Brigitta

    2014-05-01

    Over 67% of the Ethiopian landmass has been identified as very vulnerable to climate variability and land degradation. These problems are more prevalent in the Upper Blue Nile (UBN, often called Abay) river basin covering a drainage area of about 199,800 km2. The UBN River runs from Lake Tana (NW Ethiopia) to the Ethiopia-Sudan border. To enhance the adaptive capacity to the high climate variability and land degradation in the basin, different land and water management measures (stone/soil bunds, runoff collector trenches, exclosures) have been extensively implemented, especially since recent years. Moreover, multipurpose water harvesting schemes including the Grand Ethiopian Renaissance Dam (GERD, reservoir area of ca. 4000 km2) and 17 other similar projects are being or to be implemented by 2025. However, impact studies on land and water management aspects rarely include detailed hydrological components especially at river basin scale, although it is generally regarded as a major determinant of hydrological processes. The main aim of this study is therefore to model the significance of land and water management interventions in surface runoff response at scale of UBN river basin and to suggest some recommendations. Spatially-distributed annual surface runoff was simulated for both present-day and future (2025) land and water management conditions using calibrated values of the proportional loss model in ArcGIS environment. Average annual rainfall map (1998-2012) was produced from calibrated TRMM satellite source and shows high spatial variability of rainfall ranging between ca. 1000 mm in the Eastern part of the basin to ca. 2000 mm in the southern part of the basin. Present-day land use day condition was obtained from Abay Basin Master Plan study. The future land use map was created taking into account the land and water development interventions to be implemented by 2025. Under present-day conditions, high spatial variability of annual runoff depth was observed

  12. Agricultural pesticides in six drainage basins used for public water supply in New Jersey, 1990

    Science.gov (United States)

    Ivahnenko, Tamara; Buxton, D.E.

    1994-01-01

    A reconnaissance study of six drainage basins in New Jersey was conducted to evaluate the presence of pesticides from agricultural runoff in surface water. In the first phase of the study, surface-water public-supply drainage basins throughout New Jersey that could be affected by pesticide applications were identified by use of a Geographic Information System. Six basins--Lower Mine Hill Reservoir, South Branch of the Raritan River, Main Branch of the Raritan River, Millstone River, Manasquan River, and Matchaponix Brook--were selected as those most likely to be affected by pesticides on the basis of calculated pesticide-application rates and percentage of agricultural land. The second phase of the project was a short-term water-quality reconnaissance of the six drainage basins to determine whether pesticides were present in the surface waters. Twenty-eight surface-water samples (22 water-quality samples, 3 sequentially collected samples, and 3 trip blanks), and 6 samples from water-treatment facilities were collected. Excluding trip blanks, samples from water-treatment facilities, and sequentially collected samples, the pesticides detected in the samples and the percentage of samples in which they were detected, were as follows: atrazine and metolachlor, 86 percent; alachlor, 55 percent; simazine, 45 percent; diazinon, 27 percent; cyanazine and carbaryl, 23 percent; linuron and isophenfos, 9 percent; and chlorpyrifos, 5 percent.Diazinon, detected in one stormflow sample collected from Matchaponix Brook on August 6, 1990, was the only compound to exceed the U.S. Environmental Protection Agency's recommended Lifetime Health Advisory Limit. Correlation between ranked metolachlor concentrations and ranked flow rates was high, and 25 percent of the variance in metolachlor concentrations can be attributed to variations in flow rate. Pesticide residues were detected in samples of pretreated and treated water from water-treatment facilities. Concentrations of all

  13. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin

    Science.gov (United States)

    Zhou, Qing; Wu, Feng; Zhang, Qian

    Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers' decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers' response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.

  14. Accounting for hydro-climatic and water use variability in the assessment of past and future water balance at the basin scale

    Directory of Open Access Journals (Sweden)

    J. Fabre

    2015-06-01

    Full Text Available This study assesses water stress by 2050 in river basins facing increasing human and climatic pressures, by comparing the impacts of various combinations of possible future socio-economic and climate trends. A modelling framework integrating human and hydro-climatic dynamics and accounting for interactions between resource and demand at a 10-day time step was developed and applied in two basins of different sizes and with contrasted water uses: the Herault (2500 km2, France and the Ebro (85 000 km2, Spain basins. Natural streamflow was evaluated using a conceptual hydrological model (GR4j. A demand-driven reservoir management model was designed to account for streamflow regulations from the main dams. Urban water demand was estimated from time series of population and monthly unit water consumption data. Agricultural water demand was computed from time series of irrigated area, crop and soil data, and climate forcing. Indicators comparing water supply to demand at strategic resource and demand nodes were computed. This framework was successfully calibrated and validated under non-stationary human and hydro-climatic conditions over the last 40 years before being applied under four combinations of climatic and water use scenarios to differentiate the impacts of climate- and human-induced changes on streamflow and water balance. Climate simulations from the CMIP5 exercise were used to generate 18 climate scenarios at the 2050 horizon. A baseline water use scenario for 2050 was designed based on demographic and local socio-economic trends. Results showed that projected water uses are not sustainable under climate change scenarios.

  15. Estimates of ground-water pumpage from the Yakima River Basin aquifer system, Washington, 1960-2000

    Science.gov (United States)

    Vaccaro, J.J.; Sumioka, S.S.

    2006-01-01

    Ground-water pumpage in the Yakima River Basin, Washington, was estimated for eight categories of use for 1960-2000 as part of an investigation to assess groundwater availability in the basin. Methods used, pumpage estimates, reliability of the estimates, and a comparison with appropriated quantities are described. The eight categories of pumpage were public water supply, self-supplied domestic (exempt wells), irrigation, frost protection, livestock and dairy operations, industrial and commercial, fish and wildlife propagation, and ground-water claims. Pumpage estimates were based on methods that varied by the category and primarily represent pumpage for groundwater rights. Washington State Department of Ecology’s digital database has 2,874 active ground-water rights in the basin that can withdraw an annual quantity of about 529,231 acre-feet during dry years. Irrigation rights are for irrigation of about 129,570 acres. All but 220 of the rights were associated with well drillers’ logs, allowing for a spatial representation of the pumpage. Five-hundred and sixty of the irrigation rights were estimated to be standby/reserve rights. During this study, another 30 rights were identified that were not in the digital database. These rights can withdraw an annual quantity of about 20,969 acre-feet; about 6,700 acre-feet of these rights are near but outside the basin. In 1960, total annual pumpage in the basin, excluding standby/reserve pumpage, was about 115,776 acre-feet. By 2000, total annual pumpage was estimated to be 395,096 acre-feet, and excluding the standby/reserve rights, the total was 312,284 acre-feet. Irrigation accounts for about 60 percent of the pumpage, followed by public water supply at about 12 percent. The smallest category of pumpage was for livestock use with pumpage estimated to be 6,726 acre-feet. Total annual pumpage in 2000 was about 430 cubic feet per second, which is about 11 percent of the surface-water demand. Maximum pumpage is in July

  16. Wisconsin's Lake Superior Basin Water Quality Study. Supplement. Technical Report No. 2.

    Science.gov (United States)

    Whisnant, David M., Ed.

    During the period extending from May 1972 through April 1973, an investigation of the overall water quality conditions of streams flowing into Lake Superior from the entire state of Wisconsin was conducted. The goal of this publication was to provide much needed regional information on water quality, drainage basins, pollution sources and loads,…

  17. Groundwater Depletion During Drought Threatens Future Water Security of the Colorado River Basin

    Science.gov (United States)

    Castle, Stephanie L.; Thomas, Brian F.; Reager, John T.; Rodell, Matthew; Swenson, Sean C.; Famiglietti, James S.

    2014-01-01

    Streamflow of the Colorado River Basin is the most overallocated in the world. Recent assessment indicates that demand for this renewable resource will soon outstrip supply, suggesting that limited groundwater reserves will play an increasingly important role in meeting future water needs. Here we analyze 9 years (December 2004 to November 2013) of observations from the NASA Gravity Recovery and Climate Experiment mission and find that during this period of sustained drought, groundwater accounted for 50.1 cu km of the total 64.8 cu km of freshwater loss. The rapid rate of depletion of groundwater storage (5.6 +/- 0.4 cu km/yr) far exceeded the rate of depletion of Lake Powell and Lake Mead. Results indicate that groundwater may comprise a far greater fraction of Basin water use than previously recognized, in particular during drought, and that its disappearance may threaten the long-term ability to meet future allocations to the seven Basin states.

  18. DETERMINATION OF WATER RESOURCES IN RIVERS IN THE BULGARIAN BASINS OF THE LOWER DANUBE

    Directory of Open Access Journals (Sweden)

    Plamen Iliev Ninov

    2017-04-01

    Full Text Available Object of the study is surface water bodies from category “rivers” according to Water Framework Directive 2000/60/ЕС. Surface water assessment is important for number of activities such as: water management in the country, making reports to international agencies, determining the change of the resources in the light of upcoming climate changes. The determination of water resources is based on information of hydrometric stations from the monitoring network system in the National Institute of Meteorology and Hydrology — Bulgarian Academy of Sciences (NIMH-BAS in which real ongoing and available water flows that are subject of management are registered. In the study a technology for surface water bodies in the Bulgarian basins of the lower Danube is applied which has been developed in the frame of cooperative project together with the Ministry of Environment and Water. This is absolutely true for the Bulgarian section of the Danube River basin which is expressed in big number and variety of hydrological homogeneous sections. The river flow is characterized with annual and inter-annual variability determined by climatic factors and anthropogenic influences. The main obtained results of the present hydrologic studies are the usage of transferred information from gauged to ungauged watersheds and the estimation of the surface water bodies’ resources using original regression relationships based on multiannual hydrological information from the NIMH-BAS monitoring network. The relationships delineate the hydrological homogeneous areas with similar conditions of flow formation. The estimated resources have significant usefulness for all State institutions managing the water in the Danube basin and have already been introduced in the operative and management practice.

  19. Water quality assessment of the Eastern Iowa Basins: Basic water chemistry of rivers and streams, 1996-98

    Science.gov (United States)

    Barnes, Kimberlee K.

    2001-01-01

    The U.S. Geological Survey began data-collection activities in the Eastern Iowa Basins study unit of the National Water-Quality Assessment Program in September 1995 with the purpose of determining the status and trends in water quality of water from the Wapsipinicon, Cedar, Iowa, and Skunk River basins. From March 1996 through September 1998, monthly surface-water samples were collected from 11 sites on the study's rivers and streams representing three distinct physiographic regions, the Des Moines Lobe, the Iowan Surface, the Southern Iowa Drift Plain, and one subregion, the Iowan Karst. These water samples were analyzed for basic water chemistry, including, but not limited to the following cations: sodium, potassium, magnesium, calcium, and silica; anions: chloride, fluoride, sulfate, and bicarbonate; and two metals - iron and maganese. Although none of the concentrations of the constituents exceeded health advisories or drinking-water regulations, extremely high or low concentrations could potentially affect aquatic life. Calcium, magnesium, and potassium are essential elements for both plant and animal life; manganese is an essential element in plant metabolism; and silica is important in the growth of diatom algae. Calcium had the largest median concentration of 61 milligrams per liter (mg/L) of the cations, and the largest maximum concentration of 100 mg/L. Bicarbonate had the largest median concentration of 210 mg/L of the anions, and the largest maximum concentration of 400 mg/L.

  20. Understanding hydrological variability for improved water management in the Semi-Arid Karkheh basin, Iran

    NARCIS (Netherlands)

    Masih, I.

    2011-01-01

    This study provides a hydrology based assessment of (surface) water resources and its continuum of variability and change at different spatio-temporal scales in the semi-arid Karkheh Basin, Iran, where water is scarce, competition among users is high and massive water resources development is under

  1. Are the streams of the Sinos River basin of good water quality? Aquatic macroinvertebrates may answer the question

    Directory of Open Access Journals (Sweden)

    L. Bieger

    Full Text Available Macroinvertebrate communities are one of the most used groups in assessments of water quality, since they respond directly to the level of contamination of aquatic ecosystems. The main objective of this study was the assessment of the water quality of the Sinos River basin (Rio Grande do Sul state, Brazil through biotic indices based on the macroinvertebrate community ("Family Biotic Index - FBI", and "Biological Monitoring Working Party Score System - BMWP". Three lower order streams (2nd order were selected in each one of three main regions of the basin. In each stream, the samplings were performed in three reaches (upper, middle, and lower, totalling 27 reaches. Two samplings were carried in each reach over one year (winter and summer. A total of 6,847 macroinvertebrates distributed among 54 families were sampled. The streams from the upper region were of better water quality than the lower region. The water quality did not change between the upper, middle and lower reaches of the streams. However, the upper reaches of the streams were of better water quality in all the regions of the basin. The water quality of the streams did not vary between the summer and the winter. This result demonstrated that water quality may be analysed in both studied seasons (summer and winter using biotic indices. The analysis of the results allows us to conclude that the biotic indices used reflected the changes related to the water quality along the longitudinal gradient of the basin. Thus, aquatic macroinvertebrates were important bioindicators of the water and environmental quality of the streams of the Sinos River basin.

  2. Optimization Model for cooperative water allocation and valuation in large river basins regarding environmental constraints

    Science.gov (United States)

    Pournazeri, S.

    2011-12-01

    A comprehensive optimization model named Cooperative Water Allocation Model (CWAM) is developed for equitable and efficient water allocation and valuation of Zab river basin in order to solve the draught problems of Orumieh Lake in North West of Iran. The model's methodology consists of three phases. The first represents an initial water rights allocation among competing users. The second comprises the water reallocation process for complete usage by consumers. The third phase performs an allocation of the net benefit of the stakeholders participating in a coalition by applying cooperative game theory. The environmental constraints are accounted for in the water allocation model by entering probable environmental damage in a target function, and inputting the minimum water requirement of users. The potential of underground water usage is evaluated in order to compensate for the variation in the amount of surface water. This is conducted by applying an integrated economic- hydrologic river basin model. A node-link river basin network is utilized in CWAM which consists of two major blocks. The first indicates the internal water rights allocation and the second is associated to water and net benefit reallocation. System control, loss in links by evaporation or seepage, modification of inflow into the node, loss in nodes and loss in outflow are considered in this model. Water valuation is calculated for environmental, industrial, municipal and agricultural usage by net benefit function. It can be seen that the water rights are allocated efficiently and incomes are distributed appropriately based on quality and quantity limitations.

  3. Evaluation of baseline ground-water conditions in the Mosteiros, Ribeira Paul, and Ribeira Fajã Basins, Republic of Cape Verde, West Africa, 2005-06

    Science.gov (United States)

    Heilweil, Victor M.; Earle, John D.; Cederberg, Jay R.; Messer, Mickey M.; Jorgensen, Brent E.; Verstraeten, Ingrid M.; Moura, Miguel A.; Querido, Arrigo; Spencer,; Osorio, Tatiana

    2006-01-01

    This report documents current (2005-06) baseline ground-water conditions in three basins within the West African Republic of Cape Verde (Mosteiros on Fogo, Ribeira Paul on Santo Antão, and Ribeira Fajã on São Nicolau) based on existing data and additional data collected during this study. Ground-water conditions (indicators) include ground-water levels, ground-water recharge altitude, ground-water discharge amounts, ground-water age (residence time), and ground-water quality. These indicators are needed to evaluate (1) long-term changes in ground-water resources or water quality caused by planned ground-water development associated with agricultural projects in these basins, and (2) the feasibility of artificial recharge as a mitigation strategy to offset the potentially declining water levels associated with increased ground-water development.Ground-water levels in all three basins vary from less than a few meters to more than 170 meters below land surface. Continuous recorder and electric tape measurements at three monitoring wells (one per basin) showed variations between August 2005 and June 2006 of as much as 1.8 meters. Few historical water-level data were available for the Mosteiros or Ribeira Paul Basins. Historical records from Ribeira Fajã indicate very large ground-water declines during the 1980s and early 1990s, associated with dewatering of the Galleria Fajã tunnel. More-recent data indicate that ground-water levels in Ribeira Fajã have reached a new equilibrium, remaining fairly constant since the late 1990s.Because of the scarcity of observation wells within each basin, water-level data were combined with other techniques to evaluate ground-water conditions. These techniques include the quantification of ground-water discharge (well withdrawals, spring discharge, seepage to springs, and gallery drainage), field water-quality measurements, and the use of environmental tracers to evaluate sources of aquifer recharge, flow paths, and ground-water

  4. Surface water quality and deforestation of the Purus river basin, Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Eduardo Antonio Ríos-Villamizar

    2016-12-01

    Full Text Available Abstract In the last years, deforestation constitutes a threat for the aquatic ecosystems. This paper aims to characterize the water quality of the Purus river in the Brazilian Amazon, and investigate the relations between water quality and deforestation of the Purus river basin over a 9-year period, as well as to quantify the Purus river basin’s land cover changes (% in a 5-year period. Sampling data from upstream to downstream show a decrease in pH-value, dissolved oxygen, electrical conductivity, and total suspended solids. Correlation analysis revealed a significant negative correlation of the accumulated total deforestation values (km2 with the pH-value (in all the study sites, and a significant positive correlation with temperature (only in two sites. However, the deforestation rates (km2/year did not present, in none of the study stations, any significant correlation with water quality parameters. It seems that the effects of deforestation on water quality are related not with the rate but with the total area deforested. It was estimated that the basin’s forested area decreased by 5.17%. Since similar attributes are common in other basins of the whitewater systems of the Brazilian Amazon, this results may be seen as a warning on the effects of deforestation on water quality (reduction in pH and increment in temperature values, in larger areas than those of our study sites. To maintain the conservation and preservation status of the Purus river basin, it is necessary, the implementation of a transboundary watershed management program that could serve as a conservation model for Brazil and other countries of the Amazonian region.

  5. THE GEOPOLITICAL DIMENSION OF ENVIRONMENTAL QUALITY. WATERS AND CONFLICT IN THE ARAL SEA BASIN

    Directory of Open Access Journals (Sweden)

    Stefano Piastra

    2009-07-01

    Full Text Available In the last decades the Aral Sea, located in Central Asia on the boundary between Kazakhstan and Uzbekistan, experienced a dramatic shrinking, divulged even in newspapers and magazines. Such an ecological catastrophe, renamed the “Aral Sea Crisis”, was triggered by the artificial diversion of the rivers of the basin during the Soviet period, in order to irrigate new cotton fields. Nowadays, notwithstanding the fulfilment of several environmental restoration projects and a wide scientific literature about the process, the general balance about the water body, in particular its Uzbek side, is still critical. This paper, after a synthesis concerning the causes and the consequences of the ecological disaster, analyses the geopolitical implications connected to the deterioration of the environmental quality in the region and to water management in Post-Soviet Central Asia, underlining, in the case of the Aral Sea Basin, the criticities linked to its fast transition from an internal basin to an international one. Finally, Central Asian water-related old programs and future scenarios are discussed.

  6. Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia

    2015-01-01

    of stochastic dynamic programming, to optimize water resources management in the Ziya River basin. Natural runoff from the upper basin was estimated with a rainfall-runoff model autocalibrated using in situ measured discharge. The runoff serial correlation was described by a Markov chain and used as input...

  7. Preliminary classification of water areas within the Atchafalaya Basin Floodway System by using landsat imagery

    Science.gov (United States)

    Allen, Yvonne C.; Constant, Glenn C.; Couvillion, Brady R.

    2008-01-01

    The southern portion of the Atchafalaya Basin Floodway System (ABFS) is a large area (2,571 km2) in south central Louisiana bounded on the east and west sides by a levee system. The ABFS is a sparsely populated area that includes some of the Nation's most significant extents of bottomland hardwoods, swamps, bayous, and backwater lakes, holding a rich abundance and diversity of terrestrial and aquatic species. The seasonal flow of water through the ABFS is critical to maintaining its ecological integrity. Because of strong interdependencies among species, habitat quality, and water flow in the ABFS, there is a need to better define the paths by which water moves at various stages of the hydrocycle. Although river level gages have collected a long historical record of water level variation, very little synoptic information has been available regarding the distribution and character of water at more remote locations in the basin. Most water management plans for the ABFS strive to improve water quality by increasing water flow and circulation from the main stem of the Atchafalaya River into isolated areas. To describe the distribution of land and water on a basin-wide scale, we chose to use Landsat 5 and Landsat 7 imagery to determine the extent of water distribution from 1985 to 2006 and at a variety of river stages. Because the visual signature of river water is high turbidity, we also used Landsat imagery to describe the distribution of turbid water in the ABFS. The ability to track water flow patterns by tracking turbid waters will enhance the characterization of water movement and aid in planning.

  8. Gender and power contestations over water use in irrigation schemes: Lessons from the lake Chilwa basin

    Science.gov (United States)

    Nkhoma, Bryson; Kayira, Gift

    2016-04-01

    Over the past two decades, Malawi has been adversely hit by climatic variability and changes, and irrigation schemes which rely mostly on water from rivers have been negatively affected. In the face of dwindling quantities of water, distribution and sharing of water for irrigation has been a source of contestations and conflicts. Women who constitute a significant section of irrigation farmers in schemes have been major culprits. The study seeks to analyze gender contestations and conflicts over the use of water in the schemes developed in the Lake Chilwa basin, in southern Malawi. Using oral and written sources as well as drawing evidence from participatory and field observations conducted at Likangala and Domasi irrigation schemes, the largest schemes in the basin, the study observes that women are not passive victims of male domination over the use of dwindling waters for irrigation farming. They have often used existing political and traditional structures developed in the management of water in the schemes to competitively gain monopoly over water. They have sometimes expressed their agency by engaging in irrigation activities that fall beyond the control of formal rules and regulations of irrigation agriculture. Other than being losers, women are winning the battle for water and land resources in the basin.

  9. The influence of surfactant on mass transfer coefficients in evaporation of volatile organic compound from water basin

    OpenAIRE

    Bunyakan, C.; Malakarn, S.; Tongurai, C.

    2002-01-01

    Volatile organic compounds (VOCs) have been found in wastewater of many chemical industries. Evaporation of VOCs from open water basin in waste treatment facilities causes air-pollution and has been regulated in many countries. Reduction or prevention of VOCs evaporation from open water basin is then necessary. The aim of this research was to investigate the influence of surface film generated by an insoluble surfactant on the mass transfer coefficient of VOCs evaporating from water. Hexadeca...

  10. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China.

    Science.gov (United States)

    Duan, Weili; He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004-2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution.

  11. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China

    Science.gov (United States)

    He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004–2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution. PMID:29466354

  12. New salty waffle products "Fish Krekis" with fish & plant semifinished products

    Directory of Open Access Journals (Sweden)

    Fedorova Dina

    2016-04-01

    Full Text Available The study examines the directions of expansion of the range of wafer snack products of high nutritional value by using fish & plant semifinished products. The study scientifically grounds the benefits of using the new fish & plant semifinished products in manufacturing waffle salty snack products. The data provided in the article prove that the use of the fish & plant semifinished products & herbal ingredients enable a range of the new wafer snack products «Fish krekis» with high content of proteins, organic calcium, fiber and vitamins, with improved consumer properties, as well as more efficient use of Ukrainian raw fish materials.

  13. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate

  14. The Making of Salty Soy Sauce From Koro Benguk (Mucuna Pruriens (Study of Saline Concentration of Salt Solution and Duration of Moromi's Fermentation

    Directory of Open Access Journals (Sweden)

    Arie Febrianto Mulyadi

    2016-02-01

    Full Text Available The objectives of this study were to determine the saline concentration and moromi’s fermentation duration of Koro Benguk salty soy sauce at best organolepticly and determine consumers’ preferences towards Koro Benguk salty soy sauce from the best treatment results. The study was conducted using a randomized design method using two factors: the saline concentration (17%; 20%; and 23% and duration of moromi’s fermentation (2; 3; and 4 weeks. The best treatment results based on the Friedman test was on the saline concentration of 17% and moromi’s fermentation duration was 4 weeks, with the NP value of 1,000; had a preference color level of 5:40 (liked; aroma of 4.30 (rather liked; flavor of 4.55 (rather liked; and viscosity of 5.05 (liked. The obtained protein was 7.14%; and dissolved solids of 27obrix. Consumers’ preferences towards the best treatment showed that product of Koro Benguk salty soy sauce was acceptable to consumers.

  15. EXPERIMENTAL STUDY AND DEVELOPMENT OF A WATER BASIN USED AS SOLAR SENSOR

    Directory of Open Access Journals (Sweden)

    S. E. Laouini

    2010-06-01

    Full Text Available Energy sources play an important role in the development of humanity, with the industrial and technological evolution of our century. Energy demand is increasing every year, for this reason we must seek an alternate source of energy more specifically new and renewable energy including solar energy. Note that solar energy is abundant, especially the south-eastern Algeria, where solar radiation is significant in any year. Given that it is the cheapest of all other energy, many researches and experiments have been conducted to recover the maximum amount of renewable energy and to address the problems of use and operation to reduce and save energy traditional.This work concerns the development of a new device is a basin filled with water used as a solar plane and a storage medium. The results obtained are very important in terms of heating water, the water temperature at outlet of basin reaches up to 74 ° C, also the inlet temperature is 29 ° C.

  16. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  17. Hazard categorization of K Basin water filtration upgrade project

    International Nuclear Information System (INIS)

    Conn, K.R.

    1995-01-01

    This supporting document provides the hazards categorization for the K Basin Water Filtration Upgrade Project at K East. All activities associated with the project are less than Hazard Category 3, except for the handling of the ECO-ROK liners containing spent filter cartridges. All activities involving the handling of liners, containing spent cartridges, by monorail, forklift or mobile crane are classified as Hazard Category 3

  18. Using ecotechnology to address water quality and wetland habitat loss problems in the Mississippi basin: a hierarchical approach.

    Science.gov (United States)

    Day, John W; Yañéz Arancibia, Alejandro; Mitsch, William J; Lara-Dominguez, Ana Laura; Day, Jason N; Ko, Jae-Young; Lane, Robert; Lindsey, Joel; Lomeli, David Zarate

    2003-12-01

    Human activities are affecting the environment at continental and global scales. An example of this is the Mississippi basin where there has been a large scale loss of wetlands and water quality deterioration over the past century. Wetland and riparian ecosystems have been isolated from rivers and streams. Wetland loss is due both to drainage and reclamation, mainly for agriculture, and to isolation from the river by levees, as in the Mississippi delta. There has been a decline in water quality due to increasing use of fertilizers, enhanced drainage and the loss of wetlands for cleaning water. Water quality has deteriorated throughout the basin and high nitrogen in the Mississippi river is causing a large area of hypoxia in the Gulf of Mexico adjacent to the Mississippi delta. Since the causes of these problems are distributed over the basin, the solution also needs to be distributed over the basin. Ecotechnology and ecological engineering offer the only ecologically sound and cost-effective method of solving these problems. Wetlands to promote nitrogen removal, mainly through denitrification but also through burial and plant uptake, offer a sound ecotechnological solution. At the level of the Mississippi basin, changes in farming practices and use of wetlands for nitrogen assimilation can reduce nitrogen levels in the River. There are additional benefits of restoration of wetland and riverine ecosystems, flood control, reduction in public health threats, and enhanced wildlife and fisheries. At the local drainage basin level, the use of river diversions in the Mississippi delta can address both problems of coastal land loss and water quality deterioration. Nitrate levels in diverted river water are rapidly reduced as water flows through coastal watersheds. At the local level, wetlands are being used to treat municipal wastewater. This is a cost-effective method, which results in improved water quality, enhanced wetland productivity and increased accretion. The

  19. Socio-hydrologic Perspectives of the Co-evolution of Humans and Water in the Tarim River Basin, Western China

    Science.gov (United States)

    Liu, Ye; Tian, Fuqiang; Hu, Heping; Liu, Dengfeng; Sivapalan, Murugesu

    2013-04-01

    Socio-hydrology studies the co-evolution of coupled human-water systems, which is of great importance for long-term sustainable water resource management in basins suffering from serious eco-environmental degradation. Process socio-hydrology can benefit from the exploring the patterns of historical co-evolution of coupled human-water systems as a way to discovering the organizing principles that may underpin their co-evolution. As a self-organized entity, the human-water system in a river basin would evolve into certain steady states over a sufficiently long time but then could also experience sudden shifts due to internal or external disturbances that exceed system thresholds. In this study, we discuss three steady states (also called stages in the social sciences, including natural, human exploitation and recovery stages) and transitions between these during the past 1500 years in the Tarim River Basin of Western China, which a rich history of civilization including its place in the famous Silk Road that connected China to Europe. Specifically, during the natural stage with a sound environment that existed before the 19th century, shifts in the ecohydrological regime were mainly caused by environmental changes such river channel migration and climate change. During the human exploitation stages in the 5th and again in the 19th-20th centuries, however, humans gradually became the main drivers for system evolution, during which the basin experienced rapid population growth, fast socio-economic development and intense human activities. By the 1970s, after 200 years of colonization, the Tarim River Basin evolved into a new regime with vulnerable ecosystem and water system, and suffered from serious water shortages and desertification. Human society then began to take a critical look into the effects of their activities and reappraise the impact of human development on the ecohydrological system, which eventually led the basin into a treatment and recovery stage

  20. Mixing regime of the residual water basins of the Aral Sea

    Science.gov (United States)

    Izhitskiy, Alexander; Zavialov, Peter; Kirillin, Georgiy

    2017-04-01

    The Aral Sea, a terminal salt lake in western Central Asia situated at the border between Uzbekistan and Kazakhstan, was ranked as the fourth largest inland water body in the mid-20th century. However, in the early 1960s, the lake's volume started to decrease rapidly due to severe changes in the Aral's water balance. Thus, the present-day Aral Sea can be considered as a system of separate water bodies with a common origin but very different physical, chemical and biological features. Our previous studies showed that the Large Aral Sea and Lake Tshchebas transformed into hyperhaline water bodies, while the Small Aral Sea was a brackish basin with rather similar to the pre-desiccation environment. On the other hand, the Small Aral Sea and Lake Tshchebas exhibited a mixed vertical structure, whereas the Western Large Aral Sea (especially the Chernyshev Bay) was strongly stratified. The presented study is focused on the seasonal mixing regimes of the residual basins. Isolation of deep waters from the atmosphere together with low rates of photosynthesis produce deep anoxia observed in the Chernyshev Bay and in the Large Aral. The high amount of organic matter provides a rich source of nutrients for anoxic microorganisms favoring methanogenesis in the bottom layer of the basins. In the Small Aral, the water column remains well-oxygenated down to the bottom throughout most of the year and development of anoxia is unlikely. The mixing regimes of the recently formed residual lakes of the former Aral Sea will provide manifold effect on the ongoing development of the aquatic system in the following decades. The study is based on a field data collected during two surveys of Shirshov Institute of Oceanology to the Aral Sea, which took place in October, 2015 and June, 2016. In situ measurements including CTD profiling and water sampling were carried out in the northern extremity of the western Large Aral (the Chernyshev Bay), in Lake Tshchebas, and in the Small Aral Sea

  1. Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?

    Science.gov (United States)

    Jutla, A.; Sen, S.

    2015-12-01

    Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi

  2. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2015

    Science.gov (United States)

    Beman, Joseph E.; Bryant, Christina F.

    2016-10-27

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is hydrologically defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift between San Acacia to the south and Cochiti Lake to the north. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began treatment and distribution of surface water from the Rio Grande through the San Juan-Chama Drinking Water Project. A 20-percent population increase in the basin from 1990 to 2000 and a 22-percent population increase from 2000 to 2010 may have resulted in an increased demand for water in areas within the basin.An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the Albuquerque Basin. In 1983, this network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly. The network currently (2015) consists of 124 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the ABCWUA, currently (2015) measures and reports water levels from the 124 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 124 sites through water year 2015 (October 1, 2014, through September 30, 2015).

  3. Geohydrology and potential effects of coal mining in 12 coal-lease areas, Powder River structural basin, northeastern Wyoming. Water Resources Investigation

    International Nuclear Information System (INIS)

    Fogg, J.L.; Martin, M.W.; Daddow, P.B.

    1991-01-01

    The purpose of the report is to describe the geohydrology of 12 coal-lease areas in the Powder River structural basin in relation to the mining proposed for each area. The description of the geohydrology of each of the lease areas focuses on the shallow ground-water system and includes identification of recharge and discharge areas, directions of ground-water movement, and potential effects of mining. The shallow ground-water system in the Powder River structural basin is not well defined because of the discontinuous nature of the aquifers in the basin. Understanding the ground-water hydrology of these 12 coal-lease areas will improve understanding of the shallow ground-water system in the basin. The first part of the report is a description of the general geohydrology of the Wyoming part of the Powder River structural basin. The second part of the report is a general discussion of the effects of coal mining on ground-water hydrology. The third part of the report contains site-specific discussions of the ground-water hydrology and potential effects of mining for each of the 12 coal-lease areas

  4. Climate variability and demand growth as drivers of water scarcity in the Turkwel river basin: a bottom-up risk assessment of a data-sparse basin in Kenya

    Science.gov (United States)

    Hirpa, F. A.; Dyer, E.; Hope, R.; Dadson, S. J.

    2017-12-01

    Sustainable water management and allocation are essential for maintaining human well-being, sustaining healthy ecosystems, and supporting steady economic growth. The Turkwel river basin, located in north-western Kenya, experiences a high level of water scarcity due to its arid climate, high rainfall variability, and rapidly growing water demand. However, due to sparse hydro-climatic data and limited literature, the water resources system of the basin has been poorly understood. Here we apply a bottom-up climate risk assessment method to estimate the resilience of the basin's water resources system to growing demand and climate stressors. First, using a water resource system model and historical climate data, we construct a climate risk map that depicts the way in which the system responds to climate change and variability. Then we develop a set of water demand scenarios to identify the conditions that potentially lead to the risk of unmet water demand and groundwater depletion. Finally, we investigate the impact of climate change and variability by stress testing these development scenarios against historically strong El Niño/Southern Oscillation (ENSO) years and future climate projections from multiple Global Circulation Models (GCMs). The results reveal that climate variability and increased water demand are the main drivers of water scarcity in the basin. Our findings show that increases in water demand due to expanded irrigation and population growth exert the strongest influence on the ability of the system to meet water resource supply requirements, and in all cases considered increase the impacts of droughts caused by future climate variability. Our analysis illustrates the importance of combining analysis of future climate risks with other development decisions that affect water resources planning. Policy and investment decisions which maximise water use efficiency in the present day are likely to impart resilience to climate change and variability under a

  5. Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

    Science.gov (United States)

    Mounir, A.; Che, D.; Robles-Morua, A.; Kauneckis, D.

    2017-12-01

    The arid state of Sonora, Mexico underwent the Sonora SI project to provide additional water supply to the capital of Hermosillo. The main component of the project involves an interbasin transfer from the Yaqui River Basin (YRB) to the Sonora River Basin via the Independencia aqueduct. This project has generated conflicts over water among different social sectors in the YRB. To improve the management of the Yaqui reservoir system, we developed a daily watershed model. This model allowed us to predict the amount of water available in different regions of the basin. We integrated this simulation to an optimization model which calculates the best water allocation according to water rights established in Mexico's National Water Law. We compared different precipitation forcing scenarios: (1) a network of ground observations from Mexican water agencies during the historical period of 1980-2013, (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution, and (3) we will be studying a future forecast scenario. The simulation results were compared to historical observations at the three reservoirs existing in the YRB to generate confidence in the simulation tools. Our results are presented in the form of flow duration, reliability and exceedance frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate building confidence among regional stakeholders in utilizing hydrological models in the development of reservoir operation policies.

  6. Characterization of Surface Water and Groundwater Quality in the Lower Tano River Basin Using Statistical and Isotopic Approach.

    Science.gov (United States)

    Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow

    2017-04-01

    Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This

  7. SimBasin: A serious gaming framework for integrated and cooperative decision-making in water management

    Science.gov (United States)

    Angarita, H.; Craven, J.; Caggiano, F.; Corzo, G.

    2016-12-01

    An Integrated approach involving extensive stakeholder dialogue is widely advocated in sustainable water management. However, it requires a social learning process in which scientist and stakeholders become aware of the relationship between their own frames of reference and those of others, differences can be dealt with constructively, and shared ideas can be used to facilitate cooperation. Key obstacles in this process are heritage systems, attitudes and processes, factually wrong, incomplete or unshared mental models, and lack of science-policy dialogue (Pahl-Wostl et al., 2005) To overcome these barriers, a space is required which is free of heritage systems, where mental models can be safely and easily compared and corrected, and where scientists and policy-makers can come together. A "serious game" can serve as such a space - Serious games are games or simulations used to achieve an organizational or educational goal, and such games have already been used to facilitate stakeholder cooperation in the water management sector (Rusca et al., 2005). As well as bringing stakeholders together, they can be an accessible interface between scientific models and non-experts. Here we present SimBasin, a multiplayer serious game framework and development engine. The engine allows to easily create a simulated multiplayer basin management game using WEAP water resources modelling software (SEI, 1992-2015), to facilitate the communication of the complex, long term and wide range relationships between hydrologic, climate, and human systems present in river basins, and enable dialogue between policy-makers and scientists. Different games have been created using the Sim-Basin engine and used in various contexts. Here are discussed experiences with stakeholders at a national forum in Bogotá, flood risk management agencies in the lower Magdalena River Basin in Colombia and with water professionals in Bangkok. The experience shows that the game is a useful tool for enabling

  8. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    International Nuclear Information System (INIS)

    Stillwell, Ashlynn S; Clayton, Mary E; Webber, Michael E

    2011-01-01

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights-a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions-a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m 3 -enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  9. Monthly-Diurnal Water Budget Variability Over Gulf of Mexico-Caribbean Sea Basin from Satellite Observations

    Science.gov (United States)

    Smith, E. A.; Santos, P.

    2006-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system design d to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective in identifying problems in estimating vapor transports from a "leaky" operational radiosonde network than in

  10. River basins as social-ecological systems: linking levels of societal and ecosystem water metabolism in a semiarid watershed

    Directory of Open Access Journals (Sweden)

    Violeta Cabello

    2015-09-01

    Full Text Available River basin modeling under complexity requires analytical frameworks capable of dealing with the multiple scales and dimensions of environmental problems as well as uncertainty in the evolution of social systems. Conceptual and methodological developments can now be framed using the wide socio-eco-hydrological approach. We add hierarchy theory into the mix to discuss the conceptualization of river basins as complex, holarchic social-ecological systems. We operationalize the social-ecological systems water metabolism framework in a semiarid watershed in Spain, and add the governance dimension that shapes human-environment reciprocity. To this purpose, we integrate an eco-hydrological model with the societal metabolism accounting scheme for land use, human activity, and water use. We explore four types of interactions: between societal organization and water uses/demands, between ecosystem organization and their water requirements/supplies, between societal metabolism and aquatic ecosystem health, and between water demand and availability. Our results reveal a metabolic pattern of a high mountain rural system striving to face exodus and agricultural land abandonment with a multifunctional economy. Centuries of social-ecological evolution shaping waterscapes through traditional water management practices have influenced the eco-hydrological functioning of the basin, enabling adaptation to aridity. We found a marked spatial gradient on water supply, use pattern, and impact on water bodies from the head to the mouth of the basin. Management challenges posed by the European water regulatory framework as a new driver of social-ecological change are highlighted.

  11. Optimum combination of water drainage,water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The conflict among water drainage,water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China.Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins,and to try to improve resourcification of the mine water.All solutions must guarantee the eco-environment quality.This paper presents a new idea of optimum combination of water drainage,water supply and eco-environment protection so as to solve the problem of unstable mine water supply,which is caused by the changeable water drainage for the whole combination system.Both the management of hydraulic techniques and constraints in economy,society,ecology,environment,industrial structural adjustments and sustainable developments have been taken into account.Since the traditional and separate management of different departments of water drainage,water supply and eco-environment protection is broken up,these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained.In the light of the conflict of water drainage,water supply and eco-environment protection in a typical sector in Jiaozuo coal mine,a case study puts forward an optimum combination scheme,in which a maximum economic benefit objective is constrained by multiple factors.The scheme provides a very important scientific base for finding a sustainable development strategy.

  12. Streamflow and water-quality data for Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, December 1987 - November 1988

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water-quality data were collected throughout the Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, from December 1987 to November 1988, to determine the prevailing quality of surface water throughout the basin. This data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water-quality station on Little Scrubgrass Creek near Lisbon, provided continuous-record of stream stage, Ph, specific conductance, and water temperature. Monthly water-quality samples collected at this station were analyzed for total and dissolved metals, nutrients, major cations and anions, and suspended sediment concentrations. Fourteen partial-record sites, located throughout the basin, were similarly sampled four times during the period of study. Streamflow and water-quality data obtained at these sites during various base flow periods are also presented. 14 refs., 4 figs., 14 tabs

  13. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae; Morgan, Craig; Carney, Stephanie

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary

  14. Evaluation of genotoxicity and cytotoxicity of water samples from the Sinos River Basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    E Bianchi

    Full Text Available Some water bodies in the Sinos River Basin (SRB have been suffering the effects of pollution by residential, industrial and agroindustrial wastewater. The presence of cytotoxic and genotoxic compounds could compromise the water quality and the balance of these ecosystems. In this context, the research aimed to evaluate the genotoxicity and cytotoxicity of the water at four sites along the SRB (in the cities of Santo Antônio da Patrulha, Parobé, Campo Bom and Esteio, using bioassays in fish and cell culture. Samples of surface water were collected and evaluated in vitro using the Astyanax jacuhiensis fish species (micronucleus test and comet assay and the Vero lineage of cells (comet assay and cytotoxicity tests, neutral red - NR and tetrazolium MTT. The micronucleus test in fish showed no significant differences between the sampling sites, and neither did the comet assay and the MTT and NR tests in Vero cells. The comet assay showed an increase in genetic damage in the fish exposed to water samples collected in the middle and lower sections of the basin (Parobé, Campo Bom and Esteio when compared to the upper section of the basin (Santo Antônio da Patrulha. The results indicate contamination by genotoxic substances starting in the middle section of the SRB.

  15. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational Simplified Surface Energy Balance Model

    Science.gov (United States)

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. L...

  16. Water Availability and Use Pilot-A multiscale assessment in the U.S. Great Lakes Basin

    Science.gov (United States)

    Reeves, Howard W.

    2011-01-01

    Beginning in 2005, water availability and use were assessed for the U.S. part of the Great Lakes Basin through the Great Lakes Basin Pilot of a U.S. Geological Survey (USGS) national assessment of water availability and use. The goals of a national assessment of water availability and use are to clarify our understanding of water-availability status and trends and improve our ability to forecast the balance between water supply and demand for future economic and environmental uses. This report outlines possible approaches for full-scale implementation of such an assessment. As such, the focus of this study was on collecting, compiling, and analyzing a wide variety of data to define the storage and dynamics of water resources and quantify the human demands on water in the Great Lakes region. The study focused on multiple spatial and temporal scales to highlight not only the abundant regional availability of water but also the potential for local shortages or conflicts over water. Regional studies provided a framework for understanding water resources in the basin. Subregional studies directed attention to varied aspects of the water-resources system that would have been difficult to assess for the whole region because of either data limitations or time limitations for the project. The study of local issues and concerns was motivated by regional discussions that led to recent legislative action between the Great Lakes States and regional cooperation with the Canadian Great Lakes Provinces. The multiscale nature of the study findings challenges water-resource managers and the public to think about regional water resources in an integrated way and to understand how future changes to the system-driven by human uses, climate variability, or land-use change-may be accommodated by informed water-resources management.

  17. Effect on water resources from upstream water diversion in the Ganges basin.

    Science.gov (United States)

    Adel, M M

    2001-01-01

    Bangladesh faces at least 30 upstream water diversion constructions of which Farakka Barrage is the major one. The effects of Farakka Barrage on water resources, socioeconomy, and culture have been investigated downstream in the basins of the Ganges and its distributaries. A diversion of up to 60% of the Ganges water over 25 yr has caused (i) reduction of water in surface water resources, (ii) increased dependence on ground water, (iii) destruction of the breeding and raising grounds for 109 species of Gangetic fishes and other aquatic species and amphibians, (iv) increased malnutrition, (v) deficiency in soil organic matter content, (vi) change in the agricultural practices, (vii) eradication of inland navigable routes, (viii) outbreak of waterborne diseases, (ix) loss of professions, and (x) obstruction to religious observances and pastimes. Further, arsenopyrites buried in the prebarrage water table have come in contact with air and formed water-soluble compounds of arsenic. Inadequate recharging of ground water hinders the natural cleansing of arsenic, and threatens about 75,000,000 lives who are likely to use water contaminated with up to 2 mg/L of arsenic. Furthermore, the depletion of surface water resources has caused environmental heating and cooling effects. Apart from these effects, sudden releases of water by the barrage during the flood season cause devestating floods. In consideration of such a heavy toll for the areas downstream, strict international rules have to be laid down to preserve the riparian ecosystems.

  18. Capturing the waters: the hydraulic mission in the Lerma-Chapala Basin, Mexico (1876-1976)

    NARCIS (Netherlands)

    Wester, P.

    2009-01-01

    The hydraulic mission of the Mexican federal government, embodied in its hydraulic bureaucracy (hydrocracy), led to the centralization of water development and the creation of water overexploitation in the Lerma-Chapala Basin between 1876 and 1976. In the late nineteenth century, the federal

  19. SURFACE WATER POLLUTION WITH HEAVY METALS IN THE LOWER CATCHMENT OF JIU RIVER BASIN, ACCORDING TO THE WATER FRAMEWORK DIRECTIVE (2000/60/EC

    Directory of Open Access Journals (Sweden)

    ADINA SANDA ŞERBAN

    2011-03-01

    Full Text Available Surface water pollution with heavy metals in the lower catchment of Jiu river basin, according to the Water Framework Directive (2000/60/EC. The Water Framework Directive establishes a single transparent, effective and coherent water policy by defining a strategy to combat pollution by requiring specific action programs.Chemical pollution of surface water presents a threat to the aquatic environment with acute and chronic toxicity to aquatic organisms, accumulation in the ecosystem and losses of habitats and biodiversity, as well as a threat to human health (art.1 from Directive 2008/105/EC regarding the environmental quality standards for water policy.The purpose of this study is to evaluate the chemical status for surface water bodies in the lower catchment of Jiu river basin. The assessment was made taking into account the water impact of four heavy metals: cadmium (Cd, nickel (Ni, mercury (Hg and lead (Pb.

  20. The Last Will Be First: Water Transfers from Agriculture to Cities in the Pangani River Basin, Tanzania

    Directory of Open Access Journals (Sweden)

    Hans C. Komakech

    2012-10-01

    Full Text Available Water transfers to growing cities in sub-Sahara Africa, as elsewhere, seem inevitable. But absolute water entitlements in basins with variable supply may seriously affect many water users in times of water scarcity. This paper is based on research conducted in the Pangani river basin, Tanzania. Using a framework drawing from a theory of water right administration and transfer, the paper describes and analyses the appropriation of water from smallholder irrigators by cities. Here, farmers have over time created flexible allocation rules that are negotiated on a seasonal basis. More recently the basin water authority has been issuing formal water use rights that are based on average water availability. But actual flows are more often than not less than average. The issuing of state-based water use rights has been motivated on grounds of achieving economic efficiency and social equity. The emerging water conflicts between farmers and cities described in this paper have been driven by the fact that domestic use by city residents has, by law, priority over other types of use. The two cities described in this paper take the lion’s share of the available water during the low-flow season, and at times over and above the permitted amounts, creating extreme water stress among the farmers. Rural communities try to defend their prior use claims through involving local leaders, prominent politicians and district and regional commissioners. Power inequality between the different actors (city authorities, basin water office, and smallholder farmers played a critical role in the reallocation and hence the dynamics of water conflict. The paper proposes proportional allocation, whereby permitted abstractions are reduced in proportion to the expected shortfall in river flow, as an alternative by which limited water resources can be fairly allocated. The exact amounts (quantity or duration of use by which individual user allocations are reduced would be

  1. DEVELOPING SUSTAINABILITY INDICATORS FOR WATER RESOURCES MANAGEMENT IN TIETÊ-JACARÉ BASIN, BRAZIL

    Directory of Open Access Journals (Sweden)

    Michele de Almeida Corrêa

    2013-06-01

    Full Text Available This paper describes a tool to assist in developing water resources management, focusing on the sustainability concept, by a Basin Committee. This tool consists of a Set of Sustainability Indicators for Water Resources Management denominated CISGRH, which was identified by a conceptual and empirical review to meet the specific needs of the study herein - the Basin Committee of Tietê-Jacaré Rivers (CBH-TJ. The framework of CISGRH came about through consecutive consultation processes. In the first consultation the priority problems were identified for the study objectives, listing some possible management sustainability indicators. These preliminary indicators were also submitted to academic specialists and technicians working in CBH-TJ for a new consultation process. After these consultation stages, the CISGRH analysis and structuring were introduced. To verify the indicators’ adaptation and to compose a group as proposed by the study, these were classified according to specific sustainability principles for water resources management. The objective of the CISGRH implementation is to diagnose current conditions of water resources and its management, as well as to evaluate future conditions evidenced by tendencies and interventions undertaken by the committee.

  2. DEVELOPING SUSTAINABILITY INDICATORS FOR WATER RESOURCES MANAGEMENT IN TIETÊ-JACARÉ BASIN, BRAZIL

    Directory of Open Access Journals (Sweden)

    Michele de Almeida Corrêa

    2013-01-01

    Full Text Available This paper describes a tool to assist in developing water resources management, focusing on the sustainability concept, by a Basin Committee. This tool consists of a set of sustainability indicators for water resources management denominated CISGRH, which was identified by a conceptual and empirical review to meet the specific needs of the study herein - the basin committee of Tietê-J acaré Rivers (CBH-TJ. The framework of CISGRH came about through consecutive consultation processes. In the first consultation, the priority problems were identified for the study objectives, listing some possible management sustainability indicators. These preliminary indicators were also submitted to academic specialists and technicians working in CBH-TJ for a new consultation process. After these consultation stages, the CISGRH analysis and structuring were introduced. To verify the indicators’ adaptation and to compose a group as proposed by the study, these were classified according to specific sustainability principles for water resources management. The objective of the CISGRH implementation is to diagnose current conditions of water resources and its management, as well as to evaluate future conditions evidenced by tendencies and interventions undertaken by the committee.

  3. Hydrological Impacts of Flood Storage and Management on Irrigation Water Abstraction in Upper Ewaso Ng’iro River Basin, Kenya

    NARCIS (Netherlands)

    Ngigi, S.N.; Savenije, H.H.G.; Gichuki, F.N.

    2008-01-01

    The upper Ewaso Ng’iro basin, which starts from the central highlands of Kenya and stretches northwards transcending different climatic zones, has experienced decreasing river flows for the last two decades. The Naro Moru sub-basin is used to demonstrate the looming water crisis in this water scarce

  4. Geohydrology, geochemistry, and groundwater simulation (1992-2011) and analysis of potential water-supply management options, 2010-60, of the Langford Basin, California

    Science.gov (United States)

    Voronin, Lois M.; Densmore, Jill N.; Martin, Peter; Brush, Charles F.; Carlson, Carl S.; Miller, David M.

    2013-01-01

    Groundwater withdrawals began in 1992 from the Langford Basin within the Fort Irwin National Training Center (NTC), California. From April 1992 to December 2010, approximately 12,300 acre-feet of water (averaging about 650 acre-feet per year) has been withdrawn from the basin and transported to the adjacent Irwin Basin. Since withdrawals began, water levels in the basin have declined by as much as 40 feet, and the quality of the groundwater withdrawn from the basin has deteriorated. The U.S. Geological Survey collected geohydrologic data from Langford Basin during 1992–2011 to determine the quantity and quality of groundwater available in the basin. Geophysical surveys, including gravity, seismic refraction, and time-domain electromagnetic induction surveys, were conducted to determine the depth and shape of the basin, to delineate depths to the Quaternary-Tertiary interface, and to map the depth to the water table and changes in water quality. Data were collected from existing wells and test holes, as well as 11 monitor wells that were installed at 5 sites as part of this study. Water-quality samples collected from wells in the basin were used to determine the groundwater chemistry within the basin and to delineate potential sources of poor-quality groundwater. Analysis of stable isotopes of oxygen and hydrogen in groundwater indicates that present-day precipitation is not a major source of recharge to the basin. Tritium and carbon-14 data indicate that most of the basin was recharged prior to 1952, and the groundwater in the basin has an apparent age of 12,500 to 30,000 years. Recharge to the basin, estimated to be less than 50 acre-feet per year, has not been sufficient to replenish the water that is being withdrawn from the basin. A numerical groundwater-flow model was developed for the Langford Basin to better understand the aquifer system used by the Fort Irwin NTC as part of its water supply, and to provide a tool to help manage groundwater resources at

  5. An integrated model of water resources optimization allocation based on projection pursuit model - Grey wolf optimization method in a transboundary river basin

    Science.gov (United States)

    Yu, Sen; Lu, Hongwei

    2018-04-01

    Under the effects of global change, water crisis ranks as the top global risk in the future decade, and water conflict in transboundary river basins as well as the geostrategic competition led by it is most concerned. This study presents an innovative integrated PPMGWO model of water resources optimization allocation in a transboundary river basin, which is integrated through the projection pursuit model (PPM) and Grey wolf optimization (GWO) method. This study uses the Songhua River basin and 25 control units as examples, adopting the PPMGWO model proposed in this study to allocate the water quantity. Using water consumption in all control units in the Songhua River basin in 2015 as reference to compare with optimization allocation results of firefly algorithm (FA) and Particle Swarm Optimization (PSO) algorithms as well as the PPMGWO model, results indicate that the average difference between corresponding allocation results and reference values are 0.195 bil m3, 0.151 bil m3, and 0.085 bil m3, respectively. Obviously, the average difference of the PPMGWO model is the lowest and its optimization allocation result is closer to reality, which further confirms the reasonability, feasibility, and accuracy of the PPMGWO model. And then the PPMGWO model is adopted to simulate allocation of available water quantity in Songhua River basin in 2018, 2020, and 2030. The simulation results show water quantity which could be allocated in all controls demonstrates an overall increasing trend with reasonable and equal exploitation and utilization of water resources in the Songhua River basin in future. In addition, this study has a certain reference value and application meaning to comprehensive management and water resources allocation in other transboundary river basins.

  6. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    Science.gov (United States)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  7. Spatial patterns of water quality in Xingu River Basin (Amazonia prior to the Belo Monte dam impoundment

    Directory of Open Access Journals (Sweden)

    JL. Rodrigues-Filho

    Full Text Available Abstract The Xingu River, one of the most important of the Amazon Basin, is characterized by clear and transparent waters that drain a 509.685 km2 watershed with distinct hydrological and ecological conditions and anthropogenic pressures along its course. As in other basins of the Amazon system, studies in the Xingu are scarce. Furthermore, the eminent construction of the Belo Monte for hydropower production, which will alter the environmental conditions in the basin in its lower middle portion, denotes high importance of studies that generate relevant information that may subsidize a more balanced and equitable development in the Amazon region. Thus, the aim of this study was to analyze the water quality in the Xingu River and its tributaries focusing on spatial patterns by the use of multivariate statistical techniques, identifying which water quality parameters were more important for the environmental changes in the watershed. Data sampling were carried out during two complete hydrological cycles in twenty-five sampling stations. The data of twenty seven variables were analyzed by Spearman's correlation coefficients, cluster analysis (CA, and principal component analysis (PCA. The results showed a high auto-correlation between variables (> 0.7. These variables were removed from multivariate analyzes because they provided redundant information about the environment. The CA resulted in the formation of six clusters, which were clearly observed in the PCA and were characterized by different water quality. The statistical results allowed to identify a high spatial variation in the water quality, which were related to specific features of the environment, different uses, influences of anthropogenic activities and geochemical characteristics of the drained basins. It was also demonstrated that most of the sampling stations in the Xingu River basin showed good water quality, due to the absence of local impacts and high power of depuration of the

  8. Spatial patterns of water quality in Xingu River Basin (Amazonia) prior to the Belo Monte dam impoundment.

    Science.gov (United States)

    Rodrigues-Filho, J L; Abe, D S; Gatti-Junior, P; Medeiros, G R; Degani, R M; Blanco, F P; Faria, C R L; Campanelli, L; Soares, F S; Sidagis-Galli, C V; Teixeira-Silva, V; Tundisi, J E M; Matsmura-Tundisi, T; Tundisi, J G

    2015-08-01

    The Xingu River, one of the most important of the Amazon Basin, is characterized by clear and transparent waters that drain a 509.685 km2 watershed with distinct hydrological and ecological conditions and anthropogenic pressures along its course. As in other basins of the Amazon system, studies in the Xingu are scarce. Furthermore, the eminent construction of the Belo Monte for hydropower production, which will alter the environmental conditions in the basin in its lower middle portion, denotes high importance of studies that generate relevant information that may subsidize a more balanced and equitable development in the Amazon region. Thus, the aim of this study was to analyze the water quality in the Xingu River and its tributaries focusing on spatial patterns by the use of multivariate statistical techniques, identifying which water quality parameters were more important for the environmental changes in the watershed. Data sampling were carried out during two complete hydrological cycles in twenty-five sampling stations. The data of twenty seven variables were analyzed by Spearman's correlation coefficients, cluster analysis (CA), and principal component analysis (PCA). The results showed a high auto-correlation between variables (> 0.7). These variables were removed from multivariate analyzes because they provided redundant information about the environment. The CA resulted in the formation of six clusters, which were clearly observed in the PCA and were characterized by different water quality. The statistical results allowed to identify a high spatial variation in the water quality, which were related to specific features of the environment, different uses, influences of anthropogenic activities and geochemical characteristics of the drained basins. It was also demonstrated that most of the sampling stations in the Xingu River basin showed good water quality, due to the absence of local impacts and high power of depuration of the river itself.

  9. Water-quality assessment of the largely urban blue river basin, Metropolitan Kansas City, USA, 1998 to 2007

    Science.gov (United States)

    Wilkison, D.H.; Armstrong, D.J.; Hampton, S.A.

    2009-01-01

    From 1998 through 2007, over 750 surface-water or bed-sediment samples in the Blue River Basin - a largely urban basin in metropolitan Kansas City - were analyzed for more than 100 anthropogenic compounds. Compounds analyzed included nutrients, fecal-indicator bacteria, suspended sediment, pharmaceuticals and personal care products. Non-point source runoff, hydrologic alterations, and numerous waste-water discharge points resulted in the routine detection of complex mixtures of anthropogenic compounds in samples from basin stream sites. Temporal and spatial variations in concentrations and loads of nutrients, pharmaceuticals, and organic wastewater compounds were observed, primarily related to a site's proximity to point-source discharges and stream-flow dynamics. ?? 2009 ASCE.

  10. A review of current and possible future human-water dynamics in Myanmar's river basins

    Science.gov (United States)

    Taft, Linda; Evers, Mariele

    2016-12-01

    Rivers provide a large number of ecosystem services and riparian people depend directly and indirectly on water availability and quality and quantity of the river waters. The country's economy and the people's well-being and income, particularly in agriculturally dominated countries, are strongly determined by the availability of sufficient water. This is particularly true for the country of Myanmar in South-east Asia, where more than 65 % of the population live in rural areas, working in the agricultural sector. Only a few studies exist on river basins in Myanmar at all and detailed knowledge providing the basis for human-water research is very limited. A deeper understanding of human-water system dynamics in the country is required because Myanmar's society, economy, ecosystems and water resources are facing major challenges due to political and economic reforms and massive and rapid investments from neighbouring countries. However, not only policy and economy modify the need for water. Climate variability and change are other essential drivers within human-water systems. Myanmar's climate is influenced by the Indian Monsoon circulation which is subject to interannual and also regional variability. Particularly the central dry zone and the Ayeyarwady delta are prone to extreme events such as serious drought periods and extreme floods. On the one hand, the farmers depend on the natural fertiliser brought by regular river inundations and high groundwater levels for irrigation; on the other hand, they suffer from these water-related extreme events. It is expected that theses climatic extreme events will likely increase in frequency and magnitude in the future as a result of global climate change. Different national and international interests in the abundant water resources may provide opportunities and risks at the same time for Myanmar. Several dam projects along the main courses of the rivers are currently in the planning phase. Dams will most likely modify the

  11. On the water hazards in the trans-boundary Kosi River basin

    Science.gov (United States)

    Chen, N. Sh.; Hu, G. Sh.; Deng, W.; Khanal, N.; Zhu, Y. H.; Han, D.

    2013-03-01

    The Kosi River is an important tributary of the Ganges River, which passes through China, Nepal and India. With a basin area of 71 500 km2, the Kosi River has the largest elevation drop in the world (from 8848 m of Mt Everest to 60 m of the Ganges Plain) and covers a broad spectrum of climate, soil, vegetation and socioeconomic zones. The basin suffers from multiple water related hazards including glacial lake outburst, debris flow, landslides, flooding, drought, soil erosion and sedimentation. This paper describes the characteristics of water hazards in the basin, based on the literature review and site investigation covering hydrology, meteorology, geology, geomorphology and socio-economics. Glacial lake outbursts are a huge threat to the local population in the region and they usually further trigger landslides and debris flows. Floods are usually a result of interaction between man-made hydraulic structures and the natural environment. Debris flows are widespread and occur in clusters. Droughts tend to last over long periods and affect vast areas. Rapid population increase, the decline of ecosystems and climate change could further exacerbate various hazards in the region. The paper has proposed a set of mitigating strategies and measures. It is an arduous challenge to implement them in practice. More investigations are needed to fill in the knowledge gaps.

  12. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  13. Drought management plans and water availability in agriculture: A risk assessment model for a Southern European basin

    Directory of Open Access Journals (Sweden)

    Carlos Dionisio Pérez-Blanco

    2014-08-01

    Full Text Available The Drought Management Plans (DMPs are regulatory instruments that establish priorities among the different water uses and define more stringent constraints to access to publicly provided water during droughts, especially for non-priority uses such as agriculture. These plans have recently become widespread across EU southern basins. However, in some of these basins the plans were approved without an assessment of the potential impacts that they may have on the economic activities exposed to water restrictions. This paper develops a stochastic methodology to estimate the expected water availability in agriculture that results from the decision rules of the recently approved DMPs. The methodology is applied to the particular case of the Guadalquivir River Basin in southern Spain. Results show that if DMPs are successfully enforced, available water will satisfy in average 62.2% of current demand, and this figure may drop to 50.2% by the end of the century as a result of climate change. This is much below the minimum threshold of 90% that has been guaranteed to irrigators so far.

  14. Event sedimentation in low-latitude deep-water carbonate basins, Anegada passage, northeast Caribbean

    Science.gov (United States)

    Chaytor, Jason D.; ten Brink, Uri S.

    2015-01-01

    The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic

  15. Suitability of Water Harvesting in the Upper Blue Nile Basin, Ethiopia: A First Step towards a Mesoscale Hydrological Modeling Framework

    Directory of Open Access Journals (Sweden)

    Yihun T. Dile

    2016-01-01

    Full Text Available Extreme rainfall variability has been one of the major factors to famine and environmental degradation in Ethiopia. The potential for water harvesting in the Upper Blue Nile Basin was assessed using two GIS-based Multicriteria Evaluation methods: (1 a Boolean approach to locate suitable areas for in situ and ex situ systems and (2 a weighted overlay analysis to classify suitable areas into different water harvesting suitability levels. The sensitivity of the results was analyzed to the influence given to different constraining factors. A large part of the basin was suitable for water harvesting: the Boolean analysis showed that 36% of the basin was suitable for in situ and ex situ systems, while the weighted overlay analysis showed that 6–24% of the basin was highly suitable. Rainfall has the highest influence on suitability for water harvesting. Implementing water harvesting in nonagricultural land use types may further increase the benefit. Assessing water harvesting suitability at the larger catchment scale lays the foundation for modeling of water harvesting at mesoscale, which enables analysis of the potential and implications of upscaling of water harvesting practices for building resilience against climatic shocks. A complete water harvesting suitability study requires socioeconomic analysis and stakeholder consultation.

  16. The hydrochemistry of a semi-arid pan basin case study: Sua Pan, Makgadikgadi, Botswana

    International Nuclear Information System (INIS)

    Eckardt, Frank D.; Bryant, Robert G.; McCulloch, Graham; Spiro, Baruch; Wood, Warren W.

    2008-01-01

    This study presents results on the fluid and salt chemistry for the Makgadikgadi, a substantial continental basin in the semi-arid Kalahari. The aims of the study are to improve understanding of the hydrology of such a system and to identify the sources of the solutes and the controls on their cycling within pans. Sampling took place against the backdrop of unusually severe flooding as well as significant anthropogenic extraction of subsurface brines. This paper examines in particular the relationship between the chemistry of soil leachates, fresh stream water, salty lake water, surface salts and subsurface brines at Sua Pan, Botswana with the aim of improving the understanding of the system's hydrology. Occasionally during the short wet season (December-March) surface water enters the saline environment and precipitates mostly calcite and halite, as well as dolomite and traces of other salts associated with the desiccation of the lake. The hypersaline subsurface brine (up to TDS 190,000 mg/L) is homogenous with minor variations due to pumping by BotAsh mine (Botswana Ash (Pty) Ltd.), which extracts 2400 m 3 of brine/h from a depth of 38 m. Notable is the decrease in TDS as the pumping rate increases which may be indicative of subsurface recharge by less saline water. Isotope chemistry for Sr ( 87 Sr/ 86 Sr average 0.722087) and S (δ 34 S average 34.35) suggests subsurface brines have been subject to a lithological contribution of undetermined origin. Recharge of the subsurface brine from surface water including the Nata River appears to be negligible

  17. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  18. The main characteristics of the high water registered in the River Basin Bega in February 1999

    International Nuclear Information System (INIS)

    Teodorescu, Niculae Iulian

    2008-01-01

    The year 1999 was characterized by high water events with a rare rate of occurrence. The events were produced in different months of the year, in different river basins in the Banat Region (area situated in the south - western part of Romania). In the River Basin Bega the most important high water appeared in mid February and was generated by both rain and the melting of the snow layer. The cold period of 1999 was characterized by relatively high quantities of precipitation (module coefficients from 1.17 to 2.15), the most part of those being liquid (rainfall). At altitudes higher than 1,000 m, the snow layer was relatively continuous. Weather warming appeared in the middle of February, in the same year, generating the melting of an important layer of snow (10-15 cm in the plain and around 20 cm in the hilly area), and the water layer generated by this had an important effect, overlaid on the water layer generated by rainfall. The high water (flood) event, which is the topic of this study, occurred between 20th - 27th February 1999 and after analyzing the data we initiated a comparative analysis between the main element of the event (specific discharge, high water duration, increasing time, shape coefficient) and the mean element of high waters from 10 gauging stations from the river basin. After the analysis we observed that some elements, like high water duration and the increasing time, are bigger than the mean values - which is a characteristic of high waters generated both by rainfall and snow melting, while other elements are smaller (a, overrun layer) - this as a consequence of river basin response to the generating elements. This analysis has enriched our database for hydrologic prognosis, as it is known that in this part of the country warm periods have a frequent occurrence in winter. They produce snow melting and, sometimes generate important high water.

  19. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    Science.gov (United States)

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    A detailed study of the ground-water system in the unconsolidated glacial deposits in the Chimacum Creek Basin and the interactions between surface water and ground water in four main drainage basins was conducted in eastern Jefferson County, Washington. The study will assist local watershed planners in assessing the status of the water resources and the potential effects of ground-water development on surface-water systems. A new surficial geologic map of the Chimacum Creek Basin and a series of hydrogeologic sections were developed by incorporating LIDAR imagery, existing map sources, and drillers' logs from 110 inventoried wells. The hydrogeologic framework outlined in the study will help characterize the occurrence of ground water in the unconsolidated glacial deposits and how it interacts with the surface-water system. Water levels measured throughout the study show that the altitude of the water table parallels the surface topography and ranges from 0 to 400 feet above the North American Vertical Datum of 1988 across the basin, and seasonal variations in precipitation due to natural cycles generally are on the order of 2 to 3 feet. Synoptic stream-discharge measurements and instream mini-piezometers and piezometers with nested temperature sensors provided additional data to refine the positions of gaining and losing reaches and delineate seasonal variations. Chimacum Creek generally gains water from the shallow ground-water system, except near the community of Chimacum where localized losses occur. In the lower portions of Chimacum Creek, gaining conditions dominate in the summer when creek stages are low and ground-water levels are high, and losing conditions dominate in the winter when creek stages are high relative to ground-water levels. In the Quilcene Bay area, three drainage basins were studied specifically to assess surface water/ground water interactions. The upper reaches of Tarboo Creek generally gain water from the shallow ground-water system

  20. A water system model for exploring electric energy alternatives in southeastern US basins

    International Nuclear Information System (INIS)

    Flores-López, F; Yates, D

    2013-01-01

    Electric power generation often involves the use of water for power plant cooling and steam generation, which typically involves the release of cooling water to nearby rivers and lakes. The resulting thermal pollution may negatively impact the ecosystems of these water bodies. Water resource systems models enable the examination of the implications of alternative electric generation on regional water resources. This letter documents the development, calibration, and validation of a climate-driven water resource systems model of the Apalachicola–Chattahoochee–Flint, the Alabama–Coosa–Tallapoosa, and the Tombigbee River basins in the states of Georgia, Alabama, and Florida, in the southeastern US. The model represents different water users, including power plants, agricultural water users, and municipal users. The model takes into account local population, per-capita use estimates, and changes in population growth. The water resources planning model was calibrated and validated against the observed, managed flows through the river systems of the three basins. Flow calibration was performed on land cover, water capacity, and hydraulic conductivity of soil horizons; river water temperature calibration was performed on channel width and slope properties. Goodness-of-fit statistics indicate that under 1980–2010 levels of water use, the model robustly represents major features of monthly average streamflow and water temperatures. The application of this integrated electricity generation–water resources planning model can be used to explore alternative electric generation and water implications. The implementation of this model is explored in the companion paper of this focus issue (Yates et al 2013 Environ. Res. Lett. 8 035042). (letter)

  1. Water-quality assessment of the New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island : environmental settings and implications for water quality and aquatic biota

    Science.gov (United States)

    Flanagan, Sarah M.; Nielsen, Martha G.; Robinson, Keith W.; Coles, James F.

    1999-01-01

    The New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island constitute one of 59 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. England Coastal Basins study unit encompasses the fresh surface waters and ground waters in a 23,000 square-mile area that drains to the Atlantic Ocean. Major basins include those of the Kennebec, Androscoggin, Saco, Merrimack, Charles, Blackstone, Taunton, and Pawcatuck Rivers. Defining the environmental setting of the study unit is the first step in designing and conducting a multi-disciplinary regional water-quality assessment. The report describes the natural and human factors that affect water quality in the basins and includes descriptions of the physiography, climate, geology, soils, surface- and ground-water hydrology, land use, and the aquatic ecosystem. Although surface-water quality has greatly improved over the past 30 years as a result of improved wastewater treatment at municipal and industrial wastewater facilities, a number of water-quality problems remain. Industrial and municipal wastewater discharges, combined sewer overflows, hydrologic modifications from dams and water diversions, and runoff from urban land use are the major causes of water-quality degradation in 1998. The most frequently detected contaminants in ground water in the study area are volatile organic compounds, petroleum-related products, nitrates, and chloride and sodium. Sources of these contaminants include leaking storage tanks, accidental spills, landfills, road salting, and septic systems and lagoons. Elevated concentrations of mercury are found in fish tissue from streams and lakes throughout the study area.

  2. Analysis of point source pollution and water environmental quality variation trends in the Nansi Lake basin from 2002 to 2012.

    Science.gov (United States)

    Wang, Weiliang; Liu, Xiaohui; Wang, Yufan; Guo, Xiaochun; Lu, Shaoyong

    2016-03-01

    Based on the data analysis of the water environmental quality and economic development from 2002 to 2012 in the Nansi Lake basin, the correlation and change between the water environmental quality and economic development were studied. Results showed that the GDP and wastewater emissions of point source in the Nansi Lake basin had an average annual growth of 7.30 and 7.68 %, respectively, from 2002 to 2012. The emissions of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) had the average annual decrease of 7.69 and 6.79 % in 2012, respectively, compared to 2002. Basin water quality overall improved, reaching the Class III of the "Environmental quality standards for surface water (GB3838-2002)," in which the main reason was that sewage treatment rate increased gradually and was above 90 % in 2012 (an increase of 10 % compared to 2002) with the progress of pollution abatement technology and the implementation of relevant policies and regulations. The contribution of water environmental pollution was analyzed from related cities (Ji'ning, Zaozhuang, Heze). Results indicated that Ji'ning had the largest contribution to water pollution of the Nansi Lake basin, and the pollutant from domestic sources accounted for a higher percentage compared to industrial sources. The wastewater, COD, and NH3-N mainly came from mining and washing of coal, manufacture of raw chemical materials and chemical products, papermaking industry, and food processing industry. According to the water pollution characteristics of the Nansi Lake basin, the basin pollution treatment strategy and prevention and treatment system were dissected to provide a scientific basis for prevention and control of lakeside point source pollution along the Nansi Lake.

  3. Produced water ponds are an important source of aromatics and alcohols in Rocky Mountain oil and gas basins

    Science.gov (United States)

    Lyman, S. N.

    2017-12-01

    Most of the water extracted with oil and natural gas (i.e., produced water) is disposed of by injection into the subsurface. In the arid western United States, however, a significant portion of produced water is discharged in ponds for evaporative disposal, and produced water is often stored in open ponds prior to subsurface injection. Even though they are common in the West (Utah's Uinta Basin has almost 200 ha), produced water ponds have been excluded from oil and gas emissions inventories because little information about their emission rates and speciation is available. We used flux chambers and inverse plume modeling to measure emissions of methane, C2-C11 hydrocarbons, light alcohols, carbonyls, and carbon dioxide from oil and gas produced water storage and disposal ponds in the Uinta Basin and the Upper Green River Basin, Wyoming, during 2013-2017. Methanol was the most abundant organic compound in produced water (91 ± 2% of the total volatile organic concentration; mean ± 95% confidence interval) but accounted for only 25 ± 30% of total organic compound emissions from produced water ponds. Non-methane hydrocarbons, especially C6-C9 alkanes and aromatics, accounted for the majority of emitted organics. We were able to predict emissions of individual compounds based on water concentrations, but only to within an order of magnitude. The speciation and magnitude of emissions varied strongly across facilities and was influenced by water age, the presence or absence of oil sheens, and with meteorological conditions (especially ice cover). Flux chamber measurements were lower than estimates from inverse modeling techniques.Based on our flux chamber measurements, we estimate that produced water ponds are responsible for between 3 and 9% of all non-methane organic compound emissions in the Uinta Basin (or as much as 18% if we rely on our inverse modeling results). Emissions from produced water ponds contain little methane and are more reactive (i.e., they have

  4. Water resources in the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Walker, Eugene H.; Krejmas, Bruce E.

    1983-01-01

    The Blackstone River heads in brooks 6 miles northwest of Worcester and drains about 330 square miles of central Massachusetts before crossing into Rhode Island at Woonsocket. The primary source of the Worcester water supply is reservoirs, but for the remaining 23 communities in the basin, the primary source is wells. Bedrock consists of granitic and metamorphic rocks. Till mantles the uplands and extends beneath stratified drift in the valleys. Stratified glacial drift, consisting of clay, silt, and fine sand deposited in lakes and coarse-textured sand and gravel deposited by streams, is found in lowlands and valleys. The bedrock aquifer is capable of sustaining rural domestic supplies throughout the Blackstone River basin. Bedrock wells yield an average of 10 gallons per minute, but some wells, especially those in lowlands where bedrock probably contains more fractures and receives more recharge than in the upland areas, yield as much as 100 gallons per minute. Glacial sand and gravel is the principal aquifer. It is capable of sustaining municipal supplies. Average daily pumpage from this aquifer in the Blackstone River basin was 10.4 million gallons per day in 1978. The median yield of large-diameter wells in the aquifer is 325 gallons per minute. The range of yields from these wells is 45 to 3,300 gallons per minute. The median specific capacity is about 30 gallons per minute per foot of drawdown.

  5. Measurements and modelling of evapotransiration to assess agricultural water productivity in basins with changing land use patterns : a case study in the São Francisco River basin, Brazil

    NARCIS (Netherlands)

    Castro Teixeira, de A.H.

    2008-01-01

    Key words: Vineyards, mango, energy balance, evapotranspiration, water productivity, Bowen ratio, eddy correlation, water balance, natural vegetation, latent heat flux, sensible heat flux, biomass, water productivity, remote sensing, water management. . The São Francisco River basin in Brazil is

  6. Statistical summaries of water-quality data for selected streamflow-gaging stations in the Red River of the North basin, North Dakota, Minnesota, and South Dakota

    Science.gov (United States)

    Macek-Rowland, Kathleen M.; Dressler, Valerie M.

    2002-01-01

    The quantity and quality of current and future water resources in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are concerns of people who reside within the basin. Additional water resources are needed because of recent growth in population, industry, and agriculture. How the management of current and future water-resources will impact water quality within the basin is a critical issue. Water-quality data, particularly for surface-water sources, will help water-resources managers make decisions about current and future water resources in the Red River of the North Basin. Statistical summaries of water-quality data for 43 streamflow-gaging stations in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are presented in this report. Statistical summaries include sample size, maximum, minimum, mean, and values for the 95th, 75th, 50th, 25th, and 5th percentiles.

  7. Climate change impact on water resources - Example of an anthropized basin (Llobregat, Spain)

    Science.gov (United States)

    Versini, P.-A.; Pouget, L.; Mc Ennis, S.; Guiu Carrio, R.; Sempere-Torres, D.; Escaler, I.

    2012-04-01

    The impact of climate change is one of the central topics of study by water agencies and companies. Indeed, the forecasted increase of atmospheric temperature may change the amount, frequency and intensity of precipitation and affect the hydrological cycle: runoff, infiltration, aquifer recharge, etc… Moreover, global change combining climate change but also land use and water demand changes, may cause very important impacts on water availability and quality. Global change scenarios in Spain describe a general trend towards increased temperature and water demand, and reduced precipitation as a result of its geographical situation and socio-economic characteristics. The European project WATER CHANGE (included in the LIFE + Environment Policy and Governance program) aims to develop a modeling system to assess the Global Change impacts, and their associated uncertainties, on water availability for water supply and water use. Its objective is to help river basin agencies and water companies in their long term planning and in the definition of adaptation measures. This work presents the results obtained by applying the modelling system to the Llobregat river basin (Spain). This is an anthropized catchment of about 5000 km2, where water resources are used for different purposes, such as drinking water production, agriculture irrigation, industry and hydroelectric energy production. Based on future global change scenarios, the water resources system has been assessed in terms of water deficit and supply. A cost-benefit analysis has also been conducted in order to evaluate every realistic measure that could optimize and improve the system.

  8. [GIS and scenario analysis aid to water pollution control planning of river basin].

    Science.gov (United States)

    Wang, Shao-ping; Cheng, Sheng-tong; Jia, Hai-feng; Ou, Zhi-dan; Tan, Bin

    2004-07-01

    The forward and backward algorithms for watershed water pollution control planning were summarized in this paper as well as their advantages and shortages. The spatial databases of water environmental function region, pollution sources, monitoring sections and sewer outlets were built with ARCGIS8.1 as the platform in the case study of Ganjiang valley, Jiangxi province. Based on the principles of the forward algorithm, four scenarios were designed for the watershed pollution control. Under these scenarios, ten sets of planning schemes were generated to implement cascade pollution source control. The investment costs of sewage treatment for these schemes were estimated by means of a series of cost-effective functions; with pollution source prediction, the water quality was modeled with CSTR model for each planning scheme. The modeled results of different planning schemes were visualized through GIS to aid decision-making. With the results of investment cost and water quality attainment as decision-making accords and based on the analysis of the economic endurable capacity for water pollution control in Ganjiang river basin, two optimized schemes were proposed. The research shows that GIS technology and scenario analysis can provide a good guidance to the synthesis, integrity and sustainability aspects for river basin water quality planning.

  9. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    Science.gov (United States)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  10. How to allocate water resources under climate change in the arid endorheic river basin, Northwest China

    Science.gov (United States)

    Zhang, A.; Feng, D.; Tian, Y.; Zheng, Y.

    2017-12-01

    Water resource is of fundamental importance to the society and ecosystem in arid endorheic river basins, and water-use conflicts between upstream and downstream are usually significant. Heihe river basin (HRB) is the second largest endorheic river basin in china, which is featured with dry climate, intensively irrigated farmlands in oases and significant surface water-groundwater interaction. The irrigation districts in the middle HRB consume a large portion of the river flow, and the low HRB, mainly Gobi Desert, has an extremely vulnerable ecological environment. The water resources management has significantly altered the hydrological processes in HRB, and is now facing multiple challenges, including decline of groundwater table in the middle HRB, insufficient environmental flow for the lower HRB. Furthermore, future climate change adds substantial uncertainty to the water system. Thus, it is imperative to have a sustainable water resources management in HRB in order to tackle the existing challenges and future uncertainty. Climate projection form a dynamical downscaled climate change scenario shows precipitation will increase at a rate of approximately 3 millimeter per ten years and temperature will increase at a rate of approximately 0.2 centigrade degree per ten years in the following 50 years in the HRB. Based on an integrated ecohydrological model, we evaluated how the climate change and agricultural development would collaboratively impact the water resources and ecological health in the middle and lower HRB, and investigated how the water management should cope with the complex impact.

  11. Arsenic, Boron, and Fluoride Concentrations in Ground Water in and Near Diabase Intrusions, Newark Basin, Southeastern Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.

    2006-01-01

    During an investigation in 2000 by the U.S. Environmental Protection Agency (USEPA) of possible contaminant releases from an industrial facility on Congo Road near Gilbertsville in Berks and Montgomery Counties, southeastern Pennsylvania, concentrations of arsenic and fluoride above USEPA drinking-water standards of 10 ?g/L and 4 mg/L, respectively, and of boron above the USEPA health advisory level of 600 ?g/L were measured in ground water in an area along the northwestern edge of the Newark Basin. In 2003, the USEPA requested technical assistance from the U.S. Geological Survey (USGS) to help identify sources of arsenic, boron, and fluoride in the ground water in the Congo Road area, which included possible anthropogenic releases and naturally occurring mineralization in the local bedrock aquifer, and to identify other areas in the Newark Basin of southeastern Pennsylvania with similarly elevated concentrations of these constituents. The USGS reviewed available data and collected additional ground-water samples in the Congo Road area and four similar hydrogeologic settings. The Newark Basin is the largest of the 13 major exposed Mesozoic rift basins that stretch from Nova Scotia to South Carolina. Rocks in the Newark Basin include Triassic through Jurassic-age sedimentary sequences of sandstones and shales that were intruded by diabase. Mineral deposits of hydrothermal origin are associated with alteration zones bordering intrusions of diabase and also occur as strata-bound replacement deposits of copper and zinc in sedimentary rocks. The USGS review of data available in 2003 showed that water from about 10 percent of wells throughout the Newark Basin of southeastern Pennsylvania had concentrations of arsenic greater than the USEPA maximum contaminant level (MCL) of 10 ?g/L; the highest reported arsenic concentration was at about 70 ?g/L. Few data on boron were available, and the highest reported boron concentration in well-water samples was 60 ?g/L in contrast

  12. The Saskatchewan River Basin - a large scale observatory for water security research (Invited)

    Science.gov (United States)

    Wheater, H. S.

    2013-12-01

    The 336,000 km2 Saskatchewan River Basin (SaskRB) in Western Canada illustrates many of the issues of Water Security faced world-wide. It poses globally-important science challenges due to the diversity in its hydro-climate and ecological zones. With one of the world's more extreme climates, it embodies environments of global significance, including the Rocky Mountains (source of the major rivers in Western Canada), the Boreal Forest (representing 30% of Canada's land area) and the Prairies (home to 80% of Canada's agriculture). Management concerns include: provision of water resources to more than three million inhabitants, including indigenous communities; balancing competing needs for water between different uses, such as urban centres, industry, agriculture, hydropower and environmental flows; issues of water allocation between upstream and downstream users in the three prairie provinces; managing the risks of flood and droughts; and assessing water quality impacts of discharges from major cities and intensive agricultural production. Superimposed on these issues is the need to understand and manage uncertain water futures, including effects of economic growth and environmental change, in a highly fragmented water governance environment. Key science questions focus on understanding and predicting the effects of land and water management and environmental change on water quantity and quality. To address the science challenges, observational data are necessary across multiple scales. This requires focussed research at intensively monitored sites and small watersheds to improve process understanding and fine-scale models. To understand large-scale effects on river flows and quality, land-atmosphere feedbacks, and regional climate, integrated monitoring, modelling and analysis is needed at large basin scale. And to support water management, new tools are needed for operational management and scenario-based planning that can be implemented across multiple scales and

  13. Simulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts

    Science.gov (United States)

    DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.

    2002-01-01

    Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were

  14. Technical knowledge and water resources management: A comparative study of river basin councils, Brazil

    Science.gov (United States)

    Lemos, Maria Carmen; Bell, Andrew R.; Engle, Nathan L.; Formiga-Johnsson, Rosa Maria; Nelson, Donald R.

    2010-06-01

    Better understanding of the factors that shape the use of technical knowledge in water management is important both to increase its relevance to decision-making and sustainable governance and to inform knowledge producers where needs lie. This is particularly critical in the context of the many stressors threatening water resources around the world. Recent scholarship focusing on innovative water management institutions emphasizes knowledge use as critical to water systems' adaptive capacity to respond to these stressors. For the past 15 years, water resources management in Brazil has undergone an encompassing reform that has created a set of participatory councils at the river basin level. Using data from a survey of 626 members of these councils across 18 river basins, this article examines the use of technical knowledge (e.g., climate and weather forecasts, reservoir streamflow models, environmental impact assessments, among others) within these councils. It finds that use of knowledge positively aligns with access, a more diverse and broader discussion agenda, and a higher sense of effectiveness. Yet, use of technical knowledge is also associated with skewed levels of power within the councils.

  15. Integrative Governance of Environmental Water in Australia's Murray-Darling Basin: Evolving Challenges and Emerging Pathways.

    Science.gov (United States)

    Bischoff-Mattson, Zachary; Lynch, Amanda H

    2017-07-01

    Integration, a widely promoted response to the multi-scale complexities of social-environmental sustainability, is diversely and sometimes poorly conceptualized. In this paper we explore integrative governance, which we define as an iterative and contextual process for negotiating and advancing the common interest. We ground this definition in a discussion of institutional factors conditioning integrative governance of environmental water in Australia's Murray-Darling Basin. The Murray-Darling Basin is an iconic system of social-ecological complexity, evocative of large-scale conservation challenges in other developed arid river basins. Our critical assessment of integrative governance practices in that context emerges through analysis of interviews with policy participants and documents pertaining to environmental water management in the tri-state area of southwestern New South Wales, northwestern Victoria, and the South Australian Riverland. We identify four linked challenges: (i) decision support for developing socially robust environmental water management goals, (ii) resource constraints on adaptive practice, (iii) inter-state differences in participatory decision-making and devolution of authority, and (iv) representative inclusion in decision-making. Our appraisal demonstrates these as pivotal challenges for integrative governance in the common interest. We conclude by offering a perspective on the potential for supporting integrative governance through the bridging capacity of Australia's Commonwealth Environmental Water Holder.

  16. Powder River Basin Coalbed Methane Development and Produced Water Management Study

    International Nuclear Information System (INIS)

    2002-01-01

    Coalbed methane resources throughout the entire Powder River Basin were reviewed in this analysis. The study was conducted at the township level, and as with all assessments conducted at such a broad level, readers must recognize and understand the limitations and appropriate use of the results. Raw and derived data provided in this report will not generally apply to any specific location. The coal geology in the basin is complex, which makes correlation with individual seams difficult at times. Although more than 12,000 wells have been drilled to date, large areas of the Powder River Basin remain relatively undeveloped. The lack of data obviously introduces uncertainty and increases variability. Proxies and analogs were used in the analysis out of necessity, though these were always based on sound reasoning. Future development in the basin will make new data and interpretations available, which will lead to a more complete description of the coals and their fluid flow properties, and refined estimates of natural gas and water production rates and cumulative recoveries. Throughout the course of the study, critical data assumptions and relationships regarding gas content, methane adsorption isotherms, and reservoir pressure were the topics of much discussion with reviewers. A summary of these discussion topics is provided as an appendix. Water influx was not modeled although it is acknowledged that this phenomenon may occur in some settings. As with any resource assessment, technical and economic results are the product of the assumptions and methodology used. In this study, key assumptions as well as cost and price data, and economic parameters are presented to fully inform readers. Note that many quantities shown in various tables have been subject to rounding; therefore, aggregation of basic and intermediate quantities may differ from the values shown

  17. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  18. Participatory Water Resources Modeling in a Water-Scarce Basin (Rio Sonora, Mexico) Reveals Uncertainty in Decision-Making

    Science.gov (United States)

    Mayer, A. S.; Vivoni, E. R.; Halvorsen, K. E.; Kossak, D.

    2014-12-01

    The Rio Sonora Basin (RSB) in northwest Mexico has a semi-arid and highly variable climate along with urban and agricultural pressures on water resources. Three participatory modeling workshops were held in the RSB in spring 2013. A model of the water resources system, consisting of a watershed hydrology model, a model of the water infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants were asked to design water resources management strategies by choosing from a range of supply augmentation and demand reduction measures associated with water conservation. Participants assessed water supply reliability, measured as the average daily supply divided by daily demand for historical and future periods, by probing with the climate and development scenarios. Pre- and post-workshop-surveys were developed and administered, based on conceptual models of workshop participants' beliefs regarding modeling and local water resources. The survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops. The selected water resources strategies varied widely among participants. Wastewater reuse for industry and aquifer recharge were popular options, but significant numbers of participants thought that inter-basin transfers and desalination were viable. The majority of participants indicated that substantial increases in agricultural water efficiency could be achieved. On average, participants chose strategies that produce reliabilities over the historical and future periods of 95%, but more than 20% of participants were apparently satisfied with reliabilities lower than 80%. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region.

  19. State policies and requirements for management of uranium mining and milling in New Mexico. Volume II. Water availability in the San Juan Structural Basin

    International Nuclear Information System (INIS)

    Vandevender, S.G.

    1980-04-01

    This volume contains Two parts: Part One is an analysis of an issue paper prepared by the office of the New Mexico State Engineer on water availability for uranium production. Part Two is the issue paper itself. The State Engineer's report raises the issue of a scarce water supply in the San Juan Structural Basin acting as a constraint on the growth of the uranium mining and milling industry in New Mexico. The water issue in the structural basin is becoming an acute policy issue because of the uranium industry's importance to and rapid growth within the structural basin. Its growth places heavy demands on the region's scarce water supply. The impact of mine dewatering on water supply is of particular concern. Much of the groundwater has been appropriated or applied for. The State Engineer is currently basing water rights decisions upon data which he believes to be inadequate to determine water quality and availability in the basin. He, along with the USGS and the State Bureau of Mines and Mineral Resources, recommends a well drilling program to acquire the additional information about the groundwater characteristics of the basin. The information would be used to provide input data for a computer model, which is used as one of the bases for decisions concerning water rights and water use in the basin. The recommendation is that the appropriate DOE office enter into discussions with the New Mexico State Engineer to explore the potential mutual benefits of a well drilling program to determine the water availability in the San Juan Structural Basin

  20. The role of scenario analysis in water resources management in Yanqi Basin, Xinjiang, China

    Science.gov (United States)

    Li, N.; Kinzelbach, W. K.; Li, W.; Dong, X.

    2011-12-01

    With the rapid increase of world population and food demand, the demand for water resources is also increasing. At the same time shifts in rain patterns due to global climate change make the water resources situation more uncertain. A global water crisis can therefore not be excluded. The socio-economic and environmental problems induced by such a water crisis are especially prominent in arid and semiarid regions. The Yanqi Basin in Xinjiang province is a typical case study in China's arid and semi-arid areas, where rainfall is scarce and evaporation is extremely high. Thus its water resources have been under great pressure to satisfy the increasing water demand of agriculture and urban and industrial expansion in the last decades. The development has been accompanied by a number of environmental problems. Yanqi Basin is an important cultivated area which is irrigated by water diverted from rivers. Because of the long-term flood irrigation and an inefficient drainage system, the groundwater level under the cultivated area rose, accelerating the phreatic evaporation and leading to increased soil salinization. Simultaneously, the water quantity and quality of Boston Lake have been impaired in past years because of the decreased river discharge and the increased salt flux contained in the drainage discharge. Thus the ecosystems depending on the inflow to and outflow from the lake suffered. The riverine forests in the downstream area were degraded due to declining groundwater levels, and aquatic life as well as downstream water users had to cope with deteriorating water quality. The big challenge for decision makers in the basin is how to balance the justified requirements of agriculture, industrial development and the ecosystem. In order to provide a scientific basis to the decision making process, a scenario analysis was adopted. Here several scenarios are proposed: the basic scenario, scenario 1, describes the status of the year 2008. A second scenario maximizes the

  1. Evaluation of water harvesting and managed aquifer recharge potential in Upper Fara'basin in Palestine : Comparing MYWAS and water productivity approaches

    NARCIS (Netherlands)

    Tiehatten, B.M.H.; Assaf, K; Barhumic, Hala; Bastiaanssen, W.G.M.; Ghaneme, Marwan; Jayyousi, Anan; Marei, Amer; Mostert, E.; Shadeed, Sameer; Schoups, G.H.W.; Smidt, Ebel; Zayed, O

    2017-01-01

    The Upper Wadi Fara' basin, located at the West Bank, Palestine, has an average annual rainfall of 500 mm, which occurs only during winter. Agriculture uses stored soil water and complimentary irrigation from groundwater. Water harvesting (WH) and managed aquifer recharge (MAR) therefore is

  2. Temporal variations of water and sediment fluxes in the Cointzio river basin, central Mexico

    Science.gov (United States)

    Duvert, C.; Gratiot, N.; Navratil, O.; Esteves, M.; Prat, C.; Nord, G.

    2009-04-01

    The STREAMS program (Sediment TRansport and Erosion Across MountainS) was launched in 2006 to study suspended sediment dynamics in mountainous areas. Two watersheds were selected as part of the program: the Bléone river basin in the French Alps, and the Cointzio river basin (636 km2), located in the mountainous region of Michoacán, in central Mexico. The volcanic soils of the Cointzio catchment undergo important erosion processes, especially during flashflood events. Thus, a high-frequency monitoring of sediment transport is highly required. The poster presents the high-frequency database obtained from the 2008 hydrological season at the Santiago Undameo gauged station, located at the basin's outlet. Suspended Sediment Concentration (SSC) was estimated every 10 minutes by calibrating turbidity measurements with bottle sampling acquired on a double-daily basis. Water discharge time-series was approximated with continuous water-level measurements (5 minutes time-step), and a stage-discharge rating curve. Our investigation highlights the influence of sampling frequency on annual water and sediment fluxes estimate. A daily or even a weekly water-level measurement provides an unexpectedly reliable assessment of the seasonal water fluxes, with an under-estimation of about 5 % of the total flux. Concerning sediment fluxes, a high-frequency SSC survey appears to be necessary. Acquiring SSC data even twice a day leads to a significant (over 30 %) under-estimation of the seasonal sediment load. These distinct behaviors can be attributed to the fact that sediment transport almost exclusively occurs during brief night flood events, whereas exfiltration on the watershed always provides a base flow during the daily water-level measurements.

  3. Radioactive carbon-14 dating of ground waters in IPEN for evaluation of water resources in Rio Grande do Norte and Parana basin

    International Nuclear Information System (INIS)

    Chandra, U.; Pereira, M.C.

    1986-01-01

    14 C dating of deep ground waters from Potiguar basin and Parana basin was carried out to identify zones of recharge. In all 28 samples, five from Potiguar basin and 23 from Parana basin were analyzed for 14 C. The methods of sample collection and analysis are described. The analysis consists of transforming carbon of the sample to benzene, by synthesis process involving four steps i.e. production of carbon dioxide, production of lithium carbide, hydrolysis to acetylene and catalytic polymerization to bezene. The specific activity of the synthertized benzene is measured by liquid scintillation counting. The corrections for initial 14 C content have been made by using the model of Vogel. (Author) [pt

  4. Water-Energy Nexus in Shared River Basins: How Hydropower Shapes Cooperation and Coordination

    Directory of Open Access Journals (Sweden)

    Kouangpalath Phimthong

    2015-01-01

    Full Text Available The construction of hydropower plants on transboundary rivers is seldom done with equal benefits to all riparians, and therefore presents coordination and cooperation challenges. Without a supra-national authority in charge of transboundary river basins, coordination between sectors (water, energy and environment and cooperation between countries largely depends on willingness of the individual nation states and the power relations between these countries. This paper discusses how the interests and relative power positions of actors in transboundary water management shape the outcomes, and what roles are played by River Basin Organisations and foreign investors (especially in hydropower development. These issues are illustrated with examples from the Mekong river in Southeast Asia (Laos, Thailand, Cambodia and Vietnam, the Euphrates-Tigris (Turkey, Syria, Iraq, Iran and Kuwait and the Çoruh in Turkey and Georgia.

  5. Urban influence on the water quality of the Uberaba River basin: an ecotoxicological assessment

    Directory of Open Access Journals (Sweden)

    Ana Luisa Curado

    2018-03-01

    Full Text Available Ecotoxicological tests applied to Tradescantia pallida, Allium cepa and Lactuca sativa were used to assess the quality of the Uberaba River basin under urban area influence. Water samples were collected at eight different points during the dry season. The samples were assessed using the following toxicity indicators: micronuclei percentage in T. pallida pollen grains (TRAD-MN, seed germination, root growth, mitotic index (MI and micronuclei in A. cepa root-cells, and seed germination and root growth in L. sativa. Water physicochemical parameters such as temperature, dissolved oxygen (DO, pH and electric conductivity were assessed in situ. The three plant species were efficient bio-indicators, since they presented good cost-benefit and fast and easily interpreted results, thus completing the physicochemical parameters. There was strong correlation between seed germination and root growth among the ecotoxicological parameters assessed in L. sativa and A. cepa. The micronuclei percentage in T. pallida and the MI in A. cepa presented strong correlation with water electric conductivity and moderate and negative correlation with DO. Water electric conductivity ranged from 75 to 438 µS.cm-1; and the DO concentrations ranged from 0.5 to 6.9 mg.L-1. The importance of pollution control measures in the Uberaba River basin stands out. From the supply-water capture point, the basin is strongly affected by pollution, mainly in the tributaries that cross the city. It presents a short, or almost absent, riparian forest line, residues on the river banks, and it is impacted by discharges of untreated sewage, among other anthropic actions.

  6. N-limited or N and P co-limited indications in the surface waters of three Mediterranean basins

    Science.gov (United States)

    Tanaka, T.; Thingstad, T. F.; Christaki, U.; Colombet, J.; Cornet-Barthaux, V.; Courties, C.; Grattepanche, J.-D.; Lagaria, A.; Nedoma, J.; Oriol, L.; Psarra, S.; Pujo-Pay, M.; van Wambeke, F.

    2010-11-01

    The limiting nutrient for the pelagic microbial food web in the Mediterranean Sea was investigated in the nutrient manipulated microcosms during summer 2008. Surface waters were collected into 12 carboys at a center of anticyclonic eddy at the Western Basin, the Ionian Basin, and the Levantine Basin, respectively. As compared to the Redfield ratio, the ratio of N to P in the collected waters was always smaller in the dissolved inorganic fraction but higher in both dissolved and particulate organic fractions. Four different treatments in triplicates (addition of ammonium, phosphate, a combination of both, and the unamended control) were set up for the carboys. Responses of chemical and biological parameters in these different treatments were measured during the incubation (3-4 days). Temporal changes of turnover time of phosphate and ATP, and alkaline phosphatase activity during the incubation suggested that the phytoplankton and heterotrophic prokaryotes (Hprok) communities were not purely P-limited at any studied stations. Statistical comparison between the treatments for a given parameter measured at the end of the incubation did not find pure P-limitation in any chemical and biological parameters at three study sites. Primary production was consistently limited by N, and Hprok growth was not limited by N nor P in the Western Basin, but N-limited in the Ionian Basin, and N and P co-limited in the Levantine Basin. Our results demonstrated the gap between biogeochemical features and biological responses in terms of the limiting nutrient. We question the general notion that Mediterranean surface waters are limited by P alone during the stratified period.

  7. Satellite-based estimates of surface water dynamics in the Congo River Basin

    Science.gov (United States)

    Becker, M.; Papa, F.; Frappart, F.; Alsdorf, D.; Calmant, S.; da Silva, J. Santos; Prigent, C.; Seyler, F.

    2018-04-01

    In the Congo River Basin (CRB), due to the lack of contemporary in situ observations, there is a limited understanding of the large-scale variability of its present-day hydrologic components and their link with climate. In this context, remote sensing observations provide a unique opportunity to better characterize those dynamics. Analyzing the Global Inundation Extent Multi-Satellite (GIEMS) time series, we first show that surface water extent (SWE) exhibits marked seasonal patterns, well distributed along the major rivers and their tributaries, and with two annual maxima located: i) in the lakes region of the Lwalaba sub-basin and ii) in the "Cuvette Centrale", including Tumba and Mai-Ndombe Lakes. At an interannual time scale, we show that SWE variability is influenced by ENSO and the Indian Ocean dipole events. We then estimate water level maps and surface water storage (SWS) in floodplains, lakes, rivers and wetlands of the CRB, over the period 2003-2007, using a multi-satellite approach, which combines the GIEMS dataset with the water level measurements derived from the ENVISAT altimeter heights. The mean annual variation in SWS in the CRB is 81 ± 24 km3 and contributes to 19 ± 5% of the annual variations of GRACE-derived terrestrial water storage (33 ± 7% in the Middle Congo). It represents also ∼6 ± 2% of the annual water volume that flows from the Congo River into the Atlantic Ocean.

  8. Surface water of Little River basin in southeastern Oklahoma (with a section on quality of water by R. P. Orth)

    Science.gov (United States)

    Westfall, A.O.; Orth, Richard Philip

    1963-01-01

    This report summarizes basic hydrologic data of the surface water resources of Little River basin above the Oklahoma-Arkansas state line near Cerrogordo, Okla., and by analysis and interpretation, presents certain streamflow characteristics at specified points in the basin. Little River basin above the state line includes 2,269 square miles, of which about 250 square miles of the Mountain Fork River is in Arkansas. The climate is humid and the annual precipitation averages about 46 inches. Gross annual lake evaporation averages 49 inches per year. There are three reservoirs totaling 2,831,800 acre-feet of storage, either authorized or under construction in the basin. The average annual discharge at the gaging stations for the period 1930-61 is 674,900 acre-feet for Little River near Wright City; 1,273,000 acre-feet for Little River below Lukfata Creek, near Idabel; and 989,000 acre-feet for Mountain Fork River near Eagletown. The average annual discharge of Little River at the Oklahoma-Arkansas state line near Cerrogordo is 2,401,000 acre-feet. Flow-duration curves have been developed from daily records for the gaging stations. These curves show the percentage of time various rates of discharge have been equaled or exceeded. Procedures for defining the frequency of annual floods at any point in the basin are given. Low-flow frequency curves for the gaging stations defining the recurrence intervals of 7, 14 or 15, 30, 60, and 120 day mean flows have been prepared. Curves showing the relation of instantaneous discharge at specified upstream points to the daily mean discharge at two gaging stations are presented. The storage requirements for suplementing natural flows have been prepared for the gaging-station sites. Chemical analyses show that the surface water in the basin is suitable for domestic and industrial uses.

  9. Water balance dynamics in the Nile Basin

    Science.gov (United States)

    Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.

    2009-01-01

    Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.

  10. Comparative study of carbonic anhydrase activity in waters among different geological eco-environments of Yangtze River basin and its ecological significance.

    Science.gov (United States)

    Nzung'a, Sila Onesmus; Pan, Weizhi; Shen, Taiming; Li, Wei; Qin, Xiaoqun; Wang, Chenwei; Zhang, Liankai; Yu, Longjiang

    2018-04-01

    This study provides the presence of carbonic anhydrase (CA) activity in waters of the Yangtze River basin, China, as well as the correlation of CA activity with HCO 3 - concentration and CO 2 sink flux. Different degrees of CA activity could be detected in almost all of the water samples from different geological eco-environments in all four seasons. The CA activity of water samples from karst areas was significantly higher than from non-karst areas (PP3 - concentration (r=0.672, P2 sink flux (r=0.602, P=0.076) in karst areas. This suggests that CA in waters might have a promoting effect on carbon sinks for atmospheric CO 2 in karst river basins. In conditions of similar geological type, higher CA activity was generally detected in water samples taken from areas that exhibited better eco-environments, implying that the CA activity index of waters could be used as an indicator for monitoring ecological environments and protection of river basins. These findings suggest that the role of CA in waters in the karst carbon sink potential of river basins is worthy of further in-depth studies. Copyright © 2017. Published by Elsevier B.V.

  11. Design of a water quality monitoring network for the Limpopo River Basin in Mozambique

    Science.gov (United States)

    Chilundo, M.; Kelderman, P.; O´keeffe, J. H.

    The measurement of chemical, physical and biological parameters is important for the characterization of streams health. Thus, cost-effective and targeted water quality (WQ) monitoring programmes are required for proper assessment, restoration and protection of such systems. This research proposes a WQ monitoring network for the Limpopo River Basin (LRB) in Mozambique located in Southern Africa, a region prone to severe droughts. In this Basin both anthropogenic and natural driven processes, exacerbated by the increased water demand by the four riparian countries (Botswana, South Africa, Zimbabwe and Mozambique) are responsible for the degradation of surface waters, impairing their downstream use, either for aquatic ecosystem, drinking, industrial or irrigation. Hence, physico-chemical, biological and microbiological characteristics at 23 sites within the basin were studied in November 2006 and January 2007. The physico-chemical and microbiological samples were analyzed according to American Public Health Association (APHA) standard methods, while the biological monitoring working party method (BMWP) was used for biological assessment. The assessment of the final WQ condition at sampled points was done taking into account appropriate indexes, the Mozambican standards for receiving waters and the WHO guidelines for drinking WQ. The assessed data indicated that sites located at proximities to the border with upstream countries were contaminated with heavy metals. The Elephants subcatchment was found with a relatively better WQ, whereas the Changane subcatchment together with the effluent point discharges in the basin were found polluted as indicated by the low dissolved oxygen and high total dissolved solids, electric conductivity, total hardness, sodium adsorption ratio and low benthic macroinvertebrates taxa. Significant differences ( p < 0.05) were found for some parameters when the concentrations recorded in November and January were tested, therefore, indicating

  12. Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data

    Science.gov (United States)

    Abera, Wuletawu; Formetta, Giuseppe; Brocca, Luca; Rigon, Riccardo

    2017-06-01

    The Upper Blue Nile basin is one of the most data-scarce regions in developing countries, and hence the hydrological information required for informed decision making in water resource management is limited. The hydrological complexity of the basin, tied with the lack of hydrometeorological data, means that most hydrological studies in the region are either restricted to small subbasins where there are relatively better hydrometeorological data available, or on the whole-basin scale but at very coarse timescales and spatial resolutions. In this study we develop a methodology that can improve the state of the art by using available, but sparse, hydrometeorological data and satellite products to obtain the estimates of all the components of the hydrological cycle (precipitation, evapotranspiration, discharge, and storage). To obtain the water-budget closure, we use the JGrass-NewAge system and various remote sensing products. The satellite product SM2R-CCI is used for obtaining the rainfall inputs, SAF EUMETSAT for cloud cover fraction for proper net radiation estimation, GLEAM for comparison with NewAge-estimated evapotranspiration, and GRACE gravimetry data for comparison of the total water storage amounts available in the whole basin. Results are obtained at daily time steps for the period 1994-2009 (16 years), and they can be used as a reference for any water resource development activities in the region. The overall water-budget analysis shows that precipitation of the basin is 1360 ± 230 mm per year. Evapotranspiration accounts for 56 % of the annual water budget, runoff is 33 %, storage varies from -10 to +17 % of the water budget.

  13. Preliminary results of water quality assessment using phytoplankton and physicochemical approaches in the Huai River Basin, China.

    Science.gov (United States)

    Chen, Hao; Zuo, Qi-Ting; Zhang, Yong-Yong

    2017-11-01

    Water pollution has been a significant issue in the Huai River Basin (HRB) of China since the late 1970s. In July and December 2013, two field investigations were carried out at 10 sites along the main streams of the basin. The monitoring indices contained both physicochemical variables and the structure and composition of phytoplankton communities. The correlations between communities and physicochemical variables were analyzed using cluster analysis and redundancy analysis. Moreover, water quality was evaluated using the comprehensive nutrition state index (TLI) and Shannon-Wiener diversity index (H). Results indicated that more phytoplankton species were present in December than in July, but total density was less in December. Phytoplankton communities in the midstream of the Shaying River were affected by the same physicochemical factors throughout the year, but ammonia nitrogen and total phosphorus had the greatest influence on these sites in July and December, respectively. The water pollution status of the sampling sites was much greater in the Shaying River midstream than at other sites. TLI was more suitable than H for assessing water quality in the study area. These results provide valuable information for policy makers and stakeholders in water quality assessment, water ecosystem restoration, and sustainable basin management in the HRB.

  14. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    Science.gov (United States)

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  15. Climate Change Impacts on Water Availability and Use in the Limpopo River Basin

    OpenAIRE

    Tingju Zhu; Claudia Ringler

    2012-01-01

    This paper analyzes the effects of climate change on water availability and use in the Limpopo River Basin of Southern Africa, using a linked modeling system consisting of a semi-distributed global hydrological model and the Water Simulation Module (WSM) of the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT). Although the WSM simulates all major water use sectors, the focus of this study is to evaluate the implications of climate change on irrigation wat...

  16. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

    Science.gov (United States)

    Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-01-01

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946

  17. Does the Limpopo River Basin have sufficient water for massive irrigation development in the plains of Mozambique?

    NARCIS (Netherlands)

    Zaag, van der P.; Juizo, D.; Vilanculos, A.; Bolding, J.A.; Post Uiterweer, N.C.

    2010-01-01

    This paper verifies whether the water resources of the transboundary Limpopo River Basin are sufficient for the planned massive irrigation developments in the Mozambique part of this basin, namely 73,000 ha, in addition to existing irrigation (estimated at 9400 ha), and natural growth of common use

  18. A systems engineering analysis to examine the economic impact for treatment of tritiated water in the Hanford KE-Basin

    International Nuclear Information System (INIS)

    Villegas, A.; Clark, L.; Schmidt, A.

    1995-02-01

    Federal and state agencies have established a Tri-Party Agreement (TPA) to address some key environmental issues faced at the Hanford Site. Under the TPA, the Department of Energy is currently under a consent order to reduce the tritium concentration in the spent fuel storage basin for KE-Reactor from 3.0 μCi/L to 0.3 μCi/L in the KE spent fuel storage basin, starting in 1996. The 100KE and 100KW Area fuel storage basins (K-Basins) at Hanford were built in the early 1950s to receive and provide temporary storage for irradiated fuel from the now shutdown KE and KW production reactors. In 1977, the KE-Basin began to leak at a rate of 13.5 gpm (51 L/min.), but, decreased to 0.03 to 0.05 gpm (0. 13 to 0.19 L/min.) by 1980. In 1993, the leak increased to a rate of 0.42 gpm (1.6 L/min.). This engineering analysis examines the relative costs to reduce the tritium concentration KE-Basin water using a polyphosphazene polymer membrane under development at Pacific Northwest Laboratory. The estimated cost of using the membrane to reduce the tritium concentration is compared to three no-treatment alternatives that include: (1) disposing of the tritium-contaminated water directly to the Columbia River, (2) disposing of the contaminated water to the soil at the on-site Effluent Treatment Facility, and (3) disposing of the contaminated water by evaporation using solar evaporation ponds

  19. Geographical Information System, to support the management of water resource in rural basins

    International Nuclear Information System (INIS)

    Correa V, Paula Lizet; Velez U, Jaime Ignacio

    2002-01-01

    The implementation of a GIS support system for the management of water resources at a catchment scale is presented. This system is based upon the hidroSIG java software, which was developed within the Atlas Hidrologico de Colombia project. In the GIS database was included all the information required by the environmental authorities in charge of the water resources management, offering the possibility of displaying, consulting and evaluating different scenarios that could help to make decisions upon the assignation and use of the resource. As a first application of the GIS, a 35 km 2 river basin located in Rionegro Plateau was used. The applied methodology was developed in the following stages: gathering of the available information, processing of the digital topography, study of the dynamics of the climate in the zone, evaluation of the water availability, and evaluation of the demand and water balance. The results obtained show the importance of having continuous and articulated spatial information in a GIS, so permanent update of the information is allowed. It is concluded that the implemented GIS constitutes a valuable tool for planning and management of the hydric resource within a hydrographic basin

  20. Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin

    Science.gov (United States)

    Wei, Y.; Tang, D.; Gao, H.; Ding, Y.

    2015-12-01

    Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).

  1. Identifying and Remediating High Water Production Problems in Basin-Centered Formations

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Billingsley

    2005-12-01

    Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses

  2. Hydrologic analysis of the challenges facing water resources and sustainable development of Wadi Feiran basin, southern Sinai, Egypt

    Science.gov (United States)

    Ahmed, Ayman A.; Diab, Maghawri S.

    2018-04-01

    Wadi Feiran basin is one of the most promising areas in southern Sinai (Egypt) for establishing new communities and for growth in agriculture, tourism, and industry. The present challenges against development include water runoff hazards (flash flooding), the increasing water demand, and water scarcity and contamination. These challenges could be mitigated by efficient use of runoff and rainwater through appropriate management, thereby promoting sustainable development. Strategies include the mitigation of runoff hazards and promoting the natural and artificial recharge of aquifers. This study uses a watershed modeling system, geographic information system, and classification scheme to predict the effects of various mitigation options on the basin's water resources. Rainwater-harvesting techniques could save more than 77% of the basin's runoff (by volume), which could be used for storage and aquifer recharge. A guide map is provided that shows possible locations for the proposed mitigation options in the study basin. Appropriate measures should be undertaken urgently: mitigation of groundwater contamination (including effective sewage effluent management); regular monitoring of the municipal, industrial and agricultural processes that release contaminants; rationalization and regulation of the application of agro-chemicals to farmland; and regular monitoring of contaminants in groundwater. Stringent regulations should be implemented to prevent wastewater disposal to the aquifers in the study area.

  3. Ground-water quality in the Red River of the North Basin, Minnesota and North Dakota, 1991-95

    Science.gov (United States)

    Cowdery, T.K.

    1998-01-01

    Surveys of water quality in surficial, buried glacial, and Cretaceous aquifers in the Red River of the North Basin during 1991-95 showed that some major-ion, nutrient, pesticide, and radioactive-element concentrations differed by physiographic area and differed among these aquifer types. Waters in surficial aquifers in the Drift Prairie (west) and Lake Plain (central) physiographic areas were similar to each other but significantly higher than those in the Moraine (east) area in dissolved solids, sodium, potassium, sulfate, fluoride, silica, and uranium concentrations. Radium, iron, nitrate, and nitrite concentrations were also significantly different among these areas. Pesticides were detected in 12 percent of waters in surficial aquifers in the Drift Prairie area, 20 percent of those in the Lake Plain area, and 52 percent of those in the Moraine area. Triazines and bentazon accounted for 98 percent of summed pesticide concentrations in waters in surficial aquifers. Waters in buried glacial aquifers in the central one-third of the basin had significantly higher concentrations of dissolved solids, sodium, potassium, chloride, fluoride, and iron than did waters in surficial aquifers. No pesticides were detected in five samples from buried glacial aquifers or six samples from Cretaceous aquifers. Waters in all sampled aquifers had a calcium-magnesium ratio of about 1.75 ± 0.75 across the basin regardless of anionic composition.

  4. A Physical Assessment of the Opportunities for Improved Management of the Water Resources of the Bi-National Rio Grande/Rio Bravo Basin

    Science.gov (United States)

    Aparicio, J.; McKinney, D.; Valdes, J.; Guitron, A.; Thomas, G.

    2007-05-01

    The hydro-physical opportunities for expanding the beneficial uses of the fixed water supply in the Rio Grande/Bravo Basin to better satisfy an array of water management goals are examined. These include making agriculture more resilient to periodic conditions of drought, improving the reliability of supplies to cities and towns, and restoring lost environmental functions in the river system. This is a comprehensive, outcome-neutral, model- based planning exercise performed by some 20 technical, primarily non-governmental institutions from both countries, aimed at proposing strategies that can reduce future conflicts over water throughout the entire basin. The second track consists in generating a set of future water management scenarios that respond to the needs and objectives of the basin stakeholders in each segment and each country. An array of scenarios for improved water management has been developed for the lower Rio Grande/Rio Bravo basin in Texas and the Mexican state of Tamaulipas. Another set under development will focus on the Rio Conchos and the El Paso/Juarez region. Eventually, scenarios will be generated such that will comprehend the entire basin on both sides of the border. These scenarios are the product of consultations with agricultural water districts, governmental organizations and environmental NGOs. They include strategies for reducing the physical losses of water in the system, conservation transfers, improvements in the operations of the Mexican and international reservoirs, improvements in environmental flow conditions, improvements in reliability of water supplies, and drought coping strategies.These scenarios will be evaluated for hydrologic feasibility by the basin-wide model and the gaming exercises. Modeling is necessary to understand how these options will affect the entire system and how they can be crafted to maximize the benefits and avoid unintended or uncompensated effects. The scenarios that have the potential to provide large

  5. Decision support system for optimally managing water resources to meet multiple objectives in the Savannah River Basin

    Science.gov (United States)

    Roehl, Edwin A.; Conrads, Paul

    2015-01-01

    Managers of large river basins face conflicting demands for water resources such as wildlife habitat, water supply, wastewater assimilative capacity, flood control, hydroelectricity, and recreation. The Savannah River Basin, for example, has experienced three major droughts since 2000 that resulted in record low water levels in its reservoirs, impacting dependent economies for years. The Savannah River estuary contains two municipal water intakes and the ecologically sensitive freshwater tidal marshes of the Savannah National Wildlife Refuge. The Port of Savannah is the fourth busiest in the United States, and modifications to the harbor to expand ship traffic since the 1970s have caused saltwater to migrate upstream, reducing the freshwater marsh’s acreage more than 50 percent. A planned deepening of the harbor includes flow-alteration features to minimize further migration of salinity, whose effectiveness will only be known after all construction is completed.One of the challenges of large basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge, while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of

  6. Radioactive Air Emissions Notice of Construction for the 105-KW Basin integrated water treatment system filter vessel sparging vent

    Energy Technology Data Exchange (ETDEWEB)

    Kamberg, L.D.

    1998-02-23

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the Integrated Water Treatment System (IWTS) Filter Vessel Sparging Vent at 105-KW Basin. Additionally, the following description, and references are provided as the notices of startup, pursuant to 40 CFR 61.09(a)(1) and (2) in accordance with Title 40 Code of Federal Regulations, Part 61, National Emission Standards for Hazardous Air Pollutants. The 105-K West Reactor and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The IWTS, which has been described in the Radioactive Air Emissions NOC for Fuel Removal for 105-KW Basin (DOE/RL-97-28 and page changes per US Department of Energy, Richland Operations Office letter 97-EAP-814) will be used to remove radionuclides from the basin water during fuel removal operations. The purpose of the modification described herein is to provide operational flexibility for the IWTS at the 105-KW basin. The proposed modification is scheduled to begin in calendar year 1998.

  7. Assessment of groundwater quality and health risk in drinking water basin using GIS.

    Science.gov (United States)

    Şener, Şehnaz; Şener, Erhan; Davraz, Ayşen

    2017-02-01

    Eğirdir Lake basin was selected as the study area because the lake is the second largest freshwater lake in Turkey and groundwater in the basin is used as drinking water. In the present study, 29 groundwater samples were collected and analyzed for physico-chemical parameters to determine the hydrochemical characteristics, groundwater quality, and human health risk in the study area. The dominant ions are Ca 2+ , Mg 2+ , HCO 3 2- , and SO 4 2 . According to Gibbs plot, the predominant samples fall in the rock-water interaction field. A groundwater quality index (WQI) reveals that the majority of the samples falls under good to excellent category of water, suggesting that the groundwater is suitable for drinking and other domestic uses. The Ca-Mg-HCO 3 , Ca-HCO 3 , Ca-SO 4 -HCO 3 , and Ca-Mg-HCO 3 -SO 4 water types are the dominant water types depending on the water-rock interaction in the investigation area. Risk of metals to human health was then evaluated using hazard quotients (HQ) by ingestion and dermal pathways for adults and children. It was indicated that As with HQ ingestion >1 was the most important pollutant leading to non-carcinogenic concerns. It can be concluded that the highest contributors to chronic risks were As and Cr for both adults and children.

  8. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    Science.gov (United States)

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  9. Satellite-derived surface and sub-surface water storage in the Ganges–Brahmaputra River Basin

    Directory of Open Access Journals (Sweden)

    Fabrice Papa

    2015-09-01

    New hydrological insights: Basin-scale monthly SWS variations for the period 2003–2007 show a mean annual amplitude of ∼410 km3, contributing to about 45% of the Gravity Recovery And Climate Experiment (GRACE-derived total water storage variations (TWS. During the drought-like conditions in 2006, we estimate that the SWS deficit over the entire GB basin in July–August–September was about 30% as compared to other years. The SWS variations are then used to decompose the GB GRACE-derived TWS and isolate the variations of SSWS whose mean annual amplitude is estimated to be ∼550 km3. This new dataset of water storage variations represent an unprecedented source of information for hydrological and climate modeling studies of the ISC.

  10. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    Science.gov (United States)

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  11. Tritium in surface water of the Yenisei river Basin

    International Nuclear Information System (INIS)

    Bondareva, L.G.; Bolsunovsky, A.Ya.

    2005-01-01

    The paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining-and-Chemical Combine (MCC). In 2001-2003 the maximum tritium concentration in the Yenisei River did not exceed 4±1 Bq/L. It has been found that there are surface waters containing enhanced tritium, up to 168 Bq/L, as compared with the background values for the Yenisei River. There are two possible sources of tritium input. First, the last operating reactor of the MCC, which still uses the Yenisei water as coolant. Second, tritium may come from the deep aquifers at the Severny testing site. For the first time tritium has been found in two aquatic plant species of the Yenisei River with maximal tritium concentration 304 Bq/Kg wet weight. Concentration factors of tritium for aquatic plants are much higher than 1

  12. From Drought to Flood: An Analysis of the Water Balance of the Tuolumne River Basin During Extreme Conditions (2015 - 2017)

    Science.gov (United States)

    Hedrick, A. R.; Marks, D. G.; Havens, S.; Robertson, M.; Johnson, M.; Sandusky, M.; Bormann, K. J.; Painter, T. H.

    2017-12-01

    Closing the water balance of a snow-dominated mountain basin has long been a focal point of the hydrologic sciences. This study attempts to more precisely quantify the solid precipitation inputs to a basin using the iSnobal energy balance snowmelt model and assimilated snow depth information from the Airborne Snow Observatory (ASO). Throughout the ablation seasons of three highly dissimilar consecutive water years (2015 - 2017), the ASO captured high resolution snow depth snapshots over the Tuolumne River Basin in California's Central Sierra Nevada. These measurements were used to periodically update the snow depth state variable of iSnobal, thereby nudging the estimates of water storage (snow water equivalent, or SWE) and melt (surface water input, or SWI) toward a more accurate solution. Once precipitation inputs and streamflow outputs are better constrained, the additional loss terms of the water mass balance equation (i.e. groundwater recharge and evapotranspiration) can be estimated with less uncertainty.

  13. Partitioning of the water budget in the main river basins in High Mountain Asia with GRACE, model output, and other observations.

    Science.gov (United States)

    Velicogna, I.; Ciraci, E.; Grogan, D. S.; Lammers, R. B.

    2017-12-01

    Access to freshwater is important as world populations grow, especially in High Mountain Asia, where glaciers are a significant component of the freshwater resources, particularly in summer. Glaciers are sensitive to climate perturbations and affected by climate change. Our understanding of the contribution of glacier runoff to specific watersheds, and projections of glacier runoff in a warming climate, are critical to inform decisions, management and policy development. Here, we quantify changes in glacier mass balance in HMA using GRACE data and determine their contribution to river basin hydrology. We use GRACE data to estimate the HMA glacier mass mas balance and compare the results with changes in total water storage (TWS) for the major watersheds in the HMA regions. We designed ad-hoc mascon configurations to calculate the upstream glacier change in mass balance and contribution to major river basins water supply, determined appropriate corrections and uncertainties for the signal and evaluated the results via comparison with the Water Balance Model (WBM) output and other data (re-analysis data and satellite-derived precipitation and evapotranspiration). Most of the glacier loss is from the Himalaya region (Himalaya, Hengduan Shan S and E Tibet), whereas the western sectors (E and W Tien Shan; and Hindu Kush, Karakoram, W Kunlun, Pamir, Hissar Alay) experienced smaller losses but with larger interannual variability driven by changes in the westerly-driven winter precipitation. For the Indus basin, to evaluate the glacier contribution to the total water budget, we examine the contribution of the upper basin to the lower basin TWS change. Over the Upper Indus basin, we find that the seasonal decline in total water storage between May and September averages 88 Gt during 2002-2012. TRMM cumulative precipitation amounts to 119 Gt, leaving a runoff and evapotranspiration component of 207 Gt. This estimate compares well with an estimate for the WBM modeled runoff of

  14. Collaborative Adaptation Planning for Water Security: Preliminary Lessons, Challenges, and the Way Forward for Maipo Basin Adaptation Plan, Chile

    Science.gov (United States)

    Vicuna, S.; Scott, C. A.; Bonelli, S.; Bustos, E.; Meza, F. J.

    2014-12-01

    The Maipo basin holds 40% of Chile's total population and almost half of the country's Gross Domestic Product. The basin is located in the semiarid central region of the country and, aside from the typical pressures of growth in developing country basins, the Maipo river faces climate change impacts associated with a reduction in total runoff and changes in its seasonality. Surface water is the main water source for human settlements and economic activities including agriculture. In 2012 we started a research project to create a climate variability and climate change adaptation plan for the basin. The pillars of the plan are co-produced by researchers and a Scenario Building Team (SBT) with membership of relevant water and land use stakeholders (including from civil society, public and private sectors) in the basin. Following similar experiences in other regions in the world that have faced the challenges of dealing with long term planning under uncertainty, the project has divided the task of developing the plan into a series of interconnected elements. A critical first component is to work on the desired vision(s) of the basin for the future. In this regards, the "water security" concept has been chosen as a framework that accommodates all objectives of the SBT members. Understanding and quantifying the uncertainties that could affect the future water security of the basin is another critical aspect of the plan. Near and long term climate scenarios are one dimension of these uncertainties that are combined with base development uncertainties such as urban growth scenarios. A third component constructs the models/tools that allows the assessment of impacts on water security that could arise under these scenarios. The final critical component relates to the development of the adaptation measures that could avoid the negative impacts and/or capture the potential opportunities. After two years in the development of the adaptation plan a series of results has been

  15. Ecological effects and potential risks of the water diversion project in the Heihe River Basin.

    Science.gov (United States)

    Zhang, Mengmeng; Wang, Shuai; Fu, Bojie; Gao, Guangyao; Shen, Qin

    2018-04-01

    To curb the severe ecological deterioration in the lower Heihe River Basin (HRB) in northwest China, a water diversion project was initiated in 2000. A comprehensive analysis of the ecological effects and potential risks associated with the project is needed. We assessed the hydrological and ecological achievements, and also analyzed the potential problems after the project was completed. We found that since the project began the hydrological regime has changed, with more than 57.82% of the upstream water being discharged to the lower reaches on average. As a result, the groundwater level in the lower reaches has risen; the terminal lake has gradually expanded to a maximum area in excess of 50km 2 since 2010, and there has been a significant recovery of vegetation in the riparian zone and the Ejin core oases, which represents the initial rehabilitation of the degraded downstream environment. Additionally, the economy of Ejin has developed spectacularly, with an annual growth rate of 28.06%. However, in the middle reaches, the average groundwater level has continuously declined by a total of 5.8m and significant degradation of the vegetation has occurred along the river course. The discrepancy in the water allocation between the middle and lower reaches has intensified. This highlights the inability of the current water diversion scheme to realize further ecological restoration and achieve sustainable development throughout the whole basin. In future water management programs, we recommend that water allocation is coordinated by considering the basin as an integrated entity and to scientifically determine the size of the midstream farmland and downstream oasis; restrict non-ecological water use in the lower reaches, and jointly dispatch the surface water and groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Study of Mechanisms for Development and Strengthening of Water User Cooperatives (Case Study of Aras River Basin): Application of AHP Method

    OpenAIRE

    Rohallah maghabl

    2014-01-01

    Water user cooperatives were formed due to consideration to people's empowerment and participation in water investment and management. The purpose of this study was to investigate the mechanisms of development and strengthening of water user cooperatives in the Aras River Basin. The study population consisted of the management board members of the water user cooperatives in the Aras Basin in the year 2012. Respondents were selected by purposeful stratified sampling method. Having the data col...

  17. An analytical study on nested flow systems in a Tóthian basin with a periodically changing water table

    Science.gov (United States)

    Zhao, Ke-Yu; Jiang, Xiao-Wei; Wang, Xu-Sheng; Wan, Li; Wang, Jun-Zhi; Wang, Heng; Li, Hailong

    2018-01-01

    Classical understanding on basin-scale groundwater flow patterns is based on Tóth's findings of a single flow system in a unit basin (Tóth, 1962) and nested flow systems in a complex basin (Tóth, 1963), both of which were based on steady state models. Vandenberg (1980) extended Tóth (1962) by deriving a transient solution under a periodically changing water table in a unit basin and examined the flow field distortion under different dimensionless response time, τ∗. Following Vandenberg's (1980) approach, we extended Tóth (1963) by deriving the transient solution under a periodically changing water table in a complex basin and examined the transient behavior of nested flow systems. Due to the effect of specific storage, the flow field is asymmetric with respect to the midline, and the trajectory of internal stagnation points constitutes a non-enclosed loop, whose width decreases when τ∗ decreases. The distribution of the relative magnitude of hydraulic head fluctuation, Δh∗ , is dependent on the horizontal distance away from a divide and the depth below the land surface. In the shallow part, Δh∗ decreases from 1 at the divide to 0 at its neighboring valley under all τ∗, while in the deep part, Δh∗ reaches a threshold, whose value decreases when τ∗ increases. The zones with flowing wells are also found to change periodically. As water table falls, there is a general trend of shrinkage in the area of zones with flowing wells, which has a lag to the declining water table under a large τ∗. Although fluxes have not been assigned in our model, the recharge/discharge flux across the top boundary can be obtained. This study is critical to understand a series of periodically changing hydrogeological phenomena in large-scale basins.

  18. Understanding the drivers of the future water gap in the Indus-Ganges-Brahmaputra basins

    Science.gov (United States)

    Immerzeel, W. W.; Wijngaard, R. R.; Biemans, H.; Lutz, A. F.

    2017-12-01

    The Indus, Ganges, and Brahmaputra (IGB) river systems provide water resources for the agricultural, domestic and industrial sectors sustaining the lives of about 700 million people. The region is globally a hotspot for climate change as the headwaters of these rivers are fed by melt water from snow and glaciers, both strongly influenced by temperature change. In addition, the hydrology in the region is determined by the monsoon and its future dynamics as a results of climate change remains very uncertain. Simultaneously, the population is projected to grow rapidly over the coming decades, which in combination with strong economic developments, will likely result in a rapid increase in water demand. In this study we attempt to quantify the future water gap in the IGB and attribute this water gap to climate change and socio-economic growth. For the upstream mountainous parts of the basins we use the SPHY model, which is calibrated based on historical streamflow and glacier mass balance data and forced by the latest CMIP5 future climate model data for RCP4.5 and 8.5. Output of this model feeds into the downstream LPJmL model, which allows assessment of downstream climate change impacts and projected changes in water demand as a result of socio-economic developments. The LPJmL model is run for different combinations of RCPs and Shared Socio Economic Pathways (SSPs). Our results show that for the IGB as a whole climate change will increase water availability in the coming decades, due to an overall, albeit uncertain, increase in monsoon precipitation in combination with a sustained melt water supply from the upstream parts of the basins. However, irrespective of the SSP and RCP, the water demand as a result of socio-economic growth is expected to increase extremely fast in the near future and this is likely to be the main adaptation challenge for the IGB as far as water shortages are concerned. Our results also show that regional and temporal variation in the water gap

  19. The evolution and performance of river basin management in the Murray-Darling Basin

    Directory of Open Access Journals (Sweden)

    Andrew Ross

    2016-09-01

    Full Text Available We explore bioregional management in the Murray-Darling Basin (MDB in Australia through the institutional design characteristics of the MDB River Basin Organization (RBO, the actors and organizations who supported and resisted the establishment of the RBO, and the effectiveness of the RBO. During the last 25 years, there has been a major structural reform in the MDB RBO, which has changed from an interstate coordinating body to an Australian government agency. Responsibility for basin management has been centralized under the leadership of the Australian government, and a comprehensive integrated Basin plan has been adopted. The driving forces for this centralization include national policy to restore river basins to sustainable levels of extraction, state government difficulties in reversing overallocation of water entitlements, the millennium drought and its effects, political expediency on the part of the Australian government and state governments, and a major injection of Australian government funding. The increasing hierarchy and centralization of the MDB RBO does not follow a general trend toward multilevel participative governance of RBOs, but decentralization should not be overstated because of the special circumstances at the time of the centralization and the continuing existence of some decentralized elements, such as catchment water plans, land use planning, and water quality. Further swings in the centralization-decentralization pendulum could occur. The MDB reform has succeeded in rebalancing Basin water allocations, including an allocation for the environment and reduced diversion limits. There are some longer term risks to the implementation of reform, including lack of cooperation by state governments, vertical coordination difficulties, and perceived reductions in the accountability and legitimacy of reform at the local level. If implementation of the Basin plan is diverted or delayed, a new institution, the Commonwealth

  20. A GIS-based Model for Urban Change and Implications for Water Quality in the Pontchartrain Basin

    Science.gov (United States)

    Carstens, D.; Amer, R. M.

    2017-12-01

    The combination of remote sensing techniques and Geographic Information Systems (GIS) to measure water quality allows researchers to monitor changes in various water quality parameters over temporal and spatial scales that are not always readily apparent from in situ measurements. Water has a distinct spectral behavior in comparison to soil, vegetation and urban, and therefore can be distinguished from surrounding environments. This study involves using remote sensing and GIS methods to map urban sprawl and its resulting influences on water quality in the Pontchartrain Basin over the last three decades. Two images of Landsat Thematic Mapper (TM) were taken in October 1985 and two images of Landsat Operational Land Imager (OLI) were taken in 2015 were atmospherically corrected and processed to map urban sprawl and influences on water quality of Pontchartrain Basin in the last three decades. To accomplish this, a normalized difference building index (NDBI) was developed for Landsat images. The NDBI was calculated from (NIR - SWIR) / (NIR + SWIR), where SWIR is the longest wavelength. The normalized difference vegetation index (NDVI), the normalized difference soil index (NDSI), and the normalized difference water index (NDWI) were also calculated for Landsat images. A GIS model was developed by integrating the NDBI, NDVI, NDSI, and NDWI, and yielded urban/non-urban/water boundary maps with 30-m resolution. Results indicate that urban areas have increased approximately from 25,643 km2 to 26,677 km2, which represents about 4.0% change from non-urban to urban in the last 3 decades. The results are in a good agreement with the U.S. Census data, which indicated that there is a 12.25% increase in population over the last 25 years in the 16 parishes of the Pontchartrain Basin. Urban changes were compared with changes of water quality parameters in PONTCHARTRAIN BASIN, which include pH, specific conductance, nitrogen, phosphorous, and dissolved oxygen. The results show that