WorldWideScience

Sample records for salting-out polyethylene glycol

  1. Polyethylene Glycol 3350

    Science.gov (United States)

    ... 3350 is in a class of medications called osmotic laxatives. It works by causing water to be ... experience either of them, call your doctor immediately: diarrhea hives Polyethylene glycol 3350 may cause other side ...

  2. Preoperative bowel preparation in children: Polyethylene glycol ...

    African Journals Online (AJOL)

    Preoperative bowel preparation in children: Polyethylene glycol versus normal saline. ... In children, (is this standard of care?: this method is mostly followed) this is usually ... Patients and Methods: Thirty patients, admitted in the Department of ...

  3. Immediate-type hypersensitivity to polyethylene glycols

    DEFF Research Database (Denmark)

    Wenande, E; Garvey, L H

    2016-01-01

    Polyethylene glycols (PEGs) or macrogols are polyether compounds widely used in medical and household products. Although generally considered biologically inert, cases of mild to life-threatening immediate-type PEG hypersensitivity are reported with increasing frequency. Nevertheless, awareness...

  4. Osmotic effects of polyethylene glycol.

    Science.gov (United States)

    Schiller, L R; Emmett, M; Santa Ana, C A; Fordtran, J S

    1988-04-01

    Polyethylene glycol (PEG) has been used to increase the osmotic pressure of fluids used to cleanse the gastrointestinal tract. However, little is known about its osmotic activity. To investigate this activity systematically, solutions of PEG of differing molecular weights were made and subjected to measurement of osmolality by both freezing point depression and vapor pressure osmometry. Measured osmolality was increasingly greater than predicted from average molecular weight as PEG concentration increased. Measurement of sodium activity in NaCl/PEG solutions by means of an ion-selective electrode suggested that the higher than expected osmolality could be due in part to interactions that, in effect, sequestered water from the solution. Osmolality was consistently greater by freezing point osmometry than by vapor pressure osmometry. To determine which osmometry method reflected biologically relevant osmolality, normal subjects underwent steady-state total gut perfusion with an electrolyte solution containing 105 g/L of PEG 3350. This produced rectal effluent that was hypertonic by freezing point osmometry but isotonic by vapor pressure osmometry. Assuming that luminal fluid reaches osmotic equilibrium with plasma during total gut perfusion, this result suggests that the vapor pressure osmometer accurately reflects the biologically relevant osmolality of intestinal contents. We conclude that PEG exerts more of an osmotic effect than would be predicted from its molecular weight. This phenomenon may reflect interactions between PEG and water molecules that alter the physical chemistry of the solution and sequester water from the solution.

  5. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  6. Polyethylene glycols (PEG) and related structures

    DEFF Research Database (Denmark)

    Wenande, Emily; Kroigaard, Mogens; Mosbech, Holger

    2015-01-01

    We describe hypersensitivity to polyethylene glycols (PEGs), with cross-reactivity to a structural analog, polysorbate 80, in a 69-year-old patient with perioperative anaphylaxis and subsequent, severe anaphylactic reactions to unrelated medical products. PEGs and PEG analogs are prevalent in the...

  7. Poly(ethylene glycol) interactions with proteins

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2006-01-01

    Roč. 2, č. 23 (2006), s. 613-618 ISSN 0044-2968. [European Powder Diffraction Conference /9./. Prague, 02.09.2004-05.09.2004] R&D Projects: GA ČR(CZ) GA204/02/0843 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(ethylene glycol) * PEO * protein-polymer interaction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.897, year: 2006

  8. Radioprotection by polyethylene glycol-protein complexes in mice

    International Nuclear Information System (INIS)

    Gray, B.H.; Stull, R.W.

    1983-01-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60 Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60 Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors

  9. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    NARCIS (Netherlands)

    Bekkali, Noor L. H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E. J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G. P.; Voropaiev, Maksym; Benninga, Marc A.

    2018-01-01

    The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes

  10. Polyethylene glycol: a game-changer laxative for children.

    Science.gov (United States)

    Alper, Arik; Pashankar, Dinesh S

    2013-08-01

    Constipation is a common problem in children worldwide. It can also be a chronic problem persisting for many months to years. Successful treatment of constipation requires long-term use of laxatives. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol. Compared with other laxatives, polyethylene glycol (with and without electrolytes) is a relatively new laxative used during the last decade. Recent studies report excellent efficacy and safety of polyethylene glycol for the long-term treatment of constipation in children. Because of excellent patient acceptance, polyethylene glycol has become a preferred choice of laxative for many practitioners. This article reviews the recently published pediatric literature on biochemistry, efficacy, safety, patient acceptance, and pharmacoeconomics of polyethylene glycol.

  11. Role of polyethylene glycol in childhood constipation.

    Science.gov (United States)

    Phatak, Uma Padhye; Pashankar, Dinesh S

    2014-09-01

    Constipation is a common and chronic problem in children worldwide. Long-term use of laxatives is necessary for successful treatment of chronic constipation. Commonly used laxatives in children include milk of magnesia, lactulose, mineral oil, and polyethylene glycol (PEG). Recent studies report the efficacy and safety of PEG for the long-term treatment of constipation in children. Because of its excellent patient acceptance, PEG is being used widely in children for constipation. In this commentary, we review the recently published pediatric literature on the efficacy, safety, and patient acceptance of PEG. We also assess the role of PEG in childhood constipation by comparing it with other laxatives in terms of efficacy, safety, patient acceptance, and cost. © The Author(s) 2013.

  12. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial

    OpenAIRE

    Bekkali, Noor L.H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E.J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G.P.; Voropaiev, Maksym; Benninga, Marc A.

    2017-01-01

    ABSTRACT Objective: The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes (PEG4000). Methods: In this double-blind trial, children aged 0.5 to 16 years with constipation, defined as a defecation frequency of

  13. The effectiveness of polyethylene glycol (PEG) and polyvinyl ...

    African Journals Online (AJOL)

    mahlos

    2012-05-29

    May 29, 2012 ... Key words: Acetone, tannin, polyethylene glycol (PEG), polyvinyl polypyrrolidone (PVPP). ... hydrolysable tannins may occur in the same plant. ..... Rev. Food Sci. Nutr., 38: 421-464. Cornell. (2000). Tannins: Chemical analysis.

  14. Polyethylene glycol without electrolytes for children with constipation and encopresis.

    Science.gov (United States)

    Loening-Baucke, Vera

    2002-04-01

    Children with functional constipation and encopresis benefit from behavior modification and from long-term laxative medication. Polyethylene glycol without electrolytes has become the first option for many pediatric gastroenterologists. Twenty-eight children treated with polyethylene glycol without electrolytes were compared with 21 children treated with milk of magnesia to evaluate the efficiency, acceptability, side effects, and treatment dosage of polyethylene glycol in long-term treatment of functional constipation and encopresis. Children were rated as "doing well," "improved," or "not doing well," depending on resolution of constipation and encopresis. At the 1-, 3-, 6-, and 12-month follow-ups, bowel movement frequency increased and soiling frequency decreased significantly in both groups. At the 1-month follow-up, children on polyethylene glycol were soiling more frequently (P encopresis.

  15. Storage stability of biodegradable polyethylene glycol microspheres

    Science.gov (United States)

    Jain, Era; Sheth, Saahil; Polito, Kristen; Sell, Scott A.; Zustiak, Silviya P.

    2017-10-01

    Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at  -80 °C (moist condition) or vacuum drying (dry condition).

  16. 78 FR 76567 - Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs...

    Science.gov (United States)

    2013-12-18

    ..., Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs.; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of tall oil, polymer with polyethylene..., polymer with polyethylene glycol and succinic anhydride monopolyisobutylene derivs. on food or feed...

  17. Overnight efficacy of polyethylene glycol laxative.

    Science.gov (United States)

    Di Palma, Jack A; Smith, Julie R; Cleveland, Mark vB

    2002-07-01

    Clinical studies in constipated adult patients have shown that a 17- or 34-g daily dose of polyethylene glycol (PEG) 3350 (MiraLax) is safe and effective for the treatment of constipation, with the best efficacy seen in wk 2 of treatment. The purpose of this study was to determine an optimal dose of PEG to provide satisfactory relief of constipation within 24 h. A total of 24 adult study subjects who met Rome II criteria for constipation were randomized in a double-blind, parallel pilot study to receive a single dose of placebo or PEG laxative at doses of 51, 68, or 85 g in 500 ml of flavored water. Over a 72-h period, subjects rated bowel movements (BM), completeness of evacuation, and satisfaction. The 68-g dose seemed to be most satisfactory. Five of six subjects had a BM within 24 h. The time to first BM was 14.8 h for 68 g versus 27.3 h for placebo (p = NS). The time to second BM was 19.2 h versus 47.2 h for 68 g and placebo, respectively (p = 0.003). Of the subjects receiving 68 g of PEG, 50% and 100% reported complete evacuation for the first and second BM, respectively. The average number of BMs in 24 h for placebo, 51 g, 68 g, and 84 g were 0.5, 2.2, 2.2, and 4.2, respectively (p = 0.004). There were no adverse reactions, and no patient reported incontinence or complained of cramps or diarrhea at any dose. There were no changes in measured electrolytes, calcium, glucose, BUN, creatinine, or serum osmolality. A 68-g dose of PEG laxative seems to provide safe and effective relief in constipated adults within a 24-h period.

  18. Selected polyethylene glycols as DOP substitutes. Addendum 1

    International Nuclear Information System (INIS)

    Gerber, B.V.

    1981-01-01

    The recommendation is made that Polyethylene glycol (PEG) 400 be considered as a substitute for DOP in aerosol generators producing a polydisperse distribution for testing the integrity of filters and for testing respirator fit. Further, the recommendation is made that pentaethylene glycol (PTAEG) and possibly hexaethylene glycol be considered as a substitute for DOP in aerosol generators thermally producing monodisperse aerosol for quality acceptance tests according tu US federal specifications and standards. The toxicology data base available on the polyethylene glycol family of chemical compounds is discussed and the conclusion is drawn that the probability of approval and acceptance as a non-hazardous substance in the filter and filter media test role is high. Data and analysis supporting PTAEG performance equivalent to DOP in the filter and filter media test role are given or referenced. Cost and availability of the substitute materials is discussed. Conclusions based on the present data and information are given and recommendations for further work are made

  19. Use of polyethylene glycol in functional constipation and fecal impaction.

    Science.gov (United States)

    Mínguez, Miguel; López Higueras, Antonio; Júdez, Javier

    2016-12-01

    The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG), with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely) NOT colonoscopy. Critical reading of selected articles (English or Spanish), sorting their description according to group age (adult/pediatric age) and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis). Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two), psyllium (one), tegaserod (one), prucalopride (one), paraffin oil (one), fiber combinations (one) and Descurainia sophia (one). Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose) and are the first-line treatment for functional constipation in the short and long-term. They are as efficacious as enemas in fecal

  20. Use of polyethylene glycol in functional constipation and fecal impaction

    Directory of Open Access Journals (Sweden)

    Miguel Mínguez

    Full Text Available Objective: The objective of this study was to evaluate in an analytical and descriptive manner the evidence published so far on the use of polyethylene glycol (PEG, with or without electrolytes, in the management of functional constipation and the treatment of fecal impaction. Methodology: Search on MEDLINE, EMBASE and Cochrane databases until May 2016 of all publications adjusted to the following terms: constipation AND/OR fecal impaction AND (PEG OR polyethylene glycol OR macrogol OR movicol OR idralax OR miralax OR transipeg OR forlax OR golytely OR isocolan OR mulytely NOT colonoscopy. Critical reading of selected articles (English or Spanish, sorting their description according to group age (adult/pediatric age and within those, in accordance with study features (efficacy evaluation versus placebo, doses query, safety, comparison with other laxatives, observational studies and monographic review articles of polyethylene glycol or meta-analysis. Results: Fifty-eight publications have been chosen for descriptive analysis; of them, 41 are clinical trials, eight are observational studies and nine are systematic reviews or meta-analysis. Twelve clinical trials evaluate PEG efficacy versus placebo, eight versus lactulose, six are dose studies, five compare polyethylene glycol with and without electrolytes, two compare its efficacy with respect to milk of magnesia, and the rest of the trials evaluate polyethylene glycol with enemas (two, psyllium (one, tegaserod (one, prucalopride (one, paraffin oil (one, fiber combinations (one and Descurainia sophia (one. Conclusions: Polyethylene glycol with or without electrolytes is more efficacious than placebo for the treatment of functional constipation, either in adults or in pediatric patients, with great safety and tolerability. These preparations constitute the most efficacious osmotic laxatives (more than lactulose and are the first-line treatment for functional constipation in the short and long

  1. Efficacy of polyethylene glycol 4000 on constipation of

    Directory of Open Access Journals (Sweden)

    ZHANG Lian-yang

    2010-06-01

    Full Text Available Constipation is one of themost common chronic gastrointestinal problems. The estimated incidence of constipation in the United States is3% to 19% in general population.1,2 Patientswith head injuries, spinal cord injuries, pelvic fractures, lower extremity fractures ormultiple traumas require a long-term bed rest, during which the incidence of constipation reached as high as 50%.3,4 Constipation always brings inconvenience and tremendous suffering to patientsand strongly influences the recovery from primary disease. Irritants or lubricants can relieve the symptoms, but long-term application of them may lead to side effects like melanosis coli5 and cathartic colon6. The absorption of fat soluble vitamins is also affected.7 Polyethylene glycol 4000 (trade name: Forlax®, a long chain polymer with a high molecular weight, can conjugate withwater molecule through hydrogen bond to increase the water content and volume of stools, thereby, facilitate bowelmovement and defecation.8,9 It is neither absorbed nor metabolized in the digestive tract, hence it is highly safe and well tolerable. Thus, long-term medication of polyethylene glycol 4000 is conducive to the reconstruction of normal defecation pattern. Therefore, polyethylene glycol 4000 is now being widely used as the mainstay adult chronic functional constipation management.10,11 The aim of this study was to verify the efficacy and safety of polyethylene glycol 4000 on adult functional constipation of posttraumatic bedridden patients.

  2. Stabilization of Polyethylene Glycol in Archaeological Wood

    DEFF Research Database (Denmark)

    Mortensen, Martin Nordvig

    Projektet har fokuseret på polythylen glycol (PEG) stabilitet og nedbrydning i træ fra konserverede skibsvrag som Vasa (Stockholm) og Skuldelev skibene. En række avancerede analyseteknikker er anvendt til at undersøge indtrængningsdybden for forskellige molekylstørrelser PEG i ikke-nedbrudt træ f...

  3. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients.

    Science.gov (United States)

    Boles, Erin E; Gaines, Cameryn L; Tillman, Emma M

    2015-01-01

    The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. A retrospective, observational, institutional review board-approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects.

  4. A polyethylene glycol radioimmunoprecipitation assay for human immunoglobulin G

    International Nuclear Information System (INIS)

    Waller, S.J.; Taylor, R.P.; Andrews, B.S.

    1979-01-01

    A polyethylene glycol (PEG) radioimmunoprecipitation assay for human IgG is described that is sufficiently sensitive to detect 0.5 ng of IgG. This model antibody-antigen system was also used to study the stoichiometries of PEG-precipitation complexes. The results suggest that the presence of PEG may affect the stoichiometry of the complexes which precipitate from solution. (Auth.)

  5. Multimeric, Multifunctional Derivatives of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Gian Maria Bonora

    2011-07-01

    Full Text Available This article reviews the use of multifunctional polymers founded on high-molecular weight poly(ethylene glycol (PEG. The design of new PEG derivatives assembled in a dendrimer-like multimeric fashion or bearing different functionalities on the same molecule is described. Their use as new drug delivery systems based on the conjugation of multiple copies or diversely active drugs on the same biocompatible support is illustrated.

  6. Polyethylene Glycol 3350 With Electrolytes Versus Polyethylene Glycol 4000 for Constipation: A Randomized, Controlled Trial.

    Science.gov (United States)

    Bekkali, Noor L H; Hoekman, Daniël R; Liem, Olivia; Bongers, Marloes E J; van Wijk, Michiel P; Zegers, Bas; Pelleboer, Rolf A; Verwijs, Wim; Koot, Bart G P; Voropaiev, Maksym; Benninga, Marc A

    2018-01-01

    The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes (PEG4000). In this double-blind trial, children aged 0.5 to 16 years with constipation, defined as a defecation frequency of PEG3350 + E or PEG4000. Primary outcomes were change in total sum score (TSS) at week 52 compared to baseline, and dose range determination. TSS was the sum of the severity of 5 constipation symptoms rated on a 4-point scale (0-3). Noninferiority margin was a difference in TSS of ≤1.5 based on a 95%-confidence interval [CI]. Treatment success was defined as a defecation frequency of ≥3 per week with PEG3350 + E and PEG4000, respectively. Noninferiority criteria were not met (maximum difference between groups: -1.81 to 1.68). Daily sachet use was: 0 to 2 years: 0.4 to 2.3 and 0.9 to 2.1; 2 to 4 years: 0.1 to 3.5 and 1.2 to 3.2; 4 to 8 years: 1.1 to 2.8 and 0.7 to 3.8; 8 to 16 years 0.6 to 3.7 and 1.0 to 3.7, in PEG3350 + E and PEG4000, respectively. Treatment success after 52 weeks was achieved in 50% and 45% of children, respectively (P = 0.69). Rates of adverse events were similar between groups, and no drug-related serious adverse events occurred. Noninferiority regarding long-term constipation-related symptoms of PEG3350 + E compared to PEG4000 was not demonstrated. However, analysis of secondary outcomes suggests similar efficacy and safety of these agents.

  7. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  8. Hydrolytically and reductively degradable high-molecular-weight poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Pechar, Michal; Laga, Richard; Ulbrich, Karel

    2007-01-01

    Roč. 208, č. 24 (2007), s. 2642-2653 ISSN 1022-1352 R&D Projects: GA AV ČR KAN200200651; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable * drug delivery systems * gene delivery vectors * poly(ethylene glycol) Subject RIV: CE - Biochemistry Impact factor: 2.046, year: 2007

  9. Preparation and Separation of Telechelic Carborane-Containing Poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Matějíček, P.; Uchman, M.; Lepšík, Martin; Srnec, Martin; Zedník, J.; Kozlík, P.; Kalíková, K.

    2013-01-01

    Roč. 78, č. 6 (2013), s. 528-535 ISSN 2192-6506 R&D Projects: GA AV ČR IAAX00320901 Grant - others:GA ČR(CZ) GPP208/12/P236 Institutional support: RVO:61388963 Keywords : carboranes * click chemistry * poly(ethylene glycol) * quantum chemistry * reaction mechanisms Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.242, year: 2013

  10. Polyethylene glycol enhances lipoplex-cell association and lipofection.

    Science.gov (United States)

    Ross, P C; Hui, S W

    1999-10-15

    The association between liposome-DNA complexes (lipoplexes) and targeted cell membranes is a limiting step of cationic liposome-mediated transfection. A novel technique was developed where lipoplex-cell membrane association is enhanced by the addition of 2-6% polyethylene glycol (PEG) to the transfection media. Lipoplex-cell association was found to increase up to 100 times in the presence of PEG. Transfection increased correspondingly in the presence of PEG. This increase was found in several cell lines. These results show that lipoplex adsorption to cell membranes is a critical step in liposome-mediated transfection. This step can be facilitated by PEG-induced particle aggregation.

  11. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  12. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Zavisova, Vlasta, E-mail: zavisova@saske.s [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Koneracka, Martina [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Muckova, Marta; Lazova, Jana [Hameln, rds a.s., Horna 36, Modra (Slovakia); Jurikova, Alena; Lancz, Gabor; Tomasovicova, Natalia; Timko, Milan; Kovac, Jozef [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Vavra, Ivo [IEE SAS, Dubravska cesta 9, 841 04 Bratislava (Slovakia); Fabian, Martin [IGT SAS, Watsonova 45, Kosice 040 01 (Slovakia); Feoktystov, Artem V. [FLNP JINR, Joliot-Curie 6, Dubna Moscow Reg. 141980 (Russian Federation); KNU, Academician Glushkov Ave. 2/1, 03187 Kyiv (Ukraine); Garamus, Vasil M. [GKSS research center, Max-Planck-Str.1, 21502 Geesthacht (Germany); Avdeev, Mikhail V. [FLNP JINR, Joliot-Curie 6, Dubna Moscow Reg. 141980 (Russian Federation); Kopcansky, Peter [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia)

    2011-05-15

    Poly(ethylene glycol) (PEG)-containing magnetic fluids - magnetite (Fe{sub 3}O{sub 4}) stabilized by sodium oleate - were prepared. Magnetic measurements confirmed superparamagnetic behaviour at room temperature. The structure of that kind of magnetic fluid was characterized using different techniques, including electron microscopy, photon cross correlation spectroscopy and small-angle neutron scattering, while the adsorption of PEG on magnetic particles was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. From the in vitro toxicity tests it was found that a magnetic fluid containing PEG (MFPEG) partially inhibited the growth of cancerous B16 cells at the highest tested dose (2.1 mg/ml of Fe{sub 3}O{sub 4} in MFPEG). - Research Highlights: A new type of biocompatible magnetic fluid (MF) with poly(ethylene glycol) was prepared. Structuralization effects of magnetite particles depend on PEG concentration. Large fractals of magnetite nanoparticles in MF were observed (SANS indication). MF partially inhibited (approximately 50%) the growth of cancerous B16 cells.

  13. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity

    International Nuclear Information System (INIS)

    Zavisova, Vlasta; Koneracka, Martina; Muckova, Marta; Lazova, Jana; Jurikova, Alena; Lancz, Gabor; Tomasovicova, Natalia; Timko, Milan; Kovac, Jozef; Vavra, Ivo; Fabian, Martin; Feoktystov, Artem V.; Garamus, Vasil M.; Avdeev, Mikhail V.; Kopcansky, Peter

    2011-01-01

    Poly(ethylene glycol) (PEG)-containing magnetic fluids - magnetite (Fe 3 O 4 ) stabilized by sodium oleate - were prepared. Magnetic measurements confirmed superparamagnetic behaviour at room temperature. The structure of that kind of magnetic fluid was characterized using different techniques, including electron microscopy, photon cross correlation spectroscopy and small-angle neutron scattering, while the adsorption of PEG on magnetic particles was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. From the in vitro toxicity tests it was found that a magnetic fluid containing PEG (MFPEG) partially inhibited the growth of cancerous B16 cells at the highest tested dose (2.1 mg/ml of Fe 3 O 4 in MFPEG). - Research Highlights: → A new type of biocompatible magnetic fluid (MF) with poly(ethylene glycol) was prepared. → Structuralization effects of magnetite particles depend on PEG concentration. → Large fractals of magnetite nanoparticles in MF were observed (SANS indication). → MF partially inhibited (approximately 50%) the growth of cancerous B16 cells.

  14. New technetium-99m generator technologies utilizing polyethylene glycol-based aqueous piphasic systems

    International Nuclear Information System (INIS)

    Rogers, R.D.; Bond, A.H.; Zhang, Jianhua

    1995-01-01

    Two new schemes for TcO 4 - /MoO 4 2- separations from OH - and MoO 4 2- media using polyethylene glycol (PEG)-based aqueous biphasic systems (ABS) have been developed. The two most important salt solutions in current 99m Tc-generator technologies, OH - and MoO 4 2- , also salt out PEG to form ABS. In liquid/liquid PEG- ABS, pertechnetate can be separated from molybdate with separation factors as high as 10,000. Stripping is accomplished by reduction of the TcO 4 - and back extraction into a salt solution. the strip solution can be the salt of an imaging agent (e.g., Na 4 HEDPA) and thus may, under the appropriate conditions, be injected directly into the human body. 99m TcO 4 - can also be concentrated from a dilute load solution of 99 MoO 4 2- in NaOH using an aqueous biphasic extraction chromatographic technique (ABEC). A rinse with K 2 CO 3 assures that all 99 MoO 4 2- is removed from the column and this is confirmed by a rapid drop in 99 Mo activity by the fourth free column volume (fcv) of rinse. The 99m TcO 4 - is then eluted with water. This chromatographic separation affords 94% of the 99m TcO 4 - activity in 5 fcv, with the y spectrum showing less than 2 x 10 -4 of the original 99 Mo activity

  15. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Xian-bin Kong

    2017-01-01

    Full Text Available Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compelling findings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1 polyethylene glycol as an adjustable biomolecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2 Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3 Polyethylene glycol hydrogels have been used as supporting substrates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury

  16. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xian-bin Kong; Qiu-yan Tang; Xu-yi Chen; Yue Tu; Shi-zhong Sun; Zhong-lei Sun

    2017-01-01

    Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compellingfindings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1) polyethylene glycol as an adjustable bio-molecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2) Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3) Polyethylene glycol hydrogels have been used as supporting sub-strates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury.

  17. Simulation of polyethylene glycol and calcium-mediated membrane fusion

    International Nuclear Information System (INIS)

    Pannuzzo, Martina; De Jong, Djurre H.; Marrink, Siewert J.; Raudino, Antonio

    2014-01-01

    We report on the mechanism of membrane fusion mediated by polyethylene glycol (PEG) and Ca 2+ by means of a coarse-grained molecular dynamics simulation approach. Our data provide a detailed view on the role of cations and polymer in modulating the interaction between negatively charged apposed membranes. The PEG chains cause a reduction of the inter-lamellar distance and cause an increase in concentration of divalent cations. When thermally driven fluctuations bring the membranes at close contact, a switch from cis to trans Ca 2+ -lipid complexes stabilizes a focal contact acting as a nucleation site for further expansion of the adhesion region. Flipping of lipid tails induces subsequent stalk formation. Together, our results provide a molecular explanation for the synergistic effect of Ca 2+ and PEG on membrane fusion

  18. On the Structure of Holographic Polymer-dispersed Polyethylene Glycol

    International Nuclear Information System (INIS)

    Birnkrant, M.; McWilliams, H.; Li, C.; Natarajan, L.; Tondiglia, V.; Sutherland, R.; Lloyd, P.; Bunning, T.

    2006-01-01

    Holographic polymerization (H-P) has been used to fabricate polymer-dispersed liquid crystals and pattern inert nanoparticles. In this article, one-dimensional grating structures of Norland resin and polyethylene glycol (PEG) were achieved using the H-P technique. Both reflection and transmission grating structures were fabricated. The optical properties of the reflection grating structures (also known as Bragg reflectors, BRs) are thermosensitive, which is attributed to the formation and crystallization of PEG crystals. The thermal switching temperature of the BR can be tuned by using different molecular weight PEG samples. The hierarchical structure and morphology of the BR were studied using synchrotron X-ray, polarized light microscopy and transmission electron microscopy. PEG crystals were found to be confined in ∼60 nm thick layers in the BR. Upon crystallization, the PEG lamellae were parallel to the BR surfaces and PEG chains were parallel to the BR normal, resembling the confined crystallization behavior of polyethylene oxide (PEO) in PEO-block-polystyrene (PEO-b-PS) block copolymers. This observation suggests that the tethering effect in the block copolymer systems does not play a major role in PEG chain orientation in the confined nanoenvironment

  19. Release mechanisms of acetaminophen from polyethylene oxide/polyethylene glycol matrix tablets utilizing magnetic resonance imaging.

    Science.gov (United States)

    Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Suzuki, Masazumi; Yamanashi, Shigeyuki; Ozaki, Yukihiro; Kitamura, Satoshi

    2010-08-16

    Release mechanism of acetaminophen (AAP) from extended-release tablets of hydrogel polymer matrices containing polyethylene oxide (PEO) and polyethylene glycol (PEG) were achieved using flow-through cell with magnetic resonance imaging (MRI). The hydrogel forming abilities are observed characteristically and the layer thickness which is corresponding to the diffusion length of AAP has a good correlation with the drug release profiles. In addition, polymeric erosion contribution to AAP releasing from hydrogel matrix tablets was directly quantified using size-exclusion chromatography (SEC). The matrix erosion profile indicates that the PEG erosion kinetic depends primarily on the composition ratio of PEG to PEO. The present study has confirmed that the combination of in situ MRI and SEC should be well suited to investigate the drug release mechanisms of hydrogel matrix such as PEO/PEG. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Abednejad, Atiye Sadat, E-mail: atiyeabednejad@gmail.com [Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of); Amoabediny, Ghasem [Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of); Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 63894-14179, Tehran (Iran, Islamic Republic of); Ghaee, Azadeh [Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of)

    2014-09-01

    Polypropylene hollow fiber microporous membranes have been used in a wide range of applications, including blood oxygenator. The hydrophobic feature of the polypropylene surface causes membrane fouling. To minimize fouling, a modification consisting of three steps: surface activation in H{sub 2} and O{sub 2} plasma, membrane immersion in polyethylene glycol (PEG) and plasma graft polymerization was performed. The membranes were characterized by contact angle measurement, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Oxygen transfer of modified membranes was also tested. The stability of grafted PEG was measured in water and in phosphate buffer saline (PBS) at 37 °C. Blood compatibility of modified surfaces was evaluated by the platelet adhesion method. Water contact angel reduction from 110° to 72° demonstrates the enhanced hydrophilicity, and XPS results verify the presence of oxygenated functional groups due to the peak existence in 286 eV as a result of PEG grafting. The results clearly indicate that plasma graft-polymerization of PEG is an effective way for antifouling improvement of polypropylene membranes. Also, the results show that oxygen transfer changes in PEG grafted membranes are not significant. - Highlights: • H{sub 2} and O{sub 2} plasma graft polymerization of PEG on polypropylene membrane was carried out. • Changes in surface properties were investigated by FTIR, XPS, SEM, and AFM. • Surface wettability enhanced as a result of poly ethylene glycol grafting. • PEG grafting degree increase causes reduction of fouling and adhesion.

  1. New technetium-99m generator technologies utilizing polyethylene glycol-based aqueous biphasic systems

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; Bond, A.H.; Zhang, Jianhua [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Chemistry; Horwitz, P. [Argonne National Lab., IL (United States)

    1995-12-31

    Two new schemes for TcO{sub 4}{sup {minus}}/MoO{sub 4}{sup 2{minus}} separations from OH{sup {minus}} and MoO{sub 4}{sup 2{minus}} media using polyethylene glycol (PEG)-based aqueous biphasic systems (ABS) have been developed. The two most important salt solutions in current {sup 99m}Tc-generator technologies, OH{sup {minus}} and MoO{sub 4}{sup 2{minus}}, also salt out PEG to form ABS. In liquid/liquid PEG- ABS, pertechnetate can be separated from molybdate with separation factors as high as 10,000. Stripping is accomplished by reduction of the TcO{sub 4}{sup {minus}} and back extraction into a salt solution. the strip solution can be the salt of an imaging agent (e.g., Na{sub 4}HEDPA) and thus may, under the appropriate conditions, be injected directly into the human body. {sup 99m}TcO{sub 4}{sup {minus}} can also be concentrated from a dilute load solution of {sup 99}MoO{sub 4}{sup 2{minus}} in NaOH using an aqueous biphasic extraction chromatographic technique (ABEC). A rinse with K{sub 2}CO{sub 3} assures that all {sup 99}MoO{sub 4}{sup 2{minus}} is removed from the column and this is confirmed by a rapid drop in {sup 99}Mo activity by the fourth free column volume (fcv) of rinse. The {sup 99m}TcO{sub 4}{sup {minus}} is then eluted with water. This chromatographic separation affords 94% of the {sup 99m}TcO{sub 4}{sup {minus}} activity in 5 fcv, with the y spectrum showing less than 2 {times} 10{sup {minus}4} of the original {sup 99}Mo activity.

  2. Biomedical Applications of Gold Nanoparticles Functionalized Using Hetero-Bifunctional Poly(ethylene glycol) Spacer

    National Research Council Canada - National Science Library

    Fu, Wei; Shenoy, Dinesh; Li, Jane; Crasto, Curtis; Jones, Graham; Dimarzio, Charles; Sridhar, Srinivas; Amiji, Mansoor

    2005-01-01

    To increase the targeting potential, circulation time, and the flexibility of surface-attached biomedically-relevant ligands on gold nanoparticles, hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500...

  3. Pediatric constipation therapy using guidelines and polyethylene glycol 3350.

    Science.gov (United States)

    Bell, Edward A; Wall, Geoffrey C

    2004-04-01

    To review current guidelines on the treatment of functional constipation in pediatric patients, with an emphasis on the role of polyethylene glycol 3350 (PEG 3350). Primary medical literature published in English was identified by MEDLINE search (1980-May 2003). Recently published treatment guidelines relating to pediatric functional constipation and its pharmacotherapy are assessed and compared. Published trials evaluating PEG 3350 in pediatric subjects are discussed and their results applied to the clinical role and use of this new agent. Constipation is a common disorder among children. A number of factors may play a role. A variety of medications are commonly used for this disorder, although few treatments have undergone evaluation by controlled clinical trials. Consensus guidelines recommend either osmotic laxatives, mineral oil, or their combination for maintenance treatment in concert with patient and parental education and behavioral training. PEG 3350 solution (MiraLax) has been shown in recent clinical studies to be an effective maintenance treatment for pediatric constipation. PEG 3350 is an effective and well-tolerated treatment choice for pediatric constipation, especially as an adjunct to education and behavioral training. PEG 3350 is an option for children with constipation who have failed or are intolerant of other pharmacotherapies.

  4. Urinary excretion of polyethylene glycol 3350 during colonoscopy preparation.

    Science.gov (United States)

    Rothfuss, K S; Bode, J C; Stange, E F; Parlesak, A

    2006-02-01

    Whole gut lavage with a polyethylene glycol electrolyte solution (PEG) is a common bowel cleansing method for diagnostic and therapeutic colon interventions. Absorption of orally administered PEG from the gastrointestinal tract in healthy human beings is generally considered to be poor. In patients with inflammatory bowel disease (IBD), intestinal permeability and PEG absorption were previously reported to be higher than in normal subjects. In the current study, we investigated the absorption of PEG 3350 in patients undergoing routine gut lavage. Urine specimens were collected for 8 hours in 24 patients undergoing bowel cleansing with PEG 3350 for colonoscopy. The urinary excretion of PEG 3350, measured by size exclusion chromatography, ranged between 0.01 and 0.51 % of the ingested amount, corresponding to 5.8 and 896 mg in absolute amounts, respectively. Mean PEG excretion in patients with impaired mucosa such as inflammation or ulceration of the intestine (0.24 % +/- 0.19, n = 11) was not significantly higher (p = 0.173) compared to that in subjects with macroscopically normal intestinal mucosa (0.13 % +/- 0.13, n = 13). The results indicate that intestinal absorption of PEG 3350 is higher than previously assumed and underlies a strong inter-individual variation. Inflammatory changes of the intestine do not necessarily lead to a significantly higher permeability of PEG.

  5. Differences in taste between two polyethylene glycol preparations.

    Science.gov (United States)

    Szojda, Maria M; Mulder, Chris J J; Felt-Bersma, Richelle J F

    2007-12-01

    Polyethylene glycol preparations (PEG) are increasingly used for chronic constipation in both adults and children. There are some suggestions that PEG 4000 with orange flavour (Forlax) tastes better than PEG 3350 which contains salt (Movicolon). Poor taste is an important factor for non-compliance and is one of the leading causes of therapy failure. The aim of the study was to compare the taste of two commonly used PEG preparations, PEG 4000 and PEG 3350. A double-blind, cross over randomised trial. A hundred people were recruited by advertisement. All tasted both preparations without swallowing and after tasting each of the preparations, they rinsed their mouths. Then a score, on a 5-point scale, was given for both preparations. 100 volunteers were included (27 males and 73 females, mean age 36). The taste score for PEG 4000 (mean 3.9, SD 0.7) was significantly better than for PEG 3350 (mean 2.7, SD 0.7) (pPEG 3350 liked it more, when they tasted it first rather than when they tasted it after PEG 4000 (pPEG 4000 had no influence on the taste results. PEG 4000 tastes better than PEG 3350. This may have implications for patient compliance and effectiveness of treatment in patients with chronic constipation.

  6. OTC polyethylene glycol 3350 and pharmacists' role in managing constipation.

    Science.gov (United States)

    Horn, John R; Mantione, Maria Marzella; Johanson, John F

    2012-01-01

    To define constipation, assess the pharmacist's role in identifying and treating constipation, and review clinical evidence for the efficacy, safety, and tolerability of polyethylene glycol (PEG) 3350 (MiraLAX-Merck Consumer Care), an osmotic laxative now available over the counter (OTC), across a variety of patient populations routinely encountered in pharmacy settings. Systematic PubMed search of the primary literature for constipation treatment guidelines and clinical trial results for PEG 3350. Pharmacists have a unique role in assisting patients with identifying and managing constipation. Multiple controlled clinical trials have established the efficacy, safety, and tolerability of PEG 3350 at its recommended dose of 17 g once daily. On the basis of this evidence, various professional groups have recommended PEG 3350 for use in improving stool frequency and consistency in patients with constipation. PEG 3350 is approved for short-term use, including treatment of constipation caused by medications. Pharmacists can play an important role in managing constipation with OTC agents. Compared with other available OTC agents, PEG 3350 can be recommended to patients suffering from constipation on the basis of a large body of clinical evidence supporting its efficacy and safety, as well as the high patient acceptance shown for its palatability and once-daily dosing.

  7. Influence of polyethylene glycol on percolation dynamics of reverse microemulsions

    Science.gov (United States)

    Geethu, P. M.; Yadav, Indresh; Aswal, V. K.; Satapathy, D. K.

    2018-04-01

    We explore the influence of a hydrophilic polymer, polyethylene glycol (PEG), on the structure and the percolation dynamics of reverse microemulsions (ME) stabilized by an anionic surfactant AOT (sodium bis(2-ethylhexyl) sulfosuccinate). The percolation transition of MEs is probed using dielectric relaxation spectroscopy (DRS). Notably, an increase in percolation temperature is observed by the incorporation of PEG-polymer into larger ME droplets which is explained by considering the model of polymer adsorption at surfactant-water interface. The stability of the droplet phase of microemulsion after the incorporation of PEG is confirmed by small-angle neutron scattering (SANS) experiment. Further, a net decrease in percolation transition temperature is observed with the addition of PEG polymer for smaller ME droplets and is discussed in relation with the destabilization of droplets owing to the polymer induced bridging and the associated clustering of droplets. We conjecture that the adsorption of PEG polymer chains at the surfactant-water interface as well as the PEG-induced bridging of droplets are due to the strong ion-dipole interaction between anionic head group of AOT surfactant and dipoles present in PEG polymer chains.

  8. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks

    International Nuclear Information System (INIS)

    Engberg, Kristin; Frank, Curtis W

    2011-01-01

    In this study, protein diffusion through swollen hydrogel networks prepared from end-linked poly(ethylene glycol)-diacrylate (PEG-DA) was investigated. Hydrogels were prepared via photopolymerization from PEG-DA macromonomer solutions of two molecular weights, 4600 Da and 8000 Da, with three initial solid contents: 20, 33 and 50 wt/wt% PEG. Diffusion coefficients for myoglobin traveling across the hydrogel membrane were determined for all PEG network compositions. The diffusion coefficient depended on PEG molecular weight and initial solid content, with the slowest diffusion occurring through lower molecular weight, high-solid-content networks (D gel = 0.16 ± 0.02 x 10 -8 cm 2 s -1 ) and the fastest diffusion occurring through higher molecular weight, low-solid-content networks (D gel = 11.05 ± 0.43 x 10 -8 cm 2 s -1 ). Myoglobin diffusion coefficients increased linearly with the increase of water content within the hydrogels. The permeability of three larger model proteins (horseradish peroxidase, bovine serum albumin and immunoglobulin G) through PEG(8000) hydrogel membranes was also examined, with the observation that globular molecules as large as 10.7 nm in hydrodynamic diameter can diffuse through the PEG network. Protein diffusion coefficients within the PEG hydrogels ranged from one to two orders of magnitude lower than the diffusion coefficients in free water. Network defects were determined to be a significant contributing factor to the observed protein diffusion.

  9. Detecting Sonolysis of Polyethylene Glycol Upon Functionalizing Carbon Nanotubes.

    Science.gov (United States)

    Wang, Ruhung; Murali, Vasanth S; Draper, Rockford

    2017-01-01

    Polyethylene glycol (PEG) and related polymers are often used in the solubilization and noncovalent functionalization of carbon nanomaterials by sonication. For example, carbon nanotubes are frequently sonicated with PEG-containing surfactants of the Pluronic ® series or phospholipid-PEG polymers to noncovalently functionalize the nanotubes. However, PEG is very sensitive to degradation upon sonication and the degradation products can be toxic to mammalian cells and to organisms such as zebrafish embryos. It is therefore useful to have a simple and inexpensive method to determine the extent of potential PEG sonolysis, as described in this chapter. Intact PEG polymers and degraded fragments are resolved on sodium dodecyl sulfate polyacrylamide gels by electrophoresis and visualized by staining with barium iodine (BaI 2 ). Digitized images of gels are acquired using a flatbed photo scanner and the intensities of BaI 2 -stained PEG bands are quantified using ImageJ software. Degradation of PEG polymers after sonication is readily detected by the reduction of band intensities in gels compared to those of non-sonicated, intact PEG polymers. In addition, the approach can be used to rapidly screen various sonication conditions to identify those that might minimize PEG degradation to acceptable levels.

  10. MODIFICATION OF ERYTHROCYTE MEMBRANE PROTEINS WITH POLYETHYLENE GLYCOL 1500

    Directory of Open Access Journals (Sweden)

    N. G. Zemlianskykh

    2016-10-01

    Full Text Available The aim of the work was to study the effect of polyethylene glycol PEG-1500 on the Ca2+-ATPase activity and changes in CD44 surface marker expression in human erythrocyte membranes. Determination of the Ca2+-ATPase activity was carried out in sealed erythrocyte ghosts by the level of accumulation of inorganic phosphorus. Changes in the expression of CD44 and amount of CD44+-erythrocytes were evaluated by flow cytometry. The inhibition of Ca2+-ATPase activity and a reduction in the level of CD44 expression and also the decrease in the amount CD44+-cells were found, reflecting a fairly complex restructuring in the membrane-cytoskeleton complex of erythrocytes under the influence of PEG-1500. Effect of PEG-1500 on the surface CD44 marker could be mediated by modification of proteins of membrane-cytoskeleton complex, as indicated by accelerated loss of CD44 in erythrocyte membranes after application of protein cross-linking reagent diamide. Reduced activity of Ca2+-ATPase activity may contribute to the increase in intracellular Ca2+ level and thus leads to a modification of interactions of integral proteins with cytoskeletal components that eventually could result in membrane vesiculation and decreasing in expression of the CD44 marker, which is dynamically linked to the cytoskeleton.

  11. Preparation and Characterization of Modified Soda Lignin with Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Fangda Zhang

    2016-10-01

    Full Text Available Soda lignin does not have thermal flowing characteristics and it is impossible for it to be further thermally molded. To achieve the fusibility of soda lignin for fiber preparation by melt-spinning, an effective method for soda lignin modification was conducted by cooking it with polyethylene glycol (PEG 400 at various ratios. The higher the ratio of PEG that was used, the more PEG molecular chains were grafted at the alpha carbon of the soda lignin through ether bonds, resulting in lower thermal transition temperatures and more excellent fusibility. The modified soda lignin with a weight ratio of lignin to PEG of 1:4 exhibited a relative thermal stability of molten viscosity at selected temperatures. Thereafter, the resultant fusible soda lignin was successfully melt-spun into filaments with an average diameter of 33 ± 5 μm, which is smaller than that of some industrial lignins. Accordingly, it is possible to utilize soda lignin to produce fibrous carbonaceous materials.

  12. Identification of Poly(ethylene glycol) and Poly(ethylene glycol)-Based Detergents Using Peptide Search Engines.

    Science.gov (United States)

    Ahmadi, Shiva; Winter, Dominic

    2018-06-05

    Poly(ethylene glycol) (PEG) is one of the most common polymer contaminations in mass spectrometry (MS) samples. At present, the detection of PEG and other polymers relies largely on manual inspection of raw data, which is laborious and frequently difficult due to sample complexity and retention characteristics of polymer species in reversed-phase chromatography. We developed a new strategy for the automated identification of PEG molecules from tandem mass spectrometry (MS/MS) data using protein identification algorithms in combination with a database containing "PEG-proteins". Through definition of variable modifications, we extend the approach for the identification of commonly used PEG-based detergents. We exemplify the identification of different types of polymers by static nanoelectrospray tandem mass spectrometry (nanoESI-MS/MS) analysis of pure detergent solutions and data analysis using Mascot. Analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) runs of a PEG-contaminated sample by Mascot identified 806 PEG spectra originating from four PEG species using a defined set of modifications covering PEG and common PEG-based detergents. Further characterization of the sample for unidentified PEG species using error-tolerant and mass-tolerant searches resulted in identification of 3409 and 3187 PEG-related MS/MS spectra, respectively. We further demonstrate the applicability of the strategy for Protein Pilot and MaxQuant.

  13. Separation of polyethylene glycols and amino-terminated polyethylene glycols by high-performance liquid chromatography under near critical conditions.

    Science.gov (United States)

    Wei, Y-Z; Zhuo, R-X; Jiang, X-L

    2016-05-20

    The separation and characterization of polyethylene glycols (PEGs) and amino-substituted derivatives on common silica-based reversed-phase packing columns using isocratic elution is described. This separation is achieved by liquid chromatography under the near critical conditions (LCCC), based on the number of amino functional end groups without obvious effect of molar mass for PEGs. The mobile phase is acetonitrile in water with an optimal ammonium acetate buffer. The separation mechanism of PEG and amino-substituted PEG under the near LCCC on silica-based packing columns is confirmed to be ion-exchange interaction. Under the LCCC of PEG backbone, with fine tune of buffer concentration, the retention factor ratios for benzylamine and phenol in buffered mobile phases, α(benzylamine/phenol)-values, were used to assess the ion-exchange capacity on silica-based reversed-phase packing columns. To the best of our knowledge, this is the first report on separation of amino-functional PEGs independent of the molar mass by isocratic elution using common C18 or phenyl reversed-phase packing columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Distraction induced enterogenesis: a unique mouse model using polyethylene glycol.

    Science.gov (United States)

    Okawada, Manabu; Maria, Haytham Mustafa; Teitelbaum, Daniel H

    2011-09-01

    Recent studies have demonstrated that the small intestine can be lengthened by applying mechanical forces to the bowel lumen-distraction-induced enterogenesis. However, the mechanisms which account for this growth are unknown, and might be best examined using a mouse model. The purpose of this study is to establish the feasibility of developing distractive-induced small bowel growth in mouse. Twelve-week old C57BL/6J mice had a jejunal segment taken out of continuity, and distended with polyethylene glycol (PEG: 3350 KDa); this group was compared with a control group without stretching. Segment length and diameter were measured intra-operatively and after 5 d. Villus height, crypt depth, and muscle thickness in the isolated segment were assessed. Rate of epithelial cell proliferation (5-bromo-2-deoxyuridine: BrdU incorporation) in crypts were also examined. The mucosal mRNA expression of targeted factors was performed to investigate potential mechanisms which might lead to distraction-induced enterogenesis. At harvest, the PEG-stretched group showed a significant increase in length and diameter versus controls. Villus height, crypt depth, and muscular layer thickness increased in the PEG group. The PEG group also showed significantly increased rates of epithelial cell proliferation versus controls. Real-time PCR showed a trend toward higher β-catenin and c-myc mRNA expression in the PEG-stretched group; however, this difference was not statistically significant. Radial distraction-induced enterogenesis with PEG is a viable method for increasing small intestinal length and diameter. This model may provide a new method for studying the mechanisms leading to distraction-induced enterogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Hydroxynortriptyline of Empty Fruit Bunches Fibre using Polyethylene glycol (PEG)

    International Nuclear Information System (INIS)

    Noreen, F.M.Z.; Sarani Zakaria

    2013-01-01

    The aim of this study was to investigate the reaction of oil palm empty fruit bunches fibre (EFBF) via chemical modification and hydroxynortriptyline method using polyethylene glycol (PEG). The first stage was the modification of EFB fibre using NaOH and isopropanol. The next stage was the preparation of hydroxypropylated-empty fruit bunches fibre (HP-EFBF), using different molecular weight of PEG (6,000, 8,000 and 10,000). The characterisation involved in this study were conducted by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), determination of kinetic activation energy (E a ), X-ray diffraction (XRD), cellulose crystallinity index (CrI) and weight increment of the HP-EFB fibre. SEM results showed the surface of HP-EFBF swelled and craters formed along the surface of the fibre. IR spectrum also showed OH stretching band in EFB without treatment is 3402 cm -1 , but after hydroxynortriptyline process, the OH stretching band in HP-EFBF (10000, 8000 and 6000) slightly shifted to 3392, 3384 and 3370 cm -1 , respectively. TGA showed the thermal stability of HP-EFBF 6,000 was lower than HP-EFBF 8,000 and 10,000. After chemical modification, the activation energy, E a increased from 32.4 to 51.9 kJ/ mol more than EFB without treatment, 12.5 kJ/ mol. XRD showed that diffraction peak (002) shifted to the smaller 2θ angle and the peaks (101, 10I) disappeared after hydroxynortriptyline process. Crystallinity index, of EFB without treatment decreased from 27 % to 25 % after chemical modification. The higher the molecular weight of the PEG, the greater the weight increment of the HP-EFBF. (author)

  16. Polyethylene glycol restores axonal conduction after corpus callosum transection

    Directory of Open Access Journals (Sweden)

    Ravinder Bamba

    2017-01-01

    Full Text Available Polyethylene glycol (PEG has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA were used to measure mean firing rate (MFR and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups (P < 0.01, P < 0.05. These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  17. Polyethylene glycol restores axonal conduction after corpus callosum transection.

    Science.gov (United States)

    Bamba, Ravinder; Riley, D Colton; Boyer, Richard B; Pollins, Alonda C; Shack, R Bruce; Thayer, Wesley P

    2017-05-01

    Polyethylene glycol (PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA) were used to measure mean firing rate (MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups ( P < 0.01, P < 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  18. Colonoscopy preparation: polyethylene glycol with Gatorade is as safe and efficacious as four liters of polyethylene glycol with balanced electrolytes.

    Science.gov (United States)

    McKenna, Thomas; Macgill, Alice; Porat, Gail; Friedenberg, Frank K

    2012-12-01

    Four liters of polyethylene glycol 3350 (PEG) with balanced electrolytes for colonoscopy preparation has had poor acceptance. Another approach is the use of electrolyte-free PEG combined with 1.9 L of Gatorade. Despite its widespread use, there are no data on metabolic safety and minimal data on efficacy. Our aim was to assess the efficacy and electrolyte safety of these two PEG-based preparations. This was a prospective, randomized, single-blind, non-inferiority trial. Patients were randomized to 238 g PEG + 1.9 L Gatorade or 4 L of PEG-ELS containing 236 g PEG. Split dosing was not performed. On procedure day blood was drawn for basic chemistries. The primary outcome was preparation quality from procedure photos using the Boston Bowel Preparation Scale. We randomized 136 patients (66 PEG + Gatorade, 70 PEG-ELS). There were no differences in preparation scores between the two agents in the ITT analysis (7.2 ± 1.9 for PEG-ELS and 7.0 ± 2.1 for PEG + Gatorade; p = 0.45). BBPS scores were identical for those who completed the preparation and dietary instructions as directed (7.4 ± 1.7 for PEG-ELS, and 7.4 ± 1.8 for PEG + Gatorade; p = 0.98). There were no statistical differences in serum electrolytes between the two preparations. Patients who received PEG + Gatorade gave higher overall satisfaction scores for the preparation experience (p = 0.001), and had fewer adverse effects. Use of 238 g PEG + 1.9 L Gatorade appears to be safe, better tolerated, and non-inferior to 4 L PEG-ELS. This preparation may be especially useful for patients who previously tolerated PEG-ELS poorly.

  19. Colonoscopy Preparation: Polyethylene Glycol with Gatorade is as Safe and Efficacious as 4 Liters of Polyethylene Glycol with Balanced Electrolytes

    Science.gov (United States)

    McKenna, Thomas; Macgill, Alice; Porat, Gail; Friedenberg, Frank K.

    2013-01-01

    Background Four liters of polyethylene glycol 3350 with balanced electrolytes for colonoscopy preparation has had poor acceptance. Another approach is the use of electrolyte-free PEG combined with 1.9L of Gatorade. Despite its widespread use, there are no data on metabolic safety and minimal data on efficacy. Our aim was to assess the efficacy and electrolyte safety of these two PEG-based preparations. Methods This was a prospective, randomized, single-blind, non-inferiority trial. Patients were randomized to 238g PEG + 1.9L Gatorade or 4L of PEG-ELS containing 236g PEG. Split dosing was not performed. On procedure day blood was drawn for basic chemistries. The primary outcome was preparation quality from procedure photos using the Boston Bowel Preparation Scale. Results We randomized 136 patients (66 PEG + Gatorade, 70 PEG-ELS). There were no differences in preparation scores between the two agents in the ITT analysis (7.2 ± 1.9 for PEG-ELS and 7.0 ± 2.1 for PEG + Gatorade; p = 0.45). BBPS scores were identical for those who completed the preparation and dietary instructions as directed (7.4 ± 1.7 for PEG-ELS, and 7.4 ± 1.8 for PEG + Gatorade; p = 0.98). There were no statistical differences in serum electrolytes between the two preparations. Patients who received PEG + Gatorade gave higher overall satisfaction scores for the preparation experience (p = 0.001), and had fewer adverse effects. Conclusions Use of 238g PEG + 1.9L Gatorade appears to be safe, better tolerated, and non-inferior to 4L PEG-ELS. This preparation may be especially useful for patients who previously tolerated PEG-ELS poorly. PMID:22711499

  20. Engineering Poly(ethylene glycol) Materials to Promote Cardiogenesis

    Science.gov (United States)

    Smith, Amanda Walker

    Heart failure is one of the leading causes of death worldwide, and the current costs of treatment put a significant economic burden on our societies. After an infarction, fibrotic tissue begins to form as part of the heart failure cascade. Current options to slow this process include a wide range of pharmaceutical agents, and ultimately the patient may require a heart transplant. Innovative treatment approaches are needed to bring down costs and improve quality of life. The possibility of regenerating or replacing damaged tissue with healthy cardiomyocytes is generating considerable excitement, but there are still many obstacles to overcome. First, while cell injections into the myocardium have demonstrated slight improvements in cardiac function, the actual engraftment of transplanted cells is very low. It is anticipated that improving engraftment will boost outcomes. Second, cellular differentiation and reprogramming protocols have not yet produced cells that are identical to adult cardiomyocytes, and immunogenicity continues to be a problem despite the advent of autologously derived induced pluripotent stem cells. This dissertation will explore biomaterials approaches to addressing these two obstacles. Tissue engineering scaffolds may improve cell engraftment by providing bioactive factors, preventing cell anoikis, and reducing cell washout by blood flow. Poly(ethylene glycol) (PEG) is often used as a coating to reduce implant rejection because it is highly resistant to protein adsorption. Because fibrosis of a material in contact with the myocardium could cause arrhythmias, PEG materials are highly relevant for cardiac tissue engineering applications. In Chapter 2, we describe a novel method for crosslinking PEG microspheres around cells to form a scaffold for tissue engineering. We then demonstrate that HL-1 cardiomyocyte viability and phenotype are retained throughout the fabrication process and during the first 7 weeks of culture. In the third chapter of the

  1. The Determination of Polyethylene Glycol in Untreated Urine Samples by High Performance Liquid Chromatography for Intestinal Permeability Studies

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Pedersen, Walther Batsberg; Philipsen, E.

    1985-01-01

    Polyethylene glycol in urine samples has been investigated by high performance liquid chromatography. The molecular weights ranged from 634 to 1338. The urine samples were applied to the chromatographic system without any pre-treatment. For samples with a concentration of 0.2% polyethylene glycol...

  2. Zero-order release of lysozyme from (poly)ethylene glycol)/poly(butylene terephthalate) matrices

    NARCIS (Netherlands)

    Bezemer, J.M.; Radersma, R.; Grijpma, Dirk W.; Dijkstra, Pieter J.; Feijen, Jan; van Blitterswijk, Clemens

    2000-01-01

    Protein release from a series of biodegradable poly(ether ester) multiblock copolymers, based on poly(ethylene glycol) (PEG) and poly(butylene terephthalate) (PBT) was investigated. Lysozyme-containing PEG/PBT films and microspheres were prepared using an emulsion technique. Proteins were

  3. Hydrodynamic radii of polyethylene glycols in different solvents determined from viscosity measurements

    NARCIS (Netherlands)

    Dohmen-Speelmans, M.P.J.; Pereira, A.M.; Timmer, J.M.K.; Benes, N.E.; Keurentjes, J.T.F.

    2008-01-01

    The hydrodynamic radius, rh, of low molar mass polyethylene glycol, MPEG = (200 to 1000) g·mol-1, in a homologous series of primary alcohols, acetone, and toluene has been determined from viscosity measurements. The viscosity data have been collected using a fast one-point method as well as a more

  4. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments

    NARCIS (Netherlands)

    Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S.L.; Mutton, R.; Clare, A.S.; Wang, S.; Liu, Y.; Zhao, Q.; D'Souza, F.; Donnelly, G.T.; Willemsen, P.R.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Liedberg, B.

    2008-01-01

    This work describes the fabrication, characterization, and biological evaluation of a thin protein-resistant poly(ethylene glycol) (PEG)-based hydrogel coating for antifouling applications. The coating was fabricated by free-radical polymerization on silanized glass and silicon and on

  5. Macrogol (polyethylene glycol) laxatives in children with functional constipation and faecal impaction: a systematic review

    OpenAIRE

    Candy, D; Belsey, J

    2008-01-01

    As the evidence base supporting the use of laxatives in children is very limited, we undertook an updated systematic review to clarify the issue. A comprehensive literature search was carried out to identify randomised controlled trials of polyethylene glycol (PEG) versus either placebo or active comparator, in patients aged

  6. Polyethylene glycol (PEG-400: An efficient medium for the synthesis of 1,2-disubstituted benzimidazoles

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Mekala

    2015-12-01

    Full Text Available Polyethylene glycol (PEG-400 was found to be an inexpensive, non-toxic, and effective medium for the one-pot synthesis of 1,2-disubstituted benzimidazoles in excellent yields. Eco-friendliness, low cost, high yields, and recyclability of the PEG-400 are the important features of this protocol.

  7. Cloud-point measurement for (sulphate salts + polyethylene glycol 15000 + water) systems by the particle counting method

    International Nuclear Information System (INIS)

    Imani, A.; Modarress, H.; Eliassi, A.; Abdous, M.

    2009-01-01

    The phase separation of (water + salt + polyethylene glycol 15000) systems was studied by cloud-point measurements using the particle counting method. The effect of three kinds of sulphate salt (Na 2 SO 4 , K 2 SO 4 , (NH 4 ) 2 SO 4 ) concentration, polyethylene glycol 15000 concentration, mass ratio of polymer to salt on the cloud-point temperature of these systems have been investigated. The results obtained indicate that the cloud-point temperatures decrease linearly with increase in polyethylene glycol concentrations for different salts. Also, the cloud points decrease with an increase in mass ratio of salt to polymer.

  8. Comparison of polyethylene glycol 3350 and lactulose for treatment of chronic constipation in children.

    Science.gov (United States)

    Gremse, David A; Hixon, Jamie; Crutchfield, Alysia

    2002-05-01

    Polyethylene glycol (PEG) 3350 and lactulose were compared in an unblinded, randomized, crossover design for treatment of constipation in 37 children aged 2 to 16 years. Subjects received lactulose (1.3 g/kg/d divided twice daily up to 20 g) or PEG 3350 (10 g/m2/day) for 2 weeks. PEG 3350 significantly decreased the total colonic transit time compared to lactulose (47.6+/-2.7 vs 55.3+/-2.4 hours, mean +/- SE, PEG 3350 vs lactulose, respectively, p = 0.038). The stool frequency, form, and the ease of passage were similar for each laxative. Polyethylene glycol 3350 is an effective laxative for the treatment of chronic constipation in children.

  9. Studies on polyethylene glycol coating on NiFe2O4 nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Phadatare, M.R.; Khot, V.M.; Salunkhe, A.B.; Thorat, N.D.; Pawar, S.H.

    2012-01-01

    The NiFe 2 O 4 nanoparticles were prepared by the combustion method and these nanoparticles were successfully coated with polyethylene glycol (PEG) for the possible biomedical applications such as magnetic resonance imaging, drug delivery, tissue repair, magnetic fluid hyperthermia etc. The structural and magnetic characterizations of NiFe 2 O 4 nanoparticles were carried out by x-ray diffraction and vibrating sample magnetometry techniques, respectively. The morphology of the uncoated and coated nanoparticles was studied by scanning electron microscopy. The existence of PEG layer on NiFe 2 O 4 nanoparticles was confirmed by fourier transform infrared spectroscopy technique. - Highlights: ► Synthesis of nanocrystalline NiFe 2 O 4 by the combustion method. ► Magnetic properties of the NiFe 2 O 4 nanoparticles at room temperature. ► Coating of NiFe 2 O 4 nanoparticles by Polyethylene glycol (PEG).

  10. Additional of polyethylene glycol on the preparation of LaPO4:Eu3+ phosphor

    Science.gov (United States)

    Panatarani, Camellia; Joni, I. Made

    2013-09-01

    Solution phase method was used to synthesis nanocrystal LaPO4:Eu3+. Polyethylene glycol with vary molecular weight (MW) was added to allow an exothermic reaction to get a high crystalinity of LaPO4:Eu3+. The x-ray pattern of as prepared LaPO4 was obtained by using an X'pert PANalytical diffractometer with CuKα radiation (λ = 1.5406 Å) and the photoluminescent measurement spectra is obtained by using Fluorescence Spectrometer LS55, Perkin Elmer. The additional of various MW of polyethylene glycol into the precursor solution of LaPO4:Eu3+ affected the crystal structure and luminescent properties. Higher MW of PEG depressing the luminescent spectra. The emission origin from 5D0-7F4 transition vanished by additional 500,000 and 2,000,000 MW of PEG.

  11. Ciprofloxacin in polyethylene glycol-coated liposomes: efficacy in rat models of acute or chronic Pseudomonas aeruginosa infection

    NARCIS (Netherlands)

    I.A.J.M. Bakker-Woudenberg (Irma); M.T. ten Kate (Marian); L. Guo; P. Working; J.W. Mouton (Johan)

    2002-01-01

    textabstractIn a previous study in experimental Klebsiella pneumoniae pneumonia, the therapeutic potential of ciprofloxacin was significantly improved by encapsulation in polyethylene glycol-coated ("pegylated") long-circulating (STEALTH) liposomes. Pegylated liposomal

  12. Extraction of actinide and lanthanide complexonates in two-phase aqueous system potassium carbonate-polyethylene glycol-water

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.; Myasoedov, B.F.

    1988-01-01

    Extraction system on the basis of polyethylene glycol for the concentration, isolation and separation of actinides is suggested. Extraction of actinides and lanthanides in two-phase aqueous system: potassium carbonate - polyethylene glycol - water in the presence of different complexones is investigated. Trivalent actinides are extracted quantitatively by polyethylene glycol from potassium carbonate solutions in the system with xylenol orange and alizarin-complexone. Under the conditions uranium (6) and plutonium (4) are extracted into the phase, enriched by polyethylene glycol, quite insignificantly, which permits to separate them from trivalent actinides with the separation factor of 10 2 - 10 3 . For actinide and lanthanide separation two complexones were introduced into the system, one of them being extractant, the other one - camouflaging reactant. The best results are obtained for the mixture of xylenol orange and hydroxyethylenediphosphonic acid. Separation coefficients for americium and europium constitute 4.5 - 5.6

  13. Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose.

    OpenAIRE

    Hammer, H F; Santa Ana, C A; Schiller, L R; Fordtran, J S

    1989-01-01

    The purpose of these studies was to gain insight into the pathophysiology of pure osmotic diarrhea and the osmotic diarrhea caused by carbohydrate malabsorption. Diarrhea was induced in normal volunteers by ingestion of polyethylene glycol (PEG), which is nonabsorbable, not metabolized by colonic bacteria, and carries no electrical charge. In PEG-induced diarrhea, (a) stool weight was directly correlated with the total mass of PEG ingested; (b) PEG contributed 40-60% of the osmolality of the ...

  14. Safety of polyethylene glycol 3350 solution in chronic constipation: randomized, placebo-controlled trial

    OpenAIRE

    McGraw, Thomas

    2016-01-01

    Thomas McGraw Global Medical Affairs, Merck & Co., Inc., Kenilworth, NJ, USA Purpose: To evaluate the safety and tolerability of aqueous solution concentrate (ASC) of polyethylene glycol (PEG) 3350 in patients with functional constipation.Patients and methods: The patients who met Rome III diagnostic criteria for functional constipation were randomized in this multicenter, randomized, placebo-controlled, single-blind study to receive once daily dose of PEG 3350 (17 g) ASC or ...

  15. Comparison of a low dose polyethylene glycol electrolyte solution with lactulose for treatment of chronic constipation

    OpenAIRE

    Attar, A; Lemann, M; Ferguson, A; Halphen, M; Boutron, M; Flourie, B; Alix, E; Salmeron, M; Guillemot, F; Chaussade, S; Menard, A; Moreau, J; Naudin, G; Barthet, M

    1999-01-01

    Background—Polyethylene glycol (PEG) 3350 is a non-absorbable, non-metabolised osmotic agent used in lavage solutions for gut cleansing. 
Aims—To compare the efficacy of PEG and lactulose in chronic constipation. 
Methods—A total of 115 patients with chronic constipation entered a multicentre, randomised, comparative trial. They initially received two sachets containing either PEG (13 g/sachet) or lactulose (10 g/sachet) and were given an option to change the dose to one ...

  16. Experimental Study of CO2 Solubility in Ionic Liquids and Polyethylene Glycols

    OpenAIRE

    Huang, Huang

    2015-01-01

    The parameter of density, viscosity are tested and fitted with the result of solubility measurement. With series of experiments, this chemical blend is considered with a good effect. The mixture of 50% tetrabutylphosphonium glycine with 50% polyethylene glycol (molecular weight: 400) is the suggested blend, and the most suitable temperature is absorption in 120C and desorption in 60C. But the solubility reduced rapidly from the second cycle of experiment, thus recycled use is not recommended.

  17. A Comparative Study on Magnetostructural Properties of Barium Hexaferrite Powders Prepared by Polyethylene Glycol

    OpenAIRE

    Zehra Durmus

    2014-01-01

    Nanocrystalline particles of barium hexaferrite were synthesized by a sol-gel combustion route using nitrate-citrate gels prepared from metal nitrates and citric acid solutions with Fe/Ba molar ratio 12. The present paper aims to study the effect of addition of polyethylene glycol (PEG) solutions with different molecular weights (MW: 400, 2000, and 10.000 g/mol) on magnetostructural properties of barium hexaferrite. The formation of the barium hexaferrite was inspected using X-ray diffractio...

  18. Randomized cross-over trial of polyethylene glycol electrolyte solution and water for colostomy irrigation.

    Science.gov (United States)

    O'Bichere, Austin; Green, Colin; Phillips, Robin K S

    2004-09-01

    Water for colostomy irrigation is largely absorbed by the colon, which may result in less efficient expulsion of stool. This study compared the outcome of colonic cleansing with water and polyethylene glycol solution. In a cross-over study, 41 colostomy irrigators were randomly assigned to water or polyethylene glycol solution irrigation first and then the other regimen, each for one week. Patients recorded fluid inflow time, total washout time, cramps, leakage episodes, number of stoma pouches used, and satisfaction scores (Visual Analog Scale, 1-10: 1 = poor, and 10 = excellent). The median and interquartile range for each variable was calculated, and the two treatments were compared (Wilcoxon's test). Eight patients failed to complete the study. Thirty-three patients (20 females; mean age, 55 (range, 39-73) years) provided 352 irrigation sessions: water (n = 176), and polyethylene glycol solution (n = 176). Irrigation was performed every 24, 48, and 72 hours by 17, 9, and 7 patients respectively, using 500 ml (n = 1), 750 ml (n = 2), 1,000 ml (n = 16), 1,500 ml (n = 11), 2,000 ml (n = 2), and 3,500 ml (n = 1) of fluid. The median and interquartile range for water vs. polyethylene glycol solution were: fluid inflow time (6 (range, 4.4-10.8) vs. 6.3 (range, 4.1-11) minutes; P = 0.48), total washout time (53 (range, 33-69) vs. 38 (range, 28-55) minutes; P = 0.01), leakage episodes (2.3 (range, 1.7-3.8) vs. 0.7 (range, 0.2-1); P colostomy irrigation.

  19. Efficacy of polyethylene glycol 4000 on constipation of posttraumatic bedridden patients.

    Science.gov (United States)

    Zhang, Lian-yang; Yao, Yuan-zhang; Wang, Tao; Fei, Jun; Shen, Yue; Chen, Yong-hua; Zong, Zhao-wen

    2010-06-01

    To investigate the efficacy and safety of polyethylene glycol 4000 on adult patients with functional constipation due to posttraumatic confinement to bed. A total of 201 posttraumatic bedridden patients were studied in this prospective, open-labeled, single-group study. Polyethylene glycol 4000 was administered orally for 14 days and the dosage was adjusted according to the Bristol stool types. Demographic characteristics, disease status, treatment period and factors affecting clinical outcome, especially the concomitant medications, were recorded. After administration of polyethylene glycol 4000, 194 cases (96.52%) showed remission of constipation, including 153 (76.12%) persistent remission. The average defecation frequency increased significantly after treatment and the percentage of patients with stools of normal types (Bristol types 3-5) increased as well. Genders, ages and concomitant medications showed no significant influence on the persistent remission rate. After consecutive treatment for two weeks, patients with slight movement showed a significantly higher remission rate than those without movement (95% vs 80%). At the end of treatment, most accompanying symptoms were relieved obviously. Patients with a medical history of constipation or ever taking laxatives showed a lower remission rate. Sixty cases (29.85%) developed diarrhea during the observational period, among whom 6 (10%) withdrew from the clinical observation voluntarily at the first onset of diarrhea. Two cases suffered from abdominal pain. Polyethylene glycol 4000 has efficacy on functional constipation in posttraumatic bedridden patients. Furthermore, patients with milder symptoms, more movement in bed, and longer duration of treatment but without accompanying symptoms can achieve a higher remission rate.

  20. Efficacy and Complications of Polyethylene Glycols for Treatment of Constipation in Children

    OpenAIRE

    Chen, Si-Le; Cai, Shi-Rong; Deng, Liang; Zhang, Xin-Hua; Luo, Te-Dong; Peng, Jian-Jun; Xu, Jian-Bo; Li, Wen-Feng; Chen, Chuang-Qi; Ma, Jin-Ping; He, Yu-Long

    2014-01-01

    Abstract Constipation is a common childhood complaint. In 90% to 95% of children, constipation is functional, which means that there is no objective evidence of an underlying pathological condition. Polyethylene glycol (PEG or macrogol) solution is an osmotic laxative agent that is absorbed in only trace amounts from the gastrointestinal tract and routinely used to treat chronic constipation in adults. Here, we report the results of a meta-analysis of PEG-based laxatives compared with lactulo...

  1. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery.

    Science.gov (United States)

    Newland, B; Taplan, C; Pette, D; Friedrichs, J; Steinhart, M; Wang, W; Voit, B; Seib, F P; Werner, C

    2018-05-10

    Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200-400 nm) and stiffness (405-902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml-1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes.

  2. Extraction of strontium and barium by nitrobenzene solution of dicarbolide in the presence of polyethylene glycols

    International Nuclear Information System (INIS)

    Vanura, P.; Makrlik, E.; Rais, J.; Kyrs, M.

    1982-01-01

    Extraction of microamounts of Sr 2+ and Ba 2+ from 0.2 to 1.0 M-HClO 4 by nitrobenzene solutions of dicarbolide H + [Co(C 2 B 9 H 11 ) 2 ] - in the presence of polyethylene glycols (PEG) (average Msub(r)=200,300,400) was investigated. It was found that the extraction of the protonized polyethylene glycol molecule ((H + )sub(org)+L reversible (HL + )sub(org), where the subscript denotes species present in the organic phase) and the extraction of the complex between the extracted ion and polyethylene glycol, i.e., M 2+ +L+2(H + )sub(org) reversible (ML 2+ )sub(org)+2H + , are the predominant reactions in this system. The respective equilibrium constants were determined. The hydration numbers of HL + and ML 2+ ions in the organic phase were obtained from the determination of water content by the Karl Fischer titration method. The extraction constants and stability constants in the organic phase increase in the sequence H + 2+ 2+ and PEG 200< PEG 300< PEG 400 while the hydration numbers decrease in the same sequence. Correlations between the hydration numbers and the extraction constants for these cations were found. (author)

  3. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  4. Multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer: Design, synthesis, and dissolving thrombus.

    Science.gov (United States)

    Zhang, Shao-Fei; Lü, Shaoyu; Gao, Chunmei; Yang, Jiandong; Yan, Xiang; Li, Tao; Wen, Na; Huang, Mengjie; Liu, Mingzhu

    2018-06-01

    Thrombotic events affect many individuals in a number of ways, all of which can cause significant morbidity and mortality. Nattokinase (NK), as a novel thrombolytic drug, has been used for thrombolytic therapy. It not only possesses plasminogen activator activity, but also directly digests fibrin through limited proteolysis. However, it may undergo inactivation and denaturation in the harsh external environment. In this study, a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer was fabricated and used as a carrier for NK protection and delivery. Different arm numbers of polyethylene glycol-polyglutamic acid peptide dendrimers (x-PEG(G 3 ) x , x = 2, 4, 6, 8) were designed, prepared, and characterized by 1 H NMR and FTIR. Then, x-PEG(G 3 ) x were loaded with NK to form nanocomposites. Their size and morphology were determined by dynamic light scattering and transmission electron microscopy. Enzyme activity was evaluated via UV-Vis absorbance spectra, fluorescence spectra, circular dichroism spectra, and zeta potential measurements. The study reveals that the obtained x-PEG(G 3 ) x /NK nanocomposites possess high enzyme activity. In addition, the nanocomposites show increased viability of rat macrophage cells, and excellent thrombolysis ability in vitro and in vivo. This work establishes a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer with potential application in NK carrier and thrombolytic therapy. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1687-1696, 2018. © 2018 Wiley Periodicals, Inc.

  5. Mechanical, Rheological, and Bioactivity Properties of Ultra High-Molecular-Weight Polyethylene Bioactive Composites Containing Polyethylene Glycol and Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Mazatusziha Ahmad

    2012-01-01

    Full Text Available Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P precipitates on the composite surface as proven from SEM and XRD analysis.

  6. Poly(ethylene glycol) grafted chitosan as new copolymer material for oral delivery of insulin

    International Nuclear Information System (INIS)

    Ho, Thanh Ha; Thanh Le, Thi Nu; Nguyen, Tuan Anh; Dang, Mau Chien

    2015-01-01

    A new scheme of grafting poly (ethylene glycol) onto chitosan was proposed in this study to give new material for delivery of insulin over oral pathway. First, methoxy poly(ethylene glycol) amine (mPEGa MW 2000) were grafted onto chitosan (CS) through multiples steps to synthesize the grafting copolymer PEG-g-CS. After each synthesis step, chitosan and its derivatives were characterized by FTIR, "1H NMR Then, insulin loaded PEG-g-CS nanoparticles were prepared by cross-linking of CS with sodium tripolyphosphate (TPP). Same insulin loaded nanoparticles using unmodified chitosan were also prepared in order to compare with the modified ones. Results showed better protecting capacity of the synthesized copolymer over original CS. CS nanoparticles (10 nm of size) were gel like and high sensible to temperature as well as acidic environment while PEG-g-CS nanoparticles (200 nm of size) were rigid and more thermo and pH stable. (paper)

  7. Ionic conductivity and dielectric permittivity of polymer electrolyte plasticized with polyethylene glycol

    Science.gov (United States)

    Das, S.; Ghosh, A.

    2016-05-01

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.

  8. Long-term complications of polyethylene glycol injection to the face.

    Science.gov (United States)

    Altintas, Hande; Odemis, Mustafa; Bilgi, Selcuk; Cakmak, Ozcan

    2012-04-01

    Currently, filling, smoothing, or recontouring the face through the use of injectable fillers is one of the most popular forms of cosmetic surgery. Because these materials promise a more youthful appearance without anesthesia in a noninvasive way, various fillers have been used widely in different parts of the world. However, most of these fillers have not been approved by the Food and Drug Administration, and their applications might cause unpleasant disfiguring complications. This report describes a case of foreign body granuloma in the cheeks secondary to polyethylene glycol injection and shows the possible complications associated with the use of facial fillers.

  9. Sugar-Responsive Pseudopolyrotaxane Composed of Phenylboronic Acid-Modified Polyethylene Glycol and γ-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Tomohiro Seki

    2015-03-01

    Full Text Available We have designed a sugar-responsive pseudopolyrotaxane (PPRX by combining phenylboronic acid-modified polyethylene glycol (PBA–PEG and γ-cyclodextrin. Phenylboronic acid (PBA was used as a sugar-recognition motif in the PPRX because PBA reacts with a diol portion of the sugar molecule and forms a cyclic ester. When D-fructose or D-glucose was added to a suspension of PPRX, PPRX disintegrated, depending on the concentration of the sugars. Interestingly, catechol does not show a response although catechol has a high affinity for PBA. We analyzed the response mechanism of PPRX by considering equilibria.

  10. Enzyme-Catalyzed Modifications of Polysaccharides and Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. N. Cheng

    2012-06-01

    Full Text Available Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; this is mostly done through chemical reactions. In the past 20 years many enzyme-catalyzed modifications have been developed to supplement chemical derivatization methods. Typical reactions include enzymatic oxidation, ester formation, amidation, glycosylation, and molecular weight reduction. These reactions are reviewed in this paper, with emphasis placed on the work done by the authors. The polymers covered in this review include cellulosic derivatives, starch, guar, pectin, and poly(ethylene glycol.

  11. Assessment of a method for measuring serum thyroxine by radioimmunoassay, with use of polyethylene glycol precipitation

    International Nuclear Information System (INIS)

    Farid, N.R.; Kennedy, C.

    1977-01-01

    We assessed the efficacy of a new thyroxine radioimmunoassay kit (Abbott) in which polyethylene glycol is used to separate bound from free hormone. Mean serum thyroxine was 88 +- 15 (+-SD) μg/liter for 96 normal persons. Results for hypothyroid and hyperthyroid persons were clearly separated from those for normal individuals. Women taking oral contraceptive preparations showed variable increases in their serum thyroxine values. The coefficient of variation ranged from 1 to 3% within assay and from 5.4 to 11% among different assays. Excellent parallelism was demonstrated between thyroxine values estimated by this method and those obtained either by competitive protein binding or by a separate radioimmunoassay for the hormone

  12. Kinetics of the esterification of active pharmaceutical ingredients containing carboxylic Acid functionality in polyethylene glycol

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie V; Hansen, Steen Honoré; Moesgaard, Birthe

    2014-01-01

    Polyethylene glycols (PEGs) are attractive as excipients in the manufacture of drug products because they are water soluble and poorly immunogenic. They are used in various pharmaceutical preparations. However, because of their terminal hydroxyl groups, PEGs can participate in esterification reac......, it is important to be aware of this drug-excipient interaction, as it can reduce the shelf-life of a low-average molecular weight PEG formulation considerably. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:2424-2433, 2014....

  13. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Nielsen, Thomas; Wittenborn, Thomas

    2012-01-01

    Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed...... polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333–20 000 Da PEG coatings that resulted in larger hydrodynamic size...

  14. Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice

    Science.gov (United States)

    Zhang, Danying; Deng, Xiaoyong; Ji, Zongfei; Shen, Xizhong; Dong, Ling; Wu, Minghong; Gu, Taoying; Liu, Yuanfang

    2010-04-01

    The toxicity of polyethylene-glycol functionalized (PEGylated) multi-walled carbon nanotubes (MWCNTs) and non-PEGylated MWCNTs in vivo was evaluated and compared. Mice were exposed to MWCNTs by intravenous injection. The activity level of glutathione, superoxide dismutase and gene expression in liver, as well as some biochemical parameters and the tumor necrosis factor alpha level in blood were measured over 2 months. The pathological and electron micrographic observations of liver evidently indicate that the damage caused by non-PEGylated MWCNTs is slightly more severe than that of PEGylated MWCNTs, which means that PEGylation can partly, but not substantially, improve the in vivo biocompatibility of MWCNTs.

  15. A Comparative Study on Magnetostructural Properties of Barium Hexaferrite Powders Prepared by Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Zehra Durmus

    2014-01-01

    Full Text Available Nanocrystalline particles of barium hexaferrite were synthesized by a sol-gel combustion route using nitrate-citrate gels prepared from metal nitrates and citric acid solutions with Fe/Ba molar ratio 12. The present paper aims to study the effect of addition of polyethylene glycol (PEG solutions with different molecular weights (MW: 400, 2000, and 10.000 g/mol on magnetostructural properties of barium hexaferrite. The formation of the barium hexaferrite was inspected using X-ray diffraction (XRD analysis, Fourier transform infrared (FT-IR analysis, thermogravimetric (TGA analysis, scanning electron microscopy (SEM analysis and vibrating sample magnetometer (VSM analysis for magnetic measurements.

  16. Polyethylene glycol drilling fluid for drilling in marine gas hydrates-bearing sediments: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, G.; Liu, T.; Ning, F.; Tu, Y.; Zhang, L.; Yu, Y.; Kuang, L. [China University of Geosciences, Faculty of Engineering, Wuhan (China)

    2011-07-01

    Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na{sub 2}CO{sub 3}, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from -8 {sup o}C to 15 {sup o}C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments. (authors)

  17. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Lixin Kuang

    2011-01-01

    Full Text Available Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na2CO3, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from −8 °C to 15 °C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments.

  18. Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles

    International Nuclear Information System (INIS)

    Nagasaki, Yukio

    2010-01-01

    A poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] block copolymer possessing a reactive acetal group at the end of the poly(ethylene glycol) (PEG) chain, that is, acetal-PEG-b-PAMA, was synthesized by a proprietary polymerization technique. Gold nanoparticles (GNPs) were prepared using the thus-synthesized acetal-PEG-b-PAMA block copolymer. The PEG-b-PAMA not only acted as a reducing agent of aurate ions but also attached to the nanoparticle surface. The GNPs obtained had controlled sizes and narrow size distributions. They also showed high dispersion stability owing to the presence of PEG tethering chains on the surface. The same strategy should also be applicable to the fabrication of semiconductor quantum dots and inorganic porous nanoparticles. The preparation of nanoparticles in situ, i.e. in the presence of acetal-PEG-b-PAMA, gave the most densely packed polymer layer on the nanoparticle surface; this was not observed when coating preformed nanoparticles. PEG/polyamine block copolymer was more functional on the metal surface than PEG/polyamine graft copolymer, as confirmed by angle-dependent x-ray photoelectron spectroscopy. We successfully solubilized the C 60 fullerene into aqueous media using acetal-PEG-b-PAMA. A C 60 /acetal-PEG-b-PAMA complex with a size below 5 nm was obtained by dialysis. The preparation and characterization of these materials are described in this review. (topical review)

  19. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, A.; Valle, L.; Franco, L. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Sarasua, J.R. [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain); Estrany, F. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J., E-mail: Jordi.Puiggali@upc.es [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain)

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N′-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. - Highlights: • Pegylated copolymers of lactide and trimethylene carbonate have been synthesized. • Grafting with polyethylene glycol was able via maleic anhydride functionalization. • Drug-loaded microspheres could be prepared from new pegylated copolymers. • Hydrophilicity of lactide/trimethylene carbonate copolymers increased by pegylation. • New pegylated copolymers supported cell adhesion and proliferation.

  20. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-02-01

    In present study, novel pH sensitive polymethacrylic acid-chitosan-polyethylene glycol (PCP) nanoparticles were prepared under mild aqueous conditions via polyelectrolyte complexation. Free radical polymerization of methacrylic acid (MAA) was carried out in presence of chitosan (CS) and polyethylene glycol (PEG) using a water-soluble initiator and particles were obtained spontaneously during polymerization without using organic solvents or surfactants/steric stabilizers. Dried particles were analyzed by scanning electron microscopy (SEM) and particles dispersed in phosphate buffer (pH 7.0) were visualized under transmission electron microscope (TEM). SEM studies indicated that PCP particles have an aggregated and irregular morphology, however, TEM revealed that these aggregated particles were composed of smaller fragments with size less than 1 micron. Insulin and bovine serum albumin (BSA) as model proteins were incorporated into the nanoparticles by diffusion filling method and their in vitro release characteristics were evaluated at pH 1.2 and 7.4. PCP nanoparticles exhibited good protein encapsulation efficiency and pH responsive release profile was observed under in vitro conditions. Trypsin inhibitory effect of these PCP nanoparticles was studied using casein substrate and these particles displayed lesser inhibitory effect than reference polymer carbopol. Preliminary investigation suggests that these particles can serve as good candidate for oral peptide delivery. Copyright 2005 Wiley Periodicals, Inc.

  1. Aqueous two-phase (polyethylene glycol + sodium sulfate) system for caffeine extraction: Equilibrium diagrams and partitioning study

    International Nuclear Information System (INIS)

    Araujo Sampaio, Daniela de; Mafra, Luciana Igarashi; Yamamoto, Carlos Itsuo; Forville de Andrade, Eriel; Oberson de Souza, Michèle; Mafra, Marcos Rogério; Castilhos, Fernanda de

    2016-01-01

    Highlights: • Binodal curves of PEG (400, 4000 and 6000) + Na_2SO_4 ATPS were determined. • Tie-lines were experimentally determined for aqueous (PEG 400 + Na_2SO_4) system. • Influence of caffeine on LLE of aqueous (PEG 400 + Na_2SO_4) system was investigated. • Partitioning of caffeine in aqueous (PEG 400 + Na_2SO_4) system was investigated. • Caffeine partition showed to be dependent on temperature and TLL. - Abstract: Environmental friendly methods for liquid–liquid extraction have been taken into account due to critical conditions and ecotoxicological effects potentially produced by organic solvents applied in traditional methods. Liquid–liquid extraction using aqueous two phase systems (ATPSs) presents advantages when compared to traditional liquid–liquid extraction. (Polyethylene glycol (PEG) + sodium sulfate + water) ATPS was applied to study partition of caffeine. Binodal curves for ATPSs composed of PEG of different molecular weights (400 g · mol"−"1, 4000 g · mol"−"1 and 6000 g · mol"−"1) sodium sulfate + water were determined by cloud point method at three different temperatures (293.15, 313.15 and 333.15) K. Liquid–liquid equilibrium (LLE) data (tie-lines, slope of the tie-line and tie-lines length) were obtained applying a gravimetric method proposed by Merchuck and co-workers at the same temperatures for aqueous (PEG 400 + sodium sulfate) and aqueous (PEG 400 + sodium sulfate + caffeine) systems. Reliability of the experimental tie-line (TL) data was evaluated using the equations reported by Othmer–Tobias and satisfactory linearity was obtained. Concerning to aqueous (PEG + sodium sulfate) system, the results pointed out that the higher PEG molecular weight the largest is the heterogeneous region. Moreover, temperature showed not to be relevant on binodal curves behavior, but it influenced on tie-line slopes. Partitioning of caffeine in aqueous (PEG 400 + sodium sulfate) system was investigated at different temperatures

  2. Combined low-volume polyethylene glycol solution plus stimulant laxatives versus standard-volume polyethylene glycol solution: A prospective, randomized study of colon cleansing before colonoscopy

    Science.gov (United States)

    Hookey, Lawrence C; Depew, William T; Vanner, Stephen J

    2006-01-01

    INTRODUCTION The effectiveness of polyethylene glycol solutions (PEG) for colon cleansing is often limited by the inability of patients to drink adequate portions of the 4 L solution. The aim of the present study was to determine whether a reduced volume of PEG combined with stimulant laxatives would be better tolerated and as or more effective than the standard dose. METHODS Patients undergoing outpatient colonoscopy were randomly assigned to receive either low-volume PEG plus sennosides (120 mg oral sennosides syrup followed by 2 L PEG) or the standard volume preparation (4 L PEG). The subjects rated the tolerability of the preparations and their symptoms. Colonoscopists were blind to the colonic cleansing preparation and graded the cleansing efficacy using a validated tool (the Ottawa scale). RESULTS The low-volume PEG plus sennosides preparation was significantly better tolerated than the standard large volume PEG (Psennosides preparation was better tolerated, it was not as effective as standard large-volume PEG. However, in view of the significant difference in tolerance, further research investigating possible improvements in the reduced-volume regimen seems warranted. PMID:16482236

  3. Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(ethylene glycol).

    Science.gov (United States)

    Bengtson, Gisela; Neumann, Silvio; Filiz, Volkan

    2017-06-05

    Until now, the leading polymer of intrinsic microporosity PIM-1 has become quite famous for its high membrane permeability for many gases in gas separation, linked, however, to a rather moderate selectivity. The combination with the hydrophilic and low permeable poly(ethylene glycol) (PEG) and poly(ethylene oxides) (PEO) should on the one hand reduce permeability, while on the other hand enhance selectivity, especially for the polar gas CO₂ by improving the hydrophilicity of the membranes. Four different paths to combine PIM-1 with PEG or poly(ethylene oxide) and poly(propylene oxide) (PPO) were studied: physically blending, quenching of polycondensation, synthesis of multiblock copolymers and synthesis of copolymers with PEO/PPO side chain. Blends and new, chemically linked polymers were successfully formed into free standing dense membranes and measured in single gas permeation of N₂, O₂, CO₂ and CH₄ by time lag method. As expected, permeability was lowered by any substantial addition of PEG/PEO/PPO regardless the manufacturing process and proportionally to the added amount. About 6 to 7 wt % of PEG/PEO/PPO added to PIM-1 halved permeability compared to PIM-1 membrane prepared under similar conditions. Consequently, selectivity from single gas measurements increased up to values of about 30 for CO₂/N₂ gas pair, a maximum of 18 for CO₂/CH₄ and 3.5 for O₂/N₂.

  4. Stereocomplexed 8-armed poly(ethylene glycol)-poly(lactide) star block copolymer hydrogels: Gelation mechanism, mechanical properties and degradation behavior

    NARCIS (Netherlands)

    Buwalda, S.J.; Calucci, L.; Forte, C.; Dijkstra, Pieter J.; Feijen, Jan

    2012-01-01

    Mixing aqueous poly(ethylene glycol)-poly(d-lactide) and poly(ethylene glycol)-poly(l-lactide) star block copolymer solutions resulted in the formation of stereocomplexed hydrogels within 1 min. A study towards the mechanism of the temperature dependent formation of stereocomplexes in the hydrogels

  5. Differences in taste between three polyethylene glycol preparations: a randomized double-blind study

    Directory of Open Access Journals (Sweden)

    Lam TJ

    2011-08-01

    Full Text Available Tze J Lam, Chris JJ Mulder, Richelle JF Felt-BersmaDepartment of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, the NetherlandsBackground and aim: Patients suffering from chronic constipation require long-term, regular therapy with laxatives. Literature regarding patient preference and acceptance in polyethylene glycol preparations is scarce. Therefore, this research aimed to identify preference between the three polyethylene glycol 3350, namely Molaxole®, Movicol®, and Laxtra Orange®. Furthermore, taste is one of the most important factors leading to patients’ adherence, particularly when the treatment lasts for a long time.Methods: In this randomized, cross-over double-blind study, 100 volunteers were recruited by advertisement. The volunteers were invited to taste the preparations and grade the taste using a five-point hedonic scale (extremely poor taste [1] to extremely good taste [5]. The volunteers were then asked to choose the most palatable preparation.Results: One hundred volunteers with a mean age of 35 years (range 20–61 were randomized (76 females. Molaxole®, Movicol®, and Laxtra Orange® had a mean hedonic score of 2.76 (SD: 0.82, 2.81 (SD: 0.76 and 3.12 (SD: 0.82 respectively. The hedonic taste score for Laxtra Orange® was significantly better than Molaxole® (P = 0.001 and Movicol® (P = 0.001. No difference was found between Molaxole® and Movicol® (P = 0.61. Molaxole® was the most preferred preparation for 19 volunteers (19%, Movicol® for 24 volunteers (25% and Laxtra Orange® for 55 volunteers (56%. Two volunteers had no preference. The order in which volunteers tested the preparations had no influence on the taste results. No significant differences in age or gender were observed.Conclusion: Laxtra Orange® was most palatable preparation. This may have implications for adherence in patients with chronic constipation.Keywords: constipation, polyethylene glycol, laxative, macrogol

  6. A randomized, prospective, comparison study of polyethylene glycol 3350 without electrolytes and milk of magnesia for children with constipation and fecal incontinence.

    Science.gov (United States)

    Loening-Baucke, Vera; Pashankar, Dinesh S

    2006-08-01

    Our aim was to compare 2 laxatives, namely, polyethylene glycol 3350 without electrolytes and milk of magnesia, evaluating the efficacy, safety, acceptance, and 1-year outcomes. Seventy-nine children with chronic constipation and fecal incontinence were assigned randomly to receive polyethylene glycol or milk of magnesia and were treated for 12 months in tertiary care pediatric clinics. Children were counted as improved or recovered depending on resolution of constipation, fecal incontinence, and abdominal pain after 1, 3, 6, and 12 months. An intent-to-treat analysis was used. Safety was assessed with evaluation of clinical adverse effects and blood tests. Thirty-nine children were assigned randomly to receive polyethylene glycol and 40 to receive milk of magnesia. At each follow-up visit, significant improvement was seen in both groups, with significant increases in the frequency of bowel movements, decreases in the frequency of incontinence episodes, and resolution of abdominal pain. Compliance rates were 95% for polyethylene glycol and 65% for milk of magnesia. After 12 months, 62% of polyethylene glycol-treated children and 43% of milk of magnesia-treated children exhibited improvement, and 33% of polyethylene glycol-treated children and 23% of milk of magnesia-treated children had recovered. Polyethylene glycol and milk of magnesia did not cause clinically significant side effects or blood abnormalities, except that 1 child was allergic to polyethylene glycol. In this randomized study, polyethylene glycol and milk of magnesia were equally effective in the long-term treatment of children with constipation and fecal incontinence. Polyethylene glycol was safe for the long-term treatment of these children and was better accepted by the children than milk of magnesia.

  7. Poly(ethylene glycol)/carbon quantum dot composite solid films exhibiting intense and tunable blue–red emission

    International Nuclear Information System (INIS)

    Hao, Yanling; Gan, Zhixing; Xu, Jiaqing; Wu, Xinglong; Chu, Paul K.

    2014-01-01

    Highlights: • Poly(ethylene glycol)/carbon quantum dots (PEG/CQDs) composite solid films exhibiting strong and tunable blue–red emission were prepared. Successful preparation of tunable emitting CQDs solid films can extend the application of carbon quantum dots in photoelectric devices. • The mechanism of the tunable emission from the PEG/CQDs composite solid films was discussed. • On the basis of the characteristics of the PL from solid films in this work, the complex PL origins of CQDs were further defined. The PL mechanism provides insights into the fluorescence mechanism of CQDs and may promotes their applications. • Poly(ethylene glycol); carbon quantum dots; Strong and tunable blue-red emission; The fluorescent quantum yield of 12.6%. - Abstract: Although carbon quantum dots (CQDs) possess excellent luminescence properties, it is a challenge to apply water-soluble CQDs to tunable luminescent devices. Herein, quaternary CQDs are incorporated into poly(ethylene glycol) to produce poly(ethylene glycol)/CQD composite solid films which exhibit strong and tunable blue–red emission. The fluorescent quantum yield reaches 12.6% which is comparable to that of many liquid CQDs and the photoluminescence characteristics are determined to elucidate the fluorescence mechanism. The CQD solid films with tunable optical properties bode well for photoelectric devices especially displays

  8. Poly(ethylene glycol)-based thiol-ene hydrogel coatings: curing chemistry, aqueous stability, and potential marine antifouling applications

    NARCIS (Netherlands)

    Lundberg, P.; Bruin, A.; Klijnstra, J.W.; Nyström, A.M.; Johansson, M.; Malkoch, M.; Hult, A.

    2010-01-01

    Photocured thiol-ene hydrogel coatings based on poly(ethylene glycol) (PEG) were investigated for marine antifouling purposes. By varying the PEG length, vinylic end-group, and thiol cross-linker, a library of hydrogel coatings with different structural composition was efficiently accomplished, with

  9. Kinetic and modelling studies of NAD+ and poly(ethylene glycol)-bound NAD+ in horse liver alcohol dehydrogenase

    NARCIS (Netherlands)

    Vanhommerig, S.A.M.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1996-01-01

    Poly(ethylene glycol)-bound nicotinamide adenine dinucleotide (PEG-NAD+) has been successfully employed in the continuous production of L-amino acids from the corresponding alpha-keto acids by stereospecific reductive amination. Like many other dehydrogenases also horse liver alcohol dehydrogenase

  10. Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature

    DEFF Research Database (Denmark)

    Rodrigo, K.; Czuba, P.; Toftmann, B.

    2006-01-01

    The dependence of the surface morphology on the substrate temperature during film deposition was investigated for polyethylene glycol (PEG) films by matrix-assisted pulsed laser evaporation (MAPLE). The surface structure was studied with a combined technique of optical imaging and AFM measurements...

  11. In vitro and biomechanical screening of polyethylene glycol and poly(trimethylene carbonate) block copolymers for annulus fibrosus repair

    NARCIS (Netherlands)

    Long, R.G.; Rotman, Stijn Gerard; Hom, H.W.; Assael, D.J.; Grijpma, Dirk W.; Latridis, J.C.

    2016-01-01

    Herniated intervertebral discs are a common cause of back and neck pain. There is an unmet clinical need to seal annulus fibrosus (AF) defects, since discectomy surgeries address acute pain but are complicated by reherniation and recurrent pain. Copolymers of polyethylene glycol with trimethylene

  12. Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material

    International Nuclear Information System (INIS)

    Fang Yutang; Kang Huiying; Wang Weilong; Liu Hong; Gao Xuenong

    2010-01-01

    Form-stable polyethylene glycol (PEG)/epoxy resin (EP) composite as a novel phase change material (PCM) was prepared using casting molding method. In this new material, PEG acts as the latent heat storage material and EP polymer serves as the supporting material, which provides structural strength and prevents the leakage of the melted PEG. The structure and morphology of the novel composite were observed using Fourier transformation infrared spectroscope (FTIR) and scanning electronic microscope (SEM). The thermo-mechanical property and transition behavior were characterized by polarizing optical microscope (POM), static thermo-mechanical analysis (TMA) and differential scanning calorimeter (DSC). The experimental results show that, as a result of the physical tangled function of the epoxy resin carrier to the PEG segment, the composite macroscopically presents the solid-solid phase change characteristic.

  13. Management of constipation in palliative care patients undergoing opioid therapy: is polyethylene glycol an option?

    Science.gov (United States)

    Wirz, Stefan; Klaschik, Eberhard

    2005-01-01

    This study assessed the efficacy of laxative use for treatment of constipation in patients receiving opioid therapy, with special attention to polyethylene glycol 3350/electrolyte solution (PEG-ES). Computerized data from 206 patients were analyzed using descriptive statistics. Subgroups were analyzed using confirmatory statistics. Constipation occurred in 42.7 percent of patients. Laxatives were administered to 74.3 percent of these patients using a standardized step scheme, with good results in 78.4 percent. As a therapy for constipation, the combined administration of PEG-ES, sodium picosulphate, and liquid paraffin proved most effective, although statistical analysis yielded no significance. Early use of PEG-ES using a step scheme holds promise for treatment of opioid-related constipation in palliative care patients, although further investigation is warranted.

  14. Preparation and characterization of polyethylene glycol diacrylate microgels using electron beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, Mohd Yusof [Makmal Nanoteknologi, Bahagian Teknologi Sinaran (Malaysia); Isa, Naurah Mat; Napia, Liyana M. Ali [ALURTRON, Bahagian Kemudahan Iradiasi, Malaysian Nuclear Agency, 43000, Kajang, Selangor (Malaysia)

    2014-02-12

    The use of microemulsion in the development of nanosized gels based on polyethylene glycol diacrylate (PEGDA) is demonstrated. PEGDA was solubilized in n-heptane with use of sodium docusate (AOT) at 0.15M concentration to form reverse micelles. These micelles were than irradiated at 5, 10, 15, 20 and 25 kGy using electron beam (EB) to crosslink the entrapped polymer in the micelles. Ionizing radiation was imparted to the emulsions to generate crosslinking reaction in the micelles formed. The nanosized gels were evaluated in terms of particle diameter using dynamic light scattering (DLS) and the images of the nanosized gels were studied using transmission electron microscopy (TEM). Results show that the size and shape of the particles are influenced by concentration of PEGDA and radiation dose. This study showed that this method can be utilized to produce nanosized gels.

  15. Formation of protein complex with the aid of polyethylene glycol for deproteinized natural rubber latex

    Science.gov (United States)

    Wei, Lim Keuw; Ing, Wong Kwee; Badri, Khairiah Haji; Ban, Wong Chong

    2013-11-01

    The effect of polyethylene glycol (PEG) as a deproteinizing agent in commercial natural rubber latex (NRL) onto the physicochemical properties of the NRL was investigated. Three types of PEG were used namely PEG200, PEG4000 and PEG20000 (molecular weight of 200, 4000 and 20000 g/mol respectively). The optimum amount of PEG in NRL was determined from viscosity changes, protein content and Fourier Transform Infrared spectroscopy. Level of protein reduction was affected by molecular weight of PEG. The addition of PEG in NRL reduced the protein content of NRL (3.30 %) to the lowest (2.01 %) at 0.40 phr of PEG200 due to more attractive hydrophobic interactions between short chains PEG compared to PEG4000 (2.24%) and PEG20000 (2.15%). This was verified through FTIR spectroscopy analysis by observing the primary and secondary amide peak where PEG4000 has lesser absorption at the region compared to with PEG20000.

  16. Insertion Testing of Polyethylene Glycol Microneedle Array into Cultured Human Skin with Biaxial Tension

    Science.gov (United States)

    Takano, Naoki; Tachikawa, Hiroto; Miyano, Takaya; Nishiyabu, Kazuaki

    Aiming at the practical use of polyethylene glycol (PEG) microneedles for transdermal drug delivery system (DDS), a testing apparatus for their insertion into cultured human skin has been developed. To simulate the variety of conditions of human skin, biaxial tension can be applied to the cultured human skin. An adopted testing scheme to apply and control the biaxial tension is similar to the deep-draw forming technique. An attention was also paid to the short-time setup of small, thin and wet cultured skin. One dimensional array with four needles was inserted and influence of tension was discussed. It was found that tension, deflection of skin during insertion and original curvature of skin are the important parameters for microneedles array design.

  17. Synthesis of Aluminium Nanoparticles in A Water/Polyethylene Glycol Mixed Solvent using μ-EDM

    Science.gov (United States)

    Sahu, R. K.; Hiremath, Somashekhar S.

    2017-08-01

    Nanoparticles present a practical way of retaining the results of the property at the atomic or molecular level. Due to the recent use of nanoparticles in scientific, industrial and medical applications, synthesis of nanoparticles and their characterization have become considerably important. Currently, aluminium nanoparticles have attracted significant research attention because of their reasonable cost, unique properties and interdisciplinary emerging applications. The present paper reports the synthesis of aluminium nanoparticles in the mixture of Deionized water (DI water) and Polyethylene Glycol (PEG) using a developed micro-Electrical Discharge Machining (μ-EDM) method. PEG was used as a stabilizer to prevent nanoparticles from agglomeration produced during the μ -EDM process. The synthesized aluminium nanoparticles were examined by Transmission Electron Microscopy (TEM), Energy Dispersive Analysis by X-rays (EDAX) and Selected Area Electron Diffraction (SAED) pattern to determine their size, shape, chemical nature and crystal structure. The average size of the polyhedral aluminium nanoparticles is found to be 196 nm.

  18. Methoxy polyethylene glycol-epoetin beta for the treatment of anemia associated with chronic renal failure.

    Science.gov (United States)

    Schmid, Holger

    2016-01-01

    Since more than two decades erythropoiesis-stimulating agents are the main pillar for treatment of anemia associated with chronic kidney disease. Methoxy polyethylene glycol-epoetin beta (MPG-EPO), also called continuous erythropoietin receptor activator, is the longest acting erythropoiesis-stimulating agent currently available. MPG-EPO is characterized by an elimination half-life of approximately 137 h and offers extended dosing intervals up to 4 weeks. Numerous phase I/II studies and a comprehensive clinical phase III program demonstrated the feasibility of MPG-EPO therapy for anemia correction and maintenance of stable hemoglobin levels in adult chronic kidney disease patients. Due to patent disputes MPG-EPO was only available outside the US market so far. In view of a prevailing US market introduction, this review focuses on efficacy and safety data from pivotal trials, summarizes recent clinical research and finally tries to substantiate potential benefits associated with the use of this anti-anemic drug.

  19. Rapid detection of polyethylene glycol sonolysis upon functionalization of carbon nanomaterials.

    Science.gov (United States)

    Murali, Vasanth S; Wang, Ruhung; Mikoryak, Carole A; Pantano, Paul; Draper, Rockford

    2015-09-01

    Polyethylene glycol (PEG) and related polymers are often used in the functionalization of carbon nanomaterials in procedures that involve sonication. However, PEG is very sensitive to sonolytic degradation and PEG degradation products can be toxic to mammalian cells. Thus, it is imperative to assess potential PEG degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results. Described here is a simple and inexpensive polyacrylamide gel electrophoresis method to detect the sonolytic degradation of PEG. The method was used to monitor the integrity of PEG phospholipid constructs and branched chain PEGs after different sonication times. This approach not only helps detect degraded PEG, but should also facilitate rapid screening of sonication parameters to find optimal conditions that minimize PEG damage. © 2015 by the Society for Experimental Biology and Medicine.

  20. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol

    Science.gov (United States)

    Kiani, Shirin; Mousavi, Seyed Mahmoud; Shahtahmassebi, Nasser; Saljoughi, Ehsan

    2015-12-01

    Novel hydrophilic polyphenylsulfone (PPSU) nanofibrous membrane was prepared by electrospinning of the PPSU solution blended with polyethylene glycol 400 (PEG 400). The influence of the PEG concentration on the membrane characteristics was studied using scanning electron microscopy (SEM), water contact angle measurement, and tensile test. Filtration performance of the membranes was investigated by measurement of pure water flux (PWF) and determination of the rejection values of the pollution indices during treatment of canned beans production wastewater. According to the results, blending the PPSU solution with 10 wt.% PEG 400 resulted in formation of a nanofibrous membrane with high porosity and increased mechanical strength which exhibited a low water contact angle of 8.9° and high water flux of 7920 L/m2h. Flux recovery of the mentioned membrane which was assessed by filtration of a solution containing bovine serum albumin (BSA) was 83% indicating a noticeable antifouling property.

  1. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion

    Science.gov (United States)

    Stroh, Mark; Zipfel, Warren R.; Williams, Rebecca M.; Ma, Shu Chin; Webb, Watt W.; Saltzman, W. Mark

    2004-07-01

    Brain-derived neurotrophic factor (BDNF) is a promising therapeutic agent for the treatment of neurodegenerative diseases. However, the limited distribution of this molecule after administration into the brain tissue considerably hampers its efficacy. Here, we show how multiphoton microscopy of fluorescently tagged BDNF in brain-tissue slices provides a useful and rapid screening method for examining the diffusion of large molecules in tissues, and for studying the effects of chemical modifications-for example, conjugating with polyethylene glycol (PEG)-on the diffusion constant. This single variable, obtained by monitoring short-term diffusion in real time, can be effectively used for rational drug design. In this study on fluorescently tagged BDNF and BDNF-PEG, we identify slow diffusion as a major contributing factor to the limited penetration of BDNF, and demonstrate how chemical modification can be used to overcome this barrier.

  2. Poly(ethylene glycol-Prodrug Conjugates: Concept, Design, and Applications

    Directory of Open Access Journals (Sweden)

    Shashwat S. Banerjee

    2012-01-01

    Full Text Available Poly(ethylene glycol (PEG is the most widely used polymer in delivering anticancer drugs clinically. PEGylation (i.e., the covalent attachment of PEG of peptides proteins, drugs, and bioactives is known to enhance the aqueous solubility of hydrophobic drugs, prolong circulation time, minimize nonspecific uptake, and achieve specific tumor targetability through the enhanced permeability and retention effect. Numerous PEG-based therapeutics have been developed, and several have received market approval. A vast amount of clinical experience has been gained which has helped to design PEG prodrug conjugates with improved therapeutic efficacy and reduced systemic toxicity. However, more efforts in designing PEG-based prodrug conjugates are anticipated. In light of this, the current paper highlights the synthetic advances in PEG prodrug conjugation methodologies with varied bioactive components of clinical relevance. In addition, this paper discusses FDA-approved PEGylated delivery systems, their intended clinical applications, and formulations under clinical trials.

  3. Synthesis of single crystalline CdS nanowires with polyethylene glycol 400 as inducing template

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Solvothermal technique, an one-step soft solution-processing route was successfully employed to synthesize single crystalline CdS nanowires in ethylenediamine medium at lower temperature (170 □) for 1-8 d. In this route, polyethylene glycol 400 (PEG400)was used as surfactant, which played a crucial role in preferentially oriented growth of semiconductor nanowires. Characterizations of as-prepared CdS nanowires by X-ray powder diffraction(XRD), transmission electron microscopy(TEM) indicate that the naonowires,with typical diameters of 20nm and lengths up to several micrometers, have preferential [001] orientation. Also, investigations into the physical properties of the CdS nanowires were conducted with UV-Vis absorption spectroscopy and photoluminescence emission spectroscopy. The excitonic photo-optical phenomena of the nanowires shows the potential in the practical applications.

  4. Melatonin Nanoparticles Adsorbed to Polyethylene Glycol Microspheres as Activators of Human Colostrum Macrophages

    Directory of Open Access Journals (Sweden)

    Cristiane de Castro Pernet Hara

    2013-01-01

    Full Text Available The effectiveness of hormones associated with polymeric matrices has amplified the possibility of obtaining new drugs to activate the immune system. Melatonin has been reported as an important immunomodulatory agent that can improve many cell activation processes. It is possible that the association of melatonin with polymers could influence its effects on cellular function. Thus, this study verified the adsorption of the hormone melatonin to polyethylene glycol (PEG microspheres and analyzed its ability to modulate the functional activity of human colostrum phagocytes. Fluorescence microscopy and flow cytometry analyses revealed that melatonin was able to adsorb to the PEG microspheres. This system increased the release of superoxide and intracellular calcium. There was an increase of phagocytic and microbicidal activity by colostrum phagocytes when in the presence of melatonin adsorbed to PEG microspheres. The modified delivery of melatonin adsorbed to PEG microspheres may be an additional mechanism for its microbicidal activity and represents an important potential treatment for gastrointestinal infections of newborns.

  5. Investigation of the suppression effect of polyethylene glycol on copper electroplating by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Hung, C.-C.; Lee, W.-H.; Wang, Y.-L.; Chan, D.-Y.; Hwang, G.-J.

    2008-01-01

    Polyethylene glycol (PEG) is an additive that is commonly used as a suppressor in the semiconductor copper (Cu)-electroplating process. In this study, electrochemical impedance spectroscopy (EIS) was used to analyze the electrochemical behavior of PEG in the Cu-electroplating process. Polarization analysis, cyclic-voltammetry stripping, and cell voltage versus plating time were examined to clarify the suppression behavior of PEG. The equivalent circuit simulated from the EIS data shows that PEG inhibited the Cu-electroplating rate by increasing the charge-transfer resistance as well as the resistance of the adsorption layer. The presence of a large inductance demonstrated the strong adsorption of cuprous-PEG-chloride complexes on the Cu surface during the Cu-electroplating process. Increasing the PEG concentration appears to increase the resistances of charge transfer, the adsorption layer, and the inductance of the electroplating system

  6. Melatonin Nanoparticles Adsorbed to Polyethylene Glycol Microspheres as Activators of Human Colostrum Macrophages

    International Nuclear Information System (INIS)

    Hara, C.D.C.P.; Honorio-Frana, A.C.; Fagundes, D.L.G.; Guimares, P.C.L.; Franca, E.L.

    2013-01-01

    The effectiveness of hormones associated with polymeric matrices has amplified the possibility of obtaining new drugs to activate the immune system. Melatonin has been reported as an important immunomodulatory agent that can improve many cell activation processes. It is possible that the association of melatonin with polymers could influence its effects on cellular function. Thus, this study verified the adsorption of the hormone melatonin to polyethylene glycol (PEG) microspheres and analyzed its ability to modulate the functional activity of human colostrum phagocytes. Fluorescence microscopy and flow cytometry analyses revealed that melatonin was able to adsorb to the PEG microspheres. This system increased the release of superoxide and intracellular calcium. There was an increase of phagocytic and microbicidal activity by colostrum phagocytes when in the presence of melatonin adsorbed to PEG microspheres. The modified delivery of melatonin adsorbed to PEG microspheres may be an additional mechanism for its microbicidal activity and represents an important potential treatment for gastrointestinal infections of newborns.

  7. Waterborne polyurethane single-ion electrolyte from aliphatic diisocyanate and various molecular length of polyethylene glycol

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available The waterborne polyurethane (WPU dispersions from the reaction of cycloaliphatic diisocyanates [4,4’-methylenebis(cyclohexyl isocyanate (H12MDI and isophorone diisocyanate (IPDI] and polyethylene glycol (PEG with various molecular lengths were synthesized using our modified acetone process. Differetial scanning calorimeter (DSC and Fourier transform infrared spectroscopy (FTIR were utilized to characterize WPU films for the behavior of their crystallinity and H-bonding of WPU films. The Tg value of WPU increases with increasing the molecular length of PEG, whereas the Tm of WPU decreases with increasing PEG length. Alternating current (AC impedance experiments were performed to determine the ionic conductivities of WPU films. The WPU gel electrolytes exhibits an ionic conductivity as high as ~ 10-5 S/cm at room temperature.

  8. Macrogol (polyethylene glycol) laxatives in children with functional constipation and faecal impaction: a systematic review.

    Science.gov (United States)

    Candy, D; Belsey, J

    2009-02-01

    As the evidence base supporting the use of laxatives in children is very limited, we undertook an updated systematic review to clarify the issue. A comprehensive literature search was carried out to identify randomised controlled trials of polyethylene glycol (PEG) versus either placebo or active comparator, in patients aged milk of magnesia and one with placebo. Study duration ranged from 2 weeks to 12 months. PEG was significantly more effective than placebo and either equivalent to (two studies) or superior to (four studies) active comparator. Differences in study design precluded meaningful meta-analysis. Lack of high quality studies has meant that the management of childhood constipation has tended to rely on anecdote and empirical treatment choice. Recent publication of well designed randomised trials now permits a more evidence-based approach, with PEG-based treatments having been proven to be effective and well-tolerated first-line treatment.

  9. Polyethylene Glycol (PEG-3350, Colyte Poisoning due to Intra-Peritoneal Leakage in an Elderly Patient

    Directory of Open Access Journals (Sweden)

    Jae Hee Chung

    Full Text Available Polyethylene glycol (PEG-3350 is the most frequently used lavage solution for bowel cleansing prior to colonoscopy or elective surgery because its large molecular weight means that it is poorly absorbed. However, if it leaks into the peritoneal cavity, complications may arise. Few published studies have assessed the absorption, distribution, metabolism and excretion of PEG. Moreover, no published clinical data regarding complications due to the intra-peritoneal leakage of PEG-3350 could be found. We report on an elderly patient who developed the poisoning caused by leaking of PEG-3350 during bowel preparation. It resulted in severe metabolic acidosis, hypernatremia, hyperosmolality and a high anion gap, but it was effectively treated with early continuous renal replacement therapy after surgery.

  10. Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity.

    Science.gov (United States)

    Cheng, Dong; Wen, Yangbing; Wang, Lijuan; An, Xingye; Zhu, Xuhai; Ni, Yonghao

    2015-06-05

    In this work, the adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals (CNC) was investigated for preparing re-dispersible dried CNC. Results showed that the re-dispersity of CNC in water can be significantly enhanced using a PEG1000 dosage of 5wt% (based on the dry weight of CNC). The elemental analysis confirmed the adsorption of PEG onto the CNC surface. Transmission electron microscopy (TEM) was used to characterize the dry powder and indicated that the irreversible agglomeration of CNC after drying was essentially eliminated based on the PEG adsorption concept. Thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) suggested that CNC crystallinity and thermal stability were not affected by the adsorption of PEG. Thus, the adsorption of PEG has great potential for producing re-dispersible powder CNC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Molecular dynamics study of the structure and interparticle interactions of polyethylene glycol-conjugated PAMAM dendrimers.

    Science.gov (United States)

    Lee, Hwankyu; Larson, Ronald G

    2009-10-08

    We performed molecular dynamics (MD) simulations of one or two copies of polyethylene glycol of molecular weight 550 (PEG550) and 5000 (PEG5000) daltons, conjugated to generation 3 (G3) to 5 (G5) polyamidoamine (PAMAM) dendrimers with explicit water using a coarse-grained model. We found the radii of gyration of these dendrimer-PEG molecules to be close to those measured in experiments by Hedden and Bauer (Hedden , R. C. ; Bauer , B. J. Macromolecules 2003 , 36 , 1829.). Densely grafted PEG ligands (>50% of the dendrimer surface) extend like brushes, with layer thickness in agreement with theory for starlike polymers. Two dendrimer-PEG complexes in the box drift away from each other, indicating that no aggregation is induced by either short or long PEG chains, conflicting with a recent view that the cytotoxicity of some PEGylated particles might be due to particle aggregation for long PEG lengths.

  12. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    International Nuclear Information System (INIS)

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-01-01

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from 125 I-PEG-catalase or 125 I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species

  13. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method

    Directory of Open Access Journals (Sweden)

    Yadollah Abdollahi

    2012-05-01

    Full Text Available The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG, and β-d-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD, zeta potential measurements and Fourier transform infrared (FT-IR. The use of green chemistry reagents, such as glucose, provides green and economic features to this work.

  14. Anaphylactic reaction to polyethylene-glycol conjugated-asparaginase: premedication and desensitization may not be sufficient.

    Science.gov (United States)

    Sahiner, Umit M; Yavuz, S Tolga; Gökce, Muge; Buyuktiryaki, Betul; Altan, Ilhan; Aytac, Selin; Tuncer, Murat; Tuncer, Ayfer; Sackesen, Cansin

    2013-08-01

    In hypersensitive reactions to native L-asparaginase, either premedication and desensitization or substitution with polyethylene glycol conjugated asparaginase (PEG-ASP) is preferred. Anaphylaxis with PEG-ASP is rare. An 8-year-old girl and a 2.5-year-old boy, both diagnosed as having acute lymphoblastic leukemia, presented with native L-asparaginase hypersensitivity and substitution with PEG-ASP was preferred. They received a premedication (methylprednisolone, hydroxyzine and ranitidine) followed by desensitization with PEG-ASP infusion. Both patients developed anaphylaxis with peg-asparaginase. These are the first reported cases of anaphylactic reaction to PEG-ASP, despite the application of both premedication and desensitization. Anaphylaxis with PEG-ASP is very rare and premedication and desensitization protocols may not prevent these hypersensitive reactions. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  15. Magnetite nanoparticles coated with methoxy polyethylene glycol as an efficient adsorbent of diazinon pesticide from water

    Directory of Open Access Journals (Sweden)

    Mahboubeh Saeidi

    2016-12-01

    Full Text Available Methoxy polyethylene glycol modified magnetite nanoparticles (PEGMNs were synthesized and characterized by scanning electron microscopy (SEM, vibrating sample magnetometer (VSM, and X-ray diffraction (XRD. The adsorption of diazinon onto PEGMNs was investigated by UV-Vis spectrophotometry at 236 nm, through batch experiments. The effects of adsorbent dosage, solution pH, contact time, solution temperature and water impurities on the adsorption of diazinon onto PEGMNs were investigated. The process of adsorption was increased rapidly in the first contact period of 10 min. The adsorption at equilibrium (qe was found to increase with increasing pH. The results of diazinon removal at various PEGMNs dosages demonstrated that the optimum dose of PEGMNs was 1mg. The amount of adsorption of diazinon at equilibrium increased with an increasing temperature from 15°C to 45°C that indicateds an endothermic process. Therefore, PEGMNs were used as an efficient absorbent for the removal of diazinon.

  16. Preparation and investigation of mefenamic acid - polyethylene glycol - sucrose ester solid dispersions.

    Science.gov (United States)

    Fülöp, Ibolya; Gyéresi, Árpád; Kiss, Lóránd; Deli, Mária A; Croitoru, Mircea Dumitru; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-12-01

    Mefenamic acid (MA) is a widely used non-steroidal antiinflammatory (NSAID) drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670) and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.

  17. Lactulose vs Polyethylene Glycol 3350-Electrolyte Solution for Treatment of Overt Hepatic Encephalopathy

    Science.gov (United States)

    Rahimi, Robert S.; Singal, Amit G.; Cuthbert, Jennifer A.; Rockey, Don C.

    2017-01-01

    IMPORTANCE Hepatic encephalopathy (HE) is a common cause of hospitalization in patients with cirrhosis. Pharmacologic treatment for acute (overt) HE has remained the same for decades. OBJECTIVE To compare polyethylene glycol 3350–electrolyte solution (PEG) and lactulose treatments in patients with cirrhosis admitted to the hospital for HE. We hypothesized that rapid catharsis of the gut using PEG may resolve HE more effectively than lactulose. DESIGN, SETTING, AND PARTICIPANTS The HELP (Hepatic Encephalopathy: Lactulose vs Polyethylene Glycol 3350-Electrolyte Solution) study is a randomized clinical trial in an academic tertiary hospital of 50 patients with cirrhosis (of 186 screened) admitted for HE. INTERVENTIONS Participants were block randomized to receive treatment with PEG, 4-L dose (n = 25), or standard-of-care lactulose (n = 25) during hospitalization. MAIN OUTCOMES AND MEASURES The primary end point was an improvement of 1 or more in HE grade at 24 hours, determined using the hepatic encephalopathy scoring algorithm (HESA), ranging from 0 (normal clinical and neuropsychological assessments) to 4 (coma). Secondary outcomes included time to HE resolution and overall length of stay. RESULTS A total of 25 patients were randomized to each treatment arm. Baseline clinical features at admission were similar in the groups. Thirteen of 25 patients in the standard therapy arm (52%) had an improvement of 1 or more in HESA score, thus meeting the primary outcome measure, compared with 21 of 23 evaluated patients receiving PEG (91%) (P PEG-treated groups (P = .002). The median time for HE resolution was 2 days for standard therapy and 1 day for PEG (P = .01). Adverse events were uncommon, and none was definitely study related. CONCLUSIONS AND RELEVANCE PEG led to more rapid HE resolution than standard therapy, suggesting that PEG may be superior to standard lactulose therapy in patients with cirrhosis hospitalized for acute HE. TRIAL REGISTRATION clinicaltrials

  18. Angiogenic competency of biodegradable hydrogels fabricated from polyethylene glycol-crosslinked tyrosine-derived polycarbonates

    Directory of Open Access Journals (Sweden)

    HJ Sung

    2008-04-01

    Full Text Available Synthetic biomaterials can be used as instructive biological milieus to guide cellular behaviour and function. To further realize this application, we synthesized a series of structurally similar hydrogels and tested their ability to modulate angiogenesis. Hydrogels were synthesized from poly(DTE-co-x% DT carbonate crosslinked by y% poly(ethylene glycol (PEG. Hydrogel desaminotyrosyl tyrosine (DT contents (x% ranged from 10-100%, and crosslink densities (y% PEG-crosslinker ranged from 5-80%. The hydrogels were fashioned into porous scaffolds with highly interconnected macro- and micro-pore (>100 and <10 mm in diameter, respectively architecture using poly(DTE-co-10%DT carbonate crosslinked with 8% PEG. Under physiological conditions (in vitro, the hydrogels degraded into three major products: desaminotyrosyl-tyrosine ethyl ester (DTE, desaminotyrosyl tyrosine (DT, and poly(ethylene glycol-di-DT-hydrazide (PEG-di-DT hydrazide. Increasing either DT content or crosslink density brought quickened degradation. Because DT and DTE, two of the three major degradation products, have not demonstrated any noticeable cytotoxicity or angiogenic effect in previous studies, we measured the cytotoxicity of PEG-di-DT hydrazide, the third major degradation product. We found that PEG-di-DT hydrazide only displayed significant cytotoxicity at the high concentration of 100 mg/mL. Interestingly, PEG-di-DT hydrazide and its further degradation product PEG-dihydrazide stimulated in vitro endothelial cell migration and tubulogenesis, which is comparable to results found with FGF-beta treatment. Subcutaneous implantation of the PEG-crosslinked poly(DTE-co-10%DT carbonate scaffolds into the backs of rats elicited greater tissue growth over time and superior vascularization than poly(DTE carbonate implantation. These results show that this new class of biomaterials has a strong potential to modulate angiogenesis.

  19. Oleanolic acid liposomes with polyethylene glycol modification: promising antitumor drug delivery

    Directory of Open Access Journals (Sweden)

    Gao D

    2012-07-01

    Full Text Available Dawei Gao, Shengnan Tang, Qi TongApplied Chemical Key Laboratory of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, ChinaBackground: Oleanolic acid is a pentacyclic triterpene present in many fruits and vegetables, and has received much attention on account of its biological properties. However, its poor solubility and low bioavailability limit its use. The objective of this study was to encapsulate oleanolic acid into nanoliposomes using the modified ethanol injection method.Methods: The liposomes contain a hydrophobic oleanolic acid core, an amphiphilic soybean lecithin monolayer, and a protective hydrophilic polyethylene glycol (PEG coating. During the preparation process, the formulations described were investigated by designing 34 orthogonal experiments as well as considering the effects of different physical characteristics. The four factors were the ratios of drug to soybean phosphatidylcholine (w/w, cholesterol (w/w, PEG-2000 (w/w, and temperature of phosphate-buffered saline at three different levels. We identified the optimized formulation which showed the most satisfactory lipid stability and particle formation. The morphology of the liposomes obtained was determined by transmission electron microscopy and atomic force microscopy. The existence of PEG in the liposome component was validated by Fourier transform infrared spectrum analysis.Results: The PEGylated liposomes dispersed individually and had diameters of around 110–200 nm. Encapsulation efficiency was more than 85%, as calculated by high-performance liquid chromatography and Sephadex® gel filtration. Furthermore, when compared with native oleanolic acid, the liposomal formulations showed better stability in vitro. Finally, the cytotoxicity of the oleanolic acid liposomes was evaluated using a microtiter tetrazolium assay.Conclusion: These results suggest that PEGylated liposomes would serve as a potent delivery vehicle

  20. Biodegradation of polyethylene glycol (PEG) in three tropical soils using radio labelled PEG

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, A.L. [Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of Sao Paulo (CENA/USP), Piracicaba SP (Brazil)]. E-mail: abdalla@cena.usp.br; Regitano, J.B.; Tornisielo, V.L.; Marchese, L. [Laboratory of Ecotoxicology, Piracicaba SP (Brazil); Pecanha, M.R.S.R.; Vitti, D.M.S.S. [Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of Sao Paulo (CENA/USP), Piracicaba SP (Brazil); Smith, T. [School of Agriculture, Policy and Development, University of Reading, Reading (United Kingdom)

    2005-08-19

    Polyethylene glycol (PEG) may be added to forage based diets rich in tannins for ruminant feeding because it binds to tannins and thus prevent the formation of potentially indigestible tannin-protein complexes. The objective of this work was to determine the in vitro biodegradation (mineralization, i.e., complete breakdown of PEG to CO{sub 2}) rate of PEG. {sup 14}C-Polyethylene glycol ({sup 14}C-PEG) was added to three different tropical soils (a sandy clay loam soil, SaCL; a sandy clay soil, SaC; and a sandy loam soil, SaL) and was incubated in Bartha flasks. Free PEG and PEG bound to tannins from a tannin rich local shrub were incubated under aerobic conditions for up to 70 days. The biodegradation assay monitored the {sup 14}CO{sub 2} evolved after degradation of the labelled PEG in the soils. After incubation, the amount of {sup 14}CO{sub 2} evolved from the {sup 14}C-PEG application was low. Higher PEG mineralization values were found for the soils with higher organic matter contents (20.1 and 18.6 g organic matter/kg for SaCL and SaC, respectively) than for the SaL soil (11.9 g organic matter/kg) (P < 0.05). The extent of mineralization of PEG after 70 days of incubation in the soil was significantly lower (P < 0.05) when it was added as bound to the browse tannin than in the free form (0.040 and 0.079, respectively). (author)

  1. Utilization of Triton X-100 and polyethylene glycols during surfactant-mediated biodegradation of diesel fuel

    International Nuclear Information System (INIS)

    Wyrwas, Bogdan; Chrzanowski, Łukasz; Ławniczak, Łukasz; Szulc, Alicja; Cyplik, Paweł; Białas, Wojciech; Szymański, Andrzej; Hołderna-Odachowska, Aleksandra

    2011-01-01

    Highlights: ► Efficient degradation of Triton X-100 under both aerobic and aerobic conditions. ► Triton X-100 was most likely degraded via the ‘central fission’ mechanism. ► Preferential degradation of Triton X-100 over diesel oil. ► The presence of surfactants decreased diesel oil biodegradation efficiency. - Abstract: The hypothesis regarding preferential biodegradation of surfactants applied for enhancement of microbial hydrocarbons degradation was studied. At first the microbial degradation of sole Triton X-100 by soil isolated hydrocarbon degrading bacterial consortium was confirmed under both full and limited aeration with nitrate as an electron acceptor. Triton X-100 (600 mg/l) was utilized twice as fast for aerobic conditions (t 1/2 = 10.3 h), compared to anaerobic conditions (t 1/2 = 21.8 h). HPLC/ESI-MS analysis revealed the preferential biodegradation trends in both components classes of commercial Triton X-100 (alkylphenol ethoxylates) as well as polyethylene glycols. The obtained results suggest that the observed changes in the degree of ethoxylation for polyethylene glycol homologues occurred as a consequence of the ‘central fission’ mechanism during Triton X-100 biodegradation. Subsequent experiments with Triton X-100 at approx. CMC concentration (150 mg/l) and diesel oil supported our initial hypothesis that the surfactant would become the preferred carbon source even for hydrocarbon degrading bacteria. Regardless of aeration regimes Triton X-100 was utilized within 48–72 h. Efficiency of diesel oil degradation was decreased in the presence of surfactant for aerobic conditions by approx. 25% reaching 60 instead of 80% noted for experiments without surfactant. No surfactant influence was observed for anaerobic conditions.

  2. Differences in taste between three polyethylene glycol preparations: a randomized double-blind study.

    Science.gov (United States)

    Lam, Tze J; Mulder, Chris Jj; Felt-Bersma, Richelle Jf

    2011-01-01

    Patients suffering from chronic constipation require long-term, regular therapy with laxatives. Literature regarding patient preference and acceptance in polyethylene glycol preparations is scarce. Therefore, this research aimed to identify preference between the three polyethylene glycol 3350, namely Molaxole(®), Movicol(®), and Laxtra Orange(®). Furthermore, taste is one of the most important factors leading to patients' adherence, particularly when the treatment lasts for a long time. In this randomized, cross-over double-blind study, 100 volunteers were recruited by advertisement. The volunteers were invited to taste the preparations and grade the taste using a five-point hedonic scale (extremely poor taste [1] to extremely good taste [5]). The volunteers were then asked to choose the most palatable preparation. One hundred volunteers with a mean age of 35 years (range 20-61) were randomized (76 females). Molaxole(®), Movicol(®), and Laxtra Orange(®) had a mean hedonic score of 2.76 (SD: 0.82), 2.81 (SD: 0.76) and 3.12 (SD: 0.82) respectively. The hedonic taste score for Laxtra Orange(®) was significantly better than Molaxole(®) (P = 0.001) and Movicol(®) (P = 0.001). No difference was found between Molaxole(®) and Movicol(®) (P = 0.61). Molaxole(®) was the most preferred preparation for 19 volunteers (19%), Movicol(®) for 24 volunteers (25%) and Laxtra Orange(®) for 55 volunteers (56%). Two volunteers had no preference. The order in which volunteers tested the preparations had no influence on the taste results. No significant differences in age or gender were observed. Laxtra Orange(®) was most palatable preparation. This may have implications for adherence in patients with chronic constipation.

  3. Efficacy and complications of polyethylene glycols for treatment of constipation in children: a meta-analysis.

    Science.gov (United States)

    Chen, Si-Le; Cai, Shi-Rong; Deng, Liang; Zhang, Xin-Hua; Luo, Te-Dong; Peng, Jian-Jun; Xu, Jian-Bo; Li, Wen-Feng; Chen, Chuang-Qi; Ma, Jin-Ping; He, Yu-Long

    2014-10-01

    Constipation is a common childhood complaint. In 90% to 95% of children, constipation is functional, which means that there is no objective evidence of an underlying pathological condition. Polyethylene glycol (PEG or macrogol) solution is an osmotic laxative agent that is absorbed in only trace amounts from the gastrointestinal tract and routinely used to treat chronic constipation in adults. Here, we report the results of a meta-analysis of PEG-based laxatives compared with lactulose, milk of magnesia (magnesium hydroxide), oral liquid paraffin (mineral oil), or acacia fiber, psyllium fiber, and fructose in children. This meta-analysis was conducted in accordance with PRISMA guidelines and involved searches of MEDLINE, Cochrane, EMBASE, and Google Scholar databases up to February 10, 2014, using the keywords (Constipation OR Functional Constipation OR Fecal Impaction) AND (Children) AND (Polyethylene Glycol OR Laxative). Primary efficacy outcomes included a number of stool passages/wk and percentage of patients who reported satisfactory stool consistency. Secondary safety outcomes included diarrhea, abdominal pain, nausea or vomiting, pain or straining at defecation, bloating or flatulence, hard stool consistency, poor palatability, and rectal bleeding. We identified 231 articles, 27 of which were suitable for full-text review and 10 of which were used in the meta-analysis. Patients who were treated with PEG experienced more successful disimpaction compared with those treated with non-PEG laxatives. Treatment-related adverse events were acceptable and generally well tolerated. PEG-based laxatives are effective and safe for chronic constipation and for resolving fecal impaction in children. Children's acceptance of PEG-based laxatives appears to be better than non-PEG laxatives. Optimal dosages, routes of administration, and PEG regimens should be determined in future randomized controlled studies and meta-analyses.

  4. Growth of four microorganisms in polyethylene glycol-electrolyte lavage solution.

    Science.gov (United States)

    Akly, T S; DiPiro, J T; Steele, J C; Kemp, G A

    1986-12-01

    The growth of Staphylococcus epidermidis, Serratia marcescens, Pseudomonas aeruginosa, and Candida albicans in reconstituted polyethylene glycol-electrolyte lavage solution (PEG-ELS) stored under refrigeration and at room temperature was studied. A standard inoculum of each organism was added to one of four 4-L containers (one organism per container). From each container 28 aliquots of 25-mL each were removed and stored under refrigeration or at room temperature. One container was not inoculated and served as a control. Duplicate aliquots of the inoculated and the control solutions were filtered and incubated for quantification of organisms on days 0, 1, 2, 4, 8, 16, and 30. Solutions stored at room temperature supported the growth of S. marcescens and Ps. aeruginosa. The counts of these organisms increased to approximately 10(6) colony-forming units (CFU)/mL over 16 days. The counts of Staph. epidermidis in solutions stored at room temperature increased slightly over the first 24 hours and declined steadily to zero after day 4. C. albicans reached a maximum colony count of 5.84 cfu/mL on day 16 and steadily declined to 0.92 cfu/mL on day 30. Solutions stored under refrigeration did not support the growth of any microorganisms. Microbial growth was not detected in any of the control solutions over the 30-day study period. The polyethylene glycol-electrolyte lavage solution studied here should be refrigerated after reconstitution to minimize microbial growth. This solution may be used for up to 30 days after reconstitution when it is stored under refrigeration.

  5. Randomised clinical trial: Polyethylene glycol 3350 with sports drink vs. polyethylene glycol with electrolyte solution as purgatives for colonoscopy--the incidence of hyponatraemia.

    Science.gov (United States)

    Matro, R; Daskalakis, C; Negoianu, D; Katz, L; Henry, C; Share, M; Kastenberg, D

    2014-09-01

    Polyethylene glycol 3350 plus sports drink (PEG-SD) is a hypo-osmotic purgative commonly used for colonoscopy, though little safety data are available. To evaluate the effect of PEG-SD on serum sodium (Na) and other electrolytes compared with PEG-electrolyte solution (PEG-ELS). We performed a single center, prospective, randomised, investigator-blind comparison of PEG-ELS to PEG-SD in out-patients undergoing colonoscopy. Laboratories were obtained at baseline and immediately before and after colonoscopy. The primary endpoint was development of hyponatraemia (Na PEG-SD, 184 PEG-ELS). The groups were well matched except for a higher fraction of women and Blacks in PEG-ELS. Seven patients (3.9%) in PEG-SD and four patients (2.2%) in PEG-ELS developed hyponatraemia (OR = 1.82, 95% CI: 0.45-8.62, P = 0.376). Changes in electrolytes from baseline were small but significantly worse with PEG-SD for sodium, potassium and chloride (P = 0.001, 0.012, 0.001, respectively). Preparation completion, adverse events, and overall colon cleansing were similar between the groups, but PEG-ELS had more excellent preparations (52% vs. 30%; P = 0.001). Greater, but very modest, electrolyte changes occur with PEG-SD. Hyponatraemia is infrequent with both purgatives. A significant increase in hyponatraemia was not identified for PEG-SD vs. PEG-ELS, but the sample size may have been inadequate to identify a small, but clinically important difference. ClinicalTrials.gov identifier NCT01299779. © 2014 John Wiley & Sons Ltd.

  6. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials

    International Nuclear Information System (INIS)

    Alkan, Cemil; Günther, Eva; Hiebler, Stefan; Himpel, Michael

    2012-01-01

    Highlights: ► Complexing groups to PEGs in a polymer could stabilize PEG at different molecular weights. ► Shape stabilized PEGs for thermal energy storage are prepared using compounds with interacting groups. ► Phase change temperature of PEGs could be changed using a complexing copolymer with acid groups. - Abstract: Blends of poly(ethylene glycol) (PEG) at 1000, 6000, and 10,000 g/mole average molecular weights and poly(acrylic acid) (PAA) or poly(ethylene-co-acrylic acid) (EcoA) have been prepared by solution blending and accounted for thermal energy storage properties as shape stabilized polymer blends. The blends have been analyzed using Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) techniques. Total thermal energy values of the complexes have been determined by the method of Mehling et al. As a result of the investigation it is found that polymers with acid groups form interpolymer complexes (IPCs) and miscible and immiscible IPC–PEG blends when blended with PEGs. PEGs formed IPCs with PAA and EcoA polymers in solutions and reach to saturation and turns to be blends of IPC and PEG polymer. PEGs in this work bleed out of the blends when its compositions reach to a degree of immiscibility. In the first range where blends are IPCs and in the third range where bleeding of PEG occurs, blends are not feasible for thermal energy storage applications. However, in the second range, the blends are potential materials for passive thermal energy storage applications.

  7. Poly(ethylene glycol)s as grinding additives in the mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins.

    Science.gov (United States)

    Mascitti, Andrea; Lupacchini, Massimiliano; Guerra, Ruben; Taydakov, Ilya; Tonucci, Lucia; d'Alessandro, Nicola; Lamaty, Frederic; Martinez, Jean; Colacino, Evelina

    2017-01-01

    The mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins was investigated in the presence of various poly(ethylene) glycols (PEGs), as safe grinding assisting agents (liquid-assisted grinding, LAG). A comparative study under dry-grinding conditions was also performed. The results showed that the cyclization reaction was influenced by the amount of the PEG grinding agents. In general, cleaner reaction profiles were observed in the presence of PEGs, compared to dry-grinding procedures.

  8. Interactions of polyethylene glycols with water studied by measurements of density and sound velocity

    International Nuclear Information System (INIS)

    Ayranci, Erol; Sahin, Melike

    2008-01-01

    Densities and sound velocities of ethylene glycol (EG) and polyethylene glycols (PEGs) of molecular weight 200, 300, 400, 550, 600, 1000, 1450, 3350, 8000, and 10,000 at (288.15, 298.15, and 308.15) K were measured with high precision vibrating tube densimeter and sound velocity measuring device. They were used to evaluate apparent molar volumes, V o , and apparent molar isentropic compressibilities, K ΦS . Infinite dilution values of these parameters, V o 0 , and K ΦS 0 , were obtained from their plot as a function of molality. The variations of V o 0 , and K ΦS 0 , with the number of repeating units in PEGs and with temperature were examined. Comparison of the experimentally obtained data was made with the available literature data and also with some values predicted according to group additivity approach. The results were interpreted in terms of hydration and conformational effects of PEGs in water. A correlation was also examined between V o 0 or K ΦS 0 values of PEGs in water and equilibrium moisture contents of PEGs as well as the water vapor permeabilities (WVP) of edible films containing PEGs

  9. Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.

    Science.gov (United States)

    Han, Mengwei; Espinosa-Marzal, Rosa M

    2017-09-07

    We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.

  10. Zinc Phthalocyanine Labelled Polyethylene Glycol: Preparation, Characterization, Interaction with Bovine Serum Albumin and Near Infrared Fluorescence Imaging in Vivo

    Directory of Open Access Journals (Sweden)

    Tianjun Liu

    2012-05-01

    Full Text Available Zinc phthalocyanine labelled polyethylene glycol was prepared to track and monitor the in vivo fate of polyethylene glycol. The chemical structures were characterized by nuclear magnetic resonance and infrared spectroscopy. Their light stability and fluorescence quantum yield were evaluated by UV-Visible and fluorescence spectroscopy methods. The interaction of zinc phthalocyanine labelled polyethylene glycol with bovine serum albumin was evaluated by fluorescence titration and isothermal titration calorimetry methods. Optical imaging in vivo, organ aggregation as well as distribution of fluorescence experiments for tracking polyethylene glycol were performed with zinc phthalocyanine labelled polyethylene glycol as fluorescent agent. Results show that zinc phthalocyanine labelled polyethylene glycol has good optical stability and high emission ability in the near infrared region. Imaging results demonstrate that zinc phthalocyanine labelled polyethylene glycol can track and monitor the in vivo process by near infrared fluorescence imaging, which implies its potential in biomaterials evaluation in vivo by a real-time noninvasive method.

  11. Development of controlled release formulations of azadirachtin-A employing poly(ethylene glycol) based amphiphilic copolymers.

    Science.gov (United States)

    Kumar, Jitendra; Shakil, Najam A; Singh, Manish K; Singh, Mukesh K; Pandey, Alka; Pandey, Ravi P

    2010-05-01

    Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol-based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t(1/2)) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.

  12. Farnesylthiosalicylic acid-loaded lipid-polyethylene glycol-polymer hybrid nanoparticles for treatment of glioblastoma.

    Science.gov (United States)

    Kaffashi, Abbas; Lüle, Sevda; Bozdağ Pehlivan, Sibel; Sarısözen, Can; Vural, İmran; Koşucu, Hüsnü; Demir, Taner; Buğdaycı, Kadir Emre; Söylemezoğlu, Figen; Karlı Oğuz, Kader; Mut, Melike

    2017-08-01

    We aimed to develop lipid-polyethylene glycol (PEG)-polymer hybrid nanoparticles, which have high affinity to tumour tissue with active ingredient, a new generation antineoplastic drug, farnesylthiosalicylic acid (FTA) for treatment of glioblastoma. Farnesylthiosalicylic acid-loaded poly(lactic-co-glycolic acid)-1,2 distearoyl-glycerol-3-phospho-ethanolamine-N [methoxy (PEG)-2000] ammonium salt (PLGA-DSPE-PEG) with or without 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) hybrid nanoparticles has been prepared and evaluated for in-vitro characterization. Cytotoxicity of FTA-loaded nanoparticles along with its efficacy on rat glioma-2 (RG2) cells was also evaluated both in vitro (in comparison with non-malignant cell line, L929) and in vivo. Scanning electron microscopy studies showed that all formulations prepared had smooth surface and spherical in shape. FTA and FTA-loaded nanoparticles have cytotoxic activity against RG2 glioma cell lines in cell culture studies, which further increases with addition of DOTAP. Magnetic resonance imaging and histopathologic evaluation on RG2 tumour cells in rat glioma model (49 female Wistar rats, 250-300 g) comparing intravenous and intratumoral injections of the drug have been performed and FTA-loaded nanoparticles reduced tumour size significantly in in-vivo studies, with higher efficiency of intratumoral administration than intravenous route. Farnesylthiosalicylic acid-loaded PLGA-DSPE-PEG-DOTAP hybrid nanoparticles are proven to be effective against glioblastoma in both in-vitro and in-vivo experiments. © 2017 Royal Pharmaceutical Society.

  13. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?

    Directory of Open Access Journals (Sweden)

    van Wijck K

    2012-07-01

    Full Text Available Kim van Wijck,1,2 Babs AFM Bessems,2 Hans MH van Eijk,2 Wim A Buurman,2 Cornelis HC Dejong,1,2 Kaatje Lenaerts1,21Top Institute Food and Nutrition, Wageningen, The Netherlands; 2Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, NetherlandsBackground: Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests.Methods: Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively.Results: Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in

  14. Safety of polyethylene glycol 3350 solution in chronic constipation: randomized, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    McGraw T

    2016-07-01

    Full Text Available Thomas McGraw Global Medical Affairs, Merck & Co., Inc., Kenilworth, NJ, USA Purpose: To evaluate the safety and tolerability of aqueous solution concentrate (ASC of polyethylene glycol (PEG 3350 in patients with functional constipation.Patients and methods: The patients who met Rome III diagnostic criteria for functional constipation were randomized in this multicenter, randomized, placebo-controlled, single-blind study to receive once daily dose of PEG 3350 (17 g ASC or placebo solution for 14 days. The study comprised a screening period (visit 1, endoscopy procedure (visits 2 and 3, and follow-up telephone calls 30 days post-treatment. Safety end points included adverse events (AEs, clinical laboratory evaluations, vital signs, and others. The primary end points were the proportion of patients with abnormalities of the oral and esophageal mucosa, detected by visual and endoscopic examination of the oral cavity and esophagus, respectively, compared with placebo. A secondary objective was to compare the safety and tolerability of ASC by evaluating AEs or adverse drug reactions.Results: A total of 65 patients were enrolled in this study, 31 were randomized to PEG 3350 ASC and 34 were randomized to placebo, of which 62 patients completed the study. No patients in either group showed abnormalities in inflammation of the oral mucosa during visit 2 (before treatment or visit 3 (after treatment. Fewer abnormalities of the esophageal mucosa were observed in the PEG 3350 ASC group than in the placebo group on visit 3, with no significant difference in the proportion of abnormalities between the treatment groups. Overall, 40 treatment-emergent AEs were observed in 48.4% of patients treated with PEG 3350 ASC, and 41 treatment-emergent AEs were observed in 55.9% of patients treated with placebo – nonsignificant difference of -7.5% (95% CI: -21.3, 6.3 between treatment groups. No serious AEs or deaths were reported, and no patient discontinued because

  15. Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light

    Science.gov (United States)

    Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young

    2016-07-01

    Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation

  16. Poly(ethylene glycol) and cyclodextrin-grafted chitosan: from methodologies to preparation and potential biotechnological applications

    Science.gov (United States)

    Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.

    2017-11-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

  17. Alkyne- and 1,6-elimination- succinimidyl carbonate – terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation

    OpenAIRE

    Xie, Yumei; Duan, Shaofeng; Forrest, M. Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with di...

  18. Thermoresponsive self-assembly of short elastin-like polypentapeptides and their poly(ethylene glycol) derivatives

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Brus, Jiří; Kostka, Libor; Koňák, Čestmír; Urbanová, Martina; Šlouf, Miroslav

    2007-01-01

    Roč. 7, č. 1 (2007), s. 56-69 ISSN 1616-5187 R&D Projects: GA ČR GA204/05/2255; GA AV ČR IAA100500501 Institutional research plan: CEZ:AV0Z40500505 Keywords : elastin -like peptides * self-assembly * poly(ethylene glycol) Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.831, year: 2007

  19. In vitro and in vivo effects of polyethylene glycol (PEG)-modified lipid in DOTAP/cholesterol-mediated gene transfection

    DEFF Research Database (Denmark)

    Gjetting, Torben; Arildsen, Nicolai Skovbjerg; Christensen, Camilla Laulund

    2010-01-01

    DOTAP/cholesterol-based lipoplexes are successfully used for delivery of plasmid DNA in vivo especially to the lungs, although low systemic stability and circulation have been reported. To achieve the aim of discovering the best method for systemic delivery of DNA to disseminated tumors we evalua...... evaluated the potential of formulating DOTAP/cholesterol lipoplexes with a polyethylene glycol (PEG)-modified lipid, giving the benefit of the shielding and stabilizing properties of PEG in the bloodstream....

  20. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    Science.gov (United States)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛ

  1. Effect of molecular weight, temperature, and additives on the moisture sorption properties of polyethylene glycol.

    Science.gov (United States)

    Baird, Jared A; Olayo-Valles, Roberto; Rinaldi, Carlos; Taylor, Lynne S

    2010-01-01

    Polyethylene glycol (PEG) is a hygroscopic polymer that undergoes the phenomenon of deliquescence once a critical relative humidity (RH(0)) is reached. The purpose of this study was to test the hypothesis that the deliquescence behavior of PEG will be affected by the polymer molecular weight, temperature, and the presence of additives. The deliquescence relative humidity for single component (RH(0)) and binary mixtures (RH(0,mix)) were measured using an automated gravimetric moisture analyzer at 25 and 40 degrees C. Changes in PEG crystallinity after exposure to moisture were qualitatively assessed using powder X-ray diffraction (PXRD). Optical microscopy was used to visually observe the deliquescence phenomenon. For single component systems, decreasing PEG MW and elevating the temperature resulted in a decrease in the observed RH(0). Physical mixtures of acetaminophen and anhydrous citric acid with both PEG 3350 and PEG 100,000 exhibited deliquescence (RH(0,mix)) at a relative humidity below that of either individual component. Qualitative changes in crystallinity were observed from the X-ray diffractograms for each PEG MW grade at high relative humidities, indicating that phase transformation (deliquescence) of the samples had occurred. In conclusion, it was found that the deliquescence behavior of PEG was affected by the polymer MW, temperature, and the presence of additives. This phenomenon may have important implications for the stability of PEG containing formulations.

  2. PEG and Thickeners: A Critical Interaction Between Polyethylene Glycol Laxative and Starch-Based Thickeners.

    Science.gov (United States)

    Carlisle, Brian J; Craft, Garrett; Harmon, Julie P; Ilkevitch, Alina; Nicoghosian, Jenik; Sheyner, Inna; Stewart, Jonathan T

    2016-09-01

    Clinicians commonly encounter dysphagia and constipation in a skilled nursing population. Increasing the viscosity of liquids, usually with a starch- or xanthan gum-based thickener, serves as a key intervention for patients with dysphagia. We report a newly identified and potentially dangerous interaction between polyethylene glycol 3350 laxative (PEG) and starch-thickened liquids. A patient requiring nectar-thickened liquids became constipated, and medical staff prescribed PEG for constipation. His nurse observed that the thickened apple juice immediately thinned to near-water consistency when PEG was added. She obtained the same results with thickened water and coffee. We quantified this phenomenon by isothermal rotational rheology. Results confirmed a precipitous loss of thickening when PEG was added to starch-based thickeners but not with xanthan gum-based thickeners. Clinicians and front-line staff should be aware of this potentially critical interaction between PEG- and starch-based thickeners. Although confirmatory studies are needed, our preliminary data suggest that PEG may be compatible with xanthan gum-- based thickeners. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.

  3. One-day bowel preparation with polyethylene glycol 3350: an effective regimen for colonoscopy in children.

    Science.gov (United States)

    Adamiak, Tonya; Altaf, Muhammad; Jensen, Michael K; Sultan, Mutaz; Ramprasad, Jonathan; Ciecierega, Thomas; Sherry, Karen; Miranda, Adrian

    2010-03-01

    Polyethylene glycol (PEG) 3350 is commonly used and has been proven safe and effective for the treatment of chronic constipation and as a 4-day bowel preparation in children. A 1-day PEG 3350 bowel preparation regimen has been recently developed for adults; however, data regarding its use in children are lacking. To evaluate the safety and effectiveness of a 1-day PEG 3350 regimen for bowel preparation in children before colonoscopy. Retrospective review. Tertiary-care center. This study involved all children prescribed a 1-day PEG 3350 bowel preparation regimen before colonoscopy at our center in 2008. We reviewed medical records of patients (PEG 3350 preparation regimen was 13.7 years (range 1.08-17.92 years). Fifty-two percent were male; 48% were female. The most common indications for colonoscopy included abdominal pain (65%), bloody stools (29%), diarrhea (21%), and weight loss (18%). The 1-day bowel preparation regimen was effective in 253 patients (93%). The indication for colonoscopy, the age of the child, or a history of constipation did not significantly alter the success rate of colonoscopy. A retrospective study at one tertiary-care center. The 1-day PEG 3350 bowel preparation regimen is safe and effective and should be considered for use as preparation for colonoscopy in children. 2010 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  4. Validation of polyethylene glycol 3350 as a poorly absorbable marker for intestinal perfusion studies.

    Science.gov (United States)

    Schiller, L R; Santa Ana, C A; Porter, J; Fordtran, J S

    1997-01-01

    Polyethylene glycol (PEG) has been used as a poorly absorbable marker in intestinal perfusion studies, but there is controversy about the absorbability of PEG, particularly when glucose-sodium cotransport is occurring. Total intestinal perfusion studies were done in five normal humans using three solutions containing 1 g/liter PEG 3350 and designed to produce low rates of water absorption, high rates of water absorption, or high rates of glucose-sodium cotransport. Water absorption rates were calculated by traditional nonabsorbable marker equations and by a novel balance technique in which absorption was taken as the difference between the volumes of solution infused and recovered during steady-state conditions. Effluent PEG recovery was 99 +/- 4%, 109 +/- 2%, and 104 +/- 6% of the amount infused with each solution. Water absorption rates measured by use of PEG concentrations were similar to those calculated by the balance technique (r = 0.99). The complete recovery of PEG confirms the poor absorbability of PEG 3350, and the excellent agreement between techniques validates PEG as a poorly absorbed marker, even when glucose-sodium cotransport is occurring.

  5. Anaphylaxis to Polyethylene Glycol (Colyte®) in a Patient with Diverticulitis.

    Science.gov (United States)

    Lee, So Hee; Hwang, Sun Hyuk; Park, Jin Soo; Park, Hae Sim; Shin, Yoo Seob

    2016-10-01

    Polyethylene glycols (PEGs) are believed to be chemically inert agents, but larger PEG polymers could have immunogenicity. A 39-year-old man was referred to emergency room for loss of consciousness and dyspnea after taking of PEG-3350 (Colyte®). In laboratory findings, the initial serum tryptase level was increased to 91.9 mg/L (normal range: 0.00-11.40 mg/L) without any other laboratory abnormalities. The intradermal test with 10 mg/mL Colyte® showed a 5 × 5 mm wheal, but basophil activation and histamine releasability tests were negative. PEG-3350 is widely used as an osmotic laxative due to its lack of absorption from the gastrointestinal tract. However, the loss of mucosal integrity at gastrointestinal membrane such as diverticulitis may be a predisposing factor for anaphylaxis to Colyte®. We report a case of anaphylaxis induced by the ingestion of PEG-3350 in a patient with diverticulitis which might be a risk factor of anaphylaxis.

  6. The Influence of Polyethylene Glycol Solution on the Dissolution Rate of Sustained Release Morphine.

    Science.gov (United States)

    Hodgman, Michael; Holland, Michael G; Englich, Ulrich; Wojcik, Susan M; Grant, William D; Leitner, Erich

    2016-12-01

    Whole bowel irrigation (WBI) is a management option for overdose of medications poorly adsorbed to activated charcoal, with modified release properties, or for body packers. Polyethylene glycol (PEG) is a mixture of ethylene oxide polymers of varying molecular weight. PEG with an average molecular weight of 3350 g/mol is used for WBI. PEG electrolyte lavage solution has been shown in vitro to hasten the dissolution of acetaminophen. The impact of PEG on the pharmacokinetics of extended release pharmaceuticals is unknown. Lower average molecular weight PEG mixtures are used as solvents and excipients. We sought to investigate the impact of PEG on the release of morphine from several extended release morphine formulations. An in vitro gastric model was developed. To test the validity of our model, we first investigated the previously described interaction of ethanol and Avinza®. Once demonstrated, we then investigated the effect of PEG with several extended release morphine formulations. In the validation portion of our study, we confirmed an ethanol Avinza® interaction. Subsequently, we did not observe accelerated release of morphine from Avinza® or generic extended release morphine in the presence of PEG. The use of PEG for gastric decontamination following ingestion of these extended release morphine formulations is unlikely to accelerate morphine release and aggravate intoxication.

  7. Safety of polyethylene glycol 3350 for the treatment of chronic constipation in children.

    Science.gov (United States)

    Pashankar, Dinesh S; Loening-Baucke, Vera; Bishop, Warren P

    2003-07-01

    To assess the clinical and biochemical safety profile of long-term polyethylene glycol 3350 (PEG) therapy in children with chronic constipation and to assess pediatric patient acceptance of PEG therapy. Prospective observational study. Pediatric clinics at a referral center. Patients Eighty-three children (44 with chronic constipation, 39 with constipation and encopresis) receiving PEG therapy for more than 3 months. Clinical adverse effects related to PEG therapy and acceptance and compliance with PEG therapy. Serum electrolyte levels, osmolality, albumin levels, and liver and renal function test results were measured. At the time of evaluation, the mean duration of PEG therapy was 8.7 months, and the mean PEG dose was 0.75 g/kg daily. There were no major clinical adverse effects. All blood test results were normal, except for transient minimal alanine aminotransferase elevation unrelated to therapy in 9 patients. All children preferred PEG to previously used laxatives, and daily compliance was measured as good in 90% of children. Long-term PEG therapy is safe and is well accepted by children with chronic constipation with and without encopresis.

  8. Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions.

    Science.gov (United States)

    Baird, Jared A; Taylor, Lynne S

    2011-06-01

    The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions.

  9. Intraluminal polyethylene glycol stabilizes tight junctions and improves intestinal preservation in the rat.

    Science.gov (United States)

    Oltean, M; Joshi, M; Björkman, E; Oltean, S; Casselbrant, A; Herlenius, G; Olausson, M

    2012-08-01

    Rapidly progressing mucosal breakdown limits the intestinal preservation time below 10 h. Recent studies indicate that intraluminal solutions containing polyethylene glycol (PEG) alleviate preservation injury of intestines stored in UW-Viaspan. We investigated whether a low-sodium PEG solution is beneficial for intestines stored in histidine-tryptophane-ketoglutarate (HTK) preservation solution. Rat intestines used as control tissue (group 1) were perfused with HTK, groups 2 and 3 received either a customized PEG-3350 (group 2) or an electrolyte solution (group 3) intraluminally before cold storage. Tissue injury, brush-border maltase activity, zonula occludens-1 (ZO-1) and claudin-3 expression in the tight junctions (TJ) were analyzed after 8, 14 and 20 h. We measured epithelial resistance and permeability (Ussing chamber) after 8 and 14 h. Group 2 had superior morphology while maltase activity was similar in all groups. TJ proteins rapidly decreased and decolocalized in groups 1 3; these negative events were delayed in group 2, where colocalization persisted for about 14 h. Intestines in group 2 had higher epithelial resistance and lower permeability than the other groups. These results suggest that a customized PEG solution intraluminally reduces the intestinal preservation injury by improving several major epithelial characteristics without negatively affecting the brush-border enzymes or promoting edema. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  10. Improved Biofilm Antimicrobial Activity of Polyethylene Glycol Conjugated Tobramycin Compared to Tobramycin in Pseudomonas aeruginosa Biofilms.

    Science.gov (United States)

    Du, Ju; Bandara, H M H N; Du, Ping; Huang, Hui; Hoang, Khang; Nguyen, Dang; Mogarala, Sri Vasudha; Smyth, Hugh D C

    2015-05-04

    The objective of this study was to develop a functionally enhanced antibiotic that would improve the therapeutic activity against bacterial biofilms. Tobramycin was chemically conjugated with polyethylene glycol (PEG) via site-specific conjugation to form PEGylated-tobramycin (Tob-PEG). The antibacterial efficacy of Tob-PEG, as compared to tobramycin, was assessed on the planktonic phase and biofilms phase of Pseudomonas aeruginosa. The minimum inhibitory concentration (MIC80) of Tob-PEG was higher (13.9 μmol/L) than that of tobramycin (1.4 μmol/L) in the planktonic phases. In contrast, the Tob-PEG was approximately 3.2-fold more effective in eliminating bacterial biofilms than tobramycin. Specifically, Tob-PEG had a MIC80 lower than those exhibited by tobramycin (27.8 μmol/L vs 89.8 μmol/L). Both confocal laser scanning microscopy and scanning electron microscopy further confirmed these data. Thus, modification of antimicrobials by PEGylation appears to be a promising approach for overcoming the bacterial resistance in the established biofilms of Pseudomonas aeruginosa.

  11. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K. (Michigan)

    2012-03-15

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  12. Identification and Extraction of Chicken Egg Yolk Immunoglobulin from Egg by Polyethylene Glycol (PEG Precipitation

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Soltan Dallal

    2016-01-01

    Full Text Available Background: Staphylococcus aureus strains exhibiting multiple antibiotic resistances are isolatedfrom most communities and hospital infections. Treatment of patients with these infections hasbeen difficult. The aim of this study was to detect and extract, the egg yolk immunoglobulin Y asa potential source of anti- S. aureus antibody.Methods: Specific IgY was produced by immunizing hens with formalin-killed S. aureus. Thespecificity of serum`s antibody was confirmed by ELISA method. The antibodies were extractedfrom egg yolk by polyethylene glycol (PEG precipitation. Proteins were analysed by sodiumdodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE.Results: Chicken egg yolk antibodies (IgY were raised against S. aureus in the serum afterinjections. Up to 104 dilution specific antibodies were determined in serum.Conclusion: The results of the ELISA indicates the specificity of the immunoglobulin Y to thetarget antigen. In order to find a viable alternative to antibiotic treatments, more research must bedone on the ability of these antibodies to inhibit the growth of S. aureus.

  13. In vitro screening of durum wheat against water-stress mediated through polyethylene glycol

    Directory of Open Access Journals (Sweden)

    Nadia Sandra Kacem

    2017-06-01

    Full Text Available Three durum wheat (Triticum durum Desf. genotypes with three levels of drought tolerance were screened in order to evaluate their response to water stress at callus induction and plant regeneration levels. Significant differences were observed among the genotypes, and polyethylene glycol (PEG levels used, and their interactions were however, significant for all the studied characters. Increase in PEG concentration increased the time required for callus initiation and reduced the number of calli frequency of embryogenic structures and number of plants regenerated, showing the adverse effect of PEG on the somatic embryogenesis developmental., under in vitro conditions tested, and Djenah Khetifa was the most tolerant genotype, followed by Oued Zenati and Waha. This pattern was per their drought tolerance behavior under field conditions. Principal component analysis (PCA showed that 95.56% of the total variation was explained by the first two principal components. Biplot analysis allowed the stress-tolerant genotype to be distinguished from the two less tolerant genotypes. Time required for callus initiation was strongly negatively correlated with all other studied traits. These traits can be recommended as suitable selection criteria for screening drought-tolerant genotypes. The selected cells and plants will provide a tool for determining the mechanisms involved in tolerance to water stress.

  14. Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean

    International Nuclear Information System (INIS)

    Hamayun, M.; Khan, A.L.; Ahmad, N.; Lee, In-Jung; Khan, S.A.; Shinwari, Z.K.

    2010-01-01

    Drought stress is a major abiotic constraint limiting crop production world wide. In current study, we investigated the adverse effects of drought stress on growth, yield and endogenous phytohormones of soybean. Polyethylene glycol (PEG) solutions of elevated strength (8% and 16%) were used for drought stress induction. Drought stress period span for two weeks each at pre and post flowering growth stage. It was observed that soybean growth and yield attributes significantly reduced under drought stress at both pre and post flowering period, while maximum reduction was caused by PEG (16%) applied at pre flowering time. The endogenous bioactive GA/sub 1/ and GA/sub 4/ content decreased under elevated drought stress. On the other hand, jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA) content increased under drought stress. On the basis of current study, we concluded that application of earlier drought stress severely reduced growth and yield attributes of soybean when compared to its later application. Furthermore, increases in the endogenous contents of JA, SA and ABA in response to drought stress demonstrate the involvement of these hormones in drought stress resistance. (author)

  15. Synthesis and properties of aqueous polyurethane dispersions: Influence of molecular weight of polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Mumtaz, Fatima; Zuber, Mohammad; Zia, Khalid Mahmood [Government College University, Faisalabad (Pakistan); Jamil, Tahir [University of the Punjab, Lahore (Pakistan); Hussain, Rizwan [National Engineering and Scientific Commission (NESCOM), Islamabad (Pakistan)

    2013-12-15

    Aqueous polyurethane dispersions (PUDs) have recently emerged as important alternatives to their solvent-based counterparts for various applications due to increasing health and environmental awareness. A series of aqueous polyurethane dispersions containing carboxylate anion as hydrophilic pendant groups were synthesized through step growth polymerization reaction using hexamethylene diisocyanate (HDI), 1,4-butanediol (1,4-BDO), dimethylol propionic acid (DMPA) and polyethylene glycol (PEG) of different molecular weight. Effect of PEG molecular weight was investigated on molecular structure, contact angle measurement, and physical and adhesive properties of PU emulsions. Fourier transform infrared spectroscopy (FT-IR) was used to check the completion of polymerization reaction. Contact angle measurement indicated that the hydrophilicity of polymer increases by increasing molecular weight of PEG with a corresponding decrease in contact angle. Results of T-peel test showed a decrease in peel strength by increasing molecular weight of PEG. Moreover, solid contents%, drying time and storage stability suggested fast drying properties and greater stability of aqueous PU dispersions.

  16. Investigation on some thermophysical properties of poly(ethylene glycol) binary mixtures at different temperatures

    International Nuclear Information System (INIS)

    Moosavi, Mehrdad; Motahari, Ahmad; Omrani, Abdollah; Rostami, Abbas Ali

    2013-01-01

    Highlights: ► Measuring densities and viscosities for binary mixtures of PEG + water or alcohols. ► Finding excess molar volume, refractive index and coefficient of thermal expansion. ► Estimating binary coefficients using Redlich–Kister polynomial equation. ► Deducing excess Gibbs free energy of activation and other activation parameters. ► Correlation of viscosity data with Grunberg–Nissan and Tamura–Kurata equations. -- Abstract: Densities ρ and viscosities η for the binary mixtures of poly(ethylene glycol) + water, + 1,2-ethanediol, + 1,3-propanediol, + 1,4-butanediol over the entire concentration range were determined at temperatures (298.15 to 308.15) K with 5 K interval. The experimental data were used to calculate the excess molar volume V m E , coefficient of thermal expansion α, excess coefficient of thermal expansion α E , excess Gibbs free energy of activation ΔG ∗E , and other activation parameters (i.e., ΔG ∗ ,ΔH ∗ ,ΔS ∗ ). The values of excess properties were fitted to Redlich–Kister polynomial equation to estimate the binary coefficients. The excess refractive index n E and electronic polarizability α e of PEG + water binary mixtures were also determined from the experimental values of refractive indices. The viscosity data were correlated with Grunberg–Nissan and Tamura–Kurata equations. Moreover, the Prigogine–Flory–Patterson theory has been used to correlate the excess molar volumes of the studied mixtures

  17. Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends

    International Nuclear Information System (INIS)

    Chen, Changzhong; Wang, Linge; Huang, Yong

    2011-01-01

    Highlights: → Ultrafine PEG/CA phase change fibers were fabricated by electrospinning. → PEG content dramatically influenced the fiber morphology and phase change behaviors. → The electrospun fibers have excellent thermal properties for thermal energy storage. - Abstract: Ultrafine phase change fibers based on polyethylene glycol (PEG)/cellulose acetate (CA) blends in which PEG acts as a model phase change material (PCM) and CA acts as a supporting material, were successfully prepared via electrospinning. The effect of PEG content on the morphology, crystalline properties, phase change behaviors and tensile properties of the composite fibers was studied systematically by field-emission scanning electron microscopy (FE-SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and a tensile tester, respectively. The SEM observation indicates that maximum PEG content in the fibers could reach up to 70 wt%, and the morphology and average diameter of the composite fibers vary with PEG content. Thermal analysis results show that the latent heats of the phase change fibers increase with the increasing of PEG content in the fibers, and the PEG/CA fibers with high enthalpies have a good capability to regulate their interior temperature as the ambient temperature alters. Therefore, the developed phase change fibers have enormous applicable potentials in thermal energy storage and temperature regulation.

  18. Drying and storage effects on poly(ethylene glycol) hydrogel mechanical properties and bioactivity.

    Science.gov (United States)

    Luong, P T; Browning, M B; Bixler, R S; Cosgriff-Hernandez, E

    2014-09-01

    Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications because of their ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions on hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying), and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage. © 2013 Wiley Periodicals, Inc.

  19. Hyaluronic Acid (HA)-Polyethylene glycol (PEG) as injectable hydrogel for intervertebral disc degeneration patients therapy

    Science.gov (United States)

    Putri Kwarta, Cityta; Widiyanti, Prihartini; Siswanto

    2017-05-01

    Chronic Low Back Pain (CLBP) is one health problem that is often encountered in a community. Inject-able hydrogels are the newest way to restore the disc thickness and hydration caused by disc degeneration by means of minimally invasive surgery. Thus, polymers can be combined to improve the characteristic properties of inject-able hydrogels, leading to use of Hyaluronic Acid (a natural polymer) and Polyethylene glycol (PEG) with Horse Radish Peroxide (HRP) cross linker enzymes. The swelling test results, which approaches were the ideal disc values, were sampled with variation of enzyme concentrations of 0.25 µmol/min/mL. The enzyme concentrations were 33.95%. The degradation test proved that the sample degradation increased along with the decrease of the HRP enzyme concentration. The results of the cytotoxicity assay with MTT assay method showed that all samples resulted in the 90% of living cells are not toxic. In vitro injection, models demonstrated that higher concentration of the enzymes was less state of gel which would rupture when released from the agarose gel. The functional group characterization shows the cross linking bonding in sample with enzyme adding. The conclusion of this study is PEG-HA-HRP enzyme are safe polymer composites which have a potential to be applied as an injectable hydrogel for intervertebral disc degeneration.

  20. k-Carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application.

    Science.gov (United States)

    Fouda, Moustafa M G; El-Aassar, M R; El Fawal, G F; Hafez, Elsayed E; Masry, Saad Hamdy Daif; Abdel-Megeed, Ahmed

    2015-03-01

    Biopolymer composite film containing k-carrageenan (KC), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG) was formulated by dissolving KC and PVP in water containing PEG. Silver nanoparticles (AgNPs), was produced by Honeybee and added to solution. Finally, all solutions were poured onto dishes and dried overnight at 40°C to form the final films. Tensile strength (TS) and elongation (E %) is evaluated. The water contact angle is inspected. Thermal properties (TGA) and swelling behavior for water were considered. Fungal activity is also examined. Morphology of all films was also explored using scanning electron microscope. AgNPs induced significant hydrophilicity to KC-PVP-PEG film with contact angle of 41.6 and 34.7 for KC-PVP-PEG-AgNPs. Films with AgNPs exhibited higher thermal stability and strength properties than other films without. Films with AgNPs explore lower swelling behavior than other films without. Both SEM and EDX proved the deposition of AgNPs on the surface of films. Films with AgNPs showed higher activity against pathogenic fungi compared with the chemical fungicide; fluconazole. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Co-precipitation of loperamide hydrochloride and polyethylene glycol using aerosol solvent extraction system

    International Nuclear Information System (INIS)

    Widjojokusumo, Edward; Youn, Yong-Suk; Lee, Youn-Woo; Veriansyah, Bambang; Tjandrawinata, Raymond Rubianto

    2013-01-01

    The co-precipitation of loperamide hydrochloride (LPM) and polyethylene glycol (PEG) using aerosol solvent extraction system (ASES) was examined. Scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS) analysis showed that the co-precipitation was achieved in various LPM-PEG mass ratios with changes in its morphology. In 10-50% PEG mass ratios, angular-shaped particles were formed, whereas in 65-90% PEG mass ratios, irregular-shaped particles were formed. X-ray diffraction (XRD) analysis of the co-precipitates revealed that the LPM retained amorphous structure, while, on the other hand, the PEG retained crystalline structure. Fourier transform infrared (FT-IR) spectra indicated carbonyl function group of LPM and ether function group of PEG appeared in the co-precipitates. Results of a dissolution test showed that the co-precipitates of LPM-PEG had higher dissolution rate compared to that of the raw material and processed LPM with ASES. Taken together, the co-precipitation of LPMPEG was achieved using ASES and higher in its dissolution rate

  2. FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes.

    Science.gov (United States)

    Vinodhini, P Angelin; K, Sangeetha; Thandapani, Gomathi; P N, Sudha; Jayachandran, Venkatesan; Sukumaran, Anil

    2017-11-01

    In the present work, a series of novel nanochitosan/cellulose acetate/polyethylene glycol (NCS/CA/PEG) blend flat sheet membranes were fabricated in different ratios (1:1:1, 1:1:2, 2:1:1, 2:1:2, 1:2:1, 2:2:1) in a polar solvent of N,N'-dimethylformamide (DMF) using the most popular phase inversion method. Nanochitosan was prepared by the ionotropic gelation method and its average particle size has been analyzed using Dynamic Light Scattering (DLS) method. The effect of blending of the three polymers was investigated using FTIR and XRD studies. FTIR results confirmed the formation of well-blended membranes and the XRD analysis revealed enhanced amorphous nature of the membrane ratio 2:1:2. DSC study was conducted to find out the thermal behavior of the blend membranes and the results clearly indicated good thermal stability and single glass transition temperature (T g ) of all the prepared membranes. Asymmetric nature and rough surface morphology was confirmed using SEM analysis. From the results it was evident that the blending of the polymers with higher concentration of nanochitosan can alter the nature of the resulting membranes to a greater extent and thus amorphous membranes were obtained with good miscibility and compatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparative assessment of wheat landraces against polyethylene glycol simulated drought stress

    International Nuclear Information System (INIS)

    Jatoi, S.A.; Latif, M.M.; Arif, M.; Ahson, M.; Siddiqui, S.U.

    2014-01-01

    Current investigation reports a comparative assessment and relative performance of 10 wheat accessions including check variety Inqilab-91 against polyethylene glycol (PEG) simulated drought stress at seedling. Wheat genotypes were tested against 0, 19, 21, 23 and 25% solutions of PEG 6000. The young seedlings were observed for germination (%) and root length (cm). In general, a decrease in germination percentage was observed with the increase in PEG concentration. All the investigated wheat genotypes performed better than the check variety Inqilab-91. The wheat accession 18699 that had more than 30% surviving seedlings at the highest concentration of used PEG was rated as the tolerant genotype. On the other hand, 18671 and 18698 appeared to be less tolerant having less than 5% germination at 25% PEG. Similarly, the root length decreased with the increase in PEG concentrations. The mean root length of all the wheat accessions, which were studied, was comparatively less affected than the control (Inqilab-91). The wheat genotypes 18670 and 18671 were the better performers than the rest of genotypes investigated and belonged to rainfed area of the Pothowar region. A detailed investigation of these genotypes in the field conditions is suggested. (author)

  4. Optimization of Production Conditions for Protoplasts and Polyethylene Glycol-Mediated Transformation of Gaeumannomyces tritici.

    Science.gov (United States)

    Wang, Mei; Zhang, Jie; Wang, Lanying; Han, Lirong; Zhang, Xing; Feng, Juntao

    2018-05-24

    Take-all, caused by Gaeumannomyces tritici , is one of the most important wheat root diseases worldwide, as it results in serious yield losses. In this study, G. tritici was transformed to express the hygromycin B phosphotransferase using a combined protoplast and polyethylene glycol (PEG)-mediated transformation technique. Based on a series of single-factor experimental results, three major factors-temperature, enzyme lysis time, and concentration of the lysing enzyme-were selected as the independent variables, which were optimized using the response surface methodology. A higher protoplast yield of 9.83 × 10⁷ protoplasts/mL was observed, and the protoplast vitality was also high, reaching 96.27% after optimization. Protoplasts were isolated under the optimal conditions, with the highest transformation frequency (46⁻54 transformants/μg DNA). Polymerase chain reaction and Southern blotting detection indicated that the genes of hygromycin phosphotransferase were successfully inserted into the genome of G. tritici . An optimised PEG-mediated protoplast transformation system for G. tritici was established. The techniques and procedures described will lay the foundation for establishing a good mutation library of G. tritici and could be used to transform other fungi.

  5. Solubilization of poorly soluble photosensitizer hypericin by polymeric micelles and polyethylene glycol.

    Science.gov (United States)

    Búzová, Diana; Kasák, Peter; Miškovský, Pavol; Jancura, Daniel

    2013-06-01

    Hypericin (Hyp) is a promising photosensitizer for photodiagnostic and photodynamic therapy of cancer. However, Hyp has a large conjugated system and in aqueous solutions forms insoluble aggregates which do not possess biological activity. This makes intravenous injection of Hyp problematic and restricts its medical applications. To overcome this problem, Hyp is incorporated into drug delivery systems which can increase its solubility and bioavailability. One of the possibilities is utilization of polymeric micelles. The most used hydrophilic block for preparation of polymeric micelles is polyethylen glycol (PEG). PEG is a polymer which for its lack of immunogenicity, antigenicity and toxicity obtained approval for use in human medicine. In this work we have studied the solubilization of Hyp aggregates in the presence of PEG-PE and PEG-cholesterol micelles. The concentration of polymeric micelles which allows total monomerization of Hyp corresponds to the critical micellar concentration of these micelles (~10(-6) M). We have also investigated the effect of the molecular weight and concentration of PEG on the transition of aggregated Hyp to its monomeric form. PEGs with low molecular weight ( 2000 g/mol efficiently transform Hyp aggregates to the monomeric state of this photosensitizer.

  6. Effect of polyethylene glycol 6000 and storage period on seed quality of cocoa (Theobroma cacao L.

    Directory of Open Access Journals (Sweden)

    Astiti Rahayu

    2014-05-01

    Full Text Available Increased productivity of cocoa needs high quality of cocoa seeds which are generally provided by certified seed gardens located far from smallholders farm, where seed delivery takes long time and may reduce physiological quality of seeds. One effort to maintain the seed quality is by treatment the seeds with polyethylene glycol6000 (PEG 6000. This study was aimed to study the interaction of PEG 6000 concentration and storage period on cocoa seed quality, and to determine the best concentration of PEG 6000 and storage period to maintain cocoa seed quality. The research was conducted in seed storage room, seed laboratory and green houseof PPPPTK, Cianjur. The experimental design used was a factorial completely randomized design and each combination treatment repeated three times. The first factor was concentration of PEG 6000 of 0%, 20%, 40%, and 60%, and the second factor was the storage period of 3 weeks, 6 weeks, 9 weeks, and 12 weeks. The results showed that concentration of PEG 60% with three weeks storage period was able to minimize the number of moldy seeds. The concentration of PEG 20%, 40%, and 60% were able to prevent seed germination in storage until six weeks. Concentration of PEG 6000 20% was able to maintain moisture content, seed germination, and germination rate.Key words:cocoa seed, storage, recalcitrant, PEG

  7. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Shirin [Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Membrane Processes and Membrane Research Center, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Mousavi, Seyed Mahmoud, E-mail: mmousavi@um.ac.ir [Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Shahtahmassebi, Nasser [Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Nanoresearch Center, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Saljoughi, Ehsan [Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2015-12-30

    Highlights: • Novel hydrophilic polyphenylsulfone electrospun nanofibrous membrane was prepared. • Blending the PPSU solution with 10 wt.% PEG 400 led to the optimum results. • Water contact angle of the optimum membrane was determined as 8.9°. • Remarkable increase in pure water flux and flux recovery was achieved. • Rejection values of the wastewater pollution indices remained almost unchanged. - Abstract: Novel hydrophilic polyphenylsulfone (PPSU) nanofibrous membrane was prepared by electrospinning of the PPSU solution blended with polyethylene glycol 400 (PEG 400). The influence of the PEG concentration on the membrane characteristics was studied using scanning electron microscopy (SEM), water contact angle measurement, and tensile test. Filtration performance of the membranes was investigated by measurement of pure water flux (PWF) and determination of the rejection values of the pollution indices during treatment of canned beans production wastewater. According to the results, blending the PPSU solution with 10 wt.% PEG 400 resulted in formation of a nanofibrous membrane with high porosity and increased mechanical strength which exhibited a low water contact angle of 8.9° and high water flux of 7920 L/m{sup 2}h. Flux recovery of the mentioned membrane which was assessed by filtration of a solution containing bovine serum albumin (BSA) was 83% indicating a noticeable antifouling property.

  8. Surface Modification of Asymmetric Polysulfone/Polyethylene Glycol Membranes by DC Ar-Glow Discharge Plasma

    Directory of Open Access Journals (Sweden)

    Chalad Yuenyao

    2016-01-01

    Full Text Available Polysulfone/polyethylene glycol (PSF/PEG membranes were prepared by dry/wet phase inversion method. Effects of direct current glow discharge plasma using argon as working gas on morphological structures and gas separation properties of membranes were studied. Alteration of membrane characteristics were analyzed by various techniques like contact angle, scanning electron microscope, Fourier transform infrared spectroscopy, and dynamic mechanical thermal analysis. Gas separation properties were measured in terms of permeation and ideal O2/N2 selectivity. Results showed that hydrophilic and gas separation properties of PSF/PEG membranes increased by plasma surface modification. It was also shown that the dosage of PEG and plasma treatment affected the morphological structures and mechanical and gas separation properties. The macro voids and transmembrane structure disappeared with a little amount of PEG dosage. Pore size and mechanical strength tend to decrease with increasing PEG dosage up to 10 wt%. Glass transition temperature (Tg receded from 201.8 to 143.7°C for pure PSF and PSF/PEG with PEG dosage of 10 wt%. O2 and N2 gases permeation through the 10-minute plasma treated membranes tend to increase. However, the permeation strongly dispersed when treatment time was more extended.

  9. Inhibition of Cariogenic Plaque Formation on Root Surface with Polydopamine-Induced-Polyethylene Glycol Coating

    Directory of Open Access Journals (Sweden)

    May Lei Mei

    2016-05-01

    Full Text Available Root caries prevention has been a challenge for clinicians due to its special anatomical location, which favors the accumulation of dental plaque. Researchers are looking for anti-biofouling material to inhibit bacterial growth on exposed root surfaces. This study aimed to develop polydopamine-induced-polyethylene glycol (PEG and to study its anti-biofouling effect against a multi-species cariogenic biofilm on the root dentine surface. Hydroxyapatite disks and human dentine blocks were divided into four groups for experiments. They received polydopamine-induced-PEG, PEG, polydopamine, or water application. Contact angle, quartz crystal microbalance, and Fourier transform infrared spectroscopy were used to study the wetting property, surface affinity, and an infrared spectrum; the results indicated that PEG was induced by polydopamine onto a hydroxyapatite disk. Salivary mucin absorption on hydroxyapatite disks with polydopamine-induced-PEG was confirmed using spectrophotometry. The growth of a multi-species cariogenic biofilm on dentine blocks with polydopamine-induced-PEG was assessed and monitored by colony-forming units, confocal laser scanning microscopy, and scanning electron microscopy. The results showed that dentine with polydopamine-induced-PEG had fewer bacteria than other groups. In conclusion, a novel polydopamine-induced-PEG coating was developed. Its anti-biofouling effect inhibited salivary mucin absorption and cariogenic biofilm formation on dentine surface and thus may be used for the prevention of root dentine caries.

  10. Novel Brassinosteroid-Modified Polyethylene Glycol Micelles for Controlled Release of Agrochemicals.

    Science.gov (United States)

    Pérez Quiñones, Javier; Brüggemann, Oliver; Kjems, Jørgen; Shahavi, Mohammad Hassan; Peniche Covas, Carlos

    2018-02-21

    Two synthetic analogues of brassinosteroids (DI31 and S7) exhibit good plant growth enhancer activity. However, their hydrophobicity and quick metabolism in plants have limited their application and benefits in agriculture. Our objective was to prepare novel brassinosteroid-modified polyethylene glycol (PEG) micelles to achieve controlled release with extended stability while retaining agrochemical activity. Spectroscopic studies confirmed quantitative disubstitution of studied PEGs with the brassinosteroids, while elemental analysis assessed purity of the synthesized conjugates. Conjugates were also characterized by X-ray diffraction and thermal analysis. Dynamic and static light scattering showed stable and homogeneous approximately spherical micelles with average hydrodynamic diameters of 22-120 nm and almost neutral ζ potential. Spherical 30-140 nm micelles were observed by electron microscopy. Sustained in vitro releases at pH 5.5 were extended up to 96 h. Prepared PEG micelles showed good agrochemical activity in the radish seed bioassay and no cytotoxicity to the human microvascular endothelial cell line in the MTS test.

  11. Limitations of the radioimmunoprecipitation polyethylene glycol assay (RIPEGA) for detection of filarial antigens in serum

    International Nuclear Information System (INIS)

    Hamilton, R.G.; Alexander, E.; Adkinson, N.F.

    1984-01-01

    The performance of the radioimmunoprecipitation polyethylene glycol assay (RIPEGA) was examined for quantitation of filarial antigens (Brugia malayi and Dirofilaria immitis) in serum from infected human and animal hosts and non-infected controls. Multiple PEG concentrations were employed to determine the level of non-specific binding (NSB) in non-exposed human sera (NEHS) containing no filarial antigen. The NSB observed when 3 different 125 I-labelled IgG antibodies were added to 26 NEHS varied 3-fold and was correlated significantly with total serum IgM (r = 0.80, P 2 fragment of the 125 I-labelled antibody was used, but the correlation of NSB with total serum IgM remained significant (r = 0.57, P < 0.01). The presence of rheumatoid factor in NEHS sera also significantly increased NSB by an average of 3-fold. These effects eliminated the assay's ability to detect in sera from infected hosts filarial antigen the presence of which could be readily demonstrated by an immunoradiometric assay. The RIPEGA's precision (intra-assay coefficient of variation (CV) = 21% at 35% Bsub(max)) and reproducibility (inter-assay CV = 29% at 35% Bsub(max)) are less satisfactory than many alternative immunoassays. (Auth.)

  12. Steric Stabilization of “Charge-Free” Cellulose Nanowhiskers by Grafting of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Jun Araki

    2014-12-01

    Full Text Available A sterically stabilized aqueous suspension of “charge-free” cellulose nanowhiskers was prepared by hydrochloric acid hydrolysis of cotton powders and subsequent surface grafting of monomethoxy poly(ethylene glycol (mPEG. The preparation scheme included carboxylation of the terminal hydroxyl groups in mPEG via oxidation with silica gel particles carrying 2,2,6,6-tetramethyl-1-pyperidinyloxyl (TEMPO moieties and subsequent esterification between terminal carboxyls in mPEG and surface hydroxyl groups of cellulose nanowhiskers, mediated by 1,1'-carbonyldiimidazole (CDI in dimethyl sulfoxide or dimethylacetamide. Some of the prepared PEG-grafted samples showed remarkable flow birefringence and enhanced stability after 24 h, even in 0.1 M NaCl, suggesting successful steric stabilization by efficient mPEG grafting. Actual PEG grafting via ester linkages was confirmed by attenuated total reflectance-Fourier transform infrared spectrometry. In a typical example, the amount of grafted mPEG was estimated as ca. 0.3 g/g cellulose by two measurements, i.e., weight increase after grafting and weight loss after alkali cleavage of ester linkages. Transmission electron microscopy indicated unchanged nanowhisker morphology after mPEG grafting.

  13. Germination Behaviour of Lawsonia inermis L. as Influenced by Polyethylene Glycol (PEG

    Directory of Open Access Journals (Sweden)

    Enneb Hanen

    2016-11-01

    Full Text Available Tunisian Flora is well known for its richness and diversity of medicinal plants such as henna plant (Lawsonia inermis L. a flowering plant belongs to the family of Lyteraceae, distributed in dry tropical and subtropical zones including North Africa. This plant pertains to continental oases where water shortage, constitute the essential limiting factor of agricultural production. The present study was carried out to evaluate the impact of water stress on the germination of the henna plant (Lawsonia inermis L.. Seeds were germinated under stress of aqueous Polyethylene Glycol (PEG solutions blended to create water potentials of 0, -0.2, -0.4, -0.6, - 0.8 and -1 MPa. Results showed that seeds germinated in PEG solutions exhibited significantly lower cumulative germination rate (CGR than control especially when water potential fell below -0.6 MPa. Mean germination time (MGT was delayed by increasing PEG concentrations, while germination stress tolerance index (GSTI was decreased with the increase in PEG concentrations. The highest percentage of GSTI in stressed condition was 84.13% for PEG (-0.2MPa whereas, the lowest value was 8.37% for PEG (-1MPa.

  14. Preparation and performance of porous phase change polyethylene glycol/polyurethane membrane

    International Nuclear Information System (INIS)

    Ke Guizhen; Xie Huifang; Ruan Ruping; Yu Weidong

    2010-01-01

    Based on the theory of clotty porous phase change materials, the porous membrane was prepared with the blend of polyurethane (PU) and two polyethylene glycol (PEG) systems. Studied by scanning electron microscope (SEM), Fourier transform infrared (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and thermo-gravimetric (TG) tests, the morphology structure, chemical composition, crystalline morphology, phase change behaviors and thermal stability of porous phase change membrane were investigated. The results showed that the PU/PEG membrane had obvious porous structural feature, suitable transition temperature and high transition enthalpy. It is a flexible membrane with good energy storage function. When it is between solid and liquid transfer state in microcosms, the membrane can still keep solid shape in macroscopic state at high temperature during phase transition processing. It means that porous membrane PCM can be regarded as functional polymer. This method solved the problem of low working materials content in phase change textile. It succeeded in introducing the porous technology into functional textile's formation, and developed a new way to improve the phase change enthalpy largely for adjustable textile.

  15. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance

    International Nuclear Information System (INIS)

    Li, Hairong; Jiang, Ming; Li, Qi; Li, Denian; Chen, Zongyi; Hu, Waping; Huang, Jing; Xu, Xizhe; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2013-01-01

    Highlights: • We report an aqueous preparation technique of PEG/graphene phase change composite. • Hydrophilic sulfonated graphene (SG) nanosheets were synthesized. • Large increase in thermal conductivity is attained at low SG loading. • High latent heat is retained due to the low filler loading. • Affinity between SG and PEG contributes to the enhanced thermal performance. - Abstract: A polyethylene glycol (PEG)/sulfonated graphene (SG) phase change composite with enhanced thermal performance was prepared by solution processing in aqueous medium. It is remarkable that the addition of only 4 wt.% of SG to PEG could lead to a four times higher increase in thermal conductivity and a slight decrease in the phase change enthalpy, which is attributed to the formation of efficient thermal conductive network within the PEG matrix relevant to the excellent thermal property and unique 2-dimensional morphology of graphene as well as strong interface affinity between PEG matrix and SG nanosheets. The aqueous preparation technique is expected to pioneer a new way to prepare environment friendly organic phase change materials, and the production of PEG/SG composites is potentially scalable due to the facile fabricating process

  16. Mass spectrometric behaviour of carboxylated polyethylene glycols and carboxylated octylphenol ethoxylates.

    Science.gov (United States)

    Frańska, Magdalena; Zgoła, Agnieszka; Rychłowska, Joanna; Szymański, Andrzej; Łukaszewski, Zenon; Frański, Rafał

    2003-01-01

    Mass spectrometric behaviour of mono- and di-carboxylated polyethylene glycols (PEGCs and CPEGCs) and carboxylated octylphenol ethoxylates (OPECs) are discussed. The tendency for ionisation (deprotonation, protonation and cationisation by alkali metal cations) of carboxylated PEGs was compared with that of non-carboxylated correspondents by using both secondary ion mass spectrometry (SIMS) and electrospray ionisation (ESI). The fragmentation of the PEGCs and CPEGCs is discussed and also compared with their neutral correspondents, PEGs. The B/E mass spectra were recorded, using secondary ion mass spectrometry as a method for generation, for deprotonated and protonated molecules and molecules cationised by alkali metal cations. The fragmentation behaviour of PEGs is found to be different from that of CPEGCs, The presence of carboxylic groups may be confirmed not only by the determination of molecular weights of the ethoxylates studied, but also on the basis of the fragment ions formed. The metastable decomposition of the [OPEC-H](-) ions proceed through the cleavage of the bond between the octylphenol moiety and the ethoxylene chain leading to the octylphenoxy anions. It permits determination of the mass of the hydrophobic moiety of the studied carboxylated alkylphenol ethoxylate. ESI mass spectra recorded in the negative ion mode were found to be more suitable for the determination of the average molecular weight of carboxylated ethoxylates than SI mass spectra.

  17. Intraspinal Delivery of Polyethylene Glycol-coated Gold Nanoparticles Promotes Functional Recovery After Spinal Cord Injury.

    Science.gov (United States)

    Papastefanaki, Florentia; Jakovcevski, Igor; Poulia, Nafsika; Djogo, Nevena; Schulz, Florian; Martinovic, Tamara; Ciric, Darko; Loers, Gabrielle; Vossmeyer, Tobias; Weller, Horst; Schachner, Melitta; Matsas, Rebecca

    2015-06-01

    Failure of the mammalian central nervous system (CNS) to regenerate effectively after injury leads to mostly irreversible functional impairment. Gold nanoparticles (AuNPs) are promising candidates for drug delivery in combination with tissue-compatible reagents, such as polyethylene glycol (PEG). PEG administration in CNS injury models has received interest for potential therapy, but toxicity and low bioavailability prevents clinical application. Here we show that intraspinal delivery of PEG-functionalized 40-nm-AuNPs at early stages after mouse spinal cord injury is beneficial for recovery. Positive outcome of hind limb motor function was accompanied by attenuated inflammatory response, enhanced motor neuron survival, and increased myelination of spared or regrown/sprouted axons. No adverse effects, such as body weight loss, ill health, or increased mortality were observed. We propose that PEG-AuNPs represent a favorable drug-delivery platform with therapeutic potential that could be further enhanced if PEG-AuNPs are used as carriers of regeneration-promoting molecules.

  18. Polyethylene Glycol Based Graphene Aerogel Confined Phase Change Materials with High Thermal Stability.

    Science.gov (United States)

    Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao

    2018-05-01

    Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.

  19. Limitations of polyethylene glycol-induced precipitation as predictive tool for protein solubility during formulation development.

    Science.gov (United States)

    Hofmann, Melanie; Winzer, Matthias; Weber, Christian; Gieseler, Henning

    2018-05-01

    Polyethylene glycol (PEG)-induced protein precipitation is often used to extrapolate apparent protein solubility at specific formulation compositions. The procedure was used for several fields of application such as protein crystal growth but also protein formulation development. Nevertheless, most studies focused on applicability in protein crystal growth. In contrast, this study focuses on applicability of PEG-induced precipitation during high-concentration protein formulation development. In this study, solubility of three different model proteins was investigated over a broad range of pH. Solubility values predicted by PEG-induced precipitation were compared to real solubility behaviour determined by either turbidity or content measurements. Predicted solubility by PEG-induced precipitation was confirmed for an Fc fusion protein and a monoclonal antibody. In contrast, PEG-induced precipitation failed to predict solubility of a single-domain antibody construct. Applicability of PEG-induced precipitation as indicator of protein solubility during formulation development was found to be not valid for one of three model molecules. Under certain conditions, PEG-induced protein precipitation is not valid for prediction of real protein solubility behaviour. The procedure should be used carefully as tool for formulation development, and the results obtained should be validated by additional investigations. © 2017 Royal Pharmaceutical Society.

  20. Immune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol.

    Science.gov (United States)

    Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M; Marchal, Juan A; Madeddu, Roberto; Delogu, Lucia G

    2016-01-05

    Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.

  1. Soil-release behaviour of polyester fabrics after chemical modification with polyethylene glycol

    Science.gov (United States)

    Miranda, T. M. R.; Santos, J.; Soares, G. M. B.

    2017-10-01

    The fibres cleanability depends, among other characteristics, on their hydrophilicity. Hydrophilic fibres are easy-wash materials but hydrophobic fibres are difficult to clean due to their higher water-repellent surfaces. This type of surfaces, like polyester (PET), produce an accumulation of electrostatic charges, which favors adsorption and retention of dirt. Thus, the polyester soil-release properties can be increased by finishing processes that improve fiber hydrophilicity. In present study, PET fabric modification was described by using poly(ethylene glycol) (PEG) and N,N´-dimethylol-4,5-dihydroxyethylene urea (DMDHEU) chemically modified resin. Briefly, the modification process was carried out in two steps, one to hydrolyse the polyester and create hydroxyl and carboxylic acid groups on the surface and other to crosslink the PEG chains. The resulting materials were characterized by contact angle, DSC and FTIR-ATR methods. Additionally, the soil release behavior and the mechanical properties of modified PET were evaluated. For the best process conditions, the treated PET presented 0° contact angle, grade 5 stain release and acceptable mechanical performance.

  2. Influence of dendrimer generation and polyethylene glycol length on the biodistribution of PEGylated dendrimers.

    Science.gov (United States)

    Kojima, Chie; Regino, Celeste; Umeda, Yasuhito; Kobayashi, Hisataka; Kono, Kenji

    2010-01-04

    Dendrimers are a potential drug carrier. Because modification with polyethylene glycol (PEG) is known to improve the blood retention, PEGylated dendrimers have been studied as a useful drug carrier. In this study, three types of PEGylated L-lysine-bearing polyamidoamine dendrimers (PEG2k-Lys-PAMAM (G4), PEG5k-Lys-PAMAM (G4), PEG2k-Lys-PAMAM (G5)) were synthesized, which are composed of a dendrimer of different generations (generations 4 and 5) and PEG chains with different molecular weights (2k and 5k). An acetylated L-lysine-bearing dendrimer was also synthesized as a non-PEGylated dendrimer. Bifunctional diethylenetriaminepentaacetic acid (pSCN-benzyl-DTPA) was bound to the epsilon -amino group of lysine in a dendrimer, to be labeled with radioactive indium-111. These PEGylayed dendrimers showed longer blood retention and lower accumulation in other normal organs such as the kidneys than the non-PEGylated dendrimer. The PEGylated dendrimers with the higher generation and the longer PEG led the greater blood retention.

  3. Kinetic studies of uranyl ion adsorption on acrylonitrile (AN) / polyethylene glycol (PEG) interpenetrating networks (IPN)

    International Nuclear Information System (INIS)

    Aycik, G.A.; Gurellier, R.

    2004-01-01

    The kinetics of the adsorption of uranyl ions on amidoximated acrylonitrile (AN)/ polyethylene glycol (PEG) interpenetrating network (IPNs) from aqueous solutions was studied as a function of time and temperature. Adsorption analyses were performed for definite uranyl ion concentrations of 1x10 -2 M and at four different temperatures as 290K, 298K, 308K and 318K. Adsorption time was increased from zero to 48 hours. Adsorption capacities of uranyl ions by PEG/AN IPNS were determined by gamma spectrometer. The results indicate that adsorption capacity increases linearly with increasing temperature. The max adsorption capacity was found as 602 mgu/g IPN at 308K. Adsorption rate was evaluated from the curve plotted of adsorption capacity versus time, for each temperature. Rate constants for uranyl ions adsorption on amidoximated ipns were calculated for 290K, 298K, 308K and 318K at the solution concentration of 1x10 -2 M . The results showed that as the temperature increases the rate constant increases exponentially too. The mean activation energy of uranyl ions adsorption was found as 34.6 kJ/mole by using arrhenius equation. (author)

  4. Polyethylene glycol rinse solution: An effective way to prevent ischemia-reperfusion injury

    Science.gov (United States)

    Zaouali, Mohamed Amine; Bejaoui, Mohamed; Calvo, Maria; Folch-Puy, Emma; Pantazi, Eirini; Pasut, Gianfranco; Rimola, Antoni; Ben Abdennebi, Hassen; Adam, René; Roselló-Catafau, Joan

    2014-01-01

    AIM: To test whether a new rinse solution containing polyethylene glycol 35 (PEG-35) could prevent ischemia-reperfusion injury (IRI) in liver grafts. METHODS: Sprague-Dawley rat livers were stored in University of Wisconsin preservation solution and then washed with different rinse solutions (Ringer’s lactate solution and a new rinse solution enriched with PEG-35 at either 1 or 5 g/L) before ex vivo perfusion with Krebs-Heinseleit buffer solution. We assessed the following: liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity), liver function (bile output and vascular resistance), oxidative stress (malondialdehyde), nitric oxide, liver autophagy (Beclin-1 and LCB3) and cytoskeleton integrity (filament and globular actin fraction); as well as levels of metalloproteinases (MMP2 and MMP9), adenosine monophosphate-activated protein kinase (AMPK), heat shock protein 70 (HSP70) and heme oxygenase 1 (HO-1). RESULTS: When we used the PEG-35 rinse solution, reduced hepatic injury and improved liver function were noted after reperfusion. The PEG-35 rinse solution prevented oxidative stress, mitochondrial damage, and liver autophagy. Further, it increased the expression of cytoprotective heat shock proteins such as HO-1 and HSP70, activated AMPK, and contributed to the restoration of cytoskeleton integrity after IRI. CONCLUSION: Using the rinse solution containing PEG-35 was effective for decreasing liver graft vulnerability to IRI. PMID:25473175

  5. Physical Characteristics of Chitosan Based Film Modified With Silica and Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    F. Widhi Mahatmanti

    2014-07-01

    Full Text Available Recently, development of film materials is focused on finding the films with high chemical and physical stabilities. Organic based material such as chitosan produces films with low physical stability, and hence addition of inorganic materials necessary. In this research, the effect of silica and polyethylene glycol (PEG addition on the properties of chitosan based films has been investigated. Precursors used to produce films included chitosan with the deacetylation degree of 83% and sodium silicate solution as the silica source. A simple synthesis in a one-pot process was carried out by mixing 1%(w of chitosan solution in 2%(v/v acetate acid and sodium silicate solution (27% SiO2 in various composition ratios and casting the solution on a glass dish. The tensile strength and percentage of elongation decrease with increasing the silica content. The tensile strength tends to decline with addition of PEG, but the elongation percentage of the film increases. Hydrophilicity of the film decreases with the addition of silica and increases with the addition of PEG. The addition of silica and PEG does not change significantly the morphology of the film and functional groups indicating the domination of physical interaction among active sites in the film components.

  6. Injectable dual redox responsive diselenide-containing poly(ethylene glycol) hydrogel.

    Science.gov (United States)

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin

    2017-09-01

    An injectable dual redox responsive diselenide-containing poly(ethylene glycol) (PEG) hydrogel was successfully developed by combining the conceptions of injectable hydrogels and dual redox responsive diselenides. In the first step, four-armed PEG was modified with N-hydroxysuccinimide (NHS)-activated esters and thereafter, crosslinked by selenocystamine crosslinkers to form injectable hydrogels via the rapid reaction between NHS-activated esters and amino groups. The cross-sectional morphology, mechanical properties, and crosslinking modes of hydrogels were well characterized via scanning electron microscope (SEM), rheological measurements, and Fourier transform infrared spectra, respectively. In addition, the oxidation- and reduction-responsive degradation behaviors of hydrogels were observed and analyzed. The model drug, rhodamine B, was encapsulated in the hydrogel. The drug-loaded hydrogel exhibited a dual redox responsive release profile, which was consistent with the degradation experiments. The results of all experiments indicated that the formulated injectable dual redox responsive diselenide-containing PEG hydrogel can have potential applications in various biomedical fields such as drug delivery and stimuli-responsive drug release. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2451-2460, 2017. © 2017 Wiley Periodicals, Inc.

  7. Patterned Array of Poly(ethylene glycol Silane Monolayer for Label-Free Detection of Dengue

    Directory of Open Access Journals (Sweden)

    Nor Zida Rosly

    2016-08-01

    Full Text Available In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG silane monolayer to 254 nm ultraviolet (UV light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM, X-ray photoelectron spectroscopy (XPS, and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA.

  8. Keratocyte behavior in three-dimensional photopolymerizable poly(ethylene glycol) hydrogels

    Science.gov (United States)

    Thibault, Richard; Ambrose, Winnette McIntosh; Schein, Oliver D.; Chakravarti, Shukti; Elisseeff, Jennifer

    2015-01-01

    The goal of this study was to evaluate three-dimensional (3-D) poly(ethylene glycol) (PEG) hydrogels as a culture system for studying corneal keratocytes. Bovine keratocytes were subcultured in DMEM/F-12 containing 10% fetal bovine serum (FBS) through passage 5. Primary keratocytes (P0) and corneal fibroblasts from passages 1 (P1) and 3 (P3) were photoencapsulated at various cell concentrations in PEG hydrogels via brief exposure to light. Additional hydrogels contained adhesive YRGDS and nonadhesive YRDGS peptides. Hydrogel constructs were cultured in DMEM/F-12 with 10% FBS for 2 and 4 weeks. Cell viability was assessed by DNA quantification and vital staining. Biglycan, type I collagen, type III collagen, keratocan and lumican expression were determined by reverse transcriptase–polymerase chain reaction. Deposition of type I collagen, type III collagen and keratan sulfate (KS)-containing matrix components was visualized using confocal microscopy. Keratocytes in a monolayer lost their stellate morphology and keratocan expression, displayed elongated cell bodies, and up-regulated biglycan, type I collagen and type III collagen characteristic of corneal fibroblasts. Encapsulated keratocytes remained viable for 4 weeks with spherical morphologies. Hydrogels supported production of KS, type I collagen and type III collagen matrix components. PEG-based hydrogels can support keratocyte viability and matrix production. 3-D hydrogel culture can stabilize but not restore the keratocyte phenotype. This novel application of PEG hydrogels has potential use in the study of corneal keratocytes in a 3-D environment. PMID:18567550

  9. Effect of Polyethylene Glycol on the Formation of Magnetic Nanoparticles Synthesized by Magnetospirillum magnetotacticum MS-1.

    Directory of Open Access Journals (Sweden)

    Hirokazu Shimoshige

    Full Text Available Magnetotactic bacteria (MTB synthesize intracellular magnetic nanocrystals called magnetosomes, which are composed of either magnetite (Fe3O4 or greigite (Fe3S4 and covered with lipid membranes. The production of magnetosomes is achieved by the biomineralization process with strict control over the formation of magnetosome membrane vesicles, uptake and transport of iron ions, and synthesis of mature crystals. These magnetosomes have high potential for both biotechnological and nanotechnological applications, but it is still extremely difficult to grow MTB and produce a large amount of magnetosomes under the conventional cultural conditions. Here, we investigate as a first attempt the effect of polyethylene glycol (PEG added to the culture medium on the increase in the yield of magnetosomes formed in Magnetospirillum magnetotacticum MS-1. We find that the yield of the formation of magnetosomes can be increased up to approximately 130 % by adding PEG200 to the culture medium. We also measure the magnetization of the magnetosomes and find that the magnetosomes possess soft ferromagnetic characteristics and the saturation mass magnetization is increased by 7 %.

  10. Facile Synthesis Polyethylene Glycol Coated Magnetite Nanoparticles for High Colloidal Stability

    Directory of Open Access Journals (Sweden)

    Mun Foong Tai

    2016-01-01

    Full Text Available Polyethylene glycol (PEG is one of the most frequently used synthetic polymers for surface modifications of magnetite nanoparticles (MNPs to provide a new opportunity for constructing high colloidal stability. Herein, a facile in situ coprecipitation technique is described for the synthesis of PEG coated MNPs using ammonium hydroxide as the precipitating agent. The structure and morphology of the prepared PEG coated MNPs samples were characterized by Fourier transform infrared (FTIR spectroscopy, X-ray spectroscopy, thermogravimetric analysis (TGA, and the high resolution transmission electron microscopy (HRTEM. In this study, all samples demonstrated hydrodynamic size in the range of 32 to 43 nm with narrow size distribution. In addition, the magnetic properties of resultant samples were investigated using a vibrating sample magnetometer (VSM to reveal the superparamagnetic behaviour with saturation magnetization. The saturation magnetization of PEG coated MNPs samples was in the range of 63 to 66 emu/g at 300 K. Interestingly, it was found that 1.0 g of PEG coated MNPs exhibited high colloidal stability in a basic solution (pH = 10 and nitrile (NBR latex up to 21 days as compared to the unmodified MNPs during the sedimentation test.

  11. Influence of ethylene glycol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers

    International Nuclear Information System (INIS)

    Wen Ying; Li Ranxing; Cai Fang; Fu Kun; Peng Shujing; Jiang Qiuran; Yao Lan; Qiu Yiping

    2010-01-01

    For atmospheric pressure plasma treatments, the results of plasma treatments may be influenced by liquids adsorbed into the substrate. This paper studies the influence of ethylene glycol (EG) pretreatment on the effectiveness of atmospheric plasma jet (APPJ) treatment of ultrahigh molecular weight polyethylene (UHMWPE) fibers with 0.31% and 0.42% weight gain after soaked in EG/water solution with concentration of 0.15 and 0.3 mol/l for 24 h, respectively. Scanning electron microscopy (SEM) shows that the surface of fibers pretreated with EG/water solution does not have observable difference from that of the control group. The X-ray photoelectron spectroscopy (XPS) results show that the oxygen concentration on the surface of EG-pretreated fibers is increased less than the plasma directly treated fibers. The interfacial shear strength (IFSS) of plasma directly treated fibers to epoxy is increased almost 3 times compared with the control group while that of EG-pretreated fibers to epoxy does not change except for the fibers pretreated with lower EG concentration and longer plasma treatment time. EG pretreatment reduces the water contact angle of UHMWPE fibers. In conclusion, EG pretreatment can hamper the effect of plasma treatment of UHMWPE fibers and therefore longer plasma treatment duration is required for fibers pretreated with EG.

  12. Versatile Route to Synthesize Heterobifunctional Poly(ethylene glycol of Variable Functionality for Subsequent Pegylation

    Directory of Open Access Journals (Sweden)

    Redouan Mahou

    2012-02-01

    Full Text Available Pegylation using heterotelechelic poly(ethylene glycol (PEG offers many possibilities to create high-performance molecules and materials. A versatile route is proposed to synthesize heterobifunctional PEG containing diverse combinations of azide, amine, thioacetate, thiol, pyridyl disulfide, as well as activated hydroxyl end groups. Asymmetric activation of one hydroxyl end group enables the heterobifunctionalization while applying selective monotosylation of linear, symmetrical PEG as a key step. The azide function is introduced by reacting monotosyl PEG with sodium azide. A thiol end group is obtained by reaction with sodium hydrosulfide. The activation of the hydroxyl end group and subsequent reaction with potassium carbonate/thioacetic acid yields a thioacetate end group. The hydrolysis of the thioester end group by ammonia in presence of 2,2′-dipyridyl disulfide provides PEG pyridyl disulfide. Amine terminated PEG is prepared either by reduction of the azide or by nucleophilic substitution of mesylate terminated PEG using ammonia. In all cases, >95% functionalization of the PEG end groups is achieved. The PEG derivatives particularly support the development of materials for biomedical applications. For example, grafting up to 13% of the Na-alg monomer units with α-amine-ω-thiol PEG maintains the gelling capacity in presence of calcium ions but simultaneous, spontaneous disulfide bond formation reinforces the initial physical hydrogel.

  13. SELEKSI IN VITRO UNTUK TOLERANSI TERHADAP KEKERINGAN PADA JAGUNG (Zea mays L. DENGAN POLYETHYLENE GLYCOL (PEG

    Directory of Open Access Journals (Sweden)

    Kaswan Badami

    2010-03-01

    Full Text Available Genetic variation is a prerequisite for many breeding program that one of which can be generated through somaclon variation.  The objective of this research was to investigate effective media to induce embryo callii and to do in vitro callii regeneration for maize, and  in vitro selection was conducted by growing embryogenic callii on mediun containing polyethylene glycol (PEG.  Plant material used in this study was  5 madura cultivars i.e elos, tambin, guluk-guluk, talango and manding.   The results showed that (1 increasing addition 2,4-D on MS medium was significantly affected callii weight, however supplying 8 ppm 2,4-D was best for callii diameter, (2 The best medium to induce embryogenic callii formation was MS + 2 ppm 2,4-D + 3% manitol, (3 Increasing addition PEG  on MS medium can return the mays ES growth, and (4 A tambin and guluk-guluk cultivars was tolerance cultivars whereas manding cultivar was drought sensitive cultivar.

  14. Exploring the cell uptake mechanism of phospholipid and polyethylene glycol coated gold nanoparticles

    International Nuclear Information System (INIS)

    Hao Yuzhi; Chen Jie; Yang Xiaoyang; Huang Min; He Chuan; Song, Steven; Cui Mingyang

    2012-01-01

    Recently, there has been a lot of interest in using gold nanoparticles (GNPs) for biomedical applications due to their biocompatibility. To increase GNP cell uptake and circulation half-life, and to improve its bio-distribution in vivo, we chose to coat GNPs with 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (POPG) and polyethylene glycol (PEG). Two different methods were used to synthesize POPG-GNPs or PEG-GNPs, but the resulting nanoparticle sizes and morphologies were similar. Under the same incubation conditions, POPG-GNPs can be uptaken quicker than PEG-GNPs by cells—specifically, the maximum uptake was 8 h versus 16 h after incubation. In addition, the uptake amount of POPG-GNPs was more than that of PEG-GNPs. The uptake processes were confirmed by SEM and TEM images. The main reason for the greater uptake of POPG-GNPs can be attributed to the structural similarities between the POPG coating and the cell membrane as well as GNP aggregation. (paper)

  15. Preparation and investigation of mefenamic acid – polyethylene glycol – sucrose ester solid dispersions

    Directory of Open Access Journals (Sweden)

    Fülöp Ibolya

    2015-12-01

    Full Text Available Mefenamic acid (MA is a widely used non-steroidal antiinflammatory (NSAID drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670 and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.

  16. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  17. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  18. Effect of reaction time and polyethylene glycol monooleate-isocyanate composition on the properties of polyurethane-polysiloxane modified epoxy

    Science.gov (United States)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-11-01

    Polyurethane-polysiloxane modified epoxy based on polyethylene glycol monooleate (PSME-PEGMO) was synthesized. Polyethylene glycol monooleate (PEGMO) for the synthesis of PSME-GMO was synthesized via esterification between oleic acid and polyethylene glycol by using sodium hydroxide as catalyst. Synthesis of PSME-PEGMO was conducted by reacting epoxy, isocyanate, PEGMO, and polysiloxane (hydrolyzed and condensable 3-glycidyloxypropyltrimethoxysilane) simultaneously in one step. This synthesis was carried out by varied the reaction time (1, 2, 3 hours), PEGMO-isocyanate composition (PI composition: 10 and 20 % toward epoxy), and isocyanate/PEGMO ratio (NCO/OH ratio: 1.5 and 2.5). Characterization of PSME-PEGMO was conducted by determining the isocyanate conversion, viscosity analysis, mechanical properties (tensile strength and elongation at break) and thermal analysis using thermogravimetric analysis (TGA). The data show that the PI composition and NCO/OH ratio does not affect the isocyanate conversion linearly. The viscosity of PSME-PEGMO product at ratio and composition variation show has tended to increase with increasing of reaction time. The highest tensile strength and elongation at break PSME-PEGMO was shown by PI composition 20%, NCO/OH ratio 2.5 and reaction time 3 hours.

  19. Plasticization of poly(lactic acid) using different molecular weight of Poly(ethylene glycol)

    Science.gov (United States)

    Septevani, Athanasia Amanda; Bhakri, Samsul

    2017-11-01

    Poly (lactic acid) (PLA) has been known as an excellent candidate for developing the future bioplastic due to its biodegradability and competitive price. However, inherent brittleness and low thermal stability of PLA have limited its applications. Considerable studies have been developed to improve the flexibility of PLA, in which blending PLA with various plasticizers has been identified as a cost-effective way to lower glass-transition temperature (Tg) and thus improve its elongation property. In this study, PLA was modified by incorporating poly(ethylene glycol) as a plasticizer with different molecular weights (M¯w 400, 1000, and 6000, called respectively as PEG 400, PEG 1000, and PEG 6000) via a solvent-casting blend method. FTIR was used for analyzing the chemical interaction while TGA and DSC measured the thermal behavior of PLA/PEG. The results indicated that the addition of lower M¯w (PEG 400 and PEG 1000) could reduce the Tg due to the enhancement of chain mobility of PLA with PEG and so driving into a more amorphous states resulted reduction of melting temperature (Tm) compared to the neat PLA. Further, at a higher M¯w of PEG 6000, the longer chain of ethylene glycol, in contrast, resulted a gradual increase in the Tg as well as Tm where the value went back to the point of neat PLA compared to the other lower molecular weight of PLA. This was due to the decrease in polymer miscibility with the increasing of M¯w. In terms of thermal stability, the addition of PEG exhibited two step degradation behavior while the neat PLA only possessed single step degradation. The presence of PEG could act as a protective barrier layer that could hinder the permeability of the volatile compound and product during decomposition reaction and thus could eventually delay and slower the degradation process. It was observed that the addition of PEG at higher M¯w (PEG1000 and PEG 6000) exhibited a higher second degradation temperature up to 380 °C.

  20. Characterization of gliclazide-polyethylene glycol solid dispersion and its effect on dissolution

    Directory of Open Access Journals (Sweden)

    Moreshwar Pandharinath Patil

    2011-03-01

    Full Text Available The present study was initiated with the objective of studying the in vitro dissolution behavior of gliclazide from its solid dispersion with polyethylene glycol 6000. In this work, a solid dispersion of gliclazide with polyethylene glycol was prepared by the fusion method. In vitro dissolution study of gliclazide, its physical mixture and solid dispersion were carried out to demonstrate the effect of PEG 6000. Analytical techniques of FT-IR spectroscopy, differential scanning calorimetry and X-ray diffractometry were used to characterize the drug in the physical mixtures and solid dispersions. The dissolution studies of solid dispersion and physical mixture showed greater improvement compared to that of the pure drug. The mechanisms for increased dissolution rate may include reduction of crystallite size, a solubilization effect of the carrier, absence of aggregation of drug crystallites, improved wettability and dispersbility of the drug from the dispersion, dissolution of the drug in the hydrophilic carrier or conversion of drug to an amorphous state. The FT-IR spectra suggested that there was no interaction between gliclazide and PEG 6000 when prepared as a solid dispersion. DSC and XRD study indicated that the drug was converted in the amorphous form.O presente trabalho foi realizado com o objetivo de estudar o comportamento in vitro da dissolução da gliclazida a partir da sua dispersão sólida com polietileno glicol 6000. Neste trabalho, as dispersões sólidas de gliclazida com polietileno glicol foram preparadas pelo método de fusão. Os estudo de dissolução in vitro da gliclazida, na mistura física e nas dispersões sólidas foram realizados para demonstrar o efeito de PEG 6000. Técnicas analíticas como espectroscopia FT-IR, calorimetria diferencial de varredura e difração de raios-X foram empregadas para caracterizar o fármaco nas misturas físicas e nas dispersoes sólidas. Os estudos de dissolução demonstraram maior

  1. Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose.

    Science.gov (United States)

    Hammer, H F; Santa Ana, C A; Schiller, L R; Fordtran, J S

    1989-10-01

    The purpose of these studies was to gain insight into the pathophysiology of pure osmotic diarrhea and the osmotic diarrhea caused by carbohydrate malabsorption. Diarrhea was induced in normal volunteers by ingestion of polyethylene glycol (PEG), which is nonabsorbable, not metabolized by colonic bacteria, and carries no electrical charge. In PEG-induced diarrhea, (a) stool weight was directly correlated with the total mass of PEG ingested; (b) PEG contributed 40-60% of the osmolality of the fecal fluid, the remainder being contributed by other solutes either of dietary, endogenous, or bacterial origin; and (c) fecal sodium, potassium, and chloride were avidly conserved by the intestine, in spite of stool water losses exceeding 1,200 g/d. Diarrhea was also induced in normal subjects by ingestion of lactulose, a disaccharide that is not absorbed by the small intestine but is metabolized by colonic bacteria. In lactulose-induced diarrhea, (a) a maximum of approximate 80 g/d of lactulose was metabolized by colonic bacteria to noncarbohydrate moieties such as organic acids; (b) the organic acids were partially absorbed in the colon; (c) unabsorbed organic acids obligated the accumulation of inorganic cations (Na greater than Ca greater than K greater than Mg) in the diarrheal fluid; (d) diarrhea associated with low doses of lactulose was mainly due to unabsorbed organic acids and associated cations, whereas with larger doses of lactulose unmetabolized carbohydrates also played a major role; and (e) the net effect of bacterial metabolism of lactulose and partial absorption of organic acids on stool water output was done dependent. With low or moderate doses of lactulose, stool water losses were reduced by as much as 600 g/d (compared with equimolar osmotic loads of PEG); with large dose, the increment in osmotically active solutes within the lumen exceeded the increment of the ingested osmotic load, and the severity of diarrhea was augmented.

  2. Polyethylene glycol 3350 without electrolytes for the treatment of functional constipation in infants and toddlers.

    Science.gov (United States)

    Loening-Baucke, Vera; Krishna, Rachana; Pashankar, Dinesh S

    2004-11-01

    We have recently reported the safety and efficacy of polyethylene glycol 3350 without electrolytes (PEG) for the daily treatment of constipation in older children. Because there are very few data available on the use of PEG in infants and toddlers, we evaluated the efficacy and safety of PEG for the treatment of constipation in children PEG therapy. PEG was started at an average dose of 1 g/kg body weight/d and parents were asked to adjust the dose to yield 1 to 2 soft painless stools/d. Data from the history and physical examination were collected initially and at short-term (or=6 months) follow-up. 75 otherwise healthy children received PEG for functional constipation. The mean age was 17 months (range, 1 to 24 months) and the mean duration of constipation was 10 months (range, 0.5 to 23 months). The mean duration of short-term follow-up was 2 months and mean duration of long-term follow-up was 11 months. The mean effective short-term PEG dose was 1.1 g/kg body weight/d and the mean long-term dose was 0.8 g/kg body weight/d. Constipation was relieved in 85% with short-term and in 91% with long-term PEG therapy. Adverse effects were mild and included diarrhea, which disappeared with lowering the dose. No subjects stopped PEG because of adverse effects. PEG is effective, well tolerated and appeared safe for the treatment of functional constipation in children <2 years of age.

  3. Prospective evaluation of 1-day polyethylene glycol-3350 bowel preparation regimen in children.

    Science.gov (United States)

    Abbas, Mazen I; Nylund, Cade M; Bruch, Carol J; Nazareno, Luzviminda G; Rogers, Philip L

    2013-02-01

    The aim of the present study was to evaluate efficacy, safety, and tolerability of a pediatric colonoscopy bowel preparation regimen composed of polyethylene glycol-3350 (PEG-3350) and a sports drink completed in a few hours. A prospective, open-label trial of a colonoscopy bowel preparation in children ages 8 to 18 years that included 238 g of PEG-3350 mixed with 1.9 L of Gatorade completed in a few hours. Efficacy was determined using the Boston Bowel Preparation Scale. Basic metabolic profiles and questionnaires were obtained that assessed for safety, adverse effects, tolerability, and patient acceptability. Forty-six patients completed the study. Patients were predominately boys (56.5%) with a mean age of 14.50 years (SD ± 2.9 years). Forty-three (93.5%) were able to complete the regimen. All of the colonoscopies were completed to the cecum and 84% had terminal ileum visualization. Seventy-seven percent were found to be effective preparations. Nausea/vomiting were the most common reported adverse effect (60%) followed by abdominal pain/cramping (44%) and fatigue/weakness (40%). Overall, the regimen was acceptable with 1 exception being the large volume to drink. There were no clinically significant changes in basic metabolic profiles, although there was a statistically significant decrease in the mean potassium (0.16 mEq/L; P = 0.016), blood urea nitrogen (2.68 mg/dL; P PEG-3350 + Gatorade administered in a few hours is an effective, safe, and moderately tolerable bowel preparation regimen for colonoscopy in children.

  4. Safety of polyethylene glycol 3350 solution in chronic constipation: randomized, placebo-controlled trial.

    Science.gov (United States)

    McGraw, Thomas

    2016-01-01

    To evaluate the safety and tolerability of aqueous solution concentrate (ASC) of polyethylene glycol (PEG) 3350 in patients with functional constipation. The patients who met Rome III diagnostic criteria for functional constipation were randomized in this multicenter, randomized, placebo-controlled, single-blind study to receive once daily dose of PEG 3350 (17 g) ASC or placebo solution for 14 days. The study comprised a screening period (visit 1), endoscopy procedure (visits 2 and 3), and followup telephone calls 30 days post-treatment. Safety end points included adverse events (AEs), clinical laboratory evaluations, vital signs, and others. The primary end points were the proportion of patients with abnormalities of the oral and esophageal mucosa, detected by visual and endoscopic examination of the oral cavity and esophagus, respectively, compared with placebo. A secondary objective was to compare the safety and tolerability of ASC by evaluating AEs or adverse drug reactions. A total of 65 patients were enrolled in this study, 31 were randomized to PEG 3350 ASC and 34 were randomized to placebo, of which 62 patients completed the study. No patients in either group showed abnormalities in inflammation of the oral mucosa during visit 2 (before treatment) or visit 3 (after treatment). Fewer abnormalities of the esophageal mucosa were observed in the PEG 3350 ASC group than in the placebo group on visit 3, with no significant difference in the proportion of abnormalities between the treatment groups. Overall, 40 treatment-emergent AEs were observed in 48.4% of patients treated with PEG 3350 ASC, and 41 treatment-emergent AEs were observed in 55.9% of patients treated with placebo - nonsignificant difference of -7.5% (95% CI: -21.3, 6.3) between treatment groups. No serious AEs or deaths were reported, and no patient discontinued because of an AE. PEG 3350 ASC is safe and well tolerated in patients with functional constipation (NCT01885104).

  5. Polyethylene glycol 3350 based colon cleaning protocol: 2 d vs 4 d head to head comparison.

    Science.gov (United States)

    Elitsur, Rotem; Butcher, Lisa; Vicki, Lund; Elitsur, Yoram

    2013-04-16

    To compare between 2 and 4 d colon cleansing protocols. Children who were scheduled for colonoscopy procedure (2010-2012) for various medical reasons, were recruited from the pediatric gastroenterology clinic at Marshall University School of Medicine, Huntington, WV. Exclusion criteria were patients who were allergic to the medication used in the protocols [polyethylene glycol (PEG) 3350, Bisacodyl], or children with metabolic or renal diseases. Two PEG 3350 protocols for 4 d (A) and 2 d (B) were prescribed as previously described. A questionnaire describing the volume of PEG consumed, clinical data, and side effects were recorded. Colon preparation was graded by two observers according to previously described method. Rate of adequate colon preparation. A total of 78 patients were considered for final calculation (group A: 40, group B: 38). Age and stool consistency at the last day was comparable in both groups, but the number of stools/day was significantly higher in group B (P = 0.001). Adequate colon preparation was reached in 57.5% (A) and 73.6% (B), respectively (P = 0.206). Side effects were minimal and comparable in both groups. There was no difference in children's age, stool characteristics, or side effects between the children with adequate or inadequate colon preparation. Correlation and agreement between observers was excellent (Pearson correlation = 0.972, kappa = 1.0). No difference between protocols was observed, but the 2 d protocol was superior for its shorter time. Direct comparison between different colon cleansing protocols is crucial in order to establish the "gold standard" protocol for children.

  6. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?

    Science.gov (United States)

    van Wijck, Kim; Bessems, Babs Afm; van Eijk, Hans Mh; Buurman, Wim A; Dejong, Cornelis Hc; Lenaerts, Kaatje

    2012-01-01

    Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man by providing a clear overview of both

  7. Polyethylene Glycol Mediated Colorectal Cancer Chemoprevention: Roles of Epidermal Growth Factor Receptor and Snail

    Science.gov (United States)

    Wali, Ramesh K.; Kunte, Dhananjay P.; Koetsier, Jennifer L.; Bissonnette, Marc; Roy, Hemant K.

    2008-01-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We previously reported that Snail/β-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overepressed in ~80% of human colorectal cancers (CRC), on PEG-mediated anti-proliferative and hence anti-neoplastic effects in azoxymethane (AOM)-rats and HT-29 colon cancer cells. AOM-rats were randomized to either standard diet or one with 10% PEG 3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (pPEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pre-treating cells with gefitinib or stably transfecting with EGFR-shRNA and measured the effect of PEG on proliferation. In either case PEG effect was blunted suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-shRNA cells, besides having reduced membrane EGFR also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/β-catenin pathway playing the central intermediary function. PMID:18790788

  8. Polyethylene glycol-mediated colorectal cancer chemoprevention: roles of epidermal growth factor receptor and Snail.

    Science.gov (United States)

    Wali, Ramesh K; Kunte, Dhananjay P; Koetsier, Jennifer L; Bissonnette, Marc; Roy, Hemant K

    2008-09-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We reported previously that Snail/beta-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overexpressed in approximately 80% of human colorectal cancers, on PEG-mediated antiproliferative and hence antineoplastic effects in azoxymethane (AOM) rats and HT-29 colon cancer cells. AOM rats were randomized to either standard diet or one with 10% PEG-3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (P PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pretreating cells with gefitinib or stably transfecting with EGFR-short hairpin RNA and measured the effect of PEG on proliferation. In either case, PEG effect was blunted, suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-short hairpin RNA cells, besides having reduced membrane EGFR, also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells, PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/beta-catenin pathway playing the central intermediary function.

  9. A comparison of polyethylene glycol laxative and placebo for relief of constipation from constipating medications.

    Science.gov (United States)

    DiPalma, Jack A; Cleveland, Mark B; McGowan, John; Herrera, Jorge L

    2007-11-01

    Medications often cause constipation and little data are available concerning treatment interventions. This study was designed to evaluate the safety and efficacy of polyethylene glycol (PEG) 3350 laxative (MiraLax) for relief of constipation from medicines associated with symptoms of constipation. Study subjects were enrolled who met defined criteria for chronic constipation and were also taking medications that were associated with a reported side effect incidence of more than 3% constipation. Subjects were randomized into a double-blind, parallel, multicenter study where they received 17 g per day of PEG laxative or placebo for 28 days. The primary efficacy variable, "Treatment Success," was defined as relief of ROME II criteria for constipation over the last 7 days of the treatment period. Various secondary measures were also assessed. Daily bowel movement experience, patient perception of efficacy, and safety information were recorded in a diary. Laboratory testing was performed at baseline and at end of study for hematology and blood chemistry, including BUN, calcium, electrolytes, and TSH. One hundred patients were enrolled at 4 study centers. Successful treatment according to the primary efficacy variable was seen in 78.3% of PEG and 39.1% of placebo subjects (P PEG compared with placebo (P PEG and placebo. No significant differences in laboratory findings or adverse events, including the gastrointestinal category, were observed. Diarrhea and flatulence occurred more frequently with PEG treatment, although they were not individually statistically different from placebo. Similar results were observed when these symptoms were analyzed for differences due to gender, race, or age. PEG laxative is safe and effective for use in treating constipation in patients taking constipating medications.

  10. Comparison of a low dose polyethylene glycol electrolyte solution with lactulose for treatment of chronic constipation.

    Science.gov (United States)

    Attar, A; Lémann, M; Ferguson, A; Halphen, M; Boutron, M C; Flourié, B; Alix, E; Salmeron, M; Guillemot, F; Chaussade, S; Ménard, A M; Moreau, J; Naudin, G; Barthet, M

    1999-02-01

    Polyethylene glycol (PEG) 3350 is a non-absorbable, non-metabolised osmotic agent used in lavage solutions for gut cleansing. To compare the efficacy of PEG and lactulose in chronic constipation. A total of 115 patients with chronic constipation entered a multicentre, randomised, comparative trial. They initially received two sachets containing either PEG (13 g/sachet) or lactulose (10 g/sachet) and were given an option to change the dose to one or three sachets/day, depending on response. Ninety nine patients completed the trial. After four weeks, patients in the PEG group (n=50) had a higher number of stools and a lower median daily score for straining at stool than patients in the lactulose group (n=49). Overall improvement was greater in the PEG group. Clinical tolerance was similar in the two groups, but flatus was less frequently reported in the PEG group. The mean number of liquid stools was higher in the PEG group but the difference was significant only for the first two weeks. There were no serious adverse events and no significant change in laboratory tests in either group. At the end of the study, the number of sachets used by the patients was 1.6 (0.7)/day in the PEG group and 2.1 (0.7)/day in the lactulose group. Sixty one patients completed a further two months open study of one to three sachets PEG daily; there was no loss of efficacy and no serious toxicity. Low dose PEG 3350 was more effective than lactulose and better tolerated.

  11. High- versus low-volume polyethylene glycol plus laxative versus sennosides for colonoscopy preparation in children.

    Science.gov (United States)

    Kierkus, Jaroslaw; Horvath, Andrea; Szychta, Monika; Woynarowski, Marek; Wegner, Agnieszka; Wiernicka, Anna; Dadalski, Maciej; Teisseyre, Mikolaj; Dziechciarz, Piotr

    2013-08-01

    Many protocols of bowel preparation are available for use in children; however, none of them is commonly accepted. The aim of the study was to evaluate the efficacy and acceptability of high-volume polyethylene glycol (PEG) versus low-volume PEG combined with bisacodyl (BPEG) versus sennosides for colonoscopy preparation in children. Participants ages 10 to 18 years were randomly assigned to receive either PEG 60 or PEG 30 mL kg⁻¹ day⁻¹ plus oral bisacodyl 10 to 15 mg/day or sennosides 2 mg kg⁻¹ day⁻¹ for 2 days. A blinded assessment of bowel cleansing was made by the endoscopist according to the Aronchick and Ottawa scales. Patient acceptability was evaluated with the visual-analog scale. Analysis was done on an available case analysis basis. Of 240 patients enrolled in the study 234 patients were available for analysis of the efficacy of colon cleansing. There were no significant differences found among the 3 groups for the proportions of participants with excellent/good (PEG: 35/79, BPEG: 26/79, sennosides 25/76) and poor/inadequate (PEG: 20/79, BPEG: 28/79, sennosides 28/76) bowel preparation evaluated with the Aronchick scale and for the mean Ottawa total score (PEG: 5.47 ± 3.63, BPEG: 6.22 ± 3.3, sennosides: 6.18 ± 3.53). Acceptability of bowel cleansing protocol was similar in all of the groups (P = 0.8). All 3 cleansing methods showed similar efficacy and tolerability; however, none of them was satisfactory.

  12. Polyethylene glycol and contrast-enhanced MRI of Crohn's disease in children: preliminary experience.

    Science.gov (United States)

    Magnano, Gianmichele; Granata, Claudio; Barabino, Arrigo; Magnaguagno, Francesca; Rossi, Umberto; Calevo, Maria Grazia; Toma, Paolo

    2003-06-01

    To assess the ability of MRI to detect bowel abnormalities in children affected by Crohn's disease (CD). We studied 22 children (age range 8-18 years) referred to us with a known history of CD. MRI was carried out using a 1.5-T unit with a maximum gradient field strength of 16 mT and a phased-array body coil. The sequences performed were breath-hold coronal and axial T2-weighted, express fat saturation, followed by T1-weighted, spoiled gradient, fast fat saturation after IV injection of gadolinium chelate (0.3 mmol/kg) for contrast enhancement of the bowel wall. Bowel distension was achieved using oral administration of isosmotic polyethylene glycol solution. Ileo-colonoscopy was considered the gold standard for evaluation of superficial abnormalities and stenoses of the colon and terminal ileum. MRI findings of bowel-wall thickening, increased vascularisation and extramural involvement were compared with the findings using B-mode and Doppler US. Concordance between MRI and endoscopy, B-mode US and Doppler US findings was determined by the Kappa statistical method. Superficial lesions were not shown by MRI. MR enteroclysis easily detected stenoses, thickening and hyperaemia of bowel wall. Concordance of findings between MRI and endoscopy was 90% (K=0.79, substantial concordance). Concordance of findings between MRI and US concerning bowel-wall thickening and increased vascularisation was 95% (K=0.875, excellent concordance) and 80% (K=0.6, fairly good concordance), respectively. Our initial results show that MRI can detect intra- and extra-mural lesions of CD. The high concordance observed between MRI, endoscopy, US and Doppler US findings suggests that MRI is at least comparable for diagnostic capability with these techniques offering, thanks to multiplanar projections, an improved visualisation of the bowel without ionising radiation.

  13. Polyethylene glycol and contrast-enhanced MRI of Crohn's disease in children: preliminary experience

    International Nuclear Information System (INIS)

    Magnano, Gianmichele; Granata, Claudio; Magnaguagno, Francesca; Rossi, Umberto; Toma, Paolo; Barabino, Arrigo; Calevo, Maria Grazia

    2003-01-01

    To assess the ability of MRI to detect bowel abnormalities in children affected by Crohn's disease (CD). We studied 22 children (age range 8-18 years) referred to us with a known history of CD. MRI was carried out using a 1.5-T unit with a maximum gradient field strength of 16 mT and a phased-array body coil. The sequences performed were breath-hold coronal and axial T2-weighted, express fat saturation, followed by T1-weighted, spoiled gradient, fast fat saturation after IV injection of gadolinium chelate (0.3 mmol/kg) for contrast enhancement of the bowel wall. Bowel distension was achieved using oral administration of isosmotic polyethylene glycol solution. Ileo-colonoscopy was considered the gold standard for evaluation of superficial abnormalities and stenoses of the colon and terminal ileum. MRI findings of bowel-wall thickening, increased vascularisation and extramural involvement were compared with the findings using B-mode and Doppler US. Concordance between MRI and endoscopy, B-mode US and Doppler US findings was determined by the Kappa statistical method. Superficial lesions were not shown by MRI. MR enteroclysis easily detected stenoses, thickening and hyperaemia of bowel wall. Concordance of findings between MRI and endoscopy was 90% (K=0.79, substantial concordance). Concordance of findings between MRI and US concerning bowel-wall thickening and increased vascularisation was 95% (K=0.875, excellent concordance) and 80% (K=0.6, fairly good concordance), respectively. Our initial results show that MRI can detect intra- and extra-mural lesions of CD. The high concordance observed between MRI, endoscopy, US and Doppler US findings suggests that MRI is at least comparable for diagnostic capability with these techniques offering, thanks to multiplanar projections, an improved visualisation of the bowel without ionising radiation. (orig.)

  14. Partitioning of alcohol ethoxylates and polyethylene glycols in the marine environment: Field samplings vs laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Traverso-Soto, Juan M. [Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Campus Río San Pedro s/n, Puerto Real, Cádiz 11510 (Spain); Brownawell, Bruce J. [School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 (United States); González-Mazo, Eduardo [Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Campus Río San Pedro s/n, Puerto Real, Cádiz 11510 (Spain); Lara-Martín, Pablo A., E-mail: pablo.lara@uca.es [Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Campus Río San Pedro s/n, Puerto Real, Cádiz 11510 (Spain)

    2014-08-15

    Nowadays, alcohol ethoxylates (AEOs) constitute the most important group of non-ionic surfactants, used in a wide range of applications such as household cleaners and detergents. Significant amounts of these compounds and their degradation products (polyethylene glycols, PEGs, which are also used for many other applications) reach aquatic environments, and are eliminated from the water column by degradation and sorption processes. This work deals with the environmental distribution of AEOs and PEGs in the Long Island Sound Estuary, a setting impacted by sewage discharges from New York City (NYC). The distribution of target compounds in seawater was influenced by tides, consistent with salinity differences, and concentrations in suspended solid samples ranged from 1.5 to 20.5 μg/g. The more hydrophobic AEOs were mostly attached to the particulate matter whereas the more polar PEGs were predominant in the dissolved form. Later, the sorption of these chemicals was characterized in the laboratory. Experimental and environmental sorption coefficients for AEOs and PEGs showed average values from 3607 to 164,994 L/kg and from 74 to 32,862 L/kg, respectively. The sorption data were fitted to a Freundlich isotherm model with parameters n and log K{sub F} between 0.8–1.2 and 1.46–4.39 L/kg, respectively. AEO and PEG sorptions on marine sediment were also found to be mostly not affected by changes in salinity. - Highlights: • AEO and PEG levels in estuaries are influenced by tides and suspended solids. • Sediment–water partition coefficients in the lab and in the field are comparable. • Sorption is depending on both hydrophilic and hydrophobic interactions. • Sorption data fits Freundlich isotherms, showing K{sub F} values from 29 to 24,892 L/kg. • Sorption is very weakly influenced by salinity changes.

  15. Thermal Protection Performance of Phase Changing Material Based on Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Leila Sadat Ahmadi

    2012-12-01

    Full Text Available Phase change materials (PCM are substances with a high heat of fusion which, through melting and solidifying at certain temperatures, are capable to store or release a large amount of energy. This phenomenon can be utilized in designing heat protective materials as well as in thermal energy storage systems. One of the approaches to avoid materials leaching from a structure, where PCMs are incorporated, is to blend them with suitable polymers. To have a proper blend it is necessary to choose a compatible polymer with a PCM. It is important to assess the optimized concentration of PCM in polymer matrix and the phase structure and morphology of the blend, which causes the best heat protection. In this work, the influence of polyethylene glycol (PEG as PCMs in epoxy resin matrix on heat protection was investigated. A special performance test was designed to study timetemperature behavior of the prepared samples and DSC and SEM tests to observe the melting point, heat of fusion and morphology of the samples. The results indicated that increases in PCM content led to better heat protection and the best concentration for PEG was found to be 60% wt. Time-temperature curves show that increases of temperature for PCM samples is very slow compared with net epoxy sample. PCM samples curves show plateau in melting region. In this region, they show nearly 15°C temperature lower than a net epoxy sample. The plateau region makes a delay time in temperature increment, which is about 22 min for PEG samples compared with a net epoxy.

  16. A fundamental research on T3 radioimmunoassay by polyethylene glycol (PEG) method

    International Nuclear Information System (INIS)

    Takahashi, Tadashige; Hayakawa, Susumu; Takagi, Atsushi; Sugisawa, Yoshihiko; Kurata, Kunio

    1976-01-01

    Since Chopra, et al. produced an antibody of triiodothyronine (T 3 ), measurement of serum T 3 by radioimmunoassay has been widely used as a clinical test. However, the dextran coated charcoal (DCC) method which is most commonly used for B/F separation requires strict control of incubation temperature and time. The authors reduced this disadvantage by using polyethylene glycol (PEG) instead of DCC for B/F separation. Crossreactivities of the antibody used with thyroxine, monoiodothyrosine and diiodotyrosine are less than 0.06% which is considered to be satisfactory in comparison with those previously reported. The recovery ratios of added T 3 were between 92.4 - 105.9% and that reflected T 3 concentration well. The dilution test showed good linearity. Correlation of T 3 values measured by DCC method and PEG method in 26 sera was good (r=0.99), and linear regression function was y=0.89x + 0.30 (y: PEG method and x: DCC method). No significant differences were observed in the results obtained by 2 hr incubation at 20 - 35 0 C and 24 hr incubation at 4 0 C. As for the volume of PEG solution, 1.0 ml was most suitable. Samples should be kept at 4 0 C when centrifugation is impossible within 30 min after addition of PEG. Also in various conditions of centrifugation, the authors obtained almost same results. As described above, the authors conquered the problem involved in the DCC method, and also simplified the assay procedure by using the PEG method for B/F separation. PEG method is considered to be the methods of choice for clinical routine test for serum T 3 levels (Evans, J.)

  17. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Wanna, Yongyuth, E-mail: yongyuth.wanna@gmail.com [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Nara Machinery Co., Ltd., 2-5-7, Jonan-Jima, Ohta-ku, Tokyo 143-0002 (Japan); Chindaduang, Anon; Tumcharern, Gamolwan [National Nanotechnology Center (NANOTEC), 111 Thailand Science Park, Pahol Yothin Rd, Klong Luang, Pathum Thani 12120 (Thailand); Phromyothin, Darinee [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Porntheerapat, Supanit [NECTEC, National Science and Technology Development Agency (NSTDA), 112 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120 (Thailand); Nukeaw, Jiti [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Hofmann, Heirich [Laboratory of Powder Technology, Ecole Polytechnique Fédérale de Lausanne (Switzerland); Pratontep, Sirapat [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand)

    2016-09-15

    Hybrid magnetic nanoparticles based on poly(methylmethacrylate) (PMMA) and super-paramagnetic iron oxide nanopaticles (SPIONs) with selective surface modification has been developed for heavy metal removal by applying external magnetic fields. The nanoparticles were prepared by the emulsion polymerization technique in an aqueous suspension of SPIONs. The hydrolysis of carboxyl functional group was then applied for grafting polyethylene glycol bis(amine)(PEG-bis(amine)) onto the PMMA-coated SPIONs. The morphology, the chemical structure and the magnetic properties of the grafted nanoparticles were investigated. The efficiency of the hybrid nanoparticles for heavy metal removal were conducted on Pb(II), Hg(II), Cu(II) and Co(II) in aqueous solutions.The metal concentration in the solutions after separation by the hybrid nanoparticles was determined by inductively coupled plasma optical emission spectrometer (ICP-OES). The results show the heavy metal uptake ratios of 0.08, 0.04, 0.03, and 0.01 mM per gramme of the grafted SPIONs for Pb(II), Hg(II), Cu(II), and Co(II), respectively. A competitive removal of Cu(II), Pb(II), Co(II) and Hg(II) ions in mixed metal salt solutions has also been studied.The heavy metal removal efficiency of the hybrid nanoparitcles was found to depend on the cation radius, in accordance with capture of metal ions by the amine group. - Highlights: • We synthesis hybrid magnetic nanoparticles for heavy metal removal. • The efficiency of hybrid nanoparticles for heavy metal removal is proposed. • We investigated the characteristic of hybrid nanoparticle. • The heavy metal removal efficiency of the hybrid nanoparticle was founded that depend on the heavy metal cation radius.

  18. Tuning the Density of Poly(ethylene glycol Chains to Control Mammalian Cell and Bacterial Attachment

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Ani

    2017-08-01

    Full Text Available Surface modification of biomaterials with polymer chains has attracted great attention because of their ability to control biointerfacial interactions such as protein adsorption, cell attachment and bacterial biofilm formation. The aim of this study was to control the immobilisation of biomolecules on silicon wafers using poly(ethylene glycol(PEG chains by a “grafting to” technique. In particular, to control the polymer chain graft density in order to capture proteins and preserve their activity in cell culture as well as find the optimal density that would totally prevent bacterial attachment. The PEG graft density was varied by changing the polymer solubility using an increasing salt concentration. The silicon substrates were initially modified with aminopropyl-triethoxysilane (APTES, where the surface density of amine groups was optimised using different concentrations. The results showed under specific conditions, the PEG density was highest with grafting under “cloud point” conditions. The modified surfaces were characterised with X-ray photoelectron spectroscopy (XPS, ellipsometry, atomic force microscopy (AFM and water contact angle measurements. In addition, all modified surfaces were tested with protein solutions and in cell (mesenchymal stem cells and MG63 osteoblast-like cells and bacterial (Pseudomonas aeruginosa attachment assays. Overall, the lowest protein adsorption was observed on the highest polymer graft density, bacterial adhesion was very low on all modified surfaces, and it can be seen that the attachment of mammalian cells gradually increased as the PEG grafting density decreased, reaching the maximum attachment at medium PEG densities. The results demonstrate that, at certain PEG surface coverages, mammalian cell attachment can be tuned with the potential to optimise their behaviour with controlled serum protein adsorption.

  19. Polyethylene glycol powder solution versus senna for bowel preparation for colonoscopy in children.

    Science.gov (United States)

    Terry, Natalie A; Chen-Lim, Mei Lin; Ely, Elizabeth; Jatla, Muralidhar; Ciavardone, Denise; Esch, Salina; Farace, Lisa; Jannelli, Frances; Puma, Anita; Carlow, Dean; Mamula, Petar

    2013-02-01

    Safety and effectiveness of large-volume polyethylene glycol-based solution (PEG-ES) have been documented, but the taste and volume can be barriers to successful colonoscopy preparation. Efficacy and safety of small-volume electrolyte-free (PEG-P) preparation (Miralax) for colonoscopy preparation have been rarely studied, although presently used at many pediatric centers. The primary objective of the present study was to determine whether PEG-P results in a more efficacious and safe colonoscopy preparation as compared with senna. The study design was prospective, randomized, and single-blinded. Patients ages 6 to 21 years were randomized to a 2-day clean-out regimen of PEG-P at a dose of 1.5 g/kg divided twice per day for 2 days versus senna 15 mL daily (ages 6-12) or 30 mL daily (ages 12-21) for 2 days. Both preparations required 1 day of clear liquids whereas senna preparation required an additional day of full liquid diet. A blinded endoscopist graded the quality of preparation with a standardized cleanliness tool (Aronchick scale). Serum chemistry panels were obtained. Patients or parents rated symptoms and ease of preparation. The anticipated number of subjects was 166; however, the interim analysis demonstrated inferiority of senna preparation. Thirty patients were evaluated in the present study. Of the patients in the PEG-P arm, 88% (14/16) received an excellent/good score compared with 29% (4/14), with the senna preparation (P = 0.0022). Both preparations were well-tolerated by patient-graded ease of preparation. Demographics and laboratory values did not differ significantly across the 2 groups. No serious adverse events were noted. PEG-P is an effective colonoscopy preparation whereas senna preparation was insufficient. Both were well-tolerated and appear safe in a pediatric population.

  20. Engineering the bone-ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite.

    Science.gov (United States)

    Paxton, Jennifer Z; Donnelly, Kenneth; Keatch, Robert P; Baar, Keith

    2009-06-01

    Ligaments and tendons have previously been tissue engineered. However, without the bone attachment, implantation of a tissue-engineered ligament would require it to be sutured to the remnant of the injured native tissue. Due to slow repair and remodeling, this would result in a chronically weak tissue that may never return to preinjury function. In contrast, orthopaedic autograft reconstruction of the ligament often uses a bone-to-bone technique for optimal repair. Since bone-to-bone repairs heal better than other methods, implantation of an artificial ligament should also occur from bone-to-bone. The aim of this study was to investigate the use of a poly(ethylene glycol) diacrylate (PEGDA) hydrogel incorporated with hydroxyapatite (HA) and the cell-adhesion peptide RGD (Arg-Gly-Asp) as a material for creating an in vitro tissue interface to engineer intact ligaments (i.e., bone-ligament-bone). Incorporation of HA into PEG hydrogels reduced the swelling ratio but increased mechanical strength and stiffness of the hydrogels. Further, HA addition increased the capacity for cell growth and interface formation. RGD incorporation increased the swelling ratio but decreased mechanical strength and stiffness of the material. Optimum levels of cell attachment were met using a combination of both HA and RGD, but this material had no better mechanical properties than PEG alone. Although adherence of the hydrogels containing HA was achieved, failure occurs at about 4 days with 5% HA. Increasing the proportion of HA improved interface formation; however, with high levels of HA, the PEG HA composite became brittle. This data suggests that HA, by itself or with other materials, might be well suited for engineering the ligament-bone interface.

  1. Dynamic viscosity versus probe-reported microviscosity of aqueous mixtures of poly(ethylene glycol)

    International Nuclear Information System (INIS)

    Bhanot, Chhavi; Trivedi, Shruti; Gupta, Arti; Pandey, Shubha; Pandey, Siddharth

    2012-01-01

    Highlights: ► Aqueous polymer mixtures, non-toxic media of huge industrial importance, are investigated. ► Bulk viscosity of aqueous. PEG mixtures is shown to vary widely with composition and temperature. ► T-dependent viscosity follows Arrhenius behavior suggesting aqueous PEGs to be Newtonian fluids. ► Microviscosity sensed by a fluorescence ratiometric probe is estimated and correlated with viscosity. ► Microviscosity correlates well with bulk viscosity at higher PEG concentrations. - Abstract: Correlation between the dynamic viscosity (η) and the microviscosity of a hybrid green medium constituted of water and poly(ethylene glycol) (PEG) of average molar mass (200, 400, and 600) g · mol −1 , respectively, is explored over the temperatures range (10 to 90) °C across the complete composition regime. The microviscosity is obtained using a fluorescence probe 1,3-bis-(1-pyrenyl)propane (BPP), which is manifested through the ratio of the monomer-to-intramolecular excimer intensities (I M /I E ). Aqueous PEG mixtures are observed to behave similar to Newtonian fluids as the temperature dependence of dynamic viscosity follows Arrhenius-type behavior. Surprisingly, a simple and convenient linear dependence of ln η with wt% PEG of the mixture is established. The BPP I M /I E is observed, in general, to increase with the bulk dynamic viscosity of the mixture having >10 wt% PEG suggesting a good correlation between the bulk dynamic viscosity and BPP-reported microviscosity when the viscosity of the aqueous PEG mixture is relatively high.

  2. Feasibility of MR imaging in evaluating breast cancer lymphangiogenesis using Polyethylene glycol-GoldMag nanoparticles

    International Nuclear Information System (INIS)

    Yang, H.; Zou, L.G.; Zhang, S.; Gong, M.F.; Zhang, D.; Qi, Y.Y.; Zhou, S.W.; Diao, X.W.

    2013-01-01

    Aim: To investigate the feasibility of evaluating tumour lymphangiogenesis using magnetic resonance imaging (MRI) in vivo. Materials and methods: Water-soluble polyethylene glycol (PEG)-GoldMag nanoparticles were obtained by combining GoldMag with PEG. The PEG-GoldMag nanoparticles were bound to anti-podoplanin antibody (PodAb) to construct PEG-GoldMag-pod molecular probes targeting lymphatic endothelial cells (LECs). The characteristics of the PEG-GoldMag-pod nanoparticles were tested. Using these nanoparticles, tumour lymphangiogenesis was evaluated using MRI in vitro and in vivo. Results: The average size of PEG-GoldMag nanoparticles was about 66.8 nm, and the nanoparticles were stably dispersed in the liquid phase for at least 15 days. After incubation for 24 h at different iron concentrations ranging from 5–45 μg/ml, the LECs were labelled with PEG-GoldMag-pod nanoparticles, in particular the breast cancer LECs. Dose-dependence was observed in the labelling efficiencies and MRI images of the labelled cells. In vitro, the labelling efficiencies and MRI images showed that the nanoparticles could detect podoplanin expression in LECs. In induced rat models of breast cancer, PEG-GoldMag-pod nanoparticles combined with lymphatic vessels were significantly detectable at MRI 60 min after nanoparticle administration, the signal intensity was negatively correlated with the lymphatic vessel density of breast cancer (r = −0.864, P = 0.000). Conclusions: The present study proves the feasibility of evaluating tumour lymphangiogenesis with MRI in vivo

  3. Safety of a 1-Day Polyethylene Glycol 3350 Bowel Preparation for Colonoscopy in Children.

    Science.gov (United States)

    Sahn, Benjamin; Chen-Lim, Mei Lin; Ciavardone, Denise; Farace, Lisa; Jannelli, Frances; Nieberle, Megan; Ely, Elizabeth; Zhang, Xuemei; Kelsen, Judith; Puma, Anita; Mamula, Petar

    2016-07-01

    Electrolyte-free polyethylene glycol powder (PEG-3350) has been widely used for colonoscopy preparation (prep); however, limited safety data on electrolyte changes exists with 1-day prep regimens. The primary aim of this study was to determine the proportion of patients with significant serum chemistry abnormalities before and at the time of colonoscopy. Secondary aims included evaluation of prep tolerance and bowel cleansing efficacy. We performed a prospective descriptive observational study of pediatric patients scheduled for outpatient colonoscopy who received our standard 1-day, weight-based 4 g/kg PEG-3350 prep with a single stimulant laxative dose and had serum chemistry testing within 60 days before and at the time of colonoscopy. A standardized bowel cleanliness tool (Aronchick scale) was completed by the endoscopist. One hundred fifty-five patients had serum electrolytes data pre- and postprep. Comparison of each patient's chemistries demonstrated statistical equivalence with the 1 exception of blood urea nitrogen levels (P = 0.56). Hypokalemia was detected postprep in 37 subjects (24%), but none had a serum level <3.3 mmol/L, which was deemed to be of no clinical significance. Five patients were hypoglycemic post prep; 3 were 7 years or younger (P = 0.02). The colon cleanliness rating was excellent or good in 77% and suboptimal in 23% of patients. A 1-day, weight-based PEG-3350 bowel prep in children appears safe. Changes in electrolyte levels and renal function were not clinically significant. Children of 7 years or younger seem to be at a higher risk of hypoglycemia compared with older children.

  4. Effect of solvent on the charging mechanisms of poly(ethylene glycol) in droplets

    Science.gov (United States)

    Soltani, Sepideh; Oh, Myong In; Consta, Styliani

    2015-03-01

    We examine the effect of solvent on the charging mechanisms of a macromolecule in a droplet by using molecular dynamics simulations. The droplet contains excess charge that is carried by sodium ions. To investigate the principles of the charging mechanisms of a macromolecule in a droplet, we simulate aqueous and methanol droplets that contain a poly(ethylene glycol) (PEG) molecule. We find that the solvent plays a critical role in the charging mechanism and in the manner that the sodiated PEG emerges from a droplet. In the aqueous droplets, the sodiated PEG is released from the droplet while it is being charged at a droplet charge state below the Rayleigh limit. The charging of PEG occurs on the surface of the droplet. In contrast to the aqueous droplets, in the methanol droplet, the sodiated PEG resides in the interior of the droplet and it may become charged at any location in the droplet, interior or surface. The sodiated PEG emerges from the droplet by drying-out of the solvent. Even though these two mechanisms appear to be phenomenologically similar to the widely accepted ion-evaporation and charge-residue mechanisms, they have fundamental differences from those. An integral part of the mechanism that the macromolecular ions emerge from droplets is the droplet morphology. Droplet morphologies give rise to different solvation interactions between the solvent and the macromolecule. In the water-sodiated PEG system, we find the extrusion of the PEG morphology, while in methanol-sodiated droplet, we find the "pearl-on-the-necklace" morphology and the extrusion of the sodiated PEG in the last stage of the desolvation process. These findings provide insight into the mechanisms that macromolecules acquire their charge in droplets produced in electrospray ionization experiments.

  5. A Comprehensive Study of Photorefractive Properties in Poly(ethylene glycol Dimethacrylate— Ionic Liquid Composites

    Directory of Open Access Journals (Sweden)

    Mostafa A. Ellabban

    2016-12-01

    Full Text Available A detailed investigation of the recording, as well as the readout of transmission gratings in composites of poly(ethylene glycol dimethacrylate (PEGDMA and ionic liquids is presented. Gratings with a period of about 5.8 micrometers were recorded using a two-wave mixing technique with a coherent laser beam of a 355-nm wavelength. A series of samples with grating thicknesses d 0 = 10 … 150 micrometers, each for two different exposure times, was prepared. The recording kinetics, as well as the post-exposure properties of the gratings were monitored by diffracting a low intensity probe beam at a wavelength of 633 nm for Bragg incidence. To obtain a complete characterization, two-beam coupling experiments were conducted to clarify the type and the strength of the recorded gratings. Finally, the diffraction efficiency was measured as a function of the readout angle at different post-exposure times. We found that, depending on the parameters, different grating types (pure phase and/or mixed are generated, and at elevated thicknesses, strong light-induced scattering develops. The measured angular dependence of the diffraction efficiency can be fitted using a five-wave coupling theory assuming an attenuation of the gratings along the thickness. For grating thicknesses larger than 85 microns, light-induced scattering becomes increasingly important. The latter is an obstacle for recording thicker holograms, as it destroys the recording interference pattern with increasing sample depth. The obtained results are valuable in particular when considering PEGDMA-ionic liquid composites in the synthesis of advanced polymer composites for applications, such as biomaterials, conductive polymers and holographic storage materials.

  6. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation.

    Science.gov (United States)

    Weaver, Jessica D; Headen, Devon M; Hunckler, Michael D; Coronel, Maria M; Stabler, Cherie L; García, Andrés J

    2018-07-01

    The use of immunoisolating macrodevices in islet transplantation confers the benefit of safety and translatability by containing transplanted cells within a single retrievable device. To date, there has been limited development and characterization of synthetic poly(ethylene glycol) (PEG)-based hydrogel macrodevices for islet encapsulation and transplantation. Herein, we describe a two-component synthetic PEG hydrogel macrodevice system, designed for islet delivery to an extrahepatic islet transplant site, consisting of a hydrogel core cross-linked with a non-degradable PEG dithiol and a vasculogenic outer layer cross-linked with a proteolytically sensitive peptide to promote degradation and enhance localized vascularization. Synthetic PEG macrodevices exhibited equivalent passive molecular transport to traditional microencapsulation materials (e.g., alginate) and long-term stability in the presence of proteases in vitro and in vivo, out to 14 weeks in rats. Encapsulated islets demonstrated high viability within the device in vitro and the incorporation of RGD adhesive peptides within the islet encapsulating PEG hydrogel improved insulin responsiveness to a glucose challenge. In vivo, the implementation of a vasculogenic, degradable hydrogel layer at the outer interface of the macrodevice enhanced vascular density within the rat omentum transplant site, resulting in improved encapsulated islet viability in a syngeneic diabetic rat model. These results highlight the benefits of the facile PEG platform to provide controlled presentation of islet-supportive ligands, as well as degradable interfaces for the promotion of engraftment and overall graft efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The effect of polyethylene glycol on intake of Mediterranean shrubs by sheep and goats.

    Science.gov (United States)

    Rogosic, J; Pfister, J A; Provenza, F D; Pavlicevic, J

    2008-12-01

    Poor nutritional quality and increased content of secondary compounds can reduce consumption of Mediterranean shrubs by herbivores. In 2 sequential trials, we examined the effect of polyethylene glycol (PEG) and number of shrub species offered on daily intake of Mediterranean shrubs by 12 sheep and 12 goats. The PEG (25 g) was fed to experimental animals with barley. In trial 1 (6 shrubs), goats ate more (P = 0.0008) daily total shrub biomass than did sheep (60.7 vs. 45.9 +/- 2.6 g/kg of BW). There was a trend (P = 0.08) toward a positive PEG effect on total shrub intake, with PEG-supplemented animals consuming more total shrubs than controls (56.7 vs. 50.0 +/- 2.6 g/kg of BW). Trial 2 (using 3 shrubs) was a continuation of trial 1, except that animals were given less barley and treatment animals were given more PEG (50 g). Both sheep and goats showed a numerical decrease in total shrub intake from trial 1 to trial 2. Sheep receiving PEG ate more (P = 0.002) total shrubs than did controls, but no PEG effect was found for goats. Thus, PEG had a greater influence on sheep than goats when only 3 shrubs were offered, a result that may be related to the fact that fewer shrubs with complementary secondary compounds were offered and that goats appear to have a greater ability to consume and detoxify secondary compounds from Mediterranean shrubs. Overall, as the number and diversity of shrubs offered increased, supplemental PEG had less effect on increasing intake for both goats and sheep.

  8. Entrapping quercetin in silica/polyethylene glycol hybrid materials: Chemical characterization and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Nocera, Paola; Piccolella, Simona; Pacifico, Severina [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2016-11-01

    Sol-gel synthesis was exploited to entrap quercetin, a natural occurring antioxidant polyphenol, in silica-based hybrid materials, which differed in their polyethylene glycol (PEG) content (6, 12, 24 and 50 wt%). The materials obtained, whose nano-composite nature was ascertained by Scanning Electron Microscopy (SEM), were chemically characterized by Fourier Transform InfraRed (FT-IR) and UV-Vis spectroscopies. The results prove that a reaction between the polymer and the drug occurred. Bioactivity tests showed their ability to induce hydroxyapatite nucleation on the sample surfaces. The direct contact method was applied to screen the cytotoxicity of the synthetized materials towards fibroblast NIH 3T3 cells, commonly used for in vitro biocompatibility studies, and three nervous system cell lines (neuroblastoma SH-SY5Y, glioma U251, and pheochromocytoma PC12 cell lines), adopted as models in oxidative stress related studies. Using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay NIH 3T3 proliferation was assessed and the morphology was not compromised by direct exposure to the materials. Analogously, PC-12, and U-251 cell lines were not affected by new materials. SH-SY5Y appeared to be the most sensitive cell line with cytotoxic effects of 20–35%. - Highlights: • SiO{sub 2}/PEG quercetin organic-inorganic hybrids were synthesized via sol-gel. • The formation of apatite on materials surface after SBF proved their bioactivity. • Viability of NIH-3T3 cells was significantly increased by exposure to the hybrids. • Viability of PC-12 and U-251 cell lines was not affected by new materials. • SH-SY5Y cell proliferation was inhibited and their morphology was changed by hybrids.

  9. Plasma cortisol radioimmunoassay with 125I-cortisol and polyethylene glycol

    International Nuclear Information System (INIS)

    Nishi, Keiko; Ogihara, Toshio; Miyai, Kiyoshi; Kumahara, Yuichi; Ishibashi, Kaichiro.

    1976-01-01

    A new, convenient, and less time-consuming plasma cortisol radioimmunoassay was set up. An antibody raised to cortisol-21-hemisuccinate-BSA was used at a 1: 6400 dilution. Because of its relatively high specificity, direct assay was possible. The main points of improvement were as follows, 125 I-cortisol was used as the labelled compound, B-F separation was done with polyethylene glycol, the effect of endogeneous corticosteroid binding globulin (CBG) was avoided by the use of 0.6% glutamate buffer pH 3.3 treatment. It was found that by the omission of heat treatment it was possible to avoid this CBG effect. The minimum detectable concentration was 0.1 mg/tube, and the assay range was 1 to 80 μg/dl plasma when a 10 μl sample was used. Precision and accuracy were satisfactory. Coefficient of variance for intraassay and interassay were 6.0% at 12.1 μg/dl, 3.8% at 36.6 μg/dl and 7.5% at 10.2 μg/dl, 6.7% at 41.8 μg/dl respectively. Data obtained by this method, by Murphy's CPBA method, and by other commercial RIA methods were quite comparable. The mean value of serum cortisol (8:30 - 11:30) in normal subjects was 7.7 +- 3.4 μg/dl (m +- S.D., n=102). Mean value of serum cortisol was decreased slightly but significantly with age. (auth.)

  10. Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films.

    Science.gov (United States)

    Ahmed, Jasim; Varshney, Sunil K; Auras, Rafael; Hwang, Sung W

    2010-10-01

    The melt rheology and thermal properties of polylactide (PLA)-based nanocomposite films that were prepared by solvent casting method with L-PLA, polyethylene glycol (PEG), and montmorillonite clay were studied. The neat PLA showed predominantly solid-like behavior (G' > G″) and the complex viscosity (η*) decreased systematically as the temperature increased from 184 to 196 °C. The elastic modulus (G') of PLA/clay blend showed a significant improvement in the magnitude in the melt, while clay concentration was at 6% wt or higher. At similar condition, PEG dramatically reduced dynamic modulii and complex viscosity of PLA/PEG blend as function of concentration. A nanocomposite blend of PLA/PEG/clay (74/20/6) when compared to the neat polymer and PLA/PEG blend exhibited intermediate values of elastic modulus (G') and complex viscosity (η*) with excellent flexibility. Thermal analysis of different clay loading blends indicated that the melting temperature (T(m)) and glass transition temperature (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) and the T(m) of the blends (PLA/PEG and PLA/PEG/clay) significantly, however, crystallinity increased in the similar condition. The transmission electron microscopy (TEM) image of nanocomposite films indicated good compatibility between PLA and PEG, whereas clay was not thoroughly distributed in the PLA matrix and remained as clusters. The percent crystallinity obtained by X-ray was significantly higher than that of differential scanning calorimeter (DSC) data for PLA.

  11. Thermodynamics of single polyethylene and polybutylene glycols with hydrogen-bonding ends: A transition from looped to open conformations

    Science.gov (United States)

    Lee, Eunsang; Paul, Wolfgang

    2018-02-01

    A variety of linear polymer precursors with hydrogen bonding motifs at both ends enable us to design supramolecular polymer systems with tailored macroscopic properties including self-healing. In this study, we investigate thermodynamic properties of single polyethylene and polybutylene glycols with hydrogen bonding motifs. In this context, we first build a coarse-grained model of building blocks of the supramolecular polymer system based on all-atom molecular structures. The density of states of the single precursor is obtained using the stochastic approximation Monte Carlo method. Constructing canonical partition functions from the density of states, we find the transition from looped to open conformations at transition temperatures which are non-monotonously changing with an increasing degree of polymerization due to the competition between chain stiffness and loop-forming entropy penalty. In the complete range of chain length under investigation, a coexistence of the looped and open morphologies at the transition temperature is shown regardless of whether the transition is first-order-like or continuous. Polyethylene and polybutylene glycols show similar behavior in all the thermodynamic properties but the transition temperature of the more flexible polybutylene glycol is shown to change more gradually.

  12. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    Science.gov (United States)

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  13. Partial molar volumes of organic solutes in water. XXVIII. Three aliphatic poly(ethylene glycols) at temperatures T = 298 K–573 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan

    2017-01-01

    Highlights: • Standard molar volumes of three poly(ethylene glycols) in water are presented. • Data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Data are analyzed and compared with those of similar solutes. - Abstract: Densities of dilute aqueous solutions of three poly(ethylene glycols): 3-oxapentane-1,5-diol (diethylene glycol), 3,6-dioxaoctane-1,8-diol (triethylene glycol), and 3,5,9-trioxaundecane-1,11-diol (tetraethylene glycol) measured in the temperature range from (298 to 573) K and at pressures up to 30 MPa using an automated flow vibrating-tube densimeter are reported. Standard molar volumes were evaluated from the measured data. Present data complement both the previous measurements performed at atmospheric pressure in the temperature range from (278 to 343) K and the data already available for the first member of the homologous series (ethylene glycol). A comparison with data previously measured for the homologous series of linear aliphatic polyethers (poly(ethylene glycol) dimethyl ethers, glymes), diethylene glycol monomethyl ether (3,6-dioxaheptan-1-ol), and selected alkane-α,ω-diols is presented.

  14. Effect of temperature and aging time on the rheological behavior of aqueous poly(ethylene glycol)/Laponite RD dispersions.

    Science.gov (United States)

    Morariu, Simona; Bercea, Maria

    2012-01-12

    The viscoelastic properties of 2% poly(ethylene glycol) aqueous solutions containing Laponite RD from 1% to 4% were investigated by oscillatory and flow measurements in the temperature range of 15-40 °C. The enhancement of the clay content from mixture causes the increase of the viscoelastic moduli and the change of the flow from liquid-like behavior (Maxwellian fluid) to a solid-like one at a set temperature. The longest relaxation times (τ(1)) of the mixtures with low clay concentrations (1% and 2%) are not affected by changes in temperature unlike the samples having high content of clay at which τ(1) increases above 30 °C and below 17.5 °C. The characteristic behavior of the mixtures with the high clay concentration could be explained by considering the effect of Brownian motion on the network structure formed in these dispersions as well as by the poor solubility of poly(ethylene glycol) in water at high temperatures. The flow activation energy was determined and discussed. An abrupt increase of the flow activation energy was evidenced between 2% and 3% Laponite RD. The rheological measurements carried out at different rest times showed a decrease of the gelation time from 1 week to 2 h when the clay concentration increases from 2% to 4%. The aging kinetics of poly(ethylene glycol)/Laponite RD/water mixtures, investigated at 25 °C, revealed the increase of the viscosity-rate kinetic constant by increasing the clay concentration.

  15. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov.

    Science.gov (United States)

    Schink, B; Stieb, M

    1983-06-01

    The synthetic polyether polyethylene glycol (PEG) with a molecular weight of 20,000 was anaerobically degraded in enrichment cultures inoculated with mud of limnic and marine origins. Three strains (Gra PEG 1, Gra PEG 2, and Ko PEG 2) of rod-shaped, gram-negative, nonsporeforming, strictly anaerobic bacteria were isolated in mineral medium with PEG as the sole source of carbon and energy. All strains degraded dimers, oligomers, and polymers of PEG up to a molecular weight of 20,000 completely by fermentation to nearly equal amounts of acetate and ethanol. The monomer ethylene glycol was not degraded. An ethylene glycol-fermenting anaerobe (strain Gra EG 12) isolated from the same enrichments was identified as Acetobacterium woodii. The PEG-fermenting strains did not excrete extracellular depolymerizing enzymes and were inhibited by ethylene glycol, probably owing to a blocking of the cellular uptake system. PEG, some PEG-containing nonionic detergents, 1,2-propanediol, 1,2-butanediol, glycerol, and acetoin were the only growth substrates utilized of a broad variety of sugars, organic acids, and alcohols. The isolates did not reduce sulfate, sulfur, thiosulfate, or nitrate and were independent of growth factors. In coculture with A. woodii or Methanospirillum hungatei, PEGs and ethanol were completely fermented to acetate (and methane). A marine isolate is described as the type strain of a new species, Pelobacter venetianus sp. nov. Its physiology and ecological significance, as well as the importance and possible mechanism of anaerobic polyether degradation, are discussed.

  16. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels

    Science.gov (United States)

    Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

    2008-01-01

    Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

  17. Fermentative Degradation of Polyethylene Glycol by a Strictly Anaerobic, Gram-Negative, Nonsporeforming Bacterium, Pelobacter venetianus sp. nov

    OpenAIRE

    1983-01-01

    The synthetic polyether polyethylene glycol (PEG) with a molecular weight of 20,000 was anaerobically degraded in enrichment cultures inoculated with mud of limnic and marine origins. Three strains (Gra PEG 1, Gra PEG 2, and Ko PEG 2) of rod-shaped, gram-negative, nonsporeforming, strictly anaerobic bacteria were isolated in mineral medium with PEG as the sole source of carbon and energy. All strains degraded dimers, oligomers, and polymers of PEG up to a molecular weight of 20,000 completely...

  18. Novel solid – solid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Directory of Open Access Journals (Sweden)

    Wojda Marta

    2014-01-01

    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  19. Efficacy and Safety of Combined Oral and Enema Therapy Using Polyethylene Glycol 3350-Electrolyte for Disimpaction in Pediatric Constipation

    OpenAIRE

    Yoo, Taeyeon; Bae, Sun Hwan

    2017-01-01

    Purpose We evaluated the efficacy and safety of combined oral and enema therapy using polyethylene glycol (PEG) 3350 with electrolyte solution for disimpaction in hospitalized children. Methods We retrospectively studied 28 children having functional constipation who received inpatient treatment between 2008 and 2016. The amount of oral PEG 3350 electrolyte solution administered was 50–70 mL/kg/d (PEG 3350, 3–4.1 g/kg/d), and an enema solution was administered 1–2 times a day as a single dose...

  20. Permeabilization of ultraviolet-irradiated chinese hamster cells with polyethylene glycol and introduction of ultraviolet endonuclease from Micrococcus luteus

    International Nuclear Information System (INIS)

    Yarosh, D.B.; Setlow, R.B.

    1981-01-01

    Chinese hamster V-79 cells were made permeable by treatment with polyethylene glycol and then incubated with a Micrococcus luteus extract containing ultraviolet-specific endonuclease activity. This treatment introduced nicks in irradiated, but not in unirradiated, deoxyribonucleic acid. The nicks remained open for at least 3 h; there was no loss of endonuclease-sensitive sites, and no excision of dimers as measured by chromatography was detected. In addition, there was no increase in ultraviolet resistance in treated cells. This suggests that the absence of a significant amount of excision repair in rodent cells is due to the lack of both incision and excision capacity

  1. Preparation and performance of novel polyvinylpyrrolidone/polyethylene glycol phase change materials composite fibers by centrifugal spinning

    Science.gov (United States)

    Zhang, Xiaoguang; Qiao, Jiaxin; Zhao, Hang; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Wu, Xiaowen; Min, Xin

    2018-01-01

    Currently, phase change materials (PCMs) composite fibers are typically prepared by electrospinning. However, electrospinning exhibits safety concerns and a low production rate, which limit its practical applications as a cost-effective fiber fabrication approach. Therefore, a novel, and simple centrifugal spinning technology is employed to extrude fibers from composite solutions using a high-speed rotary and perforated spinneret. The composite fibers based on polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) were prepared by centrifugal spinning. The SEM of PVP/PEG composite fibers indicated that the fibrous morphology is well preserved. The DSC and TGA indicated that PVP/PEG composite fibers exhibit good thermal properties.

  2. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. [Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of {alpha}-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for {beta}-amylase. (author)

  3. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. (Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering)

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of [alpha]-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for [beta]-amylase. (author)

  4. Synthesis of Monodispersed Gold Nanoparticles with Exceptional Colloidal Stability with Grafted Polyethylene Glycol-g-polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Alaaldin M. Alkilany

    2015-01-01

    Full Text Available Herein, we report the synthesis of spherical gold nanoparticles with tunable core size (23–79 nm in the presence of polyethylene glycol-g-polyvinyl alcohol (PEG-g-PVA grafted copolymer as a reducing, capping, and stabilizing agent in a one-step protocol. The resulted PEG-g-PVA-capped gold nanoparticles are monodispersed with an exceptional colloidal stability against salt addition, repeated centrifugation, and extensive dialysis. The effect of various synthesis parameters and the kinetic/mechanism of the nanoparticle formation are discussed.

  5. A molecular dynamics study of the structure and inter-particle interactions of polyethylene glycol-conjugated PAMAM dendrimers

    OpenAIRE

    Lee, Hwankyu; Larson, Ronald G.

    2009-01-01

    We performed molecular dynamics (MD) simulations of one or two copies of polyethylene glycol of molecular weight 550 (PEG550) and 5000 (PEG5000) Daltons, conjugated to generation 3 (G3) to 5 (G5) polyamidoamine (PAMAM) dendrimers with explicit water using a coarse-grained model. We found the radii of gyration of these dendrimer-PEG molecules to be close to those measured in experiments by Hedden and Bauer (Macromolecules 2003, 36, 1829). Densely grafted PEG ligands (>50% of the dendrimer surf...

  6. Polyethylene glycol and polyvinylpirrolidone effect on bacterial rRNA extraction and hybridization from cells exposed to tannins.

    OpenAIRE

    ARCURI, P.B.; THONNEY, M.L.; SCHOFIELD, P.; PELL, A.N.

    2003-01-01

    In order to detect fluctuations in ruminal microbial populations due to forage tannins using 16S ribosomal RNA (rRNA) probes, recovery of intact rRNA is required. The objective of this work was to evaluate the effect of polyethylene glycol (PEG) and polyvinylpirrolidone (PVP) on extraction of bacterial rRNA, in the presence of tannins from tropical legume forages and other sources, that hybridize with oligonucleotide probes. Ruminococcus albus 8 cells were exposed to 8 g/L tannic acid or 1 g/...

  7. Thermodynamic modelling of phase equilibrium for water + poly(Ethylene glycol + salt aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    R.A.G. Sé

    2002-04-01

    Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.

  8. Degradation of polyethylene glycol by the integration of chemical and biological treatment; Degradacion de polietilenglicos 10.000 mediante tratamiento integrado quimico-biologico

    Energy Technology Data Exchange (ETDEWEB)

    Otal, E.; Mantzavinos, D.; Lebrato, J. [Universidad de Sevilla (Spain)

    2001-07-01

    Biodegradation of polyethylene glycol 10.000 molecular weight or higher presented problems, therefore suggesting that integration of chemical and biological treatments, to achieve complete degradation from these sizes of polyethylene glycol may be advisable. Integration of wet air oxidation and aerobic biological treatments of polyethylene glycol 10.000 was investigated. The organic compound, used as the sole carbon and energy source, was partially oxidized in a high pressure reactor achieving a 7% of total organic carbon removal. Enhanced biodegradability was assessed by comparing total organic carbon removal using an Aerobic Continuous-flow Stirred Reactor fed with untreated original organic or previously oxidized samples. the reactor operated at steady-state at loading rates of total organic carbon of 69 mg L-1 d-1 for untreated polyethylene glycol 10.000, and 520 mg L-1 d-1 for wet air oxidation-treated polyethylene glycol 10.000, reaching yields of 68 % and 82% of total organic carbon removal, respective. Even using a retention time 8-fold shorter, total organic carbon removal from the wet air oxidation-treated sample was higher than that from the untreated one. therefore, previous wet air oxidation treatment may improve efficiency of conventional biological treatment of industrial wastewaters containing this organic compound. (Author) 18 refs.

  9. Kinetic studies of uranyl ion adsorption on acrylonitrile (AN)/polyethylene glycol (PEG) interpenetrating networks (IPN)

    International Nuclear Information System (INIS)

    Aycik, G.A.; Gurellier, R.

    2004-01-01

    Full text: The kinetics of the adsorption of uranyl ions on amidoximated acrylonitrile (AN)/ polyethylene glycol (PEG) interpenetrating network (IPNs) from aqueous solutions was studied as a function of time and temperature. The IPNs were prepared by irradiation initiated gamma polymerisation using Co-60 gamma source. Adsorption capacities were performed for definite uranyl ion concentrations of 1x10 -2 M and at four different temperatures as 290K, 298K, 308K and 318K by gamma spectrometer. Adsorption time was increased from zero to 48 hours. The results indicate that adsorption capacity increases linearly with increasing temperature. Temperature and agitation hardly influence equilibrium and kinetics and decreasing of temperature results in a slightly greater time to reach equilibrium. The adsorption of uranyl ions has been studied in a multi step mechanism processes thus comparing chemical sorption and diffusion sorption processes. The experimental data was analysed using various kinetic models to determine the best-fit equation for the adsorption mechanisms. However, it was shown that all models, in general according to the reaction time and uranyl ion concentration in the solution, could describe the adsorption of uranyl ion onto amidoximated IPN, the adsorption kinetics was best described by zeroth order and intraparticle diffusion model whereas that of in increasing time by pseudo first and pseudo second order response respectively. External-intraparticle diffusion and zeroth order process in the IPN structure is proposed as a mass transfer mechanism and the results indicate a diffusion-controlled process. The Mean Activation Energy Of Uranyl Ions Adsorption Was Found As 4,1 Kj/Mole By Using Arrhenius Equation. The Rate Constant, The Equilibrium Adsorption Capacity And The Initial Adsorption Rate Were Calculated For All Models At Each Temperature. Kinetic Parameters Of All Models And The Normalized Standard Deviations Between The Measured And Predicted

  10. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products

    International Nuclear Information System (INIS)

    Fruijtier-Poelloth, Claudia

    2005-01-01

    This assessment focusses on polyethylene glycols (PEGs) and on anionic or nonionic PEG derivatives, which are currently used in cosmetics in Europe. These compounds are used in a great variety of cosmetic applications because of their solubility and viscosity properties, and because of their low toxicity. The PEGs, their ethers, and their fatty acid esters produce little or no ocular or dermal irritation and have extremely low acute and chronic toxicities. They do not readily penetrate intact skin, and in view of the wide use of preparations containing PEG and PEG derivatives, only few case reports on sensitisation reactions have been published, mainly involving patients with exposure to PEGs in medicines or following exposure to injured or chronically inflamed skin. On healthy skin, the sensitising potential of these compounds appears to be negligible. For some representative substances of this class, information was available on reproductive and developmental toxicity, on genotoxicty and carcinogenic properties. Taking into consideration all available information from related compounds, as well as the mode and mechanism of action, no safety concern with regard to these endpoints could be identified. Based on the available data it is therefore concluded that PEGs of a wide molecular weight range (200 to over 10,000), their ethers (laureths. ceteths, ceteareths, steareths, and oleths), and fatty acid esters (laurates, dilaurates, stearates, distearates) are safe for use in cosmetics. Limited data were available for PEG sorbitan/sorbitol fatty acid esters, PEG sorbitan beeswax and PEG soy sterols. Taking into account all the information available for closely related compounds, it can be assumed that these compounds as presently used in cosmetic preparations will not present a risk for human health. PEG castor oils and PEG hydrogenated castor oils have caused anaphylactic reactions when used in intravenous medicinal products. Their topical use in cosmetics is

  11. Photocurable surgical tissue adhesive glues composed of photoreactive gelatin and poly(ethylene glycol) diacrylate.

    Science.gov (United States)

    Nakayama, Y; Matsuda, T

    1999-01-01

    This article presents a novel photochemically driven surgical tissue adhesive technology using photoreactive gelatins and a water-soluble difunctional macromer (poly(ethylene glycol) diacrylate: PEGDA).The gelatins were partially derivatized with photoreactive groups, such as ultraviolet light (UV)-reactive benzophenone and visible light-reactive xanthene dye (e.g., fluorescein sodium salt, eosin Y, and rose bengal). A series of the prepared photocurable tissue adhesive glues, consisting of the photoreactive gelatin, PEGDA, and a saline solution with or without ascorbic acid as a reducing agent, were viscous solutions under warming, and their effectiveness was evaluated as hemostasis- and anastomosis-aid in cardiovascular surgery. Regardless of the type of photoreactive groups, the irradiation of the photocurable tissue adhesive glues by UV or visible light within 1 min produced water-swollen gels, which had a high adhesive strength to wet collagen film. These were due to the synergistic action of photoreactive group-initiated photo-cross-linking and photograft polymerization. An increase in the irradiation time resulted in increased gel yield and reduced water swellability. A decrease in the molecular weight of PEGDA and an increase in concentration of both gelatin and PEGDA resulted in reduced water swellability and increased tensile and burst strengths of the resultant gels. In rats whose livers were injured with a trephine in laparotomy, the bleeding spots were coated with the photocurable adhesive glue and irradiated through an optical fiber. The coated solution was immediately converted to a swollen gel. The gel was tightly adhered to the liver tissue presumably by interpenetration, and concomitantly hemostasis was completed. The anastomosis treatment with the photocurable glue in the canine abdominal or thoracic aortas incised with a knife resulted in little bleeding under pulsatile flow after declamping. Histological examination showed that the glues

  12. Polyethylene Glycol Modified, Cross-Linked Starch Coated Iron Oxide Nanoparticles for Enhanced Magnetic Tumor Targeting

    Science.gov (United States)

    Cole, Adam J.; David, Allan E.; Wang, Jianxin; Galbán, Craig J.; Hill, Hannah L.; Yang, Victor C.

    2010-01-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140–190 nm) and relative PEG labeling (1.5% of surface amines – A5/D5, 0.4% – A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37°C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 hr) and D20 (11.75 hr) showing much longer half-lives than D (0.12 hr). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC0-∞ Sustained tumor exposure over 24 hours was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that both D5 and D20 are promising MNP platforms for enhanced magnetic tumor targeting, warranting further study in tumor models. PMID:21176955

  13. A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols

    Science.gov (United States)

    Krieger, Ulrich K.; Siegrist, Franziska; Marcolli, Claudia; Emanuelsson, Eva U.; Gøbel, Freya M.; Bilde, Merete; Marsh, Aleksandra; Reid, Jonathan P.; Huisman, Andrew J.; Riipinen, Ilona; Hyttinen, Noora; Myllys, Nanna; Kurtén, Theo; Bannan, Thomas; Percival, Carl J.; Topping, David

    2018-01-01

    To predict atmospheric partitioning of organic compounds between gas and aerosol particle phase based on explicit models for gas phase chemistry, saturation vapor pressures of the compounds need to be estimated. Estimation methods based on functional group contributions require training sets of compounds with well-established saturation vapor pressures. However, vapor pressures of semivolatile and low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique which is generally reported to be smaller than a factor of 2. At present, there is no general reference technique for measuring saturation vapor pressures of atmospherically relevant compounds with low vapor pressures at atmospheric temperatures. To address this problem, we measured vapor pressures with different techniques over a wide temperature range for intercomparison and to establish a reliable training set. We determined saturation vapor pressures for the homologous series of polyethylene glycols (H - (O - CH2 - CH2)n - OH) for n = 3 to n = 8 ranging in vapor pressure at 298 K from 10-7 to 5×10-2 Pa and compare them with quantum chemistry calculations. Such a homologous series provides a reference set that covers several orders of magnitude in saturation vapor pressure, allowing a critical assessment of the lower limits of detection of vapor pressures for the different techniques as well as permitting the identification of potential sources of systematic error. Also, internal consistency within the series allows outlying data to be rejected more easily. Most of the measured vapor pressures agreed within the stated uncertainty range. Deviations mostly occurred for vapor pressure values approaching the lower detection limit of a technique. The good agreement between the measurement techniques (some of which are sensitive to the mass

  14. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine-poly(ethylene glycol copolymers complexed to oligonucleotides

    Directory of Open Access Journals (Sweden)

    Wheatley Margaret A

    2009-04-01

    Full Text Available Abstract Antisense oligonucleotides (AOs have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine (PEI and non-ionic poly(ethylene glycol (PEG form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD.

  15. Biocompatibility Assessment of Polyethylene Glycol-Poly L-Lysine-Poly Lactic-Co-Glycolic Acid Nanoparticles In Vitro and In Vivo.

    Science.gov (United States)

    Guo, Liting; Chen, Baoan; Liu, Ran; Xia, Guohua; Wang, Yonglu; Li, Xueming; Wei, Chen; Wang, Xuemei; Jiang, Hulin

    2015-05-01

    The present study was designed to evaluate the biocompatibility of nanoparticles polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid copolymer (PLGA) (PEG-PLL-PLGA) before clinical application. We applied some tests to assess the safety of PEG-PLL-PLGA nanoparticles (NPs). There was low cytotoxicity of PEG-PLL-PLGA NPs in vitro as detected by MTT assay. Cell apoptosis and intracellular accumulation of PEG-PLL-PLGA were determined by FCM assay. The apoptotic rate induced by nanoparticles and the fluorescence intensity of intracellular daunorubicin (DNR) demonstrated that DNR-PEG-PLL-PLGA could be taken up by the mouse fibroblast cells (L929 cells). Hemolysis test and micronucleus (MN) assay demonstrated that the nanoparticles have no obviously blood toxicity and genotoxicity. DNR-PEG-PLL-PLGA NPs were injected into mice through tail vein to calculate the median lethal dose (LD50), the results showed that they had a wide safe scale. Blood was taken by removing the eyeball of mice to study the influence of DNR-PEG-PLL-PLGA in hepatic and renal functions. The results revealed that there was no significant difference as compared with the control group. Interestingly, the pathologic changes of heart, liver, spleen, lung and kidney were observed in nanoparticles treated mice. Thus, this study demonstrates that PEG-PLL-PLGA NPs appear to be highly biocompatible and safe nanoparticles that can be suitable for further application in the treatment of tumor.

  16. Elution behavior of poly(ethylene glycol) through poly(vinyl alcohol) gel column using several solvents as eluents

    International Nuclear Information System (INIS)

    Hirayama, Chuichi; Motozato, Yoshiaki; Matsumoto, Kazuaki.

    1983-01-01

    γ-Irradiated poly(vinyl alcohol) beads, which were sufficiently allowed to swell in water, were washed with methanol, and then were packed into column. Gel chromatography was performed using methanol, benzene, esters and ketones as eluents and poly(ethylene glycol) as a sample. When the elution was carried out using methanol and benzene as eluents, elution behavior of samples was ordinary. When ethyl formate, methyl acetate and ethyl propionate were used as eluents, samples were slightly adsorbed and the elution was delayed. In the case the elution was carried out using ethyl acetate, propyl acetate, butyl acetate and ethyl methyl ketone as eluents, samples were adsorbed strongly on the bed material, and the adsorption curve was analogous to the calibration curve using methanol as an eluent. Dried poly(vinyl alcohol) gel as a packing material, showed ordinary elution behaviors for the samples. The adsorption of poly(ethylene glycol) on the present bed material was attributed to the existence of hydrated water on poly(vinyl alcohol) gel matrix. (author)

  17. Separation and quantitation of polyethylene glycols 400 and 3350 from human urine by high-performance liquid chromatography.

    Science.gov (United States)

    Ryan, C M; Yarmush, M L; Tompkins, R G

    1992-04-01

    Polyethylene glycol 3350 (PEG 3350) is useful as an orally administered probe to measure in vivo intestinal permeability to macromolecules. Previous methods to detect polyethylene glycol (PEG) excreted in the urine have been hampered by inherent inaccuracies associated with liquid-liquid extraction and turbidimetric analysis. For accurate quantitation by previous methods, radioactive labels were required. This paper describes a method to separate and quantitate PEG 3350 and PEG 400 in human urine that is independent of radioactive labels and is accurate in clinical practice. The method uses sized regenerated cellulose membranes and mixed ion-exchange resin for sample preparation and high-performance liquid chromatography with refractive index detection for analysis. The 24-h excretion for normal individuals after an oral dose of 40 g of PEG 3350 and 5 g of PEG 400 was 0.12 +/- 0.04% of the original dose of PEG 3350 and 26.3 +/- 5.1% of the original dose of PEG 400.

  18. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO2/polyethylene glycol mixture

    International Nuclear Information System (INIS)

    Zhang, Jie; Wang, Zhiwei; Zhang, Xingran; Zheng, Xiang; Wu, Zhichao

    2015-01-01

    Graphical abstract: - Highlights: • Nano-TiO 2 /polyethylene glycol (PEG) mixture was used to modify PVDF membranes. • The steric hindrance effects of PEG enabled the dispersion of nanoparticles. • The energy barrier between SMP and modified membranes was increased. • The modification by nano-TiO 2 /PEG well improved the anti-fouling ability. - Abstract: Titanium dioxide (TiO 2 ) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO 2 nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO 2 was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane

  19. A new polyethylene glycol fiber prepared by coating porous zinc electrodeposited onto silver for solid-phase microextraction of styrene

    International Nuclear Information System (INIS)

    Sungkaew, Sakchaibordee; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2010-01-01

    A new polyethylene glycol fiber was developed for solid-phase microextraction (SPME) of styrene by electrodepositing porous Zn film on Ag wire substrate followed by coating with polyethylene glycol sol-gel (Ag/Zn/PEG sol-gel fiber). The scanning electron micrographs of fibers surface revealed a highly porous structure. The extraction property of the developed fiber-to-styrene residue from polystyrene packaged food was investigated by headspace solid-phase microextraction (HS-SPME) and analyzed with a gas chromatograph coupled with flame ionization detection (GC-FID). The new Ag/Zn/PEG sol-gel fiber is simple to prepare, low cost, robust, has high thermal stability and long lifetime, up to 359 extractions. Repeatability of one fiber (n = 6) was in the range of 4.7-7.5% and fiber-to-fiber reproducibility (n = 4) for five concentration values were in the range 3.4-10%. This Ag/Zn/PEG sol-gel fiber was compared to two commercial SPME fibers, 75 μm carboxen/polydimethylsiloxane (CAR/PDMS) and 100 μm polydimethylsiloxane (PDMS). Under their optimum conditions, Ag/Zn/PEG sol-gel fiber showed the highest sensitivity and the lowest detection limit at 0.28 ± 0.01 ng mL -1 .

  20. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO{sub 2}/polyethylene glycol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Wang, Zhiwei, E-mail: zwwang@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zhang, Xingran [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zheng, Xiang, E-mail: zhengxiang7825@163.com [School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 (China); Wu, Zhichao [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China)

    2015-08-01

    Graphical abstract: - Highlights: • Nano-TiO{sub 2}/polyethylene glycol (PEG) mixture was used to modify PVDF membranes. • The steric hindrance effects of PEG enabled the dispersion of nanoparticles. • The energy barrier between SMP and modified membranes was increased. • The modification by nano-TiO{sub 2}/PEG well improved the anti-fouling ability. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO{sub 2} nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO{sub 2} was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane.

  1. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection

    Directory of Open Access Journals (Sweden)

    Li B

    2014-10-01

    Full Text Available Bo Li,1,2 Xiao-Yong Zhang,1 Jian-Zhong Yang,1 Yu-Jie Zhang,1 Wen-Xin Li,1 Chun-Hai Fan,1 Qing Huang1 1Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 2Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China Abstract: In this study, we assessed the in vivo behavior and toxicology of nanoscale graphene oxide (NGO in mice after intravenous injection. The influence of a polyethylene glycol (PEG coating on the distribution and toxicity of the NGO was also investigated. The results show that NGO is mainly retained in the liver, lung, and spleen. Retention in the lung is partially due to NGO aggregation. The PEG coating reduces the retention of NGO in the liver, lung, and spleen and promotes the clearance of NGO from these organs, but NGO and NGO-PEG are still present after 3 months. The PEG coating effectively reduces the early weight loss caused by NGO and alleviates NGO-induced acute tissue injuries, which can include damage to the liver, lung, and kidney, and chronic hepatic and lung fibrosis. Keywords: graphene oxide, biodistribution, toxicity, polyethylene glycol

  2. Facile synthesis of thiol-polyethylene glycol functionalized magnetic titania nanomaterials for highly efficient enrichment of N-linked glycopeptides.

    Science.gov (United States)

    Wang, Jiawen; Yao, Jizong; Sun, Nianrong; Deng, Chunhui

    2017-08-25

    As protein N-glycosylation involved in generation and development of various cancers and diseases, it is vital to capture glycopeptides from complex biological samples for biomarker discovery. In this work, by taking advantages of the interaction between titania and thiol groups, thiol-polyethylene glycol functionalized magnetic titania nanomaterials (denoted as Fe 3 O 4 @TiO 2 @PEG) were firstly fabricated as an excellent hydrophilic adsorbent of N-linked glycopeptides. On one hand, the special interaction of titanium-thiol makes the synthetic manipulation simple and provides a new idea for design and synthesis of novel nanomaterials; on the other hand, strong magnetic response could realize rapid separation and the outstanding hydrophilicity of polyethylene glycol makes Fe 3 O 4 @TiO 2 @PEG nanomaterials show superior performance for glycopeptides enrichment with ultralow limit of detection (0.1mol/μL) and high selectivity (1:100). As a result, 24 and 33 glycopeptides enriched from HRP and IgG digests were identified respectively by MALDI-TOF MS, and 300 glycopeptides corresponding to 106 glycoproteins were recognized from merely 2μL human serum, indicating a great potential of Fe 3 O 4 @TiO 2 @PEG nanomaterials for glycoproteomic research. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Liver-targeting Resibufogenin-loaded poly(lactic-co-glycolic acid-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy

    Directory of Open Access Journals (Sweden)

    Chu QC

    2016-01-01

    Full Text Available Qiuchen Chu,1,* Hong Xu,2,* Meng Gao,1 Xin Guan,1 Hongyan Liu,1 Sa Deng,1 Xiaokui Huo,1 Kexin Liu,1 Yan Tian,1 Xiaochi Ma1 1College of Pharmacy, 2College of Basic Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China *These authors contributed equally to this work Abstract: Liver cancer remains a major problem around the world. Resibufogenin (RBG is a major bioactive compound that was isolated from Chansu (also called toad venom or toad poison, which is a popular traditional Chinese medicine that is obtained from the skin secretions of giant toads. RBG has strong antitumor effects, but its poor aqueous solubility and its cardiotoxicity have limited its clinical use. The aim of this study was to formulate RBG-loaded poly(lactic-co-glycolic acid (PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RPTN to enhance the treatment of liver cancer. RPTN, RBG-loaded PLGA nanoparticle (RPN, and RBG/coumarin-6-loaded PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RCPTN were prepared. The cellular uptake of RCPTN by HepG2 and HCa-F cells was analyzed using confocal laser scanning microscopy. Apoptosis was induced in HepG2 cells by RPTN, RBG solution (RS, and 5-fluorouracil solution (used as the negative controls, as assayed using flow cytometry. LD50 (median lethal dose values were determined for RS and RPTN, and the liver-targeting properties were determined for RCPTN in intravenously injected mice. A pharmacokinetic study was conducted in rats, and the in vivo therapeutic effects of RPTN, RPN, and RS were examined in a mouse tumor model. The results showed that RCPTN simultaneously delivered both coumarin-6 and RBG into HepG2 and HCa-F cells. The ratio of apoptotic cells was increased in the RPTN group. The LD50 for RPTN was 2.02-fold higher than the value for RS. Compared to RS, RPTN and RPN both showed a significant difference in vivo not only in the pharmacodynamic study but also in

  4. Quaternary (liquid + liquid) equilibria of aqueous two-phase polyethylene glycol, poly-N-vinylcaprolactam, and KH{sub 2}PO{sub 4}: Experimental and the generalized Flory-Huggins theory

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Department of Physical Chemistry, Faculty of Chemistry, College of Science, University of Tehran, Enghelab Ave., Tehran 14155-6455 (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Zarrabi, Mona [Department of Physical Chemistry, Faculty of Chemistry, College of Science, University of Tehran, Enghelab Ave., Tehran 14155-6455 (Iran, Islamic Republic of)

    2008-06-15

    A quaternary (liquid + liquid) equilibrium study was performed to focus attention on the interaction parameters between poly-N-vinylcaprolactam (PVCL) and poly-ethylene glycol (PEG) as well as between other species. At first, the new experimental data of (liquid + liquid) equilibria for aqueous two-phase systems containing PEG, KH{sub 2}PO{sub 4}, and PVCL at T = 303.15 K have been determined. Then the Flory-Huggins theory with two electrostatic terms (the Debye-Huckel and the Pitzer-Debye-Huckel equations) has been generalized to correlate the phase behavior of the quaternary system. Good agreement has been found between experimental and calculated data from both models especially from the Pitzer-Debye-Huckel equation. Also an effort was done to compare the effect of temperature as well as addition of PVCL on the binodal curves of PEG, KH{sub 2}PO{sub 4}, and water. The effect of the type of salt on the binodals has been also studied, and the salting out power of the salts has been determined.

  5. Solvent effect on the extraction and transport of lithium ions by polyethylene glycols

    International Nuclear Information System (INIS)

    Mishra, D; Sharma, U

    1999-01-01

    Extraction of lithium picrate, 2,4-dinitrophenolate and 2-nitrophenolate and their transport through membranes by di-, tri- and tetraethylene glycols as carriers are studied. Organic solvents considered as extractants and liquid membranes in terms of lithium ions extraction and transfer are arranged in the following series: methylene chloride ≥ dichloroethane ≥ chloroform ≥ carbon tetrachloride. Diethylene glycol proved the most effective solvent for lithium ions extraction and transport [ru

  6. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    International Nuclear Information System (INIS)

    Tuyen Dao, Thi Phuong; Nguyen, To Hoai; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Dang, Mau Chien

    2014-01-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1 H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100–300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix. (paper)

  7. Laxation of critically ill patients with lactulose or polyethylene glycol : a two-center randomized, double-blind, placebo-controlled trial

    NARCIS (Netherlands)

    van der Spoel, Johan I; Oudemans-van Straaten, Heleen M; Kuiper, Michael A; van Roon, Eric N; Zandstra, Durk F; van der Voort, Peter H J

    2007-01-01

    OBJECTIVE: To study whether lactulose or polyethylene glycol is effective to promote defecation in critically ill patients, whether either of the two is superior, and whether the use of enteral laxatives is related to clinical outcome. DESIGN: Double-blind, placebo-controlled, randomized study.

  8. Evaluation of poly(ethylene glycol)-coated monodispersed magnetic poly(2-hydroxyethyl methacrylate) and poly(glycidyl methacrylate) microspheres by PCR

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hlídková, Helena; Trachtová, Š.; Šlouf, Miroslav; Rittich, B.; Španová, A.

    2015-01-01

    Roč. 68, July (2015), s. 687-696 ISSN 0014-3057 R&D Projects: GA ČR GAP206/12/0381; GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic microspheres * poly(ethylene glycol) * real-time PCR Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.485, year: 2015

  9. In situ forming poly(ethylene glycol)- Poly(L -lactide) hydrogels via michael addition: Mechanical properties, degradation, and protein release

    NARCIS (Netherlands)

    Buwalda, S.J.; Dijkstra, Pieter J.; Feijen, Jan

    2012-01-01

    Chemically crosslinked hydrogels are prepared at remarkably low macromonomer concentrations from 8-arm poly(ethylene glycol)-poly(L-lactide) star block copolymers bearing acrylate end groups (PEG-(PLLAn)8-AC, n = 4 or 12) and multifunctional PEG thiols (PEG-(SH)n, n = 2, 4, or 8) through a

  10. Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution

    NARCIS (Netherlands)

    Koops, G.H.; Liu, Y.; Liu, Y.; Strathmann, H.

    2003-01-01

    The preparation of polyethersulfone (PES) hollow fiber membranes has been studied using N-methylpyrrolidone (NMP) as solvent, polyethylene glycol 400 (PEG 400) as weak nonsolvent and water as strong nonsolvent. When PEG 400 is used as polymeric additive to the spinning dope the viscosity of the PES

  11. In vivo and in vitro degradation of poly(ether ester) block copolymers based on poly(ethylene glycol) and poly(butylene terephthalate

    NARCIS (Netherlands)

    Deschamps, A.A.; van Apeldoorn, Aart A.; Hayen, H.; de Bruijn, Joost Dick; Karst, U.; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Two in vivo degradation studies were performed on segmented poly(ether ester)s based on polyethylene glycol (PEG) and poly(butylene terephthalate) (PBT) (PEOT/PBT). In a first series of experiments, the in vivo degradation of melt-pressed discs of different copolymer compositions were followed up

  12. Competitive time- and density-dependent adhesion of staphylococci and osteoblasts on crosslinked poly(ethylene glycol)-based polymer coatings in co-culture flow chambers

    NARCIS (Netherlands)

    Fernandez, Isabel C. Saldarriaga; Busscher, Henk J.; Metzger, Steve W.; Grainger, David W.; van der Mei, Henny C.

    Biomaterial-associated infections (BAI) remain a serious clinical complication, often arising from an inability of host tissue-implant integration to out-compete bacterial adhesion and growth. A commercial polymer coating based on polyethylene glycol (PEG), available in both chemically inert and

  13. Preparation of (Bi,Pb)2Sr2Ca2Cu3Ox precursor powders by a modified polyethylene glycol based sol-gel process

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Andersen, N.H.

    2002-01-01

    A modified sol-gel process based on polyethylene glycol has been developed for preparing (Bi,Pb)(2)Sr2Ca2Cu3Ox precursor powders in view of Ag-sheeted tape manufacture. A careful control of the pH and concentration temperature yields an amorphous gel, which can be converted to a fine and extremely...

  14. Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol

    DEFF Research Database (Denmark)

    Andishmand, Hashem; Mahnaz Tabibiazar; Mohammadifar, Mohammad Amin

    2017-01-01

    The aim of the present study was to develop chitosan-zinc-pectinate-polyethylene glycol (PEG) nanoparticles (NPs) for colon-targeted delivery of resveratrol. The effects of pectin:ZnCl2:chitosan (PZnC) % w/v, pH and ionic strength of media, and addition of PEG on the colloidal stability and release...

  15. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.; Rodionov, Valentin; Kü hn, Fritz; Reiser, Oliver

    2012-01-01

    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient

  16. Phase Diagrams of the Aqueous Two-Phase Systems of Poly(ethylene glycol/Sodium Polyacrylate/Salts

    Directory of Open Access Journals (Sweden)

    Adalberto Pessoa Junior

    2011-03-01

    Full Text Available Aqueous two-phase systems consisting of polyethylene glycol (PEG, sodium polyacrylate (NaPAA, and a salt have been studied. The effects of the polymer size, salt type (NaCl, Na2SO4, sodium adipate and sodium azelate and salt concentrations on the position of the binodal curve were investigated. The investigated PEG molecules had a molar mass of 2,000 to 8,000 g/mol, while that of NaPAA was 8,000 g/mol. Experimental phase diagrams, and tie lines and calculated phase diagrams, based on Flory-Huggins theory of polymer solutions are presented. Due to strong enthalpic and entropic balancing forces, the hydrophobicity of the added salt has a strong influence on the position of the binodal, which could be reproduced by model calculations.

  17. Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties

    International Nuclear Information System (INIS)

    Park, S.-E.; Nho, Y.-C.; Kim, H.-I.

    2004-01-01

    The pH-responsive copolymer hydrogels were prepared with the monomers of polyethylene glycol methacrylate and acrylic acid based on γ-ray irradiation technique. The gel content of these copolymer hydrogels varied depending on both the composition of monomers and the radiation dose. Maximum gel percent and degree of crosslinking were obtained at the composition of equal amount of comonomers. These copolymer hydrogels did not show any noticeable change in swelling at lower pH range. However they showed an abrupt increase in swelling at higher pH range due to the ionization of carboxyl groups. This pH-responsive swelling behavior was applied for the insulin carrier via oral delivery. Insulin-loaded copolymer hydrogels released most of their insulin in the simulated intestinal fluid which had a pH of 6.8 but not in the simulated gastric fluid which had a pH of 1.2

  18. Urticaria due to polyethylene glycol-3350 and electrolytes for oral solution in a patient with jejunal nodular lymphoid hyperplasia.

    Science.gov (United States)

    Zhang, Hongfeng; Henry, Winoah A; Chen, Lea Ann; Khashab, Mouen A

    2015-01-01

    Both jejunal nodular lymphoid hyperplasia (NLH) and polyethylene glycol (PEG)-3350 hypersensitivity are extremely rare. We describe a 30-year-old female who had previously taken a PEG-3350 bowel preparation without adverse effects, and presented for evaluation of chronic diarrhea. An upper and lower gastrointestinal endoscopy, and small bowel series were scheduled. PEG-3350 and electrolytes for oral solution was prescribed for bowel cleansing. During consumption of the bowel preparation she developed urticarial hypersensitivity. An alternative bowel preparation was used. Colonoscopy and upper endoscopy were normal, but small bowel series revealed innumerable sand-like lucencies in the jejunum. NLH was confirmed on biopsy from antegrade enteroscopy. This is the first case report on the pathological jejunal NLH in association with the PEG-3350 urticarial hypersensitivity. The potential pathophysiological etiology of this association is discussed.

  19. Prediction of liquid-liquid equilibria for polyethylene glycol based aqueous two-phase system by ASOG and UNIFAC method

    Directory of Open Access Journals (Sweden)

    M. Perumalsamy

    2009-03-01

    Full Text Available Liquid-Liquid equilibrium data were obtained for the polyethylene glycol2000(PEG2000-sodium citrate-water system at 298.15, 308.15 and 318.15 K. The effect of temperature on binodal and tie line data was studied and published in a previous article (Murugesan and Perumalsamy, 2005. The interaction parameters of ASOG and UNIFAC models were estimated using the LLE data of PEG2000-sodium citrate-water system and are used to predict the LLE data for PEG6000-sodium citrate-water system at 298.15, 308.15 and 318.15 K (literature data. The predicted LLE data by both ASOG and UNIFAC models showed good agreement with the experimental and literature data.

  20. High fluence deposition of polyethylene glycol films at 1064 nm by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.

    2007-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) has been applied for deposition of thin polyethylene glycol (PEG) films with infrared laser light at 1064 nm. We have irradiated frozen targets (of 1 wt.% PEG dissolved in water) and measured the deposition rate in situ with a quartz crystal 2...... microbalance. The laser fluence needed to produce PEG films turned out to be unexpectedly high with a threshold of 9 J/cm(2) and the deposition rate was much lower than that with laser light at 355 nm. Results from matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI......-TOF-MS) analysis demonstrate that the chemistry, molecular weight and polydispersity of the PEG films were identical to the starting material. Studies of the film surface with scanning electron microscopy (SEM) indicate that the Si-substrate is covered by a relatively homogenous PEG film with few bare spots. (c...

  1. Preparation of meloxicam-β-cyclodextrin-polyethylene glycol 6000 ternary system: characterization, in vitro and in vivo bioavailability.

    Science.gov (United States)

    Radia, Ourezki; Rogalska, Ewa; Moulay-Hassane, Guermouche

    2012-01-01

    Ternary complexes of meloxicam (ML), a poorly water-soluble anti-inflammatory drug, with β-cyclodextrin (βCD) and polyethylene glycol (PEG) 6000 were prepared from an equimolar (ML-βCD) and 10% of PEG. Characterization of the ternary complex was carried out by differential scanning calorimetry and X-ray diffractometry. The solubility of ML increased as a function of increasing the concentration of βCD and PEG 6000. Ternary system increased significantly ML solubility in water. Ternary complexes improved drug release compared with ML and ML-βCD. The oral bioavailability of ML-βCD-PEG was investigated by administration to rat and compared with ML and ML-βCD. The results confirmed that the oral bioavailability of ML was significantly improved by complexation with βCD in the presence of PEG.

  2. Effects of Polyethylene Glycol Spacer Length and Ligand Density on Folate Receptor Targeting of Liposomal Doxorubicin In Vitro

    Directory of Open Access Journals (Sweden)

    Kumi Kawano

    2011-01-01

    Full Text Available The folate receptor is an attractive target for selective tumor delivery of liposomal doxorubicin (DXR because it is abundantly expressed in a large percentage of tumors. This study examined the effect of polyethylene glycol (PEG spacer length and folate ligand density on the targeting ability of folate-modified liposomes. Liposomes were modified with folate-derivatized PEG-distearoylphosphatidylethanolamine with PEG molecular weights of 2000, 3400, or 5000. The association of DXR-loaded liposomes with KB cells, which overexpress the folate receptor, was evaluated by flow cytometry at various ratios of folate modification. A low ratio of folate modification with a sufficiently long PEG chain showed the highest folate receptor-mediated association with the cells, but did not show the highest in vitro cytotoxicity. DXR release from folate-modified liposomes in endosomes might be different. These findings will be useful for designing folate receptor-targeting carriers.

  3. Synthesis and characterization of Fe_3O_4 nanoparticles stabilized by polyvinylpyrrolidone / polyethylene glycol with variable mass ratios

    International Nuclear Information System (INIS)

    Silva, F.A.S. da; Campos, M.F. de; Rojas, E. E.G.

    2014-01-01

    Magnetic nanoparticles are devices able to optimize cancer treatments. In particular, magnetite nanoparticles are very effective in producing heat to cause lysis of tumor cells. However, in order that nanoparticles are internalized without causing damage to body they must be coated by biocompatible material. In this work, Fe_3O_4 nanoparticles were coated by a polymer blend: polyethylene glycol / polyvinylpyrrolidone. Some variations in mass ratio of polymer mixture were made. The effect of varying mass ratio in polymers was investigated. Samples were characterized by X-ray diffraction and Rietveld analysis. Moreover, hysteresis curves were analyzed. The results indicate good agreement between mass proportions used and physical and magnetic properties of nanocomposite. (author)

  4. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing

    International Nuclear Information System (INIS)

    Kweon, HaeYong; Yeo, Joo-hong; Lee, Kwang-gill; Lee, Hyun Chul; Na, Hee Sam; Won, Young Ho; Cho, Chong Su

    2008-01-01

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing

  5. Novel Shape-Stabilized Phase Change Materials Composed of Polyethylene Glycol/Nonsurfactant-Templated Mesoporous Silica: Preparation and Thermal Properties

    Science.gov (United States)

    Chen, Yan; Zhu, Yingying; Wang, Jinbao; Lv, Mengjiao; Zhang, Xiongjie; Gao, Junkai; Zhang, Zijun; Lei, Hao

    2017-12-01

    A novel shape-stabilized phase change material (PEG/TAMS), fabricated using tannic acid-templated mesoporous silica (TAMS) as a support for polyethylene glycol, was developed for thermal energy storage. The method used to synthesize TAMS was simple, cost effective, environmentally friendly, and free of surfactant. The characterization results indicated that PEG was physically absorbed to TAMS and that TAMS had no influence on the crystal structure of PEG. According to the TGA thermograms, PEG/TAMS has excellent thermal stability and can be applied over a wide temperature range. Additionally, the differential scanning calorimetry results suggested that PEG/TAMS has good thermal properties and that its fusion and solidification enthalpies reached 114.7 J/g and 102.4 J/g, respectively. The results indicated that PEG/TAMS has great potential for practical applications.

  6. Characterisation of the Polyethylene Glycol Impregnation of the Swedish Warship Vasa and one of the Danish Skuldelev Viking Ships

    DEFF Research Database (Denmark)

    Mortensen, M.N.; Egsgaard, Helge; Hvilsted, Søren

    2007-01-01

    The Swedish l7th century warship Vasa and the Danish Skuldelev Viking ships from the 1 lth century were impregnated with polyethylene glycol (PEG) in the 1960s. The molecular weight, amount and integrity of this PEG were investigated at a range of depths below the wood surface. Large amounts of PEG...... could be extracted from degraded parts of the ships but hardly any from sound parts. Mass spectrometry showed that PEG 4000 is present only in the surface layers of the wood, PEG 1500 and PEG 600 are present at all depths of the wood that has been treated with it. Low molecular weight PEG was detected...... in one of the Skuldelev ships by mass spectrometry and Size Exclusion Chromatography (SEC), it is argued that this is due to degradation of PEG 4000. SEC also showed that PEG 600 is the major PEG component in the Vasa which makes this particular object sensitive to changes in air humidity since PEG 600...

  7. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).

    Science.gov (United States)

    Zhao, Ziliang; Li, Qi; Ji, Xiangling; Dimova, Rumiana; Lipowsky, Reinhard; Liu, Yonggang

    2016-06-24

    Dextran and poly(ethylene glycol) (PEG) in phase separated aqueous two-phase systems (ATPSs) of these two polymers, with a broad molar mass distribution for dextran and a narrow molar mass distribution for PEG, were separated and quantified by gel permeation chromatography (GPC). Tie lines constructed by GPC method are in excellent agreement with those established by the previously reported approach based on density measurements of the phases. The fractionation of dextran during phase separation of ATPS leads to the redistribution of dextran of different chain lengths between the two phases. The degree of fractionation for dextran decays exponentially as a function of chain length. The average separation parameters, for both dextran and PEG, show a crossover from mean field behavior to Ising model behavior, as the critical point is approached. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Synthesis of Higher Alcohols via Syngas on Cu/Zn/Si Catalysts. Effect of Polyethylene Glycol Content

    Science.gov (United States)

    Cui, Rong-Ji; Yan, Xing; Fan, Jin-Chuan; Huang, Wei

    2018-05-01

    Cu/Zn/Si catalysts with different polyethylene glycol (PEG) content were prepared by a complete liquid-phase method, and characterized by XRD, H2-TPR, N2-adsorption, and XPS. The influence of PEG content on the higher alcohols synthesis from syngas was investigated. The results showed that addition of PEG can influence the texture and surface properties of the catalysts, and therefore affect their activity and product distribution. With an increase in PEG content, BET surface area, Cu crystallite size and surface active ingredient content of the catalysts first increased and then decreased, the CO conversion had similar variation tendency. However, the pore volume and pore diameter of the catalyst increased, and the binding energy of the active component and the content of Cu2O decreased, which resulted in higher catalyst selectivity towards higher alcohols. The highest C2+OH selectivity in total alcohols was 60.6 wt %.

  9. Long-term efficacy of polyethylene glycol 3350 for the treatment of chronic constipation in children with and without encopresis.

    Science.gov (United States)

    Pashankar, Dinesh S; Bishop, Warren P; Loening-Baucke, Vera

    2003-01-01

    Seventy-four children (43 with chronic constipation, 31 with constipation and encopresis) treated with polyethylene glycol 3350 (PEG) for longer than 3 months were studied to assess long-term efficacy. The mean duration of PEG therapy was 8.4 months (range, 3-30). Weekly stool frequency, stool consistency, and symptoms associated with constipation improved significantly with PEG therapy in all 74 patients. In 31 children with encopresis, soiling ceased completely in 16 patients and frequency of soiling decreased significantly in all others. The average effective long-term dose of PEG was 0.7 g/kg/day. Long-term PEG therapy is effective for the treatment of chronic constipation with and without encopresis in children.

  10. Amino acids and peptides. XXXII: A bifunctional poly(ethylene glycol) hybrid of fibronectin-related peptides.

    Science.gov (United States)

    Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Lem, K W; Mayumi, T

    1997-12-18

    An amino acid type poly(ethylene glycol) (aaPPEG) was prepared and its application to a drug carrier was examined. The peptides, Arg-Gly-Asp (RGD) and Glu-Ile-Leu-Asp-Val (EILDV) which were reported as active fragments of Fibronectin (a cell adhesion protein), were conjugated with aaPEG (molecular weight, 10,000). The hybrid, RGD-aaPEG-EILDV, was prepared by a combination of the solid-phase method and the solution method. Antiadhesive activity of the peptides was not lost by its hybrid formation with the large aaPEG molecule. A mixture of RGD (0.43 mmol) and EILDV (0.43 mmol) did not demonstrate an antiadhesive effect, but the hybrid containing 0.43 mmol of each peptide did exhibit this effect.

  11. Study of the reaction between polyethylene glycol and epoxy resins using N,N-dimethylbenzylamine as catalyst

    International Nuclear Information System (INIS)

    Zacharuk, Mario; Coelho, Luiz A.F.; Pezzin, Sergio H.; Becker, Daniela

    2009-01-01

    In this work the use of N,N-dimethylbenzylamine as a catalyst of the reaction of polyethylene glycol (PEG) and epoxy resin (DGEBA) was studied. The reaction products were evaluated by infra-red spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and viscosity measurements. Samples cured with a polyamine-based hardener were also submitted to tensile tests and differential scanning calorimetry (DSC). The results of the viscosity analyses, FTIR and RMN ( 1 H) had confirmed the occurrence of the reaction between DGEBA epoxy groups and PEG hydroxyl groups in the presence of N, N-dimethylbenzylamine as catalyst, at 100 deg C. DSC analyses and tensile tests of cured systems showed that the reaction of DGEBA with PEG leads to a reduction of the Tg, generating a more flexible material. (author)

  12. Calibration and validation of the {sup 14}C-labelled polyethylene glycol-binding assay for tannins in tropical browse

    Energy Technology Data Exchange (ETDEWEB)

    Mlambo, V. [Animal Production Unit, FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf (Austria)]. E-mail: vmlambo@agric.uniswa.sz; Makkar, H.P.S. [Animal Production and Health Section, Joint FAO/IAEA Division of Nuclear Techniques in Agriculture and Food, International Atomic Energy Agency, Vienna (Austria)

    2005-08-19

    This study evaluates the radiolabelled polyethylene glycol (PEG)-binding procedure [Silanikove, N., Shinder, D., Gilboa, N., Eyal, M., Nitsan, Z., 1996. Polyethylene glycol-binding to plant samples as an assay for the biological effects of tannins: predicting the negative effects of tannins in Mediterranean browse on rumen degradation. J. Agric. Food Chem. 44, 3230-3234] for tannin analysis, using 27 tropical browse plants. In this method, the amount of PEG bound to a plant sample is assumed to be a reflection of its tannin content. The method was modified to exclude the use of non-tanniniferous substrate for estimating non-specific binding (NSB) in tannin-containing substrates. Non-specific binding values varied widely (0.4-2.8 mg PEG/100 mg DM tannin-free substrate) when the tannin-free substrate was changed from wheat straw to either rye grass or maize shoots. We therefore propose a modified radiolabelled PEG-binding method to estimate the level of PEG-binding (PEGb) to tannin-containing foliage without using tannin-free substrate to correct for non-specific binding. In this approach, incremental levels of each tanniniferous substrate were used to generate PEGb values. The resultant linear response was analysed and tannin activity was expressed as the slope of the response curve (PEGbSlope) observed for each substrate. The slope takes into account the non-specific binding in each substrate, thus PEGbSlope does not require correction for NSB using tannin-free samples. This approach improved the correlation between PEGb and the {sup 125}I-labelled bovine serum albumin precipitation assay. Relationships between the modified PEG-binding assay and radiolabelled bovine serum albumin assay, in vitro tannin bioassay and colorimetric assays are presented. (author)

  13. Lactulose vs polyethylene glycol 3350--electrolyte solution for treatment of overt hepatic encephalopathy: the HELP randomized clinical trial.

    Science.gov (United States)

    Rahimi, Robert S; Singal, Amit G; Cuthbert, Jennifer A; Rockey, Don C

    2014-11-01

    Hepatic encephalopathy (HE) is a common cause of hospitalization in patients with cirrhosis. Pharmacologic treatment for acute (overt) HE has remained the same for decades. To compare polyethylene glycol 3350-electrolyte solution (PEG) and lactulose treatments in patients with cirrhosis admitted to the hospital for HE. We hypothesized that rapid catharsis of the gut using PEG may resolve HE more effectively than lactulose. The HELP (Hepatic Encephalopathy: Lactulose vs Polyethylene Glycol 3350-Electrolyte Solution) study is a randomized clinical trial in an academic tertiary hospital of 50 patients with cirrhosis (of 186 screened) admitted for HE. Participants were block randomized to receive treatment with PEG, 4-L dose (n = 25), or standard-of-care lactulose (n = 25) during hospitalization. The primary end point was an improvement of 1 or more in HE grade at 24 hours, determined using the hepatic encephalopathy scoring algorithm (HESA), ranging from 0 (normal clinical and neuropsychological assessments) to 4 (coma). Secondary outcomes included time to HE resolution and overall length of stay. A total of 25 patients were randomized to each treatment arm. Baseline clinical features at admission were similar in the groups. Thirteen of 25 patients in the standard therapy arm (52%) had an improvement of 1 or more in HESA score, thus meeting the primary outcome measure, compared with 21 of 23 evaluated patients receiving PEG (91%) (P PEG-treated groups (P = .002). The median time for HE resolution was 2 days for standard therapy and 1 day for PEG (P = .01). Adverse events were uncommon, and none was definitely study related. PEG led to more rapid HE resolution than standard therapy, suggesting that PEG may be superior to standard lactulose therapy in patients with cirrhosis hospitalized for acute HE. clinicaltrials.gov Identifier: NCT01283152.

  14. Effectiveness of senna vs polyethylene glycol as laxative therapy in children with constipation related to anorectal malformation.

    Science.gov (United States)

    Santos-Jasso, Karla Alejandra; Arredondo-García, José Luis; Maza-Vallejos, Jorge; Lezama-Del Valle, Pablo

    2017-01-01

    Constipation is present in 80% of children with corrected anorectal malformations, usually associated to rectal dilation and hypomotility. Osmotic laxatives are routinely used for idiopathic constipation. Senna is a stimulant laxative that produces contractions improving colonic motility without affecting the stool consistency. We designed this trial to study the effectiveness of Senna versus polyethylene glycol for the treatment of constipation in children with anorectal malformation. A randomized controlled crossover design clinical trial, including a washout period, was conducted, including children with corrected anorectal malformations with fecal continence and constipation. The sample size was calculated for proportions (n=28) according to available data for Senna. Effectiveness of laxative therapy was measured with a three variable construct: 1) daily bowel movement, 2) fecal soiling, 3) a "clean" abdominal x-ray. Data analysis included descriptive statistics and a Fisher's exact test for the outcome variable (effectiveness). The study was terminated early because the interim analysis showed a clear benefit toward Senna (p = 0.026). The sample showed a normal statistical distribution for the variables age and presence of megarectum. The maximum daily dose of Senna (sennosides A and B) was 38.7mg and 17g for polyethylene glycol. No adverse effects were identified. Therapy with Senna should be the laxative treatment of choice as part of a bowel management program in children with repaired anorectal malformations and constipation, since the stimulation of colonic propulsion waves could lead to stool evacuation without modification of its consistency which can affect fecal continence. I - randomized controlled trial with adequate statistical power. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Szu-Hsien [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Tsao, Ching-Ting [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Epithelial Biology Laboratory/Transgenic Mice Core-Laboratory, Department of Anatomy, Chang Gung University, Taoyuan 33302, Taiwan (China); Chang, Chih-Hao [Department of Orthopedics, National Taiwan University Hospital, Taiwan (China); National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Taipei City 10018, Taiwan (China); Lai, Yi-Ting [Department of Chemical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Wu, Ming-Fung [Animal Medicine Center, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Taipei City 10018, Taiwan (China); Chuang, Ching-Nan [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Chou, Hung-Chia [Department of Chemical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Hsieh, Kuo-Haung, E-mail: khhsieh@ntu.edu.tw [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China)

    2013-07-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m{sup 2}/day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing. Highlights: ► Mouse angiogenesis study on reinforced poly(ethylene glycol)-chitosan (RPC) ► Water vapor transmission rate of about 2000 g/m{sup 2}/day is characteristic of RPC. ► RPC suppressed inflammatory cells and accelerated fibroblast proliferation. ► RPC composed of 1000-RP10C90 can be used as a biomaterial for wound dressing.

  16. Calibration and validation of the 14C-labelled polyethylene glycol-binding assay for tannins in tropical browse

    International Nuclear Information System (INIS)

    Mlambo, V.; Makkar, H.P.S.

    2005-01-01

    This study evaluates the radiolabelled polyethylene glycol (PEG)-binding procedure [Silanikove, N., Shinder, D., Gilboa, N., Eyal, M., Nitsan, Z., 1996. Polyethylene glycol-binding to plant samples as an assay for the biological effects of tannins: predicting the negative effects of tannins in Mediterranean browse on rumen degradation. J. Agric. Food Chem. 44, 3230-3234] for tannin analysis, using 27 tropical browse plants. In this method, the amount of PEG bound to a plant sample is assumed to be a reflection of its tannin content. The method was modified to exclude the use of non-tanniniferous substrate for estimating non-specific binding (NSB) in tannin-containing substrates. Non-specific binding values varied widely (0.4-2.8 mg PEG/100 mg DM tannin-free substrate) when the tannin-free substrate was changed from wheat straw to either rye grass or maize shoots. We therefore propose a modified radiolabelled PEG-binding method to estimate the level of PEG-binding (PEGb) to tannin-containing foliage without using tannin-free substrate to correct for non-specific binding. In this approach, incremental levels of each tanniniferous substrate were used to generate PEGb values. The resultant linear response was analysed and tannin activity was expressed as the slope of the response curve (PEGbSlope) observed for each substrate. The slope takes into account the non-specific binding in each substrate, thus PEGbSlope does not require correction for NSB using tannin-free samples. This approach improved the correlation between PEGb and the 125 I-labelled bovine serum albumin precipitation assay. Relationships between the modified PEG-binding assay and radiolabelled bovine serum albumin assay, in vitro tannin bioassay and colorimetric assays are presented. (author)

  17. Biomass Yield and Steviol Glycoside Production in Callus and Suspension Culture of Stevia rebaudiana Treated with Proline and Polyethylene Glycol.

    Science.gov (United States)

    Gupta, Pratibha; Sharma, Satyawati; Saxena, Sanjay

    2015-06-01

    Enhanced production of steviol glycosides (SGs) was observed in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol (PEG). To study their effect, yellow-green and compact calli obtained from in vitro raised Stevia leaves were sub-cultured on MS medium supplemented with 2.0 mg l(-1) NAA and different concentrations of proline (2.5-10 mM) and PEG (2.5-10 %) for 2 weeks, and incubated at 24 ± 1 °C and 22.4 μmol m(-2) s(-1) light intensity provided by white fluorescent tubes for 16 h. Callus and suspension culture biomass (i.e. both fresh and dry weight content) was increased with 5 mM proline and 5 % PEG, while at further higher concentrations, they got reduced. Further, quantification of SGs content in callus (collected at 15th day) and suspension culture (collected at 10th and 15th day) treated with and without elicitors was analysed by HPLC. It was observed that chemical stress enhanced the production of SGs significantly. In callus, the content of SGs increased from 0.27 (control) to 1.09 and 1.83 % with 7.5 mM proline and 5 % PEG, respectively, which was about 4.0 and 7.0 times higher than control. However, in the case of suspension culture, the same concentrations of proline and polyethylene glycol enhanced the SG content from 1.36 (control) to 5.03 and 6.38 %, respectively, on 10th day which were 3.7 times and 4.7 times higher than control.

  18. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model

    International Nuclear Information System (INIS)

    Chen, Szu-Hsien; Tsao, Ching-Ting; Chang, Chih-Hao; Lai, Yi-Ting; Wu, Ming-Fung; Chuang, Ching-Nan; Chou, Hung-Chia; Wang, Chih-Kuang; Hsieh, Kuo-Haung

    2013-01-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m 2 /day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing. Highlights: ► Mouse angiogenesis study on reinforced poly(ethylene glycol)-chitosan (RPC) ► Water vapor transmission rate of about 2000 g/m 2 /day is characteristic of RPC. ► RPC suppressed inflammatory cells and accelerated fibroblast proliferation. ► RPC composed of 1000-RP10C90 can be used as a biomaterial for wound dressing

  19. Bioactive poly(ethylene glycol) hydrogels to recapitulate the HSC niche and facilitate HSC expansion in culture.

    Science.gov (United States)

    Cuchiara, Maude L; Coşkun, Süleyman; Banda, Omar A; Horter, Kelsey L; Hirschi, Karen K; West, Jennifer L

    2016-04-01

    Hematopoietic stem cells (HSCs) have been used therapeutically for decades, yet their widespread clinical use is hampered by the inability to expand HSCs successfully in vitro. In culture, HSCs rapidly differentiate and lose their ability to self-renew. We hypothesize that by mimicking aspects of the bone marrow microenvironment in vitro we can better control the expansion and differentiation of these cells. In this work, derivatives of poly(ethylene glycol) diacrylate hydrogels were used as a culture substrate for hematopoietic stem and progenitor cell (HSPC) populations. Key HSC cytokines, stem cell factor (SCF) and interferon-γ (IFNγ), as well as the cell adhesion ligands RGDS and connecting segment 1 were covalently immobilized onto the surface of the hydrogels. With the use of SCF and IFNγ, we observed significant expansion of HSPCs, ∼97 and ∼104 fold respectively, while maintaining c-kit(+) lin(-) and c-kit(+) Sca1(+) lin(-) (KSL) populations and the ability to form multilineage colonies after 14 days. HSPCs were also encapsulated within degradable poly(ethylene glycol) hydrogels for three-dimensional culture. After expansion in hydrogels, ∼60% of cells were c-kit(+), demonstrating no loss in the proportion of these cells over the 14 day culture period, and ∼50% of colonies formed were multilineage, indicating that the cells retained their differentiation potential. The ability to tailor and use this system to support HSC growth could have implications on the future use of HSCs and other blood cell types in a clinical setting. © 2015 Wiley Periodicals, Inc.

  20. The influence of tannin, pectin and polyethylene glycol on attachment of 15N-labelled rumen microorganisms to cellulose

    International Nuclear Information System (INIS)

    Bento, M.H.L.; Acamovic, T.; Makkar, H.P.S.

    2005-01-01

    The microbial attachment to and gas production from α-cellulose (Sigma; C-8002) without and with mimosa tannin (MT), pectin (P), polyethylene glycol (PEG), MT + P or MT + PEG, were investigated using the in vitro gas production system. Microbial attachment based on 15 N-labelled rumen microorganisms in the residual pellet after 24 h incubation was estimated, which varied from 113.7 to 161.3 μg 15 N per g residual pellet. C + MT had the lowest microbial attachment (P 2 = 0.84, P 15 N) in the residual pellet measured for C + MT (0.054) and C + MT + P (0.159), compared with the other treatments (0.32 for C; 0.34 for C + P; 0.33 for C + PEG; and 0.33 for C + MT + PEG). A MT concentration of 194 g/kg diet reduced microbial attachment and activity of rumen microorganisms in vitro. Polyethylene glycol counteracted the effect of MT on microbial attachment and activity. Pectin exerted a beneficial effect on attachment and fermentation in the initial hours of incubation. A ratio of pectin to MT of 1:1 improved microbial activity of C + MT but inhibition of microbial activity by MT remained at 24 h as indicated by the lower gas production of C + MT + P compared with the control. The results support the hypothesis that there is considerable interaction between tannins, microbes and non-starch-polysaccharides (NSP) in animal feeds and that these interactions may influence the functional ability of microbes in the gastrointestinal tract of animals. (author)

  1. Low-volume resuscitation using polyethylene glycol-20k in a preclinical porcine model of hemorrhagic shock.

    Science.gov (United States)

    Plant, Valerie; Limkemann, Ashley; Liebrecht, Loren; Blocher, Charles; Ferrada, Paula; Aboutanos, Michel; Mangino, Martin J

    2016-12-01

    Polyethylene glycol-20k (PEG-20k) is highly effective for low-volume resuscitation (LVR) by increasing tolerance to the low-volume state. In our rodent shock model, PEG-20k increased survival and expanded the "golden hour" 16-fold compared to saline. The molecular mechanism is largely attributed to normalizations in cell and tissue fluid shifts after low-flow ischemia resulting in efficient microvascular exchange. The objective of this study was to evaluate PEG-20k as an LVR solution for hemorrhagic shock in a preclinical model. Anesthetized male Yorkshire pigs (30-40 kg) were hemorrhaged to a mean arterial pressure (MAP) of 35 to 40 mm Hg. Once lactate reached 7 mmol/L, either saline (n = 5) or 10% PEG-20k (n = 5) was rapidly infused at 10% calculated blood volume. The primary outcome was LVR time, defined by the time from LVR administration to the time when lactate again reached 7 mmol/L. Other outcomes measured included MAP, heart rate, cardiac output, mixed venous oxygen saturation, splanchnic blood flow, and hemoglobin. Relative to saline, PEG-20k given after controlled hemorrhage increased LVR time by 16-fold, a conservative estimate given that the lactate never rose after LVR in the PEG-20k group. Survival was 80% for PEG-20k LVR compared to 0% for the saline controls (p the intravascular compartment. In a preclinical model of controlled hemorrhagic shock, PEG-20k-based LVR solution increased tolerance to the shock state 16-fold compared to saline. Polyethylene glycol-20k is a superior crystalloid for LVR that may increase safe transport times in the prehospital setting and find use in hospital emergency departments and operating rooms for patients awaiting volume replacement or normalization of cell, tissue, and compartment fluid volumes.

  2. Simethicone to prevent colonic bubbles during CT colonography performed with polyethylene glycol lavage and iohexol tagging: a randomized clinical trial.

    Science.gov (United States)

    Hong, Gil-Sun; Park, Seong Ho; Kim, Bohyun; Lee, Ju Hee; Kim, Jin Cheon; Yu, Chang Sik; Baek, Seunghee; Lee, Jong Seok; Kim, Hyun Jin

    2015-04-01

    The purpose of this study was to determine whether the occurrence of numerous colonic bubbles during CT colonography (CTC) performed with polyethylene glycol cleansing and oral iohexol fecal/fluid tagging could be prevented by use of simethicone. Adults with suspected colonic neoplasia who had been randomly assigned to control and simethicone intervention groups underwent CTC after cleansing with 4 L of polyethylene glycol, tagging with 50 mL of 350 mg I/mL oral iohexol, and without (control) or with (intervention) oral administration of 200 mg of simethicone. Colonic segments in the control and intervention groups were evaluated for amount of colonic bubbles during CTC. A 6-point grading system was used in which 0 indicated no bubbles and 5 indicated that more than three fourths of the air-distended mucosa was covered with bubbles. The primary endpoint was a per-patient colonic bubble grade, derived as an average of the segmental grades. Eighty adults with suspected colonic neoplasia were randomly assigned to the control (40 patients) and simethicone intervention (40 patients) groups. A total of 659 colonic segments in the control group and 689 segments in the intervention group were evaluated for amount of colonic bubbles during CTC. The per-patient colonic bubble score was significantly lower in the simethicone intervention group than in the control group. The mean score was 0.0±0.1 (SD) versus 1.2±0.8 (pgrade 0, and 16 (2.3%) were grade 1. In contrast, in the control group, 226 (34.3%) segments were grade 0; 173 (26.3%), grade 1; 175 (26.6%), grade 2; 45 (6.8%), grade 3; 23 (3.5%), grade 4; and 17 (2.6%), grade 5. The colonic bubbles associated with fecal/fluid tagging with iohexol can be successfully prevented by adding simethicone to the colonic preparation.

  3. Preparation and characterization of PVDF separators for lithium ion cells using hydroxyl-terminated polybutadiene grafted methoxyl polyethylene glycol (HTPB-g-MPEG) as additive

    Science.gov (United States)

    Li, Hao; Niu, Dong-Hui; Zhou, Hui; Chao, Chun-Ying; Wu, Li-Jun; Han, Pei-Lin

    2018-05-01

    Hydroxyl-terminated polybutadiene grafted methoxyl polyethylene glycol (HTPB-g-MPEG) with different arm length were synthesized by grafting methoxyl poly(ethylene glycol)s (MPEGs, Mn = 350, 750, 1900 and 5000, respectively) to the hydroxyl-terminated polybutadiene (HTPB) molecule using isophorone diisocyanate (IPDI) as the coupling agent, and blended with PVDF to fabricate porous separators via phase inversion process. By measuring the composition, morphology and ion conductivity etc., the influence of HTPB-g-MPEG on structure and property of blend separators were discussed. Compared with pure PVDF separator with comparable porous structure, the adoption of HTPB-g-MPEG could not only decrease the crystallinity, but also enhance the stability of entrapped liquid electrolyte and corresponding ion conductivity. The cells assembled with such separators showed good initial discharge capacity and cyclic stability.

  4. Structure and thermal performance of poly(ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingjian; Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Li, Weiwei; Han, Xu; Zhang, Xingxiang, E-mail: zhangpolyu@gmail.com

    2013-10-20

    Graphical abstract: The maximum 50 wt% Brij58 is loaded into the porous MCM-41 networks, and a new peak at 18.8° in XRD patterns confirmed the changes of crystallization behavior of Brij58 against the bulk one. - Highlights: • Poly(ethylene glycol) hexadecyl ether and poly(ethylene glycol) octadecyl ether have the good thermal storage ability. • New peak at 18.8° proved the coexisted confined crystallization and nucleation-induced crystallization. • Poly(ethylene glycol) alkyl ether/MCM-41 PCMs exhibits the good thermal stability. - Abstract: A series of shape-stabilized phase change materials (PCMs), composed of poly(ethylene glycol) hexadecyl ether (Brij58) or poly(ethylene glycol) octadecyl ether (Brij76) and porous silica (MCM-41), were prepared by the physical mixing method. The structure, thermal stability, energy storage ability and crystallization behavior of these composites are deeply investigated and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD) and thermogravimetric analysis (TGA). Obvious phase transition behavior and energy storage capability are observed for these Brij/MCM-41 composites, and the heat storage efficiency increased with the weight of Brij component. New peak at 18.8° demonstrated that the pore size and the surface adsorption ability of MCM-41 affect the crystallization behavior of Brij molecule. The crystalline structure and energy storage ability of these Brij/MCM-41 composites are discussed based on the crystallization process.

  5. Modification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge: A facile approach

    International Nuclear Information System (INIS)

    Lin Lin; Wang Yao; Huang Xiaodan; Xu Zhikang; Yao Ke

    2010-01-01

    To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.

  6. Enhancing the in vivo transdermal delivery of gold nanoparticles using poly(ethylene glycol and its oleylamine conjugate

    Directory of Open Access Journals (Sweden)

    Hsiao PF

    2016-05-01

    Full Text Available Pa Fan Hsiao,1–3 Sydney Peng,4 Ting-Cheng Tang,4 Shuian-Yin Lin,5 Hsieh-Chih Tsai4 1Department of Dermatology, Mackay Memorial Hospital, 2Mackay Medicine, Nursing and Management College, 3Mackay Medical College, New Taipei City, 4Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 5National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu, Taiwan Abstract: In this study, we investigated the effect of (ethylene glycol (PEG and PEG–oleylamine (OAm functionalization on the skin permeation property of gold nanoparticles (GNS in vivo. Chemisorption of polymers onto GNS was verified by a red shift in the ultraviolet–visible spectrum as well as by a change in the nanoparticle surface charge. The physicochemical properties of pristine and functionalized nanoparticles were analyzed by ultraviolet–visible spectroscopy, zeta potential analyzer, and transmission electron microscopy. Transmission electron microscopy revealed that the interparticle distance between nanoparticles increased after GNS functionalization. Comparing the skin permeation profile of pristine and functionalized GNS, the follicular deposition of GNS increased twofold after PEG–OAm functionalization. Moreover, PEG- and PEG–OAm-functionalized nanoparticles were able to overcome the skin barrier and deposit in the deeper subcutaneous adipose tissue. These findings demonstrate the potential of PEG- and PEG–OAm-functionalized GNS in serving a multitude of applications in transdermal pharmaceuticals. Keywords: skin penetration, amphiphilic copolymer, gold nanoparticle, oleylamine, poly(ethylene glycol

  7. Polyethylene glycol-conjugated chondroitin sulfate A derivative nanoparticles for tumor-targeted delivery of anticancer drugs.

    Science.gov (United States)

    Lee, Jae-Young; Park, Ju-Hwan; Lee, Jeong-Jun; Lee, Song Yi; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

    2016-10-20

    Polyethylene glycol (PEG)-decorated chondroitin sulfate A-deoxycholic acid (CSD) nanoparticles (NPs) were fabricated for the selective delivery of doxorubicin (DOX) to ovarian cancer. CSD-PEG was synthesized via amide bond formation between the NH2 group of methoxypolyethylene glycol amine and the COOH group of CSD. CSD-PEG/DOX NPs with a 247nm mean diameter, negative zeta potential, and >90% drug encapsulation efficiency were prepared. Sustained and pH-dependent DOX release profiles from CSD-PEG NPs were observed in dissolution tests. Endocytosis of NPs by SKOV-3 cells (CD44 receptor-positive human ovarian cancer cells), based on the CSA-CD44 receptor interaction, was determined by flow cytometry and confocal laser scanning microscopy (CLSM) studies. PEGylation of NPs also resulted in reduced drug clearance (CL) in vivo and improved relative bioavailability, compared to non-PEGylated NPs, as determined by the pharmacokinetic study performed after intravenous administration in rats. Developed CSD-PEG NPs can be a promising delivery vehicle for the therapy of CD44 receptor-expressing ovarian cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Thermal properties and physicochemical behavior in aqueous solution of pyrene-labeled poly(ethylene glycol-polylactide conjugate

    Directory of Open Access Journals (Sweden)

    Chen WL

    2015-04-01

    Full Text Available Wei-Lin Chen,1,2 Yun-Fen Peng,1,3 Sheng-Kuo Chiang,1 Ming-Hsi Huang1–3 1National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; 2Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; 3PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan Abstract: A fluorescence-labeled bioresorbable polymer was prepared by a coupling reaction of poly(ethylene glycol-polylactide (PEG-PLA with carboxyl pyrene, using N,N’-diisopropylcarbodiimide/1-hydroxy-7-azabenzotriazole (DIC/HOAt as a coupling agent and 4-dimethylaminopyridine (DMAP as a catalyst. The obtained copolymer, termed PEG-PLA-pyrene, was characterized using various analytical techniques, such as gel permeation chromatography (GPC, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS, proton nuclear magnetic resonance (1H-NMR, infrared spectroscopy (IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA, to identify the molecular structure and to monitor the thermal property changes before and after the reaction. The presence of a pyrene moiety at the end of polylactide (PLA did not alter the crystallization ability of the poly(ethylene glycol (PEG blocks, indicating that the conjugate preserved the inherent thermal properties of PEG-PLA. However, the presence of PEG-PLA blocks strongly reduced the melting of pyrene, indicating that the thermal characteristics were sensitive to PEG-PLA incorporation. Regarding the physicochemical behavior in aqueous solution, a higher concentration of PEG-PLA-pyrene resulted in a higher ultraviolet-visible (UV-vis absorbance and fluorescence emission intensity. This is of great interest for the use of this conjugate as a fluorescence probe to study the in vivo distribution as well as the internalization and intracellular localization of polymeric micelles

  9. Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro

    International Nuclear Information System (INIS)

    Wang Ying; Lu Yu; Ding Liying; Liu Yaqing; Yu Shuqin; Guo Miao; Ron Wenting; Song Feifei

    2012-01-01

    Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work

  10. Effect of polyethylene glycol in preparation of Eu3+ doped SnO2 nanoparticles using ethylene glycol and luminescence properties

    International Nuclear Information System (INIS)

    Singh, L.J.; Singh, R.K.H.; Ningthoujam, R.S.; Vatsa, R.K.

    2010-01-01

    Full text: Eu 3+ doped SnO 2 nanoparticles have been prepared by urea hydrolysis. The two different capping agents such as ethylene glycol (EG) and polyethylene glycol (PEG) are used. Particles prepared in EG shows the crystalline nature while in the presence of PEG, crystallinity decreases. In TEM study of 5 at.% Eu doped SnO 2 sample prepared in presence of EG and PEG, there is a particle size distribution from 2.5 to 5.5 nm and average particle size is found to be 4 nm. In order to see the particle morphology for small particles, HRTEM images are also recorded and average crystallite region is found to be 2.7 nm. From this, we can conclude that 4 nm smaller particle has crystallite region of 2.7 nm and surface region of 1.3 nm. Thus, with decrease of particle size, the contribution of surface to bulk increases. This reflects the broad peak in XRD pattern of samples prepared in EG-PEG. The excitation spectra of SnO 2 nanoparticles (prepared in EG-PEG) doped with 2, 5 and 10 at.% Eu 3+ monitoring emission at 614 nm is shown. The excitation peaks at 250, 325 and 395 nm are observed. The peak at 250 nm is due to Eu-O charge transfer. The broad peak centered at 325 nm is due to exciton formation from SnO 2 and the last peak at 395 nm due to Eu 3+ ( 7 F 0 → 5 L 6 ). The relative peak intensity of Eu 3+ (peak at 395 nm) with respect to SnO 2 (peak at 325 nm) decreases with increase of Eu 3+ content/dopant in SnO 2 . This suggests that energy transfer from SnO 2 to Eu 3+ increases with Eu 3+ content/dopant in SnO 2 . The emission spectra of SnO 2 nanoparticles doped with 5 at.% Eu 3+ (prepared in EG-PEG) after excitation at different wavelengths (250, 300, 320, 330, 340 and 395 nm) is also shown. The main emission peaks at 425 (broad), 578 (weak), 591 (sharp) and 614 nm (sharp) are observed

  11. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid-polyethylene glycol nanoparticles improves ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Vasconcelos A

    2015-01-01

    Full Text Available Aimee Vasconcelos,1 Estefania Vega,2 Yolanda Pérez,3 María J Gómara,1 María Luisa García,2 Isabel Haro1 1Unit of Synthesis and Biomedical Applications of Peptides, Department of Biomedical Chemistry, Institute for Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC, 2Department of Physical Chemistry, Institute of Nanoscience and Nanotechnology, Faculty of Pharmacy, University of Barcelona, 3Nuclear Magnetic Resonance Unit, IQAC-CSIC, Barcelona, Spain Abstract: In this work, a peptide for ocular delivery (POD and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid (PGLA–polyethylene glycol (PEG-nanoparticles (NPs in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide; the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation

  12. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 473 K and at atmospheric pressure

    International Nuclear Information System (INIS)

    Sagdeev, D.I.; Fomina, M.G.; Mukhamedzyanov, G.Kh.; Abdulagatov, I.M.

    2011-01-01

    Highlights: → Viscosity and density of polyethylene glycols. → Combined experimental apparatus for density and viscosity measurements. → Vogel-Tamman-Fulcher model for viscosity. - Abstract: A new apparatus to measure simultaneously the density and viscosity of liquids has been designed and constructed based on the hydrostatic weighing and falling-body principles. The density and viscosity of monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) and their binary, (50%MEG + 50%DEG), (50%MEG + 50%TEG), (50%DEG + 50%TEG), and ternary (33.33%MEG + 33.33%DEG + 33.34%TEG) mixtures have been measured over the temperature range from 293 K to 473 K and at atmospheric pressure. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15% to 0.30%, 0.05%, 0.06 K, and 1.5% to 2.0% (depending on temperature and pressure ranges), respectively. The theoretically based Arrhenius-Andrade and Vogel-Tamman-Fulcher type equations were used to describe the temperature dependence of measured viscosities for pure polyethylene glycols and their mixtures.

  13. D-α-tocopherol polyethylene glycol succinate-based derivative nanoparticles as a novel carrier for paclitaxel delivery

    Directory of Open Access Journals (Sweden)

    Wu YP

    2015-08-01

    Full Text Available Yupei Wu,1,* Qian Chu,2,* Songwei Tan,1 Xiangting Zhuang,1 Yuling Bao,1 Tingting Wu,1 Zhiping Zhang1,3,41Tongji School of Pharmacy, 2Department of Oncology, Tongji Hospital, Tongji Medical School, 3Hubei Engineering Research Center for NDDS, 4National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, People’s Republic of China*These authors contributed equally to this workAbstract: Paclitaxel (PTX is one of the most effective antineoplastic drugs. Its current clinical administration Taxol® is formulated in Cremophor EL, which causes serious side effects. Nanoparticles (NP with lower systemic toxicity and enhanced therapeutic efficiency may be an alternative formulation of the Cremophor EL-based vehicle for PTX delivery. In this study, novel amphipathic 4-arm-PEG-TPGS derivatives, the conjugation of D-α-tocopherol polyethylene glycol succinate (TPGS and 4-arm-polyethylene glycol (4-arm-PEG with different molecular weights, have been successfully synthesized and used as carriers for the delivery of PTX. These 4-arm-PEG-TPGS derivatives were able to self-assemble to form uniform NP with PTX encapsulation. Among them, 4-arm-PEG5K-TPGS NP exhibited the smallest particle size, highest drug-loading efficiency, negligible hemolysis rate, and high physiologic stability. Therefore, it was chosen for further in vitro and in vivo investigations. Facilitated by the effective uptake of the NP, the PTX-loaded 4-arm-PEG5K-TPGS NP showed greater cytotoxicity compared with free PTX against human ovarian cancer (A2780, non-small cell lung cancer (A549, and breast adenocarcinoma cancer (MCF-7 cells, as well as a higher apoptotic rate and a more significant cell cycle arrest effect at the G2/M phase in A2780 cells. More importantly, PTX-loaded 4-arm-PEG5K-TPGS NP resulted in a significantly improved tumor growth inhibitory effect in comparison to Taxol® in S180 sarcoma-bearing mice models. This study suggested

  14. Complexes of poly(ethylene glycol)-based cationic random copolymer and calf thymus DNA: a complete biophysical characterization.

    Science.gov (United States)

    Nisha, C K; Manorama, Sunkara V; Ganguli, Munia; Maiti, Souvik; Kizhakkedathu, Jayachandran N

    2004-03-16

    Complete biophysical characterization of complexes (polyplexes) of cationic polymers and DNA is needed to understand the mechanism underlying nonviral therapeutic gene transfer. In this article, we propose a new series of synthesized random cationic polymers (RCPs) from methoxy poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride with different mole ratios (32:68, 11:89, and 6:94) which could be used as a model system to address and answer the basic questions relating to the mechanism of the interaction of calf thymus DNA (CT-DNA) and cationic polymers. The solubility of the complexes of CT-DNA and RCP was followed by turbidity measurements. It has been observed that complexes of RCP with 68 mol % MePEGMA precipitate near the charge neutralization point, whereas complexes of the other two polymers are water-soluble and stable at all compositions. Dnase 1 digestion experiments show that DNA is inaccessible when it forms complexes with RCP. Ethidium bromide exclusion and gel electrophoretic mobility show that both polymers are capable of binding with CT-DNA. Atomic force microscopy images in conjunction with light scattering experiments showed that the complexes are spherical in nature and 75-100 nm in diameter. Circular dichroism spectroscopy studies indicated that the secondary structure of DNA in the complexes is not perturbed due to the presence of poly(ethylene glycol) segments in the polymer. Furthermore, we used a combination of spectroscopic and calorimetric techniques to determine complete thermodynamic profiles accompanying the helix-coil transition of CT-DNA in the complexes. UV and differential scanning calorimetry melting experiments revealed that DNA in the complexes is more stable than in the free state and the extent of stability depends on the polymer composition. Isothermal titration calorimetry experiments showed that the binding of these RCPs to CT-DNA is associated with small exothermic

  15. In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide)

    NARCIS (Netherlands)

    Zweers, M.L.T.; Engbers, G.H.M.; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Nanoparticles of poly(DL-lactic acid) (PDLLA), poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene oxide)–PLGA diblock copolymer (PEO–PLGA) were prepared by the salting-out method. The in vitro degradation of PDLLA, PLGA and PEO–PLGA nanoparticles in PBS (pH 7.4) at 37 °C was studied. The

  16. Polyethylene Glycol-3350 (Miralax®)+1.9-L sports drink (Gatorade®)+2 tablets of bisacodyl results in inferior bowel preparation for colonoscopy compared with Polyethylene Glycol-Ascorbic Acid (MoviPrep®).

    Science.gov (United States)

    Khan, Maqsood Ahmed; Patel, Kevin B; Nooruddin, Mohammed; Swanson, Garth; Fogg, Louis; Keshavarzian, Ali; Brown, Michael

    2018-01-01

    Polyethylene glycol (PEG)-3350, approved by Food and Drug Administration (FDA) only for constipation, combined with 1.9 L of sports drink (SD) (GatoradeR) and bisacodyl (B) is commonly used in outpatient practice for bowel preparation due to cited patient satisfaction and tolerability of this specific regimen. We aim to compare PEG-3350 (MiralaxR) with PEG-AA-based (MoviPrepR) in terms of efficacy, patient satisfaction, and the effects of these two regimen on serum electrolytes. This study is a prospective, single-blinded, block randomized trial comparing single-dose PEG-3350+SD+B to split-dose 2-L PEG-AA in the outpatient endoscopy unit in patients undergoing colonoscopy. Basic metabolic profiles were checked on the day of randomization and on the day of procedure. Patients completed a survey on the day of procedure. Bowel preparation quality was assessed using the Boston Bowel Preparation Scale (BBPS) by two endoscopists and a nurse present during the procedure. We randomized 150 patients (74 PEG-3350+SD+B and 76 PEG-AA). The PEG-AA group had significantly higher BBPS scores in the right colon by Endoscopist 1, Nurse, and Endoscopist 2 (p 0.005, PEG-3350+SD+B results in inferior bowel preparation for colonoscopy compared with split-dose PEGAA and does not provide any advantage in regards to patient satisfaction. We therefore recommend discontinuing the use of PEG 3350 for bowel preparation.

  17. Effects of blending poly(D,L-lactide) with poly(ethylene glycol) on the higher-order crystalline structures of poly(ethylene glycol) as revealed by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Tien, N D; Kimura, G; Yamashiro, Y; Fujiwara, H; Sasaki, S; Sakurai, S; Hoa, T P; Mochizuki, M

    2011-01-01

    Effects of blending poly(lactic acid) (PLA) with poly(ethylene glycol) (PEG) on higher-order crystalline structures of PEG were examined using small-angle X-ray scattering (SAXS). For this purpose, the fact that two polymers are both crystalline makes situtation much complicated. To simplify, non-crystalline PLA is suitable. Thus, we used poly(D,L-lactic acid) (DLPLA), which is random copolymer comprising D- and L-lactic acid moieties. Multiple scattering peaks arising from the regular crystalline lamellar structure were observed for the PEG homopolymer and the blends. Surprisingly, the structure is much more regular for the blend DLPLA/PEG at composition of 20/80 wt.% than for the PEG homopolymer. Also for this blend sample as well as for a PEG homopolymer, very peculiar SAXS profiles were observed just 1 deg. C below T m of PEG. This is found to be a particle scattering of plate-like objects, which has never been reported for polymer blends or crystalline polymers. Futhermore, it was found that there was strong hysteresis of the higher-order structure formation.

  18. Data in support of intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures

    Directory of Open Access Journals (Sweden)

    Takayuki Odahara

    2016-06-01

    Full Text Available The data provide information in support of the research article, “Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures” [1]. The data regarding variation of absorption spectra is used as an indicator of the duration of Rp. viridis PRU and RC, Rb. sphaeroides RC and LH2, and Rb. capsulatus LH2 in the native state in the presence of NaCl/polyethylene glycol (PEG mixture. The data about minimum concentrations of salt and PEG whose aqueous phases are mutually separated presents information on additional influence of Tris buffer and N-octyl-β-d-glucoside on the salt–PEG phase separation.

  19. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications.

    Science.gov (United States)

    Anbarasu, M; Anandan, M; Chinnasamy, E; Gopinath, V; Balamurugan, K

    2015-01-25

    Polyethylene glycol (PEG) coated Fe3O4 nanoparticles were synthesized by chemical co-precipitation method. With polyethylene glycol (PEG) as a stabilizer and dispersant. The X-ray diffraction and selected area electron diffraction (SAED) results show that the cubic inverse spinel structure of pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and field emission transmission electron microscopy (FE-TEM) results exhibited that the resulted Fe3O4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FT-IR) results suggested that PEG indicated with Fe3O4 via its carbonyl groups. Results of vibrating sample magnetometer (VSM) indicated that the prepared Fe3O4 nanoparticles exhibit superparamagnetic behavior and high saturation magnetization at room temperature. Such Fe3O4 nanoparticles with favorable size and tunable magnetic properties are promising biomedical applications. Copyright © 2014. Published by Elsevier B.V.

  20. Characterization, in Vivo and in Vitro Evaluation of Solid Dispersion of Curcumin Containing d-α-Tocopheryl Polyethylene Glycol 1000 Succinate and Mannitol

    OpenAIRE

    Im-Sook Song; Jin-Sun Cha; Min-Koo Choi

    2016-01-01

    The aim of this study was to prepare a solid dispersion formulation of curcumin to enhance its solubility, dissolution rate, and oral bioavailability. The formulation was prepared with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and mannitol using solvent evaporation and freeze-drying methods, which yielded a solid dispersion composed of curcumin, TPGS, and mannitol at a ratio of 1:10:15 (w/w/w). The solubility and dissolution rate of the curcumin solid dispersion markedly improv...

  1. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production

    DEFF Research Database (Denmark)

    Moghimi, S.M.; Hamad, I.; Andresen, Thomas Lars

    2006-01-01

    Methoxy(polyethylene glycol), mPEG, -grafted liposomes are known to exhibit prolonged circulation time in the blood, but their infusion into a substantial percentage of human subjects triggers immediate non-IgE-mediated hypersensitivity reactions. These reactions are strongly believed to arise from...... to PEGylated liposome-mediated complement activation. Our findings provide a rational conceptual basis for development of safer vesicles for site-specific drug delivery and controlled release at pathological sites....

  2. Polyethylene Glycol (PEG-400: An Efficient and Recyclable Reaction Medium for the Synthesis of Pyrazolo[3,4-b]pyridin-6(7H-one Derivatives

    Directory of Open Access Journals (Sweden)

    Deming Wang

    2013-10-01

    Full Text Available A mild and efficient synthesis of pyrazolo[3,4-b]pyridine-6(7H-one derivatives via a three-component reaction of an aldehyde, Meldrum’s acid and 3-methyl-1H-pyrazol-5-amine using recyclable polyethylene glycol (PEG-400 as a reaction medium is described. This method has the advantages of accessible starting materials, good yields, mild reaction conditions and begin environmentally friendly.

  3. Effect of polyethylene glycol conjugation on conformational and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab').

    Science.gov (United States)

    Roque, Cristopher; Sheung, Anthony; Rahman, Nausheen; Ausar, S Fernando

    2015-02-02

    We have investigated the effects of site specific "hinge" polyethylene glycol conjugation (PEGylation) on thermal, pH, and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab') using a variety of biophysical techniques. The results obtained by circular dichroism (CD), ultraviolet (UV) absorbance, and fluorescence spectroscopy suggested that the physical stability of the Fab' is maximized at pH 6-7 with no apparent differences due to PEGylation. Temperature-induced aggregation experiments revealed that PEGylation was able to increase the transition temperature, as well as prevent the formation of visible and subvisible aggregates. Statistical comparison of the three-index empirical phase diagram (EPD) revealed significant differences in thermal and pH stability signatures between Fab' and PEG-Fab'. Upon mechanical stress, micro-flow imaging (MFI) and measurement of the optical density at 360 nm showed that the PEG-Fab' had significantly higher resistance to surface-induced aggregation compared to the Fab'. Analysis of the interaction parameter, kD, indicated repulsive intermolecular forces for PEG-Fab' and attractive forces for Fab'. In conclusion, PEGylation appears to protect Fab' against thermal and mechanical stress-induced aggregation, likely due to a steric hindrance mechanism.

  4. Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties

    Directory of Open Access Journals (Sweden)

    Sami Elhag

    2016-02-01

    Full Text Available In this paper, we show that the possibility of using polyethylene glycol (EG as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs. EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10−6 M to 10−3 M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices.

  5. Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties.

    Science.gov (United States)

    Elhag, Sami; Khun, Kimleang; Khranovskyy, Volodymyr; Liu, Xianjie; Willander, Magnus; Nur, Omer

    2016-02-06

    In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS) suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL) and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10(-6) M to 10(-3) M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices.

  6. Development of semi- and grafted interpenetrating polymer networks based on poly(ethylene glycol) diacrylate and collagen.

    Science.gov (United States)

    Madaghiele, Marta; Marotta, Francesco; Demitri, Christian; Montagna, Francesco; Maffezzoli, Alfonso; Sannino, Alessandro

    2014-12-30

    The objective of this work was to develop composite hydrogels based on poly(ethylene glycol) diacrylate (PEGDA) and collagen (Coll), potentially useful for biomedical applications. Semi-interpenetrating polymer networks (semi-IPNs) were obtained by photo-stabilizing aqueous solutions of PEGDA and acrylic acid (AA), in the presence of collagen. Further grafting of the collagen macromolecules to the PEGDA/poly(AA) network was achieved by means of a carbodiimide-mediated crosslinking reaction. The resulting hydrogels were characterized in terms of swelling capability, collagen content and mechanical properties. The grafting procedure was found to significantly improve the mechanical stability of the IPN hydrogels, due to the establishment of covalent bonding between the PEGDA/poly(AA) and the collagen networks. The suitability of the composite hydrogels to be processed by means of stereolithography (SLA) was also investigated, toward creating biomimetic constructs with complex shapes, which might be useful either as platforms for tissue engineering applications or as tissue mimicking phantoms.

  7. Enhancing anticoagulation and endothelial cell proliferation of titanium surface by sequential immobilization of poly(ethylene glycol) and collagen

    International Nuclear Information System (INIS)

    Pan, Chang-Jiang; Hou, Yan-Hua; Ding, Hong-Yan; Dong, Yun-Xiao

    2013-01-01

    In the present study, poly(ethylene glycol) (PEG) and collagen I were sequentially immobilized on the titanium surface to simultaneously improve the anticoagulation and endothelial cell proliferation. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy analysis confirmed that PEG and collagen I were successfully immobilized on the titanium surface. Water contact angle results suggested the excellent hydrophilic surface after the immobilization. The anticoagulation experiments demonstrated that the immobilized PEG and collagen I on the titanium surface could not only obviously prevent platelet adhesion and aggregation but also prolong activated partial thromboplastin time (APTT), leading to the improved blood compatibility. Furthermore, immobilization of collagen to the end of PEG chain did not abate the anticoagulation. As compared to those on the pristine and PEG-modified titanium surfaces, endothelial cells exhibited improved proliferative profiles on the surface modified by the sequential immobilization of PEG and collagen in terms of CCK-8 assay, implying that the modified titanium may promote endothelialization without abating the blood compatibility. Our method may be used to modify the surface of blood-contacting biomaterials such as titanium to promote endothelialization and improve the anticoagulation, it may be helpful for development of the biomedical devices such as coronary stents, where endothelializaton and excellent anticoagulation are required.

  8. [Safety and efficacy of polyethylene glycol 3350 plus electrolytes for the treatment of functional constipation in children].

    Science.gov (United States)

    Infante Pina, D; Miserachs Barba, M; Segarra Canton, O; Alvarez Beltrán, M; Redecillas Ferreiro, S; Vilalta Casas, R; Nieto Rey, J L

    2011-08-01

    Polyethylene glycol 3350 plus electrolytes (PEG+E) efficacy has been validated in some studies, but not many have evaluated its safety in children. The aim of our study was to evaluate the safety; renal, malabsorption or excessive production of gas and efficacy of PEG+E treatment in our paediatric population. Fifteen patients who suffered functional constipation (Rome III criteria) were evaluated. Median age was 6.2 years (r 2-9). All patients had normal renal function. PEG+E were administered for 4 weeks (4WP). The mean dose was 0.44 g/kg/day, titrated according to age, weight and response. Urine screens (sodium and osmolality) were performed at the beginning and 4WP. Stool sample NIRA (near-infrared reflectance analysis) and hydrogen breath test analysis samples were performed at 4WP. To analyse the efficacy of the treatment, the number of stools per week and stool form type (Bristol stool scale) were recorded. The number of stools per week was higher after 4 weeks (2.46 ± 0.71 vs 5.29 ± 1.68, PPEG+E can be recommended for the treatment of functional constipation in children. Copyright © 2010 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  9. Efficacy and optimal dose of daily polyethylene glycol 3350 for treatment of constipation and encopresis in children.

    Science.gov (United States)

    Pashankar, D S; Bishop, W P

    2001-09-01

    To determine efficacy, safety, and optimal dose of a laxative, polyethylene glycol (PEG) 3350, in children with chronic constipation. Children with chronic constipation (n = 24) were treated with PEG for 8 weeks at an initial dose of 1 g/kg/d. The dose was adjusted every 3 days as required to achieve 2 soft stools per day. A diary was kept to monitor dose, stool frequency and consistency, soiling, and other symptoms. Stool consistency was rated from 1 (hard) to 5 (watery). Subjects were examined for fecal retention. The Student t test and the Fisher exact test were used for data analysis. All 20 children who completed the study found PEG to be palatable and were satisfied with the treatment. There were no significant adverse effects. Weekly stool frequency increased from 2.3 +/- 0.4 to 16.9 +/- 1.6 (P PEG at a mean dose of 0.8 g/kg is an effective, safe, and palatable treatment for constipation.

  10. Clinical trial: single- and multiple-dose pharmacokinetics of polyethylene glycol (PEG-3350) in healthy young and elderly subjects.

    Science.gov (United States)

    Pelham, R W; Nix, L C; Chavira, R E; Cleveland, M Vb; Stetson, P

    2008-07-01

    The pharmacokinetics of polyethylene glycol 3350 (PEG-3350) have not been fully described because of lack of a sufficiently sensitive analytical method. To describe the pharmacokinetics of PEG-3350 in humans. A highly sensitive, high performance liquid chromatography with mass spectrometry (HPLC/MS/MS) method was developed for PEG-3350 in urine, plasma and faeces with quantification limits of 30 ng/mL, 100 ng/mL and 500 microg/g respectively. Noncompartmental pharmacokinetics methods were used and the effects of gender, age, renal status and dosing frequency were examined after the oral administration of 17 g to healthy volunteers. Peak PEG-3350 plasma concentrations occurred at 2-4 h and declined to nonquantifiable levels usually within 18 h after single and multiple doses, with a half-life of about 4-6 h. Steady state was reached within 5 days of dosing. Mean urinary excretion of the administered dose ranged from 0.19% to 0.25%. Age, gender or mild kidney impairment did not alter the pharmacokinetics of PEG-3350. Mean faecal excretion of the administered dose was 93% in young subjects. For the first time, a highly sensitive assay allowed comprehensive pharmacokinetics studies of PEG-3350 in humans. These studies confirmed that orally administered PEG-3350 is minimally absorbed, rapidly excreted and primarily eliminated via faeces.

  11. Higher molecular weight polyethylene glycol increases cell proliferation while improving barrier function in an in vitro colon cancer model.

    Science.gov (United States)

    Bharadwaj, Shruthi; Vishnubhotla, Ramana; Shan, Sun; Chauhan, Chinmay; Cho, Michael; Glover, Sarah C

    2011-01-01

    Polyethylene glycol (PEG) has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  12. Polyethylene glycol 3350 plus electrolytes for chronic constipation in children: a double blind, placebo controlled, crossover study.

    Science.gov (United States)

    Thomson, M A; Jenkins, H R; Bisset, W M; Heuschkel, R; Kalra, D S; Green, M R; Wilson, D C; Geraint, M

    2007-11-01

    To assess the efficacy and safety of polyethylene glycol 3350 plus electrolytes (PEG+E) for the treatment of chronic constipation in children. Randomised, double blind, placebo controlled crossover trial, with two 2-week treatment periods separated by a 2-week placebo washout. Six UK paediatric departments. 51 children (29 girls, 22 boys) aged 24 months to 11 years with chronic constipation (lasting > or =3 months), defined as or =25% of bowel movements with straining; > or =25% of bowel movements with hard/lumpy stools. 47 children completed the double blind treatment. Number of complete defaecations per week (primary efficacy variable), total number of complete and incomplete defaecations per week, pain on defaecation, straining on defaecation, faecal incontinence, stool consistency, global assessment of treatment, adverse events and physical examination. The mean number of complete defaecations per week was significantly higher for children on PEG+E than on placebo (3.12 (SD 2.05) v 1.45 (SD 1.20), respectively; pPEG+E were observed for total number of defaecations per week (p = 0.003), pain on defaecation (p = 0.041), straining on defaecation (pPEG+E (41%) and placebo during treatment (45%). PEG+E is significantly more effective than placebo, and appears to be safe and well tolerated in the treatment of chronic constipation in children.

  13. A randomized trial of enema versus polyethylene glycol 3350 for fecal disimpaction in children presenting to an emergency department.

    Science.gov (United States)

    Miller, Melissa K; Dowd, Mary Denise; Friesen, Craig A; Walsh-Kelly, Christine M

    2012-02-01

    This study aimed to compare efficacy of enema versus polyethylene glycol (PEG) 3350 for pediatric fecal impaction treatment. We conducted a prospective, randomized comparison of treatments of fecal impaction in children in a pediatric emergency department (ED). Treatment arms were a single milk and molasses enema in the ED or PEG 3350 for 3 days outpatient. Telephone follow-up was done on days 1, 3, and 5. The primary outcome was main symptom improvement. Additional outcomes were stool frequency, consistency, and ease of stool passage. Treatment failures (home enema, ED return, or hospital admission) were tracked. Seventy-nine subjects participated (39 PEG; 40 enema). At day 1, PEG subjects were less likely to have improved main symptom (odds ratio [OR], 0.3; 95% confidence interval [CI], 0.1-0.8) but no difference in other outcomes. Half (54%) in enema arm were reported as upset by ED therapy, whereas no children in PEG arm were upset (P PEG arm (83%; P = 0.08). This pilot study suggests that disimpaction by enema may be superior to PEG for immediate relief of symptoms. Larger trials are needed to assess any advantage.

  14. Polyethylene glycol 3350 without electrolytes: a new safe, effective, and palatable bowel preparation for colonoscopy in children.

    Science.gov (United States)

    Pashankar, Dinesh S; Uc, Aliye; Bishop, Warren P

    2004-03-01

    To assess safety, efficacy, and acceptance of polyethylene glycol 3350 without electrolytes (PEG) for bowel preparation for colonoscopy in children. Study design In a prospective study, 46 children (mean age, 11.2 years; range, 2.8-17.8) were given PEG at a dose of 1.5 g/kg/day for 4 days before colonoscopy. Patients were allowed to mix PEG in the beverage of their choice. Stool frequency and adverse effects were monitored during PEG therapy. Compliance, tolerance, and quality of colonic preparation were assessed. Serum electrolytes were measured before and after PEG therapy in 29 children. Daily stool frequency increased with PEG therapy from baseline of 2.6+/-0.3 to 3.0+/-0.5 on day 1, 4.6+/-0.4 on day 2, 5.5+/-0.7 on day 3, and 6.0+/-0.6 on day 4 (days 2, 3, and 4, PPEG therapy. Compliance and tolerance were rated as excellent by 89% and 85% of patients, respectively. Electrolyte-free PEG 3350 can be used as an effective and safe bowel preparation that is well accepted by children for colonoscopy.

  15. Germinaton performance of selected local soybean (Glycine max (L.) Merrills) cultivars during drought stress induced by Polyethylene Glycol (PEG)

    Science.gov (United States)

    Pane, R. F.; Damanik, R. I.; Khardinata, E. H.

    2018-02-01

    Drought stress is one of the factors that can decreased growth and production, so that required a variety that has the ability to sustain cellular metabolism, and growth during the stress. This research was aimed to investigated the involvement of germination performance invitro of five local soybean cultivars, Grobogan, Kaba, Anjasmoro, Argomulyo, and Dering to drought stress induced by polyethylene glycol (PEG) 6000 (0%, 2%, 4%, and 6%). The measurable seedling traits as the day appearance of shoots and roots, total of leaves, shoot length, root length, fresh plant weight, dry plant weight, fresh root weight, and dry root weight under control as well as water stress condition were recorded. The experiment units were arranged in factorial completely randomized design with four replications. The result showed that the value for most parameters was recorded highest for Argomulyo cultivar compared with Dering cultivar which is known to be tolerant to drought. In terms of roots performance, Grobogan and Argomulyo cultivars produced the longest and heaviest of roots, while Grobogan cultivar had no significant different for root length compared with control. In conclusion, the root length and fresh weight root parameters can be used as quick criteria for drought tolerance.

  16. Gold nanoparticles and polyethylene glycols functionalized conducting polyaniline nanowires for ultrasensitive and low fouling immunosensing of alpha-fetoprotein.

    Science.gov (United States)

    Hui, Ni; Sun, Xiaotian; Song, Zhiling; Niu, Shuyan; Luo, Xiliang

    2016-12-15

    An ultrasensitive biosensor for alpha-fetoprotein was developed based on electrochemically synthesized polyaniline (PANI) nanowires, which were functionalized with gold nanoparticles (AuNPs) and polyethylene glycols (PEG). The prepared PEG/AuNPs/PANI composite, combining the electrical conductivity of the AuNPs/PANI with the robust antifouling ability of PEG, offered an ideal substrate for the development of low fouling electrochemical biosensors. Alpha-fetoprotein (AFP), a well-known hepatocellular carcinoma biomarker, was used as a model analyte, and its antibody was immobilized on the PEG/AuNPs/PANI for the construction of the AFP immunosensor. Using the redox current of PANI as the sensing signal, in addition to the good biocompatibility of PEG/AuNPs and the anti-biofouling property of PEG, the developed immunosensor showed improved biosensing performances, such as wide linear range and ultralow detection limit (0.007pgmL(-1)). More importantly, it is label-free, reagentless and low fouling, making it capable of assaying AFP in real serum samples without suffering from significant interference or biofouling. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Polyethylene Glycol (PEG-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2015-10-01

    Full Text Available Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v: 0% (control, 0.3% and 0.6% (less than −1 bar were imposed on 60 days after sowing for 20 days’ duration. A low PEG concentration was imposed to observe how initial low moisture stress might affect root hair development. PEG-treated hydroponic culture significantly decreased root hair diameter and length. Estimated surface area reduction of root hairs at the main axes of wheat plants was around nine times at the 0.6% PEG level compared to the control plants. Decrease in root hair diameter and length under PEG-induced culture decreased “potential” root surface area per unit length of main root axis. A negative association between panicle traits, length and dry weight and the main axis length of young roots indicated competition for carbon during their development. Data provides insight into how a low PEG level might alter root hair development.

  18. Synthesis and characterization of gold nanotube/nanowire–polyurethane composite based on castor oil and polyethylene glycol

    International Nuclear Information System (INIS)

    Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin

    2014-01-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil–polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane–GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane–GNT/NW composites was observed resulting from the improved surface properties of composites. - Highlights: • Polyurethane–gold nanotubes/nanowires (GNT/NWs) composites were synthesized. • Tan δ, E′ and E″ were increased upon addition of 50 ppm of GNT/NW. • Better cell attachment was observed in composites containing 50 ppm of GNT/NW. • GNT/NWs can make a bridge between the pores of the porous polymeric scaffolds. • GNT/NWs increased the crosslink density of the polymeric matrix

  19. Self-Assembly of Calix[4]arene-Based Amphiphiles Bearing Polyethylene Glycols: Another Example of "Platonic Micelles".

    Science.gov (United States)

    Yoshida, Kenta; Fujii, Shota; Takahashi, Rintaro; Matsumoto, Sakiko; Sakurai, Kazuo

    2017-09-12

    The aggregation number of classical micelles exhibits a certain distribution, which is a recognizable feature of conventional micelles. However, we recently identified perfectly monodisperse calix[4]arene-based micelles whose aggregation numbers agree with the vertex numbers of regular polyhedra, that is, Platonic solids, and thus they are named "Platonic micelles". Regarding our hypothesis of the formation mechanism of Platonic micelles, both repulsive interactions including steric hindrance and electrostatic repulsions among the headgroups are important for determining their aggregation number; however, neither of these is necessarily needed to consider. In this study, we employed polyethylene glycols (PEGs) as the nonionic headgroup of calix[4]arene-based amphiphiles to study the effects of only repulsive interactions caused by steric hindrance on the formation of Platonic micelles. The amphiphiles containing relatively low-molecular-weight PEGs (550 or 1000 g mol -1 ) form dodecamer or octamer micelles, respectively, with no variation in the aggregation number. However, relatively high-molecular-weight PEGs (2000 g mol -1 ) produce polydispersed micelles with a range of aggregation number. PEG 2000 exhibits a greater affinity for water than PEG 550 and 1000, resulting in fewer hydrophobic interactions in micelle formation, as indicated by the drastic increase of the critical micelle concentration (CMC) value in the PEG 2000 system. The instability of the structure of PEG 2k CaL5 micelles might contribute to the higher mobility of PEG in the micellar shell, resulting in a non-Platonic aggregation number with polydispersity.

  20. Fluorinated polyimides grafted with poly(ethylene glycol) side chains by the RAFT-mediated process and their membranes

    International Nuclear Information System (INIS)

    Chen Yiwang; Chen Lie; Nie Huarong; Kang, E.T.; Vora, R.H.

    2005-01-01

    Graft polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) from fluorinated polyimide (FPI) was carried out by the reversible addition-fragmentation chain transfer (RAFT)-mediated process. The peroxides generated by the ozone treatment on FPI facilitated the thermally-initiated graft copolymerization from FPI backbone. The 'living' character of the graft chain growing was ascertained in the subsequent chain extension of PEGMA. Nuclear magnetic resonance (NMR) and molecular weight measurements were used to characterize the chemical composition and structure of the copolymers. Microfiltration (MF) membranes were fabricated from the FPI-g-PEGMA comb copolymers by phase inversion in aqueous media. Surface composition analysis of the membranes scanned by X-ray photoelectron spectroscopy (XPS) revealed a substantial surface enrichment of the hydrophilic components. The pore size distribution of the resulting membranes was found to be much more uniform than that of the corresponding membranes cast from FPI-g-PEGMA prepared by the conventional radical polymerization process in the absence of the chain transfer agent. The morphology of the membranes was characterized by scanning electron microscopy (SEM)

  1. Development of (acrylic acid/ polyethylene glycol)-zinc oxide mucoadhesive nanocomposites for buccal administration of propranolol HCl

    Science.gov (United States)

    Mahmoud, Ghada A.; Ali, Amr El-Hag; Raafat, Amany I.; Badawy, Nagwa A.; Elshahawy, Mai. F.

    2018-06-01

    A series of mucoadhesive nanocomposites with self disinfection properties composed of acrylic acid, polyethylene glycol and ZnO nanoparticles (AAc/PEG)-ZnO were developed for localized buccal Propranolol HCl delivery. γ-irradiation as a clean tool for graft copolymerization process was used for the preparation of (AAc/PEG) hydrogels. In suite precipitation technique was used for ZnO nanoparticles immobilization within (AAc/PEG) hydrogels. The developed (AAc/PEG)-ZnO nanocomposites were characterized by X-ray diffraction (XRD), UV-Vis spectrophotometer, energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) to confirm the success of ZnO nanoparticles formation within the (AAc/PEG) matrices. The presence of ZnO nanoparticles improves the thermal stability as indicated using thermogravimetric analysis (TGA). The mucoadhesion characteristics such as hydration degree, surface pH, and mucoadhesive strength were evaluated in artificial saliva solution. The self disinfection property of the developed (AAc/PEG)-ZnO nanocomposites was investigated by examining their resistance to pathogenic microorganisms such as Staphylococcus aureus, Bacillus subtilis, and Escherichia coli using disc diffusion method. The release of Propranolol -HCl drug in artificial saliva was found to obey a non-Fickian diffusion mechanism. The obtained results suggests that (AAc/PEG)-ZnO nanocomposites could be used as mucoadhesive carrier for buccal drug delivery with efficient antibacterial properties.

  2. Elucidation of the electronic states in polyethylene glycol by attenuated Total reflectance spectroscopy in the far-ultraviolet region

    Science.gov (United States)

    Ueno, Nami; Wakabayashi, Tomonari; Morisawa, Yusuke

    2018-05-01

    We measured the attenuated total reflectance-far ultraviolet (ATR-FUV) spectra of poly(ethylene glycol) (PEG; average molecular weights of 200, 300, and 400) and related materials in the liquid state in the 145-200-nm wavelength region. For appropriately assigning the absorption bands, we also performed theoretical simulation of the unit-number dependent electronic spectra. The FUV spectra of PEGs contain three bands, which are assigned to the transitions between n(CH2OCH2)-3s Rydberg state (176 nm), n(CH2OCH2)-3p Rydberg state (163 nm), and n(OH)-3p Rydberg state (153 nm). Since the contribution of n(OH) decreases compared to n(CH2OCH2) with increase in the number of units, the ratios of the molar absorption coefficients, ε, at 153 nm relative to 163 nm, decrease. On the other hand, the ratio of ε at 176 nm to that at 163 nm increases with increase in the number of units, because of the difference in the number of unoccupied orbitals in the transitions. The calculated results suggest that n orbitals form two electronic bands. In the upper band, the electrons expand over the ether chain, whereas in the lower band, the electrons are localized in the terminal OH in the PEGs.

  3. Higher Molecular Weight Polyethylene Glycol Increases Cell Proliferation While Improving Barrier Function in an In Vitro Colon Cancer Model

    Directory of Open Access Journals (Sweden)

    Shruthi Bharadwaj

    2011-01-01

    Full Text Available Polyethylene glycol (PEG has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  4. Impact of polyethylene glycol on proline and membrane stability index for water stress regime in tomato (Solanum lycopersicum)

    International Nuclear Information System (INIS)

    George, S.; Jatoi, S.A.; Siddiqui, S.U.

    2015-01-01

    Drought is one of the most important constraints worldwide for crop growth including tomato. It adversely affects germination and seedling that ultimately reduces crop development and economic yield. Polyethylene glycol (PEG) gives an indication to abiotic stresses and has been used throughout world in various crops for successful screening and breeding against stresses. Contrarily proline protects plant tissues against stress through preventing molecular denaturation, scavenges reactive oxygen species and interacts with phospholipids. Present paper presents the results on PEG and proline estimation in tomato. The PEG screening reduced the experimental material and finally 20 genotypes (6232, 6233, 6234, 10584, 10587, 17889, 17902, 17904, 19288, 19289, 19290, 19291, 19893, Avinash-2, Feston, Nagina, Punjab Chohara, Ratan and T-4) from diverse origin were investigated for proline estimation, chlorophyll contents and membrane stability index that gave a clear reference for drought tolerance in tomato. All the techniques (PEG, Proline, MSI) related to drought screening were employed and their interactive interpretation will enable us to design future breeding strategies for tomato development under drought that is still a dream for man. Among 20 genotypes, 19291 possessed the highest proline contents hence was tolerant to drought conditions, although needs verification under actual drought for adaptability and yield potential. High MSI under stress was observed for Punjab Chuhara, Chuhara, Avinash-2, Ratan, 19893, 19291 and 6233. (author)

  5. Influence of Polyethylene Glycol Lipid Desorption Rates on Pharmacokinetics and Pharmacodynamics of siRNA Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Barbara L Mui

    2013-01-01

    Full Text Available Lipid nanoparticles (LNPs encapsulating short interfering RNAs that target hepatic genes are advancing through clinical trials, and early results indicate the excellent gene silencing observed in rodents and nonhuman primates also translates to humans. This success has motivated research to identify ways to further advance this delivery platform. Here, we characterize the polyethylene glycol lipid (PEG-lipid components, which are required to control the self-assembly process during formation of lipid particles, but can negatively affect delivery to hepatocytes and hepatic gene silencing in vivo. The rate of transfer from LNPs to plasma lipoproteins in vivo is measured for three PEG-lipids with dialkyl chains 14, 16, and 18 carbons long. We show that 1.5 mol % PEG-lipid represents a threshold concentration at which the chain length exerts a minimal effect on hepatic gene silencing but can still modify LNPs pharmacokinetics and biodistribution. Increasing the concentration to 2.5 and 3.5 mol % substantially compromises hepatocyte gene knockdown for PEG-lipids with distearyl (C18 chains but has little impact for shorter dimyristyl (C14 chains. These data are discussed with respect to RNA delivery and the different rates at which the steric barrier disassociates from LNPs in vivo.

  6. Preparation of TiO2/Ag colloids with ultraviolet resistance and antibacterial property using short chain polyethylene glycol

    International Nuclear Information System (INIS)

    Su, W.; Wei, S.S.; Hu, S.Q.; Tang, J.X.

    2009-01-01

    TiO 2 /Ag nano-antibacterial material was prepared at low temperature using polyethylene glycol (PEG-600) as reducing and stabilizing agent. The size and shape as well as the optical properties of the nano-materials were characterized with transmission electron microscopy (TEM) and UV-vis spectroscopy (UV-vis). The results showed that the average particle size of TiO 2 among these nano-materials was around 50-150 nm, and the average particle size of nano-silver was around 20 nm. Formation of Ag nano-particles on the surface of TiO 2 was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the antibacterial activity was also investigated. By the antibacterial activity study and ultraviolet resistance test, it is noted that growth inhibition rates against E. coli was 99.99% as the concentration of nano-particles dispersion solution was 10 ppm, the minimum UV protective effect could be achieved as the concentration was 290 ppm.

  7. Vitamin C and Poly(ethylene glycol) Protect Concentrated Poly(vinyl alcohol) Solutions against Radiation Cross-linking

    International Nuclear Information System (INIS)

    Oral, E.

    2006-01-01

    There is a need for an injectable material to augment damaged cartilage. We propose to make such self-associating poly(vinyl alcohol) (PVA) hydrogels. Physical associations can be formed in PVA using a gellant such as polyethylene glycol (PEG). The injectability of PVA solutions is compromised when sterilized due to chemical cross-linking. We hypothesized that an anticross-linking agent could prevent cross-linking of irradiated PVA solutions. PVA (17.5 wt/v %, MW= 115,000 g/mol) was prepared in water at 90 degree. PEG (MW=400 g/mol) was added at a ratio of PEG unit to PVA unit of 17, 86, 290, and 639 mol/mol. PVA solutions (17.5 wt/v %, MW= 16,000, 61,000, 81,000 and 115,000 g/mol) were also prepared. Vitamin C was added at a molar ratio of vitamin C to PVA unit of 0.75-10.4. Solutions were poured into syringes and γ-irradiated. The viscosity of injectable solutions was determined by using the bubble tube. Gel content of cross-linked samples was measured by boiling gels in water for 6 hours, drying at 90 degree and calculating the ratio of dry weight to 'as is' weight

  8. The use of polyethylene glycol to reduce the anti-nutritional effects of tannins in Cistus ladanifer L.

    Directory of Open Access Journals (Sweden)

    Maria Teresa P. Dentinho

    2018-05-01

    Full Text Available Aim of study: To evaluate the impact of Cistus ladanifer L. (rockrose tannins on ruminal degradability and fermentation characteristics and the use of polyethylene glycol (PEG, as feed additive, to mitigate the anti-nutritional effects of rockrose tannins. Material and methods: Aerial parts of rockrose plants were harvested in March, freeze dried and divided in 4 subsamples which were treated with 0, 25, 50 and 75 g of PEG/kg of dry matter (DM. The mixtures were analysed for chemical composition including total phenolics, total tannins and condensed tannins. In situ rumen organic matter (OM and N rumen degradability was evaluated using three rumen-cannulated rams and ruminal fermentation pattern (volatile fatty acids (VFA, gas production was evaluated in vitro using a Rumen Simulation Technique (RUSITEC apparatus. Main results: In situ experiment indicated that the effective degradability of the OM and N increased linearly (p<0.05 with PEG inclusion due to an increase of the degradation rate (p<0.05. RUSITEC data indicated that substrate disappearance and gas and VFA production increased linearly (p<0.05 with PEG inclusion. Research highlights: Inclusion of PEG to C. ladanifer feed was effective to prevent the anti-nutritive effects of tannins. Thus, the use of PEG as feed additive can promote a better utilization of this shrub by ruminants.

  9. Synthesis of Highly Effective Novel Graphene Oxide-Polyethylene Glycol-Polyvinyl Alcohol Nanocomposite Hydrogel For Copper Removal

    Directory of Open Access Journals (Sweden)

    Eman Serag

    2017-10-01

    Full Text Available A novel Graphene oxide-polyethylene glycol and polyvinyl alcohol (GO-PEG-PVA triple network hydrogel were prepared to remove Copper(II ion from its aqueous solution. The structures, morphologies, and properties of graphene oxide (GO, the composite GO-PEG-PVA and PEG-PVA were characterized using FTIR, X-ray diffraction, Scanning Electronic Microscope and Thermal Gravimetric analysis. A series of systematic batch adsorption experiments were conducted to study the adsorption property of GO, GO-PEG-PVA hydrogel and PEG-PVA hydrogel under different conditions (e.g. pH, contact time and Cu2+ ions concentration. The high adsorption capacity, easy regeneration, and effective adsorption–desorption results proved that the prepared GO-PEG-PVA composite hydrogel could be an effective adsorbent in removing Cu2+ ion from its aqueous solution. The maximum adsorption capacities were found to be 917, 900 and 423 mg g–1 for GO-PEG-PVA hydrogel, GO and PEG-PVA hydrogel, respectively at pH 5, 25 °C and Cu2+ ions’ concentration 500 mg l–1. The removal efficiency of the recycled GO-PEG-PVA hydrogel were 83, 81, 80 and 79% for the first four times, which proved efficient reusability.

  10. Alkyne- and 1,6-elimination- succinimidyl carbonate - terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation.

    Science.gov (United States)

    Xie, Yumei; Duan, Shaofeng; Forrest, M Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with diglycolic anhydride to generate α-alkyne-ω-carboxylic acid PEG. The reversible 1, 6-elimination linker was introduced by conjugation of a hydroxymethyl phenol followed by activation with N,N'-disuccinimidyl carbonate to generate the heterobifunctional α-alkyne-ω-SC PEG. The terminal alkyne is available for "click" conjugation to azido ligands via 1,3-dipolar cycloaddition, and the succinimidyl carbonate will form a reversible conjugate to amines (e.g. in proteins) that can release the unaltered amine after base or enzyme catalyzed cleavage of the 1,6-linker.

  11. Structural, optical and magnetic properties of Cr doped SnO2 nanoparticles stabilized with polyethylene glycol

    International Nuclear Information System (INIS)

    Subramanyam, K.; Sreelekha, N.; Murali, G.; Reddy, D. Amaranatha; Vijayalakshmi, R.P.

    2014-01-01

    Pure and Cr (1, 3, 5 and 7 at%) doped SnO 2 nanoparticles were synthesized in aqueous solution by a simple chemical co-precipitation method using polyethylene glycol (PEG) as a stabilizing agent. The effect of Cr doping on the structural, optical and magnetic properties of SnO 2 nanoparticles was investigated. EDAX spectra confirmed the presence of Sn, O and Cr in near stoichiometry. XRD patterns revealed that particles of all samples were crystallized in single phase rutile type tetragonal crystal structure (P4 2 /mnm) of SnO 2 . The peak positions with Cr concentration shifted to higher 2θ values. Lattice parameters were also decreased with increasing Cr concentration. TEM studies indicated that the particle size is in the range of 8–10 nm. The optical absorption studies indicated that the absorption edge shifted towards lower wavelengths with inclusion of Cr content. FTIR spectrum displays various bands that are due to fundamental overtones of PEG and O–Sn–O entities. Further it revealed that the undoped and as well as Cr doped SnO 2 nanoparticles were capped by PEG. Magnetization measurements at room temperature revealed that all the doped samples were ferromagnetic in nature. Well defined strong room temperature ferromagnetic hysteresis loop was observed for 1% Cr doped SnO 2 nanoparticles

  12. Surface chemistry and size influence the release of model therapeutic nanoparticles from poly(ethylene glycol) hydrogels

    International Nuclear Information System (INIS)

    Hume, Stephanie L.; Jeerage, Kavita M.

    2013-01-01

    Nanoparticles have emerged as promising therapeutic and diagnostic tools, due to their unique physicochemical properties. The specific core and surface chemistries, as well as nanoparticle size, play critical roles in particle transport and interaction with biological tissue. Localized delivery of therapeutics from hydrogels is well established, but these systems generally release molecules with hydrodynamic radii less than ∼5 nm. Here, model nanoparticles with biologically relevant surface chemistries and diameters between 10 and 35 nm are analyzed for their release from well-characterized hydrogels. Functionalized gold nanoparticles or quantum dots were encapsulated in three-dimensional poly(ethylene glycol) hydrogels with varying mesh size. Nanoparticle size, surface chemistry, and hydrogel mesh size all influenced the release of particles from the hydrogel matrix. Size influenced nanoparticle release as expected, with larger particles releasing at a slower rate. However, citrate-stabilized gold nanoparticles were not released from hydrogels. Negatively charged carboxyl or positively charged amine-functionalized quantum dots were released from hydrogels at slower rates than neutrally charged PEGylated nanoparticles of similar size. Transmission electron microscopy images of gold nanoparticles embedded within hydrogel sections demonstrated uniform particle distribution and negligible aggregation, independent of surface chemistry. The nanoparticle-hydrogel interactions observed in this work will aid in the development of localized nanoparticle delivery systems.

  13. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel

    Science.gov (United States)

    Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.

    2016-01-01

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229

  14. Simple, rapid 125I-labeled cyclosporine double antibody/polyethylene glycol radioimmunoassay used in a pediatric cardiac transplant program

    International Nuclear Information System (INIS)

    Berk, L.S.; Webb, G.; Imperio, N.C.; Nehlsen-Cannarella, S.L.; Eby, W.C.

    1986-01-01

    We modified the Sandoz cyclosporine radioimmunoassay because of our need for frequent clinical monitoring of cyclosporine drug levels in allo- and xenograft pediatric cardiac transplant patients. With application of a commercially available [ 125 I]cyclosporine label in place of [ 3 H]cyclosporine and a second antibody/polyethylene glycol (PEG) method of separation in place of charcoal separation, we simplified and enhanced the speed and precision of assay performance. Studies of 140 whole blood samples comparing this new method to the [ 3 H]cyclosporine radioimmunoassay (RIA) method of Berk and colleagues yielded a coefficient of correlation of 0.96 (p less than 0.00001) with means of 626 and 667 ng/ml for [ 3 H]RIA and [ 125 I]RIA, respectively, and a regression equation of y = 28 + 1.02x. The major advantages are that total assay time is reduced to approximately 1 h; [ 125 I]cyclosporine label is used, avoiding the problems associated with liquid scintillation counting; and precision is enhanced by separating bound and free fractions with second antibody/PEG. These modifications should provide for greater ease of assay performance and improved clinical utility of cyclosporine monitoring not only in the pediatric but also in the adult transplant patient

  15. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.

    Science.gov (United States)

    Zhang, Xing; Xu, Bin; Puperi, Daniel S; Yonezawa, Aline L; Wu, Yan; Tseng, Hubert; Cuchiara, Maude L; West, Jennifer L; Grande-Allen, K Jane

    2015-03-01

    The development of advanced scaffolds that recapitulate the anisotropic mechanical behavior and biological functions of the extracellular matrix in leaflets would be transformative for heart valve tissue engineering. In this study, anisotropic mechanical properties were established in poly(ethylene glycol) (PEG) hydrogels by crosslinking stripes of 3.4 kDa PEG diacrylate (PEGDA) within 20 kDa PEGDA base hydrogels using a photolithographic patterning method. Varying the stripe width and spacing resulted in a tensile elastic modulus parallel to the stripes that was 4.1-6.8 times greater than that in the perpendicular direction, comparable to the degree of anisotropy between the circumferential and radial orientations in native valve leaflets. Biomimetic PEG-peptide hydrogels were prepared by tethering the cell-adhesive peptide RGDS and incorporating the collagenase-degradable peptide PQ (GGGPQG↓IWGQGK) into the polymer network. The specific amounts of RGDS and PEG-PQ within the resulting hydrogels influenced the elongation, de novo extracellular matrix deposition and hydrogel degradation behavior of encapsulated valvular interstitial cells (VICs). In addition, the morphology and activation of VICs grown atop PEG hydrogels could be modulated by controlling the concentration or micro-patterning profile of PEG-RGDS. These results are promising for the fabrication of PEG-based hydrogels using anatomically and biologically inspired scaffold design features for heart valve tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers

    International Nuclear Information System (INIS)

    Skotak, Maciej; Ragusa, Jorge; Gonzalez, Daniela; Subramanian, Anuradha

    2011-01-01

    Gelatin-based nanofibrous scaffolds with a mean fiber diameter of 300 nm were prepared with and without micrometer-sized polyethylene glycol (PEG) fibers that served as sacrificial templates. Upon fabrication of the scaffolds via electrospinning, the gelatin fibers were crosslinked with glutaraldehyde, and the PEG templates were removed using tert-butanol to yield nanofibrous scaffolds with pore diameters ranging from 10 to 100 μm, as estimated with mercury intrusion porosimetry. Non-templated gelatin-based nanofibrous matrices had an average pore size of 1 μm. Fibroblasts were seeded onto both types of the gelatin-based nanofibrous surfaces and cultured for 14 days. For comparative purposes, chitosan-based and polyurethane-based macroporous scaffolds with pore sizes of 100 and 170 μm, respectively, were also included. The number of cells as a function of the depth into the scaffold was judged and quantitatively assessed using nuclei staining. Cell penetration up to a depth of 250 and 90 μm was noted in gelatin scaffolds prepared with sacrificial templates and gelatin-only nanofibrous scaffolds. Noticeably, scaffold preparation protocol presented here allowed the structural integrity to be maintained even with high template content (95%) and can easily be extended toward other classes of electrospun polymer matrices for tissue engineering.

  17. Facile phase transfer of hydrophobic nanoparticles with poly(ethylene glycol) grafted hyperbranched poly(amido amine)

    International Nuclear Information System (INIS)

    Ji Minglei; Yang Wuli; Ren Qingguang; Lu Daru

    2009-01-01

    In order to enhance the dispersion ability of hydrophobic nanoparticles in water while maintaining their unique properties, we utilized poly(ethylene glycol) grafted hyperbranched poly(amido amine) (h-PAMAM-g-PEG) to modify three types of hydrophobic nanoparticle, CdSe, Au, and Fe 3 O 4 , and transferred them into water to extend their applications in biology. Considering the large amounts of amino groups in hyperbranched poly(amido amine) (h-PAMAM) polymer, complexation interaction between h-PAMAM-g-PEG copolymer and nanoparticles was achieved and ligand exchange between the copolymers and original small molecules ligands occurred. The transferred nanoparticles could be easily dispersed in water with better stability, and their unique properties, such as fluorescence, surface plasmon resonance, and superparamagnetism, were well maintained in the ligand exchange process. In addition, increasing the number of grafted PEG showed a negative effect on the ligand exchange process. Due to the existence of h-PAMAM-g-PEG ligands, the stabilized nanoparticles have improved stability in aqueous and ionic solutions. In the case of CdSe nanoparticles, the h-PAMAM-g-PEG layer leads to a lower cytotoxicity when compared with bare CdSe particles, and they could be directly used in bioimaging.

  18. Antimicrobial polycaprolactone/polyethylene glycol embedded lysozyme coatings of Ti implants for osteoblast functional properties in tissue engineering

    Science.gov (United States)

    Visan, A.; Cristescu, R.; Stefan, N.; Miroiu, M.; Nita, C.; Socol, M.; Florica, C.; Rasoga, O.; Zgura, I.; Sima, L. E.; Chiritoiu, M.; Chifiriuc, M. C.; Holban, A. M.; Mihailescu, I. N.; Socol, G.

    2017-09-01

    In this study, coatings based on lysozyme embedded into a matrix of polyethylene glycol (PEG) and polycaprolactone (PCL) were fabricated by two different methods (Matrix Assisted Pulsed Laser Evaporation - MAPLE and Dip Coating) for obtaining antimicrobial coatings envisaged for long term medical applications. Coatings with different PEG:PCL compositions (3:1; 1:1; 1:3) were synthesized in order to evaluate the antimicrobial activity of lysozyme embedded into the polymeric matrix. The main surface features, such as roughness and wettability, with impact on the microbial adhesion as well as on the eukaryote cell function were measured. The obtained composite coatings exhibited a significant antibacterial activity against Escherichia coli, Bacillus subtilis, Enterococcus faecalis and Staphylococcus aureus strains. As well, specific blended coatings showed appropriate viability, good spreading and normal cell morphology of SaOs2 human osteoblasts and mesenchymal stem cells (MSCs). These investigations highlight the suitability of biodegradable composites as implant coatings for decreasing the risk of bacterial contamination associated with prosthetic procedures.

  19. Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability.

    Science.gov (United States)

    Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S

    2017-08-22

    Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.

  20. Utilizing microfluidics to synthesize polyethylene glycol microbeads for Förster resonance energy transfer based glucose sensing

    Science.gov (United States)

    Kantak, Chaitanya; Zhu, Qingdi; Beyer, Sebastian; Bansal, Tushar; Trau, Dieter

    2012-01-01

    Here, we utilize microfluidic droplet technology to generate photopolymerizeable polyethylene glycol (PEG) hydrogel microbeads incorporating a fluorescence-based glucose bioassay. A microfluidic T-junction and multiphase flow of fluorescein isothiocyanate dextran, tetramethyl rhodamine isothiocyanate concanavalin A, and PEG in water were used to generate microdroplets in a continuous stream of hexadecane. The microdroplets were photopolymerized mid-stream with ultraviolet light exposure to form PEG microbeads and were collected at the outlet for further analysis. Devices were prototyped in PDMS and generated highly monodisperse 72 ± 2 μm sized microbeads (measured after transfer into aqueous phase) at a continuous flow rate between 0.04 ml/h—0.06 ml/h. Scanning electron microscopy analysis was conducted to analyze and confirm microbead integrity and surface morphology. Glucose sensing was carried out using a Förster resonance energy transfer (FRET) based assay. A proportional fluorescence intensity increase was measured within a 1–10 mM glucose concentration range. Microfluidically synthesized microbeads encapsulating sensing biomolecules offer a quick and low cost method to generate monodisperse biosensors for a variety of applications including cell cultures systems, tissue engineering, etc. PMID:22655010

  1. Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material

    International Nuclear Information System (INIS)

    Gutierrez, Andrea; Ushak, Svetlana; Galleguillos, Hector; Fernandez, Angel; Cabeza, Luisa F.; Grágeda, Mario

    2015-01-01

    Highlights: • Bischofite as phase change material for TES is studied. • Thermophysical properties of bischofite mixtures with PEG were determined. • The aim was to improve the cycling stability of bischofite. • The heating and cooling during 30 cycles were measured. • The most stable sample was bischofite + 5% PEG 2 000. - Abstract: Bischofite is a by-product of the non-metallic mining industry. It has been evaluated as phase change material in thermal energy storage, but it shows little cycling stability, therefore in this paper the mixture of bischofite with an additive was studied. Since polyethylene glycol (PEG) is a PCM itself, in this paper PEG (with different molecular weights) is used as additive in a PCM (bischofite) to improve its thermal behaviour. Results show that adding 5% PEG 2 000 to bischofite gives a more cycling stable PCM without affecting its melting temperature neither decreasing significantly its heat of fusion. This research shows that mixing an inorganic PCM with an organic additive can be a good option to improve the thermal performance of the PCM

  2. Modification of curcumin with polyethylene glycol enhances the delivery of curcumin in preadipocytes and its antiadipogenic property.

    Science.gov (United States)

    Kim, Choon Young; Bordenave, Nicolas; Ferruzzi, Mario G; Safavy, Ahmad; Kim, Kee-Hong

    2011-02-09

    Conjugation of curcumin (CCM) by polyethylene glycol (PEG) has been previously developed to improve water solubility of the natural form of CCM and its antiproliferative role in some human cancer cell lines. This study examined the cellular uptake kinetics of the natural form of CCM and CCM-PEG. Their cytotoxic effect in proliferating preadipocytes and antiadipogenic property in differentiating preadipocytes had also been investigated. CCM and CCM-PEG were found to be differently absorbed in 3T3-L1 preadipocytes and adipocytes with a limited amount of CCM-PEG absorption in the cell. The improved water solubility of CCM-PEG was correlated with increased cellular retention of CCM in 3T3-L1 cells, particularly in preadipocytes. Consequently, CCM-PEG treatment sensitized proliferating preadipocytes to CCM-induced cell toxicity. Furthermore, incubation of differentiating 3T3-L1 cells with CCM-PEG resulted in improvement of the inhibitory role of CCM in adipocyte differentiation with no toxic effect. These results suggest that pegylation-improved water solubility and cellular retention of CCM may be uniquely useful for improving the delivery of CCM in preadipocytes and its antiadipogenic ability.

  3. Poly(acrylic acid)/polyethylene glycol hygrogel prepared by using gamma-ray irradiation for mucosa adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young-Chang; Park, Jong-Seok; Shin, Jung-Woong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Gwon, Hui-Jeong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Khil, Myung-Seob [Chonbuk National University, Jeonju (Korea, Republic of); Lee, Deok-Won [Maxillofacial Surgery Dental Hospital, Seoul (Korea, Republic of); Ahn, Sung-Jun [JADAM Co., LTD., Seogwipo (Korea, Republic of)

    2015-01-15

    A buccal delivery system provides a much milder environment for drug delivery compared to an oral delivery which presents a hostile environment for drugs, especially proteins and polypeptides, owing to acid hydrolysis. Local delivery in an oral cavity has particular applications in the treatment of toothaches, periodontal disease, and bacterial infections. Poly(acrylic acid) (PAA)-based hydrogels prepared using a chemical initiator have been attempted for a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, PAA and polyethylene glycol (PEG) were selected to prepare using a radiation process a bioadhesive hydrogel for adhesion to mucosal surfaces. PAA and PEG were dissolved in purified water to prepare a homogeneous PAA/PEG solution, and the solution was then irradiated using an electron beam at dose up to 70 kGy to make the hydrogels. Their physical properties, such as gel percent, swelling percent, and adhesive strength to mucosal surfaces, were investigated. In this experiment, various amounts of PEG were incorporated into the PAA to enhance the mucoadhesive property of the hydrogels. The effect of the molecular weight of PEG on the mucoadhesion was also examined.

  4. Effect of temperature on the synthesis of silver nanoparticles with polyethylene glycol: new insights into the reduction mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Fleitas-Salazar, Noralvis; Silva-Campa, Erika; Pedroso-Santana, Seidy; Tanori, Judith; Pedroza-Montero, Martín R.; Riera, Raúl, E-mail: rriera@cifus.uson.mx [Universidad de Sonora (Mexico)

    2017-03-15

    Polyethylene glycol (PEG) molecules act as a reducing and stabilizing agent in the formation of silver nanoparticles. PEG undergoes thermal oxidative degradation at temperatures over 70 °C in the presence of oxygen. Here, we studied how the temperature and an oxidizing atmosphere could affect the synthesis of silver nanoparticles with PEG. We tested different AgNO{sub 3} concentrations for nanoparticles syntheses using PEG of low molecular weight, at 60 and 100 °C. At the higher temperature, the reducing action of PEG increased and the effect of PEG/Ag{sup +} ratio on nanoparticles aggregation changed. These results suggest that different synthesis mechanisms operate at 60 and 100 °C. Thus, at 60 °C the reduction of silver ions can occur through the oxidation of the hydroxyl groups of PEG, as has been previously reported. We propose that the thermal oxidative degradation of PEG at 100 °C increases the number of both, functional groups and molecules that can reduce silver ions and stabilize silver nanoparticles. This degradation process could explain the enhancement of PEG reducing action observed by other authors when they increase the reaction temperature or use a PEG of higher molecular weight.

  5. Structural, optical and magnetic properties of Cr doped SnO{sub 2} nanoparticles stabilized with polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Subramanyam, K.; Sreelekha, N. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Murali, G. [Department of BIN Fusion Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk (Korea, Republic of); Reddy, D. Amaranatha [Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Vijayalakshmi, R.P., E-mail: vijayaraguru@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2014-12-01

    Pure and Cr (1, 3, 5 and 7 at%) doped SnO{sub 2} nanoparticles were synthesized in aqueous solution by a simple chemical co-precipitation method using polyethylene glycol (PEG) as a stabilizing agent. The effect of Cr doping on the structural, optical and magnetic properties of SnO{sub 2} nanoparticles was investigated. EDAX spectra confirmed the presence of Sn, O and Cr in near stoichiometry. XRD patterns revealed that particles of all samples were crystallized in single phase rutile type tetragonal crystal structure (P4{sub 2}/mnm) of SnO{sub 2}. The peak positions with Cr concentration shifted to higher 2θ values. Lattice parameters were also decreased with increasing Cr concentration. TEM studies indicated that the particle size is in the range of 8–10 nm. The optical absorption studies indicated that the absorption edge shifted towards lower wavelengths with inclusion of Cr content. FTIR spectrum displays various bands that are due to fundamental overtones of PEG and O–Sn–O entities. Further it revealed that the undoped and as well as Cr doped SnO{sub 2} nanoparticles were capped by PEG. Magnetization measurements at room temperature revealed that all the doped samples were ferromagnetic in nature. Well defined strong room temperature ferromagnetic hysteresis loop was observed for 1% Cr doped SnO{sub 2} nanoparticles.

  6. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium.

    Science.gov (United States)

    Ozcelik, Berkay; Brown, Karl D; Blencowe, Anton; Ladewig, Katharina; Stevens, Geoffrey W; Scheerlinck, Jean-Pierre Y; Abberton, Keren; Daniell, Mark; Qiao, Greg G

    2014-09-01

    Corneal endothelial cells (CECs) are responsible for maintaining the transparency of the human cornea. Loss of CECs results in blindness, requiring corneal transplantation. In this study, fabrication of biocompatible and biodegradable poly(ethylene glycol) (PEG)-based hydrogel films (PHFs) for the regeneration and transplantation of CECs is described. The 50-μm thin hydrogel films have similar or greater tensile strengths to human corneal tissue. Light transmission studies reveal that the films are >98% optically transparent, while in vitro degradation studies demonstrate their biodegradation characteristics. Cell culture studies demonstrate the regeneration of sheep corneal endothelium on the PHFs. Although sheep CECs do not regenerate in vivo, these cells proliferate on the films with natural morphology and become 100% confluent within 7 d. Implantation of the PHFs into live sheep corneas demonstrates the robustness of the films for surgical purposes. Regular slit lamp examinations and histology of the cornea after 28 d following surgery reveal minimal inflammatory responses and no toxicity, indicating that the films are benign. The results of this study suggest that PHFs are excellent candidates as platforms for the regeneration and transplantation of CECs as a result of their favorable biocompatibility, degradability, mechanical, and optical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Gene transfection mediated by polyethyleneimine-polyethylene glycol nanocarrier prevents cisplatin-induced spiral ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Guan-gui Chen

    2015-01-01

    Full Text Available Polyethyleneimine-polyethylene glycol (PEI-PEG, a novel nanocarrier, has been used for transfection and gene therapy in a variety of cells. In our previous study, we successfully carried out PEI-PEG-mediated gene transfer in spiral ganglion cells. It remains unclear whether PEI-PEG could be used for gene therapy with X-linked inhibitor of apoptosis protein (XIAP in the inner ear. In the present study, we performed PEI-PEG-mediated XIAP gene transfection in the cochlea of Sprague-Dawley rats, via scala tympani fenestration, before daily cisplatin injections. Auditory brainstem reflex tests demonstrated the protective effects of XIAP gene therapy on auditory function. Immunohistochemical staining revealed XIAP protein expression in the cytoplasm of cells in the spiral ganglion, the organ of Corti and the stria vascularis. Reverse transcription-PCR detected high levels of XIAP mRNA expression in the cochlea. The present findings suggest that PEI-PEG nanocarrier-mediated XIAP gene transfection results in XIAP expression in the cochlea, prevents damage to cochlear spiral ganglion cells, and protects hearing.

  8. Influence of Polyethylene Glycol (PEG in CMC-NH4BR Based Polymer Electrolytes: Conductivity and Electrical Study

    Directory of Open Access Journals (Sweden)

    Nur Khalidah Zainuddin

    2017-04-01

    Full Text Available The present work was carried with new type and promising polymer electrolytes system by development of carboxylmethylcellulose (CMC doped NH4Br and plasticized with polyethylene glycol (PEG. The sample was successfullyprepared via solution casting with no separation phase and good mechanical properties. The electrical conductivity andthermal conductivity of CMC-NH4Br-PEG based PEs system have been measured by the electrical impedancespectroscopy method in the temperature range of 303–373 K. The highest ionic conductivity gained is 2.48 x 10-3 Scm-1at ambient temperature for sample contain with 8 wt. % PEG. It can be concluded that the plasticized is accountable forthe conductance and assist to enhancing the ionic conductivity of the CMC-NH4Br-PEG electrolyte system. The addition of PEG to the CMC-based electrolyte can enhance towards the cation mobility which is turn increases ionic conductivity. The conductivity-temperature of plasticized BdPEs system was found obeys the Arrhenius relation where the ionic conductivity increases with temperature and activation energy for the ions hopping of the highest conducting PEs system only required small value to migrate. The electrical studies show a non-Debye behaviour of BdPEs based on the analyzed data using complex permittivity, ε* and complex electrical modulus, M* of the sample at different temperature.

  9. Tunable separations based on a molecular size effect for biomolecules by poly(ethylene glycol) gel-based capillary electrophoresis.

    Science.gov (United States)

    Kubo, Takuya; Nishimura, Naoki; Furuta, Hayato; Kubota, Kei; Naito, Toyohiro; Otsuka, Koji

    2017-11-10

    We report novel capillary gel electrophoresis (CGE) with poly(ethylene glycol) (PEG)-based hydrogels for the effective separations of biomolecules containing sugars and DNAs based on a molecular size effect. The gel capillaries were prepared in a fused silica capillary modified with 3-(trimethoxysilyl)propylmethacrylate using a variety of the PEG-based hydrogels. After the fundamental evaluations in CGE regarding the separation based on the molecular size effect depending on the crosslinking density, the optimized capillary provided the efficient separation of glucose ladder (G1 to G20). In addition, another capillary showed the successful separation of DNA ladder in the range of 10-1100 base pair, which is superior to an authentic acrylamide-based gel capillary. For both glucose and DNA ladders, the separation ranges against the molecular size were simply controllable by alteration of the concentration and/or units of ethylene oxide in the PEG-based crosslinker. Finally, we demonstrated the separations of real samples, which included sugars carved out from monoclonal antibodies, mAbs, and then the efficient separations based on the molecular size effect were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol

    Directory of Open Access Journals (Sweden)

    Andrea León

    2017-01-01

    Full Text Available The aim of this study was to prepare a novel targeting drug delivery system for 2-Methoxyestradiol (2ME in order to improve the clinical application of this antitumor drug. It is based in nanoparticles (NPs of titanium dioxide (TiO2 coated with polyethylene glycol (PEG and loaded with 2ME. A complete IR and Raman characterization have been made to confirm the formation of TiO2–PEG–2ME composite. Vibrational modes have been assigned for TiO2, PEG, and 2ME and functionalized TiO2–PEG and TiO2–PEG–2ME. The observed variation in peak position of FTIR and Raman of each for these composites has been elucidated in terms of intermolecular interactions between PEG–2ME and TiO2, obtaining step-by-step the modification processes that were attributed to the conjugation of PEG and 2ME to TiO2 NPs. Modifying TiO2 NPs with PEG loaded with the 2ME drug revealed that the titanium dioxide nanocarrier possesses an effective adsorption capability, and we discuss their potential application as a system of drug delivery.

  11. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification.

    Science.gov (United States)

    Wang, Weiping; Zheng, Zhi; Huang, Xin; Fan, Wenling; Yu, Wenkui; Zhang, Zhibing; Li, Lei; Mao, Chun

    2017-10-01

    Polyethylene glycol (PEG) and heparin (Hep) were grafted onto polysulfone (PSF) membrane by plasma-induced surface modification to prepare PSF-PEG-Hep membranes used for artificial lung. The effects of plasma treatment parameters, including power, gas type, gas flow rate, and treatment time, were investigated, and different PEG chains were bonded covalently onto the surface in the postplasma grafting process. Membrane surfaces were characterized by water contact angle, PEG grafting degree, attenuated total reflectance-Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, X-ray photoelectron spectroscopy, critical water permeability pressure, and scanning electron microscopy. Protein adsorption, platelet adhesion, and coagulation tests showed significant improvement in the hemocompatibility of PSF-PEG-Hep membranes compared to pristine PSF membrane. Gas exchange tests through PSF-PEG6000-Hep membrane showed that when the flow rate of porcine blood reached 5.0 L/min, the permeation fluxes of O 2 and CO 2 reached 192.6 and 166.9 mL/min, respectively, which were close to the gas exchange capacity of a commercial membrane oxygenator. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1737-1746, 2017. © 2016 Wiley Periodicals, Inc.

  12. Synthesis and characterization of gold nanotube/nanowire–polyurethane composite based on castor oil and polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman, E-mail: y.ganji@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran (Iran, Islamic Republic of); Kasra, Mehran, E-mail: mkasra@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran (Iran, Islamic Republic of); Salahshour Kordestani, Soheila, E-mail: s.kordestani@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran (Iran, Islamic Republic of); Bagheri Hariri, Mohiedin, E-mail: mohibagheri@gmail.com [Materials Science and Engineering Department, Sharif University of Technology, Azadi Ave., Tehran (Iran, Islamic Republic of)

    2014-09-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil–polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane–GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane–GNT/NW composites was observed resulting from the improved surface properties of composites. - Highlights: • Polyurethane–gold nanotubes/nanowires (GNT/NWs) composites were synthesized. • Tan δ, E′ and E″ were increased upon addition of 50 ppm of GNT/NW. • Better cell attachment was observed in composites containing 50 ppm of GNT/NW. • GNT/NWs can make a bridge between the pores of the porous polymeric scaffolds. • GNT/NWs increased the crosslink density of the polymeric matrix.

  13. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.

    Science.gov (United States)

    Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin

    2014-09-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane-GNT/NW composites was observed resulting from the improved surface properties of composites. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Polyethylene Glycol Electrolyte Lavage Solution versus Colonic Hydrotherapy for Bowel Preparation before Colonoscopy: A Single Center, Randomized, and Controlled Study

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2014-01-01

    Full Text Available This single center, randomized, and controlled study aimed to compare the effectiveness and safety of polyethylene glycol electrolyte lavage (PEG-EL solution and colonic hydrotherapy (CHT for bowel preparation before colonoscopy. A total of 196 eligible outpatients scheduled for diagnostic colonoscopy were randomly assigned to the PEG-EL (n=102 or CHT (n=94 groups. Primary outcome measures included colonic cleanliness and adverse effects. Secondary outcome measures were patient satisfaction and preference, colonoscopic findings, ileocecal arrival rate, examiner satisfaction, and cecal intubation time. The results show that PEG-EL group was associated with significantly better colonic cleanliness than CHT group, fewer adverse effects, and increased examiner satisfaction. However, the CHT group had higher patient satisfaction and higher diverticulosis detection rates. Moreover, the results showed the same ileocecal arrival rate and patient preference between the two groups (P>0.05. These findings indicate that PEG-EL is the preferred option in patients who followed the preparation instructions completely.

  15. Effect of addition of different nano-clays on the fumed silica-polyethylene glycol based shear-thickening fluids

    Science.gov (United States)

    Singh, Mansi; Mehta, Rajeev; Verma, Sanjeev K.; Biswas, Ipsita

    2018-01-01

    A comparative study of the rheology of shear thickening suspensions of 20% fumed silica in polyethylene glycol (PEG200) with different nano clays as additives has been done. The nano-clays used are montmorillonite (MMT), Closite15A, Kaolin and Halloysite clay. The objective was to study the effect of relatively cost-effective clays as a partial substitute of silica. Specifically, the effect of type, concentration, temperature and frequency were considered. The results indicate that the shear thickening properties of Closite15A as additive in temperature ranges of 25 °C-45 °C performs the best and Halloysite performs best at higher (55 °C) and lower temperatures (5, 15 °C). The elasticity effects in dynamic experiments were markedly enhanced by Halloysite clay addition. Addition of MMT, however, led to insignificant enhancement in critical viscosity in steady-state as well as dynamic state-rheology. Interestingly, shear thickening fluid (STF) with all clay except MMT was stable after storing for more than a month. These findings indicate that the introduction of nano-clay as additives is a promising and cost effective method for enhancing the STF behavior which can be utilized in high impact resistant (about 3000% strain and 300 rad s-1 frequency) applications.

  16. Transparent Low Molecular Weight Poly(Ethylene Glycol Diacrylate-Based Hydrogels as Film Media for Photoswitchable Drugs

    Directory of Open Access Journals (Sweden)

    Théophile Pelras

    2017-11-01

    Full Text Available Hydrogels have shown a great potential as materials for drug delivery systems thanks to their usually excellent bio-compatibility and their ability to trap water-soluble organic molecules in a porous network. In this study, poly(ethylene glycol-based hydrogels containing a model dye were synthesized by ultraviolet (UV-A photopolymerization of low-molecular weight macro-monomers and the material properties (dye release ability, transparency, morphology, and polymerization kinetics were studied. Real-time infrared measurements revealed that the photopolymerization of the materials was strongly limited when the dye was added to the uncured formulation. Consequently, the procedure was adapted to allow for the formation of sufficiently cured gels that are able to capture and later on to release dye molecules in phosphate-buffered saline solution within a few hours. Due to the transparency of the materials in the 400–800 nm range, the hydrogels are suitable for the loading and excitation of photoactive molecules. These can be uptaken by and released from the polymer matrix. Therefore, such materials may find applications as cheap and tailored materials in photodynamic therapy (i.e., light-induced treatment of skin infections by bacteria, fungi, and viruses using photoactive drugs.

  17. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles

    Science.gov (United States)

    Shen, Zhiqiang; Loe, David T.; Awino, Joseph K.; Kröger, Martin; Rouge, Jessica L.; Li, Ying

    2016-08-01

    Herein a new multifunctional formulation, referred to as a core-polyethylene glycol-lipid shell (CPLS) nanoparticle, has been proposed and studied in silico via large scale coarse-grained molecular dynamics simulations. A PEGylated core with surface tethered polyethylene glycol (PEG) chains is used as the starting configuration, where the free ends of the PEG chains are covalently bonded with lipid molecules (lipid heads). A complete lipid bilayer is formed at the surface of the PEGylated particle core upon addition of free lipids, driven by the hydrophobic properties of the lipid tails, leading to the formation of a CPLS nanoparticle. The self-assembly process is found to be sensitive to the grafting density and molecular weight of the tethered PEG chains, as well as the amount of free lipids added. At low grafting densities the assembly of CPLS nanoparticles cannot be accomplished. As demonstrated by simulations, a lipid bud/vesicle can be formed on the surface when an excess amount of free lipids is added at high grafting density. Therefore, the CPLS nanoparticles can only be formed under appropriate conditions of both PEG and free lipids. The CPLS nanoparticle has been recognized to be able to store a large quantity of water molecules, particularly with high molecular weight of PEG chains, indicating its capacity for carrying hydrophilic molecules such as therapeutic biomolecules or imaging agents. Under identical size and surface chemistry conditions of a liposome, it has been observed that the CPLS particle can be more efficiently wrapped by the lipid membrane, indicating its potential for a greater efficiency in delivering its hydrophilic cargo. As a proof-of-concept, the experimental realization of CPLS nanoparticles is explicitly demonstrated in this study. To test the capacity of the CPLS to store small molecule cargo a hydrophilic dye was successfully encapsulated in the particles' water soluble layer. The results of this study show the power and

  18. Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency

    Directory of Open Access Journals (Sweden)

    Ruixin Shao

    2015-09-01

    Full Text Available After maize seedlings grown in full-strength Hoagland solution for 20 days were exposed to 20% polyethylene glycol (PEG-stimulated water deficiency for two days, plant height, shoot fresh and dry weights, and pigment contents significantly decreased, whereas malondialdehyde (MDA content greatly increased. Using transmission electron microscopy, we observed that chloroplasts of mesophyll cells in PEG-treated maize seedlings were swollen, with a disintegrating envelope and disrupted grana thylakoid lamellae. Using two-dimensional gel electrophoresis (2-DE method, we were able to identify 22 protein spots with significantly altered abundance in the leaves of treated seedlings in response to water deficiency, 16 of which were successfully identified. These protein species were functionally classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, and unknown categories. The change in the abundance of the identified protein species may be closely related to the phenotypic and physiological changes due to PEG-stimulated water deficiency. Most of the identified protein species were putatively located in chloroplasts, indicating that chloroplasts may be prone to damage by PEG stimulated-water deficiency in maize seedlings. Our results help clarify the molecular mechanisms of the responses of higher plants to severe water deficiency.

  19. Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr3 Films.

    Science.gov (United States)

    Song, Li; Guo, Xiaoyang; Hu, Yongsheng; Lv, Ying; Lin, Jie; Liu, Zheqin; Fan, Yi; Liu, Xingyuan

    2017-09-07

    Efficient inorganic perovskite light-emitting diodes (PeLEDs) with an ultrathin perovskite emission layer (∼30 nm) were realized by doping Lewis base polyethylene glycol (PEG) into CsPbBr 3 films. PEG in the perovskite films not only physically fills the crystal boundaries but also interacts with the perovskite crystals to passivate the crystal grains, reduce nonradiative recombination, and ensure efficient luminance and high efficiency. As a result, promoted brightness, current efficiency (CE), and external quantum efficiency (EQE) were achieved. The nonradiative decay rate of the PEG:CsPbBr 3 composite film is 1 order of magnitude less than that of the neat CsPbBr 3 film. After further optimization of the molar ratio between CsBr and PbBr 2 , a peak CE of 19 cd/A, a maximum EQE of 5.34%, and a maximum brightness of 36600 cd/m 2 were achieved, demonstrating the interaction between PEG and the precursors. The results are expected to offer some helpful implications in optimizing the polymer-assisted PeLEDs with ultrathin emission layers, which might have potential application in see-through displays.

  20. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.

    Science.gov (United States)

    Lee, Hyun Jong; Kim, Dae Nyun; Park, Saemi; Lee, Yeol; Koh, Won-Gun

    2011-03-01

    In this paper, we describe a simple method for fabricating micropatterned nanoporous substrates that are capable of controlling the spatial positioning of mammalian cells. Micropatterned substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on alumina membranes with 200 nm nanopores using photolithography. Because hydrogel precursor solution could infiltrate and become crosslinked within the nanopores, the resultant hydrogel micropatterns were firmly anchored on the substrate without the use of adhesion-promoting monolayers, thereby allow tailoring of the surface properties of unpatterned nanoporous areas. For mammalian cell patterning, arrays of microwells of different dimensions were fabricated. These microwells were composed of hydrophilic PEG hydrogel walls surrounding nanoporous bottoms that were modified with cell-adhesive Arg-Gly-Asp (RGD) peptides. Because the PEG hydrogel was non-adhesive towards proteins and cells, cells adhered selectively and remained viable within the RGD-modified nanoporous regions, thereby creating cellular micropatterns. Although the morphology of cell clusters and the number of cells inside one microwell were dependent on the lateral dimension of the microwells, adhered cells that were in direct contact with nanopores were able to penetrate into the nanopores by small extensions (filopodia) for all the different sizes of microwells evaluated. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Preparation of FeO(OH Modified with Polyethylene Glycol and Its Catalytic Activity on the Reduction of Nitrobenzene with Hydrazine Hydrate

    Directory of Open Access Journals (Sweden)

    Ke Ying Cai

    2016-10-01

    Full Text Available Iron oxyhydroxide was prepared by dropping ammonia water to Fe(NO33.9H2O dispersed in polyethylene glycol (PEG 1000. The catalyst was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and laser particle size analyzer. The results showed the catalyst modified with polyethylene glycol was amorphous. The addition of PEG during the preparation make the particle size of the catalyst was smaller and more uniform. The catalytic performance was tested in the reduction of nitroarenes to corresponding amines with hydrazine hydrate, and the catalyst showed excellent activity and stability. Copyright © 2016 BCREC GROUP. All rights reserved Received: 2nd February 2016; Revised: 26th April 2016; Accepted: 7th June 2016 How to Cite: Cai, K.Y., Liu, Y.S., Song, M., Zhou, Y.M., Liu, Q., Wang, X.H. (2016. Preparation of FeO(OH Modified with Polyethylene Glycol and Its Catalytic Activity on the Reduction of Nitrobenzene with Hydrazine Hydrate. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 363-368 (doi:10.9767/bcrec.11.3.576.363-368 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.576.363-368

  2. Determining equilibrium osmolarity in poly(ethylene glycol)/chondrotin sulfate gels mimicking articular cartilage.

    Science.gov (United States)

    Sircar, S; Aisenbrey, E; Bryant, S J; Bortz, D M

    2015-01-07

    We present an experimentally guided, multi-phase, multi-species polyelectrolyte gel model to make qualitative predictions on the equilibrium electro-chemical properties of articular cartilage. The mixture theory consists of two different types of polymers: poly(ethylene gylcol) (PEG), chondrotin sulfate (ChS), water (acting as solvent) and several different ions: H(+), Na(+), Cl(-). The polymer chains have covalent cross-links whose effect on the swelling kinetics is modeled via Doi rubber elasticity theory. Numerical studies on equilibrium polymer volume fraction and net osmolarity (difference in the solute concentration across the gel) show a complex interplay between ionic bath concentrations, pH, cross-link fraction and the average charge per monomer. Generally speaking, swelling is aided due to a higher average charge per monomer (or a higher particle fraction of ChS, the charged component of the polymer), low solute concentration in the bath, a high pH or a low cross-link fraction. A peculiar case arises at higher values of cross-link fraction, where it is observed that increasing the average charge per monomer leads to gel deswelling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A meta-analysis of randomized controlled trials of low-volume polyethylene glycol plus ascorbic acid versus standard-volume polyethylene glycol solution as bowel preparations for colonoscopy.

    Directory of Open Access Journals (Sweden)

    Qingsong Xie

    Full Text Available BACKGROUND: Standard-volume polyethylene glycol (PEG gut lavage solutions are safe and effective, but they require the consumption of large volumes of fluid. A new lower-volume solution of PEG plus ascorbic acid has been used recently as a preparation for colonoscopy. AIM: A meta-analysis was performed to compare the performance of low-volume PEG plus ascorbic acid with standard-volume PEG as bowel preparation for colonoscopy. STUDY: Electronic and manual searches were performed to identify randomized controlled trials (RCTs that compared the performance of low-volume PEG plus ascorbic acid with standard-volume PEG as bowel preparation for colonoscopy. After a methodological quality assessment and data extraction, the pooled estimates of bowel preparation efficacy during bowel cleansing, compliance with preparation, willingness to repeat the same preparation, and the side effects were calculated. We calculated pooled estimates of odds ratios (OR by fixed- and/or random-effects models. We also assessed heterogeneity among studies and the publication bias. RESULTS: Eleven RCTs were identified for analysis. The pooled OR for preparation efficacy during bowel cleansing and for compliance with preparation for low-volume PEG plus ascorbic acid were 1.08 (95% CI = 0.98-1.28, P = 0.34 and 2.23 (95% CI = 1.67-2.98, P<0.00001, respectively, compared with those for standard-volume PEG. The side effects of vomiting and nausea for low-volume PEG plus ascorbic acid were reduced relative to standard-volume PEG. There was no significant publication bias, according to a funnel plot. CONCLUSIONS: Low-volume PEG plus ascorbic acid gut lavage achieved non-inferior efficacy for bowel cleansing, is more acceptable to patients, and has fewer side effects than standard-volume PEG as a bowel preparation method for colonoscopy.

  4. Effects of polyethylene glycol 2 L alone or with ascorbic acid compared with polyethylene glycol 4 L alone for bowel preparation before colonoscopy: protocol for a systematic review and network meta-analysis.

    Science.gov (United States)

    Tian, Xu; Chen, Wei-Qing; Huang, Jie-Li; He, Lan-Ying; Liu, Bang-Lun; Liu, Xi; Zhou, Hang; Liu, Bing-Rong

    2017-10-16

    Colonoscopy has been regarded as a standard method of detecting and removing gastrointestinal lesions early, while adequate bowel preparation is the prerequisite of determining the diagnostic accuracy and treatment safety of this process. Polyethylene glycol (PEG) based bowel preparation regimens remain the first recommendation, but the optimal option is still uncertain. The aim of this systematic review and network meta-analysis of randomised controlled trials (RCTs) is to determine the optimal PEG based bowel preparation regimen before colonoscopy. We will assign two investigators to independently search all potential citations, screen records, abstract essential information and appraise the risk of bias accordingly. Then, random effects pairwise and network meta-analyses of RCTs comparing PEG 2 L alone or with ascorbic acid with PEG 4 L alone will be performed using RevMan 5.3 (Copenhagen, Denmark: The Nordic Cochrane Centre, The Cochrane Collaboration, 2013), Stata 14 (StataCorp, Texas, USA) and WinBUGS 1.4 (Imperial College School of Medicine, St Mary's, London, UK) from January 2000 to April 2017. The surface under the cumulative ranking curve will also be calculated in order to rank the regimens. Ethics approval and patient written informed consent will not be required because all of the analyses in the present study will be performed based on data from published studies. We will submit our systematic review and network meta-analysis to a peer reviewed scientific journal for publication. PROSPERO: CRD42017068957. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. The influence of tannin, pectin and polyethylene glycol on attachment of {sup 15}N-labelled rumen microorganisms to cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Bento, M.H.L. [Avian Science Research Centre, Animal Health Group, SAC, Edinburgh, Scotland (United Kingdom) and FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna (Austria)]. E-mail: helena.bento@sac.ac.uk; Acamovic, T. [Avian Science Research Centre, Animal Health Group, SAC, Edinburgh, Scotland (United Kingdom); Makkar, H.P.S. [FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna (Austria)

    2005-08-19

    The microbial attachment to and gas production from {alpha}-cellulose (Sigma; C-8002) without and with mimosa tannin (MT), pectin (P), polyethylene glycol (PEG), MT + P or MT + PEG, were investigated using the in vitro gas production system. Microbial attachment based on {sup 15}N-labelled rumen microorganisms in the residual pellet after 24 h incubation was estimated, which varied from 113.7 to 161.3 {mu}g {sup 15}N per g residual pellet. C + MT had the lowest microbial attachment (P < 0.05) of all treatments and C + P the highest (P < 0.05). Both pectin and PEG improved microbial attachment when added to C + MT (P < 0.001). Gas production was measured at 2, 4, 6, and 24 h. Mimosa tannin drastically reduced gas production only at 24 h (P < 0.001). Pectin increased gas production throughout the incubation period (P < 0.001). Both pectin and PEG increased gas production at 24 h, when added to C + MT (P < 0.05), however, for C + MT + P, the gas production was only half (P < 0.05) of the gas produced in the control (when only C incubated). A rapid degradation of pectin early in the incubation could have reduced the interaction of pectin with the MT. Microbial attachment agreed well with gas production at 24 h (R{sup 2} = 0.84, P < 0.001). However, the inclusion of MT and pectin may have resulted in differences in microbial profiles, thereby altering the capability of the adhered microbes to degrade cellulose. This assertion is supported by the lower gas production (ml per {mu}g of {sup 15}N) in the residual pellet measured for C + MT (0.054) and C + MT + P (0.159), compared with the other treatments (0.32 for C; 0.34 for C + P; 0.33 for C + PEG; and 0.33 for C + MT + PEG). A MT concentration of 194 g/kg diet reduced microbial attachment and activity of rumen microorganisms in vitro. Polyethylene glycol counteracted the effect of MT on microbial attachment and activity. Pectin exerted a beneficial effect on attachment and fermentation in the initial hours of incubation

  6. Functional and Anatomical Outcomes of Facial Nerve Injury With Application of Polyethylene Glycol in a Rat Model.

    Science.gov (United States)

    Brown, Brandon L; Asante, Tony; Welch, Haley R; Sandelski, Morgan M; Drejet, Sarah M; Shah, Kishan; Runge, Elizabeth M; Shipchandler, Taha Z; Jones, Kathryn J; Walker, Chandler L

    2018-05-17

    Functional and anatomical outcomes after surgical repair of facial nerve injury may be improved with the addition of polyethylene glycol (PEG) to direct suture neurorrhaphy. The application of PEG has shown promise in treating spinal nerve injuries, but its efficacy has not been evaluated in treatment of cranial nerve injuries. To determine whether PEG in addition to neurorrhaphy can improve functional outcomes and synkinesis after facial nerve injury. In this animal experiment, 36 rats underwent right facial nerve transection and neurorrhaphy with addition of PEG. Weekly behavioral scoring was done for 10 rats for 6 weeks and 14 rats for 16 weeks after the operations. In the 16-week study, the buccal branches were labeled and tissue analysis was performed. In the 6-week study, the mandibular and buccal branches were labeled and tissue analysis was performed. Histologic analysis was performed for 10 rats in a 1-week study to assess the association of PEG with axonal continuity and Wallerian degeneration. Six rats served as the uninjured control group. Data were collected from February 8, 2016, through July 10, 2017. Polyethylene glycol applied to the facial nerve after neurorrhaphy. Functional recovery was assessed weekly for the 16- and 6-week studies, as well as motoneuron survival, amount of regrowth, specificity of regrowth, and aberrant branching. Short-term effects of PEG were assessed in the 1-week study. Among the 40 male rats included in the study, PEG addition to neurorrhaphy showed no functional benefit in eye blink reflex (mean [SEM], 3.57 [0.88] weeks; 95% CI, -2.8 to 1.9 weeks; P = .70) or whisking function (mean [SEM], 4.00 [0.72] weeks; 95% CI, -3.6 to 2.4 weeks; P = .69) compared with suturing alone at 16 weeks. Motoneuron survival was not changed by PEG in the 16-week (mean, 132.1 motoneurons per tissue section; 95% CI, -21.0 to 8.4; P = .13) or 6-week (mean, 131.1 motoneurons per tissue section; 95% CI, -11.0 to 10.0; P = .06

  7. Incorporating functionalized polyethylene glycol lipids into reprecipitated conjugated polymer nanoparticles for bioconjugation and targeted labeling of cells

    Science.gov (United States)

    Kandel, Prakash K.; Fernando, Lawrence P.; Ackroyd, P. Christine; Christensen, Kenneth A.

    2011-03-01

    We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG) lipids by reprecipitation. These nanoparticles retain the fundamental spectroscopic properties of conjugated polymer nanoparticles prepared without PEG lipid, but demonstrate greater hydrophilicity and quantum yield compared to unmodified conjugated polymer nanoparticles. The sizes of these nanoparticles, as determined by TEM, were 21-26 nm. Notably, these nanoparticles were prepared with several PEG lipid functional end groups, including biotin and carboxy moieties that can be easily conjugated to biomolecules. We have demonstrated the availability of these end groups for functionalization using the interaction of biotin PEG lipid conjugated polymer nanoparticles with streptavidin. Biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-linked magnetic beads, while carboxy and methoxy PEG lipid modified nanoparticles did not. Similarly, biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-coated glass slides and could be visualized as diffraction-limited spots, while nanoparticles without PEG lipid or with non-biotin PEG lipid end groups were not bound. To demonstrate that nanoparticle functionalization could be used for targeted labelling of specific cellular proteins, biotinylated PEG lipid conjugated polymer nanoparticles were bound to biotinylated anti-CD16/32 antibodies on J774A.1 cell surface receptors, using streptavidin as a linker. This work represents the first demonstration of targeted delivery of conjugated polymer nanoparticles and demonstrates the utility of these new nanoparticles for fluorescence based imaging and sensing.We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG

  8. Chemoprevention of colon carcinogenesis by polyethylene glycol: suppression of epithelial proliferation via modulation of SNAIL/beta-catenin signaling.

    Science.gov (United States)

    Roy, Hemant K; Kunte, Dhananjay P; Koetsier, Jennifer L; Hart, John; Kim, Young L; Liu, Yang; Bissonnette, Marc; Goldberg, Michael; Backman, Vadim; Wali, Ramesh K

    2006-08-01

    Polyethylene glycol (PEG) is one of the most potent chemopreventive agents against colorectal cancer; however, the mechanisms remain largely unexplored. In this study, we assessed the ability of PEG to target cyclin D1-beta-catenin-mediated hyperproliferation in the azoxymethane-treated rat model and the human colorectal cancer cell line, HT-29. Azoxymethane-treated rats were randomized to AIN-76A diet alone or supplemented with 5% PEG-8000. After 30 weeks, animals were euthanized and biopsies of aberrant crypt foci and uninvolved crypts were subjected to immunohistochemical and immunoblot analyses. PEG markedly suppressed both early and late markers of azoxymethane-induced colon carcinogenesis (fractal dimension by 80%, aberrant crypt foci by 64%, and tumors by 74%). In both azoxymethane-treated rats and HT-29 cells treated with 5% PEG-3350 for 24 hours, PEG decreased proliferation (45% and 52%, respectively) and cyclin D1 (78% and 56%, respectively). Because beta-catenin is the major regulator of cyclin D1 in colorectal cancer, we used the T-cell factor (Tcf)-TOPFLASH reporter assay to show that PEG markedly inhibited beta-catenin transcriptional activity. PEG did not alter total beta-catenin expression but rather its nuclear localization, leading us to assess E-cadherin expression (a major determinant of beta-catenin subcellular localization), which was increased by 73% and 71% in the azoxymethane-rat and HT-29 cells, respectively. We therefore investigated the effect of PEG treatment on levels of the negative regulator of E-cadherin, SNAIL, and observed a 50% and 75% decrease, respectively. In conclusion, we show, for the first time, a molecular mechanism through which PEG imparts its antiproliferative and hence profound chemopreventive effect.

  9. Prevention of colonic neoplasia with polyethylene glycol: A short term randomized placebo-controlled double-blinded trial.

    Science.gov (United States)

    Wali, Ramesh K; Bianchi, Laura; Kupfer, Sonia; De La Cruz, Mart; Jovanovic, Borko; Weber, Christopher; Goldberg, Michael J; Rodriguez, L M; Bergan, Raymond; Rubin, David; Tull, Mary Beth; Richmond, Ellen; Parker, Beth; Khan, Seema; Roy, Hemant K

    2018-01-01

    Chemoprevention represents an attractive modality against colorectal cancer (CRC) although widespread clinical implementation of promising agents (e.g. aspirin/NSAIDS) have been stymied by both suboptimal efficacy and concerns over toxicity. This highlights the need for better agents. Several groups, including our own, have reported that the over-the-counter laxative polyethylene glycol (PEG) has remarkable efficacy in rodent models of colon carcinogenesis. In this study, we undertook the first randomized human trial to address the role of PEG in prevention of human colonic neoplasia. This was a double-blind, placebo-controlled, three-arm trial where eligible subjects were randomized to 8g PEG-3350 (n = 27) or 17g PEG-3350 (n = 24), or placebo (n = 24; maltodextrin) orally for a duration of six months. Our initial primary endpoint was rectal aberrant crypt foci (ACF) but this was changed during protocol period to rectal mucosal epidermal growth factor receptor (EGFR). Of the 87 patients randomized, 48 completed study primary endpoints and rectal EGFR unchanged PEG treatment. Rectal ACF had a trend suggesting potentially reduction with PEG treatment (pre-post change 1.7 in placebo versus -0.3 in PEG 8+ 17g doses, p = 0.108). Other endpoints (proliferation, apoptosis, expression of SNAIL and E-cadherin), previously noted to be modulated in rodent models, appeared unchanged with PEG treatment in this clinical trial. We conclude that PEG was generally well tolerated with the trial failing to meet primary efficacy endpoints. However, rectal ACFs demonstrated a trend (albeit statistically insignificant) for suppression with PEG. Moreover, all molecular assays including EGFR were unaltered with PEG underscoring issues with lack of translatability of biomarkers from preclinical to clinical trials. This data may provide the impetus for future clinical trials on PEG using more robust biomarkers of chemoprevention. ClinicalTrials.gov NCT00828984.

  10. Polyethylene glycol plus ascorbic acid is as effective as sodium picosulfate with magnesium citrate for bowel preparation: A randomized trial.

    Science.gov (United States)

    Choi, Hyun-Seok; Chung, Jun-Won; Lee, Ji Won; Lim, Min Young; Park, Dong Kyun; Kim, Yoon Jae; Kwon, Kwang Ahn; Kim, Jung Ho

    2016-04-01

    This study was aimed to evaluate the efficacy and safety of two low-volume agents, polyethylene glycol (PEG)-3350 plus ascorbic acid (PEG + Asc) and sodium picosulfate with magnesium citrate (SPMC), for bowel preparation. We performed a prospective, endoscopist-blinded, single-center, randomized controlled trial comparing PEG + Asc with SPMC to evaluate the bowel cleansing efficacy of the two regimens using the modified Ottawa bowel preparation scale (OBPS) and the Aronchick scale. Patients' taste and overall tolerance were assessed with a questionnaire. In total, 200 patients were randomized to receive either PEG + Asc (n = 98) or SPMC (n = 102). Both treatments were similarly efficacious in bowel cleansing, based on the modified OBSP (PEG + Asc 4.01 ± 2.29 vs SPMC 3.86 ± 2.47, P = 0.62) and Aronchick scale (PEG + Asc 1.96 ± 0.70 vs SPMC 1.89 ± 0.70, P = 0.42). Patient-reported taste and tolerance of each regimen, as reported by the questionnaire, were significantly greater in the PEG + Asc group than in the SPMC group (P = 0.01). In terms of adverse events, dizziness was more frequently observed in the PEG + Asc group (P = 0.03), whereas nausea was more common in the SPMC group (P = 0.02). PEG + Asc and SPMC show similar efficacy for bowel preparation. However, patient's overall tolerance is higher in the PEG + Asc group. © 2016 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  11. Efficacy and Safety of Combined Oral and Enema Therapy Using Polyethylene Glycol 3350-Electrolyte for Disimpaction in Pediatric Constipation.

    Science.gov (United States)

    Yoo, Taeyeon; Bae, Sun Hwan

    2017-12-01

    We evaluated the efficacy and safety of combined oral and enema therapy using polyethylene glycol (PEG) 3350 with electrolyte solution for disimpaction in hospitalized children. We retrospectively studied 28 children having functional constipation who received inpatient treatment between 2008 and 2016. The amount of oral PEG 3350 electrolyte solution administered was 50-70 mL/kg/d (PEG 3350, 3-4.1 g/kg/d), and an enema solution was administered 1-2 times a day as a single dose of 15-25 mL/kg (PEG 3350, 0.975-1.625 g/kg/d). A colon transit time (CTT) test based on the Metcalf protocol was performed in some patients. Administration of oral and enema doses of PEG 3350 electrolyte solution showed 2.1±0.3 times and 2.9±0.4 times, respectively. After disimpaction, the frequency of defecation increased from 2.2±0.3 per week to once a day (1.1±0.1 per day). The number of patients who complained of abdominal pain was reduced from 15 (53.6%) to 4 (14.3%). Before hospitalization, nine patients underwent a CTT test, and 5 of 9 patients (55.6%) were classified as belonging to a group showing abnormalities. And in some patients, mild adverse effects were noted. We examined electrolytes and osmolality before and after disimpaction in 16 of 28 patients, and no abnormalities were noted. In terms of therapeutic efficacy and safety, combined oral and enema therapy using high-dose PEG 3350 with electrolytes is considered superior to conventional oral monotherapy or combined oral and enema therapy on an outpatient basis.

  12. Clinical efficacy and safety of polyethylene glycol 3350 versus liquid paraffin in the treatment of pediatric functional constipation.

    Science.gov (United States)

    Rafati, Mr; Karami, H; Salehifar, E; Karimzadeh, A

    2011-01-01

    Functional constipation is prevalent in children. Recently polyethylene glycol has been introduced as an effective and safe drug to treat chronic constipation. There are only a few clinical trials on comparison of PEG and liquid paraffin in childhood constipation. The purpose of this study was to evaluate clinical efficacy and safety of PEG 3350 solution and liquid paraffin in the treatment of children with functional constipation in Sari Toba clinic during the period of 2008-2009. Children with a history of functional constipation were subjects of this study. One hundred and sixty children of 2-12 years old with functional constipation were randomized in two PEG and paraffin treatment groups. Patients received either 1.0-1.5 g/kg/day PEG 3350 or 1.0-1.5 ml/kg/day liquid paraffin for 4 months. Clinical efficacy was evaluated by stool and encopresis frequency/week and overall treatment success rate was compared in two groups. Compared with the baseline, defecation frequency/ week increased significantly and encopresis frequency meaningfully decreased in two groups during the period of the study. Patients using PEG 3350 had more success rate (mean: 95.3%±3.7) compared with the patients in paraffin group (mean: 87.2%±7.1) (p=0.087). Administration of PEG 3350 were associated with less adverse events than liquid paraffin. In conclusion in treatment of pediatric functional constipation, regarding clinical efficacy and safety, PEG 3350 were at least as effective as liquid paraffin and but less adverse drug events.

  13. Polyethylene glycol 3350 in occasional constipation: A one-week, randomized, placebo-controlled, double-blind trial.

    Science.gov (United States)

    McGraw, Thomas

    2016-05-06

    To evaluate the efficacy and safety of polyethylene glycol (PEG) 3350 in subjects with self-reported occasional constipation. Eligible subjects ≥ 17 years of age were randomized to receive either placebo or PEG 3350 17 g once daily in this multicenter, double-blind trial. Evaluations were conducted before (baseline) and after a 7-d treatment period. The primary efficacy variable was the proportion of subjects reporting complete resolution of straining and hard or lumpy stools. Secondary efficacy variables assessed the severity of the subjects' daily bowel movement (BM) symptoms, and preference of laxatives based on diary entries, visual analog scale scores, and questionnaires. Of the 203 subjects enrolled in the study, 11 had major protocol violations. Complete resolution was noted by 36/98 (36.7%) subjects in the PEG 3350 group and 23/94 (24.5%) in the placebo group (P = 0.0595). The number of complete BMs without straining or lumpy stools was similar between both groups. Subjects receiving PEG 3350 experienced significant relief in straining and reduction in hardness of stools over a 7-d period (P PEG 3350 had a better effect on their daily lives, provided better control over a BM, better relief from constipation, cramping, and bloating, and was their preferred laxative. Adverse events (AEs) were balanced between the PEG 3350 and the placebo groups. No deaths, serious AEs, or discontinuations due to AEs were reported. This trial is registered at clinicaltrials.gov as NCT00770432. Oral administration of 17 g PEG 3350 once daily for a week is effective, safe, and well tolerated in subjects with occasional constipation.

  14. Bowel Preparation for Colonoscopy with Sodium Phosphate Solution versus Polyethylene Glycol-Based Lavage: A Multicenter Trial

    Directory of Open Access Journals (Sweden)

    S. Schanz

    2008-01-01

    Full Text Available Background: Adequate bowel preparation is essential for accurate colonoscopy. Both oral sodium phosphate (NaP and polyethylene glycol-based lavage (PEG-ELS are used predominantly as bowel cleansing modalities. NaP has gained popularity due to low drinking volume and lower costs. The purpose of this randomized multicenter observer blinded study was to compare three groups of cleansing (NaP, NaP + sennosides, PEG-ELS + sennosides in reference to tolerability, acceptance, and cleanliness. Patient and Methods: 355 outpatients between 18 and 75 years were randomized into three groups (A, B, C receiving NaP = A, NaP, and sennosides = B or PEG-ELS and sennosides = C. Gastroenterologists performing colonoscopies were blinded to the type of preparation. All patients documented tolerance and adverse events. Vital signs, premedication, completeness, discomfort, and complications were recorded. A quality score (0–4 of cleanliness was generated. Results: The three groups were similar with regard to age, sex, BMI, indication for colonoscopy, and comorbidity. Drinking volumes (L (A = 4.33 + 1.2, B = 4.56 + 1.18, C = 4.93 + 1.71 were in favor of NaP (P = .005. Discomfort from ingested fluid was recorded in A = 39.8% (versus C: P = .015, B = 46.6% (versus C: P = .147, and C = 54.6%. Differences in tolerability and acceptance between the three groups were statistically not significant. No differences in adverse events and the cleanliness effects occurred in the three groups (P = .113. The cleanliness quality scores 0–2 were calculated in A: 77.7%, B: 86.7%, and C: 85.2%. Conclusions: These data fail to demonstrate significant differences in tolerability, acceptance, and preparation quality between the three types of bowel preparation for colonoscopy. Cleansing with NaP was not superior to PEG-ELS.

  15. A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21 modified with polyethylene glycol.

    Directory of Open Access Journals (Sweden)

    Zhifeng Huang

    Full Text Available As one of fibroblast growth factor (FGF family members, FGF21 has been extensively investigated for its potential as a drug candidate to combat metabolic diseases. In the present study, recombinant human FGF21 (rhFGF21 was modified with polyethylene glycol (PEGylation in order to increase its in vivo biostabilities and therapeutic potency. At N-terminal residue rhFGF21 was site-selectively PEGylated with mPEG20 kDa-butyraldehyde. The PEGylated rhFGF21 was purified to near homogeneity by Q Sepharose anion-exchange chromatography. The general structural and biochemical features as well as anti-diabetic effects of PEGylated rhFGF21 in a type 2 diabetic rat model were evaluated. By N-terminal sequencing and MALDI-TOF mass spectrometry, we confirmed that PEG molecule was conjugated only to the N-terminus of rhFGF21. The mono-PEGylated rhFGF21 retained the secondary structure, consistent with the native rhFGF21, but its biostabilities, including the resistance to physiological temperature and trypsinization, were significantly enhanced. The in vivo immunogenicity of PEGylated rhFGF21 was significantly decreased, and in vivo half-life time was significantly elongated. Compared to the native form, the PEGylated rhFGF21 had a similar capacity of stimulating glucose uptake in 3T3-L1 cells in vitro, but afforded a significantly long effect on reducing blood glucose and triglyceride levels in the type 2 diabetic animals. These results suggest that the PEGylated rhFGF21 is a better and more effective anti-diabetic drug candidate than the native rhFGF21 currently available. Therefore, the PEGylated rhFGF21 may be potentially applied in clinics to improve the metabolic syndrome for type 2 diabetic patients.

  16. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    Science.gov (United States)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  17. Developing and Evaluating In Vitro Effect of Poly(Ethylene Glycol) Conjugated Curcumin on Human Cancer Cell Lines.

    Science.gov (United States)

    Tung, Bui Thanh; Hai, Nguyen Thanh; Son, Phan Ke

    2016-01-01

    Curcumin has been shown to possess strong cytotoxic effect against various cancer cell lines. However, curcumin has not applied as a drug for treatment of cancer yet due to low solubility in water and low bioavailability. The aims of this study were to prepare a new polyethylene glycol (PEG) conjugated curcumin and to evaluate its antitumor activity in vitro. PEG-CUR was prepared by the reaction between curcumin and PEG. PEG-CUR which was characterized by SEM, TEM, FTIR, DSC and 1H NMR analysis. The physicochemical parameters of PEG-CUR such as zeta potential, size distribution, solubility and percentage of curcumin were also investigated. Our results showed that the percentage of curcumin in PEG-CUR was 13.26 ± 1.25 %. PEG-CUR has nanosize values of 96.3 nm and the zeta potential values of - 48.4 mV. The PEG-CUR showed significantly increasing curcumin's solubility in water and another medium such as in 0,1 N HCl, phosphate buffer pH 4.5 and pH 6.8 solution and n-octanol. Our data also have shown cytotoxicity effect of PEG-CUR was much greater than curcumin-free in two different HepG2 and HCT116 cancer cell lines. It could be concluded from our results that the PEG-CUR may be a potential candidate for cancer treatment. Further studies are needed to evaluate the antitumor efficacy of PEG-CUR in vivo.

  18. Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac.

    Science.gov (United States)

    Shi, Shuai; Zhang, Zhaoliang; Luo, Zichao; Yu, Jing; Liang, Renlong; Li, Xingyi; Chen, Hao

    2015-06-12

    This study aimed to develop a cationic nanosuspension of chitosan (CS) and methoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) for ocular delivery of diclofenac (DIC). MPEG-PCL-CS block polymer was synthesized by covalent coupling of MPEG-PCL with CS. The critical micelle concentration of the MPEG-PCL-CS block polymer was 0.000692 g/L. DIC/MPEG-PCL-CS nanosuspension (mean particle size = 105 nm, zeta potential = 8 mV) was prepared and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. The nanosuspension was very stable without apparent physical property changes after storage at 4 °C or 25 °C for 20 days, but it was unstable in the aqueous humor solution after 24 h incubation. Sustained release of the encapsulated DIC from the nanosuspension occurred over 8 h. Neither a blank MPEG-PCL-CS nanosuspension nor a 0.1% (mass fraction) DIC/MPEG-PCL-CS nanosuspension caused ocular irritation after 24 h of instillation. Enhanced penetration and retention in corneal tissue was achieved with a Nile red/MPEG-PCL-CS nanosuspension compared with a Nile red aqueous solution. In vivo pharmacokinetics studies showed enhanced pre-corneal retention and penetration of the DIC/MPEG-PCL-CS nanosuspension, which resulted in a higher concentration of DIC (Cmax) in the aqueous humor and better bioavailability compared with commercial DIC eye drops (P < 0.01).

  19. Polyethylene glycol and contrast-enhanced MRI of Crohn's disease in children: preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Magnano, Gianmichele; Granata, Claudio; Magnaguagno, Francesca; Rossi, Umberto; Toma, Paolo [Service of Radiology, Giannina Gaslini Hospital, Genoa (Italy); Barabino, Arrigo [Department of Gastroenterology, Giannina Gaslini Hospital, Genoa (Italy); Calevo, Maria Grazia [Service of Epidemiology and Biostatistics, Giannina Gaslini Hospital, Genoa (Italy)

    2003-06-01

    To assess the ability of MRI to detect bowel abnormalities in children affected by Crohn's disease (CD). We studied 22 children (age range 8-18 years) referred to us with a known history of CD. MRI was carried out using a 1.5-T unit with a maximum gradient field strength of 16 mT and a phased-array body coil. The sequences performed were breath-hold coronal and axial T2-weighted, express fat saturation, followed by T1-weighted, spoiled gradient, fast fat saturation after IV injection of gadolinium chelate (0.3 mmol/kg) for contrast enhancement of the bowel wall. Bowel distension was achieved using oral administration of isosmotic polyethylene glycol solution. Ileo-colonoscopy was considered the gold standard for evaluation of superficial abnormalities and stenoses of the colon and terminal ileum. MRI findings of bowel-wall thickening, increased vascularisation and extramural involvement were compared with the findings using B-mode and Doppler US. Concordance between MRI and endoscopy, B-mode US and Doppler US findings was determined by the Kappa statistical method. Superficial lesions were not shown by MRI. MR enteroclysis easily detected stenoses, thickening and hyperaemia of bowel wall. Concordance of findings between MRI and endoscopy was 90% (K=0.79, substantial concordance). Concordance of findings between MRI and US concerning bowel-wall thickening and increased vascularisation was 95% (K=0.875, excellent concordance) and 80% (K=0.6, fairly good concordance), respectively. Our initial results show that MRI can detect intra- and extra-mural lesions of CD. The high concordance observed between MRI, endoscopy, US and Doppler US findings suggests that MRI is at least comparable for diagnostic capability with these techniques offering, thanks to multiplanar projections, an improved visualisation of the bowel without ionising radiation. (orig.)

  20. Physiological adaptations to osmotic stress and characterization of a polyethylene glycol-responsive gene in Braya humilis

    Directory of Open Access Journals (Sweden)

    Wang Lirong

    2016-03-01

    Full Text Available Braya humilis (Brassicaceae is a widely distributed plant in arid and semi-arid regions of northern Asia. This plant is well adapted to extremely arid conditions and is a promising candidate species to discover novel drought tolerance strategies. However, not much information about the mechanism(s mediating drought resistance in this species is currently available. Therefore, the present study aimed to characterize the physiological traits and expression patterns of a polyethylene glycol (PEG-responsive gene in B. humilis responding to different levels of osmotic stress induced by PEG-6000. Several important physiological parameters were examined, including the levels of relative water content, soluble protein, malondialdehyde, and antioxidant enzyme activity. A tolerance threshold between 20 and 30% PEG-6000 was identified for B. humilis. The water status and oxidative damage below this threshold were maintained at a relatively constant level during the 12 h of treatment. However, once the threshold was exceeded, the water status and oxidative damage were obviously affected after treatment for 4 h. The soluble protein results suggest that B. humilis maintains a vigorous resistance to osmotic stress and that it may play a greater role in osmotic regulation at late stages of stress. Moreover, superoxide dismutase and catalase may be important at preventing oxidative damage in plants at early stages of stress, while peroxidase may be more involved in some biological processes that resist osmotic stress at the late stage, especially in severely damaged plants. Furthermore, a PEG-responsive gene, BhCIPK12, was identified by differential display reverse transcription-polymerase chain reaction (PCR, cloned, and characterized by quantitative real-time PCR. We hypothesized that this gene may play an important role in mediating osmotic stress or drought resistance in plants. Altogether, these results provide valuable insights into the mechanism

  1. Polyethylene glycol and octa-arginine dual-functionalized nanographene oxide: an optimization for efficient nucleic acid delivery.

    Science.gov (United States)

    Imani, Rana; Prakash, Satya; Vali, Hojatollah; Faghihi, Shahab

    2018-05-29

    The successful application of nucleic acid-based therapy for the treatment of various cancers is largely dependent on a safe and efficient delivery system. A dual-functionalized graphene oxide (GO)-based nanocarrier with the conjugation of aminated-polyethylene glycol (PEG-diamine) and octa-arginine (R8) for the intracellular delivery of nucleic acids is proposed. The functionalized sites are covalently co-conjugated and the PEG : R8 molar ratio is optimized at 10 : 1 to achieve a hydrocolloidally stable size of 252 ± 2.0 nm with an effective charge of +40.97 ± 1.05 and an amine-rich content of 10.87 ± 0.4 μmol g-1. The uptake of the nanocarrier in breast cancer cell lines, MCF-7 and MDA-MB 231, is investigated. The siRNA and pDNA condensation ability in the presence and absence of enzymes and the endosomal buffering capacity, as well as the intracellular localization of the gene/nanocarrier complex are also evaluated. Furthermore, the delivery of functional genes associated with the nanocarrier is assessed using c-Myc protein knockdown and EGFP gene expression. The effective uptake of the nanocarrier by the cells shows superior cytocompatibility, and protects the siRNA and pDNA against enzyme degradation while inhibiting their migration with N : P ratios of 10 and 5, respectively. The co-conjugation of PEG-diamine and the cationic cell-penetrating peptide (CPP) into the GO nanocarrier also provides a superior internalization efficacy of 85% in comparison with a commercially available transfection reagent. The c-Myc protein knockdown and EGFP expression, which are induced by the nanocarrier, confirm that the optimized PEG-diamine/R8-functionalized GO could effectively deliver pDNA and siRNA into the cells and interfere with gene expression.

  2. Biocompatibility and drug release behavior of scaffolds prepared by coaxial electrospinning of poly(butylene succinate) and polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Llorens, E.; Ibañez, H. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Valle, L.J. del, E-mail: luis.javier.del.valle@upc.edu [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CrNE), Universitat Politècnica de Catalunya, Edifici C, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain)

    2015-04-01

    Scaffolds constituted by electrospun microfibers of poly(ethylene glycol) (PEG) and poly(butylene succinate) (PBS) were studied. Specifically, coaxial microfibers having different core–shell distributions and compositions were considered as well as uniaxial micro/nanofibers prepared from mixtures of both polymers. Processing conditions were optimized for all geometries and compositions and resulting morphologies (i.e. diameter and surface texture) characterized by scanning electron microscopy. Chemical composition, molecular interactions and thermal properties were evaluated by FTIR, NMR, XPS and differential scanning calorimetry. The PEG component of electrospun fibers could be solubilized by immersion of scaffolds in aqueous medium, giving rise to high porosity and hydrophobic samples. Nevertheless, a small amount of PEG was retained in the PBS matrix, suggesting some degree of mixing. Solubilization was slightly dependent on fiber structure; specifically, the distribution of PEG in the core or shell of coaxial fibers led to higher or lower retention levels, respectively. Scaffolds could be effectively loaded with hydrophobic drugs having antibacterial and anticarcinogenic activities like triclosan and curcumin, respectively. Their release was highly dependent on their chemical structure and medium composition. Thus, low and high release rates were observed in phosphate buffer saline (SS) and SS/ethanol (30:70 v/v), respectively. Slight differences in the release of triclosan were found depending on fiber distribution and composition. Antibacterial activity and biocompatibility were evaluated for both loaded and unloaded scaffolds. - Highlights: • Coaxial microfibers with different hydrophobicities were studied. • The surface morphology of the coaxial fiber shows the distribution of polymers. • Coaxial fiber microstructure favors the polymer molecular orientation. • These hybrid materials have greater advantages for loading and drug release. • PEG

  3. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    International Nuclear Information System (INIS)

    Ha, Phuong Thu; Nguyen, Hoai Nam; Do, Hai Doan; Phan, Quoc Thong; Thi, Minh Nguyet Tran; Nguyen, Xuan Phuc; Thi, My Nhung Hoang; Le, Mai Huong; Nguyen, Linh Toan; Bui, Thuc Quang; Phan, Van Hieu

    2016-01-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50–100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment. (paper)

  4. Enhanced electrochromic properties of TiO2 nanoporous film prepared based on an assistance of polyethylene glycol

    Science.gov (United States)

    Xu, Shunjian; Luo, Xiaorui; Xiao, Zonghu; Luo, Yongping; Zhong, Wei; Ou, Hui; Li, Yinshuai

    2017-01-01

    Polyethylene glycol (PEG) was employed as pore-forming agent to prepare TiO2 nanoporous film based on spin-coating a TiO2 nanoparticle mixed paste on fluorine doped tin oxide (FTO) glass. The electrochromic and optical properties of the obtained TiO2 film were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and UV-Vis spectrophotometer. The results show that the PEG in the mixed paste endows the TiO2 film with well-developed porous structure and improves the uniformity of the TiO2 film, which are helpful for the rapid intercalation and extraction of lithium ions within the TiO2 film and the strengthening of the diffuse reflection of visible light in the TiO2 film. As a result, the TiO2 film derived from the mixed paste with PEG displays higher electrochemical activity and more excellent electrochromic performances compared with the TiO2 film derived from the mixed paste without PEG. The switching times of coloration/bleaching are respectively 10.16/5.65 and 12.77/6.13 s for the TiO2 films with PEG and without PEG. The maximum value of the optical contrast of the TiO2 film with PEG is 21.2% while that of the optical contrast of the TiO2 film without PEG is 14.9%. Furthermore, the TiO2 film with PEG has better stability of the colored state than the TiO2 film without PEG.

  5. Seed Germination Behaviors Of Some Aerobic Rice Cultivars Oryza Sativa L After Priming With Polyethylene Glycol-8000 Peg-8000

    Directory of Open Access Journals (Sweden)

    Elkheir H.A

    2015-08-01

    Full Text Available Seed Priming Is Famous Technique To Accelerate Seed Germination Behaviors. This Experiment Was Conducted To Study The Effect Of Polyethylene Glycol-8000 Peg-8000 As Priming Agent On Seed Germination Behavior Of Some Aerobic Rice Cultivars Oryza Sativa L. Experiment Was Carried Out By Using Two-Factor Three Aerobic Rice Cultivars And Peg With Four Replications Which Arranged In Factorial System Design And Conducted With Completely Randomized Design. The Factor Was Varieties Which Were Inpago 8 V1 Ir64 V2 And Situbagendit V3 Combine With 4 Levels Of Peg Concentrations 0100 And 200 Gl-1 And Control With No Treatment. Experiment Was Repeated 4 Times So Total Number Of Experimental Units Were 48. Germination Parameters Measured Were Germination Percentage Germination Index Days Of 50 Germination Seedling Fresh Weight Mg Seedling Shoot Fresh Weight And Root Fresh Weight Mg Seedling Dry Weigh Mg Seedling Shoot Dry Weight And Root Dry Weight Mg ShootRoot Ratio Seedling Length Cm Seedling Root Length Cm And Shoot Length Cm And Seed Vigor Index. The Results Indicated That Seed Priming Significantly Affected Germination Behaviors Compared With Control Depending Upon Varieties. The Highest Germination Was Obtained Under Laboratory And Greenhouse Condition By The Treatment Of Peg 200 G L-1 On The Situbagendit And Ir-64 Variety 90.25 And 93.33 Respectively Compared To Control In Inpago-8 In Both Laboratory 75.75 And Greenhouse 80 . As Implementation To Increase Seed And Seedling Vigor Of Rice It Is A Best Practice To Use Peg Priming With 200 Gl-1 Solutions Depend Upon Varietal Response And We Suggest That More Research About The Effect Of Peg As Seed Priming Techniques On Seed Germination Behavior Of Many Grain Crops Is Needed To Confirm The Methodology.

  6. pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(ε-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite.

    Science.gov (United States)

    Li, Ying; Chen, Hongmei; Liu, Dian; Wang, Wenxi; Liu, Ye; Zhou, Shaobing

    2015-06-17

    In this study, we developed a pH-responsive shape-memory polymer nanocomposite by blending poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane (PECU) with functionalized cellulose nanocrystals (CNCs). CNCs were functionalized with pyridine moieties (CNC-C6H4NO2) through hydroxyl substitution of CNCs with pyridine-4-carbonyl chloride and with carboxyl groups (CNC-CO2H) via 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated surface oxidation, respectively. At a high pH value, the CNC-C6H4NO2 had attractive interactions from the hydrogen bonding between pyridine groups and hydroxyl moieties; at a low pH value, the interactions reduced or disappeared due to the protonation of pyridine groups, which are a Lewis base. The CNC-CO2H responded to pH variation in an opposite manner. The hydrogen bonding interactions of both CNC-C6H4NO2 and CNC-CO2H can be readily disassociated by altering pH values, endowing the pH-responsiveness of CNCs. When these functionalized CNCs were added in PECU polymer matrix to form nanocomposite network which was confirmed with rheological measurements, the mechanical properties of PECU were not only obviously improved but also the pH-responsiveness of CNCs could be transferred to the nanocomposite network. The pH-sensitive CNC percolation network in polymer matrix served as the switch units of shape-memory polymers (SMPs). Furthermore, the modified CNC percolation network and polymer molecular chains also had strong hydrogen bonding interactions among hydroxyl, carboxyl, pyridine moieties, and isocyanate groups, which could be formed or destroyed through changing pH value. The shape memory function of the nanocomposite network was only dependent on the pH variation of the environment. Therefore, this pH-responsive shape-memory nancomposite could be potentially developed into a new smart polymer material.

  7. Effects of Solutol (Kolliphor) and cremophor in polyethylene glycol 400 vehicle formulations in Sprague-Dawley rats and beagle dogs.

    Science.gov (United States)

    Stokes, Alan H; Kemp, Daniel C; Faiola, Brenda; Jordan, Holly L; Merrill, Christine L; Hailey, James R; Brown, Randy E; Bailey, David W

    2013-01-01

    When conventional vehicles (eg, methylcellulose and water) impart inadequate physical, chemical, and/or biological properties for proper toxicological assessment of test article formulations, nonconventional vehicles may be considered. Often toxicity data for nonconventional vehicle formulations are limited. Studies were conducted to collect toxicity data from a rodent and a non-rodent species given 2 nonconventional vehicles, Solutol HS15/polyethylene glycol (PEG) 400 and Cremophor RH40/PEG 400, with differing formulations and dose volumes (10 mL/kg for rats; 2 or 5 mL/kg for dogs). In rats, both vehicles caused increase in kidney weights (males only) and decrease in thymic weights (males only) without concurrent microscopic findings; altered urine electrolytes, minimally decreased serum electrolytes (males only), and increased serum total cholesterol (females only) were also present. The Cremophor formulation was also associated with increased serum urea (males only) and urine phosphorus: creatinine. For rats given the Solutol formulation, both genders had decreased urine glucose parameters and males had increased urine volume. In dogs, loose/watery feces and emesis were present given either vehicle, and mucus-cell hyperplasia of the ileum was present given the Solutol formulation. Increased red blood cell mass and decreased urine volume in dogs given 30% Solutol/70% PEG 400 (5 mL/kg/d) were likely due to subclinical dehydration and hemoconcentration. For the Cremophor formulations, dose volume-dependent increased incidence of minimal subepithelial gastric hemorrhage was noted in dogs, and dogs given 5 mL/kg/d showed increased serum urea nitrogen. Overall, regardless of the formulation or dose volume, neither vehicle produced overt toxicity in either species, but the Solutol formulation produced fewer effects in rats. Generally, lower dose volumes minimized the severity and/or incidence of findings.

  8. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Rennerfeldt, Deena A; Renth, Amanda N; Talata, Zsolt; Gehrke, Stevin H; Detamore, Michael S

    2013-11-01

    Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells. © 2013 Elsevier Ltd. All rights reserved.

  9. In vitro and biomechanical screening of polyethylene glycol and poly(trimethylene carbonate) block copolymers for annulus fibrosus repair.

    Science.gov (United States)

    Long, Rose G; Rotman, Stijn G; Hom, Warren W; Assael, Dylan J; Illien-Jünger, Svenja; Grijpma, Dirk W; Iatridis, James C

    2018-02-01

    Herniated intervertebral discs (IVDs) are a common cause of back and neck pain. There is an unmet clinical need to seal annulus fibrosus (AF) defects, as discectomy surgeries address acute pain but are complicated by reherniation and recurrent pain. Copolymers of polyethylene glycol with trimethylene carbonate (TMC) and hexamethylene diisocyanate (HDI) end-groups were formulated as AF sealants as the HDI form covalent bonds with native AF tissue. TMC adhesives were evaluated and optimized using the design criteria: stable size, strong adherence to AF tissue, high cytocompatibility, restoration of IVD biomechanics to intact levels following in situ repair, and low extrusion risk. TMC adhesives had high adhesion strength as assessed with a pushout test (150 kPa), and low degradation rates over 3 weeks in vitro. Both TMC adhesives had shear moduli (220 and 490 kPa) similar to, but somewhat higher than, AF tissue. The adhesive with three TMC moieties per branch (TMC3) was selected for additional in situ testing because it best matched AF shear properties. TMC3 restored torsional stiffness, torsional hysteresis area and axial range of motion to intact states. However, in a failure test of compressive deformation under fixed 5 ° flexion, some herniation risk was observed with failure strength of 5.9 MPa compared with 13.5 MPa for intact samples; TMC3 herniated under cyclic organ culture testing. These TMC adhesives performed well during in vitro and in situ testing, but additional optimization to enhance failure strength is required to further this material to advanced screening tests, such as long-term degradation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Mixed micelles of polyethylene glycol (23) lauryl ether with ionic surfactants studied by proton 1D and 2D NMR.

    Science.gov (United States)

    Gao, Hong-Chang; Zhao, Sui; Mao, Shi-Zhen; Yuan, Han-Zhen; Yu, Jia-Yong; Shen, Lian-Fang; Du, You-Ru

    2002-05-01

    (1)H NMR chemical shift, spin-lattice relaxation time, spin-spin relaxation time, self-diffusion coefficient, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the nonionic-ionic surfactant mixed micelles. Cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were used as the ionic surfactants and polyethylene glycol (23) lauryl ether (Brij-35) as the nonionic surfactant. The two systems are both with varying molar ratios of CTAB/Brij-35 (C/B) and SDS/Brij-35 (S/B) ranging from 0.5 to 2, respectively, at a constant concentration of 6 mM for Brij-35 in aqueous solutions. Results give information about the relative arrangement of the surfactant molecules in the mixed micelles. In the former system, the trimethyl groups attached to the polar heads of the CTAB molecules are located between the first oxy-ethylene groups next to the hydrophobic chains of Brij-35 molecules. These oxy-ethylene groups gradually move outward from the hydrophobic core of the mixed micelle with an increase in C/B in the mixed solution. In contrast to the case of the CTAB/Triton X-100 system, the long flexible hydrophilic poly oxy-ethylene chains, which are in the exterior part of the mixed micelles, remain coiled, but looser, surrounding the hydrophobic core. There is almost no variation in conformation of the hydrophilic chains of Brij-35 molecules in the mixed micelles of the SDS/Brij-35 system as the S/B increases. The hydrophobic chains of both CTAB and SDS are co-aggregated with Brij-35, respectively, in their mixed micellar cores.

  11. Pervaporation and sorption behavior of zeolite-filled polyethylene glycol hybrid membranes for the removal of thiophene species.

    Science.gov (United States)

    Lin, Ligang; Zhang, Yuzhong; Li, Hong

    2010-10-01

    Polyethylene glycol (PEG)-CuY zeolite hybrid membranes were prepared for sulfur removal from gasoline feed. The sorption and diffusion behavior of typical gasoline components through the hybrid membranes has been investigated by systematic studies of dynamic sorption curves. Influencing factors including feed temperature, permeate pressure, and zeolite content in the membranes on membrane performance have been evaluated. Immersion experiments results showed the preferential sorption of thiophene, which is key in fulfilling the separation of thiophene/hydrocarbon mixtures. The sorption, diffusion, and permeation coefficients of gasoline components in filled membranes are higher than those in unfilled membranes. Pervaporation (PV) and gas chromatography (GC) experiments results corresponded to the discussions on dynamic sorption curves. PV experiments showed that lower permeate pressure meant higher separation performance. The optimum temperature occurred at 383K, and an Arrhenius relationship existed between permeation flux and operating temperature. The CuY zeolite filling led to a significant increase of flux since the porous zeolite provides for more diffusion for small molecules in mixed matrix membranes. The sulfur enrichment factor increased first and then decreased with the increasing zeolite content, which was attributed to the combined influence of complexation force between CuY and thiophenes as well as the trade-off phenomenon between flux and selectivity. At 9 wt% CuY content, a higher permeation flux (3.19 kg/(m(2) h)) and sulfur enrichment factor (2.95) were obtained with 1190 microg/g sulfur content level in gasoline feed. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Noncovalent interaction of polyethylene glycol with copper complex of ethylenediaminetetraacetic acid and its application in constructing inorganic nanomaterials.

    Science.gov (United States)

    Pan, Shu Zhen; Song, Le Xin; Chen, Jie; Du, Fang Yun; Yang, Jing; Xia, Juan

    2011-10-21

    In this study, we try to answer a fundamental question: what is the consequence of the noncovalent interaction between a polymer and a coordination compound? Here, polyethylene glycol (PEG-4000, PEG-b) and copper complex of ethylenediaminetetraacetic acid (H(2)CuY) were employed to solve this problem. A novel adduct (CEP) between H(2)CuY and PEG-b was prepared. Our results indicated several interesting findings. First, the introduction of H(2)CuY had no effect on the stacking structure of PEG-b but led to a large change in surface structure of the polymer. Second, there was a significant difference (117 K) in the maximum degradation temperature between the PEG and the CEP, suggesting that the noncovalent interaction can drastically improve the thermal stability of the PEG. Third, sintering experiments showed that H(2)CuY and CEP produced completely different decomposition products. The former formed Cu crystals in nitrogen and CuO in air, but the latter generated Cu and CuCl crystals with good crystallinity, respectively. Finally, three independent measurements: viscosity, conductivity and nuclear magnetic resonance in solution, provided useful information and insights from both sides of the noncovalent interaction. Probable interaction mechanisms and interaction sites were proposed. We consider that the current research could create the foundation for a new understanding of how the noncovalent adduct interaction between a metallic complex and a polymer relates to the change in physical and chemical properties of the adducted components. This journal is © The Royal Society of Chemistry 2011

  13. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    Science.gov (United States)

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  14. Determination of the surface density of polyethylene glycol on gold nanoparticles by use of microscale thermogravimetric analysis.

    Science.gov (United States)

    Sebby, K B; Mansfield, E

    2015-04-01

    The widespread integration of nanoparticle technologies into biomedicine will depend on the ability to repeatedly create particles with well-defined properties and predictable behaviors. For this to happen, fast, reliable, inexpensive, and widely available techniques to characterize nanomaterials are needed. Characterization of the surface molecules is particularly important since the surface, including the surface molecule density, plays a dominant role in determining how nanoparticles interact with their surroundings. Here, 10 and 30 nm gold nanoparticle NIST Standard Reference Materials were functionalized with fluorescently labeled polyethylene glycol (PEG) with either thiolate or lipoic acid anchoring groups to evaluate analytical techniques for determining surface coverage. The coating of the nanoparticles was confirmed with dynamic light scattering, microscale thermogravimetric analysis (μ-TGA), and ultraviolet-visible (UV-vis) spectroscopy. A UV-vis method for determining gold nanoparticle concentrations that takes into account spectral broadening upon functionalization was developed. The amount of bound PEG was quantified with μ-TGA, a technique analogous to thermogravimetric analysis that uses quartz crystal microbalances, and fluorescence spectroscopy of displaced ligands. It is shown that μ-TGA is a convenient technique for the quantification of ligands bound to inorganic particles while sacrificing a minimal amount of sample, and the treatment of the functionalized nanoparticle dispersions with dithiothreitol may be insufficient to achieve complete displacement of the surface ligands for quantification by fluorescence measurements. The μ-TGA and fluorescence results were used to determine ligand footprint sizes-average areas occupied by each ligand on the particles' surface. The lipoic acid bound ligands had footprint sizes of 0.21 and 0.25 nm(2) on 10 and 30 nm particles, respectively while the thiolate ligands had footprint sizes of 0.085 and 0

  15. Influence of Poly(ethylene glycol) Degradation on Voiding Sporadically Occurring in Solder Joints with Electroplated Cu

    Science.gov (United States)

    Wafula, F.; Yin, L.; Borgesen, P.; Andala, D.; Dimitrov, N.

    2012-07-01

    This paper presents a comprehensive study of the effect of poly(ethylene glycol) (PEG) degradation on the void formation known to take place sporadically at the interface between electroplated Cu and Pb-free solder. Thorough chemical analysis of our plating solution, carried out at different times of the deposition process by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, reveals a dramatic shift in the peaks to lower mass range with time. Scanning electron microscopy cross-sectional images of solder joints with Cu samples that have been plated at different times in the course of solution aging show a decrease in void formation. A decreasing magnitude of the deposition overpotential also seen during aging suggests that, breaking down to lower-molecular-weight fragments, PEG loses its suppression effect and likely has lower impact on the voiding propensity. This indirect correlation is confirmed further by the use of plating solutions containing PEG with preselected molecular weight. We also report on the effect of the surface area-to-solution volume ratio on PEG degradation studied by comparative experiments performed in a 50-mL bath with a rotating disc electrode and in a larger cell (Hull cell) with volume of 267 mL. The results show that, at fixed charge per unit volume, PEG degrades at a greatly accelerated rate in the Hull cell featuring higher electrode surface-to-solution volume ratio. Analysis of solder joints with accordingly grown Cu layers suggests that the voiding decreases faster with the accelerated rate of PEG degradation.

  16. Silica–polyethylene glycol hybrids synthesized by sol–gel: Biocompatibility improvement of titanium implants by coating

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Ferrara, C.; Mustarelli, P. [Department of Chemistry, University of Pavia and INSTM, Via Taramelli 12, 27100 Pavia (Italy)

    2015-10-01

    Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol–gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol–gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO{sub 2}/PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Hybrid coating of titanium substrate with dip-coating technology • Chemical and morphological characterization of hybrids and coating • Biocompatibility improvement of coated titanium with high

  17. [Improvement of sensitivity in the second generation HCV core antigen assay by a novel concentration method using polyethylene glycol (PEG)].

    Science.gov (United States)

    Higashimoto, Makiko; Takahashi, Masahiko; Jokyu, Ritsuko; Syundou, Hiromi; Saito, Hidetsugu

    2007-11-01

    A HCV core antigen (Ag) detection assay system, Lumipulse Ortho HCV Ag has been developed and is commercially available in Japan with a lower detection level limit of 50 fmol/l, which is equivalent to 20 KIU/ml in PCR quantitative assay. HCV core Ag assay has an advantage of broader dynamic range compared with PCR assay, however the sensitivity is lower than PCR. We developed a novel HCV core Ag concentration method using polyethylene glycol (PEG), which can improve the sensitivity five times better than the original assay. The reproducibility was examined by consecutive five-time measurement of HCV patients serum, in which the results of HCV core Ag original and concentrated method were 56.8 +/- 8.1 fmol/l (mean +/- SD), CV 14.2% and 322.9 +/- 45.5 fmol/l CV 14.0%, respectively. The assay results of HCV negative samples in original HCV core Ag were all 0.1 fmol/l and the results were same even in the concentration method. The results of concentration method were 5.7 times higher than original assay, which was almost equal to theoretical rate as expected. The assay results of serially diluted samples were also as same as expected data in both original and concentration assay. We confirmed that the sensitivity of HCV core Ag concentration method had almost as same sensitivity as PCR high range assay in the competitive assay study using the serially monitored samples of five HCV patients during interferon therapy. A novel concentration method using PEG in HCV core Ag assay system seems to be useful for assessing and monitoring interferon treatment for HCV.

  18. Clinical efficacy and safety of polyethylene glycol 3350 versus liquid paraffin in the treatment of pediatric functional constipation

    Science.gov (United States)

    Rafati, MR.; Karami, H.; Salehifar, E.; Karimzadeh, A.

    2011-01-01

    Background and the purpose of the study Functional constipation is prevalent in children. Recently polyethylene glycol has been introduced as an effective and safe drug to treat chronic constipation. There are only a few clinical trials on comparison of PEG and liquid paraffin in childhood constipation. The purpose of this study was to evaluate clinical efficacy and safety of PEG 3350 solution and liquid paraffin in the treatment of children with functional constipation in Sari Toba clinic during the period of 2008–2009. Methods Children with a history of functional constipation were subjects of this study. One hundred and sixty children of 2–12 years old with functional constipation were randomized in two PEG and paraffin treatment groups. Patients received either 1.0–1.5 g/kg/day PEG 3350 or 1.0–1.5 ml/kg/day liquid paraffin for 4 months. Clinical efficacy was evaluated by stool and encopresis frequency/week and overall treatment success rate was compared in two groups. Results and major conclusion Compared with the baseline, defecation frequency/ week increased significantly and encopresis frequency meaningfully decreased in two groups during the period of the study. Patients using PEG 3350 had more success rate (mean: 95.3%±3.7) compared with the patients in paraffin group (mean: 87.2%±7.1) (p=0.087). Administration of PEG 3350 were associated with less adverse events than liquid paraffin. In conclusion in treatment of pediatric functional constipation, regarding clinical efficacy and safety, PEG 3350 were at least as effective as liquid paraffin and but less adverse drug events. PMID:22615652

  19. Solubility of clonazepam and diazepam in binary and ternary mixtures of polyethylene glycols 400 or 600, propylene glycol and water at 298.2K - experimental data and modeling

    Directory of Open Access Journals (Sweden)

    Bastami Zahra

    2014-01-01

    Full Text Available Experimental molar solubilities of clonazepam and diazepam in binary and ternary mixtures of polyethylene glycols (PEGs 400 or 600, propylene glycol (PG and water (138 data points along with the density of the saturated solutions at 298.2K were reported. The Jouyban-Acree model was used to fit to the measurements for providing a computational method. Employing the solubilities in the mono-solvents, the measured solubilities in mixed solvents were back-calculated and the overall mean percentage deviations (OMPDs of the model were 16.0 % and 19.2% for diazepam and clonazepam, respectively. Addition of the Hansen solubility parameters to the model helps us to train all the data sets (clonazepam and diazepam at once and the back-calculated OMPD for this analysis was 19.3%.

  20. Comparative efficacy of combination of 1 L polyethylene glycol, castor oil and ascorbic acid versus 2 L polyethylene glycol plus castor oil versus 3 L polyethylene glycol for colon cleansing before colonoscopy: Study protocol of a randomized, double-blind, single-center study.

    Science.gov (United States)

    Tian, Xu; Chen, Wei-Qing; Liu, Xiao-Ling; Chen, Hui; Liu, Bang-Lun; Pi, Yuan-Ping

    2018-04-01

    Colonoscopy has been regarded as an important method of early diagnosing and treating gastrointestinal lesions; however adequate bowel preparation is critical one of many factors needed for successful colonoscopy. Although several modified or novel regimes have been developed, desired quality of bowel preparation has not yet been generated. Scattered evidences revealed that castor oil may have potential of effectively cleansing colon. It is noted that, however, prospective trial of exploring the value of castor oil in preparing bowel before colonoscopy is lacking. The aims of this study are to test the hypotheses that low dose castor oil (30 mL) may enhance potential of polyethylene glycol (PEG) and combination of low castor oil and ascorbic acid may halve the volume of PEG.This is a randomized, double-blind (endoscopist and assessor), single center trial with three-arm design. We will randomly assign 282 adult patients (≥18 years but castor oil or combination of 1 L PEG, 30 mL castor oil and 5 g ascorbic acid. The bowel preparation quality based on Boston Bowel Preparation Scale (BBPS) is the primary outcome. The secondary outcomes include the first defecation time, total number of defecation, time of cecal intubation, detection rate of polyp and adenoma, willing to repeat the same regime, tolerance to regime, and adverse events.The study protocol has been approved by the Clinical Research Ethics Committees of Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital & Chongqing Cancer Center (2017[107]). The results from this trial will be submitted for publication in peer-reviewed journals, and will be presented at national and international conferences.

  1. Effect of polyethylene glycol 4000 supplementation on the performance of yearling male Pedi goats fed dietary mixture levels of Acacia karroo leaf meal and Setaria verticillata grass hay.

    Science.gov (United States)

    Brown, David; Ng'ambi, Jones W

    2017-06-01

    Eighteen yearling male Pedi goats weighing 21.7 ± 3.1 kg were used in a 42-day trial in a 2 (Acacia karroo leaf meal levels) × 3 (levels of PEG 4000) factorial arrangement in a completely randomized design to determine PEG 4000 supplementation levels for optimal productivity of indigenous Pedi goats fed different mixture levels of A. karroo leaf meal and Setaria verticillata (L.) P.Beauv. grass hay. Each goat was supplemented with 0, 23 or 30 g of PEG 4000 per day in addition to dietary mixture of A. karroo and S. verticillata hay. Polyethylene glycol 4000 supplementation had no effect (P > 0.05) on nutrient intake of goats. However, a diet × PEG (P goat were optimized at PEG 4000 supplementation levels of 19.62, 19.62, 19.61 and 19.53 g/goat/day, respectively, for diets containing 20% A. karroo leaf meal. Polyethylene glycol 4000 supplementation had no effect (P > 0.05) on the apparent digestibility of all nutrients. The dietary inclusion level of A. karroo leaf meal at 20% improved (P goats. Crude protein digestibility was optimized at a PEG 4000 supplementation level of 15.78 g/goat/day. Dietary mixture level and PEG 4000 supplementation had no effect (P > 0.05) on final weights of Pedi goats. Similar results were observed for blood urea and glucose concentrations of yearling male Pedi goats. However, daily body weight gain was higher (P goats fed 50% A. karroo leaf meal than those on 20% inclusion level. Polyethylene glycol 4000 has potential to improve the feeding value of tanninifeorus A. karroo leaf meal.

  2. Intraperitoneal administration of high doses of polyethylene glycol (PEG) causes hepatic subcapsular necrosis and low-grade peritonitis with a rise in hepatic biomarkers

    International Nuclear Information System (INIS)

    Pellegrini, Giovanni; Starkey Lewis, Phil J.; Palmer, Luke; Hetzel, Udo; Goldring, Christopher E.; Park, B. Kevin; Kipar, Anja; Williams, Dominic P.

    2013-01-01

    Polyethylene glycols (PEGs) are commonly employed as excipients in preclinical studies and in vitro experiments to dissolve poorly hydrosoluble drugs. Their use is generally considered safe in both animals and humans; however, limited data is available concerning the safety of PEGs when administered parenterally. The results of our investigation demonstrate that PEG-400 can have an irritant effect on serosal surfaces and causes subcapsular hepatocellular necrosis in mice when administered intraperitoneally at a high dose (4 mL/kg). Accordingly, levels of serum biomarkers of liver injury need to be carefully interpreted in studies where PEG is administered intraperitoneally and always in association with the results of the histological assessment

  3. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.

    2012-05-09

    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient catalyst for the selective olefination of aldehydes with ethyl diazoacetate in the presence of triphenylphosphine, and afforded excellent olefin yields with high (E) selectivities. The PEG-supported catalyst 5 was readily recovered by precipitation and filtration, and was recycled through ten runs without significant activity loss. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Adverse eff ects of polymeric nanoparticle poly(ethylene glycol- block-polylactide methyl ether (PEG-b-PLA on steroid hormone secretion by porcine granulosa cells

    Directory of Open Access Journals (Sweden)

    Scsukova Sona

    2017-04-01

    Full Text Available Objectives. Development of nanoparticles (NPs for biomedical applications, including medical imaging and drug delivery, is currently undergoing a dramatic expansion. Diverse effects of different type NPs relating to mammalian reproductive tissues have been demonstrated. Th e objective of this study was to explore the in vitro effects of polymeric nanoparticle poly(ethylene glycol-blockpolylactide methyl ether (PEG-b-PLA NPs on functional state and viability of ovarian granulosa cells (GCs, which play an important role in maintaining ovarian function and female fertility.

  5. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via photo-initiated graft polymerization of poly(ethylene glycol)

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaomeng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Luan Shifang, E-mail: sfluan@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yang Huawei; Shi Hengchong; Zhao Jie; Jin Jing [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin Jinghua, E-mail: yinjh@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Stagnaro, Paola [Istituto per Io Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova (Italy)

    2012-01-15

    Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) copolymer biomedical elastomer was covalently grafted with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via a photo-initiated graft polymerization technique. The surface graft polymerization of SEBS with PEGMA was verified by ATR-FTIR and XPS. Effect of graft polymerization parameters, i.e., monomer concentration, UV irradiation time and initiator concentration on the grafting density was investigated. Comparing with the virgin SEBS film, the PEGMA-modified SEBS film presented an enhanced wettability and a larger surface energy. Besides, the surface grafting of PEGMA imparted excellent anti-platelet adhesion and anti-protein adsorption to the SEBS surface.

  6. Synthesis and characterization of polyester copolymers based on poly(butylene succinate) and poly(ethylene glycol)

    International Nuclear Information System (INIS)

    Zhou, Xiao-Ming

    2012-01-01

    A series of polyester copolymers was synthesized from 1,4-succinic acid with 1,4-butanediol and poly(ethylene glycol) through a two-step process of esterification and polycondensation in this article. The composition and physical properties of copolyesters were investigated via GPC, 1 HNMR, DSC and PLM. The copolymer composition was in good agreement with that expected from the feed composition of the reactants. The melting temperature (T m ), crystallization temperature (T c ), and crystallinity (X c ) of these copolyesters decreased gradually as the content of PEG unit increased. Otherwise, experimental results also showed that the contents of PEG in copolymers had an effect on the molecular weight, distribution, thermal properties, hydrolysis degradation properties, and crystalline morphology of polyester copolymers. - Graphical abstract: The composition of polyester copolymer was determined from the 1 H NMR spectra using the relative intensities of the proton peaks. As a sample, the 1 H NMR spectrum of polyester copolymer with 10 mol% of PEG is shown in Fig. 2: CO-(CH 2 ) 2 -CO; O-CH 2 - and C-(CH 2 ) 2 -C from the SA and BD unit at δ2.59; δ 4.08 and δ1.67; O-(CH 2 CH 2 ) n -O from the PEG unit at δ 3.61. The molar composition of polyester copolymer was measured as the area ratio of δ3.61/(δ4.08 + δ1.67) peak. The PEG unit is incorporated into the copolymers in an amount of about 9.12mol% less than that of the feed proportion. These results showed that the composition of the copolymers is in good agreement with that expected from the feed proportion. Highlights: ► The introduction of PEG unit changed the flexibility of PBS main chain. ► PEG unit did not alter the crystal form of PBS in copolymers. ► PEG unit hindered the formation of ring-banded spherulite morphology in copolymers. ► The copolyesters had good in vitro degradation performance. ► The composition ratio of PEG unit can adjust the in vitro degradation performance.

  7. Site-specific immunosuppression using a new formulation of topical cyclosporine A with polyethylene glycol-8 glyceryl caprylate/caprate.

    Science.gov (United States)

    Tran, H S; Malli, D; Chrzanowski, F A; Puc, M M; Matthews, M S; Hewitt, C W

    1999-05-15

    Dermal application of immunosuppressants can be an effective means of achieving site-specific immunosuppression (SITE) on skin allografts in burn wound management and in the treatment of various immune skin disorders. We have previously reported success with topical cyclosporine A (tCsA) in the treatment of skin allograft rejection in rats. Using a new tCsA formulation with a penetration enhancer (PE), polyethylene glycol-8 (PEG-8) glyceryl caprylate/caprate (Labrasol, Gattefossé, St. Priest, France), in a trinary drug delivery system, we hypothesized that we would induce SITE and significantly delay rejection of dual skin allografts in rats. Dual rat skin allografts from Lewis x Brown-Norway (LBN) donors were grafted to Lewis (Lew) recipients. Experimental animals (EXP, n = 7) received a 10-day course of systemic cyclosporine (sCsA, 8 mg/kg/day) followed by topical application. One of the two allografts on each experimental animal received tCsA/PE application (5 mg/kg/day) until sacrifice (tCsA/PE-treated). The other allograft received vehicle only (vehicle-treated). Allogeneic controls (ALLO-CON, n = 9) received no sCsA or tCsA. First signs of rejection were determined based on the initial observation of erythema, hair loss, flakiness, and/or scabs. The mean time to rejection for ALLO-CON allografts was 6.3 +/- 0.7 days (t test, P = 0.0013); for vehicle-treated allografts, 12.3 +/- 3.8 days (paired t test, P = 0.0146); and for tCsA/PE-treated allografts, 25.6 +/- 5.4 days. The disparity of days to rejection between dual allografts in the ALLO-CON group was 0.0 +/- 0.0 day and that between the tCsA/PE- and vehicle-treated dual allografts was 13.3 +/- 3.9 days (t test, P = 0.0016). A new formulation of tCsA in a trinary drug delivery system is successful at delaying the onset of rejection in dual skin allografts in rats by SITE, and PEG-8 glyceryl caprylate/caprate may represent a potentially effective transdermal penetration enhancer. Copyright 1999 Academic

  8. Enhanced oral absorption and therapeutic effect of acetylpuerarin based on D-α-tocopheryl polyethylene glycol 1000 succinate nanoemulsions

    Directory of Open Access Journals (Sweden)

    Sun DQ

    2014-07-01

    Full Text Available Deqing Sun,1,2 Xinbing Wei,1 Xia Xue,2 Zengjun Fang,3 Manru Ren,1 Haiyan Lou,1 Xiumei Zhang11Department of Pharmacology, School of Medicine, Shandong University, Jinan, People’s Republic of China; 2Department of Pharmacy, 3Department of Clinical Pharmacology, Second Hospital of Shandong University, Jinan, People’s Republic of ChinaBackground: Acetylpuerarin (AP, because of its lower water solubility, shows poor absorption that hinders its therapeutic application. Thus, the aim of this study was to prepare nanoemulsions for AP, enhance its oral bioavailability, and thus improve the therapeutic effect.Methods: The nanoemulsions stabilized by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS were prepared by high-pressure homogenization and characterized in terms of particle size, drug loading, morphology, and in vitro drug release. A lipid digestion model was used to predict in vivo drug solubilization in the gastrointestinal environment. The pharmacokinetics of AP formulations were performed in rats; meanwhile, a chylomicron flow-blocking rat model was used to evaluate the lymphatic drug transport. Moreover, the therapeutic effects of AP nanoemulsions on the model of focal cerebral ischemia-reperfusion for brain injury were also assessed.Results: The nanoemulsions with a droplet size of 150 nm were well stabilized by TPGS and showed a high loading capacity for AP. In the digestion model, the distribution of AP in aqueous phase/pellet phase was about 90%/10% for nanoemulsions and 5%/95% for oil solution, indicating that the drug encapsulated in nanoemulsions would present in solubilized form after transportation into the gastrointestinal tract, whereas drug precipitation would occur as the oil solution was orally administered. The area under the curve value of AP nanoemulsions was 5.76±0.56 µg·hour·mL-1, or was about 2.6 and 1.7 times as great as that of suspension and oil solution, respectively, indicating enhanced drug

  9. 5-aminolevulinic acid-incorporated nanoparticles of methoxy poly(ethylene glycol-chitosan copolymer for photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Chung CW

    2013-02-01

    Full Text Available Chung-Wook Chung,1,* Kyu-Don Chung,2,* Young-Il Jeong,1 Dae Hwan Kang,1 1National Research and Development Center for Hepatobiliary Disease, Pusan National University Yangsan Hospital, Gyeongnam, Republic of Korea; 2Department of Anesthesiology and Pain Medicine, College of Medicine, The Catholic University, Seoul, Republic of Korea*These authors contributed equally to this workPurpose: The aim of this study was to make 5-aminolevulinic acid (5-ALA-incorporated nanoparticles using methoxy polyethylene glycol/chitosan (PEG-Chito copolymer for application in photodynamic therapy for colon cancer cells.Methods: 5-ALA-incorporated (PEG-Chito-5-ALA nanoparticles were prepared by ion complex formation between 5-ALA and chitosan. Protoporphyrin IX accumulation in the tumor cells and phototoxicity induced by PEG-Chito-5-ALA nanoparticles were assessed using CT26 cells in vitro.Results: PEG-Chito-5-ALA nanoparticles have spherical shapes with sizes diameters 200 nm. More specifically, microscopic observation revealed a core-shell structure of PEG-Chito-5-ALA nanoparticles. 1H NMR spectra showed that 5-ALA was incorporated in the core of the nanoparticles. In the absence of light irradiation, all components such as 5-ALA, empty nanoparticles, and PEG-Chito-5-ALA nanoparticles did not affect the viability of cells. However, 5-ALA or PEG-Chito-5-ALA nanoparticles induced tumor cell death under light irradiation, and the viability of tumor cells was dose-dependently decreased according to the increase in irradiation time. In particular, PEG-Chito-5-ALA nanoparticles induced increased phototoxicity and higher protoporphyrin IX accumulation into the tumor cells than did 5-ALA alone. Furthermore, PEG-Chito-5-ALA nanoparticles accelerated apoptosis/necrosis of tumor cells, compared to 5-ALA alone.Conclusion: PEG-Chito-5-ALA nanoparticles showed superior delivery capacity of 5-ALA and phototoxicity against tumor cells. These results show that PEG-Chito-5-ALA

  10. Chemical modification of protein a chromatography ligands with polyethylene glycol. II: Effects on resin robustness and process selectivity.

    Science.gov (United States)

    Weinberg, Justin; Zhang, Shaojie; Kirkby, Allison; Shachar, Enosh; Carta, Giorgio; Przybycien, Todd

    2018-04-20

    We have proposed chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) as a strategy to increase the resin selectivity and robustness by providing the ligand with a steric repulsion barrier against non-specific binding. Here, we report on robustness and selectivity benefits for Repligen CaptivA PriMAB resin with ligands modified with 5.2 kDa and 21.5 kDa PEG chains, respectively. PEGylation of ProA ligands allowed the resin to retain a higher percentage of static binding capacity relative to the unmodified resin upon digestion with chymotrypsin, a representative serine protease. The level of protection against digestion was independent of the PEG molecular weight or modification extent for the PEGylation chemistry used. Additionally, PEGylation of the ligands was found to decrease the level of non-specific binding of fluorescently labeled bovine serum albumin (BSA) aggregates to the surface of the resin particles as visualized via confocal laser scanning microscopy (CLSM). The level of aggregate binding decreased as the PEG molecular weight increased, but increasing the extent of modification with 5.2 kDa PEG chains had no effect. Further examination of resin particles via CLSM confirmed that the PEG chains on the modified ligands were capable of blocking the "hitchhiking" association of BSA, a mock contaminant, to an adsorbed mAb that is prone to BSA binding. Ligands modified with 21.5 kDa PEG chains were effective at blocking the association, while ligands modified with 5.2 kDa PEG chains were not. Finally, ligands with 21.5 kDa PEG chains increased the selectivity of the resin against host cell proteins (HCPs) produced by Chinese Hamster Ovary (CHO) cells by up to 37% during purification of a monoclonal antibody (mAb) from harvested cell culture fluid (HCCF) using a standard ProA chromatography protocol. The combined work suggests that PEGylating ProA chromatography media is a viable pathway for

  11. Polyethylene glycol intestinal lavage in addition to usual antibiotic treatment for severe Clostridium difficile colitis: a randomised controlled pilot study.

    Science.gov (United States)

    McCreery, Greig; Jones, Philip M; Kidane, Biniam; DeMelo, Vanessa; Mele, Tina

    2017-07-31

    Clostridium difficile infections (CDI) are common, costly and potentially life threatening. Most CDI will respond to antibiotic therapy, but 3%-10% of all patients with CDI will progress to a severe, life-threatening course. Complete removal of the large bowel is indicated for severe CDI. However, the 30-day mortality following surgical intervention for severe CDI ranges from 20% to 70%. A less invasive approach using surgical faecal diversion and direct colonic lavage with polyethylene glycol (PEG) and vancomycin has demonstrated a relative mortality reduction of approximately 50%. As an alternative to these operative approaches, we propose to treat patients with bedside intestinal lavage with PEG and vancomycin instillation via nasojejunal tube, in addition to usual antibiotic management. Preliminary data collected by our research group are encouraging. We will conduct a 1-year, single-centre, pilot randomised controlled trial to study this new treatment strategy for patients with severe CDI and additional risk factors for fulminant or complicated infection. After informed consent, patients with severe-complicated CDI without immediate indication for surgery will be randomised to either usual antibiotic treatment or usual antibiotic treatment with the addition of 8 L of PEG lavage via nasojejunal tube. This pilot trial will evaluate our eligibility and enrolment rate, protocol compliance and adverse event rates and provide further data to inform a more robust sample size calculation and protocol modifications for a definitive multicentre trial design. Based on historical data, we anticipate enrolling approximately 24 patients during the 1-year pilot study period.As a pilot study, data will be reported in aggregate. Between-group differences will be assessed in a blinded fashion for evidence of harm, and to further refine our sample size calculation. This study protocol has been reviewed and approved by our local institutional review board. Results of the pilot

  12. Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials

    International Nuclear Information System (INIS)

    Pei, Dong-fang; Chen, Sai; Li, Shu-qin; Shi, Hai-feng; Li, Wei; Li, Xuan; Zhang, Xing-xiang

    2016-01-01

    A series of poly(polyethylene glycol n-alkyl ether vinyl ether)s (PC m E n VEs) with various lengths of alkyl chains and polyethylene glycol spacers as side chain (m = 16,18; n = 1,2) were synthesized via two steps. First, monomers-ethylene glycol hexadecyl ether vinyl ether (C 16 E 1 VE), ethylene glycol octadecyl ether vinyl ether (C 18 E 1 VE), diethylene glycol hexadecyl ether vinyl ether (C 16 E 2 VE) and diethylene glycol octadecyl ether vinyl ether (C 18 E 2 VE) were synthesized by a modified Williamson etherification. Then, four new types of phase change materials were successfully fabricated by a living cationic polymerization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were employed to characterize their composition, thermal properties and crystallization behavior. The results show that, the side chains of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are in a hexagonal lattice, and the onset temperatures for melting of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are 39.8 °C, 37.4 °C, 51.0 °C and 48.9 °C, the onset temperatures for crystallization are 36.7 °C, 35.2 °C, 47.4 °C and 46.3 °C, respectively. The enthalpy changes of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 100 J/g; on the contrary, it is 96 J/g for PC 16 E 1 VE. The enthalpy decrease is no more than 11% after 10 heating and cooling cycles. The 5 wt% mass loss temperatures of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 300 °C; on the contrary, it’s 283 °C for PC 16 E 1 VE. Using a weak polarity, flexible alkyl ether chain (-OCH 2 CH 2 O-) as a spacer to link the main chain and side chain is conducive to the crystallization of the alkyl side chain. These new phase change materials can be applied in heat storage, energy conservation, and environmental protection.

  13. Nanoformulation of D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) diblock copolymer for breast cancer therapy.

    Science.gov (United States)

    Huang, Laiqiang; Chen, Hongbo; Zheng, Yi; Song, Xiaosong; Liu, Ranyi; Liu, Kexin; Zeng, Xiaowei; Mei, Lin

    2011-10-01

    The purpose of this research was to develop formulation of docetaxel-loaded biodegradable TPGS-b-(PCL-ran-PGA) nanoparticles for breast cancer chemotherapy. A novel diblock copolymer, d-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) [TPGS-b-(PCL-ran-PGA)], was synthesized from ε-caprolactone, glycolide and d-α-tocopheryl polyethylene glycol 1000 succinate by ring-opening polymerization using stannous octoate as catalyst. The obtained copolymers were characterized by (1)H NMR, GPC and TGA. The docetaxel-loaded TPGS-b-(PCL-ran-PGA) nanoparticles were prepared and characterized. The data showed that the fluorescence TPGS-b-(PCL-ran-PGA) nanoparticles could be internalized by MCF-7 cells. The TPGS-b-(PCL-ran-PGA) nanoparticles achieved significantly higher level of cytotoxicity than commercial Taxotere®. MCF-7 xenograft tumor model on SCID mice showed that docetaxel formulated in the TPGS-b-(PCL-ran-PGA) nanoparticles could effectively inhibit the growth of tumor over a longer period of time than Taxotere® at the same dose. In conclusion, the TPGS-b-(PCL-ran-PGA) copolymer could be acted as a novel and potential biologically active polymeric material for nanoformulation in breast cancer chemotherapy. This journal is © The Royal Society of Chemistry 2011

  14. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    International Nuclear Information System (INIS)

    Käpylä, Elli; Sedlačík, Tomáš; Aydogan, Dogu Baran; Viitanen, Jouko; Rypáček, František; Kellomäki, Minna

    2014-01-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated

  15. Neurite extension and neuronal differentiation of human induced pluripotent stem cell derived neural stem cells on polyethylene glycol hydrogels containing a continuous Young's Modulus gradient.

    Science.gov (United States)

    Mosley, Matthew C; Lim, Hyun Ju; Chen, Jing; Yang, Yueh-Hsun; Li, Shenglan; Liu, Ying; Smith Callahan, Laura A

    2017-03-01

    Mechanotransduction in neural cells involves multiple signaling pathways that are not fully understood. Differences in lineage and maturation state are suggested causes for conflicting reports on neural cell mechanosensitivity. To optimize matrices for use in stem cell therapy treatments transplanting human induced pluripotent stem cell derived neural stem cells (hNSC) into lesions after spinal cord injury, the effects of Young's Modulus changes on hNSC behavior must be understood. The present study utilizes polyethylene glycol hydrogels containing a continuous gradient in Young's modulus to examine changes in the Young's Modulus of the culture substrate on hNSC neurite extension and neural differentiation. Changes in the Young's Modulus of the polyethylene glycol hydrogels was found to affect neurite extension and cellular organization on the matrices. hNSC cultured on 907 Pa hydrogels were found to extend longer neurites than hNSC cultured on other tested Young's Moduli hydrogels. The gene expression of β tubulin III and microtubule-associated protein 2 in hNSC was affected by changes in the Young's Modulus of the hydrogel. The combinatory method approach used in the present study demonstrates that hNSC are mechanosensitive and the matrix Young's Modulus should be a design consideration for hNSC transplant applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 824-833, 2017. © 2016 Wiley Periodicals, Inc.

  16. Isothermal (vapour + liquid) equilibrium for binary mixtures of polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, or 2-propanol

    International Nuclear Information System (INIS)

    Khoiroh, Ianatul; Lee, Ming-Jer

    2011-01-01

    Highlights: → An autoclave apparatus was used for binary (vapour + liquid) equilibrium data measurement. → The studied systems are polyethylene glycol mono-4-nonylphenyl ether with alcohols. → The saturated pressure data were fitted accurately to the Antoine equation. → The NRTL model correlated well the phase equilibrium data. → The solvent activities have been calculated. - Abstract: Saturated pressures of three binary systems of oligomeric polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, and 2-propanol have been measured by using an autoclave (vapour + liquid) equilibrium (VLE) apparatus at temperatures ranging from (340 to 455) K and the oligomer content ranging from 0.100 to 0.400 in mole fraction. With a given feed composition, equilibrium pressures were measured at various temperatures to obtain VLE data. The experimental data were fitted to the Antoine equation and also correlated with activity coefficient models, the NRTL and the UNIQUAC. The correlation results showed good agreement between the calculated values and the experimental data. In general, the NRTL model yielded better results. Additionally, the solvent activities were evaluated from the experimental results and were compared with those from the NRTL and the UNIQUAC models.

  17. In Vitro Callus Induction and Growth of Stevia (Stevia rebaudiana Bertoni M. with Difference Concentrations of PEG (Polyethylene Glycol and Light Conditions

    Directory of Open Access Journals (Sweden)

    Mohamad Ana Syabana

    2017-06-01

    Full Text Available Stevia (Stevia rebaudiana Bert. M. is known as a natural non-caloric sweetener. This plants contain glycoside such steviosida type, mainly on the leave contain sweetness level between 200-300 cane sugar but the calorie is very low. This research was aimed to determine difference effects of PEG (Polyethylene Glycol concentrations and the light conditions on  Stevia (Stevia rebaudiana Bert. M. callus induction  in vitro. This research was conducted from April to June 2016 at Biotechnology Laboratory Faculty of Agriculture, Sultan Ageng Tirtayasa University. This research used a completely randomized design (CRD, which consisted of two factors with three replications. Concentrations of PEG as first factor consisted of four levels (0 mg/L, 5 mg/L, 15 mg/L, and 25 mg/L. Light conditions as second factor consisted of two levels (Dark and Light. The results showed that the concentrations of PEG (Polyethylene Glycol did not significantly effect the time of callus appearance and diameter of callus on 4, 5 and 6 weeks after planting. Dark condition was the best conditions for callus induction of stevia. The texture of callus was compact on all treatments and the callus dominant color produced is golden brown

  18. In Vitro Callus Induction and Growth of Stevia (Stevia rebaudiana Bertoni M. with Difference Concentrations of PEG (Polyethylene Glycol and Light Conditions

    Directory of Open Access Journals (Sweden)

    Mohamad Ana Syabana

    2017-07-01

    Full Text Available Stevia (Stevia rebaudiana Bert. M. is known as a natural non-caloric sweetener. This plants contain glycoside such steviosida type, mainly on the leave contain sweetness level between 200-300 cane sugar but the calorie is very low. This research was aimed to determine difference effects of PEG (Polyethylene Glycol concentrations and the light conditions on Stevia (Stevia rebaudiana Bert. M. callus induction in vitro. This research was conducted from April to June 2016 at Biotechnology Laboratory Faculty of Agriculture, Sultan Ageng Tirtayasa University. This research used a completely randomized design (CRD, which consisted of two factors with three replications. Concentrations of PEG as first factor consisted of four levels (0 mg/L, 5 mg/L, 15 mg/L, and 25 mg/L. Light conditions as second factor consisted of two levels (Dark and Light. The results showed that the concentrations of PEG (Polyethylene Glycol did not significantly effect the time of callus appearance and diameter of callus on 4, 5 and 6 weeks after planting. Dark condition was the best conditions for callus induction of stevia. The texture of callus was compact on all treatments and the callus dominant color produced is golden brown.

  19. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Käpylä, Elli, E-mail: elli.kapyla@tut.fi [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland); Sedlačík, Tomáš [Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Břevnov, Prague (Czech Republic); Aydogan, Dogu Baran [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland); Viitanen, Jouko [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland); Rypáček, František [Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Břevnov, Prague (Czech Republic); Kellomäki, Minna [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland)

    2014-10-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated.

  20. Dynamic adsorption of mixtures of Rhodamine B, Pb (II), Cu (II) and Zn(II) ions on composites chitosan-silica-polyethylene glycol membrane

    Science.gov (United States)

    Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono

    2018-04-01

    The adsorption of a solution mixture of Rhodamine B, Pb (II), Cu (II) and Zn(II) was studied using dynamic methods employing chitosan-silica-polyethylene glycol (Ch/Si/P) composite membrane as an adsorptive membrane. The composite Ch/Si/P membrane was prepared by mixing a chitosan-based membrane with silica isolated from rice husk ash (ASP) and polyethylene glycol (PEG) as a plasticizer. The resultant composite membrane was a stronger and more flexible membrane than the original chitosan-based membrane as indicated by the maximum percentage of elongation (20.5 %) and minimum Young’s Modulus (80.5 MPa). The composite membrane also showed increased mechanical and hydrophilic properties compared to the chitosan membranes. The membrane was used as adsorption membrane for Pb (II), Cu (II), Cd (II) ions and Rhodamine B dyes in a dynamic system where the permeation and selectivity were determined. The permeation of the components was observed to be in the following order: Rhodamine B > Cd (II) > Pb (II) > Cu (II) whereas the selectivity was shown to decrease the order of Cu (II) > Pb (II) > Cd (II) > Rhodamine B.

  1. Optimization of serine protease purification from mango (Mangifera indica cv. Chokanan) peel in polyethylene glycol/dextran aqueous two phase system.

    Science.gov (United States)

    Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md Zaidul Islam; Yazid, Abdul Manap Mohd

    2012-01-01

    Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000-12,000 g·mol(-1)), tie line length (-3.42-35.27%), NaCl (-2.5-11.5%) and pH (4.5-10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol(-1) of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing.

  2. Solid-state poly(ethylene glycol)-polyurethane/polymethylmethacrylate/rutile TiO2 nanofiber composite electrolyte-correlation between morphology and conducting properties

    International Nuclear Information System (INIS)

    Chilaka, Naresh; Ghosh, Sutapa

    2012-01-01

    Highlights: ► Semi IPN composite of PEG-PU/PMMA with different wt% of rutile TiO 2 is synthesized. ► Formation of nanocomposite is confirmed by SEM, XRD and IR spectroscopic analysis. ► DSC and TGA confirmed the enhanced thermal stability of the composite. ► Composite with 18 wt% rutile TiO 2 is found to be the best conducting material. - Abstract: A series of lithium electrolyte materials based on hybrid of semi Inter penetrating Polymer Network of [poly(ethylene glycol)-polyurethane-polymethylmethacrylate] [60:40] and TiO 2 nanofibers is described. TiO 2 nanofibers are made by simple solvothermal procedure. Rutile phase of TiO 2 and its fibrous morphology are confirmed by X-ray diffraction pattern and scanning electron microscopy image respectively. Semi Inter penetrating Polymer Network of polyethylene glycol-polyurethane/polymethylmethacrylate with LiClO 4 and its nanocomposite with different weight percent of TiO 2 nano fibers have been synthesized. The formation of Inter penetrating Polymer Network and its amorphous nature are confirmed by Fourier transform infrared spectra, X-ray diffraction pattern and differential scanning calorimetry results. Thermo gravimetric analysis shows enhanced thermal stability of the composite compared to the semi Inter penetrating Polymer Network system. The electrical characterizations of the nanocomposites are done by current–voltage (I–V) measurements and impedance spectroscopy. These results confirm that incorporation of TiO 2 nanofibers by 18% enhances the conductivity of the Inter penetrating Polymer Network system by ten times . The nanoscale structure of the inorganic material is found to be responsible for the bulk properties of the system, especially those that differ from the properties of similar, pure salt-in-polymer electrolytes. Further differential scanning calorimetry, scanning electron microscopy and impedance data confirm the presence of two polymeric phases in the semi Inter penetrating Polymer

  3. Synthesis, Characterization and Biocompatibility of Biodegradable Elastomeric Poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via Melting Polymerization

    DEFF Research Database (Denmark)

    Li, Zibiao; Yang, Xiaodi; Wu, Linping

    2009-01-01

    Poly(ether-ester urethane)s (PUs) multiblock co-polymers were synthesized from telechelic hydroxylated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(ethylene glycol) (PEG) via a melting polymerization (MP) process using 1,6-hexamethylene diisocyanate (HDI) as a non-toxic couplin...

  4. The polymerisation of oligo(ethylene glycol methyl ether) methacrylate from a multifunctional poly(ethylene imine) derived amide : a stabiliser for the synthesis and dispersion of magnetite nanoparticles

    NARCIS (Netherlands)

    Kleine, A.; Altan, C.L.; Yarar, U.E.; Sommerdijk, N.A.J.M.; Bucak, S.; Holder, S.J.

    2014-01-01

    A facile synthetic route to poly(ethylene imine)-graft-poly(oligo(ethylene glycol methyl ether)) (PEI-graft-POEGMA) functionalised superparamagnetic magnetite nanoparticles is described. The polymerisation of OEGMA from a model molecular amide demonstrated the feasibility of POEGMA synthesis under

  5. Salt-Induced Control of the Grafting Density in Poly(ethylene glycol) Brush Layers by a Grafting-to Approach

    DEFF Research Database (Denmark)

    Ortiz, Roberto; Olsen, Stefan; Thormann, Esben

    2018-01-01

    In this work, a method to obtain control of the grafting density during the formation of polymer brush layers by the grafting-to method of thiolated poly(ethylene glycol) onto gold is presented. The grafting density of the polymer chains was adjusted by adding Na2SO4 in concentrations between 0.......2 and 0.9 M to the aqueous polymer solution during the grafting process. The obtained grafting densities ranged from 0.26 to 1.60 chains nm-2, as determined by surface plasmon resonance. The kinetics of the grafting process were studied in situ by a quartz crystal microbalance with dissipation......, and a mushroom to brush conformational transition was observed when the polymer was grafted in the presence of Na2SO4. The transition from mushroom to brush was only observed for long periods of grafting, highlighting the importance of time to obtain high grafting densities. Finally, the prepared brush layer...

  6. Two-day bowel preparation with polyethylene glycol 3350 and bisacodyl: a new, safe, and effective regimen for colonoscopy in children.

    Science.gov (United States)

    Phatak, Uma P; Johnson, Susanne; Husain, Sohail Z; Pashankar, Dinesh S

    2011-07-01

    To assess the safety, efficacy, and acceptance of a 2-day bowel preparation with polyethylene glycol (PEG) 3350 without electrolytes and bisacodyl for colonoscopy in children. In a prospective study, 111 children of mean age 11.9 years were given 2 g/kg of PEG and a 5-mg tablet of bisacodyl daily for 2 days before colonoscopy. Stool frequency, consistency, and adverse effects were monitored for the duration of the bowel preparation. Compliance and quality of colonic preparation were assessed on the day of the colonoscopy. The average daily stool frequency increased from a baseline of 2, to 4* on day 1, and 6.5* on day 2 of the bowel preparation (*P PEG and bisacodyl is safe, effective, and well accepted for colonoscopy in children without any major adverse effects.

  7. Effects of La0.2Ce0.6Eu0.2F3 nanocrystals capped with polyethylene glycol on human pancreatic cancer cells in vitro

    Science.gov (United States)

    Withers, Nathan J.; Glazener, Natasha N.; Rivera, Antonio C.; Akins, Brian A.; Armijo, Leisha M.; Plumley, John B.; Cook, Nathaniel C.; Sugar, Jacqueline M.; Chan, Rana; Brandt, Yekaterina I.; Smolyakov, Gennady A.; Heintz, Philip H.; Osiński, Marek

    2013-02-01

    Lanthanide fluoride colloidal nanocrystals offer a way to improve the diagnosis and treatment of cancer through the enhanced absorption of ionizing radiation, in addition to providing visible luminescence. In order to explore this possibility, tests with a kilovoltage therapy unit manufactured by the Universal X-Ray Company were performed to estimate the energy sensitivity of this technique. La0.2Ce0.6Eu0.2F3 nanocrystals capped with polyethylene glycol of molecular weight 6000 were synthesized, suspended in deionized water, and made tolerant to biological ionic pressures by incubation with fetal bovine serum. These nanocrystals were characterized by dynamic light scattering, muffle furnace ashing, and photoluminescence spectroscopy. Clonogenic assays were performed on the cells to assay the cytotoxicity and radiotoxicity of the nanocrystals on the human pancreatic cancer cell line PANC-1, purchased from ATCC.

  8. MAGNOLOL ENTRAPPED ULTRA-FINE FIBROUS MATS ELECTROSPUN FROM POLY(ETHYLENE GLYCOL)-b-POLY(L-LACTIDE) AND IN VITRO RELEASE

    Institute of Scientific and Technical Information of China (English)

    Hao Wang; Hong-rui Song; Yong Cui; Ying-jie Deng; Xue-si Chen

    2011-01-01

    Ultra-fine fibrous mats with magnolol entrapped have been prepared by electrospinning biodegradable copolymer poly(ethylene glycol) blocked poly(L-lactide). Drug entrapment was perfect which was confirmed by scanning electron microscopy and differential scanning calorimetry. According to in vitro drug release investigation by high performance liquid chromatography, it was found that fibers with 10%, 20% and 30% drug entrapped respect to polymer (mass ratio) presented dramatically different drug release behavior and degradation behavior under the effect of proteinase K. The reason may be that fibers with 10% drug entrapped was more easily affected by enzyme while, to some degree, magnolol in fibers with 20% and 30% entrapped prevented polymer from being degraded by enzyme.

  9. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging.

    Science.gov (United States)

    Yang, Lei; Jiang, Weihua; Qiu, Lipeng; Jiang, Xuewei; Zuo, Daiying; Wang, Dongkai; Yang, Li

    2015-04-14

    Strong blue fluorescent polyethylene glycol (PEG) anchored carbon nitride dots (CDs@PEG) with a high quantum yield (QY) of 75.8% have been synthesized by a one step hydrothermal treatment. CDs with a diameter of ca. 6 nm are well dispersed in water and present a graphite-like structure. Photoluminescence (PL) studies reveal that CDs display excitation-dependent behavior and are stable under various test conditions. Based on the as-prepared CDs, we designed novel cell nucleus targeting imaging carbon dots functionalized with a nuclear localization signal (NLS) peptide. The favourable biocompatibilities of CDs and NLS modified CDs (NLS-CDs) are confirmed by in vitro cytotoxicity assays. Importantly, intracellular localization experiments in MCF7 and A549 cells demonstrate that NLS-CDs could be internalized in the nucleus and show blue light, which indicates that CDs may serve as cell nucleus imaging probes.

  10. Resistive and reactive changes to the impedance of intracortical microelectrodes can be mitigated with polyethylene glycol under acute in vitro and in vivo settings

    Directory of Open Access Journals (Sweden)

    Salah eSommakia

    2014-08-01

    Full Text Available The reactive response of brain tissue to implantable intracortical microelectrodes is thought to negatively affect their recordable signal quality and impedance, resulting in unreliable longitudinal performance. The relationship between the progression of the reactive tissue into a glial scar and the decline in device performance is unclear. We show that exposure to a model protein solution in vitro and acute implantation result in both resistive and capacitive changes to electrode impedance, rather than purely resistive changes. We also show that applying 4000 MW polyethylene glycol (PEG prevents impedance increases in vitro, and reduces the percent change in impedance in vivo following implantation. Our results highlight the importance of considering the contributions of non-cellular components to the decline in neural microelectrode performance, and present a proof of concept for using a simple dip-coated PEG film to modulate changes in microelectrode impedance.

  11. Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial.

    Science.gov (United States)

    Longo, Nicola; Harding, Cary O; Burton, Barbara K; Grange, Dorothy K; Vockley, Jerry; Wasserstein, Melissa; Rice, Gregory M; Dorenbaum, Alejandro; Neuenburg, Jutta K; Musson, Donald G; Gu, Zhonghua; Sile, Saba

    2014-07-05

    Phenylketonuria is an inherited disease caused by impaired activity of phenylalanine hydroxylase, the enzyme that converts phenylalanine to tyrosine, leading to accumulation of phenylalanine and subsequent neurocognitive dysfunction. Phenylalanine ammonia lyase is a prokaryotic enzyme that converts phenylalanine to ammonia and trans-cinnamic acid. We aimed to assess the safety, tolerability, pharmacokinetic characteristics, and efficacy of recombinant Anabaena variabilis phenylalanine ammonia lyase (produced in Escherichia coli) conjugated with polyethylene glycol (rAvPAL-PEG) in reducing phenylalanine concentrations in adult patients with phenylketonuria. In this open-label, phase 1, multicentre trial, single subcutaneous injections of rAvPAL-PEG were given in escalating doses (0·001, 0·003, 0·010, 0·030, and 0·100 mg/kg) to adults with phenylketonuria. Participants aged 18 years or older with blood phenylalanine concentrations of 600 μmol/L or higher were recruited from among patients attending metabolic disease clinics in the USA. The primary endpoints were safety and tolerability of rAvPAL-PEG. Secondary endpoints were the pharmacokinetic characteristics of the drug and its effect on concentrations of phenylalanine. Participants and investigators were not masked to assigned dose group. This study is registered with ClinicalTrials.gov, number NCT00925054. 25 participants were recruited from seven centres between May 6, 2008, and April 15, 2009, with five participants assigned to each escalating dose group. All participants were included in the safety population. The most frequently reported adverse events were injection-site reactions and dizziness, which were self-limited and without sequelae. Two participants had serious adverse reactions to intramuscular medroxyprogesterone acetate, a drug that contains polyethylene glycol as an excipient. Three of five participants given the highest dose of rAvPAL-PEG (0·100 mg/kg) developed a generalised skin rash

  12. Effect of Temperature on the Physico-Chemical Properties of a Room Temperature Ionic Liquid (1-Methyl-3-pentylimidazolium Hexafluorophosphate) with Polyethylene Glycol Oligomer

    Science.gov (United States)

    Wu, Tzi-Yi; Chen, Bor-Kuan; Hao, Lin; Peng, Yu-Chun; Sun, I-Wen

    2011-01-01

    A systematic study of the effect of composition on the thermo-physical properties of the binary mixtures of 1-methyl-3-pentyl imidazolium hexafluorophosphate [MPI][PF6] with poly(ethylene glycol) (PEG) [Mw = 400] is presented. The excess molar volume, refractive index deviation, viscosity deviation, and surface tension deviation values were calculated from these experimental density, ρ, refractive index, n, viscosity, η, and surface tension, γ, over the whole concentration range, respectively. The excess molar volumes are negative and continue to become increasingly negative with increasing temperature; whereas the viscosity and surface tension deviation are negative and become less negative with increasing temperature. The surface thermodynamic functions, such as surface entropy, enthalpy, as well as standard molar entropy, Parachor, and molar enthalpy of vaporization for pure ionic liquid, have been derived from the temperature dependence of the surface tension values. PMID:21731460

  13. Effect of Temperature on the Physico-Chemical Properties of a Room Temperature Ionic Liquid (1-Methyl-3-pentylimidazolium Hexafluorophosphate with Polyethylene Glycol Oligomer

    Directory of Open Access Journals (Sweden)

    Lin Hao

    2011-04-01

    Full Text Available A systematic study of the effect of composition on the thermo-physical properties of the binary mixtures of 1-methyl-3-pentyl imidazolium hexafluorophosphate [MPI][PF6] with poly(ethylene glycol (PEG [Mw = 400] is presented. The excess molar volume, refractive index deviation, viscosity deviation, and surface tension deviation values were calculated from these experimental density, ρ, refractive index, n, viscosity, η, and surface tension, γ, over the whole concentration range, respectively. The excess molar volumes are negative and continue to become increasingly negative with increasing temperature; whereas the viscosity and surface tension deviation are negative and become less negative with increasing temperature. The surface thermodynamic functions, such as surface entropy, enthalpy, as well as standard molar entropy, Parachor, and molar enthalpy of vaporization for pure ionic liquid, have been derived from the temperature dependence of the surface tension values.

  14. A rapid process of Yba2Cu3O7-δ thin film fabrication using trifluoroacetate metal-organic deposition with polyethylene glycol additive

    DEFF Research Database (Denmark)

    Wu, Wei; Feng, Feng; Shi, Kai

    2013-01-01

    Trifluoroacetate metal-organic deposition (TFA-MOD) is a promising technique to fabricate YBa2Cu3O7-δ (YBCO) superconducting films. However, its slow pyrolysis process, which usually takes more than 10 h, constitutes a barrier for industrial production. In this study, polyethylene glycol (PEG......) was utilized to reduce the stress generation inside the coated films when the strong pyrolysis reactions happen. With the addition of 30 wt% PEG2000 to the precursor solution, a smooth film surface could be obtained through a rapid pyrolysis process of 15 min. After the optimizations of the crystallization...... and oxygenation processes, mass percentage and molecular weight of PEG additive, YBCO thin films with Jc of about 4.5 MA cm-2 (77 K, self-field) could be routinely fabricated using (20-30) wt% PEG(1000-2000) additive with a total treatment time of about 2 h including the 15 min pyrolysis process time. The effects...

  15. Extended Solution Gate OFET-based Biosensor for Label-free Glial Fibrillary Acidic Protein Detection with Polyethylene Glycol-Containing Bioreceptor Layer.

    Science.gov (United States)

    Song, Jian; Dailey, Jennifer; Li, Hui; Jang, Hyun-June; Zhang, Pengfei; Wang, Jeff Tza-Huei; Everett, Allen D; Katz, Howard E

    2017-05-25

    A novel organic field effect transistor (OFET) -based biosensor is described for label-free glial fibrillary acidic protein (GFAP) detection. We report the first use of an extended solution gate structure where the sensing area and the organic semiconductor are separated, and a reference electrode is not needed. Different molecular weight polyethylene glycols (PEGs) are mixed into the bio-receptor layer to help extend the Debye screening length. The drain current change was significantly increased with the help of higher molecular weight PEGs, as they are known to reduce the dielectric constant. We also investigated the sensing performance under different gate voltage (V g ). The sensitivity increased after we decreased V g from -5 V to -2 V, because the lower V g is much closer to the OFET threshold voltage and the influence of attached negatively charged proteins become more apparent. Finally, the selectivity experiments toward different interferents were performed. The stability and selectivity are promising for clinical applications.

  16. Unusual kinetics of poly(ethylene glycol) oxidation with cerium(IV) ions in sulfuric acid medium and implications for copolymer synthesis.

    Science.gov (United States)

    Szymański, Jan K; Temprano-Coleto, Fernando; Pérez-Mercader, Juan

    2015-03-14

    The cerium(IV)-alcohol couple in an acidic medium is an example of a redox system capable of initiating free radical polymerization. When the alcohol has a polymeric nature, the outcome of such a process is a block copolymer, a member of a class of compounds possessing many useful properties. The most common polymer with a terminal -OH group is poly(ethylene glycol) (PEG); however, the detailed mechanism of its reaction with cerium(IV) remains underexplored. In this paper, we report our findings for this reaction based on spectrophotometric measurements and kinetic modeling. We find that both the reaction order and the net rate constant for the oxidation process depend strongly on the nature of the acidic medium used. In order to account for the experimental observations, we postulate that protonation of PEG decreases its affinity for some of the cerium(IV)-sulfate complexes formed in the system.

  17. Effect of silica and water content on the glass transition of poly(ethylene glycol) monomethylether-silica gel-lithium perchlorate ormolytes

    International Nuclear Information System (INIS)

    Korwin, Rebecca S.; Masui, Hitoshi

    2005-01-01

    The effect of silica and water content on the glass transition temperature, T g , of MPEG2000-silica-LiClO 4 ormolytes was assessed by differential scanning calorimetry (DSC). The sol-gel synthesized ormolytes consisted of various amounts of poly(ethylene glycol) monomethylether (M.W. 2000 g/mol; i.e., MPEG2000) tethered to silica gel through the hydroxyl terminus via a urethane linkage. DSC features corresponding to physisorbed and hydrogen-bonded water, as well as the glass transition of the polyether, were identified. Both silica and LiClO 4 raise the T g and suppress crystallization of the polyether component. Water plasticizes the polyether and stoichiometrically solvates and sequesters Li + , thereby, lowering T g

  18. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: tunable selectivity for alkali and alkaline-earth metal ions.

    Science.gov (United States)

    Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao

    2016-02-07

    The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.

  19. (Pressure + volume + temperature) properties for binary oligomeric solutions of poly(ethylene glycol mono-4-octylphenyl ether) with 1-octanol or acetophenone at pressures up to 50 MPa

    International Nuclear Information System (INIS)

    Lee, M.-J.; Ku, T.-J.; Lin Homu

    2009-01-01

    Densities were measured with a high-pressure densitometer for two binary oligomeric systems of poly(ethylene glycol mono-4-octylphenyl ether) (PEGOPE) with 1-octanol or acetophenone at temperatures from 298.15 K to 348.15 K and pressures up to 50 MPa. While the excess volumes are negative in (acetophenone + PEGOPE) over the entire composition range, those are found to change from positive to negative with increasing mole fraction of the solvent in (1-octanol + PEGOPE). The pressure-effect on the liquid densities can be represented accurately by the Tait equation. Moreover, an empirical equation with two characteristic parameters correlates well the PVT data over the entire experimental conditions for each binary system. The experimental specific volumes were also correlated with the Flory-Orwoll-Vrij (FOV) and the Schotte equations of state to within the experimental uncertainty.

  20. Comparison of efficacies of vegetable oil based and polyethylene glycol based bisacodyl suppositories in treating patients with neurogenic bowel dysfunction after spinal cord injury: a meta-analysis.

    Science.gov (United States)

    Yi, Zhu; Jie, Cheng; Wenyi, Zhang; Bin, Xie; Hongzhu, Jin

    2014-10-01

    We performed a meta-analysis to compare the efficacies of vegetable oil based bisacodyl (VOB) and polyethylene glycol based bisacodyl (PGB) suppositories in treating patients with neurogenic bowel dysfunction (NBD) after spinal cord injury (SCI). Relevant clinical studies (up to February 2014) were retrieved through the following databases: PubMed, MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CCTR), Chinese National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Database (CBM), Wanfang, and VIP database for Chinese Technical Periodicals. Data were analyzed using the standardized weighted mean difference (SMD) and its 95% confidence interval (CI). P-values 0.05) between patients in the PGB and VOB groups. Based on the results, we conclude that the PGB suppository could act faster than the VOB suppository in the treatment of NBD in patients with SCI.