Sample records for salton sea geothermal field

  1. Sources of subsidence at the Salton Sea Geothermal Field (United States)

    Barbour, Andrew J.; Evans, Eileen; Hickman, Stephen H.; Eneva, Mariana


    At the Salton Sea Geothermal Field (SSGF) in Southern California, surface deformation associated with geologic processes including sediment compaction, tectonic strain, and fault slip may be augmented by energy production activities. Separating the relative contributions from natural and anthropogenic sources is especially important at the SSGF, which sits at the apex of a complex tectonic transition zone connecting the southern San Andreas Fault with the Imperial Fault; but this has been a challenging task so far. Here we analyze vertical surface velocities obtained from the persistent scatterer InSAR method and find that two of the largest subsidence anomalies can be represented by a set of volumetric strain nuclei at depths comparable to geothermal well completion zones. In contrast, the rates needed to achieve an adequate fit to the magnitudes of subsidence are almost an order of magnitude greater than rates reported for annual changes in aggregate net-production volume, suggesting that the physical mechanism responsible for subsidence at the SSGF is a complicated interplay between natural and anthropogenic sources.

  2. Thermal and petrologic constraints on lower crustal melt accumulation under the Salton Sea Geothermal Field (United States)

    Karakas, Ozge; Dufek, Josef; Mangan, Margaret T.; Wright, Heather M.; Bachmann, Olivier


    In the Salton Sea region of southern California (USA), concurrent magmatism, extension, subsidence, and sedimentation over the past 0.5 to 1.0 Ma have led to the creation of the Salton Sea Geothermal Field (SSGF)-the second largest and hottest geothermal system in the continental United States-and the small-volume rhyolite eruptions that created the Salton Buttes. In this study, we determine the flux of mantle-derived basaltic magma that would be required to produce the elevated average heat flow and sustain the magmatic roots of rhyolite volcanism observed at the surface of the Salton Sea region. We use a 2D thermal model to show that a lower-crustal, partially molten mush containing rate) given extension rates at or below the current value of ∼0.01 m/yr (Brothers et al., 2009). These regions of partial melt are a natural consequence of a thermal regime that scales with average surface heat flow in the Salton Trough, and are consistent with seismic observations. Our results indicate limited melting and assimilation of pre-existing rocks in the lower crust. Instead, we find that basalt fractionation in the lower crust produces derivative melts of andesitic to dacitic composition. Such melts are then expected to ascend and accumulate in the upper crust, where they further evolve to give rise to small-volume rhyolite eruptions (Salton Buttes) and fuel local spikes in surface heat flux as currently seen in the SSGF. Such upper crustal magma evolution, with limited assimilation of hydrothermally altered material, is required to explain the slight decrease in δ18 O values of zircons (and melts) that have been measured in these rhyolites.

  3. Irregular focal mechanisms observed at Salton Sea Geothermal Field: Possible influences of anthropogenic stress perturbations (United States)

    Crandall-Bear, Aren; Barbour, Andrew J.; Schoenball, Martin; Schoenball, Martin


    At the Salton Sea Geothermal Field (SSGF), strain accumulation is released through seismic slip and aseismic deformation. Earthquake activity at the SSGF often occurs in swarm-like clusters, some with clear migration patterns. We have identified an earthquake sequence composed entirely of focal mechanisms representing an ambiguous style of faulting, where strikes are similar but deformation occurs due to steeply-dipping normal faults with varied stress states. In order to more accurately determine the style of faulting for these events, we revisit the original waveforms and refine estimates of P and S wave arrival times and displacement amplitudes. We calculate the acceptable focal plane solutions using P-wave polarities and S/P amplitude ratios, and determine the preferred fault plane. Without constraints on local variations in stress, found by inverting the full earthquake catalog, it is difficult to explain the occurrence of such events using standard fault-mechanics and friction. Comparing these variations with the expected poroelastic effects from local production and injection of geothermal fluids suggests that anthropogenic activity could affect the style of faulting.

  4. Geological, Geophysical, And Thermal Characteristics Of The Salton Sea Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Kasameyer, P. W.; Tewhey, J. D.


    The Salton Sea Geothermal Field is the largest water-dominated geothermal field in the Salton Trough in Southern California. Within the trough, local zones of extension among active right-stepping right-lateral strike-slip faults allow mantle-derived magmas to intrude the sedimentary sequence. The intrusions serves as heat sources to drive hydrothermal systems. We can characterize the field in detail because we have an extensive geological and geophysical data base. The sediments are relatively undeformed and can be divided into three categories as a function of depth: (1) low-permeability cap rock, (2) upper reservoir rocks consisting of sandstones, siltstones, and shales that were subject to minor alterations, and (3) lower reservoir rocks that were extensively altered. Because of the alteration, intergranular porosity and permeability are reduced with depth. permeability is enhanced by renewable fractures, i.e., fractures that can be reactivated by faulting or natural hydraulic fracturing subsequent to being sealed by mineral deposition. In the central portion of the field, temperature gradients are high near the surface and lower below 700 m. Surface gradients in this elliptically shaped region are fairly constant and define a thermal cap, which does not necessarily correspond to the lithologic cap. At the margin of the field, a narrow transition region, with a low near-surface gradient and an increasing gradient at greater depths, separates the high temperature resource from areas of normal regional gradient. Geophysical and geochemical evidence suggest that vertical convective motion in the reservoir beneath the thermal cap is confined to small units, and small-scale convection is superimposed on large-scale lateral flow of pore fluid. Interpretation of magnetic, resistivity, and gravity anomalies help to establish the relationship between the inferred heat source, the hydrothermal system, and the observed alteration patterns. A simple hydrothermal model is

  5. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California. (United States)

    Taira, Taka'aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael


    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes.

  6. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California (United States)

    Taira, Taka’aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael


    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes. PMID:29326977

  7. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region (United States)

    McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.


    The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from

  8. Discovering new events beyond the catalogue—application of empirical matched field processing to Salton Sea geothermal field seismicity (United States)

    Wang, Jingbo; Templeton, Dennise C.; Harris, David B.


    Using empirical matched field processing (MFP), we compare 4 yr of continuous seismic data to a set of 195 master templates from within an active geothermal field and identify over 140 per cent more events than were identified using traditional detection and location techniques alone. In managed underground reservoirs, a substantial fraction of seismic events can be excluded from the official catalogue due to an inability to clearly identify seismic-phase onsets. Empirical MFP can improve the effectiveness of current seismic detection and location methodologies by using conventionally located events with higher signal-to-noise ratios as master events to define wavefield templates that could then be used to map normally discarded indistinct seismicity. Since MFP does not require picking, it can be carried out automatically and rapidly once suitable templates are defined. In this application, we extend MFP by constructing local-distance empirical master templates using Southern California Earthquake Data Center archived waveform data of events originating within the Salton Sea Geothermal Field. We compare the empirical templates to continuous seismic data collected between 1 January 2008 and 31 December 2011. The empirical MFP method successfully identifies 6249 additional events, while the original catalogue reported 4352 events. The majority of these new events are lower-magnitude events with magnitudes between M0.2-M0.8. The increased spatial-temporal resolution of the microseismicity map within the geothermal field illustrates how empirical MFP, when combined with conventional methods, can significantly improve seismic network detection capabilities, which can aid in long-term sustainability and monitoring of managed underground reservoirs.

  9. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.; Cohen, L.H.


    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  10. Analysis of P- and S-wave VSP (vertical seismic profile) data from the Salton Sea Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Daley, T.M.


    To understand any geophysical data, geologic information is necessary. This thesis will begin with a summary of the geology of the Salton Trough region and the Salton Sea Geothermal Field (SSGF). The information available from the SSSDP will also be summarized. After the geologic summary, the design of the VSP will be discussed, including acquisition equipment and procedures. The data processing procedures and software used will be discussed as a separate section. Processing procedures will also be described at various times in the thesis where more specialized procedures are used. Data analysis makes up the bulk of the thesis and it is divided into a number of sections detailing the basic VSP interpretation, the anisotropy analysis and the fracture detection and orientation analysis. A combined interpretation of the results, with probable geologic causes for observed events, is presented as a separate section from the data analysis. Finally, a summary of results for each of the goals stated above will be given. The reader should note that a large volume of data were collected and various display methods were used (from the standard wiggle-trace to three-component hodographs). Much of these data are left in the appendices with important or representative figures given in the body of the thesis. Also given in the appendices are listings of FORTRAN programs developed in conjunction with the thesis work. 46 refs., 63 figs., 12 tabs.

  11. Technical Proposal Salton Sea Geothermal Power Pilot Plant Program

    Energy Technology Data Exchange (ETDEWEB)



    The proposed Salton Sea Geothermal Power Pilot Plant Program comprises two phases. The objective of Phase 1 is to develop the technology for power generation from high-temperature, high-salinity geothermal brines existing in the Salton Sea known geothermal resources area. Phase 1 work will result in the following: (a) Completion of a preliminary design and cost estimate for a pilot geothermal brine utilization facility. (b) Design and construction of an Area Resource Test Facility (ARTF) in which developmental geothermal utilization concepts can be tested and evaluated. Program efforts will be divided into four sub-programs; Power Generation, Mineral Extraction, Reservoir Production, and the Area Resources Test Facility. The Power Generation Subprogram will include testing of scale and corrosion control methods, and critical power cycle components; power cycle selection based on an optimization of technical, environmental and economic analyses of candidate cycles; preliminary design of a pilot geothermal-electric generating station to be constructed in Phase 2 of this program. The Mineral Extraction Subprogram will involve the following: selection of an optimum mineral recovery process; recommendation of a brine clean-up process for well injection enhancement; engineering, construction and operation of mineral recovery and brine clean-up facilities; analysis of facility operating results from environmental, economical and technical point-of-view; preliminary design of mineral recovery and brine clean-up facilities of sufficient size to match the planned pilot power plant. The Reservoir Production Subprogram will include monitoring the operation and maintenance of brine production, handling and injection systems which were built with private funding in phase 0, and monitoring of the brine characteristics and potential subsidence effects during well production and injection. Based on the above, recommendations and specifications will be prepared for production and

  12. Correlation of wireline log characteristics with hydrothermal alteration and other reservoir properties of the Salton Sea and Westmorland geothermal fields, Imperial Valley, California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Muramoto, F.S.; Elders, W.A.


    A detailed study of wireline logs from 11 wells in the Salton Sea and Westmorland geothermal systems was undertaken in order to determine the effects of hydrothermal alteration on the response of electrical and gamma-gamma density well logs. For the Salton Sea geothermal field, definite correspondence between log responses and hydrothermal mineralogy is evident, which in turn is related to the physical properties of the rocks. Three hydrothermal and one unaltered zone can be identified from log data on shales. These are: (1) the unaltered montmorillonite zone (<100/sup 0/ to 190/sup 0/C); (2) the illite zone (100/sup 0/ to 190/sup 0/C to 230/sup 0/ to 250/sup 0/C); (3) the chlorite zone (230/sup 0/ to 250/sup 0/C to 290/sup 0/ to 300/sup 0/C); and (4) the feldspar zone (>290/sup 0/ to 300/sup 0/C). The characteristic responses on well logs by which these zones are identified result primarily from changes in clay mineralogy of the shales and increases in density with progressive hydrothermal metamorphism. In the Westmorland geothermal field, differentiating mineral zones from log responses was only partially successful. However, analyses of both well log and petrologic data for wells Landers 1 and Kalin Farms 1 suggest that the former is heating up and the latter is cooling.

  13. Double Difference Earthquake Locations at the Salton Sea Geothermal Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, K L; Hutchings, L J; Bonner, B P; Foxall, W; Kasameyer, P W


    The purpose of this paper is to report on processing of raw waveform data from 4547 events recorded at 12 stations between 2001 and 2005 by the Salton Sea Geothermal Field (SSGF) seismic network. We identified a central region of the network where vertically elongated distributions of hypocenters have previously been located from regional network analysis. We process the data from the local network by first autopicking first P and S arrivals; second, improving these with hand picks when necessary; then, using cross-correlation to provide very precise P and S relative arrival times. We used the HypoDD earthquake location algorithm to locate the events. We found that the originally elongated distributions of hypocenters became more tightly clustered and extend down the extent of the study volume at 10 Km. However, we found the shapes to depend on choices of location parameters. We speculate that these narrow elongated zones of seismicity may be due to stress release caused by fluid flow.

  14. A Strategy for Interpretation of Microearthquake Tomography Results in the Salton Sea Geothermal Field Based upon Rock Physics Interpretations of State 2-14 Borehole Logs

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B; Hutchings, L; Kasameyer, P


    We devise a strategy for analysis of Vp and Vs microearthquake tomography results in the Salton Sea geothermal field to identify important features of the geothermal reservoir. We first interpret rock properties in State 2-14 borehole based upon logged core through the reservoir. Then, we interpret seismic recordings in the well (Daley et al., 1988) to develop the strategy. We hypothesize that mapping Poisson's ratio has two applications for the Salton Sea geothermal reservoir: (1) to map the top of the reservoir, and (2) as a diagnostic for permeable zones. Poisson's ratio can be obtained from Vp and Vs. In the State 2-14 borehole, Poisson's ratio calculated from large scale averages ({approx} 150 m) shows a monotonic decrease with depth to about 1300 m, at which point it increases with depth. Our model is that the monotonic decrease is due to compaction, and the increase below 1300 m is due to the rocks being hydrothermally altered. We hypothesize we can map the depth to alteration by identifying the transition from decreasing to increasing values; and thus, map the top of the reservoir, which is associated with a known increase in sulfite, chlorite, and epidote alteration that may be indicative of hydrothermal activity. We also observe (from Daley et. al. plots) an anomalous drop in Poisson's ratio at a depth of about 900 m, within a sandstone formation. The sandstone has a P-wave velocity significantly higher than the siltstone above it but a lower velocity in the lower half of the formation relative to the upper half. We interpret the relative decrease in velocity to be due to fracturing and chemical alteration caused by permeability. We conclude that using Vp and Vs tomography results to obtain images of Poisson's ratio has the potential to identify significant features in the geothermal reservoir in this geologic setting. Seismic attenuation tomography results (mapped as Qp and Qs) should also be useful for evaluating geothermal

  15. Outdoor recreational use of the Salton Sea with reference to potential impacts of geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Twiss, R.; Sidener, J.; Bingham, G.; Burke, J.E.


    The objectives of this study were to describe the types, levels, and locations of outdoor recreation uses in the Salton Sea area, the number and principal activities of visitors, and to estimate the consequences upon outdoor recreation of geothermal development and other activities that might affect the Salton Sea. It is concluded that since the Salton Sea is considered legally to be a sump for agricultural, municipal, and presumably geothermal waste waters, recreational use of the Sea for fishing and boating (from present marinas) will undoubtedly continue to decline, unless there is a major policy change. Use of the shoreline for camping, the surrounding roads and lands for scenic viewing, ORV events, and retirement or recreation communities will not decline, and will probably increase, assuming control of hydrogen sulfide odors. Two ways in which the fishing and present boating facilities could be returned to a wholly usable steady state are discussed. One is by construction of a diked evaporation pond system at the south end of the Sea. This would allow a means of control over both water level and salinity. Another means, less costly but more difficult to effectively control, would be to budget geothermal plant use of, and disposal of wastes in, Salton Sea water. (JGB)

  16. A brine interface in the Salton Sea Geothermal System, California: Fluid geochemical and isotopic characteristics (United States)

    Williams, Alan E.; McKibben, Michael A.


    Data from 71 geothermal production intervals in 48 wells from the Salton Sea Geothermal System (SSGS) indicate that fluids in that system cluster into two distinct populations in terms of their salinity and their stable isotopic compositions. The distinctive, hot, hypersaline brine (typically >20 wt% total dissolved solids) for which the SSGS is known is overlain by a cooler (barrier to convective heat and mass transfer in the SSGS, isolating the hypersaline reservoir from overlying dilute fluids. A lithologic "cap" implied by previous SSGS models is unnecessary in such a stratified system since heat and mass transfer across the interface must occur by slow conductive, diffusional and interface mixing processes regardless of local permeability.

  17. Double-diffusive convection in geothermal systems: the salton sea, California, geothermal system as a likely candidate (United States)

    Fournier, R.O.


    Much has been published about double-diffusive convection as a mechanism for explaining variations in composition and temperature within all-liquid natural systems. However, relatively little is known about the applicability of this phenomenon within the heterogeneous rocks of currently active geothermal systems where primary porosity may control fluid flow in some places and fractures may control it in others. The main appeal of double-diffusive convection within hydrothermal systems is-that it is a mechanism that may allow efficient transfer of heat mainly by convection, while at the same time maintaining vertical and lateral salinity gradients. The Salton Sea geothermal system exhibits the following reservoir characteristics: (1) decreasing salinity and temperature from bottom to top and center toward the sides, (2) a very high heat flow from the top of the system that seems to require a major component of convective transfer of heat within the chemically stratified main reservoir, and (3) a relatively uniform density of the reservoir fluid throughout the system at all combinations of subsurface temperature, pressure, and salinity. Double-diffusive convection can account for these characteristics very nicely whereas other previously suggested models appear to account either for the thermal structure or for the salinity variations, but not both. Hydrologists, reservoir engineers, and particularly geochemists should consider the possibility and consequences of double-diffusive convection when formulating models of hydrothermal processes, and of the response of reservoirs to testing and production. ?? 1990.

  18. Reservoir engineering report for the magma-SDG and E geothermal experimental site near the Salton Sea, California

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, R.C.


    A description of the Salton Sea geothermal reservoir is given and includes approximate fault locations, geology (lithology), temperatures, and estimates of the extent of the reservoir. The reservoir's temperatures and chemical composition are also reviewed. The flow characteristics are discussed after analyses of drillstem tests and extended well tests. The field production, reserves and depletion are estimated, and the effects of fractures on flow and depletion are discussed. The reservoir is believed to be separated into an ''upper'' and ''lower'' portion by a relatively thick and continuous shale layer. The upper reservoir is highly porous, with high permeability and productivity. The lower reservoir is at least twice as large as the upper but has much lower storativity and permeability in the rock matrix. The lower reservoir may be highly fractured, and its temperatures and dissolved solids are greater than those of the upper reservoir. The proven reserves of heat in the upper reservoir are about /sup 1///sub 4/ GW.yr (in the fluid) and /sup 1///sub 3/ GW.yr (in the rock). In the lower reservoir the proven reserves of heat are 5/sup 3///sub 4/ GW.yr (in the fluid) and 17 GW.yr (in the rock). Unproven reserves greatly exceed these numbers. Injection tests following well completion imply that hydraulic fracturing has taken place in two of the SDG and E wells and at least one other well nearby.

  19. Snag Fields and Roosting and Nesting Sites - Salton Sea [ds393 (United States)

    California Department of Resources — This data set shows all the on-water or very nearshore avian resources used for nesting and roosting by specific bird species of interest around the Salton Sea....

  20. 2010 USGS Lidar: Salton Sea (CA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The USGS Salton Sea project encompasses a 5-kilometer buffer around the Salton Sea, California. Dewberry classified LiDAR for a project boundary that touches 623...

  1. The Potential for Renewable Energy Development to Benefit Restoration of the Salton Sea. Analysis of Technical and Market Potential

    Energy Technology Data Exchange (ETDEWEB)

    Gagne, Douglas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Haase, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oakleaf, Brett [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hurlbut, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wall, Anna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pienkos, Philip [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melius, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This report summarizes the potential for renewable energy development in the Salton Sea region, as well as the potential for revenues from this development to contribute financially to Salton Sea restoration costs. It considers solar, geothermal, biofuels or nutraceutical production from algae pond cultivation, desalination using renewable energy, and mineral recovery from geothermal fluids.

  2. Quarterly Fishery Surveys - Salton Sea [ds428 (United States)

    California Department of Resources — In the spring of 2003, California Department of Fish and Game (CDFG) personnel began quarterly sampling of Salton Sea fish at fourteen stations around the sea, as...

  3. Geothermal development of the Salton Trough, California and Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T.D.; Howard, J.H.; Lande, D.P. (eds.)


    A geological description is given of the Salton Trought followed by a chronological history of attempts to exploit the area's geothermal resources. In addition, detailed descriptions are given of all ongoing geothermal projects in the area and the organizations conducting them.

  4. Salton Sea ecosystem monitoring and assessment plan (United States)

    Case(compiler), H. L.; Boles, Jerry; Delgado, Arturo; Nguyen, Thang; Osugi, Doug; Barnum, Douglas A.; Decker, Drew; Steinberg, Steven; Steinberg, Sheila; Keene, Charles; White, Kristina; Lupo, Tom; Gen, Sheldon; Baerenklau, Ken A.


    The Salton Sea, California’s largest lake, provides essential habitat for several fish and wildlife species and is an important cultural and recreational resource. It has no outlet, and dissolved salts contained in the inflows concentrate in the Salton Sea through evaporation. The salinity of the Salton Sea, which is currently nearly one and a half times the salinity of ocean water, has been increasing as a result of evaporative processes and low freshwater inputs. Further reductions in inflows from water conservation, recycling, and transfers will lower the level of the Salton Sea and accelerate the rate of salinity increases, reduce the suitability of fish and wildlife habitat, and affect air quality by exposing lakebed playa that could generate dust. Legislation enacted in 2003 to implement the Quantification Settlement Agreement (QSA) stated the Legislature’s intent for the State of California to undertake the restoration of the Salton Sea ecosystem. As required by the legislation, the California Resources Agency (now California Natural Resources Agency) produced the Salton Sea Ecosystem Restoration Study and final Programmatic Environmental Impact Report (PEIR; California Resources Agency, 2007) with the stated purpose to “develop a preferred alternative by exploring alternative ways to restore important ecological functions of the Salton Sea that have existed for about 100 years.” A decision regarding a preferred alternative currently resides with the California State Legislature (Legislature), which has yet to take action. As part of efforts to identify an ecosystem restoration program for the Salton Sea, and in anticipation of direction from the Legislature, the California Department of Water Resources (DWR), California Department of Fish and Wildlife (CDFW), U.S. Bureau of Reclamation (Reclamation), and U.S. Geological Survey (USGS) established a team to develop a monitoring and assessment plan (MAP). This plan is the product of that effort. The

  5. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    Energy Technology Data Exchange (ETDEWEB)

    Ross, H.P.; Forsgren, C.K. (eds.)


    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  6. Avian disease at the Salton Sea (United States)

    Friend, M.


    A review of existing records and the scientific literature was conducted for occurrences of avian diseases affecting free-ranging avifauna within the Salton Sea ecosystem. The period for evaluation was 1907 through 1999. Records of the U.S. Department of Agriculture, Bureau of Biological Survey and the scientific literature were the data sources for the period of 1907a??1939. The narrative reports of the U.S. Fish and Wildlife Service's Sonny Bono National Wildlife Refuge Complex and the epizootic database of the U.S. Geological Survey's National Wildlife Health Center were the primary data sources for the remainder of the evaluation. The pattern of avian disease at the Salton Sea has changed greatly over time. Relative to past decades, there was a greater frequency of major outbreaks of avian disease at the Salton Sea during the 1990s than in previous decades, a greater variety of disease agents causing epizootics, and apparent chronic increases in the attrition of birds from disease. Avian mortality was high for about a decade beginning during the mid-1920s, diminished substantially by the 1940s and was at low to moderate levels until the 1990s when it reached the highest levels reported. Avian botulism (Clostridium botulinum type C) was the only major cause of avian disease until 1979 when the first major epizootic of avian cholera (Pasteurella multocidia) was documented. Waterfowl and shorebirds were the primary species affected by avian botulism. A broader spectrum of species have been killed by avian cholera but waterfowl have suffered the greatest losses. Avian cholera reappeared in 1983 and has joined avian botulism as a recurring cause of avian mortality. In 1989, avian salmonellosis (Salmonella typhimurium) was first diagnosed as a major cause of avian disease within the Salton Sea ecosystem and has since reappeared several times, primarily among cattle egrets (Bubulcus ibis). The largest loss from a single epizootic occurred in 1992, when an estimated

  7. Trace elements and pesticides in Salton Sea area, California (United States)

    Schroeder, Roy A.; Setmire, James G.; Wolfe, John C.


    Concentrations of numerous potentially toxic trace elements and pesticides were determined in water, sediment, and biota from the Salton Sea area in southestern California. Comparison of results with data from other studies in this area and from other areas, and with various water-quality standards or criteria, indicate that selenium probably is the principal contaminant of concern in the Salton Sea basin and that it probably is related to agricultural practices. Selenium is mobilized in the subsurface drainwater produced by agricultural irrigation and transported in ditches and rivers, some of which pass through or near the Salton Sea National Wildlife Refuge before entering the Salton Sea. Some selenium apparently is incorporated into the food chain. In response to the finding of elevated selenium residues in fish from the area by State agencies, the Imperial County Health Department has issued a health advisory restricting or prohibiting human consumption of fish from the Salton Sea and drains.

  8. 75 FR 59285 - Sonny Bono Salton Sea National Wildlife Refuge Complex (Sonny Bono Salton Sea National Wildlife... (United States)


    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Fish and Wildlife Service Sonny Bono Salton Sea National Wildlife Refuge Complex (Sonny Bono Salton Sea National Wildlife Refuge and Coachella Valley National Wildlife Refuge), Imperial and Riverside Counties...

  9. Quarterly Water Quality Surveys - Salton Sea [ds429 (United States)

    California Department of Resources — In the spring of 2003, California Department of Fish and Game (CDFG) personnel began quarterly sampling of Salton Sea fish at fourteen stations around the sea, as...

  10. Integrated Science Investigations of the Salton Sea, California, USA (United States)

    Barnum, D.


    The Salton Sea is the latest waterbody to be formed by Colorado River floodwaters within the Salton Trough. Over the past 100 years, floodwaters have been replaced by agricultural drainage water and municipal discharges so that today, most of the water reaching the Salton Sea is agricultural drainwater flowing down the New, Alamo and Whitewater Rivers. An evaporation of about 6 feet per year and inputs of more than 4 million tons of salt per year have increased salinity of the waters of the Salton Sea. The current salinity level of approximately 46 parts per thousand is about 25% more saline than ocean water. Diverting water from the Imperial Valley agricultural lands to urban Southern California, and anticipated loss of inflows from Mexico and increasing water conservation activities will result in less water flowing into the Salton Sea. A Restoration Program is being conducted to evaluate the effects of diminished inflows on the Salton Sea Ecosystem and recommend alternatives to avoid or minimize those effects. The Salton Sea has become increasingly important as habitat for migratory birds because of wetland losses. California has lost approximately 91% of interior wetland acreage from pre-settlement until the mid-1980's. The Salton Sea provides critical habitat linking distant wetlands of Pacific and Central Flyways to wintering habitats in Mexico and Central and South America. More than 400 species of birds have been observed in the Salton Sea Ecosystem. Large percentages of the populations for several bird species such as the endangered Yuma Clapper Rail, the Eared Grebe, Snowy Plover and American White Pelican utilize the Salton Sea. Approximately 20 species of conservation concern utilize the Salton Sea ecosystem. Fish-eating birds such as Great Blue Herons, California Brown Pelicans, Double-crested Cormorants and several species of egrets are highly dependent upon the fishery of the Salton Sea. The Salton Sea fishery is now primarily comprised of tilapia

  11. Salton Sea Project, Phase 1. [solar pond power plant (United States)

    Peelgren, M. L.


    A feasibility study was made for a salt gradient solar pond power plant in or near the Salton Sea of California. The conclusions support continuance 5-MWe proof-of-concept experiment, and ultimate construction by an electric utility company of a 600-MWe plant. The Solar Pond concept would be an environmental benefit to the Salton Sea by reversing the increasing salinity trend. The greatest cost drivers are the lake dike construction and pond sealing. Problems to be resolved include method of brine production from Salton Sea water for the first unit (which requires evaporation pond area and time), the high turbidity and color content of the Salton Sea water (which requires pretreatment), and other questions related to pond permeability, bio-activity and soil/brine chemical reactions. All technical and environmental problems appear solvable and/or manageable if care is taken in mitigating impacts.

  12. 78 FR 44144 - Sonny Bono Salton Sea National Wildlife Refuge Complex (Sonny Bono Salton Sea National Wildlife... (United States)


    ... Leader, at 760-348-5278, extension 227. Further information may also be found at alternatives for managing the Sonny Bono Salton Sea NWR and three alternatives for managing the Coachella...

  13. Imperial County geothermal development semi-annual report, October 1, 1980-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)


    The current geothermal progress in Imperial County is reported. Three areas are reported: Geothermal Administration, Geothermal Planning, and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. In addition, the cooperative efforts between industry and the County; Master EIR for the Salton Sea KGRA and the resurveying of the subsidence detection network are covered. Geothermal Planning addresses a Board of Supervisor action on the Union Oil Geothermal Production Permit for 16 wells in the Salton Sea KGRA and a permit for Southern California Edison 10 megawatts power plant in the Salton Sea KGRA. Planning Commission action covers: Amendment of Magma Power's 49 megawatts Geothermal Production Permit to 28 megawatt power plant and relocation of the plant and wells within the Salton Sea KGRA; Exploration permit to Occidental Geothermal for four exploratory wells in East Brawley; Geothermal Production Permit to Southern California Edison to operate a 10 megawatt power plant in the Salton Sea KGRA; and Geothermal production permit to Union Oil for 16 production-injection wells in the Salton Sea KGRA. Lastly, EIR exemptions to CEQA were granted to Chevron for 70 shallow temperature observation holes and Union for fifteen. Other Geothermal Activity addresses the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmorland KGRA, and revising the southern border of the Salton Sea KGRA.

  14. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.


    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  15. State of the Salton Sea—A science and monitoring meeting of scientists for the Salton Sea (United States)

    Barnum, Douglas A.; Bradley, Timothy; Cohen, Michael; Wilcox, Bruce; Yanega, Gregor


    IntroductionThe Salton Sea (Sea) is an ecosystem facing large systemic changes in the near future. Managers and stakeholders are seeking solutions to the decline of the Sea and have turned to the scientific community for answers. In response, scientists gathered in Irvine, California, to review existing science and propose scientific studies and monitoring needs required for understanding how to retain the Sea as a functional ecosystem. This document summarizes the proceedings of this gathering of approximately 50 scientists at a September 8–10, 2014, workshop on the State of the Salton Sea.

  16. Possible importance of algal toxins in the Salton Sea, California (United States)

    Reifel, K.M.; McCoy, M.P.; Rocke, T.E.; Tiffany, M.A.; Hurlbert, S.H.; Faulkner, D.J.


    In response to wildlife mortality including unexplained eared grebe (Podiceps nigricollis) die-off events in 1992 and 1994 and other mortality events including large fish kills, a survey was conducted for the presence of algal toxins in the Salton Sea. Goals of this survey were to determine if and when algal toxins are present in the Salton Sea and to describe the phytoplankton composition during those times. A total of 29 samples was collected for toxicity analysis from both nearshore and midlake sites visited biweekly from January to December 1999. Dinoflagellates and diatoms dominated most samples, but some were dominated by a prymnesiophyte (Pleurochrysis pseudoroscoffensis) or a raphidophyte (Chattonella marina). Several types of blooms were observed and sampled. The dinoflagellate Gyrodinium uncatenum formed an extensive, dense (up to 310 000 cells ml-1) and long-lasting bloom during the winter in 1999. A coccolithophorid, Pleurochrysis pseudoroscoffensis, occurred at high densities in surface films and nearshore areas during the spring and summer of 1999. These surface films also contained high densities of one or two other species (an unidentified scrippsielloid, Heterocapsa niei, Chattonella marina). Localized blooms were also observed in the Salton Sea. An unknown small dinoflagellate reached high densities (110 000 cells ml-1) inside Varner Harbor, and an unidentified species of Gymnodinium formed a dense (270 000 cells ml-1) band along part of the southern shoreline during the summer. Three species known to produce toxins in other systems were found. Protoceratium reticulatum (=Gonyaulax grindleyi) and Chattonella marina were found in several samples taken during summer months, and Prorocentrum minimum was found in low densities in several samples. Extracts of most samples, including those containing known toxic species, showed a low level (brine shrimp lethality assay and were not considered toxic. All sample extracts tested in the mouse bioassay

  17. Imperial County geothermal development. Quarterly report, April 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)


    Three areas are reported: Geothermal Administration, Geothermal Planning; and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. Field inspections will cover the four new wells drilled by Magma at the Salton Sea in preparation for 28 MW power plant, the progress at Sperry at East Mesa, and the two on-line power plants in East Mesa and North Brawley. Evaluation of cooperative efforts will cover the Geothermal Subsidence Detection Network Resurvey, Master EIR for the Salton Sea and the Annual Imperial County Geothermal meeting. The status of Geothermal development throughout the County will cover existing proposed facilities. The summary of the Geothermal meeting (Appendix A) will also provide the status of several projects. Geothermal Planning addresses the EIR Notice of Exemption from CEQA, progress on the Master EIR for the Salton Sea, and the EIR for Phillips Petroleum for 6 exploratory wells in the Truckhaven area. Other Geothermal Activity addresses the Department of Energy Region IX meeting hosted by Imperial County, the Annual Imperial County Geothermal meeting, Class II-1 geothermal hazardous waste disposal siting study, and Imperial County Geothermal Direct Heat Study.

  18. Analyses of operational times and technical aspects of the Salton Sea scientific drilling project: (Final report)

    Energy Technology Data Exchange (ETDEWEB)


    The Deep Salton Sea Scientific Drilling Program (DSSSDP) was conducted in Imperial County of California at the Southeastern edge of the Salton Sea. Emphasis was on the acquisition of scientific data for the evaluation of the geological environment encountered during the drilling of the well. The scientific data acquisition activities consisted of coring, running of numerous downhole logs and tools in support of defining the geologic environment and conducting two full scale flow tests primarily to obtain pristine fluid samples. In addition, drill cuttings, gases and drilling fluid chemistry measurements were obtained from the drilling fluid returns concurrent with drilling and coring operations. The well was drilled to 10,564 feet. This report describes the field portions of the project and presents an analysis of the time spent on the various activities associated with the normal drilling operations, scientific data gathering operations and the three major downhole problem activities - lost circulation, directional control and fishing.

  19. Geothermal resources of rifts: A comparison of the rio grande rift and the salton trough (United States)

    Swanberg, Chandler A.


    The Rio Grande Rift and the Salton Trough are the best developed rift systems in the United States and both share many features common to rifts in general, including geothermal resources. These two rifts have different tectonic and magmatic histories, however, and these differences are reflected in the nature of their geothermal resources. The Salton Trough is a well developed and successful rift. It is the landward extension of the Gulf of California spreading center, which has separated Baja, California, from the remainder of Mexico. Quaternary silicic magmatization has occurred and several of the geothermal resources are associated with recent rhyolitic intrusions. Such resources tend to be high temperature (> 200°C). Greenschist facies metamorphism has been observed in several of the geothermal wells. Localized upper crustal melting is a distinct possibility and there is increasing speculation that very high temperature (> 300°C) geothermal fluids may underlie a large portion of the central trough at depths in excess of 4 km. Low temperature geothermal resources associated with shallow hydrothermal convection are less common and tend to be located on the flanks of the trough or in the Coachella Valley to the north of the zone of active rifting. In contrast, the Rio Grande Rift is less well developed. Recent volcanism consists primarily of mantle-derived basalts, which have not had sufficient residence time within the crust to generate significant crustal melting. The geothermal resources within the Rio Grande Rift do not correlate well with these young basalts. Rather, the quantity of geothermal resources are low temperature (resources are less common and the only discovered example is the Valles Caldera of northern New Mexico ( T = 250-300°C). The deep interiors of the sedimentary basins of the Rio Grande Rift do not appear to be major geothermal exploration targets.

  20. Characterizing Novel Archaeal Lineages in Salton Sea Sediments (United States)

    Tarn, J.; Valentine, D. L.


    Biological communities in extreme environments are often dominated by microorganisms of the domain Archaea. Abundant microbial assemblages of this group are found in the hottest, saltiest, and most thermodynamically-limited ecosystems on earth. These taxing surroundings are thought to impose a state of chronic energy stress on resident organisms due to high costs of cellular maintenance relative to resource availability. Even in more temperate settings, Archaea are regularly associated with low-nutrient lifestyles, reflecting their adaptation to extreme, biologically-limiting conditions, which may be an ancestral, domain-wide trait. In this study, we seek to characterize the Archaeal community of the Salton Sea, where members of this domain are novel and highly abundant. Previous work by Swan et al. in 2010 showed that gradients in salinity, sulfate, carbon and nitrogen across sediment horizons of the Salton Sea are linked to changes in Archaeal dominance and community structure. In light of recent taxonomic revisions of the domain, I reclassified the 107 published small subunit rRNA Archaeal sequences from the 2010 study using updated reference databases. The majority of these Euryarchaeal sequences were reassigned to the so-called DPANN superphylum, with Pacearchaeota-related sequences being very abundant in shallow, organic-rich sediments. In deeper, energy-limited strata, several groups of Bathyarchaeota and one divergent DPANN clade were dominant. Ongoing metagenomic work on these sediment communities is being used to assemble genomes of these novel Archaeal groups. These results will help define genomic adaptations of Salton Sea Archaea to varying levels of energy stress as well as inform future cultivation efforts.

  1. Groundwater Availability Within the Salton Sea Basin Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P


    It is widely recognized that increasing demands for water in Southern California are being affected by actions to reduce and redirect the amount of water imported from the Colorado River. In the Imperial Valley region, for example, import reductions will not only affect agricultural users but also could produce significant collateral impacts on the level and quality of water in the Salton Sea, its regional ecology, or even the long term air quality in the greater basin. The notion of using groundwater in the Imperial Valley as an additional source for agricultural or domestic needs, energy production, or Salton Sea restoration efforts, so as to offset reductions in imported water, is not a new concept. Even though it has been discussed recently (e.g., LLNL, 2002), the idea goes back, in part, to several studies performed by the US Department of Interior and other agencies that have indicated that there may be substantial, usable amounts of groundwater in some portions of the Imperial Valley. It has been estimated, for example, that between 1.1 and 3 billion acre-feet (AF) of groundwater lie within the extended, deep basin underlying the valley and Salton Sea region, even though much of it may be unrecoverable or too poor in its quality (Imperial County, 1997). This is a significant volume with respect to the total annual precipitation volume received in California, whose average is close to 200 million (or 0.2 billion) AF per year (DWR, 1998), and especially with respect to the total annual precipitation received in the Salton Sea watershed itself, which we estimate (Appendix A) to be approximately 2.5 million acre feet (MAF) per year. Clearly, a thorough appraisal of the groundwater resources in the Imperial Valley and Salton Sea region--i.e., an assessment of their overall physical availability--will be needed to determine how they can be used and managed to suit new or redirected demands in the region. Development of an improved or updated groundwater assessment

  2. Environmental Contaminants in Piscivorous Birds at the Salton Sea, 1992-93 (United States)

    US Fish and Wildlife Service, Department of the Interior — This study indicates that there are reasons to be concerned about contaminant exposure in piscivorous birds at the Salton Sea. Of greatest concern is p,p'DDE....

  3. Geothermal development. Semi-annual report, October 1, 1980-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)


    Three areas are reported: geothermal administration, geothermal planning, and other geothermal activities. Administration covers the status of the Imperial Valley Environmental Project transfer, update of the Geothermal Resource Center, and findings of the geothermal field inspections. Planning addresses Board of Supervisor actions, Planning Commission actions, notice of exemptions, and the master Environmental Impact Report for Salton Sea. The other activity includes the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmoreland KGRA, and revising the southern border of the Salton Sea KGRA. (MHR)

  4. Imperial County geothermal development annual meeting: summary

    Energy Technology Data Exchange (ETDEWEB)


    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  5. Pleurochrysis pseudoroscoffensis (Prymnesiophyceae) blooms on the surface of the Salton Sea, California (United States)

    Reifel, K.M.; McCoy, M.P.; Tiffany, M.A.; Rocke, T.E.; Trees, C.C.; Barlow, S.B.; Faulkner, D.J.; Hurlbert, S.H.


    Dense populations of the coccolithophore Pleurochrysis pseudoroscoffensis were found in surface films at several locations around the Salton Sea in February-August, 1999. An unidentified coccolithophorid was also found in low densities in earlier studies of the lake (1955-1956). To our knowledge, this is the first record of this widespread marine species in any lake. Samples taken from surface films typically contained high densities of one or two other phytoplankton species as well as high densities of the coccolithophore. Presence or absence of specific algal pigments was used to validate direct cell counts. In a preliminary screen using a brine shrimp lethality assay, samples showed moderate activity. Extracts were then submitted to a mouse bioassay, and no toxic activity was observed. These results indicate that blooms of P. pseudoroscoffensis are probably not toxic to vertebrates and do not contribute to the various mortality events of birds and fish that occur in the Salton Sea.

  6. Diversity of terrestrial avifauna in response to distance from the shoreline of the Salton Sea (United States)

    Mendelsohn, M.B.; Boarman, W.I.; Fisher, R.N.; Hathaway, S.A.


    Large aquatic bodies influence surrounding terrestrial ecosystems by providing water and nutrients. In arid landscapes, the increased primary productivity that results may greatly enhance vertebrate biodiversity. The Salton Sea, a large saline lake in the Colorado Desert of southern California, provides nutrients in the form of hundreds of thousands of dead fish carcasses, brine flies, and chemical compounds through windborne salt sea spray. We performed point counts for landbirds and shorebirds monthly or every other month between March 2001 and February 2002 across a sampling grid of 35 points along the west edge of Salton Sea. We found that avian diversity (numbers of species and numbers per species) was dependent on proximity to the Sea. Diversity was at a maximum nearest the shore, and was significantly lower away from the Sea's edge, at all surveyed distances up to 1 km from the shore. Cover by the dominant shrubs on the study site also corresponded to proximity to the water's edge. Whereas one may hypothesize that the avian diversity patterns are caused by these differences in vegetation structure, our data did not support this. Future studies should further investigate this potential correlation between vegetation and bird patterns. Until more is understood about the relationship between elevated avian diversity and the physical environment of the land-shore interface, our results suggest that the Sea's surface be stabilized near its present level. Future management schemes at the Salton Sea that include reductions of water sources should be carefully analyzed, so as to not jeopardize the terrestrial avifauna at this unique ecosystem. ?? 2006 Elsevier Ltd. All rights reserved.

  7. Vitrinite reflectance geothermometry and apparent heating duration in the Cerro Prieto geothermal field (United States)

    Barker, C.E.; Elders, W.A.


    Vitrinite reflectance measured in immersion oil (Ro) on kerogen extracted from hydrothermally altered mudstones in borehole M-84 at the Cerro Prieto geothermal field exhibit an increase in mean reflectance (Ro) from 0.12 per cent at 0.24 km depth to 4.1 per cent at 1.7 km depth. Downhole temperatures measured over this interval increase from about 60?? to 340??C. These Ro data plotted against temperature fall along an exponential curve with a coefficient of determination of about 0.8. Other boreholes sampled in the field show similar relationships. A regression curve calculated for temperature and Ro in borehole M-105 correctly predicts temperatures in other boreholes within the central portion of the geothermal system. The correlation between the reflectance values and logged temperature, together with consistent temperature estimates from fluid inclusion and oxygen isotope geothermometry, indicates that changes in Ro are an accurate and sensitive recorder of the maximum temperature attained. Therefore, vitrinite reflectance can be used in this geothermal system to predict the undisturbed temperature in a geothermal borehole during drilling before it regains thermal equilibrium. Although existing theoretical functions which relate Ro to temperature and duration of heating are inaccurate, empirical temperature-Ro curves are still useful for geothermometry. A comparison of temperature-Ro regression curves derived from nine boreholes within the Cerro Prieto system suggests that heating across the central portion of the field occurred penecontemporaneously, but varies near margins. Boreholes M-93 and M-94 appear to have cooled from their maximum temperatures, whereas M-3 and Prian-1 have only recently been heated. Comparison of the temperature-Ro data from the Salton Sea, California, geothermal system indicates that the duration of heating has been longer there than at the Cerro Prieto field. ?? 1981.

  8. A linked hydrodynamic and water quality model for the Salton Sea (United States)

    Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, Dale M.


    A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.

  9. Geothermal resources of California sedimentary basins (United States)

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.


    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  10. Occurrence of West Nile virus infection in raptors at the Salton Sea, California (United States)

    Dusek, Robert J.; Iko, William M.; Hofmeister, Erik K.


    We investigated the prevalence of West Nile virus (WNV)-neutralizing antibodies and infectious virus, and the occurrence of overwinter transmission in two raptor species during January and March 2006 at the Salton Sea, Imperial County, California. We captured 208 American Kestrels (Falco sparverius) (January, n=100; March, n=108) and 116 Burrowing Owls (Athene cunicularia) (January, n=52; March, n=64). Laboratory analysis revealed that 83% of American Kestrels and 31% of Burrowing Owls were positive for WNV-neutralizing antibodies. Additionally, two seroconversions were detected in Burrowing Owls between January and March. Infectious WNV, consistent with acute infection, was not detected in any bird.

  11. Chemistry and geothermometry of brine produced from the Salton Sea Scientific drill hole, Imperial Valley, California (United States)

    Thompson, J.M.; Fournier, R.O.


    The December 29-30, 1985, flow test of the State 2-14 well, also known as the Salton Sea Scientific drill hole, produced fluid from a depth of 1865-1877 m at a reservoir temperature of 305????5??C. Samples were collected at five different flashing pressures. The brines are Na-Ca-K-Cl-type waters with very high metal and low SO4 and HCO3 contents. Compositions of the flashed brines were normalized relative to the 25??C densities of the solutions, and an ionic charge balance was achieved by adjusting the Na concentration. Calculated Na/K geothermometer temperatures, using equations suggested by different investigators, range from 326?? to 364??C. The Mg/K2 method gives a temperature of about 350??C, Mg/Li2 about 282??, and Na/Li 395??-418??C. -from Authors

  12. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California (United States)

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.


    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98–58.0 μg Se/g; midge larvae, 12.7–50.6 μg Se/g; mosquitofish, 13.2–20.2 μg Se/g; and mollies, 12.8–30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  13. Shallow hydrothermal regime of the East Brawley and Glamis known geothermal resource areas, Salton Trough, California

    Energy Technology Data Exchange (ETDEWEB)

    Mase, C.W.; Sass, J.H.; Brook, C.A.; Munroe, R.J.


    Thermal gradients and thermal conductivities were obtained in real time using an in situ heat-flow technique in 15 shallow (90 to 150 m) wells drilled between Brawley and Glamis in the Imperial Valley, Southern California. The in situ measurements were supplemented by follow-up conventional temperature logs in seven of the wells and by laboratory measurements of thermal conductivity on drill cuttings. The deltaic sedimentary material comprising the upper approx. 100 m of the Salton Trough generally is poorly sorted and high in quartz resulting in quite high thermal conductivities (averaging 2.0 Wm/sup -1/ K/sup -1/ as opposed to 1.2 to 1.7 for typical alluvium). A broad heat-flow anomaly with maximum of about 200 mWm/sup -2/ (approx. 5 HFU) is centered between Glamis and East Brawley and is superimposed on a regional heat-flow high in excess of 100 mWm/sup -2/ (> 2.5 HFU). The heat-flow high corresponds with a gravity maximum and partially with a minimum in electrical resistivity, suggesting the presence of a hydrothermal system at depth in this area.

  14. Geothermal Resource Verification for Air Force Bases, (United States)


    680OF (3600 C) in the Salton Sea, California, and the nearby Cerro Prieto region of Mexico. Liquid water can exist underground in nature to a maxi...northwest Mexico’s Cerro Prieto field and southcentral California’s Imperial Valley area [banwell (1970)]. The Baca field in New Mexico’s Jemez Mountains...AO-AIOQ bA SANDI NA IONCAL L AB NURU NNI 1/ GEOTHERMAL RESOURCE VER IFIC A FR AIR FORCE RASES, 1W UCJUN 81 P f GRANT DE-AC04-TAiDOpOos WACLASSIFIED

  15. Use of a nesting platform by Gull-billed Terns and Black Skimmers at the Salton Sea, California (United States)

    Molina, Kathy C.; Ricca, Mark A.; Miles, A. Keith; Schoneman, Christian


    In 2006, we constructed an elevated nesting platform at the Salton Sea, California, and monitored its use by Gull-billed Terns and Black Skimmers over three subsequent breeding seasons. Black Skimmers were the first to colonize the platform with a total of five nests in 2006. In 2007 Gull-billed Terns colonized the platform with a total of 28 nests and the number of Black Skimmer nests increased to 20. Neither species nested on the platform in 2008. Low success for both species was probably influenced by at least two factors. First, when both species nested on the platform, nest densities were higher than is typical of their colonies on larger, earthen islands, and colony success may have been reduced by overcrowding. Second, lack of access to water may have reduced chicks' ability to thermoregulate effectively in the hot environment of the Salton Sea. Refinements to the size, design, and location of artificial nesting habitats are necessary to enhance productivity of colonial groundnesting birds at the Salton Sea successfully.

  16. Occurrence, distribution and transport of pesticides into the Salton Sea Basin, California, 2001-2002 (United States)

    LeBlanc, L.A.; Kuivila, K.M.


    The Salton Sea is a hypersaline lake located in southeastern California. Concerns over the ecological impacts of sediment quality and potential human exposure to dust emissions from exposed lakebed sediments resulting from anticipated shrinking of shoreline led to a study of pesticide distribution and transport within the Salton Sea Basin, California, in 2001-2002. Three sampling stations-upriver, river mouth, and offshore-were established along each of the three major rivers that discharge into the Salton Sea. Large-volume water samples were collected for analysis of pesticides in water and suspended sediments at the nine sampling stations. Samples of the bottom sediment were also collected at each site for pesticide analysis. Sampling occurred in October 2001, March-April 2002, and October 2002, coinciding with the regional fall and spring peaks in pesticide use in the heavily agricultural watershed. Fourteen current-use pesticides were detected in water and the majority of dissolved concentrations ranged from the limits of detection to 151 ng/l. Diazinon, EPTC and malathion were detected at much higher concentrations (940-3,830 ng/l) at the New and Alamo River upriver and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and EPTC were higher in the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring, which matched seasonal use patterns of these pesticides. Current-use pesticides were also detected on suspended and bed sediments in concentrations ranging from detection limits to 106 ng/g. Chlorpyrifos, dacthal, EPTC, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number of detections and concentrations of suspended sediment-associated pesticides were often similar for the river upriver and near-shore sites, consistent with downstream transport of pesticides via suspended sediment. While detectable suspended sediment

  17. Geothermal emissions data base, Wairakei geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S.R. (comp.)


    A database subset on the gaseous emissions from the Wairakei geothermal field is presented. Properties and states of the reservoir fluid such as flow rates, wellhead pressure, and enthalpy are included in the file along with the well name and constituent measurement. This subset is the result of an initial screening of the data covering 1965 to 1971, and new additions will be appended periodically to the file. The data is accessed by a database management system as are all other subsets in the file. Thereby, one may search the database for specific data requirements and print selective output. For example, one may wish to locate reservoir conditions for cases only when the level of the constituent exceeded a designated value. Data output is available in the form of numerical compilations such as the attached, or graphical displays disposed to paper, film or magnetic tape.

  18. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Wood


    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  19. In-Flight Validation of Mid and Thermal Infrared Remotely Sensed Data Using the Lake Tahoe and Salton Sea Automated Validation Sites (United States)

    Hook, Simon J.


    The presentation includes an introduction, Lake Tahoe site layout and measurements, Salton Sea site layout and measurements, field instrument calibration and cross-calculations, data reduction methodology and error budgets, and example results for MODIS. Summary and conclusions are: 1) Lake Tahoe CA/NV automated validation site was established in 1999 to assess radiometric accuracy of satellite and airborne mid and thermal infrared data and products. Water surface temperatures range from 4-25C.2) Salton Sea CA automated validation site was established in 2008 to broaden range of available water surface temperatures and atmospheric water vapor test cases. Water surface temperatures range from 15-35C. 3) Sites provide all information necessary for validation every 2 mins (bulk temperature, skin temperature, air temperature, wind speed, wind direction, net radiation, relative humidity). 4) Sites have been used to validate mid and thermal infrared data and products from: ASTER, AATSR, ATSR2, MODIS-Terra, MODIS-Aqua, Landsat 5, Landsat 7, MTI, TES, MASTER, MAS. 5) Approximately 10 years of data available to help validate AVHRR.

  20. Geothermal energy: opportunities for California commerce. Phase I report

    Energy Technology Data Exchange (ETDEWEB)


    California's geographic and end-use markets which could directly use low and moderate temperature geothermal resources are ranked and described, as well as those which have the highest potential for near-term commercial development of these resources. Building on previous market surveys, the assessment determined that out of 38 geothermal resource areas with characteristics for direct use development, five areas have no perceived impediments to near-term development: Susanville, Litchfield, Ontario Hot Springs, Lake Elsinore, and the Salton Sea Geothermal Field. Twenty-nine applications were compared with previously selected criteria to determine their near-term potential for direct use of geothermal fluids. Seven categories were found to have the least impediments to development; agriculture and district heating applications are considered the highest. Ten-year projections were conducted for fossil fuel displacement from the higher rated applications. It is concluded that greenhouses have the greatest displacement of 18 x 10/sup 6/ therms per year.

  1. Character and Implications of a Newly Identified Creeping Strand of the San Andreas fault NE of Salton Sea, Southern California (United States)

    Janecke, S. U.; Markowski, D.


    The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella

  2. Geothermal characteristics of the South China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Xia Kanyuan; Xia Sigao; Chen Zhongrong; Huang Ciliu [South China Sea Inst. of Oceanology, Academia Sinica, Guangzhou (China)


    Based on available geothermal data, heat flow contours of the South China Sea (SCS) are delineated. Geothermal anomalies of the SCS are identified with major faults, magmatic activities and associated hydrothermal circulations. Geothermal structures in the SCS are considerably affected by an important thermal event that happened in the SCS and its surrounding areas from the mid-Miocene to the Quaternary. There is a considerable discrepancy in the age of the south-west subbasin estimated from heat-flow data versus that inferred from other geological and geophysical data. The Zengmu basin on the southern shelf of the SCS is a thermally anomalous region with the high mantle heat flow of Zengmu basin probably resulting from the thermal event. Relationships between geothermal gradient and hydrocarbon distribution are analysed. The results show that the prospects of hydrocarbon in the northern continental shelf appear less promising than those in the southern continental shelf. 7 figs., 1 tab., 27 refs.

  3. Investigations of a large scale eared grebe (Podiceps nigricollis) die-off at the Salton Sea, California in 1992 (United States)

    Meteyer, C.U.; Audet, D.J.; Rocke, T.E.; Radke, W.; Creekmore, L.H.; Duncan, R.


    An estimated 150,000 Eared Grebes (Podiceps nigricollis) died at the Salton Sea between 16 December 1991 and 21 April 1992. This represented the largest documented mortality event of Eared Grebes at the time and approximately 6% of the North American population. During the die-off, grebes exhibited several uncharacteristic behaviors, such as congregating at freshwater tributaries, repeatedly gulping freshwater, preening excessively, moving onto land, and allowing close approach and/or capture. Avian cholera was diagnosed in Eared Grebes collected along the north and west shoreline of the Sea late in the die-off but not from the majority of the Eared Grebes dying along the south shore. Gross and histological examinations and diagnostic testing for viruses, bacteria, and parasites did not identify the cause of mortality in the majority of Eared Grebes examined from the south shore of the Sea. Liver concentrations of arsenic, chromium, DDE, mercury, selenium, and zinc were elevated in some Eared Grebes, but none of those contaminants exceeded known thresholds for independent lethality. Poisoning by heavy metals, organochlorine, organophosphorus, or carbamate pesticides, avian botulism, and salt were ruled out as the cause of mortality. Hypotheses for the die-off are interactive effects of contaminants, immunosuppression, a yet unidentified biotoxin or pathogen present in the Salton Sea, impairment of feather waterproofing leading to hypothermia, or a unique manifestation of avian cholera that evades laboratory detection.

  4. Water quality in the New River from Calexico to the Salton Sea, Imperial County, California (United States)

    Setmire, James G.


    The New River enters the United States at Calexico, Calif., after it crosses the international boundary. Water-quality data from routine collection indicated that the New River was degraded by high organic and bacterial content. Intensive sampling for chemical and physical constituents and properties of the river was done May 9-13, 1977, to quantify the chemical composition of the water and to identify water-quality problems. Concentrations of total organic carbon in the New River at Calexico ranged from 80 to 161 milligrams per liter and dissolved organic carbon ranged from 34 to 42 milligrams per liter; the maximum chemical oxygen demand was 510 milligrams per liter. Intensive sampling for chemical and biological characteristics was done in the New River from May 1977 to June 1978 to determine the occurrence of the organic material and its effects on downstream water quality. Dissolved-oxygen concentration was measured along longitudinal profiles of the river from Calexico to the Salton Sea. A dissolved-oxygen sag downstream from the Calexico gage varied seasonally. The sag extended farther downstream and had lower concentrations of dissolved oxygen during the summer months than during the winter months. The sag of zero dissolved-oxygen concentration extended 26 miles in July 1977. In December 1976, the sag extended 20 miles but the minimum dissolved-oxygen concentration was 2.5 milligrams per liter. The greatest diel (24-hour) variation in dissolved-oxygen concentration occurred in the reach from the Calexico gage to Lyons Crossing, 8.8 miles downstream. High concentrations of organic material were detected as far as Highway 80, 19.5 miles downstream from the international boundary. Biological samples analyzed for benthic invertebrates showed that water at the Calexico and Lyons Crossing sites, nearest the international boundary, was of such poor quality that very few bottom-dwelling organisms could survive. Although the water was of poor quality at Keystone

  5. Atmospheric dry deposition in the vicinity of the Salton Sea, California - I: Air pollution and deposition in a desert environment (United States)

    Alonso, R.; Bytnerowicz, A.; Boarman, W.I.


    Air pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton Sea, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of sea spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication processes at the Salton Sea. ?? 2005 Elsevier Ltd. All rights reserved.

  6. Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.


    The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

  7. Deformation study of Kamojang geothermal field (United States)

    Ramdhani, B. D.; Meilano, I.; Sarsito, D. A.


    GPS has proven to be an indispensable tool in the effort to understand crust deformation before, during, and after the big earthquake events through data analysis and numerical simulation. The development of GPS technology has been able to prove as a method for the detection of geothermal activity that related to deformation. Furthermore, the correlation of deformation and geothermal activity are related to the analysis of potential hazards in the geothermal field itself. But unfortunately, only few GPS observations established to see the relationship of tectonic and geothermal activity around geothermal energy area in Indonesia. This research will observe the interaction between deformation and geothermal sources around the geothermal field Kamojang using geodetic GPS. There are 4 campaign observed points displacement direction to north-east, and 2 others heading to south-east. The displacement of the observed points may have not able proven cause by deformation of geothermal activity due to duration of observation. Since our research considered as pioneer for such investigation in Indonesia, we expect our methodology and our findings could become a starter for other geothermal field cases in Indonesia.

  8. Failure analysis of a Hastelloy C-276 geothermal injection pump shaft

    Energy Technology Data Exchange (ETDEWEB)

    Tardiff, G.E.; Snell, E.O.


    A metallurgical analysis of a fractured Hastelloy C-276 brine injection pump shaft was carried out to determine the cause of failure. Loss of load carrying cross section due to intergranular corrosion by molten bronze bearing alloy followed by torsional overload of the remaining section was the cause of failure. Lack of evidence for brine induced corrosion or stress corrosion of the Hastelloy C-276 alloy is consistent with prior successful experience with this material in contact with high temperature, high salinity Salton Sea Geothermal Field brines.

  9. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2007 (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.


    This report presents the results for two sampling periods during a 4-year monitoring survey to provide a characterization of selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species, and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species-western mosquitofish (Gambusia affinis), and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Total selenium concentrations in water for both sampling periods ranged from 1.43 to 47.1 micrograms per liter, predominately as selenate, which is typical of waters leached out of selenium-contaminated marine shales under alkaline and oxidizing conditions. Total selenium concentrations ranged from 0.88 to 20.2 micrograms per gram in biota, and from 0.15 to 28.9 micrograms per gram in detritus and sediment.

  10. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2008 and January 2009 (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.


    This report presents the results for two sampling periods (October 2008 and January 2009) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples. Total selenium also was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species (western mosquitofish, Gambusia affinis, and sailfin molly, Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.00 to 33.6 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 1.52 to 8.26; plankton, 0.79 to 3.66; midges, 2.68 to 50.6; fish, 3.09 to 30.4; detritus, 1.78 to 58.0; and sediment, 0.42 to 10.0.

  11. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2007 and January 2008 (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.


    This report presents the results for two sampling periods (October 2007 and January 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (selenite, selenate, organoselenium), and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species?western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 0.97 to 64.5 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.95 to 5.99; plankton, 0.15 to 19.3; midges, 1.39 to 15.4; fish, 3.71 to 25.1; detritus, 0.85 to 21.7; sediment, 0.32 to 7.28.

  12. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2008 (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.


    This report presents the results for two sampling periods (April 2008 and July 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples and total selenium was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species - western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.93 to 44.2 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.75 to 3.39; plankton, 0.88 to 4.03; midges, 2.52 to 44.3; fish, 3.37 to 18.9; detritus, 1.11 to 13.6; sediment, 0.11 to 8.93.

  13. Klamath Falls geothermal field, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.


    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  14. Geothermal Field Development in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, Hector Alonso


    Mexico is a Country characterized by its diversified means of Power Gerneration. Actual installed capacity is almost 19000 MW, of which 205 MW corresponds to Geothermal Plants, that is, 180 MW in Cerro Prieto and 25 MW of Portable Plants in Los Azufres. To date, 346 area with exploitation possibilites, are known. They are mainly distributed along the Volcanic Belt where the most prominent are, Los Azufres, La Primavera, Los Humeros, Ixtlan De Los Hervores and Los Negritos, among others. Proved reserves are 920 MW, and the accessible resource base are 4600 MW identified and 6000 MW undiscovered. The long range construction studies intends to achieve a total installed capacity of 100000 MW, by the end of this century, including 2000 MW Geothermal, through conventional and Portable Plants. It is not a definite program but a development strategy. The carrying out of a definite program, will depend upon the confirmation of Hypothesis made in previous studies, and the economic decisions related to the financial sources availability, and techologies to be used in the future as well.

  15. Cerro Prieto geothermal field: exploration during exploitation

    Energy Technology Data Exchange (ETDEWEB)


    Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. The description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field are presented. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development.

  16. Tongonan geothermal field Leyte, Philippines. Report on exploration and development

    Energy Technology Data Exchange (ETDEWEB)


    Geothermal exploration and development in the Philippines are reviewed. The geology, geophysics, and geochemistry of the Tongonan geothermal field are described. The well drilling, power development, and plans for a 112 MW power plant are included. (MHR)

  17. Geothermal emissions data base: Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S.R. (comp.)


    A new database subset on the gaseous emissions from the Cerro Prieto geothermal field is presented. Properties and states of the reservoir fluid such as flow rates, wellhead pressure, and enthalpy are included in the file along with the well name and constituent measurement. This subset is the result of an initial screening of the data covering 1967 to 1969, and new additions will be appended periodically to the file. The data are accessed by a database management system as are all other subsets in the file. Thereby, one may search the database for specific data requirements and print selective output. For example, one may wish to locate reservoir conditions for cases only when the level of the constituent exceeded a designated value. Data output is available in the form of numerical compilations such as the attached, or graphical displays disposed to paper, film, or magnetic tape.

  18. Geoelectromagnetic and geothermic investigations in the Ihlara Valley geothermal field (United States)

    İlkişik, O. Metin; Gürer, Aysan; Tokgöz, Tuǧrul; Kaya, Cemal


    The Ihlara Valley is situated within a volcanic arc that is formed by the collision of the eastern Mediterranean plate system with the Anatolian plate. In this study we will present data from a reservoir monitoring project over the Ihlara-Ziga geothermal field, located 22 km east of Aksaray, in central Anatolia. Although identified geothermal resources in the Ihlara Valley are modest, substantial undiscovered fields have been inferred primarily from the volcanic and tectonic setting but also from the high regional heat flow (150-200 mWm -2) on the Kirşehir Massif. In 1988 and 1990, geoelectromagnetic surveys were undertaken by MTA-Ankara to confirm the presence of a relatively shallow (≈ 0.5-1 km), hydrothermally caused conductive layer or zone. CSAMT and Schlumberger resistivity data show good correspondence with each other, and 2-D geoelectric models are also in harmony with geologic data and gravity anomalies. The depth of the resistive basement, which is interpreted as Paleozoic limestone, is 200-250 m in the western part and increases eastward (≈ 600-750 m). This may imply N-S-oriented normal faulting within the survey area. The parameters of the top layer are a resistivity of 25 to 95 ohm m and a thickness of between 100 and 250 m. The thickness of the conductive tuffs between the top layer and the basement, whose resistivity is about 4-5 o hmm, also increases eastward (from 100 to 450 m). The apparent resistivity maps for the frequencies between 32 and 2 Hz reveal a localized low resistivity anomaly to the east of Belisirma.

  19. Reservoir assessment of The Geysers Geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.P.; Chapman, R.H.; Dykstra, H.


    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

  20. The Rehai (Hot Sea) geothermal system in Tengchong County, Yunnan Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Liao Zhijie [Dept. of Geology. Peking Univ., Beijing (China)


    Tengchong is the sole volcano geothermal region on the Chinese mainland where active boiling springs discharge fiercely around the margins of the Cainozoic volcanic rocks. The Rehai (Hot Sea) geothermal system is the largest one. Since 1973, geological and geophysical reconnaissance surveys have been carried out by scientists from Peking University and engineers from the Yunnan Geological Bureau. In this paper: (1) a short description of the geological framework including regional setting and geology of the Rehai geothermal field is given; (2) a review of the results and a summary of the findings from the geological and geophysical reconnaissance surveys, carried out in this field by the scientists from Peking University and engineers from the Yunnan Geological Bureau, since 1973, are presented; and (3) the prospects for the development of this field are discussed. 7 figs., 4 tabs., 20 refs.

  1. New insights into North America-Pacific Plate boundary deformation from Lake Tahoe, Salton Sea and southern Baja California (United States)

    Brothers, Daniel Stephen

    Five studies along the Pacific-North America (PA-NA) plate boundary offer new insights into continental margin processes, the development of the PA-NA tectonic margin and regional earthquake hazards. This research is based on the collection and analysis of several new marine geophysical and geological datasets. Two studies used seismic CHIRP surveys and sediment coring in Fallen Leaf Lake (FLL) and Lake Tahoe to constrain tectonic and geomorphic processes in the lakes, but also the slip-rate and earthquake history along the West Tahoe-Dollar Point Fault. CHIRP profiles image vertically offset and folded strata that record deformation associated with the most recent event (MRE). Radiocarbon dating of organic material extracted from piston cores constrain the age of the MRE to be between 4.1--4.5 k.y. B.P. Offset of Tioga aged glacial deposits yield a slip rate of 0.4--0.8 mm/yr. An ancillary study in FLL determined that submerged, in situ pine trees that date to between 900-1250 AD are related to a medieval megadrought in the Lake Tahoe Basin. The timing and severity of this event match medieval megadroughts observed in the western United States and in Europe. CHIRP profiles acquired in the Salton Sea, California provide new insights into the processes that control pull-apart basin development and earthquake hazards along the southernmost San Andreas Fault. Differential subsidence (>10 mm/yr) in the southern sea suggests the existence of northwest-dipping basin-bounding faults near the southern shoreline. In contrast to previous models, the rapid subsidence and fault architecture observed in the southern part of the sea are consistent with experimental models for pull-apart basins. Geophysical surveys imaged more than 15 ˜N15°E oriented faults, some of which have produced up to 10 events in the last 2-3 kyr. Potentially 2 of the last 5 events on the southern San Andreas Fault (SAF) were synchronous with rupture on offshore faults, but it appears that ruptures on

  2. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)


    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  3. Occurrence, distribution, and transport of pesticides, trace elements, and selected inorganic constituents into the Salton Sea Basin, California, 2001-2002 (United States)

    LeBlanc, Lawrence A.; Schroeder, Roy A.; Orlando, James L.; Kuivila, Kathyrn M.


    A study of pesticide distribution and transport within the Salton Sea Basin, California, was conducted from September 2001 to October 2002. Sampling for the study was done along transects for the three major rivers that flow into the Salton Sea Basin: the New and Alamo Rivers at the southern end of the basin and the Whitewater River at the northern end. Three stations were established on each river: an outlet station approximately 1 mile upstream of the river discharge, a near-shore station in the river delta, and off-shore station in the Salton Sea. Water and suspended and bed sediments were collected at each station in October 2001, March-April 2002, and September 2002, coinciding with peak pesticide applications in the fall and spring. Fourteen current-use pesticides were detected in the water column. Concentrations of dissolved pesticides typically decreased from the outlets to the sea in all three rivers, consistent with the off-shore transport of pesticides from the rivers to the sea. Dissolved concentrations ranged from the limits of detection to 151 nanograms per liter (ng/L); however, diazinon, eptam (EPTC), and malathion were detected at much higher concentrations (940?3,830 ng/L) at the New and Alamo River outlet and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and eptam were higher during the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring. Current-use pesticides also were detected on suspended and bed sediments in concentrations ranging from method detection limits to 106 ng/g (nanograms per gram). Chlorpyrifos, dacthal, eptam, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number and concentrations of pesticides associated with suspended sediments frequently were similar for the river outlet and near-shore sites, consistent with the downstream transport of sediment-associated pesticides out of the

  4. Optimization of injection scheduling in geothermal fields

    Energy Technology Data Exchange (ETDEWEB)

    Lovekin, J.


    This study discusses the application of algorithms developed in Operations Research to the optimization of brine reinjection in geothermal fields. The injection optimization problem is broken into two sub-problems: (1) choosing a configuration of injectors from an existing set of wells, and (2) allocating a total specified injection rate among chosen injectors. The allocation problem is solved first. The reservoir is idealized as a network of channels or arcs directly connecting each pair of wells in the field. Each arc in the network is considered to have some potential for thermal breakthrough. This potential is quantified by an arc-specific break-through index, b/sub ij/, based on user-specified parameters from tracer tests, field geometry, and operating considerations. The sum of b/sub ij/-values for all arcs is defined as the fieldwide breakthrough index, B. Injection is optimized by choosing injection wells and rates so as to minimize B subject to constraints on the number of injectors and the total amount of fluid to be produced and reinjected. The study presents four computer programs which employ linear or quadratic programming to solve the allocation problem. In addition, a program is presented which solves the injector configuration problem by a combination of enumeration and quadratic programming. The use of the various programs is demonstrated with reference both to hypothetical data and an actual data set from the Wairakei Geothermal Field in New Zealand.

  5. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna


    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  6. Pilot fruit drier for Los Azufres geothermal field, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lund, J.W.


    Comision Federal de Electricidad (CFE) has a Division in charge of the exploration of a geothermal reservoir located in Los Azufres, State of Michoacan. At present, CFE is only using the steam of the wells and rejecting the hot water that comes off associated with the steam. Based on a trip to the Los Azufres geothermal field in December of 1992, a design for a pilot geothermal fruit drier was undertaken for CFE. The details of the geothermal field and the local fruit production are detailed.

  7. Geothermal induced seismicity: What links source mechanics and event magnitudes to faulting regime and injection rates? (United States)

    Martinez-Garzon, Patricia; Kwiatek, Grzegorz; Bohnhoff, Marco; Dresen, Georg


    Improving estimates of seismic hazard associated to reservoir stimulation requires advanced understanding of the physical processes governing induced seismicity, which can be better achieved by carefully processing large datasets. To this end, we investigate source-type processes (shear/tensile/compaction) and rupture geometries with respect to the local stress field using seismicity from The Geysers (TG) and Salton Sea geothermal reservoirs, California. Analysis of 869 well-constrained full moment tensors (MW 0.8-3.5) at TG reveals significant non-double-couple (NDC) components (>25%) for 65% of the events and remarkably diversity in the faulting mechanisms. Volumetric deformation is clearly governed by injection rates with larger NDC components observed near injection wells and during high injection periods. The overall volumetric deformation from the moment tensors increases with time, possibly reflecting a reservoir pore pressure increase after several years of fluid injection with no significant production nearby. The obtained source mechanisms and fault orientations are magnitude-dependent and vary significantly between faulting regimes. Normal faulting events (MW dilatancy, and they occur on varying fault orientations. In contrast, strike-slip events dominantly reveal a double-couple source, larger magnitudes (MW > 2) and mostly occur on optimally oriented faults with respect to the local stress field. NDC components indicating closure of cracks and pore spaces in the source region are found for reverse faulting events with MW > 2.5. Our findings from TG are generally consistent with preliminary source-type results from a reduced subset of well-recorded seismicity at the Salton Sea geothermal reservoir. Combined results imply that source processes and magnitudes of geothermal-induced seismicity are strongly affected by and systematically related to the hydraulic operations and the local stress state.

  8. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)


    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  9. Calibration Shots Recorded for the Salton Seismic Imaging Project, Salton Trough, California (United States)

    Murphy, J. M.; Rymer, M. J.; Fuis, G. S.; Stock, J. M.; Goldman, M.; Sickler, R. R.; Miller, S. A.; Criley, C. J.; Ricketts, J. W.; Hole, J. A.


    The Salton Seismic Imaging Project (SSIP) is a collaborative venture between the U.S. Geological Survey, California Institute of Technology, and Virginia Polytechnic Institute and State University, to acquire seismic reflection/wide angle refraction data, and currently is scheduled for data acquisition in 2010. The purpose of the project is to get a detailed subsurface 3-D image of the structure of the Salton Trough (including both the Coachella and Imperial Valleys) that can be used for earthquake hazards analysis, geothermal studies, and studies of the transition from ocean-ocean to continent-continent plate-boundary. In June 2009, a series of calibration shots were detonated in the southern Imperial Valley with specific goals in mind. First, these shots were used to measure peak particle velocity and acceleration at various distances from the shots. Second, the shots were used to calibrate the propagation of energy through sediments of the Imperial Valley. Third, the shots were used to test the effects of seismic energy on buried clay drainage pipes, which are abundant throughout the irrigated parts of the Salton Trough. Fourth, we tested the ODEX drilling technique, which uses a down-hole casing hammer for a tight casing fit. Information obtained from the calibration shots will be used for final planning of the main project. The shots were located in an unused field adjacent to Hwy 7, about 6 km north of the U.S. /Mexican border (about 18 km southeast of El Centro). Three closely spaced shot points (16 meters apart) were aligned N-S and drilled to 21-m, 23.5-m, and 27-m depth. The holes were filled with 23-kg, 68-kg, and 123-kg of ammonium-nitrate explosive, respectively. Four instrument types were used to record the seismic energy - six RefTek RT130 6-channel recorders with a 3-component accelerometer and a 3-component 2-Hz velocity sensor, seven RefTek RT130 3-channel recorders with a 3-component 4.5-Hz velocity sensor, 35 Texans with a vertical component 4

  10. Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D. (ed.)


    Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

  11. Geothermal Fields on the Volcanic Axis of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, S.; Gonzalez, A.


    At present in Mexico, geothermal energy is receiving a great impulse due to the excellent results obtained in the Cerro Prieto geothermal field, in which a geothermoelectric plant is operated. This plant has four units of 37.5 MW each, with a total capacity of 150 MW, and under program 470 MW more by 1984. The Government Institution, Comisi6n Federal de Electricidad, is in charge of the exploration and exploitation of geothermal fields as well as construction and operation of power plants in Mexico. By this time CFE has an extensive program of exploration in the central part of Mexico, in the Eje Neovolcdnico. In this area, several fields with hydrothermal alteration are under exploration, like the Michoac6n geothermal area, where Los Azufres geothermal field is being developed. Seventeen wells have been drilled and twelve of them presented excellent results, including two dry steam wells. In other areas, such as Arar6, Cuitzeo, San Agustln del Maiz,Ixtldn de Los Hervores and Los Negritos, geological, geophysical and geochemical explorations have been accomplished, including shallow well drilling with good results. Another main geothermal area is in the State of Jalisco with an extension of 5,000 m2, where La Primavera geothermal field shows a lot of volcanic domes and has an intensive hydrothermal activity. Deep wells have been drilled, one of them with a bottom temperature of 29OOC. Other fields in this area, like San Narcos, Hervores de La Vega, La Soledad, Villa Corona, etc., have a good geothermal potential. A new geothermal area has been explored recently in the eastern part of the country named Los Humeros, Puebla. In this area studies are being made and there are plans for well drilling exploration by the beginning of 1981. Like this one, there are many other areas in the country in which 300 hydrothermal alteration zones are been classified and 100 of them are considered economically exploitable.

  12. Symposium in the field of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Miguel; Mock, John E.


    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  13. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    Energy Technology Data Exchange (ETDEWEB)

    Young, Katherine R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservation planning efforts, particularly at the Salton Sea.

  14. Constraints on geothermal reservoir volume change calculations from InSAR surface displacements and injection and production data (United States)

    Kaven, J. Ole; Barbour, Andrew J.; Ali, Tabrez


    Continual production of geothermal energy at times leads to significant surface displacement that can be observed in high spatial resolution using InSAR imagery. The surface displacement can be analyzed to resolve volume change within the reservoir revealing the often-complicated patterns of reservoir deformation. Simple point source models of reservoir deformation in a homogeneous elastic or poro-elastic medium can be superimposed to provide spatially varying, kinematic representations of reservoir deformation. In many cases, injection and production data are known in insufficient detail; but, when these are available, the same Green functions can be used to constrain the reservoir deformation. Here we outline how the injection and production data can be used to constrain bounds on the solution by posing the inversion as a quadratic programming with inequality constraints and regularization rather than a conventional least squares solution with regularization. We apply this method to InSAR-derived surface displacements at the Coso and Salton Sea Geothermal Fields in California, using publically available injection and production data. At both geothermal fields the available surface deformation in conjunction with the injection and production data permit robust solutions for the spatially varying reservoir deformation. The reservoir deformation pattern resulting from the constrained quadratic programming solution is more heterogeneous when compared to a conventional least squares solution. The increased heterogeneity is consistent with the known structural controls on heat and fluid transport in each geothermal reservoir.

  15. Geothermal Potential of Marine Corps Air Station, Yuma, Arizona, and the Western Portion of Luke-Williams Gunnery Range (United States)


    Domes in the Northern Part of the Gulf of California," in Symposia on the Cerro Prieto Geothermal Field, Baja California, Mexico, Comision Federal de...Laboratory, August 1979. LA-7953-MS. 22 pp. 10. J. de Boer. "Paleomagnetism of the Quaternary Cerro Prieto , Crater Elegante, and Salton Buttes Volcanic...NWC TP 6827 S Geothermal Potential of Marine Corps Air Station, Yuma, Arizona, and the Western Portion of Luke-Williams Gunnery Range by Steven C

  16. Geothermal resource evaluation of the Yuma area

    Energy Technology Data Exchange (ETDEWEB)

    Poluianov, E.W.; Mancini, F.P.


    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  17. Preliminary Report on the Feasibility of Using Synthetic Aperture Radar Interferometry to Image Localized Strain as a Discriminator of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Foxall, W


    Most producing geothermal fields and known geothermal resources in the Basin and Range province are associated with Quaternary active fault systems, within which hydrothermal fluids are presumed to circulate from depth to relatively shallow production levels through high permeability fractures. Research at the Dixie Valley field by Barton et al. (1997) indicates that hydraulically conductive fractures within the Stillwater fault zone are those that have orientations such that the fractures are critically stressed for normal shear failure under the regional tectonic stress field. In general, therefore, we might expect geothermal resources to occur in areas of high inter-seismic strain accumulation, and where faults are favorably oriented with respect to the regional strain tensor; in the case of Basin and Range normal faults, these would generally be faults striking normal to the direction of maximum extension. Expanding this hypothesis, Blewitt et al. (2003), based on preliminary, broad-scale analysis of regional strain and average fault strike in the northwestern Basin and Range, have proposed that geothermal resources occur in areas where fault-normal extension associated with shear strain is the greatest. Caskey and Wesnousky (2000) presented evidence that the Dixie Valley field occupies a 10 km-long gap between prehistoric Holocene ruptures of the fault segments on either side. Modeled maximum shear and Coulomb failure stress are high within the gap owing to the stress concentrations at the ends of the ruptures. These results suggest that a major contributing factor to the enhanced permeability at fault-hosted geothermal systems may be localized stress and strain concentrations within fault zone segments. This notion is generally consistent with the common occurrence of geothermal fields within fault offsets (pull-aparts) along strike-slip fault systems, where the local strain field has a large extensional component (e.g., Salton Sea and Coso). Blewitt et al

  18. An example of geothermal systems: Hidirlar Geothermal Field, Biga Peninsula, NW Turkey (United States)

    Ateş, Özkan; Zeki Tutkun, Salih; Baba, Alper; Woith, Heiko; Özden, Süha


    Biga Peninsula located at northwestern Anatolia on southern segment on the dextral North Anatolian Fault and has many important geothermal potential areas. There are known 14 geothermal system namely Tuzla, Kestanbol, Hıdırlar, Kırkgeçit, Kocabaşlar, Bardakçılar, Palamutoba, Akçakeçili, Küçükçetmi, Külcüler, Tepeköy, Çan, Topaklar and Etili. Among them, an important field is the Hıdırlar geothermal field, situated at the southeast of the Biga Peninsula. This field is in a tectonosedimentary basin and controlled by different trending faults. It has a potential usage about 87,7°C surface discharge temperature. Three thermal springs sampled in the Hıdırlar geothermal field. They have named as Spring, Drill and Uyuz. Their surface temperatures are Spring=77,5°C, Drill=57,7°C and Uyuz=53,6°C. According to the result of hydro-geochemical analysis and diagrams, thermal waters are generally Na-SO4 and Na-SO4-HCO3 water types. Assessments of chemical geothermometers applied to the thermal waters, suggest that reservoir temperatures are 90°C-163°C for Spring, 81°C-149°C for Drill and 83°C-161°C for Uyuz. Around Hıdırlar geothermal field, have been determined five different geological units. Lower-Middle Triassic aged Nilüfer Unit of Karakaya Complex is the basement unit. Late Oligocene aged Çakıroba granodiorite and Çan volcanic rocks overlie the basement metamorphic rocks with an unconformity. Neogene aged Örencik Formation, Quaternary aged slope washes and alluvium cover all older units with angular unconformity. Main structural trends have ENE-trending normal faults and they have been cutting by youngest NE-trending normal faults with a dextral strike-slip component. All thermal water springs are arranged on the NE-trending youngest faults. Both fault-slip data and joint measurements, mainly in granodiorites, show an active local extensional tectonic regime on southern segment of North Anatolian Fault. This local tectonic regime

  19. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.


    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  20. Salton Trough regional deformation estimated from combined trilateration and survey-mode GPS data (United States)

    Anderson, G.; Agnew, D.C.; Johnson, H.O.


    The Salton Trough in southeastern California, United States, has one of the highest seismicity and deformation rates in southern California, including 20 earthquakes M 6 or larger since 1892. From 1972 through 1987, the U.S. Geological Survey (USGS) measured a 41-station trilateration network in this region. We remeasured 37 of the USGS baselines using survey-mode Global Positioning System methods from 1995 through 1999. We estimate the Salton Trough deformation field over a nearly 30-year period through combined analysis of baseline length time series from these two datasets. Our primary result is that strain accumulation has been steady over our observation span, at a resolution of about 0.05 ??strain/yr at 95% confidence, with no evidence for significant long-term strain transients despite the occurrence of seven large regional earthquakes during our observation period. Similar to earlier studies, we find that the regional strain field is consistent with 0.5 ?? 0.03 ??strain/yr total engineering shear strain along an axis oriented 311.6?? ?? 23?? east of north, approximately parallel to the strike of the major regional faults, the San Andreas and San Jacinto (all uncertainties in the text and tables are standard deviations unless otherwise noted). We also find that (1) the shear strain rate near the San Jacinto fault is at least as high as it is near the San Andreas fault, (2) the areal dilatation near the southeastern Salton Sea is significant, and (3) one station near the southeastern Salton Sea moved anomalously during the period 1987.95-1995.11.

  1. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan. (United States)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh


    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare

  2. Radon studies for extending Los Azufres geothermal energy field in Mexico

    CERN Document Server

    Tavera, L; Camacho, M E; Chavez, A; Pérez, H; Gómez, J


    Los Azufres is a 98 MW producing geothermal energy field situated in the Mexican volcanic belt at the west part of the country. Recently, hydrothermal activity and geochemical analysis of geothermal fluids from the north part of the geothermal field gave indications of a possible geothermal-production area, similar to the already producing field. In order to investigate the activity of geological structures, which are considered the means of geothermal fluids transporters, radon mapping was carried out using sets of 240 LR-115 detectors in the area of interest. Radon values higher than 10 kBq m sup - sup 3 were considered anomalous and indicative of geothermal anomalies.

  3. Tridimensional gravity model of the Travale geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Toro, B.; Di Filippo, M. [Rome Univ. (Italy); Dini, I. [Ente Nazionale per l`Energia Elettrica, Pisa (Italy). Centro di Ricerca Geotermica; Bruschi, S.


    The paper discusses a tri dimensional gravity model of the Travale geothermal field (GR, Italy). The model was developed on the basis of stratigraphic data from wells existing in the area and from previous geophysical studies. The model, developed with a high level of detail, showed that the geothermal reservoir accommodates areas of lower density than the surrounding ones, corresponding to high productivity areas. This finding may be explained by the fact that, in the most productive areas, the reservoir has higher porosity or fracturing and houses vapor-phase fluids. (Authors). 5 refs., 9 figs.

  4. Temperature distribution in the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Castillo B, F.; Bermejo M, F.J.; Domiguez A, B.; Esquer P, C.A.; Navarro O, F.J.


    A series of temperature and pressure logs and flow rate measurements was compiled for each of the geothermal wells drilled to different reservoir depths between October 1979 and December 1980. Based on the valuable information obtained, a series of graphs showing the thermal characteristics of the reservoir were prepared. These graphs clearly show the temperature distribution resulting from the movement of fluids from the deep regions toward the higher zones of the reservoir, thus establishing more reliable parameters for locating new wells with better production zones. Updated information based on data from new deep wells drilled in the geothermal field is presented here. This new information does not differ much from earlier estimates and theories. However, the influence of faulting and fracturing on the hydrothermal recharge of the geothermal reservoir is seen more clearly.

  5. Deep geothermal processes acting on faults and solid tides in coastal Xinzhou geothermal field, Guangdong, China (United States)

    Lu, Guoping; Wang, Xiao; Li, Fusi; Xu, Fangyiming; Wang, Yanxin; Qi, Shihua; Yuen, David


    This paper investigated the deep fault thermal flow processes in the Xinzhou geothermal field in the Yangjiang region of Guangdong Province. Deep faults channel geothermal energy to the shallow ground, which makes it difficult to study due to the hidden nature. We conducted numerical experiments in order to investigate the physical states of the geothermal water inside the fault zone. We view the deep fault as a fast flow path for the thermal water from the deep crust driven up by the buoyancy. Temperature measurements at the springs or wells constrain the upper boundary, and the temperature inferred from the Currie temperature interface bounds the bottom. The deepened boundary allows the thermal reservoir to revolve rather than to be at a fixed temperature. The results detail the concept of a thermal reservoir in terms of its formation and heat distribution. The concept also reconciles the discrepancy in reservoir temperatures predicted from both quartz and Na-K-Mg. The downward displacement of the crust increases the pressure at the deep ground and leads to an elevated temperature and a lighter water density. Ultimately, our results are a first step in implementing numerical studies of deep faults through geothermal water flows; future works need to extend to cases of supercritical states. This approach is applicable to general deep-fault thermal flows and dissipation paths for the seismic energy from the deep crust.

  6. Ambient Noise Tomography of Southern California Images Dipping San Andreas-Parallel Structure and Low-Velocity Salton Trough Mantle (United States)

    Barak, S.; Klemperer, S. L.; Lawrence, J. F.


    Ambient noise tomography (ANT) images the entire crust but does not depend on the spatial and temporal distribution of events. Our ANT high-resolution 3D velocity model of southern California uses 849 broadband stations, vastly more than previous studies, and four years of data, 1997-1998, 2007, and 2011, chosen to include our own broadband Salton Seismic Imaging Project, a 40-station transect across the Salton Trough, as well as other campaign stations in both Mexico and the U.S.A., and permanent stations. Our shear-wave model has 0.05° x 0.05° lateral and 1 km vertical blocks. We used the Harvard Community Velocity Model (CVM-H) as the initial model for the inversion. We show significant differences relative to the CVM-H model, especially in the lower crust and upper mantle. We observe prominent low-velocity anomalies in the upper mantle under the Salton Buttes and Cerro Prieto geothermal fields, indicating high-temperatures and possibly partial-melt. Similar low-velocity zones have been previously observed along the Gulf of California. We also observe vertical to gradually dipping lateral velocity contrasts in the lower crust under the southern part of the San Andreas Fault. The east to northeast dip may represent crustal fabric sheared by movement of the Pacific plate under the North American plate prior to the initiation of transform motion.

  7. Natural or Induced: Identifying Natural and Induced Swarms from Pre-production and Co-production Microseismic Catalogs at the Coso Geothermal Field (United States)

    Schoenball, Martin; Kaven, Joern; Glen, Jonathan M. G.; Davatzes, Nicholas C.


    Increased levels of seismicity coinciding with injection of reservoir fluids have prompted interest in methods to distinguish induced from natural seismicity. Discrimination between induced and natural seismicity is especially difficult in areas that have high levels of natural seismicity, such as the geothermal fields at the Salton Sea and Coso, both in California. Both areas show swarm-like sequences that could be related to natural, deep fluid migration as part of the natural hydrothermal system. Therefore, swarms often have spatio-temporal patterns that resemble fluid-induced seismicity, and might possibly share other characteristics. The Coso Geothermal Field and its surroundings is one of the most seismically active areas in California with a large proportion of its activity occurring as seismic swarms. Here we analyze clustered seismicity in and surrounding the currently produced reservoir comparatively for pre-production and co-production periods. We perform a cluster analysis, based on the inter-event distance in a space-time-energy domain to identify notable earthquake sequences. For each event j, the closest previous event i is identified and their relationship categorized. If this nearest neighbor’s distance is below a threshold based on the local minimum of the bimodal distribution of nearest neighbor distances, then the event j is included in the cluster as a child to this parent event i. If it is above the threshold, event j begins a new cluster. This process identifies subsets of events whose nearest neighbor distances and relative timing qualify as a cluster as well as a characterizing the parent-child relationships among events in the cluster. We apply this method to three different catalogs: (1) a two-year microseismic survey of the Coso geothermal area that was acquired before exploration drilling in the area began; (2) the HYS_catalog_2013 that contains 52,000 double-difference relocated events and covers the years 1981 to 2013; and (3) a

  8. Application of ethanol as a geothermal tracer: a field-test in the Los Azufres geothermal field, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tello Hinojosa, Enrique [Comision Federal de Electricidad, Morelia, Michoacan (Mexico); Pal Verma, Mahendra [Comision Federal de Electricidad, Morelia, Michoacan (Mexico); Suarez Arriaga, Mario C. [Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan (Mexico); Barrera Conzalez, Victor; Sandoval Medina, Fernando [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)


    The thermal decomposition rate of ethanol, rhodamine WT and fluoroscein was determined from laboratory data obtained under conditions of temperature and pressure that simulated a geothermal reservoir. It was found that ethylic alcohol had better thermal stability rhodamine and fluoroscein. Using data obtained from de-ionized water experiments after 168 hours and 200 degree centigrade of temperature, the rhodamine WT and fluoroscein presented a degradation of 99.4% and 99.7%, respectively, while for the ethanol the degradation percentage under the same conditions was only of 44.6%. According to this, ethylic alcohol can be used as a conservative tracer up to about 250 degree centigrade, while rhodamine WT and fluoroscein can be used only at less than 200 degree centigrade, and only where the transit return time is expected to be less than 7 days. Ethanol was used as a conservative tracer in a field test in the southern zone of the Los Azufres geothermal field. The highest concentration was detected in a monitoring well in the steam phase 15 days after the injection, and in the liquid phase, or brine, 34 days after the injection. This suggests that alcohol fractionates preferentially in the steam phase and moves or migrates twice as fast than it does in the liquid phase. The tracer speed can be calculated in 176 m/day in the steam phase and 77.5 m/day in the brine. The ethanol presents good enough characteristics to be used as a tracer in both phases in geothermal environments. [Spanish] Se determino la velocidad de descomposicion termica del etanol, la rodamina y la fluoresceina a partir de datos de laboratorio obtenidos bajo condiciones de presion y de temperatura que simulan las de un yacimiento geotermico. Se encontro que el alcohol etilico presenta una mayor estabilidad termica que la rodamina y la fluoresceina. Empleando los datos obtenidos de experimentos con agua de-ionizada despues de 168 horas y a 200 grados centigrados de temperatura, la rodamina y la

  9. Relationshipe Between Self-potential Anomalies and Hydraulic Flow In A Geothermal System: Application To Cerro-prieto, Baja California (United States)

    Saracco, G.; Revil, A.; Pessel, M.

    The Cerro Prieto geothermal field is located in the alluvial plain of the Mexicali Valley, northern Baja California, Mexico, at about 35 km southeast of the city of Mexicali. The Cerro Prieto geothermal field is one of several high temperature water-dominated geothermal fields within the Salton Trough. We analyze here the self-potential distri- bution at the ground surface in order to determine the pattern of fluid flow in te sub- surface of this geothermal field. Various methods of analysis of self-potential anoma- lies are employed to reach this purpose. We use density probability tomography of monopolar and dipolar electrical sources and an Euler-type analysis. The hydraulic flow pattern found in this geothermal field is in agreement with that detemined from the heat flux inside the structure.

  10. A Reservoir Assessment of the Geysers Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Richard P.; Chapman, Rodger H.; Dykstra, Herman; Stockton, A.D.


    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Upon moderately dipping, fracture network. Condensed steam at the steep reservoir flank drains back to the hot water table. These flanks are defined roughly by marginally-producing geothermal wells. Field extensions are expected to be on the southeast and northwest. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably represent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resitivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. Monitoring gravity and geodetic changes with time and mapping microearthquake activity are methods that show promise for determining reservoir size, possible recharge, production lifetime, and other characteristics of the known stream field. Seismic reflection data may contribute to the efficient exploitation of the field by identifying fracture zones that serve as conduits for the steam. (DJE-2005)

  11. Differential Absorption Lidar Mapping of Atmospheric Atomic Mercury in Italian Geothermal Fields (United States)

    Edner, H.; Ragnarson, P.; Svanberg, S.; Wallinder, E.; de Liso, A.; Ferrara, R.; Maserti, B. E.


    Results from extensive lidar measurements on atmospheric atomic mercury in Italian geothermal fields are reported. A mobile differential absorption lidar system operating on the 254-nm mercury resonance line with a measuring range of about 1 km was used in mineralized as well as nonmineralized areas. Measurements were performed at geothermal power stations and in an unexploited field with natural surface geothermic manifestations. Atomic mercury concentrations ranging from 2 to 1000 ng/m3 were mapped. The high Italian geothermal mercury concentrations are in strong contrast to the recent lidar finding of the absence of atomic mercury in Icelandic geothermal fields.

  12. Recency of Faulting and Neotechtonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range

    Energy Technology Data Exchange (ETDEWEB)

    Steven Wesnousky; S. John Caskey; John W. Bell


    We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal development. The approach developed here during our pilot study provides an inexpensive approach to (1) better define the best locations to site geothermal wells within known geothermal fields and (2) to define the location of yet discovered geothermal fields which are not manifest at the surface by active geothermal springs. More specifically, our investigation shows that induced stress concentrations at the endpoints of normal fault ruptures appear to promote favorable conditions for hydrothermal activity in two ways. We conclude that an understanding of the spatial distribution of active faults and the past history of earthquakes on those faults be incorporated as a standard tool in geothermal exploration and in the siting of future boreholes in existing geothermal fields.

  13. The Geysers Geothermal Field Update1990/2010

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, P.; Lippmann, M.; Dobson, P.F.; Poux, B.


    In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, but not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible

  14. Interstratified Illite/Montmorillonite in Kamojang Geothermal Field, Indonesia

    Directory of Open Access Journals (Sweden)

    D. F. Yudiantoro


    Full Text Available DOI: 10.17014/ijog.v8i4.167Kamojang geothermal field located in West Java Province, falls under the Pangkalan Subregency, Bandung Regency. The researched area is a geothermal field located in the Quaternary volcanic caldera system of about 0.452 to 1.2 Ma. The volcanic activity generated hydrothermal fluids, interacting with rocks producing mineral alteration. The minerals formed in the areas of research are interstratified illite/montmorillonite (I/M. Analyses to identify interstratified I/M have been performed by X-ray diffraction using ethylene glycol, while the determination of the type and percentage of interstratified I/M was based on the calculation method of Watanabe. The methodology was applied on core and cutting samples from Wells KMJ-8, 9, 11, 13, 16, 23, 49, 51, and 54. The result of analysis of the samples shows that the type of clay is interstratified illite/montmorillonite and the minerals are formed at temperatures ranging from 180 to 220° C. The type of interstratified I/M in the studied area is S = 0 and S = 1. The percentage of illite type S = 0 is between 20 - 35% illite, whereas type S = 1 has about 45 - 72% illite. Along with the increasing depth, the percentage of illite is getting greater. This is consistent with the vertical distribution of temperature which increases according to the depth. This correlation results in an interpretation that the upflow zone of the geothermal reservoir is located in the centre of the Kamojang geothermal field.

  15. Sustainability analysis of the Ahuachapan geothermal field: management and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel; Montalvo Lopez, Francisco E. [LaGeo S.A. de C.V., Reservoir Engineering, 15 Av. Sur, Colonia Utila, Santa Tecla, La Libertad (El Salvador)


    The Ahuachapan geothermal field (AGF) is located in north western El Salvador. To date, 53 wells (20 producers and 8 injectors) have been drilled in the Ahuachapan geothermal field and the adjacent Chipilapa area. Over the past 33 years, 550 Mtonnes have been extracted from the reservoir, and the reservoir pressure has declined by more than 15 bars. By 1985, the large pressure drawdown due to over-exploitation of the resource reduced the power generation capacity to only 45 MW{sub e}. Several activities were carried out in the period 1997-2005 as part of ''stabilization'' and ''optimization'' projects to increase the electric energy generation to 85 MW{sub e}, with a total mass extraction of 850 kg/s. LaGeo is assessing the sustainability of geothermal reservoir utilization. Preliminary results indicate the planned power production and mass extraction (95 MW, 900 kg/s) cannot be sustained for more than 50 years using current power plant technology. To sustain the exploitation for at least 100 years, the following changes should be implemented: (1) improve the gathering system using large-diameter steam pipelines, (2) expand the exploitation area to the southeast and southwest, and (3) reduce the inlet pressure of the turbines to less than 4 bars. (author)

  16. Three-dimensional Magnetotelluric Characterization of the Xinzhou Geothermal Field, Southeastern China (United States)

    Han, Q.; Hu, X.; Cai, J.; Wei, W.


    Xinzhou geothermal field is located in the Guangdong province and adjacent to the China South Sea, and its hot springs can reach up to 92 degree Celsius. Yanshanian granite expose widely in the south of this geothermal field and four faults cut across each other over it. A dense grid of 176 magnetotelluric (MT) sites with broadband has been acquired over the Xinzhou geothermal field and its surrounding area. Due to the related electromagnetic (EM) noise one permanent observatory was placed as a remote reference to suppress this cultural EM noise interference. The datasets are processed using the mutual reference technique, static shift correction, and structural strike and dimensionality analysis based on tensor decomposition. Data analysis reveals that the underground conductivity structure has obvious three-dimensional characterization. For the high resolution result ,two and three dimensional inversion are both applied in this area employing the non-linear conjugate gradient method (NLCG).These MT data sets are supposed to detect the deep subsurface resistivity structure correlated to the distribution of geothermal reservoir (such as faults and fractured granite) and investigate the channel of the upwelling magma. The whole and cold granite usually present high resistivity but once it functions as reservoir the resistivity will decrease, sometimes it is hard to separate the reservoir from the cap layer. The 3D inversion results delineate three high resistivity anomalies distributed in different locations. At last we put forward that the large areas of granite form the major thermal source for the study area and discuss whether any melt under these magma intrusions exists.

  17. Strategies and Perceptions of Students' Field Note-Taking Skills: Insights from a Geothermal Field Lesson (United States)

    Dohaney, Jacqueline; Brogt, Erik; Kennedy, Ben


    Field note-taking skills are fundamental in the geosciences but are rarely explicitly taught. In a mixed-method study of an introductory geothermal field lesson, we characterize the content and perceptions of students' note-taking skills to derive the strategies that students use in the field. We collected several data sets: observations of the…

  18. Reservoir Characterization around Geothermal Field, West Java, Indonesia Derived from 4-D Seismic Tomography (United States)

    Verdhora Ry, Rexha; Nugraha, A. D.


    Observation of micro-seismic events induced by intensive geothermal exploitation in a particular geothermal field, located in West Java region, Indonesia was used to detect the fracture and permeability zone. Using local monitoring seismometer network, tomographic inversions were conducted for the three-dimensional Vp, Vs, and Vp/Vs structure of the reservoir for January - December 2007, January - December 2008, and January - December 2009. First, hypocenters location was relocated using joint hypocenter determination (JHD) method in purpose to estimate best location. Then, seismic tomographic inversions were conducted using delay time tomography for dataset of every year respectively. The travel times passing through the three-dimensional velocity model were calculated using ray tracing pseudo-bending method. Norm and gradient damping were added to constrain blocks without ray and to produce smooth solution model. The inversion algorithm was developed in Matlab environment. Our tomographic inversion results from 3-years of observations indicate the presence of low Vp, low Vs, and low Vp/Vs ratio at depths of about 1 - 3 km below sea level. These features were interpreted may be related to steam-saturated rock in the reservoir area of this geothermal field. The locations of the reservoir area were supported by the data of well- trajectory, where the zones of high Vp/Vs were observed around the injection wells and the zones of low Vp/Vs were observed around the production wells. The extensive low Vp/Vs anomaly that occupies the reservoir is getting stronger during the 3-years study period. This is probably attributed to depletion of pore liquid water in the reservoir and replacement with steam. Continuous monitoring of Vp, Vs, and Vp/Vs is an effective tool for geothermal reservoir characterization and depletion monitoring and can potentially provide information in parts of the reservoir which have not been drilled.

  19. A database for The Geysers geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsson, G.S.; Cox, B.L.; Fuller, P.; Ripperda, M.; Tulinius, H.; Witherspoon, P.A.; Goldstein, N.; Flexser, S.; Pruess, K. (Lawrence Berkeley Lab., CA (USA)); Truesdell, A. (Geological Survey, Menlo Park, CA (USA))


    In Fiscal Year 1985-1986 the Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) began a multi-year project for SLC to organize and analyze the field data from The Geysers. In the first year, most of the work concentrated on the development of a comprehensive database for The Geysers, and conventional reservoir engineering analysis of the data. Essentially, all non-proprietary data for wells at The Geysers have been incorporated into the database, as well as proprietary data from wells located on State leases. In following years, a more detailed analysis of The Geysers data has been carried out. This report is a summary of the non- proprietary work performed in FY 1985--1986. It describes various aspects of the database and also includes: review sections on Field Development, Geology, Geophysics, Geochemistry and Reservoir Engineering. It should be emphasized that these background chapters were written in 1986, and therefore only summarize the information available at that time. The appendices contain individual plots of wellhead pressures, degree of superheat, steam flow rates, cumulative mass flows, injection rates and cumulative injection through 1988 for approximately 250 wells. All of the data contained in this report are non-proprietary, from State and non-State leases. The production/injection and heat flow data from the wells were obtained from the California State Division of Oil and gas (DOG) (courtesy of Dick Thomas). Most of the other data were obtained from SLC files in Sacramento (courtesy of Charles Priddy), or DOG files in Santa Rosa (courtesy of Ken Stelling). 159 refs., 23 figs., 3 tabs.

  20. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China. (United States)

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang


    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by

  1. Landslide hazard assessment and mitigation measures in Philippine geothermal fields

    Energy Technology Data Exchange (ETDEWEB)

    Leynes, R.D.; Pioquinto, W.P.C.; Caranto, J.A. [PNOC Energy Development Corporation, Fort Bonifacio (Philippines)


    Simple, yet reliable, field criteria have been developed and are being used to qualitatively assess slope instability and slope failure potential in Philippine geothermal fields. Based on a hazard assessment classification of slopes along corridor facilities, sites for implementation of engineering measures are selected. Two case studies are presented. In Mindanao field, the ''very high-risk'' classification of an area resulted in the installation of pipe shelters, which subsequently shielded a section of a pipeline from landslides. Follow-up monitoring is also conducted using cheap, locally fabricated tools, such as surface extensometers. This is being done in Leyte field, where a landslide has threatened a transmission line tower. (author)

  2. The Ngatamariki Geothermal Field, NZ: Surface Manifestations - Past and Present

    Energy Technology Data Exchange (ETDEWEB)

    Brotheridge, J.M.A.; Browne, P.R.L.; Hochstein, M.P.


    The Ngatamariki geothermal field, located 7 km south of Orakeikorako, discharges dilute chloride-bicarbonate waters of almost neutral pH from springs mostly on the margins of the field. Rhyolite tuffs in the northwestern part of the field are weakly silicified, probably due to their having reacted with heated groundwaters. Sinter deposits are common at Ngatamariki but are mostly relict from former activity. In 1994, the natural heat loss from the field was 30 {+-} 5 MW{sub thermal}. There has been a shift of thermal activity southward over the past 60 years; the changes were recognized by comparing air photographs taken in 1941 and 1991. In 1948, a hydrothermal eruption deposited breccia around its crater, which is now occupied by a pool at 52.5 C. Another pool at 88 C, first noticed in 1993, deposits a mixture of silica and calcite.

  3. Open file data on the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Lippman, M.J.; Aguirre, B.D.; Wollenberg, H.A.; Witherspoon, P.A.


    Some of the unpublished data presently available on open file at the Lawrence Berkeley Laboratory are listed and described. In addition, in the files are a number of internal memoranda of the Commission Federal de Electricidad of Mexico (CFE) on chemical characteristics of the produced fluids and incrustations; published papers on Cerro Prieto and the geologic setting of the Salton Trough; and data on the hydrogeology of the Mexicali Valley. (MHR)

  4. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Pritchett, J.W.; Stevens, J.L.; Luu, L. [Maxwell Federal Div., Inc., San Diego, CA (United States); Combs, J. [Geo-Hills Associates, Los Altos, CA (United States)


    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses, and pressure transient data for the assessment of a high temperature volcanic geothermal field. The work accomplished during Year 1 of this ongoing program is described in the present report. A brief overview of the Sumikawa Geothermal Field is given. The drilling information and downhole pressure, temperature, and spinner surveys are used to determine feedzone locations, pressures and temperatures. Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter. Finally, plans for future work are outlined.

  5. Hydrogeochemistry of the Simav geothermal field, western Anatolia, Turkey (United States)

    Gemici, Ünsal; Tarcan, Gültekin


    Thermal waters hosted by Menderes metamorphic rocks emerge along fault lineaments in the Simav geothermal area. Thermal springs and drilled wells are located in the Eynal, Çitgöl and Naşa locations, which are part of the Simav geothermal field. Studies were carried out to obtain the main chemical and physical characteristics of thermal waters. These waters are used for heating of residences and greenhouses and for balneological purposes. Bottom temperatures of the drilled wells reach 163°C with total dissolved solids around 2225 mg/kg. Surface temperatures of thermal springs vary between 51°C and 90°C. All the thermal waters belong to Na-HCO 3-SO 4 facies. The cold groundwaters are Ca-Mg-HCO 3 type. Dissolution of host rock and ion-exchange reactions in the reservoir of the geothermal system shift the Ca-Mg-HCO 3 type cold groundwaters to the Na-HCO 3-SO 4 type thermal waters. Thermal waters are oversaturated at discharge temperatures for aragonite, calcite, quartz, chalcedony, magnesite and dolomite minerals giving rise to a carbonate-rich scale. Gypsum and anhydrite minerals are undersaturated with all of the thermal waters. Boiling during ascent of the thermal fluids produces steam and liquid waters resulting in an increase of the concentrations of the constituents in discharge waters. Steam fraction, y, of the thermal waters of which temperatures are above 100°C is between 0.075 and 0.119. Reservoir pH is much lower than pH measured in the liquid phase separated at atmospheric conditions, since the latter experienced heavy loss of acid gases, mainly CO 2. Assessment of the various empirical chemical geothermometers and geochemical modelling suggest that reservoir temperatures vary between 175°C and 200°C.

  6. Shear velocity of the Rotokawa geothermal field using ambient noise (United States)

    Civilini, F.; Savage, M. K.; Townend, J.


    Ambient noise correlation is an increasingly popular seismological technique that uses the ambient seismic noise recorded at two stations to construct an empirical Green's function. Applications of this technique include determining shear velocity structure and attenuation. An advantage of ambient noise is that it does not rely on external sources of seismic energy such as local or teleseismic earthquakes. This method has been used in the geothermal industry to determine the depths at which magmatic processes occur, to distinguish between production and non-production areas, and to observe seismic velocity perturbations associated with fluid extraction. We will present a velocity model for the Rotokawa geothermal field near Taupo, New Zealand, produced from ambient noise cross correlations. Production at Rotokawa is based on the "Rotokawa A" combined cycle power station established in 1997 and the "Nga Awa Purua" triple flash power plant established in 2010. Rotokawa Joint Venture, a partnership between Mighty River Power and Tauhara North No. 2 Trust currently operates 174 MW of generation at Rotokawa. An array of short period seismometers was installed in 2008 and occupies an area of roughly 5 square kilometers around the site. Although both cultural and natural noise sources are recorded at the stations, the instrument separation distance provides a unique challenge for analyzing cross correlations produced by both signal types. The inter-station spacing is on the order of a few kilometers, so waves from cultural sources generally are not coherent from one station to the other, while the wavelength produced by natural noise is greater than the station separation. Velocity models produced from these two source types will be compared to known geological models of the site. Depending on the amount of data needed to adequately construct cross-correlations, a time-dependent model of velocity will be established and compared with geothermal production processes.

  7. Reservoir engineering studies of the Cerro Prieto geothermal field (United States)

    Goyal, K. P.; Lippmann, M. J.; Tsang, C. F.


    Reservoir engineering studies of the Cerro Prieto geothermal field began in 1978 under a five-year cooperative agreement between the US Department of Energy and the Comision Federal de Electricidad de Mexico, with the ultimate objective of simulating the reservoir to forecast its production capacity, energy longevity, and recharge capability under various production and injection scenarios. During the fiscal year 1981, attempts were made to collect information on the evolution history of the field since exploitation began; the information is to be used later to validate the reservoir model. To this end, wellhead production data were analyzed for heat and mass flow and also for changes in reservoir pressures, temperatures, and saturations for the period from March 1973 to November 1980.

  8. Geochemical evidence of drawdown in the Cerro Prieto geothermal field (United States)

    Truesdell, A.H.; Manon, M.A.; Jimenez, S.M.E.; Sanchez, A.A.; Fausto, L.J.J.


    Some wells of the Cerro Prieto geothermal field have undergone changes in the chemistry of fluids produced which reflect reservoir processes. Pressure decreases due to production in the southeastern part of the field have produced both drawdown of lower chloride fluids from an overlying aquifer and boiling in the aquifer with excess steam reaching the wells. These reservoir changes are indicated by changes in fluid chloride concentrations, Na/K ratios and measured enthalpies and by comparisons of aquifer fluid temperatures and chloride concentrations calculated from enthalpy and chemical measurements. Fluid temperatures have not been greatly affected by this drawdown because heat contained in the rock was transferred to the fluid. When this heat is exhausted, fluid temperatures may drop rapidly. ?? 1979.

  9. Geothermal injection treatment: process chemistry, field experiences, and design options

    Energy Technology Data Exchange (ETDEWEB)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.


    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  10. Exploration and development of the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.


    A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of US organizations sponsored by the US Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: (1) surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; (2) the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; (3) geochemical surveys help to define zones of recharge and paths of fluid migration; and (4) reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

  11. Results of investigation at the Ahuachapan Geothermal Field, El Salvador

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.B. (HydroGeophysics, Tucson, AZ (United States))


    The Ahuachapan Geothermal Field (AGF) is a 95 megawatt geothemal-sourced power-plant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the past decade, as part of an effort to increase in situ thermal reserves in order to realize the full generation capacity of the AGF, extensive surface geophysical coverage has been obtained over the AGF and the prospective Chipilapa area to the east. The geophysical surveys were performed to determine physical property characteristics of the known reservoir and then to search for similar characteristics in the Chipilapa area. A secondary objective was to evaluate the surface recharge area in the highlands to the south of the AGF. The principal surface electrical geophysical methods used during this period were DC resistivity and magnetotellurics. Three available data sets have been reinterpreted using drillhole control to help form geophysical models of the area. The geophysical models are compared with the geologic interpretations.

  12. A reservoir engineering assessment of the San Jacinto-Tizate Geothermal Field, Nicaragua

    Energy Technology Data Exchange (ETDEWEB)

    Ostapenko, S.; Spektor, S.; Davila, H.; Porras, E.; Perez, M.


    More than twenty yews have passed since geothermal research and drilling took place at the geothermal fields in Nicaragua- Tbe well horn Momotombo Geothermal Field (70 We) has been generating electricity since 1983, and now a new geothermal field is under exploration. the San Jacinto-Tizate. Two reservoirs hydraulic connected were found. The shallow reservoir (270°C) at the depth of 550 - 1200 meters, and the deep one at > 1600 meters. Both of theme are water dominated reservoirs, although a two phase condition exist in the upper part of the shallow one. Different transient tests and a multi-well interference test have been carried out, very high transmissivity value were estimated around the well SJ-4 and average values for the others. A preliminar conceptual model of the geothermal system is given in this paper, as the result of the geology, geophysics, hydrology studies, drilling and reservoir evaluation.

  13. The Marsili Volcanic Seamount (Southern Tyrrhenian Sea: A Potential Offshore Geothermal Resource

    Directory of Open Access Journals (Sweden)

    Francesco Italiano


    Full Text Available Italy has a strong geothermal potential for power generation, although, at present, the only two geothermal fields being exploited are Larderello-Travale/Radicondoli and Mt. Amiata in the Tyrrhenian pre-Apennine volcanic district of Southern Tuscany. A new target for geothermal exploration and exploitation in Italy is represented by the Southern Tyrrhenian submarine volcanic district, a geologically young basin (Upper Pliocene-Pleistocene characterised by tectonic extension where many seamounts have developed. Heat-flow data from that area show significant anomalies comparable to those of onshore geothermal fields. Fractured basaltic rocks facilitate seawater infiltration and circulation of hot water chemically altered by rock/water interactions, as shown by the widespread presence of hydrothermal deposits. The persistence of active hydrothermal activity is consistently shown by many different sources of evidence, including: heat-flow data, gravity and magnetic anomalies, widespread presence of hydrothermal-derived gases (CO2, CO, CH4, 3He/4He isotopic ratios, as well as broadband OBS/H seismological information, which demonstrates persistence of volcano-tectonic events and High Frequency Tremor (HFT. The Marsili and Tyrrhenian seamounts are thus an important—and likely long-lasting-renewable energy resource. This raises the possibility of future development of the world’s first offshore geothermal power plant.

  14. The Ahuachapan geothermal field, El Salvador: Reservoir analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A. (Lawrence Berkeley Lab., CA (USA); Icelandic National Energy Authority, Reykjavik (Iceland); Geological Survey, Menlo Park, CA (USA); Lawrence Berkeley Lab., CA (USA))


    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

  15. Modeling study of the Pauzhetsky geothermal field, Kamchatka, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Kiryukhin, A.V. [Institute of Volcanology, Kamchatsky (Russian Federation); Yampolsky, V.A. [Kamchatskburgeotermia State Enterprise, Elizovo (Russian Federation)


    Exploitation of the Pauzhetsky geothermal field started in 1966 with a 5 MW{sub e} power plant. A hydrogeological model of the Pauzhetsky field has been developed based on an integrated analysis of data on lithological units, temperature, pressure, production zones and natural discharge distributions. A one-layer 'well by well' model with specified vertical heat and mass exchange conditions has been used to represent the main features of the production reservoir. Numerical model development was based on the TOUGH2 code [Pruess, 1991. TOUGH2 - A General Purpose Numerical Simulator for Multiphase Fluid and Heat Flow, Lawrence Berkeley National Laboratory Report, Berkeley, CA; Pruess et al., 1999. TOUGH2 User's Guide, Version 2.0, Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, CA] coupled with tables generated by the HOLA wellbore simulator [Aunzo et al., 1991. Wellbore Models GWELL, GWNACL, and HOLA, Users Guide, Draft, 81 pp.]. Lahey Fortran-90 compiler and computer graphical packages (Didger-3, Surfer-8, Grapher-3) were also used to model the development process. The modeling study of the natural-state conditions was targeted on a temperature distribution match to estimate the natural high-temperature upflow parameters: the mass flow-rate was estimated at 220 kg/s with enthalpy of 830-920 kJ/kg. The modeling study for the 1964-2000 exploitation period of the Pauzhetsky geothermal field was targeted at matching the transient reservoir pressure and flowing enthalpies of the production wells. The modeling study of exploitation confirmed that 'double porosity' in the reservoir, with a 10-20% active volume of 'fractures', and a thermo-mechanical response to reinjection (including changes in porosity due to compressibility and expansivity), were the key parameters of the model. The calibrated model of the Pauzhetsky geothermal field was used to forecast reservoir behavior under different exploitation scenarios for

  16. Innovative approach for risk assessment in green field geothermal project

    NARCIS (Netherlands)

    Batini, F.; Wees, J.-D. van


    At present, the worldwide geothermal energy production provides less than 1% of the world's energy needs but the geothermal resources confined in the first 6 km of the earth's crust are estimated to be in the fairly above 200 GW of which 50-80 GW are located in Europe. Exploring and developing at

  17. Gas chemistry and thermometry of the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Nehring, N.L. (US Geological Survey, Menlo Park, CA); D' Amore, F.


    Geothermal gases at Cerro Prieto are derived from high temperature reactions within the reservoir or are introduced with recharge water. Gases collected from geothermal wells should, therefore, reflect reservoir conditions. Interpretation of gas compositions of wells indicates reservoir temperatures, controls of oxygen and sulfur fugacities, and recharge source and direction.

  18. 3D Magnetotelluic characterization of the Coso GeothermalField

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika


    Electrical resistivity may contribute to progress inunderstanding geothermal systems by imaging the geometry, bounds andcontrolling structures in existing production, and thereby perhapssuggesting new areas for field expansion. To these ends, a dense grid ofmagnetotelluric (MT) stations plus a single line of contiguous bipolearray profiling has been acquired over the east flank of the Cosogeothermal system. Acquiring good quality MT data in producing geothermalsystems is a challenge due to production related electromagnetic (EM)noise and, in the case of Coso, due to proximity of a regional DCintertie power transmission line. To achieve good results, a remotereference completely outside the influence of the dominant source of EMnoise must be established. Experimental results so far indicate thatemplacing a reference site in Amargosa Valley, NV, 65 miles from the DCintertie, isstill insufficient for noise cancellation much of the time.Even though the DC line EM fields are planar at this distance, theyremain coherent with the nonplanar fields in the Coso area hence remotereferencing produces incorrect responses. We have successfully unwrappedand applied MT times series from the permanent observatory at Parkfield,CA, and these appear adequate to suppress the interference of thecultural EM noise. The efficacy of this observatory is confirmed bycomparison to stations taken using an ultra-distant reference site eastof Socorro, NM. Operation of the latter reference was successful by usingfast ftp internet communication between Coso Junction and the New MexicoInstitute of Mining and Technology, using the University of Utah site asintermediary, and allowed referencing within a few hours of datadownloading at Coso. A grid of 102 MT stations was acquired over the Cosogeothermal area in 2003 and an additional 23 stations were acquired toaugment coverage in the southern flank of the first survey area in 2005.These data have been inverted to a fully three

  19. Hydrogeology of the Owego-Apalachin Elementary School Geothermal Fields, Tioga County, New York (United States)

    Williams, John H.; Kappel, William M.


    The hydrogeology of the Owego-Apalachin Elementary School geothermal fields, which penetrate saline water and methane in fractured upper Devonian age bedrock in the Owego Creek valley, south-central New York, was characterized through the analysis of drilling and geophysical logs, water-level monitoring data, and specific-depth water samples. Hydrogeologic insights gained during the study proved beneficial for the design of the geothermal drilling program and protection of the overlying aquifer during construction, and may be useful for the development of future geothermal fields and other energy-related activities, such as drilling for oil and natural gas in similar fractured-bedrock settings.

  20. Discovery and geology of the Desert Peak geothermal field: a case history. Bulletin 97

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, W.R.; Hiner, J.E.; Forest, R.T.


    A case history of the exploration, development (through 1980), and geology of the Desert Peak geothermal field is presented. Sections on geochemistry, geophysics, and temperature-gradient drilling are included.

  1. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    KAUST Repository

    Keiding, Marie


    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.

  2. New discovery on geopressured geothermal resources in China - case history from Ying-Qiong Basins, S. China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ji-yang; Xiong Liang-ping [Institute of Geology, Beijing (China)


    Geopressured geothermal resources are regarded as a new type of {open_quotes}high-energy-level{close_quotes} geothermal resources. In recent years, this kind of resources has been discovered in Ying-Qiong Basins at the northern margin of South China Sea. The geological environment and tectonic settings, geotemperature and heat flow pattern, high (over) pressure distribution and sedimentation rates of the basins as well as the perspectives of development and utilization of these resources were discussed briefly by the authors.

  3. Alteration and Lithogeochemistry of Altered Rocks at Well KMJ-49 Kamojang Geothermal Field, West Java, Indonesia

    Directory of Open Access Journals (Sweden)



    Full Text Available Kamojang geothermal field is located in a 1.2 to 0.452 Ma. Quarternary volcanic caldera system. Around the geothermal field, there are several volcanoes (cinder cones which include: Gunung sanggar, Gunung ciharus, Gunung jawa, Gunung pasir jawa and Gunung cakra (here “gunung” means “mount”. The activity of this volcanic complex contributes greatly to the presence of Kamojang geothermal field, which forming steam dominated system with high temperature around 250oC. The system has capacities of 260 MWe and 140 MWe. Volcanic rocks found around the geothermal field have been altered in general and some of them are difficult to be identified their initial character. Thus, it is necessary to study alteration rocks and lithogeochemistry of a geothermal field. Based on this idea, this study uses some methods consisting of: petrographic, geochemical and alteration box plot analysis. The analyses have been conducted for the surface samples and alteration rocks of cutting from Well KMJ-49. This study is expected to improve the understanding on the characteristics of Kamojang geothermal field. AI and CCPI calculation results indicate that the surface samples have a value ranging from 20 to 34 AI and CCPI ranges from 63 to73. While subsurface samples have AI values around 15-46 and CCPI ranges from 68 to 86. The relations of CPPI and AI will be reflected in the texture and mineralogy of the type and condition of the rock.

  4. Multidisciplinary exploration of the Tendaho Graben geothermal fields (United States)

    Armadillo, Egidio; Rizzello, Daniele; Verdoya, Massimo; Pasqua, Claudio; Marini, Luigi; Meqbel, Naser; Stimac, Jim; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesch; Abera, Fitsum; Mengesha, Kebede


    The NW-SE trending Tendaho Graben is the major extensional feature of the Afar, Ethiopia. Rifting and volcanic activity within the graben occurred mostly between 1.8 and 0.6 Ma, but extended to at least 0.2 Ma. Very recent (0.22- 0.03 Ma) activity is focused along the southern part of the younger and active Manda Hararo Rift, which is included in the north-western part of the graben. Extension gave rise to about 1600 m of vertical displacement (verified by drilling) of the basaltic Afar Stratoid sequence, over a crust with a mean thickness of about 23 km. The infill of graben, overlying the Stratoids, consists of volcanic and sedimentary deposits that have been drilled by six exploratory wells. Within the graben, two main geothermal fields have been explored by intensive geological, geochemical and geophysical surveys over an area that approximately covers a square sector of 40x40 km. Both new and existing data sets have been integrated. The Dubti-Ayrobera system is located along the central axis of the graben. Available data, acquired in the last three decades, comprise more than two thousands gravity and magnetic stations, 229 magnetotelluric stations and structural-geological and geochemical observations. The Alalobeda system is located along the SW flank of the graben, at about 25 km from the Dubti-Ayrobera system and has been very recently studied by means of gravimetric (300 stations), magnetotelluric and TDEM (140 stations) geological and geochemical surveys. The new residual magnetic anomaly map has been used to map the younger normal polarity basalt distribution and infer the location of the unknown main rift axis. The bedrock surface resulting by the 3D inversion of the new residual Bouguer anomaly enlightens the main normal faults hindered by sediments and the secondary structures represented by horsts and grabens. The three-dimensional resistivity models allow mapping the sedimentary infill of the graben, fracture zones in the Afar Stradoids bedrock and

  5. Results of investigations at the Ahuachapan geothermal field, El Salvador

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, B.; Goff, F.; Van Eeckhout, E.; Hanold, B. (comps.)


    Well logging operations were performed in eight of the geothermal wells at Ahuachapan. High-temperature downhole instruments, including a temperature/rabbit, caliper, fluid velocity spinner/temperature/pressure (STP), and fluid sampler, were deployed in each well. The caliper tool was used primarily to determine if chemical deposits were present in well casings or liners and to investigate a suspected break in the casing in one well. STP logs were obtained from six of the eight wells at various flow rates ranging from 30 to 80 kg/s. A static STP log was also run with the wells shut-in to provide data to be used in the thermodynamic analysis of several production wells. The geochemical data obtained show a system configuration like that proposed by C. Laky and associates in 1989. Our data indicate recharge to the system from the volcanic highlands south of the field. Additionally, our data indicate encroachment of dilute fluids into deeper production zones because of overproduction. 17 refs., 50 figs., 10 tabs.

  6. Radon and ammonia transects across the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Semprini, L.; Kruger, P.


    Radon and ammonia transects, conducted at the Cerro Prieto geothermal field, involve measurement of concentration gradients at wells along lines of structural significance in the reservoir. Analysis of four transects showed radon concentrations ranging from 0.20 to 3.60 nCi/kg and ammonia concentrations from 17.6 to 59.3 mg/l. The data showed the lower concentrations in wells of lowest enthalpy fluid and the higher concentrations in wells of highest enthalpy fluid. Linear correlation analysis of the radon-enthalpy data indicated a strong relationship, with a marked influence by the two-phase conditions of the produced fluid. It appears that after phase separation in the reservoir, radon achieves radioactive equilibrium between fluid and rock, suggesting that the phase separation occurs well within the reservoir. A two-phase mixing model based on radon-enthalpy relations allows estimation of the fluid phase temperatures in the reservoir. Correlations of ammonia concentration with fluid enthalpy suggests an equilibrium partitioning model in which enrichment of ammonia correlates with higher enthalpy vapor.

  7. Expansion of the South China Sea basin: Constraints from magnetic anomaly stripes, sea floor topography, satellite gravity and submarine geothermics

    Directory of Open Access Journals (Sweden)

    Xuezhong Yu


    Full Text Available The widely distributed E–W-trending magnetic anomaly stripes in the central basin and the N–E-trending magnetic anomaly stripes in the southwest sub-basin provide the most important evidence for Neogene expansion of the South China Sea. The expansion mechanism remains, however, controversial because of the lack of direct drilling data, non-systematic marine magnetic survey data, and irregular magnetic anomaly stripes with two obvious directions. For example, researchers have inferred different ages and episodes of expansion for the central basin and southwest sub-basin. Major controversy centers on the order of basinal expansion and the mechanism of expansion for the entire South China Sea basin. This study attempts to constrain these problems from a comprehensive analysis of the seafloor topography, magnetic anomaly stripes, regional aeromagnetic data, satellite gravity, and submarine geothermics. The mapped seafloor terrain shows that the central basin is a north-south rectangle that is relatively shallow with many seamounts, whereas the southwest sub-basin is wide in northeast, gradually narrows to the southwest, and is relatively deeper with fewer seamounts. Many magnetic anomaly stripes are present in the central basin with variable dimensions and directions that are dominantly EW-trending, followed by the NE-, NW- and NS-trending. Conversely such stripes are few in the southwest sub-basin and mainly NE-trending. Regional magnetic data suggest that the NW-trending Ailaoshan-Red River fault extends into the South China Sea, links with the central fault zone in the South China Sea, which extends further southward to Reed Tablemount. Satellite gravity data show that both the central basin and southwest sub-basin are composed of oceanic crust. The Changlong seamount is particularly visible in the southwest sub-basin and extends eastward to the Zhenbei seamount. Also a low gravity anomaly zone coincides with the central fault zone in the sub


    Directory of Open Access Journals (Sweden)

    Züheyr KAMACI


    Full Text Available Geothermal energy which is one of the reuseable energy resources, can save as much as 77 million barrels of petroleum equivalent annually when used in the production of electricity and heating-environment. Geophysical exploration methods plays in important role in the fields of geothermal exploration, development and observational studies. Thermal and geoelectrical methods are the most effective methods which shows the temperature variation anomalies and mechanical drilling places. But, when the other methods of gravity, magnetic, radiometric, well geophysics and well logs can be used in conjunction with seismic tomography, apart from the mentioned geophysical exploration method, better results could be obtained. From the above mentioned facts various case history reports are given from our country and worldwide to determine geothermal energy resources by using geophysical exploration technique application. From these results of studies a 55 °C hot water artessian aquifer is found in the Uşak-Banaz geothermal field by applying geoelectrical methods.

  9. Fluid flow model of the Cerro Prieto Geothermal Field based on well log interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Halfman, S.E.; Lippmann, M.J.; Zelwe, R.; Howard, J.H.


    The subsurface geology of the Cerro Prieto geothermal field was analyzed using geophysical and lithologic logs. The distribution of permeable and relatively impermeable units and the location of faults are shown in a geologic model of the system. By incorporating well completion data and downhole temperature profiles into the geologic model, it was possible to determine the direction of geothermal fluid flow and the role of subsurface geologic features that control this movement.

  10. Mushroom growing project at the Los Humeros, Mexico geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, M.E.R. [Comision Federal de Electricidad (Mexico)


    There are several projects of direct (non-electrical) use of geothermal energy in Mexico. Personnel of the Comision Federal de Electricidad (CFE) have experience in various of these projects, like drying of timber and fruits, space heating, food processing, etc. Taking this in consideration, CFE built the Los Humeros mushroom plant using for heat source the geothermal steam from Well H-1. The main purpose of the project was to take advantage of residual geothermal energy in a food production operation and to develop the appropriate technology. In 1992, existing installations were renovated, preparing appropriate areas for pasteurization, inoculation and production. The mushroom Pleurotus ostreatus var. florida and columbinus was used. A year later, CFE proposed the construction of improved facilities for growing edible mushrooms. New materials and equipment, as well as different operation conditions, were proposed on the basis of the experience gained in the initial project. The construction and renovation activities were completed in 1994.

  11. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    Energy Technology Data Exchange (ETDEWEB)



    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  12. Field based geothermal exploration: Structural controls in the Tarutung Basin/North Central Sumatra (Indonesia) (United States)

    Nukman, M.; Moeck, I.


    The Tarutung Basin is one of several basins along the prominent Sumatra Fault System (SFS) which represents a dextral strike slip fault zone segmented into individual fault strands. The basins are located at right-stepping transfer. The Tarutung Basin hosts geothermal manifestations such as hot springs and travertines indicating a geothermal system with some decent potential in the subsurface. As part of geothermal exploration, field geology is investigated focusing on how the structural setting controls the thermal manifestation distribution. A complex fault pattern is now newly mapped and evidences sinistral faults striking E-W (Silangkitang), normal faults striking SE-NW at the eastern strand of Tarutung Basin (Sitompul) and normal faults striking NW-SE at the western strand of the basin (Sitaka). These structures form an angle greater than 450 with respect to the current maximum principal stress which is oriented in N-S. Secondary sinistral shear fractures identified as antithetic Riedel shears can be correlated with hot spring locations at Silangkitang, forming an angle of 500 with respect to the current maximum stress. A large angle of normal fault and antithetic Riedel shear trend with respect to the current maximum stress direction indicates that the structures have been rotated. Unidentified dextral strike slip faults might exist at the eastern strand of Tarutung Basin to accommodate the clockwise rotation between the eastern boundary of the basin and the NW-SE striking normal fault of Panabungan. Normal faults striking parallel with the SFS East of the basin are interpreted as dilatational jogs caused by the clockwise rotated block movement with respect to the NW-SE fault trend sinistral shear along ENE-WSW faults. Silicified pryroclastics in association with large discharge at hot springs at these NW-SE striking normal faults support this hypothesis. As proposed by Nivinkovich (1976) and Nishimura (1986) Sumatra has rotated 20° clockwise since the last

  13. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids (United States)

    Suryantini; Rachmawati, C.; Abdurrahman, M.


    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is

  14. Numerical simulations of passing seismic waves at the Larderello-Travale Geothermal Field, Italy (United States)

    Lupi, Matteo; Fuchs, Florian; Saenger, Erik H.


    Passing seismic waves released by large-magnitude earthquakes may affect geological systems located thousands of miles far from the epicenter. The M9.0 Tohoku earthquake struck on 11 March 2011 in Japan. We detected local seismic activity at the Larderello-Travale geothermal field, Italy, coinciding with the maximum amplitudes of the Rayleigh waves generated by the Tohoku earthquake. We suggest that the earthquakes were triggered by passing Rayleigh waves that induced locally a maximum vertical displacement of approximately 7.5 mm (for waves with period of 100 s). The estimated dynamic stress was about 8 kPa for a measured peak ground velocity of 0.8 mm/s. Previous similar observations pointed out local seismicity at the Larderello-Travale Geothermal Field triggered by the 2012 Mw5.9 Po Plain earthquake. We conducted forward numerical modeling to investigate the effects caused by passing P, S, Love, and Rayleigh waves through the known velocity structure of the geothermal field. Results indicate that maximum displacements focus differently when considering body or surface waves, with displacement values being higher within the first 2 km of depth. The focusing of the displacement below 3 km seems to be strongly controlled by the velocity structure of the Larderello-Travale geothermal field. We propose that seismic activity triggered by passing seismic waves may be related to a clock-advancing mechanism for local seismic events that may have occurred in any case. Furthermore, our analysis shows that local anisotropies in the velocity structure of the Larderello-Travale geothermal field (possibly linked to compartments of elevated pore pressures) strongly control the reactivation of regions of the geothermal field affected by passing seismic waves.

  15. Integrated geophysical imaging of the Aluto-Langano geothermal field (Ethiopia). (United States)

    Rizzello, Daniele; Armadillo, Egidio; Verdoya, Massimo; Pasqua, Claudio; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesh; Abera, Fitsum; Mengesha, Kebede; Meqbel, Naser


    The Aluto-Langano geothermal system is located in the central part of the Main Ethiopian Rift, one of the world's most tectonically active areas, where continental rifting has been occurring since several Ma and has yielded widespread volcanism and enhanced geothermal gradient. The geothermal system is associated to the Mt Aluto Volcanic Complex, located along the eastern margin of the rift and related to the Wonji Fault Belt, constituted by Quaternary NNE-SSW en-echelon faults. These structures are younger than the NE-SW border faults of the central Main Ethiopian Rift and were originated by a stress field oblique to the rift direction. This peculiar tectonism yielded local intense rock fracturing that may favour the development of geothermal reservoirs. In this paper, we present the results of an integrated geophysical survey carried out in 2015 over an area of about 200 km2 covering the Mt Aluto Volcanic Complex. The geophysical campaign included 162 coincident magnetotelluric and time domain electromagnetic soundings, and 207 gravity stations, partially located in the sedimentary plain surrounding the volcanic complex. Three-dimensional inversion of the full MT static-corrected tensor and geomagnetic tipper was performed in the 338-0.001 Hz band. Gravity data processing comprised digital enhancement of the residual Bouguer anomaly and 2D-3D inverse modelling. The geophysical results were compared to direct observations of stratigraphy, rock alteration and temperature available from the several deep wells drilled in the area. The magnetotelluric results imaged a low-resistivity layer which appears well correlated with the mixed alteration layer found in the wells and can be interpreted as a low-temperature clay cap. The clay-cap bottom depth is well corresponds to a change of thermal gradient. The clay cap is discontinuous, and in the central area of the volcanic complex is characterised by a dome-shape structure likely related to isotherm rising. The propilitic

  16. Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada (United States)

    Dingwall, Ryan Kenneth

    Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.

  17. Measured ground-surface movements, Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Massey, B.L.


    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  18. Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field

    Directory of Open Access Journals (Sweden)

    Yuchao Zeng


    Full Text Available The main conditions affecting electricity generation performance of an enhanced geothermal system (EGS include reservoir porosity, reservoir permeability, rock heat conductivity, water production rate and injection temperature. Presently there is lack of systematic research the relative importance of the five aforementioned conditions. The orthogonal test method is a statistical approach to analyze multi-factor and multi-level influence on system performance. In this work, based on the geological data at Yangbajing geothermal field, we analyzed the five conditions affecting the electricity generation performance of EGS, and ranked the relative importance of the five factors. The results show that the order of the relative importance of the conditions on electric power is water production rate > injection temperature > reservoir porosity > rock heat conductivity > reservoir permeability; the order of the relative importance of the conditions on reservoir impedance is reservoir permeability > injection temperature > water production rate > reservoir porosity > rock heat conductivity; the order of the relative importance of the conditions on pump power is water production rate > reservoir permeability > injection temperature > reservoir porosity > rock heat conductivity, and; the order of the relative importance of the conditions on energy efficiency is water production rate > reservoir permeability > reservoir porosity > injection temperature > rock heat conductivity. The construction of an EGS reservoir should be located at a formation with higher reservoir porosity or rock heat conductivity, while the determination of reservoir permeability, water production rate and injection temperature should be based on the comprehensive target.

  19. Prospects of development of highly mineralized high-temperature resources of the Tarumovskoye geothermal field (United States)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.


    The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the

  20. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps (United States)

    Zhurmilova, I.; Shtym, A.


    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  1. Workshop on CSDP data needs for the BACA geothermal field: a summary

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, D.C.; Tsang, C.F. (eds.)


    These workshop summaries discuss the data needs of the Continental Scientific Drilling Program (CSDP) community and provide an introduction to the available geological, geophysical, geochemical and reservoir engineering data of the Baca geothermal field, Valles Caldera, New Mexico. Individual abstracts have been prepared for the presentations. (ACR)

  2. Comprehensive Cross-Training among STEM Disciplines in Geothermal Energy (United States)

    Nunn, J. A.; Dutrow, B. L.


    One of the foremost areas of sustainability is society's need for energy. The US uses more energy per capita than any other country in the world with most of this energy coming from fossil fuels. With its link to climate change coupled with declining resources, renewable alternatives are being pursued. Given the high demand for energy, it is not a question of if these alternatives will be utilized but when and where. One of the "greenest" of the green technologies is geothermal energy. It is a renewable resource with a small environmental footprint. To educate advanced undergraduate and graduate students from across STEM disciplines in geothermal energy, a series of three distinct but linked and related courses are being developed and taught. Courses are focused on one of the STEM disciplines to provide students with essential discipline-specific knowledge and taught by different faculty members in the departments of geology, petroleum engineering and mathematics. These courses provide the foundation necessary for interdisciplinary research projects. The first course on Geologic Properties and Processes of Geothermal Energy was developed and taught in 2012. The class had an enrollment of 27 students including: 5 undergraduates and 4 graduate students in Geology, 12 undergraduates and two graduate students in Petroleum Engineering, and 4 non-matriculated undergraduate students. The course began with the essentials of heat and mass transfer, a common deficiency for all students, then progressed to the geologic materials of these systems: minerals, rocks and fluids. To provide students with first hand experience, two short research projects were embedded into the course. The first project involved analyses of cuttings from a well-studied geothermal system (Salton Sea, CA). Students were in teams consisting of both engineers and geologists. The first assignment was to identify minerals in the cuttings. They were then provided with XRD patterns for their cuttings to

  3. Light hydrocarbons as redox and temperature indicators in the geothermal field of El Tatio (northern Chile)

    Energy Technology Data Exchange (ETDEWEB)

    Tassi, F. [University of Florence (Italy). Dept. of Earth Sciences; Martinez, C. [University Catolica del Norte, Antofagasta (Chile). Dept. of Earth Science; Vaselli, O. [University of Florence (Italy). Dept. of Earth Sciences; Institute of Geosciences and Earth Resources, Florence (Italy). National Council of Research; Capaccioni, B. [University of Urbino (Italy). Institute of Volcanology and Geochemistry; Viramonte, J. [National University of Salta (Argentina). Institute GEONORTE and CONICET


    El Tatio (northern Chile), one of the largest geothermal fields of South America, is presently undergoing a new program of geothermal exploration, after the failure of the first exploration phase in the early 1970s. The geochemical features of the fluid discharges characterizing this system mainly consist of boiling pools and fumaroles, and represent the result of a complex mixing process involving 3 main components: (i) hydrothermal; (ii) atmospheric; (iii) magmatic. Chemical reactions involving light hydrocarbons equilibrate at higher temperature than those directly measured in the geothermal wells and calculated on the basis of the composition of the inorganic gas species. This suggests that in the deeper parts of the hydrothermal system temperatures higher than 300{sup o}C may be achieved. Such results can have a strong impact for the evaluation of the potential resources of this geothermal system. Moreover, the chemical characteristics of the organic gas fraction allow the assessment of the chemical-physical conditions governing the geochemical processes acting on geothermal fluids at depth. (author)

  4. Using micro-seismicity and seismic velocities to map subsurface geologic and hydrologic structure within the Coso geothermal field, California (United States)

    Kaven, Joern Ole; Hickman, Stephen H.; Davatzes, Nicholas C.


    Geothermal reservoirs derive their capacity for fluid and heat transport in large part from faults and fractures. Micro-seismicity generated on such faults and fractures can be used to map larger fault structures as well as secondary fractures that add access to hot rock, fluid storage and recharge capacity necessary to have a sustainable geothermal resource. Additionally, inversion of seismic velocities from micro-seismicity permits imaging of regions subject to the combined effects of fracture density, fluid pressure and steam content, among other factors. We relocate 14 years of seismicity (1996-2009) in the Coso geothermal field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform cross-correlation to augment to expansive catalog of P- and S-wave differential travel times recorded at Coso. We further carry out rigorous uncertainty estimation and find that our results are precise to within 10s of meters of relative location error. We find that relocated micro-seismicity outlines prominent, through-going faults in the reservoir in some cases. We also find that a significant portion of seismicity remains diffuse and does not cluster into more sharply defined major structures. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vp generally lower in the main field when compared to the east flank and Vs varying more significantly in the shallow portions of the reservoir. The Vp/Vs ratio appears to outline the two main compartments of the reservoir at depths of -0.5 to 1.5 km (relative to sea-level), with a ridge of relatively high Vp/Vs separating the main field from the east flank. In the deeper portion of the reservoir this ridge is less prominent. Our results indicate that high-precision relocations of micro-seismicity can provide

  5. Application of oil-field well log interpretation techniques to the Cerro Prieto Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Ershaghi, I.; Phillips, L.B.; Dougherty, E.L.; Handy, L.L.


    An example is presented of the application of oil-field techniques to the Cerro Prieto Field, Mexico. The lithology in this field (sand-shale lithology) is relatively similar to oil-field systems. The study was undertaken as a part of the first series of case studies supported by the Geothermal Log Interpretation Program (GLIP) of the US Department of Energy. The suites of logs for individual wells were far from complete. This was partly because of adverse borehole conditions but mostly because of unavailability of high-temperature tools. The most complete set of logs was a combination of Dual Induction Laterolog, Compensated Formation Density Gamma Ray, Compensated Neutron Log, and Saraband. Temperature data about the wells were sketchy, and the logs had been run under pre-cooled mud condition. A system of interpretation consisting of a combination of graphic and numerical studies was used to study the logs. From graphical studies, evidence of hydrothermal alteration may be established from the trend analysis of SP (self potential) and ILD (deep induction log). Furthermore, the cross plot techniques using data from density and neutron logs may help in establishing compaction as well as rock density profile with depth. In the numerical method, R/sub wa/ values from three different resistivity logs were computed and brought into agreement. From this approach, values of formation temperature and mud filtrate resistivity effective at the time of logging were established.

  6. Ore transport and deposition in the Red Sea geothermal system: a geochemical model (United States)

    Shanks, Wayne C.; Bischoff, J.L.


    Thermodynamic calculation of distribution of dissolved aqueous species in the Red Sea geothermal brine provides a model of ore transport and deposition in good agreement with observed accumulations of base metal sulfides, anhydrite, and barite. The Red Sea brine is recirculated seawater that acquires high salinity by low-temperature interaction with Miocene evaporites and is subsequently heated to temperatures in excess of 200??C by interaction with recent rift zone intrusive rocks. At temperatures up to 250??C, NaSO-4 and MgSO04 are the dominant sulfur-bearing species. H2S forms by inorganic sulfate reduction at the higher temperatures but is maintained at a uniform concentration of about 2 ppm by the strength of the sulfate complexes. Chloride complexes solubilize metals at the higher temperatures, and thus sulfide and metals are carried together into the Atlantis II Deep. Below 150??C, the brine becomes supersaturated with respect to chalcopyrite, sphalerite, galena, and iron monosulfide due to chloride-complex dissociation. Sulfide precipitation rates, based on the rate of brine influx, are in good agreement with measured sedimentation rates. Anhydrite precipitates as crystalline fissure infillings from high-temperature inflowing brine. Barite forms from partial oxidation of sulfides at the interface between the lower hot brine and the transitional brine layer. ?? 1977.

  7. Small-Scale Geothermal Power Plant Field Verification Projects: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.


    In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

  8. Origin of rainwater acidity near the Los Azufres geothermal field, Mexico (United States)

    Verma, M.P.; Quijano, J.L.; Johnson, Chad; Gerardo, J.Y.; Arellano, V.


    The chemical and isotopic compositions of rainwater were monitored at Los Azufres geothermal field (88 MWe) and its surroundings during May - September 1995, which is the rainy season. Samples were collected from eight sites: three within the field, three in its surroundings and two sufficiently far from the field such that they have no geothermal input. The concentrations of Cl-, SO42- and NO3- were measured in about 350 samples and found to be generally rainwater sulfur. The determination of pH was found to be necessary, but is not sufficient to characterize rainwater acidity. The Gran titration method was used to determine alkalinity with respect to equivalence point of H2CO3(*). Values of alkalinity were found to range from 10-4 to 10-6 eq/L, and were negative only for some samples from Vivero and Guadalajara. Thus, SO42- and NO3- are in general not in acidic form (i.e. balanced by Na+, Ca2+, etc. rather than H+). Sulfate ??34S values were about -1.5??? in Los Azufres and its surroundings, and in Morelia, but differed from the value of -0.2??? for Guadalajara. The ??34S values for H2S from the Los Azufres geothermal wells are in the range -3.4 to 0.0???. The ??34S ranges for the natural and anthropogenic sources for environmental sulfur overlap, making it difficult to differentiate between the contribution of different sources. However, a similarity of values of ??34S at Los Azufres and Morelia (85 km distant) suggest a regional source of sulfate that is not associated with geothermal emissions from Los Azufres. (C) 2000 Published by Elsevier Science Ltd on behalf of CNR.The chemical compositions of rainwater were analyzed at Los Azufres geothermal field in Spain from May-September 1995. The concentrations of Cl-, SO42- and NO3- were measured and found to be generally rainwater sulfur.

  9. Geothermal sections of the earth's crust and upper mantle of the Black Sea and its northern border


    Kutas, R.I.


    Results of measurements of heat flow and mathematical simulation of geothermic state of the lithosphere along two profiles, crossing the western and the eastern depressions of the Black Sea and flanking northward tectonic structures of different age have been presented. It has been shown that considerable variations of temperatures and heat flow within the lithosphere by lateral, depth and temporally are related to both geodynamic processes, accompanied by intensification of heat evacuation f...

  10. Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, Stefan; Kiryukhin, A.V.; Asaulova, N.P.; Finsterle, S.


    A three-dimensional numerical model of the Pauzhetsky geothermal field has been developed based on a conceptual hydrogeological model of the system. It extends over a 13.6-km2 area and includes three layers: (1) a base layer with inflow; (2) a geothermal reservoir; and (3) an upper layer with discharge and recharge/infiltration areas. Using the computer program iTOUGH2 (Finsterle, 2004), the model is calibrated to a total of 13,675 calibration points, combining natural-state and 1960-2006 exploitation data. The principal model parameters identified and estimated by inverse modeling include the fracture permeability and fracture porosity of the geothermal reservoir, the initial natural upflow rate, the base-layer porosity, and the permeabilities of the infiltration zones. Heat and mass balances derived from the calibrated model helped identify the sources of the geothermal reserves in the field. With the addition of five makeup wells, simulation forecasts for the 2007-2032 period predict a sustainable average steam production of 29 kg/s, which is sufficient to maintain the generation of 6.8 MWe at the Pauzhetsky power plant.

  11. Sustainable energy development and water supply security in Kamojang Geothermal Field: The Energy-Water Nexus (United States)

    Sofyan, Y.; Nishijima, J.; Fujimitsu, Y.


    The Kamojang Geothermal Field (KGF) is a typical vapor dominated hydrothermal system in West Java, Indonesia. This geothermal field is the oldest exploited geothermal field in Indonesia. From 1983 to 2005, more than 160 million tons of steam have been exploited from the KGF and more than 30 million tons of water were injected into the reservoir system. The injected water come from condensed water, local river and ground water. Sustainable production in the geothermal energy development is the ability of the production system applied to sustain the stable production level over long times and to manage the mass balance between production, injection and natural recharge in the geothermal reservoir during exploitation. Mass balance in the reservoir system can be monitored by using time lapse gravity monitoring. Mass variation of hydrodynamic in the reservoir of KGF from 1999 to 2005 is about -3.34 Mt/year while is about -3.78 Mt/year from 1999 to 2008. Another period between 2009 and 2010, mass variation decreased about -8.24 Mt. According to the history of production and injection, natural recharge to the KGF's reservoir is estimated at about 2.77 Mt/year from 1999 to 2005 and 2.75 Mt/year from 1999 to 2008. Between 2009 and 2010, KGF has a bigger mass deficiency rate throughout 200 MWe maintain production. Large amount of fresh water is needed for sustainable geothermal energy production, while the domestic water supply need is also increased. Natural recharge, about 50% of injected water, cooling system, drilling and other production activities in KGF spend large amounts of fresh water. Water consumption for local people around KGF is about 1.46 MT/year. The water volume around KGF of total runoff is the range between dry season 0.07 MT/month and rainy season 4.4 MT/month. The water demands for sustainable geothermal production of KGF and for local people's consumption will increase in the future. Integrated planning between the energy and water sectors in KGF

  12. Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. (Los Alamos National Lab., NM (USA)); Medina, V. (Instituto Nacional de Electrificacion, Guatemala City (Guatemala). Unidad de Desarollo Geotermico)


    The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

  13. El Centro Geothermal Utility Core Field Experiment environmental-impact report and environmental assessment

    Energy Technology Data Exchange (ETDEWEB)


    The City of El Centro is proposing the development of a geothermal energy utility core field experiment to demonstrate the engineering and economic feasibility of utilizing moderate temperature geothermal heat, on a pilot scale, for space cooling, space heating, and domestic hot water. The proposed facility is located on part of a 2.48 acre (1 hectare) parcel owned in fee by the City in the southeastern sector of El Centro in Imperial County, California. Geothermal fluid at an anticipated temperature of about 250/sup 0/F (121/sup 0/C) will heat a secondary fluid (water) which will be utilized directly or processed through an absorption chiller, to provide space conditioning and water heating for the El Centro Community Center, a public recreational facility located approximately one-half mile north of the proposed well site. The geothermal production well will be drilled to 8500 feet (2590m) and an injection well to 4000 feet (1220m) at the industrially designated City property. Once all relevant permits are obtained it is estimated that site preparation, facility construction, the completion and testing of both wells would be finished in approximately 26 weeks. The environmental impacts are described.

  14. Ultrasonic measurements at in-situ conditions in a geothermal field: Ngatamariki field, New Zealand. (United States)

    Durán, E.; Adam, L.; Wallis, I. C.


    A set volcaniclastic and pyroclastic rocks were collected from Ngatamariki Geothermal Field. Two sets of measurements were carried out in core samples from geological intervals used for injection. The first set of measurements were made at surface conditions using ultrasonic transducers. The second measurements were made simulating in-situ confining and fluid pressures of the field inside a pressure vessel. A comparison of both approaches is made in order to validate existing data and expand the geophysical information collected in the field. Previous work on the rocks has shown that there is large variation in the physical and mechanical properties with depth, which might indicate that effects of lithology and hydrothermal alteration are controlling factors in the observed variability, nevertheless the addition of fluid pressures has never been studied in these rocks. Both datasets have been used to improve the identification and interpretation of P and S-wave arrivals and understand their variation with pressure and fluid content. Previous laboratory results on mineralogy, clay content, porosity, permeability, crack density and orientation are incorporated into the analysis. Finally, a methodology is presented to aid in the calibration and interpretation of S-wave arrivals for the transducers built to perform the experiments at in-situ conditions. Since the compressional and shear piezoelectric crystals used are packed in a single casing, converted waves must be identified on top of the direct arrivals. By comparing the source signature of the measurements performed on the bench to the waveforms recorded at field conditions, we aid the eye interpretation of picked times by adapting a Dynamic Time Warping algorithm for the task.

  15. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J. (Lawrence Berkeley Lab., CA (United States)); Mainieri, A. (Instituto Costarricense de Electricidad, San Jose (Costa Rica))


    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260[degrees]C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km[sup 2], with temperatures exceeding 220[degrees]C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.

  16. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J. [Lawrence Berkeley Lab., CA (United States); Mainieri, A. [Instituto Costarricense de Electricidad, San Jose (Costa Rica)


    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260{degrees}C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220{degrees}C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.

  17. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Haukwa, C.; Bodvarsson, G.S.; Lippmann, M.J.; Mainieri, A.


    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model a two-dimensional exploitation model was developed. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.

  18. Fracture mapping in geothermal fields with long-offset induction logging

    Energy Technology Data Exchange (ETDEWEB)

    Wilt, M.; Takasugi, Shinji; Uchida, Toshihiro [and others


    The mapping of producing fractures in a geothermal field is an important technical objective in field development. Locating, orienting, and assessing producing fractures can guide drilling programs and optimize the placement of production and injection wells. A long-offset multicomponent borehole induction resistivity tool capable of surviving the high temperatures encountered in geothermal wells has recently been developed in a NEDO project, {open_quotes}Deep-Seated Geothermal Reservoirs,{close_quotes} and tested in a high temperature environment. Several characteristics of this device make it ideal for detecting producing fractures. Whereas commercial induction logging devices have source-receiver separations of 1 m, this device has multiple sensors with separations up to 8 m, allowing for deeper penetration and the ability to straddle fracture-induced washout zones in boreholes. The three-component measurements also make it possible to map the strike and inclination of nearby fractures and other three-dimensional structures. This, in turn, allows for accurate projection of these structures into the space between wells. In this paper, we describe the design of the tool and show results of a performance test carried out in an oil-field steam flood. Data from vertical sensors are compared to conventional logging results and indicate the recent formation of a low-resistivity zone associated with high temperatures due to steam flood breakthrough. Horizontal field data indicate that the high-temperature zone is irregular in the vicinity of the borehole and more pronounced closest to the steam injector.

  19. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan. Final report, May 1, 1995--November 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Combs, J.; Pritchett, J.W. [and others


    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses and pressure transient data for the assessment of a high temperature volcanic geothermal field. This comprehensive report describes the work accomplished during FY 1993-1996. A brief review of the geological and geophysical surveys at the Sumikawa Geothermal Field is presented (Section 2). Chemical data, consisting of analyses of steam and water from Sumikawa wells, are described and interpreted to indicate compositions and temperatures of reservoir fluids (Section 3). The drilling information and downhole pressure, temperature and spinner surveys are used to determine feedzone locations, pressures and temperatures (Section 4). Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter (Section 5). New interpretations of pressure transient data from several wells are discussed (Section 6). The available data have been synthesized to formulate a conceptual model for the Sumikawa Geothermal Field (Section 7).

  20. Spectral reflectance analysis of hydrothermal alteration in drill chips from two geothermal fields, Nevada (United States)

    Lamb, A. K.; Calvin, W. M.


    We surveyed drill chips with a lab spectrometer in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions, 0.35-2.5 μm, to evaluate hydrothermal alteration mineralogy of samples from two known geothermal fields in western Nevada. Rock is fractured into small pieces or “chips” during drilling and stored in trays by depth interval. The drill chips are used to determine subsurface properties such as lithology, structure, and alteration. Accurately determining alteration mineralogy in the geothermal reservoir is important for indicating thermal fluids (usually associated with fluid pathways such as faults) and the highest temperature of alteration. Hydrothermal minerals, including carbonates, iron oxides, hydroxides, sheet silicates, and sulfates, are especially diagnostic in the VNIR-SWIR region.. The strength of reflectance spectroscopy is that it is rapid and accurate for differentiating temperature-sensitive minerals that are not visually unique. We examined drill chips from two western Nevada geothermal fields: Hawthorne (two wells) and Steamboat Springs (three wells) using an ASD lab spectrometer with very high resolution. The Steamboat Hills geothermal field has produced electricity since 1988 and is well studied, and is believed to be a combination of extensional tectonics and magmatic origin. Bedrocks are Cretaceous granodiorite intruding into older metasediments. Hot springs and other surface expressions occur over an area of about 2.6 km2. In contrast, the Hawthorne geothermal reservoir is a ‘blind’ system with no surface expressions such as hot springs or geysers. The geothermal field is situated in a range front fault zone in an extensional area, and is contained in Mesozoic mixed granite and meta-volcanics. We collected spectra at each interval in the chip trays. Interval length varied between 10’ and 30’. - Endmember analysis and mineral identification were performed -using standard analysis approaches used to map mineralogy

  1. The shallow seismic structure of the Larderello geothermal field (Italy) as seen from Receiver Function analysis (United States)

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto


    The Larderello field (Tuscany, Italy) is the oldest example in the world of geothermal energy exploitation for industrial purposes. Despite its century long history of exploration and exploitation, the deep structure (4-8km depth) of the Larderello field is still poorly known, due to (a) the lack of resolution of the applied exploration techniques and (b) the lack of interest in the investigation of deep geothermal reservoirs, given the abundant amount of energy extracted from the shallow reservoirs. Recently, the increasing demand of green-energy promoted a renewed interest in the geothermal industrial sector, which translated into new exploration efforts, especially to obtain a detailed characterization of deep geothermal sources. We investigate the seismic structure of the Larderello geothermal field using Receiver Function (RF) analysis. Crustal seismic structures are routinely investigated using the RF methodology, where teleseismic P-wave are analysed to extract P-to-S converted phases that can be related to the propagation of the P-wave across a seismic discontinuity. We compute RF from 26 seismic stations, belonging to both temporary and permanent networks: the GAPSS and RETREAT experiments and the Italian Seismic Network. The RF data-set is migrated at depth and decomposed into azimuthal harmonics. Computing the first, k=0, and the second, k=1, harmonics allows to separate the "isotropic" contribution, due to the change of the isotropic properties of the sampled materials (recorded on the k=0 harmonics), from the "anisotropic" contribution, where the energy is related to the propagation of the P-wave through anisotropic materials (recorded on the k=1 harmonics). Preliminary results allow us: (1) to infer the position of the main S-wave velocity discontinuities in the study area, mainly a shallow Tyrrhenian Moho and a very-low S-wave velocity body in the center of the Larderello dome, at about 5-15km depth; and (2) to map the presence of anisotropic

  2. Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R.W.; Domingo, N.


    Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

  3. Field trip guide to the Valles Caldera and its geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.E.; Bolivar, S.L.


    This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one day are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.

  4. Consideration of geological aspects and geochemical parameters of fluids in Bushdi geothermal field, south of mount Sabalan, NW Iran (United States)

    Masoumi, Rahim; Calagari, Ali Asghar; Siahcheshm, Kamal; Porkhial, Soheil; Pichler, Thomas


    The geothermal field at Bushdi to the south of Sabalan volcano encompasses both cold and hot springs along with surficial steam vents. This geothermal field is situated in a volcanic terrain which includes basaltic and trachy-andesitic lavas and pyroclastics which have undergone considerable faulting during Quaternary times. Regardless of conventional uses, no industrial utilization has been reported from this field yet. In the geothermal fluids Na is the most abundant cation following the trend Na+ >> Ca2+ > K+ > Mg2+. Cl- is the most abundant anion following two trends (1) Cl- >> HCO3- > SO42- and (2) HCO3- > Cl- > SO42-. From a hydrogeochemical point of view the geothermal fluids in the study area can be divided into two categories: (1) Na-Cl and (2) Na-Ca-HCO3. The conic and lenticular shaped travertine deposits around hot springs possessing a Ca2+-Na+-HCO3- composition are the most conspicuous features in this area. According to oxygen and hydrogen stable isotopes (δD and δ18O) data, a large proportion of the fluids in this geothermal system are of meteoric origin. Downward percolation along the brecciated rocks in the fault zones between the mount Sabalan and the Bushdi area can be regarded as the main fluid source for the geothermal system. The geothermal fluids have 3H above 1 TU and hence can be considered as young (modern to sub-modern) waters, with a residence time of less than 63 years.

  5. Matched Filter Detection of Microseismicity at Ngatamariki and Rotokawa Geothermal Fields, Central North Island, New Zealand (United States)

    Hopp, C. J.; Savage, M. K.; Townend, J.; Sherburn, S.


    Monitoring patterns in local microseismicity gives clues to the existence and location of subsurface structures. In the context of a geothermal reservoir, subsurface structures often indicate areas of high permeability and are vitally important in understanding fluid flow within the geothermal resource. Detecting and locating microseismic events within an area of power generation, however, is often challenging due to high levels of noise associated with nearby power plant infrastructure. In this situation, matched filter detection improves drastically upon standard earthquake detection techniques, specifically when events are likely induced by fluid injection and are therefore near-repeating. Using an earthquake catalog of 637 events which occurred between 1 January and 18 November 2015 as our initial dataset, we implemented a matched filtering routine for the Mighty River Power (MRP) geothermal fields at Rotokawa and Ngatamariki, central North Island, New Zealand. We detected nearly 21,000 additional events across both geothermal fields, a roughly 30-fold increase from the original catalog. On average, each of the 637 template events detected 45 additional events throughout the study period, with a maximum number of additional detections for a single template of 359. Cumulative detection rates for all template events, in general, do not mimic large scale changes in injection rates within the fields, however we do see indications of an increase in detection rate associated with power plant shutdown at Ngatamariki. Locations of detected events follow established patterns of historic seismicity at both Ngatamariki and Rotokawa. One large cluster of events persists in the southeastern portion of Rotokawa and is likely bounded to the northwest by a known fault dividing the injection and production sections of the field. Two distinct clusters of microseismicity occur in the North and South of Ngatamariki, the latter appearing to coincide with a structure dividing the

  6. Open questions on the origin of life at anoxic geothermal fields. (United States)

    Mulkidjanian, Armen Y; Bychkov, Andrew Yu; Dibrova, Daria V; Galperin, Michael Y; Koonin, Eugene V


    We have recently reconstructed the 'hatcheries' of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells (Mulkidjanian et al. Proc Natl Acad Sci U S A 109:E821-830, 2012). These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K⁺, Zn²⁺, Mn²⁺, and phosphate. Thus, protocells must have evolved in habitats with a high K⁺/Na⁺ ratio and relatively high concentrations of Zn, Mn and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under an anoxic, CO₂-dominated atmosphere, the ionic composition of pools of cool, condensed vapor at anoxic geothermal fields would resemble the internal milieu of modern cells. Such pools would be lined with porous silicate minerals mixed with metal sulfides and enriched in K⁺ ions and phosphorous compounds. Here we address some questions that have appeared in print after the publication of our anoxic geothermal field scenario. We argue that anoxic geothermal fields, which were identified as likely cradles of life by using a top-down approach and phylogenomics analysis, could provide geochemical conditions similar to those which were suggested as most conducive for the emergence of life by the chemists who pursuit the complementary bottom-up strategy.

  7. Steam and Brine Zone Prediction around Geothermal Reservoir Derived from Delay Time Seismic Tomography and Anisotropy Case Study: “PR” Geothermal Field (United States)

    Hendrawan Palgunadi, Kadek; Nugraha, A. D.; Sule, R.; Meidiana, T.


    Development of geothermal production can be conducted in several ways, one of them analyses the fracture or crack and structure within the reservoir. Due to low permeability and porosity value within the reservoir in geothermal field. This crack or fracture provide porosity for fluid storage and permeability for fluid movement and play a major role in production from this kind of reservoir. Structure and polarization direction can be derived from anisotropy parameter and seismic velocity parameter in geothermal field. In this study, we used micro-earthquake data of 1,067 events that were recorded by the average of 15 stations during almost 1-year measurement. We used anisotropy parameter using 3-D shear-wave splitting (SWS) tomography method to represent the distribution of anisotropy medium around the geothermal field. Two parameters produced from the S-wave analysis, which is polarization direction and delay time between fast S-wave and slow S-wave. To determine SWS parameters, we used a rotation of horizontal seismogram including N-S component and E-W component. Furthermore, we used short-time fourier transform (STFT) to calculate lag time and time window based on wave periods. Two horizontal components have been rotated from azimuth 0° to 180° with an increment of 1°. Cross-correlation coefficient used every azimuth of two horizontal components based on delay time with predetermined time window obtained by STFT. When cross-correlation coefficient is high, the corresponding value of delay time and azimuth are chosen as the polarization direction and delay time of SWS. Normalized time different divided by total ray length was used to determine the distribution of crack density. Through correlation of seismic velocity model, crack density, and 3-D anisotropy tomography, we can delineate a geothermal reservoir model. Our results show, high degree of anisotropy and crack density occur in the northern and eastern part of “PR” geothermal field for further

  8. Sustainable development of geothermal fields in the Pannonian Basin - A case study

    Energy Technology Data Exchange (ETDEWEB)

    Panu, Dumitru; Mitrofan, Horia; Serbu, Viorel


    As suggested by the discusssion of Barker, 1988, on the influence of flow dimension on the late-time behaviour of the generalized line source solution, it was inferred that observed long term reservoir pressure decline was an outcome of the 1D (linear) flow geometry, indicated by well tests. The detrimental effects of the reservoir pressure decline can be partly mitigated by taking advantage of the two-phase flow which occurs when methane, originally dissolved in the geothermal brine, is released within the well bore. Sustainable artesiar withdrawal scenarios for existing geothermal fields are devised, based on an accurate prediction of bottomhole pressure decline trends and an adequate selection of the diameter and length of the production tubing. Overall analysis and forecast are performed by an integrated reservoir & well bore simulator.

  9. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.


    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  10. Geothermic field and development of the structure of continents (United States)

    Beloussov, V. V.


    Tectonic, magmatic and metamorphic processes combine into endogenous regimes. There is direct correlation between the degree of excitation of endogenous regimes and observed heat flow. There are grounds to suppose that all varieties of endogenous regimes, their distribution and their history depend on the heterogeneity in space and time of the Earth's thermal field.

  11. Flow rate decline and pressure transient in the Larderello geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Neri, Guiseppe


    The production history of most of the Larderello wells, both the older ones and the recent ones, that we have produced at constant pressure, is characterised by a rapid initial decline. In this study such a decline is interpreted as the consequence of an original flow regime of the “depletion” type being followed by a “diffusion” type regime. Such an interpretation, which does prove consistent with the phenomenology of the geothermal field, was suggested by the results of the analyses of the well-closure tests carried out in the North zone of Larderello and in the Travale field.

  12. Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field (United States)

    Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.


    Characterizing the tectonic stress field is an integral part for the development of hydrothermal systems, especially enhanced geothermal systems (EGS). With a known stress field, critically stressed faults can be identified. Faults that are critically oriented with respect to the in-situ stress field exhibit a high tendency for slip, and thus are likely candidates for reactivation during the creation of an EGS. Reactivated faults are known to serve as dominant fluid pathways during hydrothermal circulation and the characteristics of this process determine the potential for damaging earthquakes; should extensive portions of well-oriented, large features be reactivated. As part of the FORGE initiative at the West Flank of the Coso Geothermal Field, we analyze a large set of image logs obtained from wells distributed across the geothermal field for details about the stress state revealed by indicators such as borehole breakouts and drilling-induced tensile fractures. Previous stress analyses at Coso have ignored deviated well sections, since their interpretation for the orientation of the stress tensor is non-unique with respect to varying stress magnitudes. Using interpreted borehole-induced structures, we perform a grid search over all possible Andersonian stress states and find a best fitting vertical stress tensor for each stress state characterized by principal stress magnitudes. By including deviated well sections and recently drilled wells, we considerably expand the suite of stress measurements in the Coso Geothermal Field. Along individual wells, this analysis also reveals local meter length-scale deviations from the best-fitting mean stress orientation. While most wells show consistent horizontal principal stress orientations with standard deviations of about 10°, other wells show large standard deviations on the order of 25°. Several regions have logged well trajectories with lateral spacing below 1 km. This enables us to trace changes of the stress

  13. A method of fundamental solutions in poroelasticity to model the stress field in geothermal reservoirs

    CERN Document Server

    Augustin, Matthias Albert


    This monograph focuses on the numerical methods needed in the context of developing a reliable simulation tool to promote the use of renewable energy. One very promising source of energy is the heat stored in the Earth’s crust, which is harnessed by so-called geothermal facilities. Scientists from fields like geology, geo-engineering, geophysics and especially geomathematics are called upon to help make geothermics a reliable and safe energy production method. One of the challenges they face involves modeling the mechanical stresses at work in a reservoir. The aim of this thesis is to develop a numerical solution scheme by means of which the fluid pressure and rock stresses in a geothermal reservoir can be determined prior to well drilling and during production. For this purpose, the method should (i) include poroelastic effects, (ii) provide a means of including thermoelastic effects, (iii) be inexpensive in terms of memory and computational power, and (iv) be flexible with regard to the locations of data ...

  14. Preliminary isotopic studies of fluids from the Cerro Prieto geothermal field (United States)

    Truesdell, A.H.; Rye, R.O.; Pearson, F.J.; Olson, E.R.; Nehring, N.L.; Whelan, J.F.; Huebner, M.A.; Coplen, T.B.


    Preliminary isotopic studies of Cerro Prieto geothermal fluids and earlier studies of Mexicali Valley ground waters suggest local recharge of the geothermal system from the area immediately to the west. Oxygen isotope exchange of water with reservoir rock minerals at temperatures increasing with depth has produced fluids with oxygen-18 contents increasing with depth, and pressure drawdown in the southeastern part of the field has allowed lower oxygen-18 fluids to invade the production aquifer from above. The contents of tritium and carbon-14 in the fluid suggest only that the age of the fluid is between 50 and 10,000 years. The isotopic compositions of carbon and sulfur are consistent with a magmatic origin of these elements but a mixed sedimentary-organic origin appears more likely for carbon and is also possible for sulfur. Investigations of the isotopic compositions of geothermal and cold ground waters continue and are being expanded as fluids become available and as separation and analysis methods are improved. ?? 1979.

  15. Relationship between water chemistry and sediment mineralogy in the Cerro Prieto geothermal field: a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N. (Univ. de Perpignan, France); Thompson, J.M.; Ball, J.W.


    The chemical compositions of waters collected from the Cerro Prieto geothermal production wells and hydrothermal emanations are different. Compared to the Cerro Prieto well waters, the surficial waters generally contain significantly less potassium, slightly less calcium and chloride, and significantly more magnesium and sulfate. In comparison to the unaltered sediments, the changes in the mineralogy of the altered sediments appear to be controlled by the type of emanation (well, spring, mud pot, geyser, fumarole, or cold pool). However, an increase in quartz and potassium feldspar percentages seems to be characteristic of the majority of the sediments in contact with geothermal fluids. Preliminary attempts to model the chemical processes occurring in the Cerro Prieto geothermal field using chemical equilibrium calculations are reported. For this purpose the chemical compositions of thermal waters (well and surficial emanation) were used as input data to make calculations with SOLMNEQ and WATEQ2 computer programs. Then the theoretical mineral composition of altered sediments was predicted and compared to the mineralogy actually observed in the solid samples.

  16. Curie point depth from spectral analysis of aeromagnetic data from Cerro Prieto geothermal area, Baja California, México (United States)

    Espinosa-Cardeña, J. M.; Campos-Enriquez, J. O.


    Using aeromagnetic data acquired in the area from the Cerro Prieto geothermal field, we estimated the depth to the Curie point isotherm, interpreted as the base of the magnetic sources, following statistical spectral-based techniques. According to our results the Curie point isotherm is located at a depths ranging from 14 to 17 km. Our result is somewhat deeper than that obtained previously based only in 2-D and 3-D forward modeling of previous low-quality data. However, our results are supported by independent information comprising geothermal gradients, seismicity distribution in the crust, and gravity determined crustal thickness. Our results imply a high thermal gradient (ranging between 33 and 38 °C/km) and high heat flow (of about 100 mW/m 2) for the study area. The thermal regime for the area is inferred to be similar to that from the Salton trough.

  17. Lithospheric Structure and Active Deformation in the Salton Trough from Coseismic and Postseismic Models of the 2010 Mw 7.2 El Mayor-Cucapah Earthquake (United States)

    Fielding, E. J.; Huang, M. H.; Dickinson, H.; Freed, A. M.; Burgmann, R.; Gonzalez-Ortega, J. A.; Andronicos, C.


    The 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) Earthquake ruptured about 120 km along several NW-striking faults to the west of the Cerro Prieto Fault in the Salton Trough of Baja California, Mexico. We analyzed interferometric synthetic aperture radar (SAR), SAR and optical pixel offsets, and continuous and campaign GPS data to optimize an EMC coseismic rupture model with 9 fault segments, which fits the complex structure of the faults. Coseismic slip inversion with a layered elastic model shows that largely right-lateral slip is confined to upper 10 km with strong variations along strike. Near-field GPS measures slip on a north-striking normal fault that ruptured at the beginning of the earthquake, previously inferred from seismic waveforms. EMC Earthquake postseismic deformation shows the Earth's response to the large coseismic stress changes. InSAR shows rapid shallow afterslip at the north and south ends of the main ruptures. Continuous GPS from the Plate Boundary Observatory operated by UNAVCO measures the first six years of postseismic deformation, extremely rapid near the rupture. Afterslip on faults beneath the coseismic rupture cannot explain far-field displacements that are best explained by viscoelastic relaxation of the lower crust and upper mantle. We built a viscoelastic 3D finite element model of the lithosphere and asthenosphere based on available data for the region with the EMC coseismic faults embedded inside. Coseismic slip was imposed on the model, allowed to relax for 5 years, and then compared to the observed surface deformation. Systematic exploration of the viscoelastic parameters shows that horizontal and vertical heterogeneity is required to fit the postseismic deformation. Our preferred viscoelastic model has weaker viscosity layers beneath the Salton Trough than adjacent blocks that are consistent with the inferred differences in the geotherms. Defining mechanical lithosphere as rocks that have viscosities greater than 10^19 Pa s (able

  18. Physico-chemical and environmental controls on siliceous sinter formation at the high-altitude El Tatio geothermal field, Chile (United States)

    Nicolau, Constanza; Reich, Martin; Lynne, Bridget


    El Tatio geothermal field is located 4270 m above sea level in the Altiplano, northern Chile. Siliceous sinter deposits from El Tatio were studied to understand the influence of water chemistry and the extreme climatic conditions on their textures and mineralogy. The results of this study show that the mineralogy of El Tatio sinters include of opal-A and accessory minerals, such as halite, gypsum and cahnite (Ca4B2As2O12•4H2O), which precipitate by full evaporation of high arsenic, boron and calcium thermal waters. El Tatio sinters show a high degree of structural disorder, probably linked to cation incorporation into the silica structure and/or the occurrence of micro- to nano-scale accessory minerals. The high content of cations in the thermal waters is strongly tied to relatively high silica precipitation rates considering silica concentration in water (147-285 mg/l SiO2). Precipitation rate reach 2.5 kg/m2 per year based on in situ precipitation experiments. The particular environmental conditions of this high-altitude geothermal area that produce high water cooling rate and high evaporation rate, may also be responsible for the fast silica precipitation. Low environmental temperatures create freezing-related sinter textures (i.e., silica platelets and micro columns/ridges). Silicified microbial filaments are also characteristic of El Tatio sinters, and they are indicative of water temperature and hydrodynamic conditions at the moment of sinter formation. However, sinter textural interpretation in a high-altitude Andean context must be done carefully as specific relationships between microbial and hydrodynamic textures are found.

  19. The Ahuachapan geothermal field, El Salvador: Exploitation model, performance predictions, economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ripperda, M.; Bodvarsson, G.S.; Lippmann, M.J.; Witherspoon, P.A.; Goranson, C.


    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL) with funding from the US Agency for International Development (USAID). This report describes the work done during the second year of the study (FY89--90). The first year's report included (1) the development of geological and conceptual models of the field, (2) the evaluation of the reservoir's initial thermodynamic and chemical conditions and their changes during exploitation, (3) the evaluation of interference test data and the observed reservoir pressure decline and (4) the development of a natural state model for the field. In the present report the results of reservoir engineering studies to evaluate different production-injection scenarios for the Ahuachapan geothermal field are discussed. The purpose of the work was to evaluate possible reservoir management options to enhance as well as to maintain the productivity of the field during a 30-year period (1990--2020). The ultimate objective was to determine the feasibility of increasing the electrical power output at Ahuachapan from the current level of about 50 MW{sub e} to the total installed capacity of 95 MW{sub e}. 20 refs., 75 figs., 10 tabs.

  20. Probabilistic approach of resource assessment in Kerinci geothermal field using numerical simulation coupling with monte carlo simulation (United States)

    Hidayat, Iki; Sutopo; Pratama, Heru Berian


    The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.

  1. Detailed microearthquake studies at the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L. (Lawrence Berkeley Lab., CA); McEvilly, T.V.


    There appears to be an increase in seismic activity within the Cerro Prieto production zone since early 1978. The microearthquake activity is now more or less constant at a rate of 2 to 3 events per day. The b-values within the field are significantly higher inside the production zone than are those for events on faults outside of the production region. The earthquakes seem to be controlled by the Hidalgo fault, although slight clustering was observed in the center of the main production region. The earthquakes within the production zone may reflect the reservoir dynamics associated with heat and mass withdrawal. Mechanisms such as volume change, thermal stresses and weakening of materials associated with boiling (i.e., phase changes, dissolution) may all be responsible for the increased seismic activity. Although a small reinjection program has started, the pressure drawdown conditions existing within the field would imply that increased pore pressure resulting from the injection activities is not responsible for the increased seismic activity.

  2. Identification of natural fractures and in situ stress at Rantau Dedap geothermal field (United States)

    Artyanto, Andika; Sapiie, Benyamin; Idham Abdullah, Chalid; Permana Sidik, Ridwan


    Rantau Dedap Area is a geothermal field which is located in Great Sumatra Fault (GSF). The fault and fracture are main factor in the permeability of the geothermal system. However, not all faults and fractures have capability of to flow the fluids. Borehole image log is depiction of the borehole conditions, it is used to identify the natural fractures and drilling induced fracture. Both of them are used to identify the direction of the fracture, direction of maximum horizontal stress (SHmax), and geomechanics parameters. The natural fractures are the results of responses to stress on a rock and permeability which controlling factor in research area. Breakouts is found in this field as a trace of drilling induced fracture due to in situ stress work. Natural fractures are strongly clustered with true strike trending which first, second, and third major direction are N170°E – N180°E (N-S), N60°E – N70°E (NE-SW), and N310°E – N320°E (NW-SE), while the dominant dip is 80° –90°. Based on borehole breakout analysis, maximum horizontal stress orientation is identified in N162°E – N204°E (N-S) and N242°E (NE-SW) direction. It’s constantly similar with regional stress which is affected by GSF. Several parameters have been identified and analyzed are SHmax, SHmin, and Sy. It can be concluded that Rantau Dedap Geothermal Field is affected by strike-slip regime. The determination of in situ stress and natural fractures are important to study the pattern of permeability which is related to the fault in reservoir of this field.

  3. Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.


    A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12 refs.)

  4. Trace element hydrochemistry indicating water contamination in and around the Yangbajing geothermal field, Tibet, China. (United States)

    Guo, Qinghai; Wang, Yanxin


    Thirty-eight water samples were collected at Yangbajing to investigate the water contamination resulting from natural geothermal water discharge and anthropogenic geothermal wastewater drainage. The results indicate that snow or snow melting waters, Yangbajing River waters and cold groundwaters are free from geothermal water-related contamination, whereas Zangbo river waters are contaminated by geothermal wastewaters. Moreover, there may exist geothermal springs under the riverbed of a tributary stream of Zangbo River as shown by its Cd, Li, Mo and Pb concentrations. The efforts made in this study show trace element hydrochemistry can well indicate water quality degradation related to geothermal water exploitation.

  5. Coupled thermo-hydro-mechanical modeling of heat extraction from the Tattapani geothermal field, India (United States)

    Nand Pandey, Sachchida; Vishal, Vikram


    Modeling of coupled thermo-hydro-mechanical processes in enhanced geothermal systems is presented using the finite element method of modeling for a 3-D domain. The reservoir consists of a single horizontal fracture surrounded by low permeable rock matrix. The flow is imposed on a fracture plane, consisting of a doublet system. The reservoir rock mechanical properties were taken from the field data of the Tattapani geothermal field, India. We investigate the effects of injection temperature and mass flow rate on the energy output. The results indicate that temperature and pressure changes within the reservoirs occur due to injection of cold water. The temperature drop and fluid overpressure inside the reservoirs/fracture affect the transport properties of the fracture. The spatial-temporal variations of fracture aperture inside the reservoir greatly impact the thermal drawdown and therefore net energy output. The results showed that maximum aperture evolution occurs near the injection zone than the production zone. The fracture aperture evolution is a result of combined effects of thermal stress and fluid overpressure inside the fracture. The fracture opening reduces the injection pressure required to circulate the fixed volume of water. The effects of the injection temperature on heat extraction were also analyzed under different reservoir formations. The results indicate that reservoir permeability plays a significant role on heat extraction, highlighting the important effect of water losses. For each factor, it is concluded that thermal breakthrough primarily depends on injection temperate, mass flow rate, reservoir permeability and well distances. The results of this study can help in choosing the operational parameters for successful operation of geothermal system. The study will also be helpful to optimize the EGS performance under varying reservoir conditions.

  6. A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Brian P. Hedlund


    Full Text Available The Rehai Geothermal Field, located in Tengchong County, in central-western Yunnan Province, is the largest and most intensively studied geothermal field in China. A wide physicochemical diversity of springs (ambient to ∼97 °C; pH from ≤1.8 to ≥9.3 provides a multitude of niches for extremophilic microorganisms. A variety of studies have focused on the cultivation, identification, basic physiology, taxonomy, and biotechnological potential of thermophilic microorganisms from Rehai. Thermophilic bacteria isolated from Rehai belong to the phyla Firmicutes and Deinococcus-Thermus. Firmicutes include neutrophilic or alkaliphilic Anoxybacillus, Bacillus, Caldalkalibacillus, Caldanaerobacter, Laceyella, and Geobacillus, as well as thermoacidophilic Alicyclobacillus and Sulfobacillus. Isolates from the Deinococcus-Thermus phylum include several Meiothermus and Thermus species. Many of these bacteria synthesize thermostable polymer-degrading enzymes that may be useful for biotechnology. The thermoacidophilic archaea Acidianus, Metallosphaera, and Sulfolobus have also been isolated and studied. A few studies have reported the isolation of thermophilic viruses belonging to Siphoviridae (TTSP4 and TTSP10 and Fuselloviridae (STSV1 infecting Thermus spp. and Sulfolobus spp., respectively. More recently, cultivation-independent studies using 16S rRNA gene sequences, shotgun metagenomics, or “functional gene” sequences have revealed a much broader diversity of microorganisms than represented in culture. Studies of the gene and mRNA encoding the large subunit of the ammonia monooxygenase (amoA of ammonia-oxidizing Archaea (AOA and the tetraether lipid crenarchaeol, a potential biomarker for AOA, suggest a wide diversity, but possibly low abundance, of thermophilic AOA in Rehai. Finally, we introduce the Tengchong Partnerships in International Research and Education (PIRE project, an international collaboration between Chinese and U.S. scientists with

  7. Arsenic speciation and transport associated with the release of spent geothermal fluids in Mutnovsky field (Kamchatka, Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, Anastasia G.; Rychagov, Sergey N.; Trainor, Thomas P. (Alaska Fairbanks); (Russ. Acad. Sci.)


    The use of geothermal fluids for the production of electricity poses a risk of contaminating surface waters when spent fluids are discharged into (near) surface environments. Arsenic (As) in particular is a common component in geothermal fluids and leads to a degradation of water quality when present in mobile and bioavailable forms. We have examined changes in arsenic speciation caused by quick transition from high temperature reducing conditions to surface conditions, retention mechanisms, and the extent of transport associated with the release of spent geothermal fluids at the Dachny geothermal fields (Mutnovsky geothermal region), Kamchatka, Russia -- a high temperature field used for electricity production. In the spent fluids, the arsenic concentration reaches 9 ppm, while in natural hot springs expressed in the vicinity of the field, the As concentration is typically below 10 ppb. The aqueous phase arsenic speciation was determined using Liquid Chromatography (LC) coupled to an Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The arsenic speciation in the bottom sediments (< 65 {mu}m fraction) of the local surface waters was analyzed using X-ray Absorption Spectroscopy (XAS). Arsenic in the geothermal source fluids is predominantly found as As(III), while a mixture of As(III)/As(V) is found in the water and sediment of the Falshivaia River downstream from the power plant. The extent of elevated arsenic concentrations in water is limited by adsorption to the bottom sediment and dilution, as determined using Cl{sup -} from the deep well fluids as a tracer. Analysis of the Extended X-ray Absorption Fine Structure (EXAFS) spectra shows that sediment phase arsenic is associated with both Al- and Fe-rich phases with a bi-dentate corner sharing local geometry. The geothermal waste fluids released in the surface water create a localized area of arsenic contamination. The extent of transport of dissolved As is limited to {approx}7 km downstream from the source

  8. Anomalously High Geothermal Gradients in the Buckman Well Field, Santa Fe County, New Mexico (United States)

    Pollack, A.; Munda, R.; Farrell, T. F.; Kelley, S. A.; Frost, J.; Jiracek, G. R.


    Temperature as a function of depth was measured in ten wells in the Santa Fe, NM area as part of the Summer of Applied Geophysics Experience (SAGE) program. Eight of the wells are within 5.5 km of the city's Buckman municipal well field and two wells are at La Tierra, 16.5 km to the SE. Geothermal gradients increase from east to west towards the Buckman area, from 20°C/km at La Tierra to 76°C/km at Buckman. Within the Buckman well field, two wells on its eastern side were determined to have temperature gradients of 32°C/km and 42°C/km. Only 300 m west, the geothermal gradient sharply increases, and measured gradients reach 76 °C/km (well number SF4A), 62°C/km (SF4B), and 68°C/km (SF3A) in three shallow (geothermal anomaly. The short spatial wavelength of the horizontal gradient increase argues for a localized source. The unusually high gradients in three of the wells may be associated with fault-controlled, effective shallow-source, warm water upflow or with lateral flow in a shallow aquifer. On the regional level, the east to west increase in temperature gradients can be explained by deep circulating groundwater flow in the Espanola Basin and upwelling near the Rio Grande. Another possible explanation comes from gravity data gathered by SAGE over several years that shows a local NW-striking structural high in the area that could force localized convective upflow. Regional aeromag maps indicate magnetic lows exactly underneath the anomalous wells. These may be interpreted as buried volcanic plugs beneath the Buckman well field, acting as conduits for upwelling warmer waters. They may also indicate hydrothermally altered rock beneath the surface. A more nontraditional cause of the sharp thermal anomaly is also possible. The geothermal gradient anomaly coincides with the dramatic discovery by InSAR in 1993-2000 of localized ground subsidence due to excessive water well pumping. Sediment deformation as modeled in the upper 1 km could generate a local thermal

  9. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.


    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  10. Laboratory measurements of reservoir rock from the Geysers geothermal field, California (United States)

    Lockner, D.A.; Summers, R.; Moore, D.; Byerlee, J.D.


    Rock samples taken from two outcrops, as well as rare cores from three well bores at the Geysers geothermal field, California, were tested at temperatures and pressures similar to those found in the geothermal field. Both intact and 30?? sawcut cylinders were deformed at confining pressures of 200-1000 bars, pore pressure of 30 bars and temperatures of 150?? and 240??C. Thin-section and X-ray analysis revealed that some borehole samples had undergone extensive alteration and recrystallization. Constant strain rate tests of 10-4 and 10-6 per sec gave a coefficient of friction of 0.68. Due to the highly fractured nature of the rocks taken from the production zone, intact samples were rarely 50% stronger than the frictional strength. This result suggests that the Geysers reservoir can support shear stresses only as large as its frictional shear strength. Velocity of p-waves (6.2 km/sec) was measured on one sample. Acoustic emission and sliding on a sawcut were related to changes in pore pressure. b-values computed from the acoustic emissions generated during fluid injection were typically about 0.55. An unusually high b-value (approximately 1.3) observed during sudden injection of water into the sample may have been related to thermal cracking. ?? 1982.

  11. Optimization of Wellhead Piping Design for Production Wells at Development of Steam-Water Geothermal Fields

    Directory of Open Access Journals (Sweden)

    A.N. Shulyupin


    Full Text Available At present, the exploitation of geothermal resources develops in a fair competition with other types of energy resources. This leads to actuality of questions which associated with the more efficient use of existing wells, because cost of their drilling is a significant share of geothermal projects. In domestic practice of development of geothermal resources the steam-water wells have greatest energy potential. One way to improve the performance of these wells is a providing of smooth change of direction of motion of steam-water mixture from the vertical, in the well, to the horizontal, in steam gathering system. Typical wellhead piping of domestic steam-water wells involves the removal of the mixture through a cross bar at a right angle. Cross bar can generate considerable pressure loss that increases the operating pressure at the mouth of the well and reduces flow rate. It seems reasonable to substitute the typical cross bar by smooth pipe bend. This reduces wellhead resistance coefficient by more than on 2. Increase of curvature radius of pipe bend reduces the pressure loss to a local resistance but increases the friction pressure loss. There is an optimal curvature radius of pipe bend for minimum pressure loss in view of a local resistance and friction in the pipe bend. Calculations have shown that the optimum value for the radius of curvature is found in the range from 1.4 to 4.5 tube internal diameters. However, for technological reasons it is recommended to choose the radius of curvature from 1.4 to 2.4 diameters. Mounting of smooth pipe bend on the wellhead can provide significant economic benefits. For Mutnovka field (Kamchatka, this effect is estimated at 17.5 million rubles in year.

  12. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    Energy Technology Data Exchange (ETDEWEB)

    McClain, James S. [Univ. of California, Davis, CA (United States). Dept. of; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Glassley, William [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Schiffman, Peter [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zierenberg, Robert [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siler, Drew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spycher, Nicolas F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  13. Micro-seismicity and seismic moment release within the Coso Geothermal Field, California (United States)

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.


    We relocate 16 years of seismicity in the Coso Geothermal Field (CGF) using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We expand on our previous results by doubling the number of relocated events from April 1996 through May 2012 using a new field-wide 3-D velocity model. Relocated micro-seismicity sharpens in many portions of the active geothermal reservoir, likely defining large-scale fault zones and fluid pressure compartment boundaries. However, a significant fraction of seismicity remains diffuse and does not cluster into sharply defined structures, suggesting that permeability is maintained within the reservoir through distributed brittle failure. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vs generally higher in the Main Field and East Flank and Vp remaining relatively uniform across the CGF, but with significant local variations. The Vp/Vs ratio appears to outline the two main producing compartments of the reservoir at depths below mean ground level of approximately 1 to 2.5 km, with a ridge of relatively high Vp/Vs separating the Main Field from the East Flank. Detailed analyses of spatial and temporal variations in earthquake relocations and cumulative seismic moment release in the East Flank reveal three regions with persistently high rates of seismic activity. Two of these regions exhibit sharp, stationary boundaries at the margins of the East Flank that likely represent barriers to fluid flow and advective heat transport. However, seismicity and moment release in a third region at the northern end of the East Flank spread over time to form an elongated NE to SW structure, roughly parallel both to an elongated cluster of seismicity at the southern end of the East Flank and to regional fault traces mapped at the surface. Our results indicate that high

  14. Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field (United States)

    Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.


    Characterizing the tectonic stress field is an integral part of the development of hydrothermal systems and especially for enhanced geothermal systems (EGS). With a well characterized stress field the propensity of fault slip on faults with known location and orientation can be identified. Faults that are critically oriented for faulting with respect to the stress field are known to provide natural fluid pathways. A high slip tendency makes a fault a likely candidate for reactivation during the creation of an EGS. Similarly, the stress state provides insight for the potential of larger, damaging earthquakes should extensive portions of well-oriented, larger faults be reactivated.The analysis of stress indicators such as drilling-induced fractures and borehole breakouts is the main tool to infer information on the stress state of a geothermal reservoir. The standard procedure is applicable to sub-vertical wellbore sections and highly deviated sections have to be discarded. However, in order to save costs and reduce the environmental impact most recent wells are directionally drilled with deviations that require appropriate consideration of the deviated trajectory. Here we present an analysis scheme applicable to arbitrary well trajectories or a combination of wells to infer the stress state. Through the sampling of the stress tensor along several directions additional information on the stress regime and even relative stress magnitudes can be obtained. We apply this method on image logs from the pair of wells 58-10 and 58A-10 that were drilled from the same well pad. Both wells have image logs of about 2km of their trajectories that are separated by less than 300m. For both wells we obtain a mean orientation of SHmax of N23° with large standard deviations of locations of stress indicators of 24° and 26°, respectively. While the local stress direction is highly variable along both wells with dominant wavelengths from around 50 to 500m, the mean directions are very

  15. Perspectives of offshore geothermal energy in Italy (United States)

    Armani, F. B.; Paltrinieri, D.


    Italy is the first European and world's fifth largest producer of geothermal energy for power generation which actually accounts for less than 2% of the total electricity production of the country. In this paper after a brief introduction to the basic elements of high-enthalpy geothermal systems, we discuss the potentialities represented by the submarine volcanoes of the South Tyrrhenian Sea. In particular we focus on Marsili Seamount which, according to the literature data, can be considered as a possible first offshore geothermal field; then we give a summary of the related exploitation pilot project that may lead to the realization of a 200MWe prototype power plant. Finally we discuss some economic aspects and the development perspectives of the offshore geothermal resource taking into account the Italian energy framework and Europe 2020 renewable energy target.

  16. Addendum to material selection guidelines for geothermal energy-utilization systems. Part I. Extension of the field experience data base. Part II. Proceedings of the geothermal engineering and materials (GEM) program conference (San Diego, CA, 6-8 October 1982)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.S.; Ellis, P.F. II


    The extension of the field experience data base includes the following: key corrosive species, updated field experiences, corrosion of secondary loop components or geothermal binary power plants, and suitability of conventional water-source heat pump evaporator materials for geothermal heat pump service. Twenty-four conference papers are included. Three were abstracted previously for EDB. Separate abstracts were prepared for twenty-one. (MHR)

  17. Micro-seismicity within the Coso Geothermal field, California, from 1996-2012 (United States)

    Kaven, Joern; Hickman, Stephen H.; Weber, Lisa C.


    We extend our previous catalog of seismicity within the Coso Geothermal field by adding over two and a half years of additional data to prior results. In total, we locate over 16 years of seismicity spanning from April 1996 to May of 2012 using a refined velocity model, apply it to all events and utilize differential travel times in relocations to improve the accuracy of event locations. The improved locations elucidate major structural features within the reservoir that we interpret to be faults that contribute to heat and fluid flow within the reservoir. Much of the relocated seismicity remains diffuse between these major structural features, suggesting that a large volume of accessible and distributed fracture porosity is maintained within the geothermal reservoir through ongoing brittle failure. We further track changes in b value and seismic moment release within the reservoir as a whole through time. We find that b values decrease significantly during 2009 and 2010, coincident with the occurrence of a greater number of moderate magnitude earthquakes (3.0 ≤ ML Coso reservoir is comprised of a network of fractures at a variety of spatial scales that evolves dynamically over time, with progressive changes in characteristics of microseismicity and inferred fractures and faults that are only evident from a long period of seismic monitoring analyzed using self-consistent methods.

  18. A large and complete Jurassic geothermal field at Claudia, Deseado Massif, Santa Cruz, Argentina (United States)

    Guido, Diego M.; Campbell, Kathleen A.


    Late Jurassic geothermal deposits at Claudia, Argentinean Patagonia, are among the largest (40 km2) and most varied in the Deseado Massif, a 60,000 km2 volcanic province hosting precious metals (Au, Ag) mineralization generated during diffuse back arc spreading and opening of the South Atlantic Ocean. Both siliceous sinter and travertine occur in the same stratigraphic sequence. Deposits range from those interpreted as fluvially reworked hydrothermal silica gels, to extensive apron terraces, to a clustering of high-temperature subaerial vent mounds. Paleoenvironmentally diagnostic textures of sinters include wavy laminated, bubble mat and nodular fabrics, and for travertines comprise fossil terracette rims, wavy laminated, bubble mat, spherulitic, oncoidal, and peloidal fabrics. Of special note is the presence of relatively large (to 25 cm high), inferred subaqueous "Conophyton" structures in travertines, which serve as analogs for some Precambrian stromatolites and imply the presence of relatively deep pools maintained by voluminous spring discharges. The Claudia geothermal field is geographically and geologically linked to the Cerro Vanguardia epithermal project (total resource of ~ 7.8 million ounces Au equivalent) via proximity, similar veins, and structural linkages, making it an especially large and relevant prospect for the region. The combined Claudia-Cerro Vanguardia hydrothermal system likely represents a fortuitous alignment of focused fluid flow and structure conducive to forming a giant epithermal ore deposit, with respect to size, ore concentration and potentially duration, in the Late Jurassic of Patagonia.

  19. Plant adaptation to extreme environments: the example of Cistus salviifolius of an active geothermal alteration field. (United States)

    Bartoli, Giacomo; Bottega, Stefania; Forino, Laura M C; Ciccarelli, Daniela; Spanò, Carmelina


    Cistus salviifolius is able to colonise one of the most extreme active geothermal alteration fields in terms of both soil acidity and hot temperatures. The analyses of morpho-functional and physiological characters, investigated in leaves of plants growing around fumaroles (G leaves) and in leaves developed by the same plants after transfer into growth chamber under controlled conditions (C leaves) evidenced the main adaptive traits developed by this pioneer plant in a stressful environment. These traits involved leaf shape and thickness, mesophyll compactness, stomatal and trichome densities, chloroplast size. Changes of functional and physiological traits concerned dry matter content, peroxide and lipid peroxidation, leaf area, relative water and pigment contents. A higher reducing power and antioxidant enzymatic activity were typical of G leaves. Though the high levels of stress parameters, G leaves showed stress-induced specific morphogenic and physiological responses putatively involved in their surviving in active geothermal habitats. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Paleomagnetic Reorientation of Structural Elements in Drill Cores: an example from Tolhuaca Geothermal Field (United States)

    Perez-Flores, P.; Veloso, E. E.; Cembrano, J. M.; Sánchez, P.; Iriarte, S.; Lohmar, S.


    Reorientation of mesoscopic faults, veins and fractures recovered from drilling is critical to construct reliable structural models that can account for their architecture and deformation regime. However, oriented cores are expensive and time consuming to drill. Some techniques achieve reorientation by introducing tools into the borehole. Problems arise when boreholes are unstable or collapse. One alternative technique allowing reorientation is to obtain reliable paleomagnetic vectors to reorient each core piece after drilling. Here, we present stable and reliable remnant magnetic vectors calculated from the Tol-1 core to analyze the geometry of the fracture network and its relationship to regional tectonic. Tol-1 core is a vertical, 1073 m deep geothermal well, drilled at the Tolhuaca Geothermal Field in the Southern Volcanic Zone of the Andes by MRP Geothermal Chile Ltda (formerly GGE Chile SpA) in 2009. The core consists of basaltic/andesitic volcanic rocks with subordinate pyroclastic/volcaniclastic units, with probable Pleistocene age. Fault planes with slickenlines and mineral fiber kinematic indicators are common in the upper 700 m of the core. Calcite, quartz and calcite-quartz veins are recognized along of entire core, whereas epidote-quartz and calcite-epidote veins occur in the last 350 m, minor chlorite, anhydrite and clay-minerals are present. Orientations of structural features in the core were measured with a goniometer using the core's axis and a false north for each piece; hence, orientation data has a false strike but a real dip. To achieve total reorientation of the pieces, we collected 200 standard-size paleomagnetic specimens, ensuring that at least four of them were recovered from continuous pieces. Thermal (up to 700°C) and alternating field demagnetization (up to 90mT on steps of 2mT) methods were used to isolate a stable remnant magnetization (RM) vector, and each technique yielded similar results. RM vectors were recovered between 0 to 25

  1. Enhancement of subsurface geologic structure model based on gravity, magnetotelluric, and well log data in Kamojang geothermal field (United States)

    Yustin Kamah, Muhammad; Armando, Adilla; Larasati Rahmani, Dinda; Paramitha, Shabrina


    Geophysical methods such as gravity and magnetotelluric methods commonly used in conventional and unconventional energy exploration, notably for exploring geothermal prospect. They used to identify the subsurface geology structures which is estimated as a path of fluid flow. This study was conducted in Kamojang Geothermal Field with the aim of highlighting the volcanic lineament in West Java, precisely in Guntur-Papandayan chain where there are three geothermal systems. Kendang Fault has predominant direction NE-SW, identified by magnetotelluric techniques and gravity data processing techniques. Gravity techniques such as spectral analysis, derivative solutions, and Euler deconvolution indicate the type and geometry of anomaly. Magnetotelluric techniques such as inverse modeling and polar diagram are required to know subsurface resistivity charactersitics and major orientation. Furthermore, the result from those methods will be compared to geology information and some section of well data, which is sufficiently suitable. This research is very useful to trace out another potential development area.

  2. Analysis of Principal Components of the Sea Ice Concentration Fields in the Barents Sea


    N.V. Mikhailova; A.V. Yurovsky


    The processes of interaction within the ocean-sea ice-atmosphere system which influence a multiyear ice cover dynamics in the Barents Sea are investigated. Being analyzed, the principal components of the sea ice concentration fields in the Barents Sea make it possible to distinguish three modes of inter-annual variability of the sea ice concentration. It is shown that the first mode describes 65.4 % of the sea ice concentration total variance and its multiyear trend. The second mode (10.8 %) ...

  3. Using geochemical and isotopic techniques for exploration of geothermal energy in Southern Sabalan geothermal field, NW Iran (United States)

    Masoumi, Rahim


    From a hydrogeochemical point of view the geothermal fluids in the study area can be divided into two categories, (1) Na-Cl and (2) Na-Ca-HCO3. In the study area, the hot water samples depict temperature and pH ranges of 22 °C to 77 °C and 6.4 to 7.3, respectively. The total dissolved solids vary from 456 mg/L to 7006 mg/L. The concentration of rare metallic and non-metallic elements such as Li, Rb, B, Ba, Sr, CS, Se, Al, As, Hg in cold and hot spring waters in the Bushdi area were also analyzed. The utmost concentration belongs to Se which ranges from 135 mg/L to 273 mg/L. Boron also shows notable concentration values, in most samples it exceeds 20 mg/L, and in certain samples it ranges from 28 mg/L to 33.5 mg/L. The concentration value of arsenic ranges from 3 mg/L to 4 mg/L. The maximum concentration value of mercury is 0.01 mg/L. The δ18O values of these samples vary from -12.4 ‰ to -7.5 ‰ and the δD values range from -78.6 ‰ to -70.6 ‰. Plotting δ18O versus δD demonstrates that the data points are clustered close to both, the global meteoric water line (GMWL) with the equation δD = 8 δ18O + 10 and, the national meteoric water line (NMWL) with the equation δD = 6.89 δ18O + 6.57. As can be observed, the geothermal fluids in the Bushdi area show relatively slight increase in δ18O values that may be caused by interaction of hot fluids with host volcanic rocks. In fact, this relatively slight increment in δ18O values may indicate the low to moderate temperature of the geothermal system. The δD values, in general, do not show notable variation because of very low hydrogen content of the host rocks. The slight increase in δD, however, may be in conjunction with vaporization and isotopic interaction with the host rocks. The 3H content of the cold and hot waters in the Bushdi area is relatively high and varies from 0.65 TU to 41.4 TU. This may be caused either by mixing with meteoric sources or rapid fluid flow within the system in a shorter time


    Directory of Open Access Journals (Sweden)

    E. Ristin Pujiindiyati


    Full Text Available There are at least 30 high temperature systems; eleven active volcanoes, five degassing volcanoes and one caldera volcano controlled by Sumatra Fault Zone over a length of 1700 km. To understand this geothermal field system, some information about geochemistry including isotope composition in its fluid is needed. Sulphur-34 and oxygen-18 isotopes in dissolved sulphate pair have been used to determine the origin of acidic fluid of sulphate and to evaluate the process involved. The fluids from eight hot springs, two fumaroles, four deep wells and crater have been collected in along Sumatra geothermal fields. Sulphur-34 (d 34S (SO4, 0/00 CDT and oxygen-18 (d 18O (SO4, 0/00 SMOW in sulphate is analyzed according to Robinson-Kusakabe and Rafter method, respectively. The d 34S (SO4 values from Sibayak wells are more enriched of 16.8 0/00 to 18.2 0/0 that may indicate the dissolution of anhydrite minerals or isotope partitioning in hydration of SO2. The d 34S (SO4 values from two fumaroles (Pusuk Bukit - North Sumatra and Rantau Dadap - South Sumatra are at depleted value of -0.150/00 and 1.80/00, those are close to d 34S from magmatic sulphur.  In general, the d 34S (SO4 of springs spread in a wide range of 5.250/00 to14.20/00 and show a mixing process between atmospheric sulphate and sulphate from deep wells. The d 18O (SO4 from wells exhibits depleted value around -3.60/00 suggesting that 87.5% of sulphate oxygen is derived from groundwater oxygen and 12.5% is derived from atmospheric molecular oxygen in sulphide oxidation reaction. In the other hand, hot springs (except Semurup, crater and fumaroles have enriched value of d 18O (SO4. These enriched values suggest that a higher percentage of atmospherically derived oxygen compared to those from the depth.   Keywords: isotope, geothermal, Sumatra

  5. Testing for the ‘predictability’ of dynamically triggered earthquakes in Geysers Geothermal Field (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne L.


    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is ‘predictable’ or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily ‘predictable’ in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock–aftershock sequences. Thus, we may be able to ‘predict’ what size earthquakes to expect at The Geysers following a large distant earthquake.

  6. Testing for the 'predictability' of dynamically triggered earthquakes in The Geysers geothermal field (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne


    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is 'predictable' or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily 'predictable' in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock-aftershock sequences. Thus, we may be able to 'predict' what size earthquakes to expect at The Geysers following a large distant earthquake.

  7. Pressure changes and their effects on the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Bermejo M, F.J.; Navarro O, F.X.; Esquer P, C.A.; Castillo B, F.; de la Cruz D, F.C.


    Continuous extraction of the water-steam mixture at the field has been increasing to fulfill the steam requirements of the power plant. As a result, pressure declines have been observed in the producing strata in all of the wells, as well as in the geothermal reservoir as a whole. Anomalous behavior that has been observed in the wells' hydraulic columns in most cases is due to the interconnection of the various strata penetrated by the well. When this occurs, unbalanced hydraulic pressures cause the movement of fluids between the strata. As an example of this hydraulic imbalance causing the flow of fluids from an upper to a lower zone, well Nuevo Leon 1 where this effect occurs between regions 600 m apart was chosen.

  8. Mesoscale wind field modifications over the Baltic Sea

    DEFF Research Database (Denmark)

    Källstrand, B.; Bergström, H.; Højstrup, J.


    For two consecutive days during spring 1997, the wind field over the Baltic Sea has been studied. The strength of the geostrophic wind speed is the major difference in synoptic conditions between these two days. During both days, the mesoscale wind field over most of the Baltic Sea is quite heter...

  9. Fault zone characteristics and basin complexity in the southern Salton Trough, California (United States)

    Persaud, Patricia; Ma, Yiran; Stock, Joann M.; Hole, John A.; Fuis, Gary S.; Han, Liang


    Ongoing oblique slip at the Pacific–North America plate boundary in the Salton Trough produced the Imperial Valley (California, USA), a seismically active area with deformation distributed across a complex network of exposed and buried faults. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project to construct a three-dimensional P-wave velocity model down to 8 km depth and a velocity profile to 15 km depth, both at 1 km grid spacing. A VP = 5.65–5.85 km/s layer of possibly metamorphosed sediments within, and crystalline basement outside, the valley is locally as thick as 5 km, but is thickest and deepest in fault zones and near seismicity lineaments, suggesting a causative relationship between the low velocities and faulting. Both seismicity lineaments and surface faults control the structural architecture of the western part of the larger wedge-shaped basin, where two deep subbasins are located. We estimate basement depths, and show that high velocities at shallow depths and possible basement highs characterize the geothermal areas.

  10. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)


    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  11. Fluid circulation and reservoir conditions of the Los Humeros Geothermal Field (LHGF), Mexico, as revealed by a noble gas survey (United States)

    Pinti, Daniele L.; Castro, M. Clara; Lopez-Hernandez, Aida; Han, Guolei; Shouakar-Stash, Orfan; Hall, Chris M.; Ramírez-Montes, Miguel


    Los Humeros Geothermal Field (LHGF) is one of four geothermal fields currently operating in Mexico, in exploitation since 1990. Located in a caldera complex filled with very low-permeability rhyolitic ignimbrites that are the reservoir cap-rock, recharge of the geothermal field is both limited and localized. Because of this, planning of any future geothermal exploitation must be based on a clear understanding of the fluid circulation. To this end, a first noble gas survey was carried out in which twenty-two production wells were sampled for He, Ne, Ar, Kr, and Xe isotope analysis. Air-corrected 3He/4He ratios (Rc) measured in the fluid, normalized to the helium atmospheric ratio (Ra; 1.384 × 10- 6), are consistently high across the field, with an average value of 7.03 ± 0.40 Ra. This value is close to that of the sub-continental upper mantle, indicating that LHGF mines heat from an active magmatic system. Freshwater recharge does not significantly affect He isotopic ratios, contributing 1-10% of the total fluid amount. The presence of radiogenic 40Ar* in the fluid suggests a fossil fluid component that might have circulated within the metacarbonate basement with radiogenic argon produced from detrital dispersed illite. Solubility-driven elemental fractionation of Ne/Ar, Kr/Ar, and Xe/Ar confirm extreme boiling in the reservoir. However, a combined analysis of these ratios with 40Ar/36Ar reveals mixing with an air component, possibly introduced by re-injected geothermal fluids.

  12. Areas to explore surrounding the Cerro Prieto geothermal field, BC; Areas para exploracion en los alrededores del campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Dumas, Alvaro [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, Baja California (Mexico)]. E-mail:


    Exploration plays an important role in tapping underground natural resources-whether water, oil, natural gas or minerals. Exploratory data allow us to learn reservoir conditions, increasing probable reserves and reservoir life span. Around the Cerro Prieto geothermal field, BC, and in the Mexicali Valley in general, exploration had almost stopped but recently was resumed by the Studies Division of Comision Federal de ELectricidad (CFE)'s Gerencia de Proyectos Geotermoelectricos. The division sent technical personnel to structurally map the northern and eastern portions of Laguna Salada. The paper offers a general outline of the main zones undergoing exploratory studies-studies perhaps culminating in siting exploratory wells to locate more geothermal resources (and ultimately producing them using binary power plants). CFE also wants to site injection wells west of the current production zone, and this is covered, as well. All activities are meant to increase the productive lifespan of the geothermal reservoir. [Spanish] Cuando se trata de la explotacion de recursos naturales del subsuelo, sea agua, gas, petroleo o minerales, la exploracion juega un papel muy importante, ya que permite conocer las condiciones del yacimiento que pudieran llevar a incrementar las reservas de los recursos explotados y extender su vida util. En las zonas aledanas al campo geotermico de Cerro Prieto, BC, y en general en el Valle de Mexicali, la exploracion estaba practicamente detenida habiendose reactivado a raiz de que la Subgerencia de Estudios de la Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad (CFE) envio personal para realizar mapeos estructurales en las porciones norte y oriente de la Laguna Salada. Este trabajo presenta un panorama general de las areas prioritarias para realizar estudios exploratorios y poder programar, con mas bases, pozos exploratorios enfocados a localizar mas recursos geotermicos, inclusive para generar energia por medio

  13. Numerical Studies of the Heat and Mass Transport in the Cerro Prieto Geothermal Field, Mexico (United States)

    Lippmann, M. J.; Bodavarsson, G. S.


    Numerical simulation techniques are employed in studies of the natural flow of heat and mass through the Cerro Prieto reservoir, Mexico and of the effects of exploitation on the field's behavior. The reservoir model is a two-dimensional vertical east to west-southwest cross section, which is based on a recent hydrogeologic model of this geothermal system. The numerical code MULKOM is used in the simulation studies. The steady state pressure and temperature distributions are computed and compared against observed preproduction pressures and temperatures; a reasonable match is obtained. A natural hot water recharge rate of about 1×10-2 kg/s per meter of field length (measured in a north-south direction) is obtained. The model is then used to simulate the behavior of the field during the 1973-1978 production period. The response of the model to fluid extraction agrees to what has been observed in the field or postulated by other authors. There is a decrease in temperatures and pressures in the produced region. No extensive two-phase zone develops in the reservoir because of the strong fluid recharge. Most of the fluid recharging the system comes from colder regions located above and west of the produced reservoir.

  14. The geothermal field of Denmark from borehole measurements and 3D numerical modelling (United States)

    Fuchs, Sven; Balling, Niels


    We present a 3D numerical crustal temperature model and analyze the present-day geothermal field of onshore Denmark, including parts of the Danish Basin, the northernmost part of the North German Basin and the Sorgenfrei-Tornquist Zone. An extensive analysis of borehole and well-log data on a basin scale is conducted to derive the model parameterization with a spatial distribution of rock thermal conductivity as well as new, regionally variable heat-flow values. A new structural geological model with lithological layers is provided by the Geological Survey of Denmark and Greenland (GEUS). Measured heat flow and borehole temperature observations (102 values from 47 wells) are used to constrain the modelling results in terms of calibration and validation. The prediction uncertainties between modelled and observed temperatures at deep borehole sites are small (rms = 1.3°C). For 22 deep boreholes, new values of terrestrial surface heat flow are derived ranging between 64 and 84 mW/m2 (mean of 77 ± 5 mW/m2) for the Danish Basin, between 60 and 95 mW/m2 (mean of 80 ± 10 mW/m2) for the very northern part of North German Basin, and between 63 and 66 mW/m2 (mean of 65 ± 2 mW/m2) in the Sorgenfrei-Tornquist Zone, respectively. Heat flow from the mantle is estimated to be between 31 and 39 mW/m2 (q1-q3; mean of 34 ± 7 mW/m2). Lateral temperature variations found by 3D modelling are caused by complex geological structures, like salt structures, lateral variations in the thickness of basin sediments or tectonic features. The variations in rock thermal conductivity associated with different lithological units generate significant variations in temperature gradients and heat flow. Major geothermal sandstone reservoirs show significantly different temperatures according to a large variation in reservoir depth and different thermal conductivity of overlying lithologies. For example, temperatures of the Gassum Formation, covering most of the Danish onshore areas, are within the

  15. Continental rupture and the creation of new crust in the Salton Trough rift, Southern California and northern Mexico: Results from the Salton Seismic Imaging Project (United States)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Kell, Annie; Driscoll, Neal W.; Kent, Graham M.; Harding, Alistair J.; Rymer, Michael J.; González-Fernández, Antonio; Lázaro-Mancilla, Octavio


    A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17-18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from 3 to 8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched preexisting crust or higher-grade metamorphosed sediment. The lower crust below 12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12-18 km depth as it does to the south, and a weak reflection suggests Moho at 28 km depth. Structure in adjacent Mexico has slower midcrustal velocity, and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism.

  16. Temporal changes of static stress drop as a proxy for poroelastic effects at The Geysers geothermal field, California (United States)

    Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia


    One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field

  17. Analysis of Principal Components of the Sea Ice Concentration Fields in the Barents Sea

    Directory of Open Access Journals (Sweden)

    N.V. Mikhailova


    Full Text Available The processes of interaction within the ocean-sea ice-atmosphere system which influence a multiyear ice cover dynamics in the Barents Sea are investigated. Being analyzed, the principal components of the sea ice concentration fields in the Barents Sea make it possible to distinguish three modes of inter-annual variability of the sea ice concentration. It is shown that the first mode describes 65.4 % of the sea ice concentration total variance and its multiyear trend. The second mode (10.8 % is related to the variations of the heat inflow due to the sea currents governed by the atmospheric circulation. The third one (7.8 % is associated with variability of the total turbulent heat flux from the ocean to the atmosphere at the boundary of the ice edge in the northern Barents Sea.

  18. Geothermal Energy. (United States)

    Eaton, William W.

    Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…

  19. Fracture network, fluid pathways and paleostress at the Tolhuaca geothermal field (United States)

    Pérez-Flores, Pamela; Veloso, Eugenio; Cembrano, José; Sánchez-Alfaro, Pablo; Lizama, Martín; Arancibia, Gloria


    In this study, we examine the fracture network of the Tolhuaca geothermal system located in the Southern Andean volcanic zone that may have acted as a pathway for migration and ascent of deep-seated fluids under the far/local stress field conditions of the area. We collected the orientation, slip-data and mineralogical content of faults and veins recovered on a ca. 1000 m deep borehole (Tol-1) located in the NW-flank of the Tolhuaca volcano. Tol-1 is a non-oriented, vertical borehole that recovered relatively young (50°) dips. The EW-striking veins are compatible with the calculated local stress field whereas NE-striking veins are compatible with the regional stress field, the morphological elongation of volcanic centers, alignments of flank vents and dikes orientation. Our results demonstrate that the paleomagnetic methodology proved to be reliable and it is useful to re-orient vertical boreholes such as Tol-1. Furthermore, our data show that the bulk transpressional regional stress field has local variations to a tensional stress field within the NE-striking fault zone belonging to the Liquiñe-Ofqui Fault System, favoring the activation of both NW- and NE-striking pre-existent discontinuities, especially the latter which are favorably oriented to open under the prevailing stress field. The vertical σ1 and NS-trending subhorizontal σ3 calculated in the TGS promote the activation of EW-striking extensional veins and both NE and NW-striking hybrid faults, constituting a complex fluid pathway geometry of at least one kilometer depth.

  20. Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Matthew W. [California State University, Long Beach, CA (United States)


    The prediction of the geothermal system efficiency is strong linked to the character of the flow system that connects injector and producer wells. If water flow develops channels or “short circuiting” between injection and extraction wells thermal sweep is poor and much of the reservoir is left untapped. The purpose of this project was to understand how channelized flow develops in fracture geothermal reservoirs and how it can be measured in the field. We explored two methods of assessing channelization: hydraulic connectivity tests and tracer tests. These methods were tested at a field site using two verification methods: ground penetrating radar (GPR) images of saline tracer and heat transfer measurements using distributed temperature sensing (DTS). The field site for these studies was the Altona Flat Fractured Rock Research Site located in northeastern New York State. Altona Flat Rock is an experimental site considered a geologic analog for some geothermal reservoirs given its low matrix porosity. Because soil overburden is thin, it provided unique access to saturated bedrock fractures and the ability image using GPR which does not effectively penetrate most soils. Five boreholes were drilled in a “five spot” pattern covering 100 m2 and hydraulically isolated in a single bedding plane fracture. This simple system allowed a complete characterization of the fracture. Nine small diameter boreholes were drilled from the surface to just above the fracture to allow the measurement of heat transfer between the fracture and the rock matrix. The focus of the hydraulic investigation was periodic hydraulic testing. In such tests, rather than pumping or injection in a well at a constant rate, flow is varied to produce an oscillating pressure signal. This pressure signal is sensed in other wells and the attenuation and phase lag between the source and receptor is an indication of hydraulic connection. We found that these tests were much more effective than constant

  1. Response of the Los Azufres Geothermal Field to Four Years of 25 MW Wellhead Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ortiz, J.; Miranda, G.; Gallardo, M.


    Production and chemical data have been compiled and analyzed on a six-month averaged basis for the first four years of electric energy generation with five 5-MW wellhead generators at the Los Azufres geothermal field. The data were evaluated with respect to the extent of observable thermal drawdown of the reservoir from 25 MW of generation in relation to the estimated capacity of the field of several hundred megawatts of power. The analysis updates the previous one compiled after the first two years of continuous production, at which time the results indicated that differences in reservoir temperature estimated from geochemical thermometers and wellhead production data were not statistically significant based on the number of data and the standard deviations. Analysis of the data after four years of operation were made for the larger number of data and smaller standard deviations. The results review the adequacy of the sampling frequency and the reliability of the measurements from statistical t-Test of the means of the first and second two-year periods. 3 figs., 5 tabs., 20 refs.

  2. Remote triggering and numerical simulations of passing seismic waves at the Larderello-Travale Geothermal Field, Italy (United States)

    Fuchs, Florian; Lupi, Matteo; Saenger, Erik


    Seismic waves generated by large magnitude earthquakes can affect geological systems located thousands of kilometers far from the epicenter. The Larderello-Travale geothermal field is one of the most studied high-enthalpy geothermal systems worldwide shown to be sensitive to incoming seismic energy. In this study we detected local seismic activity at the Larderello-Travale field, coinciding with the passage of Rayleigh waves released by the 2011 M9.0 Tohoku earthquake. The earthquakes of local magnitudes 1.6 and 1.7 occurred at 6 km and 8 km depth, respectively. We suggest that these earthquakes were dynamically triggered by transient Rayleigh waves which induced a maximum vertical displacement of approximately 7.5 mm at the hydrothermal field (for waves with period of 200 s). We estimate a dynamic stress of about 8 kPa for a measured peak ground velocity of 0.8 mm/s and propose that this additional stress in a clock-advance process triggered the local earthquakes which may have eventually occurred naturally at a later time. Previous studies also report increased seismic activity at the Larderello-Travale geothermal field after regional earthquakes. We conducted numerical simulations of P-, S-, Love and Rayleigh waves propagating through a detailed model of the Larderello-Travale geothermal field based on the known velocity structure. This enables us to identify potential regions where seismic energy may accumulate due to local structure. Results indicate that maximum displacements focus differently when considering body or surface waves. We identify a region located at 3-5 km depth (k-horizon) that may correspond to the brittle-ductile boundary where almost no seismic energy is focused.

  3. Development of geothermal field following the 2000 eruption of Usu volcano as revealed by ground temperature, resistivity and self-potential variations

    National Research Council Canada - National Science Library

    T. Mogi; N. Matsushima; S. Takakura; Y. Nishida; M. Saba


    .... We made repeated measurements of ground temperature, Self-Potential (SP) and electrical resistivity, in order to clarify the mechanism of development of the newly formed geothermal field on the fault zone...

  4. Wellbore and soil thermal simulation for geothermal wells: development of computer model and acquisition of field temperature data. Part I report

    Energy Technology Data Exchange (ETDEWEB)

    Wooley, G.R.


    A downhole thermal simulator has been developed to improve understanding of the high downhole temperatures that affect many design factors in geothermal wells. This development is documented and field temperature data presented for flowing and shut-in conditions.

  5. Pressure Profiles in Two-Phase Geothermal Wells: Comparison of Field Data and Model Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ambastha, A.K.; Gudmundsson, J.S.


    Increased confidence in the predictive power of two-phase correlations is a vital part of wellbore deliverability and deposition studies for geothermal wells. Previously, the Orkiszewski (1967) set of correlations has been recommended by many investigators to analyze geothermal wellbore performance. In this study, we use measured flowing pressure profile data from ten geothermal wells around the world, covering a wide range of flowrate, fluid enthalpy, wellhead pressure and well depth. We compare measured and calculated pressure profiles using the Orkiszewski (1967) correlations.

  6. Geothermic Characters Of The Most Promising Geothermal Filed For Power Generation In Republic Of Yemen

    Directory of Open Access Journals (Sweden)

    Al Kubati M.


    Full Text Available This paper presents geothermal exploration and their geothermometric characteristics in the western part of Yemen. Geologically this volcanic province totals areas approximately 45000 km2. Tectonically the study area is considered one of the most active in the Arabian Plate boundaries that affected by the opening of the Red Sea and the Gulf of Aden as well as by the African rift valley. Extensive field work had been carried out to evaluate the geothermal characteristics of this area. Water and gas samples were collected from hundreds of thermal springs and shallow domestic wells and geochemically analyzed and reported. Temperatures and PH values range from 35 to 96.3 C and from 4.5 to 8.5 respectively. Deep geothermal gradient indicates that the geothermal gradients in the western part of the province Red Sea coast are relatively high up to 182 C at the depth of 3290 m. Volcanic units are affected by hydrothermal processes and became intensively altered. By applying geothermometric methods four geothermal fields have been primarily identified they are Al-Lisi and Isbil Dhamar province Al-Qafr Ibb province Damt Dhala province and the Red Sea coast geothermal fields and three water types were recognized which are Na-HCO3-Cl-S and Ca-Na-Cl and Na HCO3.Results from Al-Lisi and Isbil geothermal area are considered the most promising field. Geothermal detail studies have been achieves and location of the first geothermal exploration well is located in Al-Lisi and Isbil field.By applyig geophisical methods Iso- Resistivity contour mapsthese maps reflected high resistivity areas and low.Clearly shows the low resistivity values incentral and Western part of the study area about 11amp937mWhile up Resistivity values to the area in the eastern 600amp937m.Also through the use ofthe different current electrode spacing AB2 700 1000 1500 and 2000m.We find the low- Resistivity areas becoming more widespread and concentrated in the center of the study area and

  7. Deformation near the Casa Diablo geothermal well field and related processes Long Valley caldera, Eastern California, 1993-2000 (United States)

    Howle, J.F.; Langbein, J.O.; Farrar, C.D.; Wilkinson, S.K.


    Regional first-order leveling lines, which extend from Lee Vining, CA, to Tom's Place, CA, have been surveyed periodically since 1957 by the U.S. Geological Survey (USGS), the National Geodetic Survey (NGS), and Caltrans. Two of the regional survey lines, or leveling networks, intersect at the Casa Diablo geothermal well field. These leveling networks, referenced to a distant bench mark (C916) near Lee Vining, provide time-series vertical control data of land-surface deformation that began around 1980. These data are also useful for delineating localized subsidence at Casa Diablo related to reservoir pressure and temperature changes owing to geothermal development that began in 1985. A comparison of differences in bench-mark elevations for five time periods between 1983 and 1997 shows the development and expansion of a subsidence bowl at Casa Diablo. The subsidence coincides spatially with the geothermal well field and temporally with the increased production rates and the deepening of injection wells in 1991, which resulted in an increase in the rate of pressure decline. The subsidence, superimposed on a broad area of uplift, totaled about 310 mm by 1997. The USGS established orthogonal tilt arrays in 1983 to better monitor deformation across the caldera. One tilt array (DBR) was established near what would later become the Casa Diablo geothermal well field. This array responded to magmatic intrusions prior to geothermal development, tilting away from the well field. With the start of geothermal fluid extraction in 1985, tilt at the DBR array reversed direction and began tilting into the well field. In 1991, geothermal power production was increased by a factor of four, and reservoir pressures began a period of steep decline. These changes caused a temporary three-fold increase in the tilt rate. The tilt rate became stable in 1993 and was about 40% lower than that measured in 1991-1992, but still greater than the rates measured during 1985-1990. Data from the

  8. Potential effects of geothermal energy conversion on Imperial Valley ecosystems. [Seven workshop presentations

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, J.H. (ed.)


    This workshop on potential effcts of geothermal energy conversion on the ecology of Imperial Valley brought together personnel of Lawrence Livermore Laboratory and many collaborators under the sponsorship of the ERDA Imperial Valley Environmental Project (IVEP). The LLL Integrated Assessment Team identified the electric power potential and its associated effluents, discharges, subsidence, water requirements, land use, and noise. The Working Groups addressed the ecological problems. Water resource management problems include forces on water use, irrigation methods and water use for crops, water production, and water allocation. Agricultural problems are the contamination of edible crops and the reclamation of soil. A strategy is discussed for predevelopment baseline data and for identification of source term tracers. Wildlife resources might be threatened by habitat destruction, powerline impacts, noise and disturbance effects, gas emissions, and secondary impacts such as population pressure. Aquatic ecosystems in both the Salton Sea and fresh waters have potential hazards of salinity and trace metal effects, as well as existing stresses; baseline and bioassay studies are discussed. Problems from air pollution resulting from geothermal resource development might occur, particularly to vegetation and pollinator insects. Conversion of injury data to predicted economic damage isneeded. Finally, Imperial Valley desert ecosystems might be threatened by destruction of habitat and the possible effects on community structure such as those resulting from brine spills.

  9. Extension of the Cerro Prieto field and zones in the Mexicali Valley with geothermal possibilities in the future

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca L, H.L.; de la Pena L, A.; Puente C, I.; Diaz C, E.


    This study concerns the possible extension of the Cerro Prieto field and identification of other zones in the Mexicali Valley with geothermal development potential by assessing the structural geologic conditions in relation to the regional tectonic framework and the integration of geologic and geophysical surveys carried out at Cerro Prieto. This study is based on data obtained from the wells drilled to date and the available geological and geophysical information. With this information, a geologic model of the field is developed as a general description of the geometry of what might be the geothermal reservoir of the Cerro Prieto field. In areas with geothermal potential within the Mexicali Valley, the location of irrigation wells with anomalous temperatures was taken as a point of departure for subsequent studies. Based on this initial information, gravity and magnetic surveys were made, followed by seismic reflection and refraction surveys and the drilling of 1200-m-deep multiple-use wells. Based on the results of the final integration of these studies with the geology of the region, it is suggested that the following areas should be explored further: east of Cerro Prieto, Tulecheck, Riito, Aeropuerto-Algodones, and San Luis Rio Colorado, Sonora.

  10. Geothermal structure of the eastern Black Sea basin and the eastern Pontides orogenic belt: Implications for subduction polarity of Tethys oceanic lithosphere

    Directory of Open Access Journals (Sweden)

    Nafiz Maden


    Full Text Available The numerical results of thermal modeling studies indicate that the lithosphere is cold and strong beneath the Black Sea basin. The thermal lithospheric thickness increases southward from the eastern Pontides orogenic belt (49.4 km to Black Sea basin (152.2 km. The Moho temperature increases from 367 °C in the trench to 978 °C in the arc region. The heat flow values for the Moho surface change between 16.4 mW m−2 in the Black Sea basin and 56.9 mW m−2 in the eastern Pontides orogenic belt. Along the southern Black Sea coast, the trench region has a relatively low geothermal potential with respect to the arc and back-arc region. The numerical studies support the existence of southward subduction beneath the Pontides during the late Mesozoic–Cenozoic.

  11. Isotopic composition of waters from the El Tatio geothermal field, Northern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Giggenbach, W.F.


    On the basis of isotopic and chemical analyses of 45 spring, well and meteoric water samples from the El Tatio geothermal field in Northern Chile, four main processes giving rise to the formation of a wide range of thermal discharges can be distinguished. (1) Deep dilution of a predominant, primary high chloride (5500 mg/l, 260/sup 0/) supply water derived from precipitation some 15 km east of El Tatio with local groundwater produces a secondary chloride water. (4750 mg/l, 190/sup 0/) feeding springs over a limited area. (2) Single step steam separation from these two waters leads to isotopic shifts and increases in chloride contents to 8000 and 6000 mg/l respectively. (3) Absorption of this separated steam and carbon dioxide into local ground water and mixing with chloride waters at shallow levels produces a series of intermediate temperature (160/sup 0/), low chloride, high bicarbonate waters. (4) Absorption of steam containing H/sub 2/S into surface waters leads to the formation of zero chloride, high sulfate waters; the isotopic enrichment observed is governed by a kinetic, steady state evaporation process.

  12. Arsenic speciation in sinter mineralization from a hydrothermal channel of El Tatio geothermal field, Chile (United States)

    Alsina, Marco A.; Zanella, Luciana; Hoel, Cathleen; Pizarro, Gonzalo E.; Gaillard, Jean-François; Pasten, Pablo A.


    El Tatio geothermal field is the principal natural source of arsenic for the Loa River, the main surface water resource in the hyper-arid Atacama Desert (Antofagasta Region, Northern Chile). Prior investigations by bulk X-ray absorption spectroscopy have identified hydrous ferric oxides as the principal arsenic-containing phase in sinter material from El Tatio, suggesting sorption as the main mechanism for arsenic scavenging by the solid phases of these hot spring environments. Here we examine siliceous sinter material sampled from a hydrothermal channel using synchrotron based X-ray micro-probe techniques, including As and Fe Kα X-ray fluorescence (μ-XRF), As K-edge X-ray absorption near edge structure (μ-XANES), and X-ray diffraction (μ-XRD). Least-squares linear fitting of μ-XANES spectra shows that arsenic is predominantly present as arsenate sorbed on hydrous ferric oxides (63% molar proportion), but we also identify nodular arsenide micro-mineralizations (37% molar proportion) similar to loellingite (FeAs2), not previously detected during bulk-scale analysis of the sinter material. Presence of arsenide mineralizations indicates development of anoxic environments on the surface of the siliceous sinter, and suggests a more complex biogeochemistry for arsenic than previously observed for circum-neutral pH brine hot spring environments.

  13. The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China (United States)

    Li, Haizhou; Yang, Qunhui; Li, Jian; Gao, Hang; Li, Ping; Zhou, Huaiyang


    Using a culture-independent method that combines CARD-FISH, qPCR and 16S rDNA, we investigated the abundance, community structure and diversity of microbes along a steep thermal gradient (50-90 °C) in the Tengchong Geothermal Field. We found that Bacteria and Archaea abundance changed markedly with temperature changes and that the number of cells was lowest at high temperatures (90.8 °C). Under low-temperature conditions (52.3-74.6 °C), the microbial communities were dominated by Bacteria, which accounted for 60-80% of the total number of cells. At 74.6 °C, Archaea were dominant, and at 90.8 °C, they accounted for more than 90% of the total number of cells. Additionally, the microbial communities at high temperatures (74.6-90.8 °C) were substantially simpler than those at the low-temperature sites. Only a few genera (e.g., bacterial Caldisericum, Thermotoga and Thermoanaerobacter, archaeal Vulcanisaeta and Hyperthermus) often dominated in high-temperature environments. Additionally, a positive correlation between Ammonia-Oxidizing Archaea (AOA) activity and temperature was detected. AOA activity increased from 17 to 52 pmol of NO2- per cell d-1 with a temperature change from 50 to 70 °C.

  14. The Galapagos Spreading Centre at 86o W: a detailed geothermal field study. (United States)

    Green, K.E.; Von Herzen, R. P.; Williams, D.L.


    We report here measurements of the heat flow field of the Galapagos Spreading Center on crust of age less than 1.0 m.y. The 443 measurements in an area of about 570 km2 reveal the general planform of the geothermal flux and permit the first truly areal estimate of the near-axis conductive heat flux. The intrusion process and associated hydrothermal circulation dominate the surface heat flow pattern, with circulation apparently continuing beyong the limits of our survey. The areal average of the conductive heat flux is 7.1+-0.8 HFU (295+-33 m W/m2), about one-third the heat flux predicted by plate models. The remaining heat is apparently removed by venting of hydrothermal waters at the spreading axis and through basalt outcrops and hydrothermal mounds off axis. The pattern of surface heat flux is lineated parallel to the axis and the strongly lineated topography. Sharp lateral gradients in the heat flow, greater than 10 HFU/km near escarpments and commonly expressed as high heat flow at the tops of the scarps and lower heat flow in the valleys, may indicate a local concentration of the circulation by surface fault systems and/or variable sediment thickness. -Authors

  15. Recent Changes in Ground Deformation at the East Mesa Geothermal Field, California as Measured by InSAR (United States)

    Taylor, H.; Pritchard, M. E.; Lohman, R. B.


    The East Mesa Geothermal Field in East Mesa, Imperial County, California is a series of 6 geothermal power plants with a 57MW capacity that has been in operation since 1987. Previous InSAR studies using ERS-1 and ERS-2 data (1992-2001) have observed ongoing subsidence at rates between -32 to -43 mm/yr. The observed subsidence at this site was thought to be caused by reservoir compaction since there was a negative net production of water during that time period. However, even though net production remained negative, more recent Envisat data reveal a shift in the subsidence signal towards the north and onset of relative uplift in the south portion of the geothermal field starting in 2006. We examine three datasets over East Mesa, including 57 descending ERS-1 and ERS-2 SAR images as well as 35 ascending and 48 descending Envisat SAR acquisitions, to create more than 900 interferograms over the 18 year time period (1992-2010). This dense temporal coverage is valuable for evaluating variations in deformation patterns and minimizing the contribution from the atmosphere. A modified version of the small baseline subset (SBAS) method is used to generate time series of ground displacements and average velocities. ERS data are consistent with previous studies showing rates between -30 and -40 mm/year in the line-of-sight while the Envisat time series' show line-of-sight rates of -20 mm/yr and 12 mm/yr for maximum subsidence and uplift. Net production at the East Mesa Geothermal Field is calculated using production and injection data provided by the California Department of Conservation. The average net production is estimated as -383,000 metric tons per month over the time span of Envisat data and remained negative even during the onset of relative uplift.

  16. Gas and Isotope Geochemistry of 81 Steam Samples from Wells in The Geysers Geothermal Field, Sonoma and Lake Counties, California (United States)

    Lowenstern, Jacob B.; Janik, Cathy J.; Fahlquist, Lynne; Johnson, Linda S.


    The Geysers geothermal field in northern California, with about 2000-MW electrical capacity, is the largest geothermal field in the world. Despite its importance as a resource and as an example of a vapor-dominated reservoir, very few complete geochemical analyses of the steam have been published (Allen and Day, 1927; Truesdell and others, 1987). This report presents data from 90 steam, gas, and condensate samples from wells in The Geysers geothermal field in northern California. Samples were collected between 1978 and 1991. Well attributes include sampling date, well name, location, total depth, and the wellhead temperature and pressure at which the sample was collected. Geochemical characteristics include the steam/gas ratio, composition of noncondensable gas (relative proportions of CO2, H2S, He, H2, O2, Ar, N2, CH4, and NH3), and isotopic values for deltaD and delta18O of H2O, delta13C of CO2, and delta34S of H2S. The compilation includes 81 analyses from 74 different production wells, 9 isotopic analyses of steam condensate pumped into injection wells, and 5 complete geochemical analyses on gases from surface fumaroles and bubbling pools. Most samples were collected as saturated steam and plot along the liquid-water/steam boiling curve. Steam-togas ratios are highest in the southeastern part of the geothermal field and lowest in the northwest, consistent with other studies. Wells in the Northwest Geysers are also enriched in N2/Ar, CO2 and CH4, deltaD, and delta18O. Well discharges from the Southeast Geysers are high in steam/gas and have isotopic compositions and N2/Ar ratios consistent with recharge by local meteoric waters. Samples from the Central Geysers show characteristics found in both the Southeast and Northwest Geysers. Gas and steam characteristics of well discharges from the Northwest Geysers are consistent with input of components from a high-temperature reservoir containing carbonrich gases derived from the host Franciscan rocks. Throughout the

  17. The statistical properties of sea ice velocity fields (United States)

    Agarwal, S.; Wettlaufer, J. S.


    Thorndike and Colony (1982) showed that more than 70% of the variance of the ice motion can be explained by the geostrophic winds. This conclusion was reached by analyzing only 2 years of data. Due to the importance of ice motion in Arctic climate we ask how persistent is such a prediction. In so doing, we study and develop a stochastic model for the Arctic sea ice velocity fields based on the observed sea ice velocity fields from satellites and buoys for the period 1978 - 2012. Having previously found that the Arctic Sea Equivalent Ice Extent (EIE) has a white noise structure on annual to bi-annual time scales (Agarwal et. al. 2012), we assess the connection to ice motion. We divide the Arctic into dynamic and thermodynamic components, with focus on the dynamic part i.e. the velocity fields of sea ice driven by the geostrophic winds over the Arctic. We show (1) the stationarity of the spatial correlation structure of the velocity fields, and (2) the robustness of white noise structure present in the velocity fields on annual to bi-annual time scales, which combine to explain the white noise characteristics of the EIE on these time scales. S. Agarwal, W. Moon and J.S. Wettlaufer, Trends, noise and reentrant long-term persistence in Arctic sea ice, Proc. R. Soc. A, 468, 2416 (2012). A.S. Thorndike and R. Colony, Sea ice motion in response to geostrophic winds, J. Geophys. Res. 87, 5845 (1982).

  18. Monitoring Heat Losses Using Landsat ETM + Thermal Infrared Data: a Case Study in Unzen Geothermal Field, Kyushu, Japan (United States)

    Mia, Md. Bodruddoza; Bromley, Chris J.; Fujimitsu, Yasuhiro


    The Unzen geothermal field, our study area, is situated in the Shimabara Peninsula of Kyushu Island in Japan and is an area of active fumaroles.. Our prime objectives were (1) to estimate radiative heat flux (RHF), (2) to calculate approximately the heat discharge rate (HDR) using the relationship of RHF with the total heat loss derived from two geothermal field studies, and (3) finally, to monitor RHF as well as HDR in our study area using seven sets of Landsat 7 ETM + images from 2000 to 2009. We used the normalized differential vegetation index (NDVI) method for spectral emissivity estimation, the mono-window algorithm for land surface temperature (LST), and the Stefan-Boltzmann equation analyzing those satellite TIR images for RHF. We estimated that the maximum RHF was about 251 W/m2 in 2005 and minimum was about 27 W/m2 in 2001. The highest total RHF was about 39.1 MW in 2005 and lowest was about 12 MW in 2001 in our study region. We discovered that the estimated RHF was about 15.7 % of HDR from our studies. We applied this percentage to estimate HDR in Unzen geothermal area. The monitoring results showed a single fold trend of HDR from 2000 to 2009 with highest about 252 MW in 2005 and lowest about 78 MW in 2001. In conclusion, TIR remote sensing is thought as the best option for monitoring heat losses from fumaroles with high efficiency and low cost.

  19. Effect of variable frequency electromagnetic field on deposit formation in installations with geothermal water in Sijarinjska spa (Serbia

    Directory of Open Access Journals (Sweden)

    Stojiljković Dragan T.


    Full Text Available In this paper we have examined the effect of variable frequency electromagnetic field generated with a homemade device on deposit formation in installations with geothermal water from Sijarinjska Spa. The frequency alteration of the electromagnetic field in time was made by means of the sinusoidal and saw-tooth function. In laboratory conditions, with the flow of geothermal water at 0.015 l/s and temperature of 60 °C for 6 hours through a zig-zag glass pipe, a multiple decrease of total deposit has been achieved. By applying the saw-tooth and sinusoidal function, the decrease in contents of calcium and deposit has been achieved by 8 and 6 times, respectively. A device was also used on geothermal water installation in Sijarinjska Spa (Serbia, with the water flow through a 1'' diameter non-magnetic prochrome pipe at 0.15 l/s and temperature of 75 °C in a ten-day period. A significant decrease in total deposit and calcium in the deposit has also been achieved.

  20. Report on dipole-dipole resistivity and technology transfer at the Ahuachapan Geothermal field Ahuachapan, El Salvador

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.B. (Geophynque International, Tucson, AZ (United States))


    The Ahuachapan Geothermal Field (AGF) is a 90 megawatt geothermal-sourced powerplant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the period November 1987 through May 1988 a deep resistivity survey and technology transfer was performed at the AGF at the request of Los Alamos National Laboratory (LANL) as part of a United States Agency for International Development (USAID) project. The resistivity surveying is ongoing at the time of this report under the supervision of CEL personnel. LANL and contract personnel were present at the site during performance of the initial surveying for the purpose of technology transfer. This report presents the results and interpretation of the two initial resistivity survey lines performed on site during and shortly after the technology transfer period.

  1. SolGeo. A new computer program for solute geothermometers and its application to Mexican geothermal fields

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Surendra P.; Pandarinath, Kailasa; Santoyo, Edgar [Departamento de Sistemas Energeticos, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/no., Col Centro, A.P. 34, Temixco, Mor. 62580 (Mexico)


    The freely available computer program Solute Geothermometers (SolGeo) was written and tested using geochemical data and reported geothermometric temperatures from several geothermal wells from around the world. Subsurface temperatures for the Mexican geothermal fields of Cerro Prieto, Las Tres Virgenes, Los Azufres, and Los Humeros were estimated based on different solute geothermometers and found to be generally in close agreement with measured well temperatures when considering errors in the calculations and measurements. For Los Humeros wells it was concluded that a better agreement of chemical geothermometric temperatures is observed with static formation than with bottom-hole temperatures (BHTs). It was also found that the widely used Na-K geothermometric equations generally give more consistent and more reliable temperature estimates than the other geothermometers, which should therefore be applied with caution. (author)

  2. Geothermal Energy. (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  3. Simulation studies for wells AH-4bis/AH-17 and AH-18, Ahuachapan Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel Ernesto


    Well AH-4bis, at the Ahuachapan Geothermal Field is planned to be drilled on the same pad as the former AH-4. A simulation study was carried out for two casing dameters 13 5/8 and 9 5/8” in order to estimate its production and to know its economic feasibility. The simulation results indcate a high probability of production in the range of 7 Mwe, equivalent to 120 kg/s total mass flow rate, 1250 kJ/kg at 6 bar-a for the new well AH-4bis. Well AH- 17 is good producer, during 1991 after ten years of production, the well was shut-in due to silica scaling problems. A wellbore simulation was carried out in order to predict the new production conditions after the work-over, mainly to estimate the water flow rate in order to reduce the silica scaling. The results indicate a very low water flow rate. The match between the simulated and measured production curves after the work-over was successful. The well AH-18 is located at the southern part of the actual bore field. CEL is planning to expand the borefield at this area and it is neccessary to estimate the possible production condtions at that zone. The results indicate a high probabilty of production at that area. The power potential is estimated at 3.5 Mwe per well at WHP 6 bar-a and the wells will not require induction.

  4. An integrated deep electrical resistivity model of the Larderello geothermal field (Italy) (United States)

    Rizzo, Enzo; Capozzoli, Luigi; De martino, Gregory; Godio, Alberto; Manzella, Adele; Perciante, Felice; Santilano, Alessandro


    A new deep electrical resistivity acquisition was carried out in Larderello geothermal area (Tuscania Region, Italy) by 3D Deep Electrical Resistivity Tomography (3D-DERT) and Magnetotelluric (M) acquisition. The investigated area is located close the Venelle2 well in the southern part of Larderello site, where there is the oldest field in the world under exploitation for power production (actual installed capacity is about 795 MWe). A vapour-dominated system is exploited to depth over 3500 m, with temperatures exceeding 350°C, from two different reservoirs. The Larderello area has been investigated by many geological and geophysical data of previous exploration projects but nowadays several critical issues on deep features of the field are still matter of debate, e.g., permeability distribution in the hydrothermal reservoir and the presence of fluids at supercritical condition at depth. The 3D-DERT system was designed by Surface-Surface and Surface-Hole electrode distributions in the area around Venelle2 well covering an area around 16km2. The well (kindly provided by Enel GP) was accessible down to 1.6 km with a temperature up to 250°C and a metallic casing down to 1 km. The in-hole thermal cable is characterized by n.12 flexible metallic electrodes with an electrodes space of 50m covering the open-hole portion (1050m-1600m). The surface electrodes are located around the Venelle2 hole on n.23 different positions connected to automatic dataloger to acquire the drop of potential and to transmitter device to inject the current (5-10A). The crucial task was the data processing, considering the large distance between the Tx and Rx systems that strongly reduces the signal to-noise ratio. To overcome this drawback, for each quadripole position the corresponding voltage signal was filtered, stored and processed with advanced statistical packages. The new 22 station were installed in the studied area and the data were carried out taking in account a permanent remote

  5. Geothermal handbook. Geothermal project, 1976. [Ecological effects of geothermal resources development

    Energy Technology Data Exchange (ETDEWEB)


    The geothermal program of Fish and Wildlife Service, U.S. Dept. of Interior, aims to develop ecologically sound practices for the exploration, development, and management of geothermal resources and the identification of the biological consequences of such development so as to minimize adverse effects on fish and wildlife resources. This handbook provides information about the ecological effects of geothermal resource development. Chapters are included on US geothermal resources; geothermal land leasing; procedures for assessing the effects on fish and game; environmental impact of exploratory and field development operations; and wildlife habitat improvement methods for geothermal development.

  6. Geothermal program on the CCGS NAHIDIK cruises 1981-1983, Canadian Beaufort Sea

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.; Allen, V.


    This report describes work carried out on 1981-83 cruises in a large area of the Beaufort Shelf. Sediments were surveyed in parts of the Shelf and canyon areas under 30 m or more of water. Permafrost temperatures prevail in the sediments throughout the outer Shelf. The average sediment temperature at the water interface is ca -1.33/sup 0/C, a value that is somewhat higher along the paleotopographic channels and lower on the plains. Virtually all profiles exhibited a considerable thermal disturbance considered in most cases consistent with seasonal water temperature variations or, in some areas, arising from a particular geomorphic feature. Temperature gradients varied from negative to near zero; only one profile had a gradient similar to the expected geothermal gradient. Sediment temperatures were noted to increase along the channels in the offshore direction. Average thermal conductivity, ca 1.33 W/mK, was seen to be the same in mean value in both the Shelf and Mackenzie Canyon areas. Volumetric water contents calculated by time domain reflectometry (TDR) were within 20% of equivalent values determined through weighing and drying adjacent samples in the cores. There was poor correlation between these water contents and needle probe conductivities, suggesting that the TDR method is unreliable in saline sediments in practice. An evaluation of TDR-determined sediment electrical conductivity suggests that further refinement of the technique is required, as there was a lack of internal consistency in the data. However, geological reasonable values were obtained, ca 1.23 siemens/m at 20/sup 0/C 81 refs., 57 figs., 22 tabs.

  7. Micro-seismicity, fault structure, and hydrologic compartmentalization within the Coso Geothermal Field, California, from 1996 until present (United States)

    Kaven, J. O.; Hickman, S.; Davatzes, N. C.


    Geothermal reservoirs derive their capacity for fluid and heat transport in large part from faults and fractures. In conventional reservoirs, preexisting faults and fractures are the main conduits for fluid flow, while in enhanced geothermal systems (EGS), fractures and faults that are generated or enlarged (i.e., through increases in surface area and aperture) by hydraulic stimulation provide the main pathways for fluids and heat. In both types of geothermal systems, seismicity can be used to locate active faults, which can act either as conduits for along-fault fluid flow and/or barriers to cross-fault flow. We relocate 14 years of seismicity in the Coso Geothermal Field (CGF) using differential travel time relocations to improve our knowledge of the subsurface geologic and hydrologic structure. The seismicity at Coso has been recorded on a local network operated by the Navy Geothermal Program, which provides exceptional coverage and quality of data. Using the relocated catalog, we employ a newly developed algorithm for fault identification using the spatial seismicity distribution and a priori constraints on fault zone width derived from local geologic mapping. We avoid having to assume a particular fault-normal seismicity distribution by finding regions of maximum spatial seismicity density. Assuming a maximum spatial density is physically plausible since faults, or more accurately fault zones, generate most of the associated seismicity within a central fault core or damage zone. These techniques are developed for naturally occurring, active faults within the CGF on which seismicity is induced, in part, by changes in production and injection. They can also be applied to EGS if seismicity is induced within newly created fracture systems of comparable width or if this seismicity is generated by stimulating pre-existing, partially sealed faults. The results of the relocations reveal that clouds of seismicity shrink into distinct oblate volumes of seismicity in

  8. Assessment of the Appalachian Basin Geothermal Field: Combining Risk Factors to Inform Development of Low Temperature Projects (United States)

    Smith, J. D.; Whealton, C.; Camp, E. R.; Horowitz, F.; Frone, Z. S.; Jordan, T. E.; Stedinger, J. R.


    Exploration methods for deep geothermal energy projects must primarily consider whether or not a location has favorable thermal resources. Even where the thermal field is favorable, other factors may impede project development and success. A combined analysis of these factors and their uncertainty is a strategy for moving geothermal energy proposals forward from the exploration phase at the scale of a basin to the scale of a project, and further to design of geothermal systems. For a Department of Energy Geothermal Play Fairway Analysis we assessed quality metrics, which we call risk factors, in the Appalachian Basin of New York, Pennsylvania, and West Virginia. These included 1) thermal field variability, 2) productivity of natural reservoirs from which to extract heat, 3) potential for induced seismicity, and 4) presence of thermal utilization centers. The thermal field was determined using a 1D heat flow model for 13,400 bottomhole temperatures (BHT) from oil and gas wells. Steps included the development of i) a set of corrections to BHT data and ii) depth models of conductivity stratigraphy at each borehole based on generalized stratigraphy that was verified for a select set of wells. Wells are control points in a spatial statistical analysis that resulted in maps of the predicted mean thermal field properties and of the standard error of the predicted mean. Seismic risk was analyzed by comparing earthquakes and stress orientations in the basin to gravity and magnetic potential field edges at depth. Major edges in the potential fields served as interpolation boundaries for the thermal maps (Figure 1). Natural reservoirs were identified from published studies, and productivity was determined based on the expected permeability and dimensions of each reservoir. Visualizing the natural reservoirs and population centers on a map of the thermal field communicates options for viable pilot sites and project designs (Figure 1). Furthermore, combining the four risk

  9. Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry (United States)

    Lu, Yi-Chia; Song, Sheng-Rong; Wang, Pei-Ling; Wu, Chung-Che; Mii, Horng-Sheng; MacDonald, John; Shen, Chuan-Chou; John, Cédric M.


    The Chingshui geothermal field, a moderate-temperature and water-dominated hydrothermal system, was the site of the first geothermal power plant in Taiwan. Many geological, geophysical and geochemical studies using more than 21 drilled wells have been performed since the 1960s. However, there are still controversies regarding the heat and fluid sources due to the tectonically complicated geological setting. To clarify the heat and fluid sources, we analyzed clumped isotopes with carbon and oxygen isotopic compositions of calcite scaling in geothermal wells and veins on outcrops and calculated the δ18O values of the source fluids. Two populations of δ18O values were calculated: -5.8 ± 0.8‰ VSMOW from scaling in the well and -1.0 ± 1.6‰ to 10.0 ± 1.3‰ VSMOW from outcropping calcite veins, indicative of meteoric and magmatic fluid sources, respectively. Meanwhile, two hydrothermal reservoirs at different depths have been identified by magnetotelluric (MT) imaging with micro-seismicity underneath this area. As a result, we propose a two-reservoir model: the shallow reservoir provides fluids from meteoric water for the scaling sampled from wells, whereas the deep reservoir provides magmatic fluids from deep marble decarbonization recorded in outcropping calcite veins.

  10. Environmental summary document for the Republic Geothermal, Inc. application for a geothermal loan guaranty project: 64 MW well field and 48 MW (net) geothermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D.W.; Powers, D.J.; Leitner, P.; Crow, N.B.; Gudiksen, P.H.; Ricker, Y.E.


    A comprehensive review and analysis is provided of the environmental consequences of (1) guaranteeing a load for the completion of the 64 MW well field and the 48 MW (net) power plant or (2) denying a guaranteed load that is needed to finish the project. Mitigation measures are discussed. Alternatives and their impacts are compared and some discussion is included on unavoidable adverse impacts. (MHR)


    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Lam, S.; Hunsbedt, A.; Esquer, C.; Marquez, R.; Hernandez, L. Cobo, J.


    Extensive study of the Cerro Prieto geothermal field has provided much geologic and thermodynamic data of its structurally-complex, liquid-dominated reservoir. Several of the studies investigated the resource characteristics of fluid and energy flow. An early report by Mercado (1975) showed that the heat source for the part of the reservoir under development, now called Cerro Prieto I (CPI), originated in the eastern part of the field. Subsequent studies confirmed the flow of hot water from the east. A summary of several experimental and numerical studies of fluid and energy transport in the field was given by Lippmann and Bodvarsson (1983). The hydrogeologic model of Halfman et al. (1982) shows hot-water flow from the east divided into a shallow (alpha) aquifer at about 120Om and a deeper (beta) aquifer at about 170Om depth. A cross section along an east-west direction shows a central upflow to the two aquifers and uncertain geology beyond the western border of the field near well M-9. It also shows a fault dividing the line of border wells at M-29 from the inner wells at M-25 to the east. The hydrogeology of the field was described by Sanchez and de la Pena (1981) as an alluvial unit from the surface to about 700 m over the production zone and a shale-sandstone unit comprising an upper, shallow (alpha) aquifer bounded below by a basement horst overlying a deeper (beta) aquifer. To date, much of the cumulative production at Cerro Prieto I has been from the alpha aquifer. Piezometric level measurements over the first 5 years of operation showed a decline in the western zone beyond the production wells. Over the 10-year period of continuous production, a significant temperature decline has been observed along the westernmost line of wells. Several investigations of the recharge characteristics of the field have been reported. Mercado (1975) and Elders et al. (1984) indicated a flow of cold groundwater from the east. Mercado also noted that cold water was entering

  12. Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland (United States)

    Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, Jacob B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; Friðleifsson, G.O.; Elders, W.A.


    The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and −118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of

  13. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field (United States)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus


    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  14. Environmental assessment of proposed geothermal well testing in the Tigre Lagoon Oil Field, Vermilion Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)


    An environmental assessment is made of the proposed testing of two geopressured, geothermal aquifers in central coastal Louisiana. On the basis of an analysis of the environmental setting, subsurface characteristics, and the proposed action, potential environmental impacts are determined and evaluated together with potential conflicts with federal, state, and local programs. (LBS )

  15. Geochemical/hydrochemical evaluation of the geothermal potential of the Lamongan volcanic field (Eastern Java, Indonesia)

    NARCIS (Netherlands)

    Deon, F.; Förster, H.J.; Brehme, M.; Wiegand, B.; Scheytt, T.; Moeck, I.; Jaya, M.S.; Putriatni, D.J.


    Magmatic settings involving active volcanism are potential locations for economic geothermal systems due to the occurrence of high temperature and steam pressures. Indonesia, located along active plate margins, hosts more than 100 volcanoes and, therefore, belongs to the regions with the greatest

  16. From oil field to geothermal reservoir: First assessment for geothermal utilization of two regionally extensive Devonian carbonate aquifers in Alberta, Canada


    Weydt, Leandra M.; Heldmann, Claus-Dieter J.; Machel, Hans G.; Sass, Ingo


    The Canadian Province of Alberta has the highest per capita CO2-equivalent emission of any jurisdiction in the world, predominantly due to industrial burning of coal for the generation of electricity and the mining operations in the oil sands deposits. Alberta’s geothermal potential could reduce CO2-emission by substituting at least some fossil fuels with geothermal energy. The Upper Devonian carbonate aquifer systems within the Alberta Basin are promising target formations for geothe...

  17. High-Resolution Analysis of Seismicity Induced at Berlín Geothermal Field, El Salvador (United States)

    Kwiatek, G.; Bulut, F.; Dresen, G. H.; Bohnhoff, M.


    We investigate induced microseismic activity monitored at Berlín Geothermal Field, El Salvador, during a hydraulic stimulation. The site was monitored for a time period of 17 months using thirteen 3-component seismic stations located in shallow boreholes. Three stimulations were performed in the well TR8A with a maximum injection rate and well head pressure of 160l/s and 130bar, respectively. For the entire time period of our analysis, the acquisition system recorded 581 events with moment magnitudes ranging between -0.5 and 3.7. The initial seismic catalog provided by the operator was substantially improved: 1) We re-picked P- and S-wave onsets and relocated the seismic events using the double-difference relocation algorithm based on cross-correlation derived differential arrival time data. Forward modeling was performed using a local 1D velocity model instead of homogeneous full-space. 2) We recalculated source parameters using the spectral fitting method and refined the results applying the spectral ratio method. We investigated the source parameters and spatial and temporal changes of the seismic activity based on the refined dataset and studied the correlation between seismic activity and production. The achieved hypocentral precision allowed resolving the spatiotemporal changes in seismic activity down to a scale of a few meters. The application of spectral ratio method significantly improved the quality of source parameters in a high-attenuating and complex geological environment. Of special interest is the largest event (Mw3.7) and its nucleation process. We investigate whether the refined seismic data display any signatures that the largest event is triggered by the shut-in of the well. We found seismic activity displaying clear spatial and temporal patterns that could be easily related to the amount of water injected into the well TR8A and other reinjection wells in the investigated area. The migration of seismicity outside of injection point is observed

  18. Thermal History of the Felsite Unit, Geysers Geothermal Field, From Thermal Modeling of 40Ar/39Ar Incremental Heating Data

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Harrison (U of California); G. B. Dalrymple (Oregon State U); J. B. Hulen (U of Utah); M. A. Lanphere; M. Grove; O. M. Lovera


    An Ar-40/Ar-39 and U-Pb study was performed of the Geysers plutonic complex of the Geysers Geothermal Field in California. Sixty-nine ion microprobe spot analyses of zircons from four granite samples from the plutonic complex that underlies the Geysers geothermal field yielded Pb-207/Pb-206 vs. U-238/Pb-206 concordia ages ranging from 1.13 {+-} 0.04 Ma to 1.25 {+-} 0.04 Ma. The U-Pb ages coincide closely with Ar-40/Ar-39 age spectrum plateau and ''terminal'' ages from coexisting K-feldspars and with the eruption ages of overlying volcanic rocks. The data indicate that the granite crystallized at 1.18 Ma and had cooled below 350 C by {approximately}0.9-1.0 Ma. Interpretation of the feldspar Ar-40/Ar-39 age data using multi-diffusion domain theory indicates that post-emplacement rapid cooling was succeeded either by slower cooling from 350-300 C between 1.0 and 0.4 Ma or transitory reheating to 300-350 C at about 0.4-0.6 Ma. Heat flow calculations constrained with K-feldspar thermal histories and the pre sent elevated regional heal flow anomaly demonstrate that appreciable heat input from sources external to the known Geysers plutonic complex is required to maintain the geothermal system. This requirement is satisfied by either a large, underlying, convecting magma chamber (now solidified) emplaced at 1.2 Ma or episodic intrusion of smaller bodies from 1.2-0.6 Ma.

  19. Reservoir Considerations and Direct Uses of São Pedro do Sul Hydromineral and Geothermal Field, Northern Portugal (United States)

    Ferreira Gomes, L. M.; Neves Trota, A. P.; Sousa Oliveira, A.; Soares Almeida, S. M.


    São Pedro do Sul Hydromineral and Geothermal Field, located in the northern interior zone of Portugal (Lafões zone), has the greatest widespread utilization of geothermal energy in Portugal mainland and is the most important thermal centre from the economical revenues point of view, obtained from direct and indirect utilization of the thermal water, mostly for wellness, health, and leisure of human beings. Recent utilization includes district and greenhouses heating and even cosmetic applications. The Hydromineral Field includes two exploitable zones: the Termas and Vau Poles. The waters are recognised for their mineral and medicinal effects, since the time of the Romans about 2000 years ago and, later on, on the 12th century, by the first King of Portugal, D. Afonso Henriques. The traditional spring and the 500 m well (AC1), located in the Termas Pole, currently supplies artesian hot water flow of about 16.9 L/s with a temperature of 67 °C. Despite the low flow rate of the actual two exploration wells drilled in the Vau Pole, the geothermal potential is high; a new deep well is planned to be drilled in this zone where is expected to obtain fluid temperature of around 75 °C. The occurrence of São Pedro do Sul mineral water, included in the sulphurous type waters, are linked to Hercynian granitoids, emplaced between 290 and 321 Myr. There is a close relationship between the placement of the main hot springs and the Verin-Chaves-Penacova fault, namely Verin (Spain), Chaves, Moledo, and S. Pedro do Sul (Portugal) hot springs. Heat flow generated at shallow crustal zones by the radiogenic host mineral of the granitic rocks, added to the deep Earth heat flow, heats the cold water inflow along fractures. Open fracture network along the main faults allows the hot fluids reach the surface, thus giving chance to the occurrence of hot springs and mineralized cold springs. Coupling between fracture opening and density difference between cold water inflow and hot water

  20. Inversion modeling of the natural state and production history of Mutnovsky geothermal field in 1986-2006

    Directory of Open Access Journals (Sweden)

    А. В. Кирюхин


    Full Text Available Numerical 3D model of Mutnovsky geothermal field (Dachny springs, which consist of 517 elements and partially takes into account double porosity, was developed in 1992-1993 using computer program TOUGH2. Calibration of the model was based on data from test yield of the wells and initial distribution of temperature and pressure in the reservoir. This model was used for techno-economic justification of power plant construction (Mutnovskaya GeoES, 2002. The model was recreated in the program PetraSim v.5.2, the calibration was carried out using additional data on production history before year 2006 and inversion iTOUGH2-EOS1 modeling. Comparison of reservoir parameters, estimated using inversion modeling, with previous parameter estimations (given in brackets showed the following: upflow rate of heat-transfer agent in natural conditions 80.5 (54.1 kg/s, heat flux enthalpy 1430 (1390 kJ/kg, reservoir permeability 27∙10–15-616∙10–15 (3∙10–15-90∙10–15 m2. Inversion modeling was also used to estimate reinjection rates, inflow of meteoric water in the central part of geothermal field and compressibility of reservoir rocks.

  1. Inversion of Synthetic Aperture Radar Interferograms for Sources of Production-Related Subsidence at the Dixie Valley Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Foxall, W; Vasco, D


    We used synthetic aperture radar interferograms to image ground subsidence that occurred over the Dixie Valley geothermal field during different time intervals between 1992 and 1997. Linear elastic inversion of the subsidence that occurred between April, 1996 and March, 1997 revealed that the dominant sources of deformation during this time period were large changes in fluid volumes at shallow depths within the valley fill above the reservoir. The distributions of subsidence and subsurface volume change support a model in which reduction in pressure and volume of hot water discharging into the valley fill from localized upflow along the Stillwater range frontal fault is caused by drawdown within the upflow zone resulting from geothermal production. Our results also suggest that an additional source of fluid volume reduction in the shallow valley fill might be similar drawdown within piedmont fault zones. Shallow groundwater flow in the vicinity of the field appears to be controlled on the NW by a mapped fault and to the SW by a lineament of as yet unknown origin.

  2. Environmental protection at the Los Azufres, Michoacan geothermal field; La proteccion ambiental en el campo geotermico de Los Azufres, Michoacan

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Rangel, Ernesto; Hernandez Ayala, Cuauhtemoc [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)


    Geothermal-electric development is a sustainable activity from an environmental viewpoint, as is proved by the operation and management of the Los Azufres geothermal field. Impacts to soil and vegetation can be prevented and adequately mitigated. Liquid residues can be returned to the reservoir avoiding contaminating surface and ground waters and aquifers; and atmospheric emissions can kept bellow allowable limits. The main environmental technical experiences of Comision Federal de Electricidad (CFE) in this field are presented in this paper. [Spanish] El desarrollo geotermoelectrico es una actividad sustentable desde el punto de vista ambiental, como lo prueba el manejo del campo geotermico de Los Azufres. Los impactos al suelo y a la vegetacion pueden prevenirse y mitigarse con las medidas adecuadas. Los desechos liquidos pueden regresarse al yacimiento sin contaminar cuerpos de agua superficiales o acuiferos someros, y las emisiones a la atmosfera pueden controlarse para mantenerlas dentro de limites permisibles. Se presentan las principales experiencias tecnicas de tipo ambiental obtenidas por la Comision Federal de Electricidad (CFE) en ese campo.

  3. Relation of compositions of deep fluids in geothermal activity of Pleistocene-Holocene volcanic fields of Lesser Caucasus (United States)

    Meliksetian, Khachatur; Lavrushin, Vassily; Shahinyan, Hrach; Aidarkozhina, Altin; Navasardyan, Gevorg; Ermakov, Alexander; Zakaryan, Shushan; Prasolov, Edward; Manucharyan, Davit; Gyulnazaryan, Shushan; Grigoryan, Edmond


    It is widely accepted, that geothermal activity in the conductive heat flow processes, such as volcanism and hydrothermal activity, is manifestation of the thermal mass transfer process in the Earth's crust, where geothermal and geochemical processes are closely connected. Therefore, geochemistry and isotope compositions of thermal mineral waters within and on periphery of volcanic clusters may represent key indicators for better understanding of geothermal activity in geodynamically active zones. Geochemical features of heat and mass transport in hydrothermal systems related to active volcanic and fault systems in continental collision related orogenic elevated plateaus such as Anatolian-Armenian-Iranian highlands are still poorly understood. In this contribution we attempt to fill these gaps in our knowledge of relations of geochemical and geothermal processes in collision zones. We present new data on chemical compositions, trace element geochemistry of thermal waters of Lesser Caucasus, (Armenia) as well as isotope analysis of free gases such as {}3He/{}4He, {}40Ar/{}36Ar, δ{}13?(CO{}2), nitrogen δ{}15N(N{}2) and oxygen and hydrogen isotopes in water phases (δD, δ{}18O). To reveal some specific features of formation of fluid systems related to thermal activity in the areas of collision related active volcanism and active geodynamics a complex geochemical (SiO{}2, K-Na, Na-Li, Li-Mg) and isotope geothermometers (δ{}18O(CaCO{}3) - δ{}18O(H{}2O)) were applied. The distribution of δ{}13?(??{}2) values in free gases of mineral waters of Armenia demonstrates that gases related to Quaternary volcanic fields are characterized by relatively light δ{}13?(CO{}2) values close to mantle derived gases, while on periphery of volcanic systems relatively heavy values of δ{}13?(CO{}2) indicate strong influence of metamorphic and sedimentary derived carbon dioxide. Distribution of nitrogen isotopes δ{}15N(N{}2) demonstrate an inverse correlation with δ{}13?(CO{}2

  4. Preliminary study of near surface detections at geothermal field using optic and SAR imageries (United States)

    Kurniawahidayati, Beta; Agoes Nugroho, Indra; Syahputra Mulyana, Reza; Saepuloh, Asep


    Current remote sensing technologies shows that surface manifestation of geothermal system could be detected with optical and SAR remote sensing, but to assess target beneath near the surface layer with the surficial method needs a further study. This study conducts a preliminary result using Optic and SAR remote sensing imagery to detect near surface geothermal manifestation at and around Mt. Papandayan, West Java, Indonesia. The data used in this study were Landsat-8 OLI/TIRS for delineating geothermal manifestation prospect area and an Advanced Land Observing Satellite(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) level 1.1 for extracting lineaments and their density. An assumption was raised that the lineaments correlated with near surface structures due to long L-band wavelength about 23.6 cm. Near surface manifestation prospect area are delineated using visual comparison between Landsat 8 RGB True Colour Composite band 4,3,2 (TCC), False Colour Composite band 5,6,7 (FCC), and lineament density map of ALOS PALSAR. Visual properties of ground object were distinguished from interaction of the electromagnetic radiation and object whether it reflect, scatter, absorb, or and emit electromagnetic radiation based on characteristic of their molecular composition and their macroscopic scale and geometry. TCC and FCC composite bands produced 6 and 7 surface manifestation zones according to its visual classification, respectively. Classified images were then compared to a Normalized Different Vegetation Index (NDVI) to obtain the influence of vegetation at the ground surface to the image. Geothermal area were classified based on vegetation index from NDVI. TCC image is more sensitive to the vegetation than FCC image. The later composite produced a better result for identifying visually geothermal manifestation showed by detail-detected zones. According to lineament density analysis high density area located on the peak of Papandayan overlaid with zone 1

  5. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer


    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  6. Differentiating induced and natural seismicity using space-time-magnitude statistics applied to the Coso Geothermal field (United States)

    Schoenball, Martin; Davatzes, Nicholas C.; Glen, Jonathan M. G.


    A remarkable characteristic of earthquakes is their clustering in time and space, displaying their self-similarity. It remains to be tested if natural and induced earthquakes share the same behavior. We study natural and induced earthquakes comparatively in the same tectonic setting at the Coso Geothermal Field. Covering the preproduction and coproduction periods from 1981 to 2013, we analyze interevent times, spatial dimension, and frequency-size distributions for natural and induced earthquakes. Individually, these distributions are statistically indistinguishable. Determining the distribution of nearest neighbor distances in a combined space-time-magnitude metric, lets us identify clear differences between both kinds of seismicity. Compared to natural earthquakes, induced earthquakes feature a larger population of background seismicity and nearest neighbors at large magnitude rescaled times and small magnitude rescaled distances. Local stress perturbations induced by field operations appear to be strong enough to drive local faults through several seismic cycles and reactivate them after time periods on the order of a year.

  7. Numerical modeling of the initial state and matching of well test data from the Zunil geothermal field, Guatemala

    Energy Technology Data Exchange (ETDEWEB)

    Menzies, A.J.; Granados, E.E.; Sanyal, .K.; Merida-I., L.; Caicedo-A, A.


    A significant amount of geoscientific and reservoir engineering data have been collected from the Zunil geothermal field since 1973. The data have been used to define a conceptual model for the field which has formed the basis for the construction of a three dimensional numerical simulation model. The numerical model has successfully matched both the initial state of the reservoir, as indicated by subsurface temperature and pressure distributions within the presently drilled area, and available well test data. The well test data include short and long term discharge tests and a comprehensive pressure interference test. Calibration of the model will continue during 1991 when the results from drilling and testing of three additional deep wells are available. The model will then be used to study various long term production scenarios for the proposed 15 MW power development.

  8. Reactive geothermal transport simulation to study the formation mechanism of impermeable barrier between acidic and neutral fluid zones in the Onikobe Geothermal Field, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Todaka, Norifumi; Akasaka, Chitosi; Xu, Tianfu; Pruess, Karsten


    Two types of fluids are encountered in the Onikobe geothermal reservoir, one is neutral and the other is acidic (pH=3). It is hypothesized that acidic fluid might be upwelling along a fault zone and that an impermeable barrier might be present between the acidic and neutral fluid zones. We carried out reactive geothermal transport simulations using TOUGHREACT (Xu and Pruess, 1998 and 2001) to test such a conceptual model. Mn-rich smectite precipitated near the mixing front and is likely to form an impermeable barrier between regions with acidic and neutral fluids.

  9. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)


    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  10. Direct utilization of geothermal resources field experiments at Monroe, Utah. Final report, July 14, 1978-July 13, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Blair, C.K.; Owen, L.B. (eds.)


    The City of Monroe, Utah undertook a project to demonstrate the economic and technical viability of utilizing a low temperature geothermal resource to provide space and hot water heating to commercial, municipal, and domestic users within the community. During the course of the project, resource development and assessment, including drilling of a production well, was successfully completed. Upon completion of the field development and assessment phase of the program and of a preliminary design of the district heating system, it was determined that the project as proposed was not economically viable. This was due to: (1) a significant increase in estimated capital equipment costs resulting from the general inflation in construction costs, the large area/low population density in Monroe, and a more remote fluid disposal well site than planned, could not balance increased construction costs, (2) a lower temperature resource than predicted, and (3) due to predicted higher pumping and operating costs. After a thorough investigation of alternatives for utilizing the resource, further project activities were cancelled because the project was no longer economical and an alternative application for the resource could not be found within the constraints of the project. The City of Monroe, Utah is still seeking a beneficial use for the 600 gpm, 164/sup 0/F geothermal well. A summary of project activities included.

  11. Spatial distribution of temperature in the low-temperature geothermal Euganean field (NE Italy): a simulated annealing approach

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Paolo; Trevisani, Sebastiano [Dipartimento di Geologia, Paleontologia e Geofisica, Universita degli Studi di Padova, via Giotto 1, 35127 Padova (Italy)


    The spatial distribution of groundwater temperatures in the low-temperature (60-86{sup o}C) geothermal Euganean field of northeastern Italy has been studied using a geostatistical approach. The data set consists of 186 temperatures measured in a fractured limestone reservoir, over an area of 8km{sup 2}. Investigation of the spatial continuity by means of variographic analysis revealed the presence of anisotropies that are apparently related to the particular geologic structure of the area. After inference of variogram models, a simulated annealing procedure was used to perform conditional simulations of temperature in the domain being studied. These simulations honor the data values and reproduce the spatial continuity inferred from the data. Post-processing of the simulations permits an assessment of temperature uncertainties. Maps of estimated temperatures, interquartile range, and of the probability of exceeding a prescribed 80{sup o}C threshold were also computed. The methodology described could prove useful when siting new wells in a geothermal area. (author)

  12. Comparison of the earth's crust geothermal field in Northern Tien Shan region with seismic characteristics

    Directory of Open Access Journals (Sweden)

    Vilayev Andrey


    Full Text Available The deep crustal temperatures of the Northern Tien Shan region are being calculated on the basis of direct measurements of the heat flow and empirical relation of geothermal parameters and seismic velocities. For this purpose the applied method of numerical solution of conductive heat transfer equation takes into account additional sources of heat release due to radioactive decay. Thermoelastic deformations, reaching 20-40% of the total lithostatic pressure at depths of 35-60 km, are determined. The criteria controlling the distribution of hypocenters of earthquakes have been determined in accordance with the morphology of the regions of excess temperatures and thermal stresses.

  13. Comparison of the earth's crust geothermal field in Northern Tien Shan region with seismic characteristics (United States)

    Vilayev, Andrey; Zhantaev, Zhumabek


    The deep crustal temperatures of the Northern Tien Shan region are being calculated on the basis of direct measurements of the heat flow and empirical relation of geothermal parameters and seismic velocities. For this purpose the applied method of numerical solution of conductive heat transfer equation takes into account additional sources of heat release due to radioactive decay. Thermoelastic deformations, reaching 20-40% of the total lithostatic pressure at depths of 35-60 km, are determined. The criteria controlling the distribution of hypocenters of earthquakes have been determined in accordance with the morphology of the regions of excess temperatures and thermal stresses.

  14. A new idea: The possibilities of offshore geothermal system in Indonesia marine volcanoes (United States)

    Rahat Prabowo, Teguh; Fauziyyah, Fithriyani; Suryantini; Bronto, Sutikno


    High temperature geothermal systems in Indonesia are commonly associated with volcanic systems. It is believed that volcanoes are acting as the heat source for a geothermal system. Right now, most of the operating geothermal fields in the world are assosiating with volcanic settings which known as the conventional geothermal system. Volcanoes are created in active tectonic zone such as collision zone and MOR (mid oceanic ridge). The later is the one which formed the marine volcanoes on the sea floor. The advances of today’s technology in geothermal energy has created many ideas regarding a new kind of geothermal system, including the ideas of developing the utilization of marine volcanoes. These marine volcanoes are predicted to be hotter than the land system due to the shorter distance to the magma chamber. Seamounts like NEC, Banua Wuhu, and Kawio Barat in Indonesia Sea are good spots to be studied. Methods such as remote sensing using NOAA images, sonar, and MAPR are commonly used, eventhough these would be more accurate with more detailed techniques. This has become the challenge for all geothermal scientists to overcome for a better study result.

  15. Land subsidence in the Cerro Prieto Geothermal Field, 1 Baja California, Mexico, from 1994 to 2005. An integrated analysis of DInSAR, levelingand geological data.

    Energy Technology Data Exchange (ETDEWEB)

    Sarychikhina, O; Glowacka, E; Mellors, R; Vidal, F S


    Cerro Prieto is the oldest and largest Mexican geothermal field in operation and has been producing electricity since 1973. The large amount of geothermal fluids extracted to supply steam to the power plants has resulted in considerable deformation in and around the field. The deformation includes land subsidence and related ground fissuring and faulting. These phenomena have produced severe damages to infrastructure such as roads, irrigation canals and other facilities. In this paper, the technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) is applied using C-band ENVISAR ASAR data acquired between 2003 and 2006 to determine the extent and amount of land subsidence in the Mexicali Valley near Cerro Prieto Geothermal Field. The DInSAR results were compared with published data from precise leveling surveys (1994- 1997 and 1997-2006) and detailed geological information in order to improve the understanding of temporal and spatial distributions of anthropogenic subsidence in the Mexicali Valley. The leveling and DInSAR data were modeled to characterize the observed deformation in terms of fluid extraction. The results confirm that the tectonic faults control the spatial extent of the observed subsidence. These faults likely act as groundwater flow barriers for aquifers and reservoirs. The shape of the subsiding area coincides with the Cerro Prieto pull-apart basin. In addition, the spatial pattern of the subsidence as well as changes in rate are highly correlated with the development of the Cerro Prieto Geothermal Field.

  16. Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.


    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  17. Geology of the Pavana geothermal area, Departamento de Choluteca, Honduras, Central America: Field report

    Energy Technology Data Exchange (ETDEWEB)

    Eppler, D.B.; Heiken, G.; Wohletz, K.; Flores, W.; Paredes, J.R.; Duffield, W.A.


    The Pavana geothermal area is located in southern Honduras near the Gulf of Fonseca. This region is underlain by late Tertiary volcanic rocks. Within ranges near the geothermal manifestations, the rock sequences is characterized by intermediate to mafic laharic breccias and lavas overlain by silicic tuffs and lavas, which are in turn overlain by intermediate to mafic breccias, lavas, and tuffs. The nearest Quaternary volcanoes are about 40 km to the southwest, where the chain of active Central American volcanoes crosses the mouth of the Gulf of Fonseca. Structure of the Pavana area is dominated by generally northwest-trending, southwest-dipping normal faults. This structure is topographically expressed as northwest-trending escarpments that bound blocks of bedrock separated by asymmetric valleys that contain thin alluvial deposits. Thermal waters apparently issue from normal faults and are interpreted as having been heated during deep circulation along fault zones within a regional environment of elevated heat flow. Natural outflow from the main thermal area is about 3000 l/min of 60/sup 0/C water. Geothermometry of the thermal waters suggests a reservoir base temperature of about 150/sup 0/C.

  18. Geothermal systems (United States)

    Mohl, C.


    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  19. NAIP Aerial Imagery (Resampled), Salton Sea - 2005 [ds425 (United States)

    California Department of Resources — NAIP 2005 aerial imagery that has been resampled from 1-meter source resolution to approximately 30-meter resolution. This is a mosaic composed from several NAIP...


    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, G.D.; Esposito, L.; Montgomery, M.


    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  2. Influence of 60-Hz magnetic fields on sea urchin development

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, S.; Zimmerman, A.M.; Winters, W.D.; Cameron, I.L. (York Univ., Toronto, Ontario (Canada))


    Continuous exposure of sea urchin (Strongylocentrotus purpuratus) embryos at 18 degrees C to a cyclic 60-Hz magnetic field at 0.1 mT rms beginning 4 min after insemination caused a significant developmental delay during the subsequent 23 hours. No delay in development was recorded for periods up to 18 hours after fertilization. At 18 h, most embryos were in the mesenchyme blastula stage. At 23 h, most control embryos were in mid-gastrula whereas most magnetic-field-exposed embryos were in the early gastrula stage. Thus an estimated 1-h delay occurred between these developmental stages. The results are discussed in terms of possible magnetic-field modification of transcription as well as interference with cell migration during gastrulation. The present study extends and supports the growing body of information about potential effects of exposures to extremely-low-frequency (ELF) magnetic fields on developing organisms.

  3. Geothermal reservoir technology

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.


    A status report on Lawrence Berkeley Laboratory's Reservoir Technology projects under DOE's Hydrothermal Research Subprogram is presented. During FY 1985 significant accomplishments were made in developing and evaluating methods for (1) describing geothermal systems and processes; (2) predicting reservoir changes; (3) mapping faults and fractures; and (4) field data analysis. In addition, LBL assisted DOE in establishing the research needs of the geothermal industry in the area of Reservoir Technology. 15 refs., 5 figs.

  4. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico (United States)

    Mazor, E.; Truesdell, A.H.


    Noble gases have been measured mass spectrometrically in samples collected during 1977 from producing wells at Cerro Prieto. Positive correlations between concentrations of radiogenic (He and 40Ar) and atmospheric noble gases (Ne, Ar and Kr) suggest the following dynamic model: the geothermal fluids originated from meteoric water that penetrated to more than 2500 m depth (below the level of first boiling) and mixed with radiogenic He and 40Ar formed in the aquifer rocks. Subsequently, small amounts of steam were lost by a Raleigh process (0 - 30%) and mixing with shallow cold water occurred (0 - 30%). Noble gases are sensitive tracers of boiling in the initial stages of 0 - 3% steam separation and complement other tracers, such as C1 or temperature, which are effective only beyond this range. ?? 1984.

  5. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mazor, E. (Weizmann Inst. of Science, Rehovot, Israel); Truesdell, A.H.


    Noble gases have been measured mass spectrometrically in samples collected during 1977 from producing wells at Cerro Prieto. Positive correlations between concentrations of radiogenic (He, /sup 40/Ar) and atmospheric noble gases (Ne, Ar, and Kr) suggest the following dynamic model: the geothermal fluids originated from meteoric water penetrated to more than 2500 m depth (below the level of first boiling) and mixed with radiogenic helium and argon-40 formed in the aquifer rocks. Subsequently, small amounts of steam were lost by a Raleigh process (0 to 3%) and mixing with shallow cold water occurred (0 to 30%). Noble gases are sensitive tracers of boiling in the initial stages of 0 to 3% steam separation and complement other tracers, such as Cl or temperature, which are effective only beyond this range.

  6. The Tianjin geothermal field (north-eastern China): Water chemistry and possible reservoir permeability reduction phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, Angelo; Montegrossi, Giordano; Orlando, Andrea [Institute of Geosciences and Earth Resources, National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Florence (Italy); Borrini, Daniele; Tassi, Franco [Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence (Italy); Vaselli, Orlando [Institute of Geosciences and Earth Resources, National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Florence (Italy); Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence (Italy); Huertas, Antonio Delgado [Estacion Experimental de Zaidin (CSIC), Prof. Albareda 1, 18008 Granada (Spain); Yang, Jincheng; Cheng, Wanquing [Aode Renewable Energy Research Institute, 90 Weijin South Road, Nankai District, 300381 Tianjin (China); Tedesco, Dario [Department of Environmental Sciences, Second University of Naples, Via Vivaldi 43, Caserta 81100 (Italy); Institute of Environmental Geology and Geo Engineering (CNR), Piazzale A. Moro 5, Roma 00100 (Italy); Poreda, Robert [Department of Earth and Environmental Sciences, University of Rochester, 227 Hutchison Hall, Rochester, NY 14627 (United States)


    Injection of spent (cooled) thermal fluids began in the Tianjin geothermal district, north-eastern China, at the end of the 1990s. Well injectivities declined after 3-4 years because of self-sealing processes that reduced reservoir permeability. The study focuses on the factors that may have caused the observed decrease in permeability, using chemical and isotopic data on fluids (water and gas) and mineral phases collected from production and injection wells. The results of data processing and interpretation indicate that (1) it is very unlikely that calcite and silica precipitation is taking place in the reservoir; (2) the Fe- and Zn-rich mineral phases (e.g. sulfides, hydroxides and silicates) show positive saturation indexes; (3) SEM and XRD analyses of filtered material reveal that the latter mineral phases are common; (4) visual observation of casings and surface installations, and of corrosion products, suggests that a poor quality steel was used in their manufacture; (5) significant quantities of solids (e.g. quartz and feldspar crystals) are carried by the geothermal fluid; (6) seasonal changes in fluid composition lead to a reduction in casing corrosion during the summer. It was concluded that the decrease in injectivity in the Tianjin wells is caused only in part by the oxidation of casings, downhole pumps, and surface installations, triggered by free oxygen in the injected fluids; the utilization of better quality steels should drastically reduce this type of corrosion. Self-sealing of pores and fractures by reservoir formation solids and by the Fe-corrosion products suspended in the injected fluids seems to be a more important phenomenon, whose effect could be greatly reduced by installing filtering devices at all sites. (author)

  7. 75 FR 63502 - Sonny Bono Salton Sea National Wildlife Refuge Complex (Sonny Bono Salton Sea National Wildlife... (United States)


    ... National Wildlife Refuge System, consistent with sound principles of fish and wildlife management... stakeholders and individuals at this time for initial input. If you would like to meet with planning staff or... management propose, for migratory birds,'' and the Lea Act (16 U.S.C. 695), ``for the management and control...

  8. Hot and steamy fractures in the Philippines: the characterisation and permeability evaluation of fractures of the Southern Negros Geothermal Field, Negros Oriental, Philippines (United States)

    Pastoriza, Loraine; Holdsworth, Robert; McCaffrey, Kenneth; Dempsey, Eddie; Walker, Richard; Gluyas, Jon; Reyes, Jonathan


    Fluid flow pathway characterisation is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  9. Orientation of sea urchin sperms in static magnetic fields: Compared to human sperms (United States)

    Sakhnini, Lama; Dairi, Maheen

    In this study we report on magnetic orientation of sea urchin and human sperms. The sea urchin and human sperms became oriented parallel to the magnetic field (1 T maximum). The human sperms were totally oriented with magnetic field at about 600 mT. However, the sea urchin sperms show different behavior due to morphological differences between them and the human sperms.

  10. Investigations of the UK heat flow field (1984-1987). Investigation of the geothermal potential of the UK

    Energy Technology Data Exchange (ETDEWEB)

    Gebski, J.S.; Wheildon, J.; Thomas-Betts, J.


    Between 1984 and 1987, twenty-two new heat flow measurements have been added to the previously reported coverage of around 200 observations. These include observations in two deep boreholes drilled as part of the BGS geothermal exploration programme. Eleven of the sites were specially drilled heat flow boreholes between 100 m and 300 m deep. The remaining observations were made at locations where additional refinement of the heat flow field was warranted. Much of the effort in the present programme has been towards a better definition of the heat flow field associated with the high heat producing granites of the Lake District and Weardale, particularly where the granite extends in the subsurface to the edge of the Tyneside urban conurbation. The apparent high heat flow in the Bowland Forest can no longer be sustained, and the previously reported high heat flows are judged to be enhanced through convective circulation. Some refinements of the heat flow field in the Midland Valley of Scotland and in South Wales have resulted from new observations in these areas.

  11. Investigations of the UK heat flow field (1984-1987). Investigation of the geothermal potential of the UK

    Energy Technology Data Exchange (ETDEWEB)

    Gebski, J.S.; Wheildon, J.; Thomas-Betts, A.


    Between 1984 and 1987, twenty-two new heat flow measurements have been added to the previously reported coverage of around 200 observations. These include observations in two deep boreholes drilled as part of the BGS geothermal exploration programme. Eleven of the sites were specially drilled heat flow boreholes between 100 m and 300 m deep. The remaining observations were made in exploration boreholes at locations where additional refinement of the heat flow field was warranted. Much of the effort in the present programme has been towards a better definition of the heat flow field associated with the high heat producing granites of the Lake District and Weardale, particularly where the granite extends in the subsurface to the edge of the Tyneside urban conurbation. The apparent high heat flow in the Bowland Forest can no longer be sustained, and the previously reported high heat flows are judged to be enhanced through convective circulation. Some refinements of the heat flow field in the Midland Valley of Scotland and in South Wales have resulted from new observations in these areas. Elsewhere the new observations have been in substantial agreement with the results of earlier work. The results from two shallow boreholes to test basement heat flow were inconclusive in the complex geological settings selected.

  12. Coupled flow and geomechanics modeling of fracture reactivation and induced seismicity in the Basel geothermal field (United States)

    Tyukhova, A.; Castineira, D.; Juanes, R.


    Triggered and induced seismicity is at the cornerstone of discussions surrounding a wide range of subsurface technologies, e.g. unconventional hydrocarbon recovery, geologic carbon sequestration, underground gas storage, and geothermal energy extraction. We revisit the geothermal experiment in Basel, Switzerland, in which over 11 thousand cubic meters of water were injected into deep fractured crystalline rock. The injection took place in December 2006 and was performed at a single injection well, in three stages with increasing injection rate. Seismicity in the region increased during the experiment—with most of the seismic events occurring in the month following injection—and declined slowly after, but with seismic events still being recorded years after injection. The increase in seismicity is caused by reactivation of the pre-existing fractures: an increase in pore pressure decreases the normal effective stress across the fracture, which according to the Mohr-Coulomb failure criterion are therefore more prone to slip. The underlying processes, however, may be more complex. It is unclear the role that enhanced hydraulic connectivity in the fracture network plays on triggered seismicity, and on the emergence of seismicity clusters in space. It is also unclear what determines the delay between injection and recorded seismicity, and whether it can be explained by means of pressure propagation and/or dynamic weakening of fractures due to a drop in the friction coefficient as a result of decreased roughness from fracture slip. Here, we employ a computational model of coupled flow and geomechanics to quantitatively assess the impact of fluid injection on the recorded seismicity. We develop a simulation model that incorporates more than ten fractures, whose location, rake and dip are consistent with clusters of seismicity from a relocation of hypocenters and focal mechanisms. We adopt a multiscale description of flow (representing these fractures planes explicitly

  13. Plate boundary deformation at the latitude of the Salton Trough - northern Gulf of California (Invited) (United States)

    Stock, J. M.


    Along the Pacific-North America plate boundary zone, the segment including the southern San Andreas fault to Salton Trough and northern Gulf of California basins has been transtensional throughout its evolution, based on Pacific-North America displacement vectors calculated from the global plate circuit (900 × 20 km at N54°W since 20 Ma; 460 × 20 km at N48°W since 11 Ma). Nevertheless, active seismicity and focal mechanisms show a broad zone of plate boundary deformation within which the inferred stress regime varies locally (Yang & Hauksson 2013 GJI), and fault patterns in some regions suggest ongoing tectonic rotation. Similar behavior is inferred to have occurred in this zone over most of its history. Crustal structure in this region is constrained by surface geology, geophysical experiments (e.g., the 2011 Salton Seismic Imaging Project (SSIP), USGS Imperial Valley 1979, PACE), and interdisciplinary marine and onland studies in Mexico (e.g., NARS-Baja, Cortes, and surveys by PEMEX). Magnetic data (e.g., EMAG-2) aids in the recognition of large-scale crustal provinces and fault boundaries in regions lacking detailed geophysical surveys. Consideration of existing constraints on crustal thickness and architecture, and fault and basin evolution suggests that to reconcile geological deformation with plate motion history, the following additional factors need to be taken into account. 1) Plate boundary displacement via interacting systems of rotating blocks, coeval with slip on steep strike slip faults, and possibly related to slip on low angle extensional faults (e.g, Axen & Fletcher 1998 IGR) may be typical prior to the onset of seafloor spreading. This fault style may have accommodated up to 150 km of plate motion in the Mexican Continental Borderland and north of the Vizcaino Peninsula, likely between 12 and 15 Ma, as well as explaining younger rotations adjacent to the Gulf of California and current deformation southwest of the Salton Sea. 2) Geophysical

  14. San Ignacio (La Tembladera) geothermal site, Departamento de Francisco Morazan, Honduras, Central America: Geological field report

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, M.J.; Eppler, D.; Heiken, G.; Flores, W.; Ramos, N.; Ritchie, A.


    The San Ignacio (La Tembladera) geothermal site is located on the north side of the Siria Valley, Departamento de Francisco Morazan, near the village of Barrosa. Hot springs are located along a northwest-trending fault scarp at the edge of the valley and along north-trending faults that cross the scarp. The rocks in the area are primarily Paleozoic metamorphic rocks, overlain by patches of Tertiary Padre Miguel Group tuffs and alluvial deposits. Movement probably occurred along several faults during latest Tertiary and possibly early Quaternary times. Four spring areas were mapped. Area 1, the largest, is associated with a sinter mound and consists of 40 spring groups. About half of the springs, aligned along a north-south trend, are boiling. Area 2 is a small sinter mound with several seeps. Area 3 consists of a group of hot and boiling springs aligned along a north-trending fault. The springs rise through fractured schists and a thin cover of alluvium. Area 4 is located at the intersection of several faults and includes one of the largest boiling springs in the area.

  15. Methods for collection and analysis of geopressured geothermal and oil field waters

    Energy Technology Data Exchange (ETDEWEB)

    Lico, M.S.; Kharaka, Y.K.; Carothers, W.W.; Wright, V.A.


    Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C/sub 2/ through C/sub 5/) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

  16. Long Range Effect of The M7.8 April 2015 Nepal Earth Quake on the Deep Groudwater Outflow in a Thousand-Mile-Away Geothermal Field in Southern China's Guangdong (United States)

    Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.


    Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.

  17. Microbial Diversity, Distribution and Insight into Their Role in S, Fe and N Biogeochemical Cycling in the Hot Springs at Tengchong Geothermal Fields, Southwest China (United States)

    Li, J.; Peng, X.; Zhang, L.


    Ten sediment samples collected from one acidic and three alkaline high temperature hot springs at Tengchong terrestrial geothermal field, Southwest China, were examined by the mineralogical, geochemical, and molecular biological techniques. The mineralogical and geochemical analyses suggested that these hot springs contain relative high concentrations of S, Fe and N chemical species. Specifically, the acidic hot spring was rich in Fe2+, SO42- and NH4+, while the alkaline hot springs were high in NO3-, H2S and S2O3-. Analyses of 16S rRNA sequences showed their bacterial communities were dominated by Aquificae, Cyanobacteria, Deinococci-Thermus, Firmicutes, Proteobacteria, and Thermodesulfobacteria, while the archeal clone libraries were dominated by Desulfurococcales, Sulfolobales, and Thermoproteales. Among them, the potential S-, N- and Fe-related oxidizing and reducing prokaryote were presenting as a relative high proportion but with a great difference in diversity and metabolic approaches of each sample. These findings provide some significant implications for the microbial function in element biogeochemical cycles within the Tengchong geothermal environments: i). the distinct differences in abundance and diversity of microbial communities of geothermal sediments were related to in situ different physicochemical conditions; ii). the S-, N- and Fe-related prokaryote would take advantage of the strong chemical disequilibria in the hot springs; iii). in return, their metabolic activities can promote the transformation of S, Fe and N chemical species, thus founded the bases of biogeochemical cycles in the terrestrial geothermal environments.

  18. Preliminary Studies of the Reservoir Capacity and the Generating Potential of the Baca Geothermal Field, New Mexico (United States)

    Bodvarsson, G. S.; Haar, S. Vonder; Wilt, M.; Tsang, C. F.


    A 50-MWe geothermal power plant is being considered for the Baca site in the Valleys Caldera, New Mexico, as a joint venture of the Department of Energy (DOE) and Union Oil Company of California. To date, over 20 wells have been drilled on the prospect, and the data from these wells indicate the presence of a high-temperature, liquid-dominated reservoir. In this paper, data from the open literature on the physical characteristics of the field are used to estimate the amount of hot water in place (reservoir capacity) and the length of time the reservoir can supply steam for a 50-MWe power plant (reservoir longevity). The reservoir capacity is estimated to be 1012 kg of hot fluid by volumetric calculations using existing geological, geophysical, and well data. The criteria used are described and the sensitivity of the results discussed. The longevity of the field is studied using a two-phase numerical simulator (SHAFT79). A number of cases are simulated based upon different boundary conditions and upon injection and production criteria. The results obtained from the simulation studies indicate that it is questionable that the Baca field can supply enough steam for a 50-MWe power plant for 30 years. Although the estimated reservoir reserves greatly exceed those needed for a 50-MWe power plant, the low transmissivity of the reservoir would cause localized boiling and rapid pressure decline during exploitation. It is therefore apparent that the conventional zero-dimensional (lumped parameter models) cannot be used to evaluate the generating capacities of low-permeability fields such as the Baca field.

  19. Why the seismicity induced in Soultz-sous-Forêts and Gross Schoenebeck enhanced geothermal fields are so different? (Invited) (United States)

    Gaucher, E.; Kohl, T.


    In enhanced geothermal systems, hydraulic fracturing and hydraulic stimulation are techniques used to increase the reservoir permeability. Their secondary effect, the induced seismicity, is a unique means to image the fault network created or reactivated by the operations. The interpretation of the results for this latter application is however limited by the capabilities of the seismic network and by our understanding of the involved physical processes. Here, we propose to highlight systematic behaviors of the seismicity induced in enhanced geothermal reservoirs. This is performed through the analysis of two EGS sites which appear to behave very differently in terms of induced seismicity: the Soultz-sous-Forêts (France) and the Gross Schoenebeck (Germany) fields. Several physics-based models have been tested for these fields and these observations should be used to calibrate them and the underlying physical assumptions. The Soultz-sous-Forêts (France) geothermal field is located in the Upper Rhine valley. Over the development of this EGS, four wells have been drilled into the granitic basement, up to 5 km depth, and eight major stimulations were carried out to create the heat exchanger. Several major observations based on the large induced seismicity database have been made and can apply on other EGS. Hence, it was noticed that a) the induced seismicity mainly occurs along planar features, b) during stimulation, the induced seismicity becomes stronger over time and this is still observed after shut-in. Most often, the largest magnitude microearthquake occurs following shut-in, c) over a certain overpressure threshold, seismicity can be induced and also a clear Kaiser effect can be observed for already stimulated volumes, d) the stimulation and the circulation periods induce different seismic responses. At Gross Schoenebeck (Germany), the Dethlingen sandstones and the underlying andesitic volcanic rocks of the Rotliegend formation of the North German Basin

  20. Geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    White, D.E.


    The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

  1. Micro-topography showing the landslide-origin of the Marumori hill, Matsukawa geothermal field Iwate Prefecture, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Tomomasa; Ikeda, Kazuo; Sumi, Seiai


    The Marumori Hill in the Matsukawa geothermal field has been previously considered to be a central cone or a lava dome in a caldera. Airphotogeological study, topographical surveying, and trenching are carried out in order to clarify the origin of the hill. Fifty six topographic linearments trending NE-SW direction distributed parallelly were detected on the top area and the northern flank of the hill. This linearment swarm is composed of the alternated small ranges and valleys with asymmetric profiles similar to cuesta topography. These topographic features are considered to be formed under the tensional stress field trending NW-SE direction on the surface of a landslide block. The hill is inferred to be not a lava dome but a landslide block which slide down from the steep scarp north and west of the hill. The age of the landslide is dated back to be older than 2400 years B.P. according to 14C age of the humic strata covering the hill. (7 figs, 1 tab, 14 refs)

  2. Configuration of the mudstones, gray- and coffee-colored shale lithologic units, zones of silica and epidote, and their relation to the tectonics of the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Cobo R, J.M.


    Based on well cuttings, five lithological units have been recognized within the area of what is now the Cerro Prieto geothermal field. These five units are described. Differences in origin, mineralogy, grading, color, compaction, etc., are shown.

  3. Space-Time Evolution of Seismicity in North-Western Geysers Geothermal Field and its Connection to Stimulation Processes (United States)

    Leptokaropoulos, Konstantinos; Staszek, Monika; Lasocki, Stanislaw; Kwiatek, Grzegorz; Martinez-Garzon, Patricia


    The rising needs for energy along with the recent requirements for more efficient usage and exploitation of the deep underground have resulted to a growing scientific and public concern on related environmental impacts. Hydraulic fracturing that has been carried out during the last decades is occasionally connected with triggered and induced seismicity worldwide. Data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity since they are both tightly connected to hydraulic fracturing. For that reason we utilize 'The Geysers' data from the compiled SHEER (Shale Gas Exploration and Exploitation Induced Risks) database. The Geysers (California, USA) is the largest producing geothermal field in the world and has been sufficiently monitored and studied since the last decades. Seismic and technological data gathered during the past 40 years indicate a connection of seismic activity with the fluctuations of the injected fluid volume. In this study we verify and quantify this correlation by analyzing the data associated with 2 injection wells (Prati-9 and Prati-29) which covers a time period of approximately 7 years (from November 2007 to August 2014). The correlation between spatio-temporal seismicity evolution and variation of the injection data is performed by elaboration of original and smoothed time-series through specified statistical tools (cross correlation, binomial test to investigate significant rate changes, b-value variation). Our analysis indicate a short time delay of seismicity occurrence at distances larger than 200m from the injection well, whereas no evidence of significant correlation between injection rates and b-values was discovered. The obtained results are expected to contribute to a better comprehension of the role of hydraulic fracturing and the physical processes controlling seismogenesis in fluid injection sites. Acknowledgements: This work was supported within SHEER: "Shale Gas Exploration and

  4. A study of production/injection data from slim holes and large-diameter wells at the Takigami Geothermal Field, Kyushu, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K. [Maxwell Federal Div., Inc., San Diego, CA (United States); Combs, J. [Geo-Hills Associates, Los Altos Hills, CA (United States); Azawa, Fumio [Idemitsu Kosan Co. Ltd., Tokyo (Japan); Gotoh, Hiroki [Idemitsu Oita Geothermal Co. Ltd., Oita (Japan)


    Production and injection data from nine slim holes and sixteen large-diameter wells at the Takigami Geothermal Field, Kyushu, Japan were analyzed in order to establish relationships (1) between injectivity and productivity indices, (2) between productivity/injectivity index and borehole diameter, and (3) between discharge capacity of slim holes and large-diameter wells. Results are compared with those from the Oguni and Sumikawa fields. A numerical simulator (WELBOR) was used to model the available discharge rate from Takigami boreholes. The results of numerical modeling indicate that the flow rate of large-diameter geothermal production wells with liquid feedzones can be predicted using data from slim holes. These results also indicate the importance of proper well design.

  5. Cost model for geothermal wells applied to the Cerro Prieto geothermal field case, BC Abstract; Modelo de costeo de pozos geotermicos aplicado para el caso del campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Vaca Serrano, Jaime M.E [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail:


    A project for drilling geothermal wells to produce electrical energy can be defined as a sequence of plans to get steam or geothermal fluids to satisfy a previously known demand, and, under the best possible conditions, to obtain payment. This paper presents a cost model for nine wells drilled at the Cerro Prieto geothermal field in 2005 and 2006 to supply steam to the power plants operating in the field. The cost model is based on the well cost, the initial steam production, the annual decline of steam, the drilling schedule and the break-even point for each well. The model shows the cost of steam by the ton and the sale price needed to determine the discount rate and the investment return time. [Spanish] Un proyecto de perforacion de pozos geotermicos puede definirse como una secuencia o sucesion de planes para obtener vapor o fluidos geotermicos destinados a satisfacer una demanda previamente determinada, que se emplearan principalmente para generar energia electrica, bajo las mejores condiciones para obtener un pago. Este trabajo presenta un modelo de costeo para nueve pozos en el campo geotermico de Cerro Prieto, que fueron perforados entre 2005 y 2006 como parte del suministro de vapor para las plantas generadoras que operan en este campo. El modelo de costeo se basa en el costo por pozo, la produccion inicial de vapor, la declinacion anual de vapor, los intereses de las obras de perforacion y el punto de equilibrio para cada pozo. Los resultados permiten conocer el costo de la tonelada de vapor y el precio de venta para determinar la tasa de descuento y el tiempo de retorno de la inversion.

  6. Hydrochemical-isotopic and hydrogeological conceptual model of the Las Tres Vı´rgenes geothermal field, Baja California Sur, México (United States)

    Portugal, E.; Birkle, P.; Barragán R, R. M.; Arellano G, V. M.; Tello, E.; Tello, M.


    Based on geological, structural, hydrochemical and isotopic data, a hydrogeological conceptual model for the geothermal reservoir, shallow wells and springs at the Las Tres Vı´rgenes geothermal field and its surroundings is proposed. The model explains the genesis of different types of thermal and cold groundwater in the NW (El Azufre Valley, Las Tres Vı´rgenes and Aguajito complex), NE (Reforma complex) and S (Sierra Mezquital) areas. Shallow groundwater of sulfate type in the NW zone is explained by the rise of CO2-H2S vapor from a shallow magma chamber and the subsequent heating up of a shallow aquifer. Vertical communication between the reservoir and the surface is facilitated by a series of extensional, NW-SE-trending normal faults, forming the graben structures of the Santa Rosalı´a Basin. Low-permeability characteristics of the geological formations of the study area support the hypothesis of a fracture and fault-dominated, subterranean-flow circulation system. The Na- (Cl-HCO3) composition of springs in the NE and SE zones indicates influence of ascending geothermal fluids, facilitated by radial fault systems of the Reforma caldera and probably the existence of a shallow magma chamber. Close to the surface, the rising geothermal fluids are mixed up with meteoric water from a shallow aquifer. The Las Tres Vı´rgenes and the Reforma complex are separated by younger, N-S-trending lateral shearing faults, such as the Cimarrón fault; such disposition explains the genesis of different hydrogeological flow regimes on both sides. HCO3-type surface water from the southern zone between San Ignacio and Mezquital is of typical meteoric origin, with no influence of geothermal fluids. Due to arid climatic conditions in the study zone, recent recharge in the geothermal area seems improbable; thus, recent interaction between the surface and the geothermal reservoir can be excluded. Furthermore, isotopic and hydrochemical data exclude the presence of marine water

  7. Application of geochemical techniques to deduce the reservoir performance of the Palinpinon Geothermal Field, Philippines - an update

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Candelaria, M.N.; Garcia, S.E.; Hermoso, D.Z. [PNOC-Energy Development Corp., Makati City (Philippines)] [and others


    Regular monitoring of various geochemical parameters in the water and vapor phases of the production wells at the Palinpinon I and II sectors of the Southern Negros Geothermal Field have been useful in the identification of the dominant reservoir processes occurring related to the present exploitation strategy. Observed geochemical and physical changes in the output of production wells have dictated production and injection strategies adopted to maximize production to meet the steam requirements of the power plant. Correlation of both physical and chemical data have identified the following reservoir processes: (1) Injection breakthrough via the Ticala Fault of the highly mineralized (Cl {approximately}8,000-10,500 mg/kg), isotopically enriched ({delta}{sup 18}O = -3.00{per_thousand}, {delta}{sup 2} H = -39{per_thousand}), and gas depleted brine for wells in the SW and central Puhagan. Injection breakthrough is also occurring in Palinpinon II and has resulted in temperature drops of 5-10{degrees}C.2. Pressure drawdown enhanced boiling in the liquid reservoir with steam separation of 220-240{degrees}C, feeding wells tapping the natural steam zone. However, enhanced drawdown has induced the entry of shallow acid steam condensate fluids in some wells (e.g. OK-7, PN-29D, PN-18D), which if not arrested could reduce production.

  8. Compartmentalization of the Coso East Flank geothermal field imaged by 3-D full-tensor MT inversion (United States)

    Lindsey, Nathaniel J.; Kaven, Joern; Davatzes, Nicholas C.; Newman, Gregory A.


    Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2–5 Ohm m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT data set as well as the degree of modelling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60†) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modelling to test the best-fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally controlled by an unmapped blind East Flank fault zone.

  9. Geothermal Energy. (United States)

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  10. Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.


    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  11. Geopressured geothermal bibliography (Geopressure Thesaurus)

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.R.; Sepehrnoori, K.


    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

  12. A Study of Production/Injection Data from Slim Holes and Large-Diameter Wells at the Okuaizu Geothermal Field, Tohoku, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence; Garg, Sabodh K.; Combs, Jim


    Discharge from the Okuaizu boreholes is accompanied by in situ boiling. Analysis of cold-water injection and discharge data from the Okuaizu boreholes indicates that the two-phase productivity index is about an order of magnitude smaller than the injectivity index. The latter conclusion is in agreement with analyses of similar data from Oguni, Sumikawa, and Kirishima geothermal fields. A wellbore simulator was used to examine the effect of borehole diameter on the discharge capacity of geothermal boreholes with two-phase feedzones. Based on these analyses, it appears that it should be possible to deduce the discharge characteristics of largediameter wells using test data from slim holes with two-phase feeds.

  13. Gas geochemistry of Los Humeros geothermal field, Mexico; Geoquimica de gases del campo geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan R, Rosa Maria; Arellano G, Victor M; Nieva G, David; Portugal M, Enrique; Garcia G, Alfonso; Aragon A, Alfonso [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico); Torres A, Ignasio S [Centro de Investigacion en Energia, Temixco, Morelos (Mexico); Tovar A, Rigoberto [Comision Federal de Electricidad, Los Humeros, Puebla (Mexico)


    Gas data of Los Humeros geothermal field were analyzed. A new method, which is based on the Fischer-Tropch reactions and on the combined pyrite-magnetite mineral equilibrium, was used. Reservoir temperature and reservoir excess steam were estimated for the starting stage of the field by using early data taken from producing wells at controlled conditions. The same parameters were also obtained for the present stage by using 1997 gas data. Reservoir temperatures ranged from 275 and 337 Celsius degrees and positive values for reservoir excess steam fractions were obtained for the starting stage. For well H-1 no excess steam was found since this well was fed by the shallower liquid-dominated reservoir. Results for 1997 showed lower scattering compared to early data and the possible occurrence of a heating process in the shallower stratum which could due to exploitation. [Spanish] En este articulo se presenta un analisis de datos de la fase gaseosa producida por pozos productores del campo geotermico de Los Humeros mediante un metodo que considera el equilibrio de la reaccion de Fischer-Tropsh y el equilibrio de minerales pirita-hematia y pirita-magnetita. Este metodo provee la temperatura del yacimiento y el exceso de vapor presente en la descarga total de los pozos. Los resultados se discuten tanto para el estado inicial del yacimiento utilizando los primeros datos de produccion en los que el flujo del pozo estuvo controlado y los obtenidos en 1997 que representan el estado actual del yacimiento. En el estado inicial se estimaron temperaturas de yacimiento de entre 275 y 337 grados Celsius y excesos de vapor positivos, con excepcion del pozo H-1 que se alimenta del estrato somero dominado por liquido. Los resultados obtenidos para 1997 muestran una dispersion menor y la probable ocurrencia de un proceso de calentamiento del estrato somero propiciado por la explotacion.

  14. Study of the Crossborder Geothermal Field in the Sarandoporos- Konitsa Area With Integrated Geophysical and Geochemical Methods. (United States)

    Tsokas, G.; Balliu, E.; Reci, H.


    The studied area lies north of the city of Konitsa in Greece and includes the Albanian village of Koukes. Specifically, it lies between the geographic latitude (ö) 40ï 02' up to 40ï 07' and in geographic longitude (ë) 20ï 37' up to 20ï 45'. The geothermic field in Sarandaporos -Konitsa lies in the cross-border area between Albania and Greece. The field has several surface manifestations and extended geological investigations, including tectonic geochemical and geomorfological studies have been carried out. This work presents the conduct and interpretation of vertical electrical soundings (V.E.S.) in both sides of the borders. It is aiming to study the structure down to the depth of 1000m, in a relative large area, where information about the deep structure would have an enormous cost if acquired by a network of boreholes. Thermal springs known in the Greek part of the region are the thermal springs of Kavassila - Piksaria where the water temperature reaches up to 31o C. In the Albanian side the existence of hot springs (Koukes) is also well known, where the water supply is provided by the hot springs situated in the Skordili bridge. Two main geoelectrical formations revealed which coincide with the flysch and the limestone basement. The area appears faulted in the NW-SE and NE-SW directions and a few concealed graben and horst structures exist. Low resistivity values were observed above basement uplifts and major faults. These values were attributed to hot fluid circulation.

  15. Sea WiFS Postlaunch Technical Report Series. Volume 8; The SeaBOARR-99 Field Campaign (United States)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Lazin, Gordana (Editor)


    This report documents the scientific activities during the second Sea-viewing Wide Field-of-view Sensor (Sea- WIFS) Bio-Optical Algorithm Round-Robin (SeaBOARR-99) field campaign, which took place from 2 May to 7 June 1999 on board the Royal Research Ship James Clark Ross during the eighth Atlantic Meridional Transect cruise (AMT-8). The ultimate objective of the SeaBOARR activity is to evaluate the effect of different measurement protocols on bio-optical algorithms using data from a variety of field campaigns. The SeaBOARR-99 field campaign was concerned with collecting a high quality data set of simultaneous in-water and above-water radiometric measurements. The deployment goals documented in this report were to: a) use four different surface glint correction methods to compute water-leaving radiances, Lw(lambda), from above-water data; b) use two different in-water profiling systems and three different methods to compute Lw(lambda) from in-water data; c) use instruments with a common calibration history to minimize intercalibration uncertainties; d) monitor the calibration stability of the instruments in the field with the original SeaWiFS Quality Monitor (SQM) and a commercial, second-generation device called the SQM-II, thereby allowing a distinction between differences in methods from changes in instrument performance; and e) compare the Lw(lambda) values estimated from the above- water and in- water measurements. In addition to describing the instruments deployed and the data collected, a preliminary analysis of part of the SeaBOARR-99 data set is presented (using only the data collected during clear sky, calm sea, and Case-I waters).

  16. The total flow concept for geothermal energy conversion (United States)

    Austin, A. L.


    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  17. A Status Report on the Exploitation Conditions of the Ahuachapan Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-R., Jesus; Vides-R., Alberto; Cuellar, Gustavo; Samaniego-V., Fernando; Neri-I, Gustavo


    The present exploitation conditions of the Ahuachapan field are discussed. The high well density in a small area has resulted in a significant reservoir pressure decrease due to the inherent reservoir over-exploitation. The average pressure in the exploitation zone has decreased from the 1975 value of 34 kg/cm{sup 2} to the May 1983 value of 23 kg/cm{sup 2}. The production decline characteristics of the Ahuachapan wells were examined, concluding that all wells but Ah-22 show exponential decline. The cumulative production-reinjection for the field up to April 1983 is 159.090 x 10{sup 6} tons, and 37.592 x 10{sup 6} tons, respectively. The effect of reinjection upon field behavior is evident when observing the pressure decline characteristics of the field. It is seen that for indection fraction related to total mass extracted above 30 percent, the average decline pressure in the production area becomes approximately stabilized. If this condition is not met the reservoir pressure decreases sharply. From this finding it is concluded that a careful and properly planned reinjection program is a must for the field. The observed temperature reduction in some of the wells seems to be the result of two operating mechanisms. First, we have the pressure decline that produces water vaporization and the consequent temperature descend. Analysis of information available shows no clear indication of deleterious temperature effects on the producing wells due to injection. The only exception observed to date is well Ah-5 that because its close distance and its relative structural position and direct hydraulic connection to injector Ah-29, presented conditions for fast displacement of the thermal front, resulting in unsufficient contact area and residence time for reheating of the injected water.

  18. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan


    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  19. Geothermal industry assessment

    Energy Technology Data Exchange (ETDEWEB)


    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  20. Rapid, high-temperature, field test method for evaluation of geothermal calcium carbonate scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.


    A new test method is described that allows the rapid field testing of calcium carbonate scale inhibitors at 500/sup 0/F (260/sup 0/C). The method evolved from use of a full-flow test loop on a well with a mass flow rate of about 1 x 10/sup 6/ lbm/hr (126 kg/s). It is a simple, effective way to evaluate the effectiveness of inhibitors under field conditions. Five commercial formulations were chosen for field evaluation on the basis of nonflowing, laboratory screening tests at 500/sup 0/F (260/sup 0/C). Four of these formulations from different suppliers controlled calcium carbonate scale deposition as measured by the test method. Two of these could dislodge recently deposited scale that had not age-hardened. Performance-profile diagrams, which were measured for these four effective inhibitors, show the concentration interrelationship between brine calcium and inhibitor concentrations at which the formulations will and will not stop scale formation in the test apparatus. With these diagrams, one formulation was chosen for testing on the full-flow brine line. The composition was tested for 6 weeks and showed a dramatic decrease in the scaling occurring at the flow-control valve. This scaling was about to force a shutdown of a major, long-term flow test being done for reservoir economic evaluations. The inhibitor stopped the scaling, and the test was performed without interruption.

  1. The potential of audiomagnetotellurics in the study of geothermal fields: A case study from the northern segment of the La Candelaria Range, northwestern Argentina (United States)

    Barcelona, Hernan; Favetto, Alicia; Peri, Veronica Gisel; Pomposiello, Cristina; Ungarelli, Carlo


    Despite its reduced penetration depth, audiomagnetotelluric (AMT) studies can be used to determine a broad range of features related to little studied geothermal fields. This technique requires a stepwise interpretation of results taking into consideration diverse information (e.g. topographic, hydrological, geological and/or structural data) to constrain the characteristics of the study area. In this work, an AMT study was performed at the hot springs in the northern segment of the La Candelaria Range in order to characterize the area at depth. Geometric aspects of the shallow subsurface were determined based on the dimensional and distortion analysis of the impedance tensors. Also, the correlation between structural features and regional strikes allowed us to define two geoelectric domains, useful to determine the controls on fluid circulation. The subsurface resistivity distribution was determined through 1D and 2D models. The patterns of the 1D models were compared with the morpho-structure of the range. Shallow and deep conductive zones were defined and a possible shallow geothermal system scheme proposed. A strong correlation was found between the AMT results and the geological framework of the region, showing the relevance of using AMT in geothermal areas during the early stages of subsurface prospecting.

  2. Modelling the effect of fractures in geothermal reservoirs on the seismic wave field - anisotropy, scattering and localisation (United States)

    Möller, Thomas; Friederich, Wolfgang


    Fractures and cracks in rocks have a significant influence on the propagation of seismic waves. Their presence causes reflections and scattering of the waves and generates effective anisotropy within the rocks. In geothermics, gaining information on how a system of fractures affects the wave field is of great importance for reservoir characterisation. We present a numerical approach to the simulation of seismic wave propagation in fractured media that does not require explicit modelling of the fracture itself, but uses the concept of linear slip interfaces developed by Schoenberg (1980). This concept states that at an interface between two imperfectly bonded elastic media, stress is continuous across the interface while displacement is discontinuous. It is assumed that the jump of displacement is proportional to stress which implies a jump in particle velocity at the interface. We use this concept as a boundary condition to the elastic wave equation and solve this equation in the framework of a Nodal Discontinuous Galerkin scheme using a velocity-stress formulation. The concept of linear slip interfaces has been implemented into the 1D and 2D versions of the discontinuous Galerkin solver "NEXD". We verified the implementation for the case of an elastic linear slip interface. We use this concept to demonstrate the effect of fractures by the following examples: (1) A system of parallel fractures embedded in a homogenous background medium with a source in the center of the system and (2) varyingly oriented fracture systems embedded in a sample reservoir with layered velocity structure. We show that waves traveling perpendicular to the fractures experience high attenuation whereas waves traveling parallel to the fractures are almost not influenced. Synthetic seismograms show a distinct change in curvature of the wavefront when fractures are present, underlining the effective anisotropy caused by the fractures. In addition we show the contribution such systems have to

  3. An Environmental Assessment of Proposed Geothermal Well Testing in the Tigre Lagoon Oil Field, Vermilion Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)



    This report is an environmental assessment of the proposed testing of two geopressured, geothermal aquifers in central coastal Louisiana. On the basis of an analysis of the environmental setting, subsurface characteristics, and the proposed action, potential environmental impacts are determined and evaluated together with potential conflicts with federal, state, and local programs. Oil and gas wells in coastal Louisiana have penetrated a potentially productive geothermal zone of abnormally high-pressured aquifers that also yield large volumes of natural gas. To evaluate the extent to which the geothermal-geopressured water can be used as an alternative energy source and to what extent withdrawal of geopressured water can enhance gas production, it is necessary that flow rates, composition and temperature of fluids and gases, recharge characteristics, pressures, compressibilities, and other hydrodynamic and boundary conditions of the reservoir be determined by means of production tests. Tests are further necessary to evaluate and seek solutions to technological problems.

  4. Intersecting faults and sandstone stratigraphy at the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Vonder Haar, S.; Howard, J.H.


    The northwest-southeast trending Cerro Prieto fault is part of a major regional lineament that extends into Sonaro and has characteristics of both a wrench fault and an oceanic transform fault. The distribution of lithologies and temperature within the field was studied by comparing data from well cuttings, cores, well logs, and geochemical analyses. Across the earliest developed portion of the field, in particular along a 1.25-km northeast-southwest section from well M-9 to M-10, interesting correlations emerge that indicate a relationship among lithology, microfracturing, and temperature distribution. In the upper portion of Reservoir A of this stratigraphic section, between 1200 and 1400 m, the percentage of sandstones ranges from 20 to 55. Temperatures are 225/sup 0/ to 275/sup 0/C based on well logs, calcite isotope maxima, and Na-K-Ca indices. The study shows that an isothermal high in this vicinity corresponds to the lowest total percentage of sandstones. Scanning electron microphotographs of well cores and cuttings from sandstone and shale units reveal clogging, mineral dissolution, and mineral precipitation along microfractures. The working hypothesis is that these sandy shale and siltstone facies are most amenable to increased microfracturing and, in turn, such microfracturing allows for higher temperature fluid to rise to shallower depths in the reservoir.

  5. Gas chemistry and thermometry of the Cerro Prieto, Mexico, geothermal field (United States)

    Nehring, N.L.; D'Amore, F.


    Gas compositions of Cerro Prieto wells in 1977 reflected strong boiling in the reservoir around wells M-20 and M-25. This boiling zone appeared to be collapsing in 1982 when a number of wells in this area of the field were shut-in. In 1977 and 1982, gas compositions also showed boiling zones corresponding to faults H and L postulated by Halfman et al. (1982). Four gas geothermometers were applied, based on reservoir equilibria and calculated fugacities. The Fisher - Tropsch reaction predicted high temperatures and appeared to re-equilibrate slowly, whereas the H2S reaction predicted low temperatures and appeared to re-equilibrate rapidly. Hydrogen and NH3 reactions were intermediate. Like gas compositions, the geothermometers reflected reservoir processes, such as boiling. Surface gas compositions are related to well compositions, but contain large concentrations of N2 originating from air dissolved in groundwater. The groundwater appears to originate in the east and flow over the production field before mixing with reservoir gases near the surface. ?? 1984.

  6. Dipole-dipole resistivity monitoring at the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Wilt, M.J.; Goldstein, N.E.


    Two 20 km-long dipole-dipole lines with permanently emplaced electronics at 1-km spacings were established over the field area; one of these lines is remeasured annually. Resistivity measurements are taken using a 25 kW generator capable of up to 80A output and a microprocessor-controlled signal-averaging receiver; this high power-low noise system is capable of highly accurate measurements even at large transmitter-receiver separations. Standard error calculations for collected data indicate errors less than 5% for all points, but 95% confidence intervals show error limits about 2 to 4 times higher. Data indicate little change of apparent resistivity within the upper 300 m over the field. However, apparent resistivity increases are observed over the producing zone at depths of 1 km and greater. Large zones of decreasing apparent resistivity are observed flanking the zone of increases on both sides. To explain the resistivity changes observed, simple two-dimensional reservoir simulations were performed in which cooler, less saline recharge water enters the reservoir from above through a leaky caprock and laterally through a more permeable vertical boundary. The calculated magnitude of a resistivity change after 3 years of simulated production fits the observed data, but the anomaly shapes differ. It is concluded that the rapidly moving hydraulic front produces a salinity change large enough to explain the resistivity increase, but that our recharge assumptions were probably oversimplified.

  7. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.


    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  8. Geothermal energy (United States)

    Manzella, A.


    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  9. Oil Spill Field Trial at Sea: Measurements of Benzene Exposure. (United States)

    Gjesteland, Ingrid; Hollund, Bjørg Eli; Kirkeleit, Jorunn; Daling, Per; Bråtveit, Magne


    Characterize personal exposure to airborne hydrocarbons, particularly carcinogenic benzene, during spill of two different fresh crude oils at sea. The study included 22 participants taking part in an «oil on water» field trial in the North Sea. Two types of fresh crude oils (light and heavy) were released six times over two consecutive days followed by different oil spill response methods. The participants were distributed on five boats; three open sampling boats (A, B, and C), one release ship (RS), and one oil recovery (OR) vessel. Assumed personal exposure was assessed a priori, assuming high exposure downwind and close to the oil slick (sampling boats), low exposure further downwind (100-200 m) and upwind from the oil slick (main deck of RS and OR vessel), and background exposure indoors (bridge of RS/OR vessel). Continuous measurements of total volatile organic compounds in isobutylene equivalents were performed with photoionization detectors placed in all five boats. Full-shift personal exposure to benzene, toluene, ethylbenzene, xylenes, naphthalene, and n-hexane was measured with passive thermal desorption tubes. Personal measurements of benzene, averaged over the respective sample duration, on Day 1 showed that participants in the sampling boats (A, B, and C) located downwind and close to the oil slick were highest exposed (0.14-0.59 ppm), followed by participants on the RS main deck (0.02-0.10 ppm) and on the bridge (0.004-0.03 ppm). On Day 2, participants in sampling boat A had high benzene exposure (0.87-1.52 ppm) compared to participants in sampling boat B (0.01-0.02 ppm), on the ships (0.06-0.10 ppm), and on the bridge (0.004-0.01 ppm). Overall, the participants in the sampling boats had the highest exposure to all of the compounds measured. The light crude oil yielded a five times higher concentration of total volatile organic compounds in air in the sampling boats (max 510 ppm) than the heavy crude oil (max 100 ppm) but rapidly declined to oil

  10. Petrophysical Properties of Twenty Drill Cores from the Los Azufres, Mexico, Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, E.R.; Contreras L., E.; Garcia G., A.; Dominquez A., Bernardo


    For this study we selected 20 drill cores covering a wide range of depths (400-3000 m), from 15 wells, that provide a reasonable coverage of the field. Only andesite, the largely predominant rock type in the field, was included in this sample. We measured bulk density, grain (solids) density, effective porosity and (matrix) permeability on a considerable number of specimens taken from the cores; and inferred the corresponding total porosity and fraction of interconnected total porosity. We characterized the statistical distributions of the measured and inferred variables. The distributions of bulk density and grain density resulted approximately normal; the distributions of effective porosity, total porosity and fraction of total porosity turned out to be bimodal; the permeability distribution resulted highly skewed towards very small (1 mdarcy) values, though values as high as 400 mdarcies were measured. We also characterized the internal inhomogeneity of the cores by means of the ratio (standard deviation/mean) corresponding to the bulk density in each core (in average there are 9 specimens per core). The cores were found to present clearly discernible inhomogeneity; this quantitative characterization will help design new experimental work and interpret currently available and forthcoming results. We also found statistically significant linear correlations between total density and density of solids, effective porosity and total density, total porosity and total density, fraction of interconnected total porosity and the inverse of the effective porosity, total porosity and effective porosity; bulk density and total porosity also correlate with elevation. These results provide the first sizable and statistically detailed database available on petrophysical properties of the Los Azufres andesites. 1 tab., 16 figs., 4 refs.

  11. Mexican geothermal development and the future

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J.M.E.V. [Comision Federal de Electricidad, Morelia (Mexico)


    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth.

  12. World Geothermal Congress WGC-2015 (United States)

    Tomarov, G. V.; Shipkov, A. A.


    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  13. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Aminzadeh, Fred [Univ. of Southern California, Los Angeles, CA (United States); Sammis, Charles [Univ. of Southern California, Los Angeles, CA (United States); Sahimi, Mohammad [Univ. of Southern California, Los Angeles, CA (United States); Okaya, David [Univ. of Southern California, Los Angeles, CA (United States)


    The ultimate objective of the project was to develop new methodologies to characterize the northwestern part of The Geysers geothermal reservoir (Sonoma County, California). The goal is to gain a better knowledge of the reservoir porosity, permeability, fracture size, fracture spacing, reservoir discontinuities (leaky barriers) and impermeable boundaries.

  14. Silicon isotope fractionation during silica precipitation from hot-spring waters: Evidence from the Geysir geothermal field, Iceland

    NARCIS (Netherlands)

    Geilert, S.; Vroon, P.Z.; Keller, N.S.; Gudbrandsson, S.; Stefánsson, A.; van Bergen, M.J.


    This study aims to explore the extent and controls of silicon isotope fractionation in hot spring systems of the Geysir geothermal area (Iceland), a setting where sinter deposits are actively formed. The δ30Si values of dissolved silica measured in the spring water and sampling sites along

  15. Silicon isotope fractionation during silica precipitation from hot-spring waters : Evidence from the Geysir geothermal field, Iceland

    NARCIS (Netherlands)

    Geilert, Sonja; Vroon, Pieter Z.; Keller, Nicole S.; Gudbrandsson, Snorri; Stefánsson, Andri; van Bergen, Manfred J.


    This study aims to explore the extent and controls of silicon isotope fractionation in hot spring systems of the Geysir geothermal area (Iceland), a setting where sinter deposits are actively formed. The δ30Si values of dissolved silica measured in the spring water and sampling sites along

  16. Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository

    Energy Technology Data Exchange (ETDEWEB)

    Bruton, C.J.; Glassley, W.E.; Meike, A.


    The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs.

  17. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters


    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  18. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.


    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  19. Estimation and monitoring heat discharge rates using Landsat ETM+ thermal infrared data: a case study in Unzen geothermal field, Kyushu, Japan (United States)

    Mia, Md. B.; Fujimitsu, Yasuhiro; Bromely, Chris J.


    The Unzen geothermal field, our study area is active fumaroles, situated in Shimabara Peninsula of Kyushu Island in Japan. Our prime objectives were (1) to estimate radiative heat flux (RHF), (2) to calculate approximately heat discharge rate (HDR) using the relationship of radiative heat flux with the total heat loss derived from two geothermal field studies and (3) finally, to monitor RHF as well as HDR in our study area using seven sets of Landsat 7 ETM+ images from 2000 to 2009. We used the NDVI (Normalized differential vegetation index) method for spectral emissivity estimation, the mono-window algorithm for land surface temperature (LST) and the Stefan-Boltzmann equation analyzing those satellite TIR images for RHF. We obtained a desired strong correlation of LST above ambient with RHF using random samples. We estimated that the maximum RHF was about 251 W/m2 in 2005 and minimum was about 27 W/m2 in 2001. The highest total RHF was about 39.1 MW in 2005 and lowest was about 12 MW in 2001 in our study region. We discovered that the estimated RHF was about 15.7 % of HDR from our studies. We applied this percentage to estimate heat discharge rate in Unzen geothermal area. The monitoring results showed a single fold trend of HDR from 2000 to 2009 with highest about 252 MW in 2005 and lowest about 78 MW in 2001. In conclusion, TIR remote sensing is thought as the best option for monitoring heat losses from fumaroles with high efficiency and low cost.

  20. Geothermal initiatives in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Hanold, R.J.; Loose, V.W.; Laughlin, A.W.; Wade, P.E.


    The US Agency for International Development is supporting a new project in energy and resources exploitation for Central America. One of the largest components of the project involves exploration and reservoir development investigations directed at enhancing the production of electricity from the region's geothermal resources. An assessment of the geothermal resources of Honduras is in progress, and interesting geothermal regions in the Guanacaste Province of Costa Rica are being explored. Well-logging activities are in progress in the production wells at the Miravalles geothermal field in Costa Rica, and preparations are being made for logging critical wells at Ahuachapan in El Salvador. A self-contained logging truck, complete with high-temperature logging cable and logging tools designed for geothermal service, is being fabricated and will be made available for dedicated use throughout Central America. Geochemical and isotopic analyses of water samples collected in Panama are being evaluated to select a high-priority geothermal site in that country. Application of low- and medium-enthalpy geothermal fluids for industrial and agricultural processes is being investigated in Guatemala.

  1. Evolution of Rotations in the Fish Creek Vallecito Basin, Western Salton Trough, CA (United States)

    Housen, B. A.; Dorsey, R. J.; Janecke, S. U.; Axen, G. J.


    Rocks in the Western Salton Trough region record the history of slip on the transtensional West Salton detachment fault and initiation of younger strike-slip faults in this plate boundary zone. Spatial and temporal patterns of vertical axis rotations as determined by paleomagnetism can be used to provide valuable constraints on the structural-tectonic evolution of this area. Prior work includes the magnetostratigraphy of Plio-Pleistocene sedimentary rocks in the Fish Creek-Vallecito Basin (FCVB) (Opdyke et al., 1977; Johnson et al., 1983), who found that these rocks contain a complete record of geomagnetic field reversals spanning Pliocene-Pleistocene time. Johnson et al. (1983) also concluded that the FCVB had undergone 35° of CW rotation during the past 0.9 Ma. We resampled and reanalyzed their section, and sampled additional sedimentary and plutonic rocks in the Western Salton Trough in order to better document the history of vertical axis rotation recorded by these rocks. Results from 29 sites in the FCVB have well-defined magnetizations with two components. The first removed component in all samples is unblocked between 90 and 220 °C, and the second-removed components are unblocked between 300 and 590 °C. The second-removed components have either normal or reversed polarity. Sites from the Diablo Fm are predominantly reversed and have a mean of D = 204, I = -48.3, k = 37, α95 = 12.7°, N = 5. Sites from the middle of the section (Olla and Tapiado Fms) are predominantly normal and have a mean of D = 8.1, I = 48, k = 32, α95= 8.7°, N = 10. Sites from the upper portion of the section (Hueso Fm) have predominantly reversed polarity with means of D = 179.6, I = -43.4, k = 82, α95 = 10.2°, N = 4. Results from weakly-magnetized and deformed rocks of the La Posta pluton, on the south side of Whale Peak, have well-defined magnetizations with a group mean direction of D = 16.3, I = 37.3, k = 44, α95 = 7.4°, N = 10. The stratigraphic distribution of declination


    Directory of Open Access Journals (Sweden)

    Andrey Vyacheslavovich Ishin


    Full Text Available In the article the state of international cooperation is analysed in the field of energy in Black Sea besseyne. Problems and prospects of development of power communications, their influence, are examined on the level of international stability.

  3. Sea Turtle Navigation and the Detection of Geomagnetic Field Features (United States)

    Lohmann, Kenneth J.; Lohmann, Catherine M. F.

    The lives of sea turtles consist of a continuous series of migrations. As hatchlings, the turtles swim from their natal beaches into the open sea, often taking refuge in circular current systems (gyres) that serve as moving, open-ocean nursery grounds. The juveniles of many populations subsequently take up residence in coastal feeding areas that are located hundreds or thousands of kilometres from the beaches on which the turtles hatched; some juveniles also migrate between summer and winter habitats. As adults, turtles periodically leave their feeding grounds and migrate to breeding and nesting regions, after which many return to their own specific feeding sites. The itinerant lifestyle characteristic of most sea turtle species is thus inextricably linked to an ability to orient and navigate accurately across large expanses of seemingly featureless ocean.In some sea turtle populations, migratory performance reaches extremes. The total distances certain green turtles (Chelonia mydas) and loggerheads (Caretta caretta) traverse over the span of their lifetimes exceed tens of thousands of kilometres, several times the diameter of the turtle's home ocean basin. Adult migrations between feeding and nesting habitats can require continuous swimming for periods of several weeks. In addition, the paths of migrating turtles often lead almost straight across the open ocean and directly to the destination, leaving little doubt that turtles can navigate to distant target sites with remarkable efficiency.

  4. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)



    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  5. Geothermal Technologies Program: Utah

    Energy Technology Data Exchange (ETDEWEB)


    Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

  6. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  7. The National Geothermal Energy Research Program (United States)

    Green, R. J.


    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  8. Magnetotelluric Investigation of Structures Related to a Geothermal Anomaly in the Buckman Well field in the Rio Grande Rift, New Mexico (United States)

    Jones, D.; Chu, S.; McCormack, K.; Barghouty, L. K.; Mostafanejad, A.; Lasscock, B.; Bedrosian, P.; Pellerin, L.


    High borehole temperature gradients have been measured over short spatial scales in the Buckman Well Field located within the Espanola Basin of the Rio Grande Rift, New Mexico. The proximity of the well field to the young Caja del Rio volcanic plateau prompted a study undertaken by the Summer of Applied Geophysical Experience (SAGE) program to uncover structure related to this geothermal anomaly. The localized nature of this geothermal anomaly is suggested to be indicative of a local controlling structure as opposed to a more regional structure. Two-dimensional (2-D) models were constructed using magnetotelluric (MT) and audiomagnetotelluric (AMT) data acquired during 2011-13 seasons of the SAGE field program. Geoelectric strike, being important in determining whether an optimal survey design was employed for 2-D MT inverse modeling, was determined from Swift';s formula, which is subject to galvanic distortion. The geoelectric strike direction obtained from a phase tensor analysis, unaffected by such distortion, generally agreed with the established geological strike of the region. The phase tensor analysis shows predominantly 2-D behavior, although some three-dimensional (3-D) character is observed in the low-frequency MT data. An independent statistical metric developed at SAGE confirms these findings. This observation could be reflected as a conductive anomaly found in the 2-D MT inverse model. Synthetic data were generated to test the sensitivity of the 2-D inversion method to different layer resistivity values and faulted structures in the AMT range. Using these synthetic results to understand the inversion of field data we identify conductive horizons at 100 m and 250-300 m depth. The MT models estimate basin depth at 3-4 km in accordance with independent constraints from geologic mapping, gravity models and seismic imaging. Variations in basement topography correlate to some degree with previously proposed structural features elsewhere beneath the Caja del

  9. Lichens as biological monitors in the Los Azufres geothermal field, Michoacan, Mexico; Liquenes como indicadores biologicos en el campo geotermico Los Azufres, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Peralta, Marlene; Chavez Carmona, Arturo [Universidad Michoacana de San Nicolas de Hidalgo, Morelia (Mexico)


    The results obtained in the monitoring of the atmospheric emissions of the Los Azufres geothermal field in Michoacan State, Mexico utilizing lichens as monitors of the presence of sulphur and arsenic, at the areas near geothermal sites, both under evaluation and production, are presented. The results are based on symptoms which included: chlorosis, necrosis, brown and reddish spots, loss of adherence to substrate, thalli disintegration and disappearance of sensitive species; and also on the amounts of sulphur and arsenic contained in the lichens thallus. [Espanol] Se presentan los resultados obtenidos en el monitoreo de las emisiones atmosfericas del campo geotermico Los Azufres, Michoacan, Mexico en el que se utilizaron liquenes como indicadores de la presencia de azufre y arsenico, en las areas cercanas a los sitios de pozos geotermicos tanto en evaluacion como en produccion. Los resultados estan basados en sintomas que incluyen clorosis, necrosis, manchas cafes y rojizas, perdida de adherencia al sustrato, desintegracion del talo y desaparicion de especies sensibles; asi como en los contenidos de azufre y arsenico en los talos liquenicos.

  10. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.


    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  11. Stanford geothermal program. Final report, July 1990--June 1996

    Energy Technology Data Exchange (ETDEWEB)



    This report discusses the following: (1) improving models of vapor-dominated geothermal fields: the effects of adsorption; (2) adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA; (3) optimizing reinjection strategy at Palinpinon, Philippines based on chloride data; (4) optimization of water injection into vapor-dominated geothermal reservoirs; and (5) steam-water relative permeability.

  12. Understanding the Geodynamic Role of Structural Elements and their Influence on (Paleo)Fluid Flow at the Licancura Geothermal Field, northern Chile (United States)

    Aron, F.; Veloso, E. E.; Camus, E.; Morata, D.; Arancibia, G.; Del Valle, F.; Cembrano, J. M.


    The southern part of the Central Andean Volcanic Zone, undergoing compression arising from the plate convergence, hosts a series of potential geothermal fields. Regional surveys suggest a genetic link between arc-parallel and arc-oblique structural elements (e.g. cataclasites, hydrothermal breccia, fault veins and veins) and mineral alteration patterns. Remote sensing analyses of the Licancura-Camiña area show a strong mineral alteration pattern, most probably resulting from an increased heat and fluid flow. We carried a detailed field survey and log the orientation, kinematics and associated mineral species for a variety of structural elements, aiming to stablish a relation between types of structural elements, stress fields, and mineral occurrences in the development of a geothermal field. In the field at Licancura, NW- and NNE-to-NE-striking structural elements display right- and left-lateral, and thrust displacements as they cut Miocene-Pliocene(?) volcaniclastic rocks. Structural elements show evidence of fluid emplacement as particular hydrothermal mineral assemblages (i.e. epidote) are part of the matrix or the filling material. Estimation of stress fields indicates three different regimes. The obtained strike-slip transpressional solution likely represents the accommodation of the shear component of the far-stress field imposed by the plate convergence. Reverse stress field solutions indicate NE- and NNW-trending compression and subvertical tension, likely due to plate convergence and local accommodation, respectively. The common NE-trending orientation of the s1 axis for the strike-slip and one of the reverse stress field solutions argues that some NW-striking thrust faults may be reactivated former strike-slip faults. Multiple statistical clustering of the poles to veins is consistent with orientation clusters defined by mineral associations. Estimations of the orientation of the s3 axes from vein clusters are consistent with those obtained from shear

  13. Federal Geothermal Research Program Update - Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Laney


    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  14. Federal Geothermal Research Program Update Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)


    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently

  15. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)


    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  16. A preliminary interpretation of gas composition in the CP IV sector wells, Cerro Prieto geothermal field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Reyes, Rosa Maria; Arellano Gomez, Victor M; Portugal Marin, Enrique [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Morelos (Mexico)]. E-mail:; Perez Hernandez, Alfredo; Rodriguez Rodriguez, Marco Helio; Leon Vivar, Jesus de [Comision Federal de Electricidad, Residencia General Cerro Prieto, B.C. (Mexico)


    To increase the electrical generation capacity of the Cerro Prieto geothermal field from 620 MW to 720 MW, the Cerro Prieto IV (CP IV) sector of the field was developed in the NE portion of the exploited field. Fourteen new wells have been drilled there since 2000. The wells in CP IV zone produce two-phase fluids at wellhead with heterogeneous steam fraction characteristics: at the central zone and towards the NW, the wells are liquid-dominated while those towards the E and S produce a relatively high steam fraction. This work studies the gas compositions of produced fluids to obtain reservoir parameters such as temperature and steam fraction and identify different sources of fluids in the wells. A method was used based on the Fischer Tropsch reaction and H{sub 2}S equilibria with pyrite-pyrrhotite as a mineral buffer (FT-HSH3). The results for the natural state showed the presence of fluids with reservoir temperatures from 275 to 310 degrees Celsius and excess steam values from -1 to 50%. Data are aligned in a FT-HSH3 trend, suggesting that the well discharges consist of a mixture in different proportions of the two end members. One seems to be a liquid with a temperature of over 300 degrees Celsius with negative or negligible excess steam. The other seems to be a two-phase fluid with a temperature of about 275 degrees Celsius and an excess steam fraction of about 0.5. According to the data for single wells and depending on the production conditions of the wells, reservoir fluid mixtures could occur in different proportions of liquid and steam. Data for 2005 that included wells drilled after 2000 suggest the presence of a steam phase in the reservoir. The steam could be generated with the boiling of deep reservoir fluid from a pressure drop. The mixing trend obtained for the natural state was also seen for 2005 data but lower temperatures (from 265 to 295 degrees Celsius) were obtained compared with those for natural conditions. The entry of lower

  17. Energy and Exergy Analysis of Kalina Cycle for the Utilization of Waste Heat in Brine Water for Indonesian Geothermal Field

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin


    Full Text Available The utilization of waste heat in a power plant system—which would otherwise be released back to the environment—in order to produce additional power increases the efficiency of the system itself. The purpose of this study is to present an energy and exergy analysis of Kalina Cycle System (KCS 11, which is proposed to be utilized to generate additional electric power from the waste heat contained in geothermal brine water available in the Lahendong Geothermal power plant site in North Sulawesi, Indonesia. A modeling application on energy and exergy system is used to study the design of thermal system which uses KCS 11. To obtain the maximum power output and maximum efficiency, the system is optimized based on the mass fraction of working fluid (ammonia-water, as well as based on the turbine exhaust pressure. The result of the simulation is the optimum theoretical performance of KCS 11, which has the highest possible power output and efficiency. The energy flow diagram and exergy diagram (Grassman diagram was also presented for KCS 11 optimum system to give quantitative information regarding energy flow from the heat source to system components and the proportion of the exergy input dissipated in the various system components.

  18. Resistivity During Boiling in the SB-15-D Core from the Geysers Geothermal Field: The Effects of Capillarity

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.; Duba, A.; Bonner, B.; Kasameyer, P.


    In a laboratory study of cores from borehole SB-15-D in The Geysers geothermal area, we measured the electrical resistivity of metashale with and without pore-pressure control, with confining pressures up to 100 bars and temperatures between 20 and 150 C, to determine how the pore-size distribution and capillarity affected boiling. We observed a gradual increase in resistivity when the downstream pore pressure or confining pressure decreased below the phase boundary of free water. For the conditions of this experiment, boiling, as indicated by an increase in resistivity, is initiated at pore pressures of approximately 0.5 to 1 bar (0.05 to 0.1 MPa) below the free-water boiling curve, and it continues to increase gradually as pressure is lowered to atmospheric. A simple model of the effects of capillarity suggests that at 145 C, less than 15% of the pore water can boil in these rocks. If subsequent experiments bear out these preliminary observations, then boiling within a geothermal reservoir is controlled not just by pressure and temperature but also by pore-size distribution. Thus, it may be possible to determine reservoir characteristics by monitoring changes in electrical resistivity as reservoir conditions change.

  19. Development of oil and gas fields in the Arctic seas and other Russian offshore areas

    Directory of Open Access Journals (Sweden)

    Bogoyavlensky V. I.


    Full Text Available The results of development of the Arctic and other Russian seas oil and gas fields have been presented. The state of the offshore seismic exploration and drilling fleets has been analysed. Seismic monitoring has been recommended for efficiency and safety of the offshore fields development increasing. Main directions of Russian oil and gas industry development have been determined

  20. Stanford Geothermal Program

    Energy Technology Data Exchange (ETDEWEB)

    R. Horn


    Reliable measurement of steam-water relative permeability functions is of great importance for geothermal reservoir performance simulation. Despite their importance, these functions are poorly known due to the lack of fundamental understanding of steam-water flows, and the difficulty of making direct measurements. The Stanford Geothermal Program has used an X-ray CT (Computer Tomography) scanner to obtain accurate saturation profiles by direct measurement. During the last five years, the authors have carried out experiments with nitrogen-water flow and with steam-water flow, and examined the effects of heat transfer and phase change by comparing these sets of results. In porous rocks, it was found that the steam-water relative permeabilities follow Corey type relationships similar to those in nitrogen-water flow, but that the irreducible gas phase saturation is smaller for steam than for nitrogen. The irreducible saturations represent substantial fractions of the recoverable energy in place yet are hard to determine in the field. Understanding the typical magnitude of irreducible saturations will lead to a much clearer forecast of geothermal field performance. In fracture flow, indirect measurements suggested that the relative permeabilities follow a linear (or ''X-curve'') behavior - but there is still considerable uncertainty in the knowledge of this behavior.

  1. Morphodynamics of Wadden Sea Areas – Field Measurements and Modeling

    Directory of Open Access Journals (Sweden)

    Thorsten Albers


    Full Text Available The Wadden Sea areas of the German North Sea coast are affected by intense morphodynamics. Especially in the mouths of the estuaries sedimentation and erosion occur on different temporal and spatial scales and therefore challenge the decision-makers. To satisfy the requirements, which modern maritime traffic demands, a sustainable concept for sediment management has to be developed to grant an economic and ecologic balanced system. To evaluate different actions and their effects, e.g. by means of numerical models, an improved knowledge of morphodynamic processes on tidal flats is required. The Institute of River and Coastal Engineering at the Hamburg University of Technology runs detailed measurements to collect hydrodynamic and morphodynamic data of tidal flats in the estuary Elbe, that is the approach to the port of Hamburg. Water levels, flow and wave parameters and concentrations of suspended sediments are recorded in high resolution. Furthermore, the bathymetry is determined in frequent intervals with a multi-beam echo sounder.

  2. Imperial Valley Environmental Project: progress report

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, P.L.; Anspaugh, L.R. (eds.)


    Progress is reported in six areas of research: air quality, water quality, ecosystem quality, subsidence and seismicity, socioeconomic effects, and integrated assessment. A major goal of the air quality element is to evaluate the rate of emission of H/sub 2/S, CO/sub 2/, H/sub 2/, N/sub 2/, CH/sub 4/, and C/sub 2/H/sub 6/ from the operation of the geothermal loop experimental facility at Niland. Concentrations of H/sub 2/S were found to vary between 1500 to 4900 ppM by volume at the Niland facility. To distinguish between geothermal fluids and other waters, extensive sampling networks were established. A major accomplishment was the installation of a high-resolution subsidence-detection network in the Salton Sea geothermal field area, centered on the test facility at Niland. A major effort went into establishing a background of data needed for subsequent impact assessments related to socioeconomic issues raised by geothermal developments. Underway are a set of geothermal energy scenarios that include power development schedules, technology characterizations, and considerations of power-plant-siting criteria. A Gaussian air-pollution model was modified for use in preliminary air-quality assessments. A crop-growth model was developed to evaluate impacts of gases released from geothermal operations on various agricultural crops. Work is also reported on the legal analysis of geothermal legislation and the legal aspects of water-supply utilization. Remote sensing was directed primarily at the Salton Sea, Heber, Brawley, and East Mesa KGRAs. However, large-format photography of the entire Salton Trough was completed. Thermal and multispectral imaging was done for several selected sites in the Salton Sea KGRA. (JGB)

  3. Crustal deformation and gravity changes during the first ten years of exploitation of the new Travale-Radicondoli geothermal field, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Geri, G.; Marson, I.; Rossi, A.; Toro, B.


    The results of precise levelling measurements on a specially constructed network of benchmarks in the Travale geothermal area (Tuscany, Italy) revealed that the central part of this area is subsiding and that the average rate of subsidence in the period 1973-1983 was 20-25 mm/year. Three series of horizontal distance measurements were carried out (1980, 1981, 1982) to monitor variations in the coordinates of the bases of a horizontal control net. The variations noted in this time interval range between 13 and 36 mm, slightly exceeding the semi-axis values of their error ellipses. A series of gravity measurements was carried out annually between 1979 and 1982 on a network of gravity benchmarks coinciding with part of the topographic benchmarks. The g variations observed reached a maximum of 40 Gal. A tentative correlation of these data with field exploitation data indicates a possible means of interpreting the variations observed during these surveys.

  4. Meteorological fields variability over the Indian seas in pre and ...

    Indian Academy of Sciences (India)

    In this study, the possible linkage between summer monsoon rainfall over India and surface meteorological fields (basic fields and heat budget components) over monsoon region (30° E-120°E, 30°S-30°N) during the pre-monsoon month of May and summer monsoon season (June to September) are examined. For this ...

  5. Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331). (United States)

    Yanagawa, Katsunori; Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken


    The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Rock specific hydraulic fracturing and matrix acidizing to enhance a geothermal system — Concepts and field results (United States)

    Zimmermann, Günter; Blöcher, Guido; Reinicke, Andreas; Brandt, Wulf


    Enhanced geothermal systems (EGS) are engineered reservoirs developed to extract economic amounts of heat from low permeability and/or porosity geothermal resources. To enhance the productivity of reservoirs, a site specific concept is necessary to actively make reservoir conditions profitable using specially adjusted stimulation treatments, such as multi fracture concepts and site specific well path design. The results of previously performed stimulation treatments in the geothermal research well GtGrSk4/05 at Groß Schönebeck, Germany are presented. The reservoir is located at a 4100-4300 m depth within the Lower Permian of the NE German Basin with a bottom-hole temperature of 150 °C. The reservoir rock is classified by two lithological units from bottom to top: volcanic rocks (andesitic rocks) and siliciclastics ranging from conglomerates to fine-grained sandstones (fluvial sediments). The stimulation treatments included multiple hydraulic stimulations and an acid treatment. In order to initiate a cross-flow from the sandstone layer, the hydraulic stimulations were performed in different depth sections (two in the sandstone section and one in the underlying volcanic section). In low permeability volcanic rocks, a cyclic hydraulic fracturing treatment was performed over 6 days in conjunction with adding quartz in low concentrations to maintain a sustainable fracture performance. Flow rates of up to 150 l/s were realized, and a total of 13,170 m 3 of water was injected. A hydraulic connection to the sandstone layer was successfully achieved in this way. However, monitoring of the water level in the offsetting well EGrSk3/90, which is 475 m apart at the final depth, showed a very rapid water level increase due to the stimulation treatment. This can be explained by a connected fault zone within the volcanic rocks. Two gel-proppant treatments were performed in the slightly higher permeability sandstones to obtain long-term access to the reservoir rocks. During each

  7. Remote sensing in the study of the perspective of enlargement of the geothermal area of Los Azufres field, Michoacan, Mexico; Utilizacion de la teledeteccion para estudiar las perspectivas de ampliacion de la zona geotermica de Los azufres, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Antaramian H, Eduardo; Garduno M, Victor Hugo [UMSNH, (Mexico)


    The results are presented of a remote sensing study in Los Azufres Geothermal field. Data of a volcanological study have been used. Standing out is the importance of a resurgence phenomenon in the volcanic evolution of the caldera of Los Azufres and its observed relationships with thermal anomalies outsides the area of well known geothermal resources in the field. On the basis of these data, we suggest additional remote sensing studies in different geothermal areas to identify blind resources or large thermal anomaly outsides the well know ones in developed geothermal fields. [Spanish] En este trabajo se presentan los resultados de un estudio de teledeteccion en la zona geotermica de Los Azufres, Michoacan, Mexico. En el se han utilizado los datos obtenidos de un estudio volcanologico que resalta la importancia de un fenomeno de resurgencia en la evolucion volcanologica de la Caldera de los Azufres y su relacion con anomalias termicas fuera de la zona de explotacion del campo geotermico. Con base en estos resultados se propone que sean retomados los datos de diferentes campos geotermicos con la finalidad de hacer estudios de exploracion mediante teledeteccion en campos ciegos o bien en aquellos ya desarrollados que presentan anomalias termicas mayores fuera de las ya conocidas.

  8. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra


    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  9. Sperry Low Temperature Geothermal Conversion System, Phase I and Phase II. Volume IV. Field activities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, C.


    This volume describes those activities which took place at the Sperry DOE Gravity Head plant site at the East Mesa Geothermal Reservoir near Holtville, California between February 1980, when site preparation was begun, and November 1982, when production well 87-6 was permanently abandoned. Construction activities were terminated in July 1981 following the liner collapse in well 87-6. Large amounts of program time manpower, materials, and funds had been diverted in a nine-month struggle to salvage the production well. Once these efforts proved futile, there was no rationale for continuing with the site work unless and until sufficient funding to duplicate well 87-6 was obtained. Activities reported here include: plant construction and pre-operational calibration and testing, drilling and completion of well 87-6, final repair effort on well 87-6, abandonment of well 87-6, and performance evaluation of well 87.6. (MHR)

  10. Alaska geothermal bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)


    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  11. Evidence for tectonic, lithologic, and thermal controls on fracture system geometries in an andesitic high-temperature geothermal field (United States)

    Massiot, Cécile; Nicol, Andrew; McNamara, David D.; Townend, John


    Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9-30 mm observed in BHTV logs, and 1-3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (˜5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ˜5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.

  12. Session: Geopressured-Geothermal

    Energy Technology Data Exchange (ETDEWEB)

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane


    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  13. Age and thermal history of the Geysers plutonic complex (felsite unit), Geysers geothermal field, California: A 40Ar/39Ar and U-Pb study (United States)

    Dalrymple, G.B.; Grove, M.; Lovera, O.M.; Harrison, T.M.; Hulen, J.B.; Lanphere, M.A.


    Sixty-nine ion microprobe spot analyses of zircons from four granite samples from the plutonic complex that underlies the Geysers geothermal field yield 207Pb/206Pb vs. 238U/206Pb concordia ages ranging from 1.13 ?? 0.04 Ma to 1.25 ?? 0.04 (1??) Ma. The weighted mean of the U/Pb model ages is 1.18 ?? 0.03 Ma. The U-Pb ages coincide closely with 40Ar/39Ar age spectrum plateau and 'terminal' ages from coexisting K-feldspars and with the eruption ages of overlying volcanic rocks. The data indicate that the granite crystallized at 1.18 Ma and had cooled below 350??C by ~0.9-1.0 Ma. Interpretation of the feldspar 40Ar/39Ar age data using multi-diffusion domain theory indicates that post-emplacement rapid cooling was succeeded either by slower cooling from 350??to 300??C between 1.0 and 0.4 Ma or transitory reheating to 300-350??C at about 0.4-0.6 Ma. Subsequent rapid cooling to below 260??C between 0.4 and 0.2 Ma is in agreement with previous proposals that vapor-dominated conditions were initiated within the hydrothermal system at this time. Heat flow calculations constrained with K-feldspar thermal histories and the present elevated regional heat flow anomaly demonstrate that appreciable heat input from sources external to the known Geysers plutonic complex is required to maintain the geothermal system. This requirement is satisfied by either a large, underlying, convecting magma chamber (now solidified) emplaced at 1.2 Ma or episodic intrusion of smaller bodies from 1.2 to 0.6 Ma.

  14. Regional volcanic and structural study of Los Humeros, Puebla, Mexico geothermal field; Estudio regional volcanico y estructural del campo geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Hernandez, Aida [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)


    A regional volcanic and structural study focused to know the principal deformation phases and their effects in the reservoir rocks was conducted around the Los Humeros geothermal zone in Puebla, Mexico. Four stages of deformations were recognized. The oldest phase had a compressional character and acted in late Cretaceous. During Miocene and Pliocene two extensional phases affected the lithologic sequence. The youngest stage was produced by vertical deformation associated with the magmatic and hydrothermal activity of this Quaternary volcanic center. In the geothermal field zone, the fluid movements are limited by the low permeability. Although the last local deformation phase, which is probably still active, generated a reduced sector of relatively high permeability. [Espanol] Se presentan los resultados de un estudio estructural y volcanico regional que incluye la Caldera de Los Humeros, Puebla, Mexico realizado con el proposito de determinar las diferentes etapas de deformacion que la afectan, su origen, y los efectos causados en las unidades litologicas. Los resultados indican la presencia de 4 etapas de deformacion. La mas antigua, de fines del Cretacico, fue compresional y afecto la secuencia sedimentaria jurasico-cretacica. Posteriormente, en las rocas del Mioceno y Plioceno se identificaron dos etapas de deformacion regional de tipo extensional. La cuarta etapa fue de caracter local, afecto al centro volcanido de Los Humeros y se debe al empuje principalmente vertical, a sociado a fenomenos magnaticos e hidrotermales que acompanaron la actividad eruptiva de este centro. En la zona del campo geotermico el movimiento de fluidos es muy reducido debido a la baja permeabilidad global de las rocas donde se aloja el yacimiento. Sin embargo, la ultima etapa de deformacion local, que aun es activa, produjo un ligero incremento de la permeabilidad en zonas preferenciales, que actualmente controlan el movimiento de los fluidos.

  15. Assessing long-term postseismic deformation following the M7.2 4 April 2010, El Mayor-Cucapah earthquake with implications for lithospheric rheology in the Salton Trough (United States)

    Spinler, Joshua C.; Bennett, Richard A.; Walls, Chris; Lawrence, Shawn; González García, J. Javier


    The 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake provides the best opportunity to date to study the lithospheric response to a large (>M6) magnitude earthquake in the Salton Trough region through analysis of Global Positioning System (GPS) data. In conjunction with the EarthScope Plate Boundary Observatory (PBO), we installed six new continuous GPS stations in the months following the EMC earthquake to increase station coverage in the epicentral region of northern Baja California, Mexico. We modeled the pre-EMC deformation field using available campaign and continuous GPS data for southern California and northern Baja California and inferred a pre-EMC secular rate at each new station location. Through direct comparison of the pre- and post-EMC secular rates, we calculate long-term changes associated with viscoelastic relaxation in the Salton Trough region. We fit these velocity changes using numerical models employing an elastic upper crustal layer underlain by a viscoelastic lower crustal layer and a mantle half-space. Forward models that produce the smallest weighted sum of squared residuals have an upper mantle viscosity in the range 4-6 × 1018 Pa s and a less well-resolved lower crustal viscosity in the range 2 × 1019 to 1 × 1022 Pa s. A high-viscosity lower crust, despite high heat flow in the Salton Trough region, is inconsistent with felsic composition and might suggest accretion of mafic lower crust associated with crustal spreading obscured by thick sedimentary cover.

  16. Geoelectrical structure by electrical logs and Schlumberger sounding at the Akinomiya geothermal field, Akita Prefecture; Denki kenso oyobi Schlumberger ho ni yoru Akinomiya chinetsu chiiki no hiteiko kozo

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, T.; Takemoto, S.


    Based on the electrical logging data of the existed well and Schlumberger sounding data obtained in 1974, a two-dimensional inversion analysis of the specific resistance profile was conducted at the Akinomiya geothermal field, Akita Prefecture. From the electrical logging data, relationships between the geology and the specific resistance were illustrated. The specific resistance values of basement rocks showed more than 100 ohm-m, which were higher than those of the other seams. Intrusive rocks and tuffs in the basement rocks showed locally low values less than 100 ohm-m. Younger volcanic rocks showed low values around 10 ohm-m. As a result of the two-dimensional inversion analysis, the basement rocks could be detected as high specific resistance layers. Accordingly, it was considered that the basement rocks in this field can be detected as high specific resistance layers by analyzing the results of field survey sufficiently. Low specific resistance zones were observed in the shallow depth, which corresponded to the fumarolic gases. There were some layers with remarkably varied specific resistance values, which were considered to be related with alteration. 6 refs., 3 figs.

  17. Geothermal exploration technology. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)


    Progress is reported on the following programs: electrical and electromagnetic computer modeling techniques; minicomputer for in-field processing of magnetotelluric data; superconducting thin-film gradiometer and magnetometers for geophysical applications; magnetotellurics with SQUID magnetometers; controlled-source electromagnetic system; geothermal seismic field system development; Klamath Basin geothermal resource and exploration technique evaluation; Mt. Hood geothermal resource evaluation; East Mesa seismic study; seismological studies at Cerro Prieto; self-potential studies at Cerro Prieto; resistivity studies at Cerro Prieto; magnetotelluric survey at Cerro Prieto; and precision gravity studies at Cerro Prieto. (MHR)

  18. A field and numerical study of the evolution of sea-ice thickness in the Ross Sea, Antarctica, 1998-99 (United States)

    Tin, Tina; Timmermann, Ralph; Jeffries, Martin O.

    During two cruises in 1998 and 1999, we examined drift and ridging characteristics of sea ice in the Ross Sea, Antarctica. Mean ice thickness in the western Ross Sea in autumn was 0.5 m, while higher level-ice thicknesses, greater areal coverages of ridges and higher sails were found in the central and eastern Ross Sea in summer. Near the continent, ice drifted westward near the coast and turned eastward further north. We use a regional sea-ice-mixed-layer-pycnocline model to initiate backward trajectories at the time and location of field observations and examine the dynamic and thermodynamic processes that determine ice thickness along these trajectories. Model results agree with previously published field data to indicate that thermodynamic and dynamic thickening and snow-ice formation each contribute significantly to the ice mass of the summer ice field in the central and eastern Ross Sea. For first-year ice in the western Ross Sea, model results and field data both indicate that thermodynamic thickening is the dominant process that determines ice thickness, with dynamic thickening also contributing 20% to the net ice-thickening rate. However, model results fail to reproduce the prevalence of snow-ice formation that was seen in field data.

  19. City of El Centro geothermal energy utility core field experiment. Final report, February 16, 1979-November 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Province, S.G.; Sherwood, P.B.


    The City of El Centro was awarded a contract in late 1978 to cost share the development of a low to moderate temperature geothermal resource in the City. The resource would be utilized to heat, cool and provide hot water to the nearby Community Center. In December 1981, Thermal 1 (injector) was drilled to 3970 feet. In January 1982, Thermal 2 (producer) was drilled to 8510 feet. Before testing began, fill migrated into both wells. Both wells were cleaned out. A pump was installed in the producer, but migration of fill again into the injector precluded injection of produced fluid. A short term production test was undertaken and results analyzed. Based upon the analysis, DOE decided that the well was not useful for commercial production due to a low flow rate, the potential problems of continued sanding and gasing, and the requirement to lower the pump setting depth and the associated costs of pumping. There was no commercial user found to take over the wells. Therefore, the wells were plugged and abandoned. The site was restored to its original condition.

  20. MT2-D inversion analysis in Kakkonda geothermal field; Kakkonda chinetsu chiiki ni okeru MT ho nijigen kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K.; Takasugi, S. [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Miyazaki, S. [Japan Metals and Chemicals Co. Ltd., Tokyo (Japan); Uchida, T. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)


    Data, collected from an MT method-assisted survey conducted in the Kakkonda geothermal region in 1987, was re-examined, and a new structure was found. The review was carried out by use of a 2D analysis in the TM mode. According to the 1D analysis of 1987 and the geological data gathered then, it is estimated that the resistivity structure of this region runs in the northwest-southeast direction. A northeast-southwest traverse line was set for this analysis, orthogonal to the strike, and the impedance at each observation spot was caused to rotate to this direction across the whole range of frequency. Furthermore, in 1994-95, surveys were conducted using arrayed CSMT/MT methods. All these sum up to indicate that a high-resistivity region extends northwest in the southwestern part of the Kakkonda river but that there exists a low-resistivity region of several 10 Ohm m centering about the B traverse line. The high-resistivity region deep in the ground being the target of excavation in the Kakkonda region, to collect knowledge about this high-resistivity is important, and here the effectiveness of the 2d analysis has been verified. 5 refs., 11 figs.

  1. Slimhole drilling for geothermal exploration

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T. [Sandia National Labs., Albuquerque, NM (United States). Geothermal Research Dept.


    Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration, made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research. Sandia negotiated an agreement with Far West Capital, which operates the Steamboat Hills geothermal field, to drill and test an exploratory slimhole on their lease. The principal objectives for the slimhole were development of slimhole testing methods, comparison of slimhole data with that from adjacent production-size wells, and definition of possible higher-temperature production zones lying deeper than the existing wells.

  2. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence


    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  3. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong


    Full Text Available The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive the geothermal system. There is evidence that geothermal fluid deeply circulated within the fracture zone and was heated by a deeply located body of hot rock. The geothermal reservoir of the Chingshui geothermal field might be related to the fracture zone of the Chingshuihsi fault. It is bounded by the C-fault in the north and Xiaonanao fault in the south. Based on information obtained from geophysical interpretations and well logs, a 3-D geothermal conceptual model is constructed in this study. Further, the geothermal reservoir is confined to an area that is 260 m in width, N21°W, 1.5 km in length, and has an 80° dip toward the NE. Ahigh-temperature zone is found in the SE region of the reservoir, which is about 500 m in length; this zone is located near the intersection of the Chingshuihsi and Xiaonanao faults. An area on the NE side of the high-temperature zone has been recommended for the drilling of production wells for future geothermal development.

  4. Geothermal pilot study final report: creating an international geothermal energy community

    Energy Technology Data Exchange (ETDEWEB)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)


    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

  5. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G. [Douglas Energy Company, Placentia, CA (United States)


    A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor and replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100

  6. Evaluation of CO2-Fluid-Rock Interaction in Enhanced Geothermal Systems: Field-Scale Geochemical Simulations

    Directory of Open Access Journals (Sweden)

    Feng Pan


    Full Text Available Recent studies suggest that using supercritical CO2 (scCO2 instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS may improve energy extraction. While CO2-fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO2 as a working fluid (“CO2-EGS” compared to those for water as a working fluid (H2O-EGS are needed. The primary objectives of this study are (1 constraining geochemical processes associated with CO2-fluid-rock interactions under the high pressures and temperatures of a typical CO2-EGS site and (2 comparing geochemical impacts of CO2-EGS to geochemical impacts of H2O-EGS. The St. John’s Dome CO2-EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO2-EGS were larger compared to H2O-EGS, suggesting that using scCO2 as a working fluid may enhance EGS heat extraction. More aqueous CO2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO2 as a working fluid. It indicates that geochemical processes of scCO2-rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.

  7. Pile monitoring of two South China Sea platforms, Xijiang Field

    Energy Technology Data Exchange (ETDEWEB)

    Somehsa, P.; Doyle, E.H.; Ming, C.; Pua, C.P.; Miner, R.F.; Thomas, R.L.


    Pile monitoring, using strain and acceleration gages mounted near the pile top during driving, was carried out during the installation of two offshore platforms in the xijiang Field, in about 325 ft water depth off the southern coast of China. The soils in the area are generally normally consolidated clays intersected by dense sand strata. The measurements assisted the contractor to identify hammer problems and improve hammer performance, and assisted the owner in checking pile adequacy and wave equation analyses. Post installation analysis of the data using signal matching techniques resulted in insights about damping and quake factors appropriate to the software, as well as soil resistances to driving (SRD) during continuous driving and after delays in the mixed sand and clay profiles encountered in this area. The findings should aid future installation planning in this area. This monitoring effort reflects a growing recognition of the value of dynamic monitoring to engineers and installation contractors involved with construction control or assessment of foundation adequacy, and for supplemental information in the event of unexpected conditions.

  8. Borehole-explosion and air-gun data acquired in the 2011 Salton Seismic Imaging Project (SSIP), southern California: description of the survey (United States)

    Rose, Elizabeth J.; Fuis, Gary S.; Stock, Joann M.; Hole, John A.; Kell, Annie M.; Kent, Graham; Driscoll, Neal W.; Goldman, Mark; Reusch, Angela M.; Han, Liang; Sickler, Robert R.; Catchings, Rufus D.; Rymer, Michael J.; Criley, Coyn J.; Scheirer, Daniel S.; Skinner, Steven M.; Slayday-Criley, Coye J.; Murphy, Janice M.; Jensen, Edward G.; McClearn, Robert; Ferguson, Alex J.; Butcher, Lesley A.; Gardner, Max A.; Emmons, Iain; Loughran, Caleb L.; Svitek, Joseph R.; Bastien, Patrick C.; Cotton, Joseph A.; Croker, David S.; Harding, Alistair J.; Babcock, Jeffrey M.; Harder, Steven H.; Rosa, Carla M.


    detailed images we need for earthquake hazard assessment. Air gun bursts, generated in the Salton Sea along extensions of our onshore seismic lines, also were utilized as sound-wave sources. Temporary deployments of portable land seismometers, as well as ocean-bottom seismometers (OBSs) on the floor of the Salton Sea, recorded the energy from the land shots and air gun bursts. SSIP is similar to the Los Angeles Regional Seismic Experiments of 1994 and 1999 (LARSE I and II, respectively; Murphy and others, 1996; Fuis and others, 2001). The LARSE surveys demonstrated that the USGS and collaborators can safely and effectively conduct seismic imaging surveys in urban and nonurban areas, on lands owned and/or managed by many different types of agencies and entities. Information was produced that could not have been obtained any other way, and this information was key to changing the leading ideas about earthquake hazards at that time in the Los Angeles region. These surveys produced no significant environmental impact or damage to structures, and they did not trigger earthquakes.

  9. Spatial analysis of noise emission at the Los Azufres geothermal field, Mich.; Analisis espacial de emision de ruido en el campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Camarena Magana, Emilio; Ordaz Mendez, Christian A. [Comision Federal de Electricidad, Residencia de Los Azufres, Morelia, Michoacan (Mexico)]. E-mail:


    To verify noise emissions from the usual activities in an operating geothermal field, noise measurements were carried out in a 4.2 km{sup 2} area in the southern zone of the Los Azufres, Mich., geothermal field. There are seven production wells operating here and three abandoned wells. The average noise emission in the southern zone was 36.5 decibels (dB), regarded as the natural reading of environmental-noise emission. In the Christmas (valves) tree for operating production wells, the noise ranges from 70.9 to 91.7 dB, while in open discharging valves for steam-pipes, the noise can reach 118 dB. In Mexico the maximum permissible limit of noise on the periphery of a property is 68 dB in daytime and 65 dB at night. Based on measurements made at the periphery of lots where the geothermal wells are located, four out of seven production wells measured do not exceed the maximum allowable level, while the other three seem to exceed it. However no definite limits exist for the lots. It is recommended that the measurement points as indicated by the official standard in environmental matters be re-established, which will enable noise emissions by several wells that have exceeded the permissible limit, to actually fall within it. [Spanish] Se realizaron mediciones sonicas en un area de 4.2 km{sup 2} localizada en la zona sur del campo geotermico de Los Azufres, Mich., a fin de verificar la emision de ruido asociada a las actividades usuales en un campo geotermico en operacion. En esta area se encuentran siete pozos productores en operacion y tres pozos abandonados. La emision promedio de ruido en estos ultimos fue de 36.5 decibeles (dB), considerandose como la condicion natural de emision de ruido ambiental. En el arbol de valvulas de los pozos productores en operacion el ruido va de los 70.9 a los 91.7 dB, mientras que en valvulas abiertas de descarga de vaporductos la emision puede llegar hasta los 118 dB. En Mexico el limite maximo permisible de ruido en la periferia de

  10. Some New Constraints On The Stratigraphic And Structural Setting Of The Soda Lake Geothermal Field, Churchill County, Nevada - McLACHLAN, Holly S. and FAULDS, James E., Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV 89557 (United States)

    McLachlan, H. S.


    Our research group is currently conducting a regional survey to identify favorable structural settings of producing and prospective geothermal fields in the Great Basin. The Soda Lake geothermal field - one of the oldest consistently producing fields in this study region - is located in west-central Nevada near the heart of the Carson Sink. Producing and prospective geothermal fields in the surrounding highlands are hosted in 1) fault termination zones (Desert Queen), 2) accommodation zones (Brady's Hot Springs) and 3) fault step-overs (Desert Peak). However, the structural setting is challenging to identify at the Soda Lake field, because it lies in the central part of a large basin with no nearby bedrock exposures. The well field at Soda Lake is centered ~3.5 km NNE of the Holocene Soda Lake maar, from which it takes its name. The geothermal field was identified serendipitously during the drilling of an irrigation survey well in the early 20th century. Modern exploratory drilling at the field began in the mid-1970s and has continued sporadically to the present. There are currently more than 28 500+ m wells at and near the production site. The exceptional drilling density at Soda Lake allows for comparatively reliable correlation of stratigraphy in the subsurface below the feature-poor Carson Sink. Stratigraphy in the Soda Lake geothermal area is relatively "layer cake" at the scale of the well field. Unconsolidated sediments extend more than 1000 m below surface. The upper few hundred meters are composed of fluvial and lacustrine sediments derived from Sierran batholith source rocks. The deeper basin fill derives from more proximal mafic to felsic Miocene volcanic rocks along the basin margins. At ~450-650 m depth, basin sediments are interrupted by a 5.11 Ma trachytic basalt of restricted lateral extent and variable thickness. Most wells intercept ~50-250 m of fine lacustrine sediments below this basalt body before intercepting the basin floor. Basin floor rocks

  11. Multidisciplinary exploratory study of a geothermal resource in the active volcanic arc of Basse-Terre (Guadeloupe, Lesser Antilles) (United States)

    Navelot, Vivien; Favier, Alexiane; Géraud, Yves; Diraison, Marc; Corsini, Michel; Verati, Chrystèle; Lardeaux, Jean-Marc; Mercier de Lépinay, Jeanne; Munschy, Marc


    The GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program, "Investissements d'avenir" develops a sustainable geothermal resource in the Vieux Habitants area, 8-km south of the currently exploited Bouillante geothermal field. The Basse Terre Island is a recent volcanic arc (geothermal gradient of 70 ˚ C/km.

  12. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)


    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  13. Filling the Polar Data Gap in Sea Ice Concentration Fields Using Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Courtenay Strong


    Full Text Available The “polar data gap” is a region around the North Pole where satellite orbit inclination and instrument swath for SMMR and SSM/I-SSMIS satellites preclude retrieval of sea ice concentrations. Data providers make the irregularly shaped data gap round by centering a circular “pole hole mask” over the North Pole. The area within the pole hole mask has conventionally been assumed to be ice-covered for the purpose of sea ice extent calculations, but recent conditions around the perimeter of the mask indicate that this assumption may already be invalid. Here we propose an objective, partial differential equation based model for estimating sea ice concentrations within the area of the pole hole mask. In particular, the sea ice concentration field is assumed to satisfy Laplace’s equation with boundary conditions determined by observed sea ice concentrations on the perimeter of the gap region. This type of idealization in the concentration field has already proved to be quite useful in establishing an objective method for measuring the “width” of the marginal ice zone—a highly irregular, annular-shaped region of the ice pack that interacts with the ocean, and typically surrounds the inner core of most densely packed sea ice. Realistic spatial heterogeneity in the idealized concentration field is achieved by adding a spatially autocorrelated stochastic field with temporally varying standard deviation derived from the variability of observations around the mask. To test the model, we examined composite annual cycles of observation-model agreement for three circular regions adjacent to the pole hole mask. The composite annual cycle of observation-model correlation ranged from approximately 0.6 to 0.7, and sea ice concentration mean absolute deviations were of order 10 − 2 or smaller. The model thus provides a computationally simple approach to solving the increasingly important problem of how to fill the polar data gap. Moreover, this

  14. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)



    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  15. Mineralization associated with scale and altered rock and pipe fragments from the Berlín geothermal field, El Salvador; implications for metal transport in natural systems (United States)

    Raymond, Jasmin; Williams-Jones, Anthony E.; Clark, James R.


    Composite fragments sampled at solid collectors and drains of two-phase, re-injection, and vapour pipelines of the Berlín geothermal field, El Salvador, consist mainly of sulphide- and electrum-bearing aluminium-rich amorphous silica scale, sulphide- and electrum-bearing saponitic/vermiculitic clay from the reservoir, and altered metallic pipe linings containing As-S-bearing iron oxide-oxyhydroxide grains. Siliceous and clay-rich precipitates contain concentrations of gold and silver in excess of 180 and 8000 ppm, respectively, and appreciable concentrations of copper, lead, zinc, and antimony. Altered iron fragments contain substantial arsenic. Copper, lead, and zinc occur mainly as chalcopyrite, galena, and sphalerite, respectively, in amorphous silica and clay; near the surface, chalcopyrite transported from depth alters to bornite. Gold and silver occur mainly as electrum, which deposited with base metal sulphides in the clay precipitates, and amorphous silica at higher levels in the well. Electrum precipitates in the wells due to the rapid drop in temperature and loss of H 2S associated with boiling. The concentration of gold in vapour is ˜4 times greater than that in water from associated wellheads. This suggests that gold can be transported efficiently by vapour, and implies that such transport may be important in the formation of some hydrothermal ore deposits.

  16. Geochemical evidences of the boiling phenomena in Los Humeros geothermal field; Evidencias geoquimicas del fenomeno de ebullicion en el campo de Los Humeros

    Energy Technology Data Exchange (ETDEWEB)

    Munguia Bracamontes, Fernando; Lopez Mendiola, Juan Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)


    The geochemical behavior of the fluids in the geothermal field Los Humeros suggests the existence of a reservoir of relatively low permeability, with hydrostatic pressure gradients and thermodynamic conditions of pressure-temperature close to the boiling point in stationary conditions, that is, non-disturbed. Nevertheless, the fluid geochemistry also indicates the presence of steam under stationary conditions, mainly in the fault, fracture, fissure, etc. zones. The steam diminishes progressively as the extraction time increases, being replaced by boiling fluid. [Espanol] El comportamiento geoquimico de los fluidos en el campo geotermico de Los Humeros sugiere la existencia de un yacimiento de relativa baja permeabilidad, con gradientes de presion hidrostatica y condiciones termodinamicas de presion-temperatura cercanas al punto de ebullicion a condiciones estables; es decir, no perturbadas. Sin embargo, la geoquimica de los fluidos tambien indica la existencia de vapor bajo condiciones estables, principalmente en las zonas de fallas, fracturas, fisuras, etc. El vapor disminuye progresivamente conforme aumenta el tiempo de extraccion, siendo reemplazado por fluido en ebullicion.

  17. Environmental framework for the development of the Los Humeros, Puebla geothermal field; Contexto ambiental del desarrollo del campo geotermico de Los Humeros, Puebla

    Energy Technology Data Exchange (ETDEWEB)

    Pastrana Melchor, Eugenio J.; Fernandez Solorzano, Maria Elena; Mendoza Rangel, Ernesto; Hernandez Ayala, Cuauhtemoc [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)


    The construction, operation and maintenance of the Los Humeros, Puebla, geothermal field were undertaken in accordance with Mexican environmental regulations. The resolutions on environmental impacts, license for atmospheric pollution prevention, concession title for exploitation and use of national waters, permission for wastewater discharging services, company registration for producing dangerous wastes and fulfillment of all conditions noted in the documents show the applicable environmental laws for the project have been followed. [Spanish] La construccion, operacion y mantenimiento del campo geotermoelectrico Los Humeros, Puebla, se ha llevado a cabo dentro del marco juridico ambiental vigente en Mexico. Las resoluciones en materia de impacto ambiental, la licencia en materia de prevencion de la contaminacion de la atmosfera, el titulo de concesion para explorar, usar o aprovechar aguas nacionales, el permiso para descargar aguas residuales domesticas, el registro como empresa generadora de residuos peligrosos, y el cumplimiento de las disposiciones y condicionantes establecidos en cada uno de estos documentos, evidencian la observancia de la legislacion ambiental aplicable al proyecto.

  18. Geothermal energy in Nevada

    Energy Technology Data Exchange (ETDEWEB)


    The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

  19. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Glaspey, Douglas J.


    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  20. A Manpower Assessment of the Geothermal Industry

    Energy Technology Data Exchange (ETDEWEB)



    The authors were asked to estimate the net employment gains in the geothermal industry from 1980 to 1985 and 1990. Method was by survey. Response rates were high, so the estimates here likely reflect industry knowledge and outlooks at the start of the most active construction decade of the U.S. geothermal industry. An untitled table following Table IV-1 is of great interest because it breaks out employment requirement estimates for different phases/aspects of project development, i.e., exploration and resource assessment, exploratory drilling, production drilling, power plant construction, feed system (field piping) construction, field operation and maintenance, power plant operation and maintenance, and transmission line construction. Estimates like these are rare in the U.S. geothermal literature. While these estimates are dated, they comprise an historical economic baseline from which improvements in labor use in the geothermal industry might be constructed. (DJE 2005)

  1. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields. (United States)

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken


    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A modal plate excited by an airborne field and its consequences for SEA

    DEFF Research Database (Denmark)

    Brunskog, Jonas


    In this paper a plate excited by a diffuse airborne field is analyzed directly using a modal approach, thus including both so called forced and resonant vibrations, and the results are compared with classical Statistical Energy Analys is (SEA) results. The background is that in SEA two important...... assumptions are that 1) the subsyste ms excitation are spatially uniformly distributed and uncorrelated, and 2) the principle of reciprocity . The first assumption is realized as a so called ’rain-on-the-roof’ excitation, with a large number of uncorrelated point excitations, distributed spatially over...... the subsystem. In this way is it gua ranteed that in the considered frequency band all the modes is excited equally we ll. However, the ’rain-on-the-roof’ excitation excludes the important excitation of a diffuse airborne sound field, where each plane wave is projected on the plate. The second condition says...

  3. Neutron imaging for geothermal energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL


    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  4. Geothermal and volcanism in west Java (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah


    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  5. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project (United States)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.


    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  6. Lessons from Suiyo Seamount studies, for understanding extreme (ancient?) microbial ecosystems in the deep-sea hydrothermal fields (United States)

    Maruyama, A.; Higashi, Y.; Sunamura, M.; Urabe, T.


    Deep-sea hydrothermal ecosystems are driven with various geo-thermally modified, mainly reduced, compounds delivered from extremely hot subsurface environments. To date, several unique microbes including thermophilic archaeons have been isolated from/around vent chimneys. However, there is little information about microbes in over-vent and sub-vent fields. Here, we report several new findings on microbial diversity and ecology of the Suiyo Seamount that locates on the Izu-Bonin Arc in the northwest Pacific Ocean, as a result of the Japanese Archaean Park project, with special concern to the sub-vent biosphere. At first, we succeeded to reveal a very unique microbial ecosystem in hydrothermal plume reserved within the outer rim of the seamount crater, that is, it consisted of almost all metabolically active microbes belonged to only two Bacteria phylotypes, probably of sulfur oxidizers. In the center of the caldera seafloor (ca. 1,388-m deep) consisted mainly of whitish sands and pumices, we found many small chimneys (ca. 5-10 cm) and bivalve colonies distributed looking like gray to black patches. These geo/ecological features of the seafloor were supposed to be from a complex mixing of hydrothermal venting and strong water current near the seafloor. Through quantitative FISH analysis for various environmental samples, one of the two representative groups in the plume was assessed to be from some of the bivalve colonies. Using the Benthic Multi-coring System (BMS), total 10 points were drilled and 6 boreholes were maintained with stainless or titanium casing pipes. In the following submersible surveys, newly developed catheter- and column-type in situ growth chambers were deployed in and on the boreholes, respectively, for collecting indigenous sub-vent microbes. Finally, we succeeded to detect several new phylotypes of microbes in these chamber samples, e.g., within epsilon-Proteobacteria, a photosynthetic group of alpha-Proteobacteria, and hyperthermophile

  7. Main aspects of geothermal energy in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hiriart, G.; Gutierrez-Negrin, L.C.A. [Comision Federal de Electridad, Morelia (Mexico)


    With an installed geothermal electric capacity of 853 MW{sub e}, Mexico is currently the third largest producer of geothermal power worldwide, after the USA and the Philippines. There are four geothermal fields now under exploitation: Cerro Prieto, Los Azufres, Los Humeros and Las Tres Virgenes. Cerro Prieto is the second largest field in the world, with 720 MW{sub e} and 138 production wells in operation; sedimentary (sandstone) rocks host its geothermal fluids. Los Azufres (88 MW{sub e}), Los Humeros (35 MW{sub e}) and Las Tres Virgenes (10 MW{sub e}) are volcanic fields, with fluids hosted by volcanic (andesites) and intrusive (granodiorite) rocks. Four additional units, 25 MW{sub e} each, are under construction in Los Azufres and due to go into operation in April 2003. One small (300 kW) binary-cycle unit is operating in Maguarichi, a small village in an isolated area with no link to the national grid. The geothermal power installed in Mexico represents 2% of the total installed electric capacity, but the electricity generated from geothermal accounts for almost 3% of the national total. (author)

  8. Near-field sea-level variability in northwest Europe and ice sheet stability during the last interglacial

    NARCIS (Netherlands)

    Long, A. J.; Barlow, N. L M; Busschers, F. S.; Cohen, K. M.|info:eu-repo/dai/nl/185633374; Gehrels, W. R.; Wake, L. M.


    Global sea level during the Last Interglacial (LIG, Marine Isotope Sub-stage 5e) peaked between c. 5.5 and 9 m above present, implying significant melt from Greenland and Antarctica. Relative sea level (RSL) observations from several far- and intermediate-field sites suggest abrupt fluctuations or

  9. Cloud Occurrence Measurements Over Sea during the 2nd 7 Southeast Asian Studies (7SEAS) Field Campaign in Palawan Archipelago (United States)

    Antioquia, C. T.; Uy, S. N.; Caballa, K.; Lagrosas, N.


    Ground based sky imaging cameras have been used to measure cloud cover over an area to aid in radiation budget models. During daytime, certain clouds tend to help decrease atmospheric temperature by obstructing sunrays in the atmosphere. Thus, the detection of clouds plays an important role in the formulation of radiation budget in the atmosphere. In this study, a wide angled sky imager (GoPro Hero 2) was brought on board M/Y Vasco to detect and quantity cloud occurrence over sea during the 2nd 7SEAS field campaign. The camera is just a part of a number of scientific instruments used to measure weather, aerosol chemistry and solar radiation among others. The data collection started during the departure from Manila Bay on 05 September 2012 and went on until the end of the cruise (29 September 2012). The camera was placed in a weather-proof box that is then affixed on a steel mast where other instruments are also attached during the cruise. The data has a temporal resolution of 1 minute, and each image is 500x666 pixels in size. Fig. 1a shows the track of the ship during the cruise. The red, blue, hue, saturation, and value of the pixels are analysed for cloud occurrence. A pixel is considered to "contain" thick cloud if it passes all four threshold parameters (R-B, R/B, R-B/R+B, HSV; R is the red pixel color value, blue is the blue pixel color value, and HSV is the hue saturation value of the pixel) and considered thin cloud if it passes two or three parameters. Fig. 1b shows the daily analysis of cloud occurrence. Cloud occurrence here is quantified as the ratio of the pixels with cloud to the total number of pixels in the data image. The average cloud cover for the days included in this dataset is 87%. These measurements show a big contrast when compared to cloud cover over land (Manila Observatory) which is usually around 67%. During the duration of the cruise, only one day (September 6) has an average cloud occurrence below 50%; the rest of the days have

  10. Optimal Extraction of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Golabi, Kamal; Scherer, Charles, R.


    This study is concerned with the optimal extraction of energy from a hot water geothermal field. In view of the relative "commercial" availability of the many energy sources alternative to geothermal, it is possible that a socially "best" extraction policy may not include producing geothermal energy as fast as the current technology will permit. Rather, a truly "optimal" policy will depend on, among other things, the costs and value of geothermal energy in the future and the analogous values of other energy sources. Hence, a general approach to this problem would make the policy contingent on pertinent information on alternative sources. A good example of this approach is given in Manne's (1976) Energy Technology Assessment Model, where he points out that "Each energy source has its own cost parameters and introduction date, but is interdependent with other components of the energy sector." (Manne (1976), p. 379). But by their large dimensions, such relativity macro-analyses tend to preclude a close look at the specific technology of a process is important in developing meaningful resource management models, we substitute for a macro model the increasing value over time of the energy extracted. In this contact we seek an extraction rate (and an economic life) that maximizes the net discounted value of the energy extracted. [DJE-2005

  11. Use of geothermal energy for desalination in New Mexico: a feasibility study. Final report, January 1, 1977-May 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, L.; Keyes, C.G. Jr.; Swanberg, C.A.; Gupta, Y.F.; Davis, R.J.


    The water requirements and availability for New Mexico are described. The possibility of using geothermal resources for desalination of the state's saline water sources is discussed. The following aspects of the problem are covered: resource evaluation, geothermal desalination technology, potential geothermal desalination sites, saline and geothermal aquifer well fields design, geothermal desalination plant waste brine disposal, process water pumping and brine disposal unit costs, environmental considerations, and legal and institutional considerations. (MHR)

  12. Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)


    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  13. Mapping the edge of the Cerros del Rio volcanic field, New Mexico: a piece of the puzzle to understanding a potential geothermal resource (United States)

    Pellerin, L.; Gallegos, M.; Goebel, M.; Murphy, B. S.; Smith, J.; Soto, D.; Swiatlowski, J.; Volk, C.; Welch, M.; Feucht, D. W.; Hollingshaus, B.; Bedrosian, P. A.; McPhee, D. K.


    The Cerros del Rio volcanic field located west of Santa Fe, New Mexico spans the southwestern part of the Espanola Basin with the Rio Grande to the west. Underlying the volcanics are the Santa Fe Group sediments, which contain the Ancha Formation, an important aquifer in the region. High temperature gradients in water wells reveal a potential geothermal prospect. In 2012 the Summer of Applied Geophysical Experience (SAGE) program acquired transient electromagnetic (TEM), audiomagnetotelluric (AMT), gravity and ground magnetic data to determine the buried eastern margin of the volcanic field and the connectivity related to the underlying sediments. The roughly EW 5-km long transect was sited from USGS aeromagnetic data to cross the boundary of the Cerros del Rio volcanic field. TEM data collected at ten stations, at 200-400 m spacing, along the transect employed an in-loop configuration with a square 100 m x 100 m transmitter loop and both a Zonge receiver coil and a 5 m square receiver loop. The 5 m loop allowed for the recovery of early-time data that was saturated when using the Zonge coil. AMT data were acquired at eight stations, at 400-500 m spacing, using the Geometric Stratagem system recording from 92 kHz to 10 Hz; a horizontal magnetic dipole transmitter was used to augment low signal strength at around 1 kHz. Gravity data along the profile were acquired using CG-3 and CG-5 Scintrex gravimeters with a station interval >250 m. Magnetic data were acquired with a Geometrics Cesium vapor G-858 magnetometer for about 3500 m along the profile at a 0.5 second sampling rate. Two volcanic flows interbedded with Ancha Formation and overlying Santa Fe Group sediments were identified in both the TEM and AMT modeling. High surface resistivity zones (>300 ohm-m) with depths ranging from ~100 to 300 m define the volcanic flows and correspond to high densities (2.3 to 2.55 g/cm3), while low resistivity zones (<30 ohm-m) correspond to lower densities (~2.1 g/cm3). High

  14. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle


    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  15. Reference book on geothermal direct use

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.


    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  16. Morphological, molecular, and toxin analysis of field populations of Alexandrium genus from the Argentine Sea. (United States)

    Fabro, Elena; Almandoz, Gastón O; Ferrario, Martha; John, Uwe; Tillmann, Urban; Toebe, Kerstin; Krock, Bernd; Cembella, Allan


    In the Argentine Sea, blooms of toxigenic dinoflagellates of the Alexandrium tamarense species complex have led to fish and bird mortalities and human deaths as a consequence of paralytic shellfish poisoning (PSP). Yet little is known about the occurrence of other toxigenic species of the genus Alexandrium, or of their toxin composition beyond coastal waters. The distribution of Alexandrium species and related toxins in the Argentine Sea was determined by sampling surface waters on an oceanographic expedition during austral spring from ~39°S to 48°S. Light microscope and SEM analysis for species identification and enumeration was supplemented by confirmatory PCR analysis from field samples. The most frequent Alexandrium taxon identified by microscopy corresponded to the classical description of A. tamarense. Only weak signals of Group I from the A. tamarense species complex were detected by PCR of bulk field samples, but phylogenetic reconstruction of rDNA sequences from single cells from one station assigned them to ribotype Group I (Alexandrium catenella). PCR probes for Alexandrium minutum and Alexandrium ostenfeldii yielded a positive signal, although A. minutum morphology did not completely match the classical description. Analysis of PSP toxin composition of plankton samples revealed toxin profiles dominated by gonyautoxins (GTX1/4). The main toxic cyclic imine detected was 13-desMe-spirolide C and this supported the association with A. ostenfeldii in the field. This study represents the first integrated molecular, morphological and toxinological analysis of field populations of the genus Alexandrium in the Argentine Sea. © 2017 Phycological Society of America.

  17. An application of neural network in geophysical prospecting. Electrical resistivity at Las Virgenes geothermal field, Baja California Sur, Mexico; Una aplicacion de las redes neuronales a la prospeccion geofisica. Resistividad electrica en las Tres Virgenes, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Palma Guzman, Sergio Hugo [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)


    The technology of the neural network is presented with geophysical focus in the Las Virgenes geothermal field, Baja California Sur, Mexico. The results obtained when extrapolating the associative data of the prospecting magnetoteluria and Vertical Electric Sounding, on the area of the geothermal wells to the rest of the area, allows to classify zones of interest for the geothermal exploitation. Also, the use of these associative parameters with the information of the stabilized temperature of the wells, they allow to predict temperatures for the rest of the area. [Spanish] Se presenta una aplicacion de la tecnologia de las redes neuronales con enfoque geofisico en el campo geotermico de Las Virgenes, Baja California Sur, Mexico. Los resultados obtenidos al extrapolar los datos asociativos de las prospecciones geoelectricas de magnetoteluria y sondeos electricos verticales, en la zona de los pozos geotermicos al resto del area, permiten clasificar zonas de interes para la explotacion geotermica. Tambien, la utilizacion de estos parametros asociativos con la informacion de la temperatura estabilizada de los pozos, permiten predecir temperaturas para la misma area.

  18. River-ice and sea-ice velocity fields from near-simultaneous satellite imagery (United States)

    Kaeaeb, A.; Leprince, S.; Prowse, T. D.; Beltaos, S.; Lamare, M.; Abrams, M.


    Satellite stereo and satellites that follow each other on similar orbits within short time periods produce near-simultaneous space imagery, a kind of data that is little exploited. In this study, we track river-ice and sea-ice motion over time periods of tens of seconds to several minutes, which is the typical time lag between the two or more images of such near-simultaneous acquisition constellations. Using this novel approach, we measure and visualize for the first time the almost complete two-dimensional minute-scale velocity fields over several thousand square-kilometers of sea ice cover or over up to several hundred kilometers long river reaches. We present the types of near-simultaneous imagery and constellations suitable for the measurements and discuss application examples, using a range of high and medium resolution imagery such as from ASTER, ALOS PRISM, Ikonos, WorldView-2, Landsat and EO-1. The river ice velocities obtained provide new insights into ice dynamics, river flow and river morphology, in particular during ice breakup. River-ice breakup and the associated downstream transport of ice debris is often the most important hydrological event of the year, producing flood levels that commonly exceed those for the open-water period and dramatic consequences for river infrastructure and ecology. We also estimate river discharge from ice/water surface velocities using near-simultaneous satellite imagery. Our results for sea ice complement velocity fields typically obtained over time-scales of days and can thus contribute to better understanding of a number of processes involved in sea ice drift, such as wind impact, tidal currents and interaction of ice floes with each other and with obstacles.

  19. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone (United States)

    Zhang, Lihong; Guo, Zhengfu; Sano, Yuji; Zhang, Maoliang; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank


    Gulu-Yadong rift (GYR) is the longest extensional, NE-SW-trending rift in the Himalayas and Lhasa terrane of South Tibet. Many volcanic-geothermal fields (VGFs), which comprise intense hot springs, steaming fissures, geysers and soil micro-seepage, are distributed in the GYR, making it ideal area for studying deep carbon emissions in the India-Asia continent subduction zone. As for the northern segment of GYR in the Lhasa terrane, its total flux and genesis of CO2 emissions are poorly understood. Following accumulation chamber method, soil CO2 flux survey has been carried out in VGFs (i.e., Jidaguo, Ningzhong, Sanglai, Tuoma and Yuzhai from south to north) of the northern segment of GYR. Total soil CO2 output of the northern GYR is about 1.50 × 107 t a-1, which is attributed to biogenic and volcanic-geothermal source. Geochemical characteristics of the volcanic-geothermal gases (including CO2 and He) of the northern GYR indicate their significant mantle-derived affinities. Combined with previous petrogeochemical and geophysical data, our He-C isotope modeling calculation results show that (1) excess mantle-derived 3He reflects degassing of volatiles related with partial melts from enriched mantle wedge induced by northward subduction of the Indian lithosphere, and (2) the crust-mantle interaction can provide continuous heat and materials for the overlying volcanic-geothermal system, in which magma-derived volatiles are inferred to experience significant crustal contamination during their migration to the surface.

  20. Monitoring the geothermal fluid using time lapse electrical resistivity tomography: The Pisciarelli fumarolic field test site (Campi Flegrei, South Italy) (United States)

    Fedele, Alessandro; Giulia Di Giuseppe, Maria; Troiano, Antonio; Somma, Reanto; Caputo, Teresa; Patella, Domenico; Troise, Claudia; De Natale, Giuseppe


    Pisciarelli area is a fumarolic field subject to very short time morphological changes. A number of critical problems affect this area, i.e. increase of temperature of the fumaroles above the average background temperature, local seismicity and occurrence of fumaroles mixed with jets of boiling water. The presence of a very shallow aquifer seem to have the control on the behavior and composition of the fumaroles. This fumarolic field is still largely unknown regarding geophysical surveys mainly because of its limited space, surrounded on the eastern side by intense urbanization inside the large Agnano crater (Troiano et al. 2014). Currently is mainly affected by geochemical, thermal and seismic monitoring which may not fully explain the behaviour of fluids surface. Many monitoring or time lapse (TL) applications are discussed in literature (e.g., White, 1994; Daily et al., 1995; Barker and Moore, 1998; Ramirez and Daily, 2001; Carter, 2002; Slater et al., 2002; Singha and Gorelick, 2005; Cassiani et al., 2006; Swarzenski et al., 2006; de Franco et al., 2009). However all these experiments are devoted to the use of the ERT for tracer tests or in contaminant hydrology and are characterized by a short monitoring period due to the complexity and problems of long-time instrument maintenance. We propose and present a first approach of a geophysical monitoring by time lapse electrical resistivity in a fumarolic field. The profiles were acquired in January 2013, in January, March, May, July, September and November 2014 respectively. They cross the Pisciarelli area following approximately the NS direction and were characterized by a 2.5 m electrode spacing and maximum penetration depth of about 20 m. and will supply fundamental evidences on the possible seasonal resistivity fluctuations or if the resistivity changes are indicative of an increase in volcanic gases present in the hydrothermal system.

  1. Isotopic Evolution of Wells in the Geothermal Field of Los Azufres, Michoacan, Mexico; Evolucion isotopica de fluidos de pozos del campo geotermico de Los Azufres, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Reyes, Rosa Maria; Portugal Marin, Enrique; Arellano Gomez, Victor Manel; Aragon Aguilar, Alfonso [Instituto de Investigaciones Electricas (Mexico); Sandoval Medina, Fernando [Comision Federal de Electricidad (Mexico)


    Isotopic ({delta}{sup 1}8 O and {delta}D) data from production and reinjection web fluids from the Los Azufres geothermal field were interpreted in order to define reservoir evolution and the occurrence of physical processes as a result of exploitation. The study included data of 30 wells, which were sampled in September, 2000. General results indicate that different phenomena seem to occur in both zones of the field. In the southern zone there are two different trends of behavior: a mixture of fluids evidenced by the {delta}D versus {delta}{sup 1}8 O trend with a positive slope, was interpreted as the result of reservoir vapor separation at a temperature above 220 Celsius degrees, since for temperatures above 220 Celsius degrees deuterium behaves as a volatile component. No well-defined {delta}{sup D} vs {delta}{sup 1}8 O trend was found for the northern zone, but some points seem to fit the same negative slope trend found in the souther zone. The study of reservoir temperatures estimated by different approaches for particular wells through time, as well as temperature results obtained with a heat and flow well simulator, suggest that reservoir boiling occurs in localized areas in both zone of the field. This process is probably due to exploitation. [Spanish] Se interpretaron datos isotopicos ({delta}{sup 1}8 O y {delta}D) de fluidos de pozos productores y de reinyeccion del campo geotermico de Los Azufres, Michoacan, Mexico, para definir la evolucion del yacimiento y la ocurrencia de procesos fisicos como resultado de la explotacion. En el estudio se consideran datos de treinta pozos segun el muestreo realizado en septiembre de 2000. El estudio de la evolucion en el tiempo de las estimaciones de temperatura de yacimiento mediante diferentes tecnicas, asi como la temperatura obtenida de simulacion de pozos, sugiere que ocurre ebullicion en areas localizadas en ambas zonas del campo debido a la explotacion. Los resultados generales indican la existencia de

  2. Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeanloz, R. [The MITRE Corporation, McLean, VA (United States); Stone, H. [The MITRE Corporation, McLean, VA (United States); et al.


    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  3. Time-lapse seismic analysis of the North Sea Fulmar Field

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, David H.; McKenny, Robert S.; Burkhart, Tucker D.


    Time-lapse seismic analysis has been applied to two 3-D seismic surveys acquired over the central North Sea Fulmar field in a pre-production survey shot in 1977, reprocessed in 1987, and a survey in 1992. The Upper Jurassic reservoirs in the field have been under production since 1982. Differences in averaged impedance between the 1977 and 1992 surveys clearly show the effects of water influx and pressure decline. The changes observed in the seismic data are overall consistent with predictions obtained from a full-field, history-matched simulation. Differences in details may suggest areas of bypassed oil. Dta quality is not sufficient to serve as the sole basis for drilling decisions. 1 ref., 6 figs.

  4. Multidisciplinary field surveys as the new norm: Integrating geosciences to characterize the fate of carbon in a geothermal fumarole (United States)

    Sheik, C.; Giovannelli, D.; Cox, A. D.; Hummer, D. R.; Pratt, K.; Thomas, D.; Viveiros, M. F.


    Has a reviewer ever asked you, "Why didn't you measure x, y, and z for this manuscript"? After venting your frustration to anyone who'll listen, you start to think maybe they're right and the study would benefit from a few extra measurements. Modern science demands multidisciplinary projects, data integration, and a holistic understanding of complex biogeochemical systems. With this in mind, we integrating field sampling into an early career scientist workshop. We asked, "Can we assemble early career scientists from disparate geoscience fields and effectively characterize carbon reservoirs and fluxes at a geologically active site?" Here, we present the results of an integrated, multidisciplinary, and co-located sampling effort carried out during the Second Deep Carbon Observatory Early Career Science Workshop 2015 in the Azores, Portugal. At the fumarole site, sediments lithology indicate a recent lacustrine deposition. All sediments show a degree of hydrothermal alteration, especially with depth. Carbonates were observed throughout the site as well as sulfur minerals jarosite and alunite. Temperatures of ejected waters quickly cooled from near boiling, to ambient 30 oC within an 35 m flow channel. Sediment surface gases (H2S, CO2 and CH4) were highly elevated at the site indicating a strong degassing influence. Analysis of noble gas isotopes unequivocally confirm the existence of mantle-derived fluids in the fumarole gases. Waters and sediments taken from mid-point within the channel were elevated in concentrations of all elements measured, especially elemental sulfur and copper. The organic matter content of sediments was typically low in the channel. Microbial analyses also show a strong temperature-dependent relationship, with Archaea dominating at higher temperatures and Bacteria at lower temperatures. Evidence of sulfur utilizing archaea were present in both ribosomal and metagenome libraries. Together, our interdisciplinary approach demonstrates

  5. Geothermal power generation

    Energy Technology Data Exchange (ETDEWEB)

    Granson, Ernest


    A large amount of destructive energy can released through events such as an earthquake or volcano eruption, yet this energy can also be put to constructive use. Already, significant amount of electricity and heat are being generated around the world from such events. This paper presents geothermal power generation as an alternate source of energy. More than 20 countries are using geothermal energy currently, according to the Canadian Geothermal Energy Association (CanGEA). In Iceland, about 90% of the houses are powered by geothermal energy. Geothermal energy has two sources, primordial heat and radioactive decay. Heat from the energy and mass collisions inside the earth that resulted from the creation of earth approximately 4.5 billion years ago is primordial heat. Radioactive elements are a part of earth's original composition and generate thermal energy as they decay. The methods to produce electricity from geothermal sources are described in the paper.

  6. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)


    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  7. Prediction for potential landslide zones using seismic amplitude in Liwan gas field, northern South China Sea (United States)

    Li, Xishuang; Liu, Baohua; Liu, Lejun; Zheng, Jiewen; Zhou, Songwang; Zhou, Qingjie


    The Liwan (Lw) gas field located in the northern slope of the South China Sea (SCS) is extremely complex for its sea-floor topograghy, which is a huge challenge for the safety of subsea facilities. It is economically impractical to obtain parameters for risk assessment of slope stability through a large amount of sampling over the whole field. The linkage between soil shear strength and seabed peak amplitude derived from 2D/3D seismic data is helpful for understanding the regional slope-instability risk. In this paper, the relationships among seabed peak, acoustic impedance and shear strength of shallow soil in the study area were discussed based on statistical analysis results. We obtained a similar relationship to that obtained in other deep-water areas. There is a positive correlation between seabed peak amplitude and acoustic impedance and an exponential relationship between acoustic impedance and shear strength of sediment. The acoustic impedance is the key factor linking the seismic amplitude and shear strength. Infinite slope stability analysis results indicate the areas have a high potential of shallow landslide on slopes exceeding 15° when the thickness of loose sediments exceeds 8 m in the Lw gas field. Our prediction shows that they are mainly located in the heads and walls of submarine canyons.

  8. Enhanced UV exposure on a ski-field compared with exposures at sea level. (United States)

    Allen, Martin; McKenzie, Richard


    Personal erythemal UV monitoring badges, which were developed to monitor the UV exposure of school children, were used to measure UV exposures received by one of the authors (MA) at the Mt Hutt ski-field, in New Zealand. These were then compared with measurements taken at the same times from a nearby sea level site in Christchurch city. The badges were designed to give instantaneous readings of erythemally-weighted (i.e., "sun burning") UV radiation and were cross-calibrated against meteorological grade UV instruments maintained by the National Institute of Water & Atmospheric Research (NIWA). All skiing and calibration days were clear and almost exclusively cloud free. It was found that the UV maxima for horizontal surfaces at the ski-field (altitude approximately 2 km) were 20-30% greater than at the low altitude site. Larger differences between the sites were observed when the sensor was oriented perpendicular to the sun. The personal doses of UV received by a sensor on the skier's lapel during two days of skiing activity were less than those received by a stationary detector on a horizontal surface near sea level. The exposures depended strongly on the time of year, and in mid-October the maximum UV intensity on the ski-field was 60% greater than in mid-September. The UV exposure levels experienced during skiing were smaller than the summer maxima at low altitudes.

  9. Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida (United States)

    Langevin, Christian D.; Zygnerski, Michael


    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.

  10. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)



    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  11. Geothermal Today - 2001

    Energy Technology Data Exchange (ETDEWEB)



    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  12. Second workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ramey, H.J. Jr. (eds.)


    The Arab oil embargo of 1973 focused national attention on energy problems. A national focus on development of energy sources alternative to consumption of hydrocarbons led to the initiation of research studies of reservoir engineering of geothermal systems, funded by the National Science Foundation. At that time it appeared that only two significant reservoir engineering studies of geothermal reservoirs had been completed. Many meetings concerning development of geothermal resources were held from 1973 through the date of the first Stanford Geothermal Reservoir Engineering workshop December 15-17, 1975. These meetings were similar in that many reports dealt with the objectives of planned research projects rather than with results. The first reservoir engineering workshop held under the Stanford Geothermal Program was singular in that for the first time most participants were reporting on progress inactive research programs rather than on work planned. This was true for both laboratory experimental studies and for field experiments in producing geothermal systems. The Proceedings of the December 1975 workshop (SGP-TR-12) is a remarkable document in that results of both field operations and laboratory studies were freely presented and exchanged by all participants. With this in mind the second reservoir engineering workshop was planned for December 1976. The objectives were again two-fold. First, the workshop was designed as a forum to bring together researchers active in various physical and mathematical branches of the developing field of geothermal reservoir engineering, to give participants a current and updated view of progress being made in the field. The second purpose was to prepare this Proceedings of Summaries documenting the state of the art as of December 1976. The proceedings will be distributed to all interested members of the geothermal community involved in the development and utilization of the geothermal resources in the world. Many notable

  13. Submarine geothermal resources (United States)

    Williams, D.L.


    Approximately 20% of the earth's heat loss (or 2 ?? 1012 cal/s) is released through 1% of the earth's surface area and takes the form of hydrothermal discharge from young (Pleistocene or younger) rocks adjacent to active seafloor-spreading centers and submarine volcanic areas. This amount is roughly equivalent to man's present gross energy consumption rate. A sub-seafloor geothermal reservoir, to be exploitable under future economic conditions, will have to be hot, porous, permeable, large, shallow, and near an energy-deficient, populated land mass. Furthermore, the energy must be recoverable using technology achievable at a competitive cost and numerous environmental, legal and institutional problems will have to be overcome. The highest-temperature reservoirs should be found adjacent to the zones of the seafloor extension or volcanism that are subject to high sedimentation rates. The relatively impermeable sediments reduce hydrothermal-discharge flow rates, forcing the heat to be either conducted away or released by high-temperature fluids, both of which lead to reservoir temperatures that can exceed 300??C. There is evidence that the oceanic crust is quite permeable and porous and that it was amenable to deep (3-5 km) penetration by seawater at least some time in the early stages of its evolution. Most of the heat escapes far from land, but there are notable exceptions. For example, in parts of the Gulf of California, thermal gradients in the bottom sediments exceed 1??C/m. In the coastal areas of the Gulf of California, where electricity and fresh water are at a premium, this potential resource lies in shallow water (< 200 m) and within sight of land. Other interesting areas include the Sea of Japan, the Sea of Okhotsk and the Andaman Sea along the margins of the western Pacific, the Tyrrhenian Sea west of Italy, and the southern California borderland and west flank of the Juan de Fuca Ridge off the west coast of the United States. Many questions remain to be

  14. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.


    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...

  15. Geothermal energy program overview (United States)


    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  16. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister


    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo



    Chrzan, T.


    This study presents the role of the geothermal waters mainly for the municipal heating, greenhouses, swimming pools, etc. Presently, two types of geothermal waters are used in the world. Waters of the temperatures higher than 130oC (steam) used mostly to drive turbines in geothermal power plants. Waters of low temperatures (20oC to 100oC) are used as a direct energy carrier for the municipal heating systems. The geothermal waters in Poland are presented in this paper.

  18. Scaling control in superficial installations at the Las Tres Virgenes, geothermal field, BCS; Control de incrustacion en instalaciones superficiales del campo geotermico de Las Tres Virgenes, BCS

    Energy Technology Data Exchange (ETDEWEB)

    Tapia Salazar, Ruth [Comision Federal de Electricidad (Mexico)]. E-mail:


    Silica scaling is one of the most important problems in the Las Tres Virgenes geothermal field. It affects not only the superficial installations, like brine injection pipelines, but also the injection wells where it reduces injection capacity. Separated brine passes from production wells to injection wells by means of steel pipelines 10 and 14 inches in diameter. The pipelines are affected by silica scaling that occurs when the two-phase fluid is discharged at atmospheric pressure and the separated brine is cooled and concentrated and then over saturated with amorphous silica. Even when the pipelines were cleaned periodically, it was necessary to implement a technique for prevent scaling. Two methods considered appropriate to the specific field conditions were studied, and finally the technique of modifying the brine pH was adopted. After over a year of using this technique in the general injection system, no mechanical cleaning of the pipelines has been necessary-and once cleaning was needed at least every third day. This represents an important improvement in the steam supply system. [Spanish] Uno de los problemas mas importantes en el campo geotermico de Las Tres Virgenes es la incrustacion por silice, la cual afecta no solo a instalaciones superficiales como lineas de inyeccion de salmuera, sino tambien a los pozos inyectores al reducir su capacidad de aceptacion. El agua producida por los pozos productores se conduce hasta los pozos inyectores por medio de tuberias de acero al carbon de 10 y 14 pulgadas de diametro, que se ven afectadas por la incrustacion de silice. La incrustacion ocurre debido a que cuando el fluido en dos fases es descargado a presion atmosferica, la salmuera separada, enfriada y concentrada, esta usualmente sobresaturada con respecto a la solubilidad de la silice amorfa. Aunque las tuberias se limpiaban mecanicamente, fue necesario seleccionar una tecnica para prevenir la incrustacion, para lo cual se estudiaron dos de los metodos que

  19. Presence of cross flow in the Cerro Prieto geothermal field, BC; Presencia de flujo cruzado en el campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Rodriguez, Marco Helio [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, Baja California (Mexico)]. E-mail:


    During the development of Cerro Prieto geothermal field, BC, exploitation has increased gradually, causing a continuous drop in pressure to almost 100 bars in the central and eastern parts of the field. This has occurred despite the high natural recharge induced by the reservoir exploitation and helped by the high permeability of the reservoir and the wide availability of natural recharge of low-temperature water in the vicinity. The strata above the production zones have significantly lower temperatures than these zones, but due to the particular characteristics of the reservoir, do not have pressure drops. As the pressure of producing strata declines, the hydraulic pressure differential between them and the overlying strata increases. Thus in recent years the phenomenon of cross flow occurs with greater frequency and severity. In this paper, this phenomenon is analyzed, detailing the specific mechanisms favoring it and identifying the stage (drilling or workover) in which it commonly occurs. Rigorous supervision during these stages is crucial to identifying cross flow and to taking necessary measures to save the well. Cross flow cases are presented at different stages in the history of a well: during drilling, repair, before and during the stimulation, and during production. [Spanish] Durante el desarrollo del campo geotermico de Cerro Prieto, BC, la explotacion se ha incrementado en forma gradual provocando una continua caida de presion, que en las porciones central y oriente ha sido de casi 100 bars. Esto ha ocurrido a pesar de la enorme recarga natural inducida por la explotacion, favorecida por la alta permeabilidad del yacimiento y la gran disponibilidad de recarga natural de agua de baja temperatura en los alrededores del mismo. Los estratos ubicados encima de las zonas productoras presentan temperaturas significativamente menores que estos, pero debido a las caracteristicas particulares del yacimiento, no han presentado abatimiento en su presion. En la

  20. Initial distribution of pressure and temperature in the geothermal field of Los Humeros, Puebla; Distribucion inicial de presion y temperatura del campo geotermico de Los Humeros, Puebla

    Energy Technology Data Exchange (ETDEWEB)

    Arellano Gomez, Victor M.; Garcia Gutierrez, Alfonso; Barragan Reyes, Rosa Maria; Aragon Aguilar, Alfonso; Pizano, Arturo [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)


    In order to infer the distributions of non disturbed pressure and temperature of the reservoir fluid, a considerable amount of information originating from several disciplines was analyzed, corresponding to 42 wells of the geothermal field of Los Humeros. On the base of the analyzed data models were developed, in one and two dimensions, of the reservoir in an initial state. The models reveal the existence of at least two reservoirs. The first one and most superficial is located between 1600 and 1025 m.a.s.l. and it is a reservoir of dominant liquid. The pressure profile of this reservoir corresponds to a boiling water column approximately between 300 and 339 Celsius degrees. The second reservoir is located underneath the 850 m.a.s.l. and as far as the collected data, it can be said that it extends at least until the 100 m.a.s.l and it is estimated that it is a reservoir of low liquid saturation. For the wells that are fed from this zone of the field temperatures between 300 and 400 Celsius degrees were estimated. A table of the geology of the subsoil of the region of the Los Humeros is shown and a table where the chemical composition of the separated water is indicated and the enthalpy of some of the wells of Los Humeros, Puebla, Mexico. [Spanish] Para inferir las distribuciones de presion y temperatura no perturbadas del fluido del yacimiento, se analizo una considerable cantidad de informacion proveniente de varias disciplinas, correspondiente a 42 pozos del campo geotermico de Los Humeros. Sobre la base de los datos analizados se desarrollaron modelos, en una y dos dimensiones, del yacimiento en un estado inicial. Los modelos revelan la existencia de cuando menos dos yacimientos. El primero y mas superficial se encuentra localizado entre 1600 y 1025 m.s.n.m. y es un yacimiento de liquido dominante. El perfil de presion de este yacimiento corresponde a una columna de agua en ebullicion aproximadamente entre 300 y 339 grados centigrados. El segundo yacimiento se

  1. Initial thermal state of the Los Humeros, Puebla, Mexico, geothermal field; Estado termico inicial del campo geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Gutierrez, Alfonso [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail:


    The initial temperatures field is presented for 40 wells in the Los Humeros geothermal reservoir, along with an elevation curve based on the formation temperature or the most probable reservoir temperature. Stabilized temperatures were estimated using the Radial Spherical Heat Flow method, chosen over the Horner method based on the numerical simulation of the circulation and stop processes of well H-26. In this well, the last temperature log series was reproduced, considering circulation losses. The temperatures were used to produce isothermal curves over three geological sections of the field, which represent the initial distribution of temperatures in the reservoir and show the thermal characteristics and the relationships among thermal anomalies and faults in the reservoir. The elevation curve plotted against the initial temperature of the formation was generated based on detection of the main feed zones at each well, which in turn was developed using detailed analyses of diverse information, such as temperature logs, circulation losses, lithology, well completion, and heat velocities. Based on the results, two groups of wells may be distinguished: one between 1000 and 1600 masl with temperatures from 290 to 330 degrees Celsius, and one between 900 and 0 masl with temperatures from 300 to 400 degrees Celsius. [Spanish] En este trabajo se presenta el campo de temperatura inicial del yacimiento geotermico de Los Humeros y una curva de elevacion contra la temperatura de formacion o temperatura mas probable del yacimiento, obtenida para 40 pozos del campo. Las temperaturas estabilizadas se estimaron mediante el metodo de Flujo de Calor Esferico Radial, y su eleccion sobre las temperaturas del metodo de Horner se soporta con simulacion numerica de los procesos de circulacion y paro del pozo H-26, en la cual la ultima serie de registros se reprodujo considerando perdidas de circulacion. Con estas temperaturas se generaron curvas isotermicas para tres secciones

  2. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields. (United States)

    Cerqueira, Teresa; Barroso, Cristina; Froufe, Hugo; Egas, Conceição; Bettencourt, Raul


    The organisms inhabiting the deep-seafloor are known to play a crucial role in global biogeochemical cycles. Chemolithoautotrophic prokaryotes, which produce biomass from single carbon molecules, constitute the primary source of nutrition for the higher organisms, being critical for the sustainability of food webs and overall life in the deep-sea hydrothermal ecosystems. The present study investigates the metabolic profiles of chemolithoautotrophs inhabiting the sediments of Menez Gwen and Rainbow deep-sea vent fields, in the Mid-Atlantic Ridge. Differences in the microbial community structure might be reflecting the distinct depth, geology, and distance from vent of the studied sediments. A metagenomic sequencing approach was conducted to characterize the microbiome of the deep-sea hydrothermal sediments and the relevant metabolic pathways used by microbes. Both Menez Gwen and Rainbow metagenomes contained a significant number of genes involved in carbon fixation, revealing the largely autotrophic communities thriving in both sites. Carbon fixation at Menez Gwen site was predicted to occur mainly via the reductive tricarboxylic acid cycle, likely reflecting the dominance of sulfur-oxidizing Epsilonproteobacteria at this site, while different autotrophic pathways were identified at Rainbow site, in particular the Calvin-Benson-Bassham cycle. Chemolithotrophy appeared to be primarily driven by the oxidation of reduced sulfur compounds, whether through the SOX-dependent pathway at Menez Gwen site or through reverse sulfate reduction at Rainbow site. Other energy-yielding processes, such as methane, nitrite, or ammonia oxidation, were also detected but presumably contributing less to chemolithoautotrophy. This work furthers our knowledge of the microbial ecology of deep-sea hydrothermal sediments and represents an important repository of novel genes with potential biotechnological interest.

  3. Variability of the ocean-induced magnetic field predicted at sea surface and at satellite altitudes (United States)

    Glazman, Roman E.; Golubev, Yury N.


    Spatial and temporal variability of the magnetic field component induced by ocean circulation is investigated on the basis of a standard thin-shell approximation of electro- and magneto-static equations. Well-known difficulties of numerical solution of the governing equations are resolved by reducing the problem to an equation for the electric field potential, Φ, as opposed to a more conventional approach focused on the vertical jump, ψ, of the magnetic field potential across a combined ocean/marine-sediment-layer spherical shell. The present formulation permits using more realistic input data on ocean currents and ultimately yields much greater (by at least an order of magnitude) values of the magnetic field at sea surface than predicted in earlier studies. Such large values are comparable to, and in some cases exceed, magnetic field variations caused by lithospheric and ionospheric sources on monthly to interannual timescales. At the 400-km altitude (of CHAMP satellite), the field attains 6 nT. The model predictions show favorable comparisons with some in situ measurements as well as with Challenging Minisatellite Payload (CHAMP) satellite magnetometer data.

  4. Comparing Field Observations of Arctic Sea Ice to SSM/I and AMSR-E Sea Ice Products 2006-2009 (United States)

    Orlich, A. R.; Hutchings, J. K.; Prakash, A.


    The Arctic sea ice has experienced unprecedented changes in recent years. One of the most dramatic changes is in the extent of the Arctic sea ice, which was reported to reach a recorded minimum extent during the late summer / early Fall of 2007. The National Snow and Ice Data Center (NSIDC) generated and distributed maps of Arctic sea ice extent using passive microwave remote sensing data from SSM/I sensor. During late summers of 2006 to 2009 we collected field data on the sea ice concentration, distribution, type, and thickness at hourly intervals along the track followed by Canadian Coast Guard Service (CCGS) Louis S. St. Laurent Icebreaker in the Beaufort Sea. We present our field observation and data collection strategy. We compared these field observations with the satellite passive microwave (both SSM/I and AMSR-E) derived products and observed that at several locations the field observations conformed to the passive microwave estimates of ice concentration. However, at some locations (chiefly with 90-100% first year ice coverage) the satellite data under reports ice concentration by 30% on average. The bias may be attributed to melt-ponding on the ice surface that is mis-represented in the satellite product as open water and inadequate in-situ sampling within the AMSR/E footprint in a heterogeneous ice pack. We also find that in heterogeneous ice pack, such as 60% ice in large patches or floes, that hourly ship-based visual observations are insufficient to validate large scale (6-25km) satellite sea ice products. In future we plan to develop a camera based autonomous ice observation system that will provide in-situ ice concentration data at spatial resolutions suitable for satellite product validation. We present our initial design for this system. With potentially improved spatial resolution of future sensors, and improved understanding of melt pond signal in the microwave bands, we expect field validation of passive microwave sea ice products will lead to

  5. Marine induction studies based on sea surface scalar magnetic field measurements. A concept and its verification (United States)

    Kuvshinov, A. V.; Poedjono, B.; Matzka, J.; Olsen, N.; Pai, S.; Samrock, F.


    Most marine EM studies are based on sea-bottom measurements which are expensive and logistically demanding. We propose a low-cost and easy-to-deploy magnetic survey concept which exploits sea surface measurements. It is assumed that the exciting source can be described by a plane wave. The concept is based on responses that relate variations of the scalar magnetic field at the survey sites with variations of the horizontal magnetic field at a base site. It can be shown that these scalar responses are a mixture of standard tipper responses and elements of the horizontal magnetic tensor and thus can be used to probe the electrical conductivity of the subsoil. This opens an avenue for sea-surface induction studies which so far was believed very difficult to conduct if conventional approaches based on vector measurements are invoked. We perform 3-D realistic model studies where the target region was Oahu Island and its surroundings, and USGS operated Honolulu geomagnetic observatory was chosen as the base site. We compare the predicted responses with the responses estimated from the scalar data collected at a few locations around Oahu Island by the unmanned, autonomous, wave and solar powered 'Wave Glider' developed and operated by Liquid Robotics Oil and Gas/Schlumberger. The marine robots observation platform is equipped with a tow Overhauser magnetometer (validated by USGS). The studies show an encouraging agreement between predictions and experiment in both components of the scalar response at all locations and we consider this as a proof of the suggested concept.

  6. Geometric effects of an inhomogeneous sea ice cover on the under ice light field

    Directory of Open Access Journals (Sweden)

    Christian eKatlein


    Full Text Available Light measurements in the ocean provide crucial information about the energy fluxes in the climate and ecosystem. Currently radiative transfer problems are usually considered in horizontally homogeneous layers although it is known to be a crude assumption in many cases. In this paper, we examine the effects of a horizontally inhomogeneous sea ice layer on the light field in the water underneath. We implemented a three dimensional model, capable to simulate the light field underneath arbitrary surface geometries using ray optics. The results show clear effects of the measurement geometry on measured fluxes obtained with different sensor types, which need to be taken into account for the correct interpretation of the data. Radiance sensors are able to better sense the spatial variability of ice optical properties as compared to irradiance sensors. Furthermore we show that the determination of the light extinction coefficient of water from vertical profiles is complicated under a horizontally inhomogeneous ice cover. This uncertainty in optical properties of the water, as well as the measurement geometry also limits the possibility to correct light measurements taken at depth for the influence of water in between the sea ice and the sensor.

  7. Structural control on geothermal circulation in the Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Argentina) (United States)

    Giordano, Guido; Pinton, Annamaria; Cianfarra, Paola; Baez, Walter; Chiodi, Agostina; Viramonte, José; Norini, Gianluca; Groppelli, Gianluca


    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous springs. This study presents new stratigraphic and hydrogeological data on the geothermal field, together with the analysis from remote sensed image analysis of morphostructural evidences associated with the structural framework and active tectonics. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field. Away from the main tectonic features, such as at the Cerro Tuzgle field, the less developed network of faults and fractures allows only a moderate upwelling of geothermal fluids and a mixing between hot and shallow cold waters. The integration of field-based and remote-sensing analyses at the Cerro Tuzgle-Tocomar area proved to be effective in approaching the prospection of remote geothermal fields, and in defining the conceptual model for geothermal circul