WorldWideScience

Sample records for salting-out effect produced

  1. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO2

    International Nuclear Information System (INIS)

    Ho, Tuan Anh; Ilgen, Anastasia

    2017-01-01

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2 . With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2 decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.

  2. Application of salting-out effect equation to modelling of liquid-liquid distribution systems

    International Nuclear Information System (INIS)

    Pitsch, H.K.

    1986-03-01

    Physicochemical interpretation of salting-out is reviewed and effects of the medium on liquid-liquid distribution equilibria are described by two non-specific parameters of salting-out agents: total concentration of species in the aqueous phase and water activity. Thus extraction of a given constituent in various media can be forecasted with few data. Different uranyl and technetium (VII) extraction systems are analyzed to show the potentiality of the method. Coextraction of nitric acid and uranyl nitrate by tributyl phosphate is used to show the possibility of modelling complex distribution systems in industrial conditions [fr

  3. Lamellar-lamellar phase separation of phospholipid bilayers induced by salting-in/-out effects

    Energy Technology Data Exchange (ETDEWEB)

    Hishida, Mafumi [Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501 (Japan); Seto, Hideki, E-mail: hideki.seto@kek.jp [KENS and CMRC, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801 (Japan)

    2011-01-01

    The multilamellar structure of phospholipid bilayers is stabilized by the interactions between bilayers. Although the lamellar repeat distance is uniquely determined at the balance point of interactions between bilayers, a lamellar-lamellar phase separation, where the two phases with different lamellar repeat distance coexist, has been reported in a case of adding a salt to the aqueous solution of lipids. In order to understand the physical mechanism of the lamellar-lamellar phase separation, the effects of adding monovalent salt on the lamellar structure are studied by visual observation and by small-angle X-ray scattering. Further, a theoretical model based on the mean field theory is introduced and it is concluded that the salting-in and -out effects of lipid bilayers trigger the lamellar-lamellar phase separation.

  4. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Golabiazar, Roonak; Shekaari, Hemayat

    2010-01-01

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C 4 mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C 4 mim][Br]) and tri-sodium citrate (Na 3 Cit) are taken. The apparent molar volume of transfer of [C 4 mim][Br] from water to aqueous solutions of Na 3 Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C 4 mim][Br] from water to aqueous solutions of Na 3 Cit have negative values. The effects of temperature and the addition of Na 3 Cit and [C 4 mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na 3 Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of entropy and enthalpy are the driving forces

  5. Quality monitoring of salt produced in Indonesia through seawater evaporation on HDPE geomembrane lined ponds

    Science.gov (United States)

    Jumaeri; Sulistyaningsih, T.; Alighiri, D.

    2018-03-01

    Salt is one of the primary ingredients that humans always need for various purposes, both for consumption and industry. The need for high-quality salt continues to increase, as long as industry growth. It must improve product quality through the development of salt production process technology. In this research, the quality monitoring of salt produced in Indonesia by evaporation of seawater on ponds lined using high-density polyethylene (HDPE) geomembrane has been studied. The manufacturing of salt carried out through the gradual precipitation principle on prepared ponds. HDPE geomembrane is used to coat evaporation ponds with viscosity 12-22°Be and crystallization ponds with a viscosity of 23°Be. The monitoring of the product is carried out in the particular periods during the salt production period. The result of control shows that the quality of salt produced in HDPE geomembrane coated salt ponds has an average NaCl content of 95.75%, so it has fulfilled with Indonesia National Standard (SNI), that is NaCl> 94.70%. The production of salt with HDPE geomembrane can improve the quality of salt product from NaCl 85.4% (conventional system) to 95.75%.

  6. Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains.

    Science.gov (United States)

    da Silva, Fábio Sérgio Paulino; Pylro, Victor Satler; Fernandes, Pericles Leonardo; Barcelos, Gisele Souza; Kalks, Karlos Henrique Martins; Schaefer, Carlos Ernesto Gonçalves Reynaud; Tótola, Marcos Rogério

    2015-05-01

    We aimed to isolate biosurfactant-producing bacteria in high salt conditions from uncontaminated soils on the Brazilian oceanic island, Trindade. Blood agar medium was used for the isolation of presumptive biosurfactant-producing bacteria. Confirmation and measurements of biosurfactant production were made using an oil-spreading method. The isolates were identified by fatty acid profiles and partial 16S rRNA gene sequence analysis. A total of 14 isolates obtained from the 12 soil samples were found to produce biosurfactants. Among them, two isolates stood out as being able to produce biosurfactant that is increasingly active in solutions containing up to 175 g L(-1) NaCl. These high salt tolerant biosurfactant producers are affiliated to different species of the genus Bacillus. Soil organic matter showed positive correlation with the number of biosurfactant-producing bacteria isolated from our different sampling sites. The applied approach successfully recovered and identified biosurfactant-producing bacteria from non-contaminated soils. Due to the elevated salt tolerance, as well as their capacity to produce biosurfactants, these isolates are promising for environmental biotechnological applications, especially in the oil production chain.

  7. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.i [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Golabiazar, Roonak [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2010-04-15

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) and tri-sodium citrate (Na{sub 3}Cit) are taken. The apparent molar volume of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have negative values. The effects of temperature and the addition of Na{sub 3}Cit and [C{sub 4}mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na{sub 3}Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of

  8. Anion bridges drive salting out of a simple amphiphile from aqueous solution

    International Nuclear Information System (INIS)

    Bowron, D.T.; Finney, J.L.

    2002-01-01

    Neutron diffraction with isotope substitution has been used to determine the structural changes that occur on the addition of a simple salting-out agent to a dilute aqueous alcohol solution. The striking results obtained demonstrate a relatively simple process occurs in which interamphiphile anionic salt bridges are formed between the polar groups of the alcohol molecules. These ion bridges drive an increase in the exposure of the alcohol molecule nonpolar surface to the solvent water and hence point the way to their eventual salting out by the hydrophobic effect

  9. The salting-out of molibdoferrats(II from aqueous solutions by the organic solvents

    Directory of Open Access Journals (Sweden)

    Mykola V. Nikolenko

    2016-12-01

    Full Text Available The aim of this work was to develop a method for producing of molybdoferrate(II precipitates by salting-out them from aqueous solutions by means of organic solvents. Dependence of the composition of molybdoferrate(II precipitates on the pH of the reaction solutions was studied. Experiments on salting-out of molybdoferrate(II with various organic solvents were carried out. As a result it was found that the best reagent for the molybdoferrate(II salting-out is acetone. By its use, lowest quantity of the ammonium sulfate impurities was obtained. It is also of importance that by using of acetone the process of regeneration by distillation of the reaction solutions is characterized by the lowest energy consumption. A functional relationship between the solubility of molybdoferrates(II and dielectric constant of the medium was established. By increasing the dielectric constant of the solvent solubility of molybdoferrates(II rapidly increases. The linearized dependence ln(lnS–ln(1/e was proposed to predict the solubility of molybdoferrates(II in various aqueous-organic solutions.

  10. Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous U.S. - a bibliography

    Science.gov (United States)

    Otton, James K.

    2006-01-01

    Environmental effects associated with the production of oil and gas have been reported since the first oil wells were drilled in the Appalachian Basin in Pennsylvania and Kentucky in the early to mid-1800s. The most significant of these effects are the degradation of soils, ground water, surface water, and ecosystems they support by releases of suspended and dissolved hydrocarbons and co-produced saline water. Produced water salts are less likely than hydrocarbons to be adsorbed by mineral phases in the soil and sediment and are not subject to degradation by biologic processes. Sodium is a major dissolved constituent in most produced waters and it causes substantial degradation of soils through altering of clays and soil textures and subsequent erosion. Produced water salts seem to have the most wide-ranging effects on soils, water quality, and ecosystems. Trace elements, including boron, lithium, bromine, fluorine, and radium, also occur in elevated concentrations in some produced waters. Many trace elements are phytotoxic and are adsorbed and may remain in soils after the saline water has been flushed away. Radium-bearing scale and sludge found in oilfield equipment and discarded on soils pose additional hazards to human health and ecosystems. This bibliography includes studies from across the oil- and natural-gas-producing areas of the conterminous United States that were published in the last 80 yrs. The studies describe the effects of produced water salts on soils, water quality, and ecosystems. Also included are reports that describe (1) the inorganic chemistry of produced waters included in studies of formation waters for various purposes, (2) other sources of salt affecting water quality that may be mistaken for produced water effects, (3) geochemical and geophysical techniques that allow discrimination of salt sources, (4) remediation technologies designed to repair damage caused to soils and ground water by produced water salts, and (5) contamination by

  11. Salting out of methane by sodium chloride: A scaled particle theory study.

    Science.gov (United States)

    Graziano, Giuseppe

    2008-08-28

    The salting out of methane by adding NaCl to water at 25 degrees C and 1 atm is investigated by calculating the work of cavity creation by means of scaled particle theory and the methane-solvent energy of attraction. The latter quantity changes to little extent on passing from pure water to an aqueous 4M NaCl solution, whereas the magnitude of the work of cavity creation increases significantly, accounting for the salting out effect. There is quantitative agreement between the experimental values of the hydration Gibbs energy and the calculated ones. The behavior of the work of cavity creation is due to the increase in the volume packing density of NaCl solutions, since the average effective molecular diameter does not change, being always 2.80 A. The same approach allows the rationalization of the difference in methane salting out along the alkali chloride series. These results indicate that, fixed the aqueous solution density, the solubility of nonpolar species is mainly determined by the effective diameter of solvent molecules and the corresponding volume packing density. There is no need to take into account the H-bond rearrangement because it is characterized by an almost complete enthalpy-entropy compensation.

  12. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  13. Membrane crystallization for recovery of salts from produced water

    DEFF Research Database (Denmark)

    Quist-Jensen, Cejna Anna; Jensen, Henriette Casper; Ali, Aamer

    Membrane Crystallization (MCr) is a novel technology able to recover freshwater and high-purity salts from complex solutions and therefore, is suggested for a better exploitation of wastewater streams. Unlike other membrane processes, MCr is not limited by high concentrations and, therefore, the ......, the membrane maintained its hydrophobic nature despite that produced water contained oil residues. Conductivity and HPLC was utilized to analyze the quality of the permeate stream......., the solutions can be treated to achieve saturation level. Hereby different salts can be precipitated and directly recovered from various streams. In this study, it is shown that MCr is able to treat produced water by producing clean water and simultaneously NaCl crystals. The recovered crystals exhibited high...

  14. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells.

    Science.gov (United States)

    Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian

    2016-04-01

    Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.

  15. Hydration patterns and salting effects in sodium chloride solution.

    Science.gov (United States)

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  16. Effect of subsurface drainage on salt movement and distribution in salt-affected soils

    International Nuclear Information System (INIS)

    Moustafa, A.T.A.; Seliem, M.H.; Bakhati, H.K.

    1983-01-01

    This study was carried out to evaluate different subsurface drainage treatments (combinations of depth and spacing) on salt movement and distribution. The soil is clay and the drainage was designed according to the steady-state condition (Hooghoudt's equation). Three spacings and two depths resulted in six drainage treatments. Soil samples represented the initial state of every treatment and after 14 months they (cotton followed by wheat) were analysed. The data show that drain depth has its effective role in salt leaching, while drain spacing has its effect on salt distribution in the soil profile. The leaching rate of each specific ion is also affected by the different drainage treatments. In general, the salt movement and distribution should be taken into consideration when evaluating the design of drainage systems. (author)

  17. Effect of temperature and salting-out agents on the sorption of nitrophenols from aqueous solutions

    Directory of Open Access Journals (Sweden)

    E. V. Churilina

    2013-01-01

    Full Text Available Sorption of nitrophenols from aqueous media by сrosslinked N-vinylpyrrolidone-based polymer in static conditions are studied depending on the pH of the solution and the nature of the nitrophenols. It has been established that a temperature and the introduction of salting-out agents influence on the sorption of nitrophenols.

  18. Iodine stability and sensory quality of fermented fish and fish sauce produced with the use of iodated salt.

    Science.gov (United States)

    Chanthilath, Boualapha; Chavasit, Visith; Chareonkiatkul, Somsri; Judprasong, Kunchit

    2009-06-01

    Universal salt iodization promotes the use of iodated salt for producing industrial food products, although it might affect product quality and iodine stability. To assess iodine loss during fermentation of fermented fish and fish sauces produced by using iodated salt and the effect on product sensory quality. Fermented fish and fish sauces were produced with iodated rock and grain sea salts (approximately 30 ppm iodine). Fermented fish was prepared from freshwater fish mixed with salt and rice bran and fermented for 6 months at room temperature. Fish sauces were prepared by mixing anchovy with salt and fermenting either exposed to sunlight or in the shade for 12 months. Residual iodine was determined with a spectrophotometer at day 0 and months 1, 3, and 6 for fermented fish and day 0 and months 3, 6, and 12 for fish sauces. After fermentation, the products were tested for sensory acceptability by Laotian and Thai panelists (approximately 50 in each panel) after they were cooked and served in the traditional manner. After fermentation, the level of residual iodine was 7.61 ppm (16% loss) infermented fish, 5.57 ppm (55% loss) in fish sauce prepared with exposure to sunlight, and 9.52 ppm (13% loss) in fish sauce prepared in the shade. Sensory qualities of the products that were produced from fortified and unfortified salts as well as dishes prepared from these products were not significantly different (p > 0.05). It is feasible to produce fermented fish and fish sauces with iodated salt and maintain acceptable iodine levels.

  19. A review of environmental impacts of salts from produced waters on aquatic resources

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Salts are frequently a major constituent of waste waters produced during oil and gas production. These produced waters or brines must be treated and/or disposed and provide a daily challenge for operators and resource managers. Some elements of salts are regulated with water quality criteria established for the protection of aquatic wildlife, e.g. chloride (Cl−), which has an acute standard of 860 mg/L and a chronic standard of 230 mg/L. However, data for establishing such standards has only recently been studied for other components of produced water, such as bicarbonate (HCO3−), which has acute median lethal concentrations (LC50s) ranging from 699 to > 8000 mg/L and effects on chronic toxicity from 430 to 657 mg/L. While Cl− is an ion of considerable importance in multiple geographical regions, knowledge about the effects of hardness (calcium and magnesium) on its toxicity and about mechanisms of toxicity is not well understood. A multiple-approach design that combines studies of both individuals and populations, conducted both in the laboratory and the field, was used to study toxic effects of bicarbonate (as NaHCO3). This approach allowed interpretations about mechanisms related to growth effects at the individual level that could affect populations in the wild. However, additional mechanistic data for HCO3−, related to the interactions of calcium (Ca2 +) precipitation at the microenvironment of the gill would dramatically increase the scientific knowledge base about how NaHCO3 might affect aquatic life. Studies of the effects of mixtures of multiple salts present in produced waters and more chronic effect studies would give a better picture of the overall potential toxicity of these ions. Organic constituents in hydraulic fracturing fluids, flowback waters, etc. are a concern because of their carcinogenic properties and this paper is not meant to minimize the importance of maintaining vigilance with respect to potential organic contamination.

  20. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat(Triticum aestivum L. ) plants grown in a salt-affected soil

    International Nuclear Information System (INIS)

    Ashraf, M.; Hasnain, S.; Berge, O.

    2006-01-01

    Effect of soil salinity on physico-chemical and biological properties renders the salt-affected soils unsuitable for soil microbial processes and growth of the crop plants. Soil aggregation around roots of the plants is a function of the bacterial exo-polysaccharides, however, such a role of the EPS-producing bacteria in the saline environments has rarely been investigated. Pot experiments were conducted to observe the effects of inoculating six strains of exo-polysaccharides-producing bacteria on growth of primary (seminal) roots and its relationship with saccharides, cations (Ca 2+, Na +, K +) contents and mass of rhizosheath soils of roots of the wheat plants grown in a salt-affected soil. A strong positive relationship of RS with different root growth parameters indicated that an integrated influence of various biotic and abiotic RS factors would have controlled and promoted growth of roots of the inoculated wheat plants. The increase in root growth in turn could help inoculated wheat plants to withstand the negative effects of soil salinity through an enhanced soil water uptake, a restricted Na +i nflux in the plants and the accelerated soil microbial process involved in cycling and availability of the soil nutrients to the plants. It was concluded that inoculation of the exo- polysaccharides producing would be a valuable tool for amelioration and increasing crop productivity of the salt-affected soils

  1. Using solid phase micro extraction to determine salting-out (Setschenow) constants for hydrophobic organic chemicals.

    NARCIS (Netherlands)

    Jonker, M.T.O.; Muijs, B.

    2010-01-01

    With increasing ionic strength, the aqueous solubility and activity of organic chemicals are altered. This so-called salting-out effect causes the hydrophobicity of the chemicals to be increased and sorption in the marine environment to be more pronounced than in freshwater systems. The process can

  2. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    Science.gov (United States)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    shallow magma-chamber causes a sufficiently high heat-flow to drive a convection cell of seawater. The model shows that salt precipitates along the flow lines within the supercritical region (Hovland et al., 2006). During the various stages of planet Mars’ development, it must be inferred that zones with very high heat-flow also existed there. This meant that water (brine) confined in the crust of Mars was mobilized in a convective manner and would pass into the supercritical water zone during the down-going leg (the recharge leg) of the convective cell. The zones with supercritical out-salting would require accommodation space for large masses of solid salt, as modeled in the Red Sea analogy. However, as the accommodation space for the solid salt fills up, it will pile up and force its way upwards to form large, perhaps layered anticlines, as seen in the Hebes Mensa area of Mars and at numerous locations on Earth, including the Red Sea. Thus, we offer a universal ‘hydrothermal salt model’, which would be viable on all planets with free water in their interiors or on their surfaces, including Mars and Earth. Hovland, et al., 2006. Salt formation by supercritical seawater and submerged boiling. Marine and Petrol. Geol. 23, 855-69

  3. Indium and scandium extraction by dibenzoylmethane in the presence of salting-out agents

    International Nuclear Information System (INIS)

    Ionov, V.P.; Chicherina, N.Yu.

    1985-01-01

    The dependence of In and Sc distribution coefficients (D) on molar concentration of salting-out agents (Li, Na and K nitrates) (Csub(s)) during extraction of 0.3 and 0.1 mol/l respectively by dibenzoylmethane (DBM) solutions in benzene at the constant equilibrium pH 2.0 has been studied. Applicability of previously derived equation for the distribution coefficient, taking into account the nature and concentration of salting-out agent and solution pH, is confirmed: lgD=Ksub(D)xCsub(s)+3pH- lg Dsub(A) lgB, where Ksub(D) Sechenov parameter (tangent of inclination angle of the linear part of lgD-Csub(s) dependence); 3pH-constituent, conditioned by the effect of hydrogen ions (3-tangent of inclination angle of the dependence lgD-pH for tricharged ions); lg Dsub(A) lg-nonlinear constituent o distribution coefficient-; B-constant, characterizing the nature and concentration of reagent and diluent. Analysis of the constant B of the equation is made and it is shown, that B presents a logarithm of chelate extraction constant

  4. Petrofabric changes in heated and irradiated salt from Project Salt Vault, Lyons, Kansas

    International Nuclear Information System (INIS)

    Holdoway, K.A.

    1972-01-01

    Rock salt was heated and irradiated in situ by implanted radioactive wastes during the Project Salt Vault experiment which was carried out at Lyons, Kansas, in the abandoned Carey Salt mine between 1965 and 1967. It was found that irradiation results in coloration of the salt, producing colors ranging from blue-black nearest the radiation source, to pale blue and purple farther from the source. Bleached areas are common in the radiation-colored salt, many representing trails produced by the migration of fluid inclusions towards the heat source. These visible trails are thought to have formed during the cooling down of the salt after the removal of the heaters and radiation sources. The distribution of primary structures in the salt suggests that little migration, if any, occurred during the course of the experiment. It is proposed that radiolysis of the brine within the inclusions may have led to the production of gases which impeded or prevented migration. Evidence of strain was observed in slip planes at 4 in. (10 cm) and between 5.5 and 10 in. (13.5 to 25.4 cm) from the array hole. Deformed bleached areas in the salt between the areas were slip planes are developed suggest that slight plastic deformation or flow may have occurred at 6 in. (15 cm) from the array hole. Differential thermal analysis shows that the maximum amount of stored energy also occurs at 6 in. (15 cm) from the array hole. This region may therefore represent the zone where the combined effect of stress and radiation was greatest

  5. Effective salt criteria in callus-cultured tomato genotypes.

    Science.gov (United States)

    Dogan, Mahmut; Tipirdamaz, Rukiye; Demir, Yavuz

    2010-01-01

    Na+, Cl-, K+, Ca2+, and proline contents, the rate of lipid peroxidation level in terms of malondialdehyde (MDA) and chlorophyll content, and the changes in the activity of antioxidant enzymes, such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), ascorbate peroxidase (APX: EC 1.11.1.11), and glutathione reductase (GR: EC 1.6.4.2), in tissues of five tomato cultivars in salt tolerance were investigated in a callus culture. The selection of effective parameters used in these tomato genotypes and to find out the use of in vitro tests in place of in vivo salt tolerance tests were investigated. As a material, five different tomato genotypes during a 10-day time period were used, and 150 mM NaCl was applied at callus plant tissue. The exposure to NaCl induced a significant increase in MDA content in both salt-resistant and salt-sensitive cultivars. But the MDA content was higher in salt-sensitive cultivars. The chlorophyll content was more decreased in salt-sensitive than in salt-resistant ones. The proline amount was more increased in salt-sensitive than in salt-resistant ones. It has been reported that salt-tolerant plants, besides being able to regulate the ion and water movements, also exhibit a strong antioxidative enzyme system for effective removal of ROS. The degree of damage depends on the balance between the formation of ROS and its removal by the antioxidative scavenging system that protects against them. Exclusion or inclusion of Na+, Cl-, K+, and Ca2+, antioxidant enzymes and MDA concentration play a key protective role against stress, and this feature at the callus plant tissue used as an identifier for tolerance to salt proved to be an effective criterion.

  6. Effect of salt on the fermentation of soybean (Glycine max) into ...

    African Journals Online (AJOL)

    Previous studies showed that 1% salt improved the organoleptic attributes of traditional fermented daddawa. Also, Bacillus subtilis as a monoculture starter produced daddawa of same quality with traditional daddawa. The aim of this study was to investigate the effect of 1% salt on some biochemical changes occurring in the ...

  7. Knowledge, perceptions, and behaviors related to salt use among Philadelphia Chinese take-out restaurant owners and chefs.

    Science.gov (United States)

    Ma, Grace X; Shive, Steve; Zhang, Yolanda; Aquilante, Jennifer; Tan, Yin; Zhao, Mei; Solomon, Sara; Zhu, Steven; Toubbeh, Jamil; Colby, Lisa; Mallya, Giridhar; Zeng, Qiaoling

    2014-09-01

    Most of the sodium Americans consume comes from processed and restaurant foods. An upstream global strategy to promote health is to work with local restaurants to reduce sodium content in their food offerings, while accounting for food taste and economic considerations. In urban communities, Chinese take-out restaurants serve meals with large amounts of sodium and are clustered in low-income, racial/ethnic minority communities with a high prevalence of hypertension. The objective of this study is to assess baseline knowledge, attitudes, and behaviors related to sodium use/consumption among Chinese take-out owners and chefs recruited to participate in the Philadelphia Healthy Chinese Take-Out Initiative. A cross-sectional study of 221 Chinese take-out restaurants was conducted from August 2012 to February 2013. Items measured knowledge, attitudes, and behaviors related to salt use, salt consumption, and health. Most owners/chefs knew that excess sodium consumption contributes to high blood pressure but were less aware of other health effects and of major sources of sodium in the U.S. diet. The majority were willing and able to reduce sodium content in meals if customer demand could be maintained, and they desired training in food preparation, procurement, and marketing. Findings show a need to provide education, strategies, and support to Chinese take-out owners/chefs in preparing low-salt dishes. The results of this and future studies to reduce sodium content in meals by working with restaurant owners and chefs have global health promotion implications. © 2014 Society for Public Health Education.

  8. Possible Correlation Between Bile Salt Hydrolysis and AHL Deamidation: Staphylococcus epidermidis RM1, a Potent Quorum Quencher and Bile Salt Hydrolase Producer.

    Science.gov (United States)

    Mukherji, Ruchira; Prabhune, Asmita

    2015-05-01

    The aim of the present work was to isolate a bile salt hydrolase (BSH) producer from fermented soy curd and explore the ability of the BSH produced to cleave bacterial quorum sensing signals. Bacterial isolates with possible ability to deconjugate bile salts were enriched and isolated on De Man, Rogosa and Sharpe (MRS) medium containing 0.2% bile salts. BSH-producing positive isolate with orange-pink-pigmented colonies was isolated and was identified as a strain of Staphylococcus epidermidis using biochemical and phylogenetic tools. S. epidermidis RM1 was shown to possess both potent BSH and N-acyl homoserine lactone (AHL) cleavage activity. Genetic basis of this dual-enzyme activity was explored by means of specific primers designed using S. epidermidis ATCC 12228 genome as template. It was observed that a single enzyme was not responsible for both the activity. Two different genetic elements corresponding to each of the enzymatic activity were successfully amplified from the genomic DNA of the isolate.

  9. Electrorefining of High Carbon Ferromanganese in Molten Salts to Produce Pure Ferromanganese

    Directory of Open Access Journals (Sweden)

    Xiao S. J.

    2017-09-01

    Full Text Available High carbon ferromanganese is used as a starting material to prepare pure ferromanganese by electrorefining in molten salts. High carbon ferromanganese was applied as the anode, molybdenum was the cathode and Ag/AgCl was the reference electrode. The anodic dissolution was investigated by linear polarization in molten NaCl-KCl system. Then potentiostatic electrolysis was carried out to produce pure ferromanganese from high carbon ferromanganese. The cathodic product was determined to be a mixture of manganese and iron by x-ray diffraction (XRD. The content of carbon in the product was analyzed by carbon and sulfur analyzer. The post-electrolysis anode was characterized by scanning electron microscope (SEM. The mechanism of the anode dissolution and the distribution of the main impurity of carbon and silicon after electrolysis were discussed.

  10. Salt effects in surfactant-free microemulsions

    Science.gov (United States)

    Schöttl, Sebastian; Horinek, Dominik

    2018-06-01

    The weakly associated micellar aggregates found in the so-called "pre-ouzo region" of the surfactant-free microemulsion water/ethanol/1-octanol are sensitive to changes in the system composition and also to the presence of additives like salt. In this work, we study the influence of two salts, sodium iodide and lithium chloride, on aggregates in water/ethanol/1-octanol by molecular dynamics simulations. In both cases, ethanol concentration in the nonpolar phase and at the interface is increased due to a salting out effect on ethanol in the aqueous pseudo-phase. In addition, minor charging of the interface as a consequence of differential adsorption of anions and cations occurs. However, this charge separation is overall weakened by the erratic surface of octanol aggregates, where polar hydroxyl groups and hydrophobic patches are both present. Furthermore, ethanol at the interface shields hydrophobic patches and reduces the preferential adsorption of iodide and lithium.

  11. Fast Thorium Molten Salt Reactors Started with Plutonium

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.; Mathieu, L.

    2006-01-01

    One of the pending questions concerning Molten Salt Reactors based on the 232 Th/ 233 U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since 233 U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing 233 U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce 233 U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/ 233 U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into 233 U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with 233 U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with 233 U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  12. Effect of Salted Ice Bags on Surface and Intramuscular Tissue Cooling and Rewarming Rates.

    Science.gov (United States)

    Hunter, Eric J; Ostrowski, Jennifer; Donahue, Matthew; Crowley, Caitlyn; Herzog, Valerie

    2016-02-01

    Many researchers have investigated the effectiveness of different cryotherapy agents at decreasing intramuscular tissue temperatures. However, no one has looked at the effectiveness of adding salt to an ice bag. To compare the cooling effectiveness of different ice bags (wetted, salted cubed, and salted crushed) on cutaneous and intramuscular temperatures. Repeated-measures counterbalanced design. University research laboratory. 24 healthy participants (13 men, 11 women; age 22.46 ± 2.33 y, height 173.25 ± 9.78 cm, mass 74.51 ± 17.32 kg, subcutaneous thickness 0.63 ± 0.27 cm) with no lower-leg injuries, vascular diseases, sensitivity to cold, compromised circulation, or chronic use of NSAIDs. Ice bags made of wetted ice (2000 mL ice and 300 mL water), salted cubed ice (intervention A; 2000 mL of cubed ice and 1/2 tablespoon of salt), and salted crushed ice (intervention B; 2000 mL of crushed ice and 1/2 tablespoon of salt) were applied to the posterior gastrocnemius for 30 min. Each participant received all conditions with at least 4 d between treatments. Cutaneous and intramuscular (2 cm plus adipose thickness) temperatures of nondominant gastrocnemius were measured during a 10-min baseline period, a 30-min treatment period, and a 45-min rewarming period. Differences from baseline were observed for all treatments. The wetted-ice and salted-cubed-ice bags produced significantly lower intramuscular temperatures than the salted-crushed-ice bag. Wetted-ice bags produced the greatest temperature change for cutaneous tissues. Wetted- and salted-cubed-ice bags were equally effective at decreasing intramuscular temperature at 2 cm subadipose. Clinical practicality may favor salted-ice bags over wetted-ice bags.

  13. Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials

    International Nuclear Information System (INIS)

    Kamali, Ali Reza; Schwandt, Carsten; Fray, Derek J.

    2011-01-01

    The electrochemical erosion of a graphite cathode during the electrolysis of molten lithium chloride salt may be used for the preparation of nano-structured carbon materials. It has been found that the structures and morphologies of these carbon nanomaterials are dependent on those of the graphite cathodes employed. A combination of tubular and spherical carbon nanostructures has been produced from a graphite with a microstructure of predominantly planar micro-sized grains and a minor fraction of more irregular nano-sized grains, whilst only spherical carbon nanostructures have been produced from a graphite with a microstructure of primarily nano-sized grains. Based on the experimental results, a best-fit regression equation is proposed that relates the crystalline domain size of the graphite reactants and the carbon products. The carbon nanomaterials prepared possess a fairly uniform mesoporosity with a sharp peak in pore size distribution at around 4 nm. The results are of crucial importance to the production of carbon nanomaterials by way of the molten salt electrolytic method. - Highlights: → Carbon nanomaterials are synthesised by LiCl electrolysis with graphite electrodes. → The degree of crystallinity of graphite reactant and carbon product are related. → A graphite reactant is identified that enables the preparation of carbon nanotubes. → The carbon products possess uniform mesoporosity with narrow pore size distribution.

  14. Study Effect of Salt Washing Process on Content and Iodium Stability of Salt

    Directory of Open Access Journals (Sweden)

    Nelson Saksono

    2010-10-01

    Full Text Available Effect of Salt Washing Process on Content and Iodium Stability of Salt. Salt washing process should increase the saltquality. It should clean the salt from sludge or clay and also reduce the impurity compound such as Mg, Ca and the reductor content. The objective of these reseach is to assess the effect of washing process on the content og hygroscopic impurities compound (Ca and Mg, and reductor content of salt. The research also investigate the water absorbing, pH, KIO3 content as function of time to obtain effect of washing process on KIO3 stability in salt. The experiment result shows that the lowest content of Mg and reductor compound 0.016 % wt and 2.65 ppm respectively which is reached at the fi ne salt washing process using 27 % wt brine. The analysis of water content indicates an increase the Ca and Mg content, causing an water absorbtion in salt , However the effect on pH the is not clear.

  15. Optogenetic Inhibition of Ventral Pallidum Neurons Impairs Context-Driven Salt Seeking.

    Science.gov (United States)

    Chang, Stephen E; Smedley, Elizabeth B; Stansfield, Katherine J; Stott, Jeffrey J; Smith, Kyle S

    2017-06-07

    Salt appetite, in which animals can immediately seek out salt when under a novel state of sodium deprivation, is a classic example of how homeostatic systems interface with learned associations to produce an on-the-fly updating of motivated behavior. Neural activity in the ventral pallidum (VP) has been shown to encode changes in the value of salt under such conditions, both the value of salt itself (Tindell et al., 2006) and the motivational value of its predictive cues (Tindell et al., 2009; Robinson and Berridge, 2013). However, it is not known whether the VP is necessary for salt appetite in terms of seeking out salt or consuming salt following sodium depletion. Here, we used a conditioned place-preference procedure to investigate the effects of optogenetically inhibiting the VP on context-driven salt seeking and the consumption of salt following deprivation. Male rats learned to associate one context with sucrose and another context with less-desirable salt. Following sodium depletion, and in the absence of either sucrose or salt, we found that inhibiting the VP selectively reduced the elevation in time spent in the salt-paired context. VP inhibition had minimal effects on the consumption of salt once it was made available. To our knowledge, this is the first evidence that the VP or any brain region is necessary for the ability to use contextual cues to guide salt seeking. These results highlight a dissociation between deficit-driven reward seeking and reward consumption to replenish those deficits, with the former process being particularly sensitive to on-line VP activity. SIGNIFICANCE STATEMENT Salt appetite, in which rats will immediately seek out a once-undesirable concentrated salt solution after being depleted of bodily sodium despite never having tasted salt as a positive reward, is a phenomenon showing how animals can update their motivational goals without any new learning or conditioning. This salt-seeking behavior is also observed when the animal

  16. Experimental determination of Henry's law constants of difluoromethane (HFC-32 and the salting-out effects in aqueous salt solutions relevant to seawater

    Directory of Open Access Journals (Sweden)

    S. Kutsuna

    2017-06-01

    Full Text Available Gas-to-water equilibrium coefficients, KeqS (in M atm−1, of difluoromethane (CH2F2, a hydrofluorocarbon refrigerant (HFC-32, in aqueous salt solutions relevant to seawater were determined over a temperature (T range from 276 to 313 K and a salinity (S range up to 51 ‰ by means of an inert-gas stripping method. From the van't Hoff equation, the KeqS value in water, which corresponds to the Henry's law constant (KH, at 298 K was determined to be 0.065 M atm−1. The salinity dependence of KeqS (the salting-out effect, ln(KH∕KeqS, did not obey the Sechenov equation but was proportional to S0. 5. Overall, the KeqS(T value was expressed by ln(KeqS(T  =  −49.71 + (77.70 − 0.134  ×  S0. 5  ×  (100∕T + 19.14  ×  ln(T∕100. By using this equation in a lower-tropospheric semi-hemisphere (30–90 °S of the Advanced Global Atmospheric Gases Experiment (AGAGE 12-box model, we estimated that 1 to 4 % of the atmospheric burden of CH2F2 resided in the ocean mixed layer and that this percentage was at least 4 % in the winter; dissolution of CH2F2 in the ocean may partially influence estimates of CH2F2 emissions from long-term observational data of atmospheric CH2F2 concentrations.

  17. Comparison of salting-out and sugaring-out liquid-liquid extraction methods for the partition of 10-hydroxy-2-decenoic acid in royal jelly and their co-extracted protein content.

    Science.gov (United States)

    Tu, Xijuan; Sun, Fanyi; Wu, Siyuan; Liu, Weiyi; Gao, Zhaosheng; Huang, Shaokang; Chen, Wenbin

    2018-01-15

    Homogeneous liquid-liquid extraction (h-LLE) has been receiving considerable attention as a sample preparation method due to its simple and fast partition of compounds with a wide range of polarities. To better understand the differences between the two h-LLE extraction approaches, salting-out assisted liquid-liquid extraction (SALLE) and sugaring-out assisted liquid-liquid extraction (SULLE), have been compared for the partition of 10-hydroxy-2-decenoic acid (10-HDA) from royal jelly, and for the co-extraction of proteins. Effects of the amount of phase partition agents and the concentration of acetonitrile (ACN) on the h-LLE were discussed. Results showed that partition efficiency of 10-HDA depends on the phase ratio in both SALLE and SULLE. Though the partition triggered by NaCl and glucose is less efficient than MgSO 4 in the 50% (v/v) ACN-water mixture, their extraction yields can be improved to be similar with that in MgSO 4 SALLE by increasing the initial concentration of ACN in the ACN-water mixture. The content of co-extracted protein was correlated with water concentration in the obtained upper phase. MgSO 4 showed the largest protein co-extraction at the low concentration of salt. Glucose exhibited a large protein co-extraction in the high phase ratio condition. Furthermore, NaCl with high initial ACN concentration is recommended because it produced high extraction yield for 10-HDA and the lowest amount of co-extracted protein. These observations would be valuable for the sample preparation of royal jelly. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of Clofibrate on Salt Loading-Induced Hypertension in Rats

    Science.gov (United States)

    Cruz, Antonio; Rodríguez-Gómez, Isabel; Pérez-Abud, Rocío; Vargas, Miguel Ángel; Wangensteen, Rosemary; Quesada, Andrés; Osuna, Antonio; Moreno, Juan Manuel

    2011-01-01

    The effects of clofibrate on the hemodynamic and renal manifestations of increased saline intake were analyzed. Four groups of male Wistar rats were treated for five weeks: control, clofibrate (240 mg/kg/day), salt (2% via drinking water), and salt + clofibrate. Body weight, systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, SBP, HR, and morphologic, metabolic, plasma, and renal variables were measured. Salt increased SBP, HR, urinary isoprostanes, NOx, ET, vasopressin and proteinuria and reduced plasma free T4 (FT4) and tissue FT4 and FT3 versus control rats. Clofibrate prevented the increase in SBP produced by salt administration, reduced the sodium balance, and further reduced plasma and tissue thyroid hormone levels. However, clofibrate did not modify the relative cardiac mass, NOx, urinary ET, and vasopressin of saline-loaded rats. In conclusion, chronic clofibrate administration prevented the blood pressure elevation of salt-loaded rats by decreasing sodium balance and reducing thyroid hormone levels. PMID:20981147

  19. Method for excluding salt and other soluble materials from produced water

    Science.gov (United States)

    Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN

    2009-08-04

    A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.

  20. Making a Pellet-type LiCl-KCl-UCl3 salt for Electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Woo, M. S.; Jin, H. J.; Kim, I. T.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The role of uranium chloride salt (UCl3) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl2 occurring in a Cd layer, followed by a process to produce UCl3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl2 The apparatus for producing UCl3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to make pellet type salt. Making pellet type LiCl-KCl-UCl3 salt for electrorefining was carried out using the chlorinator, Cd distiller, and pelletizer. Salt transfer carried out by salt transfer equipment heated 500 .deg. C. The Cd concentration of final salt products distillated at 60 torr, 2 hrs, 600 .deg. C was 200 ppm from the ICP, XRD analysis. And pellet type salt products were fabricated by using the mould of pelletizer at 90∼130 .deg. C.

  1. Making a Pellet-type LiCl-KCl-UCl3 salt for Electrorefining

    International Nuclear Information System (INIS)

    Woo, M. S.; Jin, H. J.; Kim, I. T.; Kim, J. G.

    2013-01-01

    The role of uranium chloride salt (UCl3) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl2 occurring in a Cd layer, followed by a process to produce UCl3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl2 The apparatus for producing UCl3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to make pellet type salt. Making pellet type LiCl-KCl-UCl3 salt for electrorefining was carried out using the chlorinator, Cd distiller, and pelletizer. Salt transfer carried out by salt transfer equipment heated 500 .deg. C. The Cd concentration of final salt products distillated at 60 torr, 2 hrs, 600 .deg. C was 200 ppm from the ICP, XRD analysis. And pellet type salt products were fabricated by using the mould of pelletizer at 90∼130 .deg. C

  2. [Reason for dietary salt reduction and potential effect on population health--WHO recommendation].

    Science.gov (United States)

    Kaić-Rak, Antoinette; Pucarin-Cvetković, Jasna; Heim, Inge; Skupnjak, Berislav

    2010-05-01

    It is well known that reduction of salt results in lowering blood pressure and cardiovascular incidents. Daily salt is double the recommended daily quantity and mainly comes from processed food. The assessment of daily salt intake for Croatia is 12 g/day (WHO recommendation is restaurants (77%), natural content of sodium in food (12%), added salt at table (6%) and prepared meals at home (5%). Reduction of salt by 50% would save nearly 180,000 lives per year in Europe. It is necessary to establish better collaboration with food manufacturers in order to reduce the content of salt in processed food and to achieve appropriate salt intake per day in accordance with the WHO recommendation. Further, it is necessary to encourage food manufacturers to produce food and meals with low or reduced salt content (shops, catering, changes in recipes, offer salt substitutions). This kind of collaboration is based on bilateral interests that can result in positive health effects. One of the most important public health tasks is to educate consumers and to give them choice when buying food. This can be achieved by effective campaigns and social marketing, by ensuring a declaration of salt content on the product, or specially designed signs for food products with low or reduced salt content.

  3. Experiments on the effect of sphagnum on the pH of salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K T; Thompson, T G

    1936-01-01

    Addition of sphagnum to salt solutions produced marked increases in the concentrations of the hydrogen ions, as measured both electrometrically and colorimetrically. The greater the concentration of the salt solution, the greater the increase in hydrogen ion concentration upon the addition of sphagnum. With a given salt concentration, the hydrogen ion concentration increased with increase in quantity of sphagnum added. The divalent cations produced greater increases in the hydrogen concentration than the monovalent cations for equal weights of sphagnum. Divalent anions, while showing an increase in hydrogen ions, upon the addition of sphagnum were far less effective in increasing the hydrogen ion concentrations. Sphagnum may be a useful reagent for regulating the acidity of salt solutions for many types of scientific work. It seems probable that the adsorption of metallic and hydroxyl ions explains, at least in part, the acidity of the water of sphagnum bogs.

  4. Application of lithium in molten-salt reduction processes

    International Nuclear Information System (INIS)

    Gourishankar, K. V.

    1998-01-01

    Metallothermic reductions have been extensively studied in the field of extractive metallurgy. At Argonne National Laboratory (ANL), we have developed a molten-salt based reduction process using lithium. This process was originally developed to reduce actinide oxides present in spent nuclear fuel. Preliminary thermodynamic considerations indicate that this process has the potential to be adapted for the extraction of other metals. The reduction is carried out at 650 C in a molten-salt (LiCl) medium. Lithium oxide (Li 2 O), produced during the reduction of the actinide oxides, dissolves in the molten salt. At the end of the reduction step, the lithium is regenerated from the salt by an electrowinning process. The lithium and the salt from the electrowinning are then reused for reduction of the next batch of oxide fuel. The process cycle has been successfully demonstrated on an engineering scale in a specially designed pyroprocessing facility. This paper discusses the applicability of lithium in molten-salt reduction processes with specific reference to our process. Results are presented from our work on actinide oxides to highlight the role of lithium and its effect on process variables in these molten-salt based reduction processes

  5. Effect of simulated sampling disturbance on creep behaviour of rock salt

    Science.gov (United States)

    Guessous, Z.; Gill, D. E.; Ladanyi, B.

    1987-10-01

    This article presents the results of an experimental study of creep behaviour of a rock salt under uniaxial compression as a function of prestrain, simulating sampling disturbance. The prestrain was produced by radial compressive loading of the specimens prior to creep testing. The tests were conducted on an artifical salt to avoid excessive scattering of the results. The results obtained from several series of single-stage creep tests show that, at short-term, the creep response of salt is strongly affected by the preloading history of samples. The nature of this effect depends upon the intensity of radial compressive preloading, and its magnitude is a function of the creep stress level. The effect, however, decreases with increasing plastic deformation, indicating that large creep strains may eventually lead to a complete loss of preloading memory.

  6. The Influenced of Salting Out Agent of Phosphat Ion and Ferrosulfamic in Extraction of Thorium and Uranium

    International Nuclear Information System (INIS)

    Busron Masduki; Didiek Herhady, R.

    2002-01-01

    It was carried out thorium-uranium extraction using one stage mixer settler to investigate the influenced of salting out agent of nitric acid and nitric aluminium. The result of this experiment showed the salting out of agent for nitric aluminium of 0.5 M much more significantly increase the distribution coefficient of uranium, but not for the thorium. The distribution coefficient of thorium much more significantly increased after nitric aluminium addition ≥1.0 M. There was not any meaningly differences the waste volume between nitric acid and nitric aluminium in its utilization. Reductor agent of ion Fe 2+ for chromi and decontaminate agent for protactinium in feed extraction, did not any influences of thorium and uranium distribution coefficient. (author)

  7. Community solar salt production in Goa, India.

    Science.gov (United States)

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  8. Inertia-confining thermonuclear molten salt reactors

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Yamanaka, Chiyoe; Nakai, Sadao; Imon, Shunji; Nakajima, Hidenori; Nakamura, Norio; Kato, Yoshio.

    1984-01-01

    Purpose: To increase the heat generating efficiency while improving the reactor safety and thereby maintaining the energy balance throughout the reactor. Constitution: In an inertia-confining type D-T thermonuclear reactor, the blanket is made of lithium-containing fluoride molten salts (LiF.BeF 2 , LiF.NaF.KF, LiF.KF, etc) which are cascaded downwardly in a large thickness (50 - 100 cm) along the inner wall of the thermonuclear reaction vessel, and neutrons generated by explosive compression are absorbed to lithium in the molten salts to produce tritium, Heat transportation is carried out by the molten salts. (Ikeda, J.)

  9. Treatment of waste salt from the advanced spent fuel conditioning process (I): characterization of Zeolite A in Molten LiCl Salt

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    The oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) and the long-lived radioactive nuclides partitioning process based on electro-refining process, which are being developed ay the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as LiCl salt and LiCl-KCl eutectic salt, respectively. These waste salts must meet some criteria for disposal. A conditioning process for LiCl salt waste from ACP has been developed using zeolite A. This treatment process of waste salt using zeolite A was first developed by US ANL (Argonne National Laboratory) for LiCl-KCl eutectic salt waste from an electro-refining process of EBR (Experimental Breeder Reactor)-II spent fuel. This process has been developed recently, and a ceramic waste form (CWF) is produced in demonstration-scale V-mixer (50 kg/batch). However, ANL process is different from KAERI treatment process in waste salt, the former is LiCl-KCl eutectic salt and the latter is LiCl salt. Because of melting point, the immobilization of eutectic salt is carried out at about 770 K, whereas LiCl salt at around 920 K. Such difference has an effect on properties of immobilization media, zeolite A. Here, zeolite A in high-temperature (923 K) molten LiCl salt was characterized by XRD, Ion-exchange, etc., and evaluated if a promising media or not

  10. Ammonium chloride salting out extraction/cleanup for trace-level quantitative analysis in food and biological matrices by flow injection tandem mass spectrometry.

    Science.gov (United States)

    Nanita, Sergio C; Padivitage, Nilusha L T

    2013-03-20

    A sample extraction and purification procedure that uses ammonium-salt-induced acetonitrile/water phase separation was developed and demonstrated to be compatible with the recently reported method for pesticide residue analysis based on fast extraction and dilution flow injection mass spectrometry (FED-FI-MS). The ammonium salts evaluated were chloride, acetate, formate, carbonate, and sulfate. A mixture of NaCl and MgSO4, salts used in the well-known QuEChERS method, was also tested for comparison. With thermal decomposition/evaporation temperature of salts resulted in negligible ion source residual under typical electrospray conditions, leading to consistent method performance and less instrument cleaning. Although all ammonium salts tested induced acetonitrile/water phase separation, NH4Cl yielded the best performance, thus it was the preferred salting out agent. The NH4Cl salting out method was successfully coupled with FI/MS/MS and tested for fourteen pesticide active ingredients: chlorantraniliprole, cyantraniliprole, chlorimuron ethyl, oxamyl, methomyl, sulfometuron methyl, chlorsulfuron, triflusulfuron methyl, azimsulfuron, flupyrsulfuron methyl, aminocyclopyrachlor, aminocyclopyrachlor methyl, diuron and hexazinone. A validation study was conducted with nine complex matrices: sorghum, rice, grapefruit, canola, milk, eggs, beef, urine and blood plasma. The method is applicable to all analytes, except aminocyclopyrachlor. The method was deemed appropriate for quantitative analysis in 114 out of 126 analyte/matrix cases tested (applicability rate=0.90). The NH4Cl salting out extraction/cleanup allowed expansion of FI/MS/MS for analysis in food of plant and animal origin, and body fluids with increased ruggedness and sensitivity, while maintaining high-throughput (run time=30s/sample). Limits of quantitation (LOQs) of 0.01mgkg(-1) (ppm), the 'well-accepted standard' in pesticide residue analysis, were achieved in >80% of cases tested; while limits of detection

  11. Aluminium sensitized spectrofluorimetric determination of fluoroquinolones in milk samples coupled with salting-out assisted liquid-liquid ultrasonic extraction

    Science.gov (United States)

    Xia, Qinghai; Yang, Yaling; Liu, Mousheng

    2012-10-01

    An aluminium sensitized spectrofluorimetric method coupled with salting-out assisted liquid-liquid ultrasonic extraction for the determination of four widely used fluoroquinolones (FQs) namely norfloxacin (NOR), ofloxacin (OFL), ciprofloxacin (CIP) and gatifloxacin (GAT) in bovine raw milk was described. The analytical procedure involves the fluorescence sensitization of aluminium (Al3+) by complexation with FQs, salting-out assisted liquid-liquid ultrasonic extraction (SALLUE), followed by spectrofluorometry. The influence of several parameters on the extraction (the salt species, the amount of salt, pH, temperature and phase volume ratio) was investigated. Under optimized experimental conditions, the detection limits of the method in milk varied from 0.009 μg/mL for NOR to 0.016 μg/mL for GAT (signal-to-noise ratio (S/N) = 3). The relative standard deviations (RSD) values were found to be relatively low (0.54-2.48% for four compounds). The calibration graph was linear from 0.015 to 2.25 μg/mL with coefficient of determinations not less than 0.9974. The methodology developed was applied to the determination of FQs in bovine raw milk samples. The main advantage of this method is simple, accurate and green. The method showed promising applications for analyzing polar analytes especially polar drugs in various sample matrices.

  12. Salting out the polar polymorph: analysis by alchemical solvent transformation.

    Science.gov (United States)

    Duff, Nathan; Dahal, Yuba Raj; Schmit, Jeremy D; Peters, Baron

    2014-01-07

    We computationally examine how adding NaCl to an aqueous solution with α- and γ-glycine nuclei alters the structure and interfacial energy of the nuclei. The polar γ-glycine nucleus in pure aqueous solution develops a melted layer of amorphous glycine around the nucleus. When NaCl is added, a double layer is formed that stabilizes the polar glycine polymorph and eliminates the surface melted layer. In contrast, the non-polar α-glycine nucleus is largely unaffected by the addition of NaCl. To quantify the stabilizing effect of NaCl on γ-glycine nuclei, we alchemically transform the aqueous glycine solution into a brine solution of glycine. The alchemical transformation is performed both with and without a nucleus in solution and for nuclei of α-glycine and γ-glycine polymorphs. The calculations show that adding 80 mg/ml NaCl reduces the interfacial free energy of a γ-glycine nucleus by 7.7 mJ/m(2) and increases the interfacial free energy of an α-glycine nucleus by 3.1 mJ/m(2). Both results are consistent with experimental reports on nucleation rates which suggest: J(α, brine) transformation approach can predict the results for both polar and non-polar polymorphs. The results suggest a general "salting out" strategy for obtaining polar polymorphs and also a general approach to computationally estimate the effects of solvent additives on interfacial free energies for nucleation.

  13. Geothermal in situ experiments in the Asse salt-mine

    International Nuclear Information System (INIS)

    Kopietz, J.; Jung, R.

    1978-01-01

    The paper presents design and results of in situ experiments carried out by the Bundesanstat fuer Geowissenschaften und Rohstoffe (Federal Institute for Geosciences and Natural Resources, F.R. of Germany) in the Asse salt-mine. With reference to model calculations of the temperature field which is produced in salt formations by radioactive waste, temperature measurements in the area of electrical heating elements and in situ measurements of thermal conductivity have been performed. The measured temperatures are in good accordance with the theoretical prediction. Preliminary results of the thermal conductivity measurements correspond with the data of single NaCl crystals published by Birch and Clark. At present a heating experiment is being conducted in the Asse mine to investigate thermo-mechanical effects of a cylindrical heat source upon the surrounding rock salt. Possible thermal induced fractures monitored by permeability changes and seismoacoustical phenomena are the main objects of this experiment

  14. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula

    Directory of Open Access Journals (Sweden)

    Ariela Burg

    2015-10-01

    Full Text Available Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides’ antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains’ interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca2+ had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides’ stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.

  15. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula.

    Science.gov (United States)

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-10-20

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides' antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains' interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca(2+) had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides' stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.

  16. Salt-specific effects in lysozyme solutions

    Directory of Open Access Journals (Sweden)

    T. Janc

    2016-03-01

    Full Text Available The effects of additions of low-molecular-mass salts on the properties of aqueous lysozyme solutions are examined by using the cloud-point temperature, T_{cloud}, measurements. Mixtures of protein, buffer, and simple salt in water are studied at pH=6.8 (phosphate buffer and pH=4.6 (acetate buffer. We show that an addition of buffer in the amount above I_{buffer} = 0.6 mol dm^{-3} does not affect the T_{cloud} values. However, by replacing a certain amount of the buffer electrolyte by another salt, keeping the total ionic strength constant, we can significantly change the cloud-point temperature. All the salts de-stabilize the solution and the magnitude of the effect depends on the nature of the salt. Experimental results are analyzed within the framework of the one-component model, which treats the protein-protein interaction as highly directional and of short-range. We use this approach to predict the second virial coefficients, and liquid-liquid phase diagrams under conditions, where T_{cloud} is determined experimentally.

  17. Effect of alternative salt use on broiler breast meat yields, tenderness, flavor, and sodium concentration.

    Science.gov (United States)

    Broadway, P R; Behrends, J M; Schilling, M W

    2011-12-01

    Fresh chicken breast fillets were marinated with gourmet-style salts: Himalayan pink salt, Sonoma gourmet salt, sel gus de Guerande, and Bolivian rose salt to evaluate their effects on marination and cook loss yields, tenderness, sensory attributes, and sodium concentration. Fresh chicken breast fillets (48-h postmortem) were vacuum tumbled (137 kPa at 20 rpm for 17 min) in a solution of water, salt, and sodium tripolyphosphate at a level of 20% of the meat weights. Instrumental analyses showed no significant difference (P > 0.05) in meat quality with respect to marination yield, cook yield, or shear-force value. There were also no significant differences (P > 0.05) in sensory descriptors between salt treatments. However, Sonoma gourmet salt showed a tendency (P = 0.0693) to score increased savory note values from panelists, whereas Bolivian rose salt received the lowest score. There were no significant differences (P > 0.05) in sodium concentrations between salt treatments, but numerically, sel gus de Guerande had the lowest sodium concentration, which could be important in producing reduced sodium products. Understanding different salts and sodium concentrations allows the poultry industry to use gourmet salts in products and maintain overall meat quality and flavor.

  18. On the variability of the salting-out curves of proteins of normal human plasma and serum

    NARCIS (Netherlands)

    Steyn-Parvé, Elizabeth P.; Hout, A.J. van den

    1953-01-01

    Salting-out curves of proteins of normal human plasma reflect the influence of a number of other factors besides the protein composition: the manner of obtaining the blood, the nature of the anti-coagulant used, the non-protein components of the plasma. Diagrams of serum and plasma obtained from

  19. Process and apparatus for extraction of gases produced during operation of a fused-salt nuclear reactor

    International Nuclear Information System (INIS)

    Blum, J.; Marie, J.

    1976-01-01

    The present invention relates to the field of fused-salt nuclear reactors and its object is the extraction of the gases produced in the course of operation of these reactors. The process according to the invention consists in placing into position a piece of material permeable for gases and impermeable for the used fused salts, for instance, a piece of graphite, in such a way that part of the surface of this piece is in contact with the circuit of the radioactive salts and another part connected to a gas suction device. The piece could also be scavenged in its mass by a flow of inert gas. Application is contemplated in reactors using a mixture of lithium fluoride, beryllium fluoride, and uranium and/or thorium fluoride. 10 claims, 2 drawing figures

  20. Industrial scale salt-free reactive dyeing of cationized cotton fabric with different reactive dye chemistry.

    Science.gov (United States)

    Nallathambi, Arivithamani; Venkateshwarapuram Rengaswami, Giri Dev

    2017-10-15

    Dyeing of knitted cotton goods in the industry has been mostly with reactive dyes. Handling of salt laden coloured effluent arising out of dyeing process is one of the prime concerns of the industry. Cationization of cotton is one of the effective alternative to overcome the above problem. But for cationization to be successful at industrial scale it has to be carried out by exhaust process and should be adoptable for the various dye chemistries currently practiced in the industry. Hence, in the present work, industrial level exhaust method of cationization process was carried out with concentration of 40g/L and 80g/L. The fabrics were dyed with dyes of three different dye chemistry and assessed for its dyeing performance without the addition of salt. Dye shades ranging from medium to extra dark shades were produced without the addition of salt. This study will provide industries the recipe that can be adopted for cationized cotton fabric for the widely used reactive dyes at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Phenotypic effects of salt and heat stress over three generations in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Léonie Suter

    Full Text Available Current and predicted environmental change will force many organisms to adapt to novel conditions, especially sessile organisms such as plants. It is therefore important to better understand how plants react to environmental stress and to what extent genotypes differ in such responses. It has been proposed that adaptation to novel conditions could be facilitated by heritable epigenetic changes induced by environmental stress, independent of genetic variation. Here we assessed phenotypic effects of heat and salt stress within and across three generations using four highly inbred Arabidopsis thaliana genotypes (Col, Cvi, Ler and Sha. Salt stress generally decreased fitness, but genotypes were differently affected, suggesting that susceptibility of A. thaliana to salt stress varies among genotypes. Heat stress at an early rosette stage had less detrimental effects but accelerated flowering in three out of four accessions. Additionally, we found three different modes of transgenerational effects on phenotypes, all harboring the potential of being adaptive: heat stress in previous generations induced faster rosette growth in Sha, both under heat and control conditions, resembling a tracking response, while in Cvi, the phenotypic variance of several traits increased, resembling diversified bet-hedging. Salt stress experienced in earlier generations altered plant architecture of Sha under salt but not control conditions, similar to transgenerational phenotypic plasticity. However, transgenerational phenotypic effects depended on the type of stress as well as on genotype, suggesting that such effects may not be a general response leading to adaptation to novel environmental conditions in A. thaliana.

  2. Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2016-01-01

    Aluminum powder was ball milled for different durations of time with different weight percentages of water-soluble salts (NaCl and KCl). The hydrogen generation of each mixture in reaction with hot water was measured. A scanning electron microscope (SEM) as well as energy-dispersive spectroscopy (EDS) were used to investigate the morphology, surfaces and cross sections of the produced particles. The results show that the presence of salts in the microstructure of the aluminum considerably increases the hydrogen generation rate. At shorter milling times, the salt covers the aluminum particles and becomes embedded in layers within the aluminum matrix. At higher milling durations, salt and aluminum phases form composite particles. A higher percentage of the second phase significantly decreases the milling time needed for activation of the aluminum particles. Based on the EDS results from cross sections of the milled particles, a mechanism for improvement of the hydrogen generation rate in the presence of salts is suggested. - Highlights: • Milling and water soluble salts have a synergic effect on hydrogen generation. • Salt and aluminum form composite particles by milling. • Salt is dissolved in water leaving aluminum with much fresh surfaces for the reaction. • The chemical effect of salt on the reaction is negligible compared to its structural effect.

  3. Fast molten salt reactor-transmuter for closing nuclear fuel cycle on minor actinides

    International Nuclear Information System (INIS)

    Dudnikov, A. A.; Alekseev, P. N.; Subbotin, S. A.

    2007-01-01

    Creation fast critical molten salt reactor for burning-out minor actinides and separate long-living fission products in the closed nuclear fuel cycle is the most perspective and actual direction. The reactor on melts salts - molten salt homogeneous reactor with the circulating fuel, working as burner and transmuter long-living radioactive nuclides in closed nuclear fuel cycle, can serve as an effective ecological cordon from contamination of the nature long-living radiotoxic nuclides. High-flux fast critical molten-salt nuclear reactors in structure of the closed nuclear fuel cycle of the future nuclear power can effectively burning-out / transmute dangerous long-living radioactive nuclides, make radioisotopes, partially utilize plutonium and produce thermal and electric energy. Such reactor allows solving the problems constraining development of large-scale nuclear power, including fueling, minimization of radioactive waste and non-proliferation. Burning minor actinides in molten salt reactor is capable to facilitate work solid fuel power reactors in system NP with the closed nuclear fuel cycle and to reduce transient losses at processing and fabrications fuel pins. At substantiation MSR-transmuter/burner as solvents fuel nuclides for molten-salt reactors various salts were examined, for example: LiF - BeF2; NaF - LiF - BeF2; NaF-LiF ; NaF-ZrF4 ; LiF-NaF -KF; NaCl. RRC 'Kurchatov institute' together with other employees have developed the basic design reactor installations with molten salt reactor - burner long-living nuclides for fluoride fuel composition with the limited solubility minor actinides (MAF3 10 mol %) allows to develop in some times more effective molten salt reactor with fast neutron spectrum - burner/ transmuter of the long-living radioactive waste. In high-flux fast reactors on melts salts within a year it is possible to burn ∼300 kg minor actinides per 1 GW thermal power of reactor. The technical and economic estimation given power

  4. The Effect of Iron Salt on Anaerobic Digestion and Phosphate Release to Sludge Liquor

    Directory of Open Access Journals (Sweden)

    Svetlana Ofverstrom

    2011-12-01

    Full Text Available Iron salts are used at wastewater treatment plants (WWTPs for several reasons: for removing chemical phosphorus, preventing from struvite formation and reducing the content of hydrogen sulfide (H2S in biogas. Anaerobic digestion is a common scheme for sludge treatment due to producing biogas that could be used as biofuel. Laboratory analysis has been carried out using anaerobic digestion model W8 (Armfield Ltd, UK to investigate any possible effect of adding FeCl3 on the anaerobic digestion of primary sludge (PS and waste activated sludge (WAS mixture as well as on releasing phosphates to digested sludge liquor. The obtained results showed that FeCl3 negatively impacted the anaerobic digestion process by reducing the volume of produced biogas. Fe-dosed sludge (max produced 30% less biogas. Biogas production from un-dosed and Fe-dosed sludge (min was similar to the average of 1.20 L/gVSfed. Biogas composition was not measured during the conducted experiments. Phosphorus content in sludge liquor increased at an average of 38% when digesting sludge without ferric chloride dosing. On the contrary, phosphate content in sludge liquor from digested Fe-dosed sludge decreased by approx. 80%.

  5. Effect of different levels of water consumptive use of squash under drip irrigation system on salt distribution, yield and water use efficiency

    International Nuclear Information System (INIS)

    Abd El-Moniem, M.; El-Gendy, R.W.; Gadalla, A.M.; Hamdy, A.; Zeedan, A.

    2006-01-01

    This study aims to trace the distribution of salts and fertilizers through drip irrigation system and the response of squash (yield and water use efficiency) to irrigation treatments, i.e. T1 (100 % ETc), T2 (75 % ETc) and T3 (50 % ETc). This study was carried out in Inshas sandy soil at the farm of Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. Soil samples were taken from three sites (0, 12.5 and 25 cm distance from the emitters between drippers and laterals lines) for evaluating the salt content (horizontal and vertical directions within the soil depths). The obtained data pointed out that salt accumulation was noticed at the surface layer and was affected by the direction of soil water movement (horizontal and vertical motion). The highest salt concentrations were in 75 % and 50 % ETc treatments between emitters and laterals. As for the three sites, salt concentration behaved in the sequence: 25 >12.5 > 0 cm sites. For squash yield, the first treatment produced high yield without significant differences between the second treatment so, 75 % ETc treatment was considered the best one for saving water

  6. Characterization of the effects of continuous salt processing on the performance of molten salt fusion breeder blankets

    International Nuclear Information System (INIS)

    Patterson-Hine, F.A.

    1984-05-01

    Several continuous salt processing options are available for use in molten salt fusion breeder blanket designs. The effects of processing on blanket performance have been assessed for three levels of processing and various equilibrium uranium concentrations in the salt. A one-dimensional model of the blanket was used in the neutronics analysis which incorporated transport calculations with time-dependent isotope generation and depletion calculations. The level of salt processing was found to have little effect on the behavior of the blanket during reactor operation; however, significant effects were observed during the decay period after reactor shutdown

  7. Performance Test of the Salt transfer and Pellet fabrication of UCl3 Making Equipment for Electrorefining

    International Nuclear Information System (INIS)

    Woo, M. S.; Jin, H. J.; Park, G. I.; Park, S. B.

    2014-01-01

    The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 . Chemical reaction is next chlorination reaction; - Cd chlorination : Cd + Cl2 → CdCl 2 - U chlorination : 3CdCl2 + 2U → 3Cd + 2UCl 3 The apparatus for producing UCl 3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, a off-gas wet scrubber and a dry scrubber. Salt transfer system set among reactors to transfer salt at 500 .deg. C. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The Salt product is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to fabricate pellet type salt. Performance test of the salt transfer and pellet fabrication of its equipment was tested in this work. Performance test of the salt transfer and pellet fabrication of UCl3 making equipment for Electrorefining carried out in this work. The result of equipment test is that melted salt at 600 .deg. C was easy transferred by salt transfer equipment heated at 500 .deg. C. In this time, salt transfer was carried out by argon gas pressurization at 3bar. When velocity of salt transfer was controlled under reduce pressure, velocity of salt transfer was difficult to control. And when salt pellet was fabricated by the mold of pelletizer heated at 90 .deg. C better than mold of pelletizer heated at 200 .deg. C because salt melted prevent leakage from mold of pelletizer

  8. Salting of dry-cured meat – A potential cause of contamination with the ochratoxin A-producing species Penicillium nordicum

    DEFF Research Database (Denmark)

    Sonjak, Silva; Ličen, Mia; Frisvad, Jens Christian

    2011-01-01

    as the possible source of P. nordicum. In the present study contamination of meat products, air in the meat-processing plant and sea salt used for salting were analysed. When 50 g of salt sample from a sealed package was dissolved in sterile water and filtered, 12 colonies of P. nordicum were obtained on solid......Penicillium nordicum is a known contaminant of protein-rich foods and is primarily found on dry-cured meat products. It is an important producer of the mycotoxin ochratoxin A, which has nephrotoxic and cancerogenic activities. Recently a high number of P. nordicum strains was isolated from...... medium incubated at 15 °C, while a salt sample from an open vessel in the meat-processing area developed high, uncountable number of colonies. Amplified fragment length polymorphism analyses of P. nordicum isolates from different sources showed that contamination of meat products via salt was possible...

  9. Emulation and Calibration of the SALT Read-out Chip for the Upstream Tracker for Modernised LHCb Detector

    CERN Document Server

    Dendek, Adam

    2015-01-01

    The LHCb is one of the four major experiments currently operating at CERN. The main reason for constructing the LHCb forward spectrometer was a precise measurement of the CP violation in heavy quarks section as well as search for a New Physics. To obtain interesting results, the LHCb is mainly focused on study of B meson decays. Unfortunately, due to the present data acquisition architecture, the LHCb experiment is statistically limited for collecting such events. This fact led the LHCb Collaboration to decide to perform far-reaching upgrade. Key part of this upgrade will be replacement of the TT detector. To perform this action, it was requited to design new tracking detector with entirely new front-end electronics. This detector will be called the Upstream Tracker (UT) and the read-out chip — SALT. This note presents an overall discussion on SALT chip. In particular, the emulation process of the SALT data preformed via the software written by the author.

  10. Plutonium and americium recovery from spent molten-salt-extraction salts with aluminum-magnesium alloys

    International Nuclear Information System (INIS)

    Cusick, M.J.; Sherwood, W.G.; Fitzpatrick, R.F.

    1984-01-01

    Development work was performed to determine the feasibility of removing plutonium and americium from spent molten-salt-extraction (MSE) salts using Al-Mg alloys. If the product buttons from this process are compatible with subsequent aqueous processing, the complex chloride-to-nitrate aqueous conversion step which is presently required for these salts may be eliminated. The optimum alloy composition used to treat spent 8 wt % MSE salts in the past yielded poor phase-disengagement characteristics when applied to 30 mol % salts. After a limited investigation of other alloy compositions in the Al-Mg-Pu-Am system, it was determined that the Al-Pu-Am system could yield a compatible alloy. In this system, experiments were performed to investigate the effects of plutonium loading in the alloy, excess magnesium, age of the spent salt on actinide recovery, phase disengagement, and button homogeneity. Experimental results indicate that 95 percent plutonium recoveries can be attained for fresh salts. Further development is required for backlog salts generated prior to 1981. A homogeneous product alloy, as required for aqueous processing, could not be produced

  11. Application of carbon isotopes to detect seepage out of coalbed natural gas produced water impoundments

    International Nuclear Information System (INIS)

    Sharma, Shikha; Baggett, Joshua K.

    2011-01-01

    Highlights: → Coalbed natural gas extraction results in large amount of produced water. → Risk of deterioration of ambient water quality. → Carbon isotope natural tracer for detecting seepage from produced water impoundments. - Abstract: Coalbed natural gas (CBNG) production from coal bed aquifers requires large volumes of produced water to be pumped from the subsurface. The produced water ranges from high quality that meets state and federal drinking water standards to low quality due to increased salinity and/or sodicity. The Powder River Basin of northeastern Wyoming is a major coalbed natural gas producing region, where water quality generally decreases moving from the southeastern portion of the basin towards the center. Most produced water in Wyoming is disposed into impoundments and other surface drainages, where it may infiltrate into shallow groundwater. Groundwater degradation caused by infiltration of CBNG produced water holding impoundments into arid, soluble salt-rich soils is an issue of immense importance because groundwater is a major source for stock water, irrigation, and drinking water for many small communities in these areas. This study examines the potential of using stable C isotope signatures of dissolved inorganic C (δ 13 C DIC ) to track the fate of CBNG produced water after it is discharged into the impoundments. Other geochemical proxies like the major cations and major anions were used in conjunction with field water quality measurements to understand the geochemical differences between CBNG produced waters and ambient waters in the study area. Samples were collected from the CBNG discharge outfalls, produced water holding impoundments, and monitoring wells from different parts of the Powder River Basin and analyzed for δ 13 C DIC . The CBNG produced waters from outfalls and impoundments have positive δ 13 C DIC values that fall within the range of +12 per mille to +22 per mille, distinct from the ambient regional surface and

  12. Salt effects on isotope partitioning and their geochemical implications: An overview

    International Nuclear Information System (INIS)

    Horita, J.; Cole, D.R.; Fortier, S.M.

    1996-01-01

    Essential to the use of stable isotopes as natural tracers and geothermometers is the knowledge of equilibrium isotope partitioning between different phases and species, which is usually a function of temperature only. The one exception known to date is oxygen and hydrogen isotope fractionation between liquid water and other phases (steam, gases, minerals), which changes upon the addition of salts to water, i.e., the isotope salt salt effect. Our knowledge of this effect, the difference between activity and composition (a-X) of isotopic water molecules in salt solutions, is very limited and controversial, especially at elevated temperatures. For the last several years, we have been conducting a detailed, systematic experimental study at Oak Ridge National Laboratory to determine the isotope salt effects from room temperature to elevated temperatures (currently to 500 degree C). From this effort, a simple, coherent picture of the isotope salt effect is emerging, that differs markedly from the complex results reported in the literature. In this communication, we present an overview on the isotope salt effect, obtained chiefly from our study. Observed isotope salt effects in salt solutions are significant even at elevated temperatures. The importance and implications of the isotope salt effect for isotopic studies of brine-dominated systems are also discussed in general terms

  13. Specific effects of certain salts on nitrogen metabolism of young corn seedlings

    Directory of Open Access Journals (Sweden)

    Mohammad Hatata

    2014-01-01

    Full Text Available The effect of sodium and magnesium chlorides and sulphates on nitrogen metabolism of corn seedlings and their constituent parts have been studied. Treatment with all salts led to a decrease in the nitrogen content of the seedling as a whole, and the decrease became more pronounced with the increase of salt concentration, though these concentrations were too low to induce any osmotic action. The same trend of changes was noticed as regards nonprotein-N, whereas the opposite was recorded in reference to the changes; of protein-N. Higher concentrations of the salt solutions led to leaching out of more nonprotein-N than did lower concentrations. The study of the distribution of nitrogenous constituents among the different organs of the seedling showed that while the total-N content of the whole seedling decreased with the increase of salt concentration, the total-N content of the roots decreased markedly, and the total-N content of the tops decreased also but less whereas, the total-N content of the grains increased with the increase of salt concentration as compared with that in the control. As a result of disturbances of nitrogen metabolism under salinization, more ammonia and amides were accumulated in all seedling organs.

  14. Using Aspen simulation package to determine solubility of mixed salts in TRU waste evaporator bottoms

    Energy Technology Data Exchange (ETDEWEB)

    Hatchell, J.L.

    1998-03-01

    Nitric acid from plutonium process waste is a candidate for waste minimization by recycling. Process simulation software packages, such as Aspen, are valuable tools to estimate how effective recovery processes can be, however, constants in equations of state for many ionic components are not in their data libraries. One option is to combine single salt solubility`s in the Aspen model for mixed salt system. Single salt solubilities were regressed in Aspen within 0.82 weight percent of literature values. These were combined into a single Aspen model and used in the mixed salt studies. A simulated nitric acid waste containing mixed aluminum, calcium, iron, magnesium and sodium nitrate was tested to determine points of solubility between 25 and 100 C. Only four of the modeled experimental conditions, at 50 C and 75 C, produced a saturated solution. While experimental results indicate that sodium nitrate is the first salt to crystallize out, the Aspen computer model shows that the most insoluble salt, magnesium nitrate, the first salt to crystallize. Possible double salt formation is actually taking place under experimental conditions, which is not captured by the Aspen model.

  15. Quadrupole terms in the Maxwell equations: Debye-Hückel theory in quadrupolarizable solvent and self-salting-out of electrolytes.

    Science.gov (United States)

    Slavchov, Radomir I

    2014-04-28

    If the molecules of a given solvent possess significant quadrupolar moment, the macroscopic Maxwell equations must involve the contribution of the density of the quadrupolar moment to the electric displacement field. This modifies the Poisson-Boltzmann equation and all consequences from it. In this work, the structure of the diffuse atmosphere around an ion dissolved in quadrupolarizable medium is analyzed by solving the quadrupolar variant of the Coulomb-Ampere's law of electrostatics. The results are compared to the classical Debye-Hückel theory. The quadrupolar version of the Debye-Hückel potential of a point charge is finite even in r = 0. The ion-quadrupole interaction yields a significant expansion of the diffuse atmosphere of the ion and, thus, it decreases the Debye-Hückel energy. In addition, since the dielectric permittivity of the electrolyte solutions depends strongly on concentration, the Born energy of the dissolved ions alters with concentration, which has a considerable contribution to the activity coefficient γ± known as the self-salting-out effect. The quadrupolarizability of the medium damps strongly the self-salting-out of the electrolyte, and thus it affects additionally γ±. Comparison with experimental data for γ± for various electrolytes allows for the estimation of the quadrupolar length of water: LQ ≈ 2 Å, in good agreement with previous assessments. The effect of quadrupolarizability is especially important in non-aqueous solutions. Data for the activity of NaBr in methanol is used to determine the quadrupolarizability of methanol with good accuracy.

  16. LIFE Materails: Molten-Salt Fuels Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  17. LIFE Materails: Molten-Salt Fuels Volume 8

    International Nuclear Information System (INIS)

    Moir, R.; Brown, N.; Caro, A.; Farmer, J.; Halsey, W.; Kaufman, L.; Kramer, K.; Latkowski, J.; Powers, J.; Shaw, H.; Turchi, P.

    2008-01-01

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  18. Performance Test of the Salt transfer and Pellet fabrication of UCl{sub 3} Making Equipment for Electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Woo, M. S.; Jin, H. J.; Park, G. I.; Park, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl{sub 2} occurring in a Cd layer, followed by a process to produce UCl{sub 3} by the reaction of U in the LiCl-KCl eutectic salt and CdCl{sub 2}. Chemical reaction is next chlorination reaction; - Cd chlorination : Cd + Cl2 → CdCl{sub 2} - U chlorination : 3CdCl2 + 2U → 3Cd + 2UCl{sub 3} The apparatus for producing UCl{sub 3} consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, a off-gas wet scrubber and a dry scrubber. Salt transfer system set among reactors to transfer salt at 500 .deg. C. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The Salt product is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to fabricate pellet type salt. Performance test of the salt transfer and pellet fabrication of its equipment was tested in this work. Performance test of the salt transfer and pellet fabrication of UCl3 making equipment for Electrorefining carried out in this work. The result of equipment test is that melted salt at 600 .deg. C was easy transferred by salt transfer equipment heated at 500 .deg. C. In this time, salt transfer was carried out by argon gas pressurization at 3bar. When velocity of salt transfer was controlled under reduce pressure, velocity of salt transfer was difficult to control. And when salt pellet was fabricated by the mold of pelletizer heated at 90 .deg. C better than mold of pelletizer heated at 200 .deg. C because salt melted prevent leakage from mold of pelletizer.

  19. HIGH YIELD AND RAPID SYNTHESES METHODS FOR PRODUCING METALLO-ORGANIC SALTS

    DEFF Research Database (Denmark)

    2005-01-01

    A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order...... to obtain a higher yield, purity and faster reaction speed than obtained with known synthesis methods. In particular, the present invention relates to the production of strontium salts of carboxylic acids. Novel strontium salts are also provided by the present method....

  20. Cataclastic effects in rock salt laboratory and in situ measurements

    International Nuclear Information System (INIS)

    Gramberg, J.; Roest, J.P.A.

    1984-01-01

    The aim of the research is the determination of eventual cataclastic effects in environmental rock salt of a heated part of a vertical deep test bore hole, a model for HLW disposal. Known cataclastic systems from hard rock mining and rock salt mines will form the starting point for the explanation of convergence of underground cavity walls. In rock salt, however, different elements seem to prevail: crystal plasticity and micro-cataclasis. The environmental measurements at the deep bore hole have to be carried out from a distance. To this end the acoustic micro-seismic method will be a suitable one. The appropriate equipment for micro-seismic cross hole measurement is designed, constructed and tested in the laboratory as well as underground. Acoustic velocity data form a crucial point. A micro-seismic acoustic P-wave model, adapted to the process of structural changes, is developed. P-wave velocity measurements in rock salt cubes in the laboratory are described. An underground cross hole measurement in the wall of a gallery with semi-circular section is treated and analysed. A conclusion was that, in this case, no macro-cataclasis (systematic large fractures) will be involved in the process of gallery convergence, but that the mechanism proved to be a combination of crystal plasticity and micro-cataclasis. The same mechanism might be expected to be present in the environmental rock salt of the HLW-disposal deep bore hole. As a result this environmental rock salt might be expected to be impermeable. A plan for the application of the developed equipment during the heating test on the ECN-deep-bore-hole is shown. A theory on ''disking'' or ''rim cracks'' is presented in an annex

  1. Hydrophobic interaction chromatography in dual salt system increases protein binding capacity.

    Science.gov (United States)

    Senczuk, Anna M; Klinke, Ralph; Arakawa, Tsutomu; Vedantham, Ganesh; Yigzaw, Yinges

    2009-08-01

    Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein-resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity.

  2. Methodological developments and materials in salt-rock preparation for irradiation experiments

    International Nuclear Information System (INIS)

    Garcia Celma, A.; Van Wees, H.; Miralles, L.

    1991-01-01

    For the first time synthetic salt-rock samples have been produced. Production and preparation of those samples and of other types of rock-salt for experiments and observation require many special handlings. We applied technical knowledge already developed by the HPT Laboratory of the Geology Department of the Rijksuniversiteit Utrecht (high pressure techniques, salt-rock preparation), and by the workshops of the ECN, Petten, and FDO, Amsterdam (mechanical precision). Procedures have been applied and/or modified to solve specific problems. Many of them were never reported before. Moreover, new techniques have been developed. Rock-salt samples have been machined, sawn, ground, glued, etc., with a maximum of precision, a minimum of damage and in dry conditions (without water). Etching, peeling and thin section production has been carried out on irradiated and unirradiated samples. Valves, end pieces, jackets, etc. have been tested and/or produced. These handlings were directed to produce samples for the HAW experiment. Their development required not only knowledge, but also a lot of trial, failures and time. To avoid repetition of this effort, the procedures, materials, instruments and their characteristics are described in detail in this report

  3. Salt fortified with diethylcarbamazine (DEC) as an effective intervention for lymphatic filariasis, with lessons learned from salt iodization programmes.

    Science.gov (United States)

    Houston, R

    2000-01-01

    DEC-fortified salt has been used successfully as a principal public health tool to eliminate lymphatic filariasis (LF) in China and, less extensively, in several other countries. Studies from 1967 to the present conducted in Brazil, Japan, Tanzania, India, China, and Taiwan involving administration of DEC salt for 18 days to 1 year, have shown this intervention to be effective for both bancroftian and brugian filariasis, as measured by reductions in both microfilarial density and positivity, and in some studies through reduction in mosquito positivity rates as well. Furthermore, studies suggest specific advantages from using DEC salt, including lack of side effects, particularly for bancroftian filariasis, and ability to reduce prevalence below 1% when used in conjunction with standard regimens of DEC tablets. However, use of DEC salt as a control tool suffers from a concern that health authorities might find it difficult to manage a programme involving a commodity such as salt. In the past decade, the very successful global efforts to eliminate iodine deficiency through universal salt iodization have demonstrated that partnership with the salt industry can be both successful and effective as a public health tool. Use of DEC salt can be most successfully implemented in areas in which (a) there is adequate governmental support for its use and for elimination of filariasis, (b) filariasis-endemic areas are clearly defined, (c) political leaders, health officials and the salt industry agree that DEC salt is an appropriate intervention, (d) the salt industry is well-organized and has known distribution patterns, (e) a successful national salt iodization effort exists, (f) a monitoring system exists that ensures adequacy of salt iodine content during production and that can also measure household coverage, and (g) measurement of impact on transmission of LF with the new antigen or filarial DNA detection methods can be established. There are advantages and disadvantages

  4. Residual salt separation from simulated spent nuclear fuel reduced in a LiCl-Li2O salt

    International Nuclear Information System (INIS)

    Hur, Jin-Mok; Hong, Sun-Seok; Seo, Chung-Seok

    2006-01-01

    The electrochemical reduction of spent nuclear fuel in LiCl-Li 2 O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for active tests. Fresh uranium metal prepared from the electrochemical reduction of U 3 O 8 powder was used as the surrogates of the spent nuclear fuel Atomic Energy Society of Japan, Tokyo, Japan, All rights reservedopyriprocess. LiCl, Li 2 O, Y 2 O 3 and SrCl 2 were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li 2 O and LiCl-SrCl 2 led to a melting point which was lower than that of the LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li 2 O and LiCl-SrCl 2 was achieved below the temperatures which could make the uranium metal oxidation by Li 2 O possible. The salt vaporization rates at 950degC were measured as follows: LiCl-8 wt% Li 2 O>LiCl>LiCl-8 wt% SrCl 2 >SrCl 2 . (author)

  5. Residual Salt Separation from the Metal Products Reduced in a LiCl-Li2O Molten Salt

    International Nuclear Information System (INIS)

    Hur, Jin Mok; Hong, Sun Seok; Kang, Dae Seung; Jeong, Meong Soo; Seo, Chung Seok

    2006-02-01

    The electrochemical reduction of spent nuclear fuel in a LiCl-Li 2 O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for the active tests. Fresh uranium metal prepared from the electrochemical reduction of U 3 O 8 powder was used as the surrogates of the spent nuclear fuel components which might be metallized by the electrochemical reduction process. LiCl, Li 2 O, Y 2 O 3 and SrCl 2 were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li 2 O and LiCl-SrCl 2 led to a melting point which was lower than that of a LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li 2 O and LiCl-SrCl 2 was achieved below temperatures which could make the uranium metal oxidation by Li 2 O possible. The salt vaporization rates at 950 .deg. C were measured as follows: LiCl-8 wt% Li 2 O > LiCl > LiCl-8 wt% SrCl 2 > SrCl 2

  6. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    Science.gov (United States)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  7. A novel bread making process using salt-stressed Baker's yeast.

    Science.gov (United States)

    Yeh, Lien-Te; Charles, Albert Linton; Ho, Chi-Tang; Huang, Tzou-Chi

    2009-01-01

    By adjusting the mixing order of ingredients in traditional formula, an innovative bread making process was developed. The effect of salt-stressed Baker's yeast on bread dough of different sugar levels was investigated. Baker's yeast was stressed in 7% salt solution then mixed into dough, which was then evaluated for fermentation time, dough fermentation producing gas, dough expansion, bread specific volumes, and sensory and physical properties. The results of this study indicated that salt-stressed Baker's yeast shortened fermentation time in 16% and 24% sugar dough. Forty minutes of salt stress produced significant amount of gas and increased bread specific volumes. The bread was softer and significantly improved sensory properties for aroma, taste, and overall acceptability were obtained.

  8. Hot water, fresh beer, and salt

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1990-01-01

    In the ''hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO 2 ) provided you first (a) get rid of much of the excess CO 2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ''Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally

  9. Hot water, fresh beer, and salt

    Science.gov (United States)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  10. Electrochemical Behavior of LiBr, LiI, and Li2Se in LiCl Molten Salt

    International Nuclear Information System (INIS)

    Choi, In Kyu; Do, Jae Bum; Hong, Sun Seok; Seo, Chung Seok

    2006-03-01

    The effect of fission products on the electrolytic reduction of uranium oxide has been studied. It has been reported that volatile fission products, such as Br, I, and Se, react with Li metal which is a reductant in the process to give LiBr, LiI, and Li 2 Se. These compounds are dissociated as corresponding anions and cations in the LiCl molten salt at 650 .deg. C. In this experiment, oxidation and reduction reaction of 3wt% of each compound in LiCl molten salt were investigated by cyclic voltammetry. For LiBr, redox reactions of cation and anion were reversible, while redox reactions of Li + and I - were irreversible. For Li 2 Se, about half of the produced Li metal was disappeared at the cathode and two anodic current curves were appeared. After the cyclic voltammetric measurements for each compound, chronopotentiometric experiment was carried out for one hour with 100 - 400 mA. After the electrolysis, no compounds gave Li metal in the porous MgO filter in which Li metal was produced at the cathode. However, LiCl salt was covered with Br 2 for LiBr electrolysis. Dark red color of Br 2 was easily removed by water. For LiI electrolysis, salt gave black color and I 2 was deposited on the Pt anode. For Li 2 Se electrolysis, black fine powders were precipitated in the salt. After the separation and dryness of the precipitates, it was analyzed with XRD and it turned out PtSe 2 . From the electrochemical experimental results, it was concluded that these compounds may affect the electrolytic reduction process of uranium oxide in the spent fuel

  11. Effects of indigenous yeasts on physicochemical and microbial properties of Korean soy sauce prepared by low-salt fermentation.

    Science.gov (United States)

    Song, Young-Ran; Jeong, Do-Youn; Baik, Sang-Ho

    2015-10-01

    This study deals with understanding the effects of salt reduction on both the physicochemical and microbiological properties of soy sauce fermentation and also the application of indigenous yeast starters to compensate for undesirable changes occurring in salt-reduced processes. Fermentation was tested in situ at a Korean commercial soy sauce processing unit. Salt reduction resulted in higher acidity as well as lower pH and contents of residual sugar and ethanol. Moreover, undesired flavor characteristics, due to a lack of distinctive compounds, was observed. In addition, putrefactive Staphylococcus and Enterococcus spp. were present only during salt-reduced fermentation. To control these adverse effects, a single or mixed culture of two indigenous yeasts, Torulaspora delbrueckii and Pichia guilliermondii, producing high ethanol and 3-methyl-1-butanol, respectively, were tested. Overall, all types of yeast applications inhibited undesirable bacterial growth despite salt reduction. Of the starter cultures tested, the mixed culture resulted in a balance of more complex and richer flavors with an identical flavor profile pattern to that obtained from high salt soy sauce. Hence, this strategy using functional yeast cultures offers a technological option to manufacture salt-reduced soy sauce while preserving its typical sensory characteristics without affecting safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The effects of naturally occurring impurities in rock salt

    Indian Academy of Sciences (India)

    In this paper we investigate the effect that naturally occurring impurities in salt mines have both on effective permittivity of the medium and on radio wave propagation at ∼200 MHz. The effective permittivity is determined based on the dielectric properties of salt and the characteristics of the main impurities. We conclude that ...

  13. Electrolytic recovery of calcium from molten CaO-CaCl2 salt-mix

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.

    1993-01-01

    Calciothermic reduction of plutonium oxide is an industrial process for producing plutonium metal. The process is carried out in a molten calcium chloride medium which has a significantly high solubility for calcium oxide. However, the CaO-CaCl 2 salt-mix is radioactively contaminated and can not be discarded as such. Fused salt electrolysis of a simulated mix has been carried out using graphite anode and steel cathode to produce calcium. The dissolved calcium in CaCl 2 salt can be used insitu to reduce plutonium oxide. The primary difficulty in obtaining a cathodic calcium deposit was the use of graphite anose which indirectly controls all the back-reactions in the cell through which the deposited calcium is lost. A porous ceramic sheath has been used to essentially keep the anodic and cathodic products separate. The porosity of the sheath has been optimized by measuring its diffusion coefficient as a function of temperature. The influence of a porous sheath on the cell potential has been also analyzed

  14. Production of carboxylic acid and salt co-products

    Science.gov (United States)

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  15. Harvesting Water from Air: Using Anhydrous Salt with Sunlight

    KAUST Repository

    Li, Renyuan

    2018-04-02

    Atmospheric water is abundant alternative water resource, equivalent to 6 times of water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor harvesting and release capacity under relevant application scenarios. Among the salts screened, copper chloride (CuCl2), copper sulfate (CuSO4) and magnesium sulfate (MgSO4) distinguish themselves and are further made into bi-layer water collection devices, with the top layer being photothermal layer while the bottom layer being salt-loaded fibrous membrane. The water collection devices are capable of capturing water vapor out of the air with low relative humidity (down to 15 %) and releasing water under regular and even weakened sunlight (i.e. 0.7 kW/m2). The work shines light on the potential use of anhydrous salt towards producing drinking water in water scarce regions.

  16. Dehydration of ethanol with salt extractive distillation-a comparative analysis between processes with salt recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ligero, E.L.; Ravagnani, T.M.K. [Departamento de Engenharia de Sistemas Qumicos, Faculdade de Engenharia Qumica, Universidade Estadual de Campinas, Campinas, Sao Paulo (Brazil)

    2003-07-01

    Anhydrous ethanol can be obtained from a dilute aqueous solution of ethanol via extractive distillation with potassium acetate. Two process flowsheets with salt recovery were proposed. In the first, dilute ethanol is directly fed to a salt extractive distillation column and, after that, the salt is recovered in a multiple effect evaporator followed by a spray dryer. In the second, the concentrated ethanol from conventional distillation is fed to a salt extractive distillation column. In this case, salt is recovered in a single spray dryer. In both processes the recovered salt is recycled to be used in the extractive distillation column. Every component of each process was rigorously modeled and its behavior was simulated for a wide range of operating conditions. A global simulation was then carried out. The results show that the second process is more interesting in terms of energy consumption than the first. Furthermore, it would be easier to implement changes on existing benzene extractive anhydrous ethanol plants to convert them to more ecologically attractive concentrated ethanol feed processes. (author)

  17. Calculation of β-effective of a molten salt reactor

    International Nuclear Information System (INIS)

    Hirakawa, N.; Sakaba, H.

    1987-01-01

    A method to calculate the β eff of a molten salt reactor was developed taking the effect of the flow of the molten salt into account. The method was applied to the 1000MW MSR design made by ORNL. The change in β eff due to the change in the residence time outside of the core of the fuel salt and to the change in the flow velocity when the total amount of the fuel salt is kept constant were investigated. It was found that β eff was reduced to 47.9% of the value when the fuel salt is at rest for the present design. (author)

  18. Effects of Various Kinds of Salt on the Quality and Storage Characteristics of Tteokgalbi.

    Science.gov (United States)

    Lee, Hyun-Joo; Lee, Jae-Joon

    2014-01-01

    This study was carried out to evaluate the effects of various kinds of salt on the quality and storage characteristics of tteokgalbi. The tteokgalbi was prepared using four types of salt: 1.5% purified salt (control, C), 1.5% five-year-old solar salt (FS), 1.5% Topan solar salt (TS), and 1.5% French Guérande solar salt (GS). The moisture, crude lipid, crude ash, crude protein and calorie contents, water holding capacity, and cooking loss were not significantly different between control and all other treatments. As for the textural characteristics, the use of GS increased the hardness of the tteokgalbi. According to the sensory evaluation, the use of TS had the best score in springiness. Tteokgalbi made with TS and GS had the two highest scores in flavor and total acceptability. During 15 d of storage, the contents of 2-thiobarbituric acid (TBA) value, volatile basic nitrogen (VBN) and the total microbial counts increased, while the pH decreased. The TBA values of the tteokgalbi containing TS and GS were lower than that of C. Lightness (L) and yellowness (b) values decreased during storage, but redness (a) displayed no significant difference during storage. Overall, the best results, in terms of TBA value and sensory attributes, were obtained for the tteokgalbi containing TS and GS.

  19. Salting-out assisted liquid-liquid extraction combined with gas chromatography-mass spectrometry for the determination of pyrethroid insecticides in high salinity and biological samples.

    Science.gov (United States)

    Niu, Zongliang; Yu, Chunwei; He, Xiaowen; Zhang, Jun; Wen, Yingying

    2017-09-05

    A salting-out assisted liquid-liquid extraction (SALLE) combined with gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of four pyrethroid insecticides (PYRs) in high salinity and biological samples. Several parameters including sample pH, salting-out solution volume and salting-out solution pH influencing the extraction efficiency were systematically investigated with the aid of orthogonal design. The optimal extraction conditions of SALLE were: 4mL of salting-out solution with pH=4 and the sample pH=3. Under the optimum extraction and determination conditions, good responses for four PYRs were obtained in a range of 5-5000ng/mL, with linear coefficients greater than 0.998. The recoveries of the four PYRs ranged from 74% to 110%, with standard deviations ranging from 1.8% to 9.8%. The limits of detection based on a signal-to-noise ratio of 3 were between 1.5-60.6ng/mL. The method was applied to the determination of PYRs in urine, seawater and wastewater samples with a satisfactory result. The results demonstrated that this SALLE-GC-MS method was successfully applied to determine PYRs in high salinity and biological samples. SALLE avoided the need for the elimination of salinity and protein in the sample matrix, as well as clean-up of the extractant. Most of all, no centrifugation or any special apparatus are required, make this a promising method for rapid sample preparation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Salted, dried and smoked fish

    International Nuclear Information System (INIS)

    Lamprecht, E.; Riley, F.R.; Vermaak, K.; Venn, C.

    1986-01-01

    Heat resistance tests were carried out using a heat resistant strain of red halophiles isolated from a commercial salt and comparing this with three known species, i.e. Halobacterium halobium, H. salinarum and H. antirubrum. These four halophic strains were used to prepare artificially infected salts which were then subjected to three different forms of heat treatment: heat-treatment in oil bath, microwave heating and gamma radiation. The conclusion was made that gamma radiation appears to be less effective than microwave heating at the levels tested

  1. Distinct salt-dependent effects impair Fremyella diplosiphon pigmentation and cellular shape.

    Science.gov (United States)

    Singh, Shailendra P; Montgomery, Beronda L

    2013-07-01

    Salt impairs cellular morphology and photosynthetic pigment accumulation in the cyanobacterium Fremyella diplosiphon. Recent findings indicated that the impact of salt on cellular morphology was attributable to salt-associated effects on osmotic regulation, as the impact on morphology was reversible when cells were treated with an osmoticum in the presence of salt. The impact of salt on photosynthetic pigment accumulation was associated with ionic effects of salt on the cells, as pigment levels remained low when salt-treated cells were incubated together with an osmoticum or an antioxidant, the latter to mitigate the impact of a salt-associated accumulation of reactive oxygen species. Here, we provide evidence that the transcripts for genes encoding the phycobiliproteins are not reduced in the presence of salt. These results suggest that the negative impact of salt-mediated changes on pigment accumulation occurs post-transcriptionally. A greater understanding of the mechanisms which impact growth of strains such as F. diplosiphon, which harbor pigments that allow low-light and shade-tolerated growth, may facilitate the development or adaptation of such strains as useful for remediation of salt-impacted soils or biofuel production.

  2. The Effect of Salt Splash on Nylon 6,6

    OpenAIRE

    Steward, Scott D

    1999-01-01

    Abstract: One of the most common environmental exposures that nylon undergoes, when used for automotive applications, is that of salt splash, which commonly occurs during winter driving. This study looks at the effect of various salts (NaCl, KCl, CaCl2) on the thermal and mechanical properties of nylon when exposed to one and four molar aqueous salt solutions. It was found that the diffusion of salt solutions into nylon 6,6 occurred in a pseudo-Fickian manner. Also, it was found that the p...

  3. A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids.

    Science.gov (United States)

    Fiorini, Dennis; Pacetti, Deborah; Gabbianelli, Rosita; Gabrielli, Serena; Ballini, Roberto

    2015-08-28

    Given the importance of short and medium chain free fatty acids (FFAs) in several fields, this study sought to improve the extraction efficiency of the solid-phase microextraction (SPME) of FFAs by evaluating salting out agents that appear promising for this application. The salts ammonium sulfate ((NH4)2SO4) and sodium dihydrogen phosphate (NaH2PO4) were tried on their own and in combination (3.7/1), in four different total amounts, as salting out agents in the headspace-SPME-gas chromatographic (HS-SPME-GC) analysis of the FFAs from acetic acid (C2) to decanoic acid (C10). Their performance in a model system of an aqueous standard mixture of FFAs at a pH of 3.5 was compared to that of the more commonly used sodium chloride (NaCl) and sodium sulfate (Na2SO4). All of the salts and salt systems evaluated, in proper amount, gave improved results compared to NaCl (saturated), which instead gave interesting results only for the least volatile FFAs C8 and C10. For C2-C6, the salt system that gave the best results compared to NaCl was (NH4)2SO4/NaH2PO4, in the highest of the four amounts evaluated, with factor increases between 1.2 and 4.1-fold, and NaH2PO4, between 1.0 and 4.3-fold. The SPME extraction efficiency given by the mixture (NH4)2SO4/NaH2PO4 was also assessed on biological and food samples, confirming that overall it performed better than NaCl. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Possible salt mine and brined cavity sites for radioactive waste disposal in the northeastern southern peninsula of Michigan

    International Nuclear Information System (INIS)

    Landes, K.K.; Bourne, H.L.

    1976-01-01

    A reconnaissance report on the possibilities for disposal of radioactive waste covers Michigan only, and is more detailed than an earlier one involving the northeastern states. Revised ''ground rules'' for pinpointing both mine and dissolved salt cavern sites for waste disposal include environmental, geologic, and economic factors. The Michigan basin is a structural bowl of Paleozoic sediments resting on downwarped Precambrian rocks. The center of the bowl is in Clare and Gladwin Counties, a short distance north of the middle of the Southern Peninsula. The strata dip toward this central area, and some stratigraphic sequences, including especially the salt-containing Silurian section, increase considerably in thickness in that direction. Lesser amounts of salt are also present in the north central part of the Lower Peninsula. Michigan has been an oil and gas producing state since 1925 and widespread exploration has had two effects on the selection of waste disposal sites: (1) large areas are leased for oil and gas; and (2) the borehole concentrations, whether producing wells, dry holes, or industrial brine wells that penetrated the salt section, should be avoided. Two types of nuclear waste, low level and high level, can be stored in man-made openings in salt beds. The storage facilities are created by (1) the development of salt mines where the depths are less than 3000 ft, and (2) cavities produced by pumping water into a salt bed, and bringing brine back out. The high level waste disposal must be confined to mines of limited depth, but the low level wastes can be accommodated in brine cavities at any depth. Seven potential prospects have been investigated and are described in detail

  5. Effect of salt intensity on ad libitum intake of tomato soup similar in palatability and on salt preference after consumption.

    Science.gov (United States)

    Bolhuis, Dieuwerke P; Lakemond, Catriona M M; de Wijk, Rene A; Luning, Pieternel A; de Graaf, Cees

    2010-11-01

    Sensory properties of food play an important role in satiation. Studies on the effect of taste intensity on satiation show conflicting results. This may be due to the notion that in these studies taste intensity and palatability were confounded. The objective of this study was to investigate the effect of salt intensity of tomato soup on ad libitum intake (satiation), while controlling for palatability on an individual basis. Forty-eight subjects consumed both a low-salt (LS) and high-salt (HS) soup ad libitum from a self-refilling bowl. The results showed no difference between LS and HS soup in ad libitum intake, eating rate, changes in appetite ratings, and changes in hedonic ratings after intake. After intake of HS soup, LS soup was perceived as more bland than before intake of HS soup. After intake of LS soup, HS soup was perceived as more salt intense than before intake of LS soup. In conclusion, this study found no effect of salt intensity on satiation of tomato soups that were similar in palatability. During consumption, subjects adapted quickly to the exposed salt intensity as contrasting salt intensities were rated further from the ideal salt intensity and therefore perceived as less pleasant after consumption.

  6. Steady state investigation on neutronics of a molten salt reactor considering the flow effect of fuel salt

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da-Lin; QIU Sui-Zheng; LIU Chang-Liang; SU Guang-Hui

    2008-01-01

    The Molten Salt Reactor (MSR),one of the‘Generation Ⅳ'concepts,is a liquid-fuel reactor,which is different from the conventional reactors using solid fissile materials due to the flow effect of fuel salt.The study on its neutronice considering the fuel salt flow,which is the base of the thermal-hydraulic calculation and safety analysis,must be done.In this paper,the theoretical model on neutronics under steady condition for a single-liquid-fueled MSR is conducted and calculated by numerical method.The neutronics model consists of two group neutron diffusion equations for fast and thermal neutron fluxes,and balance equations for six-group delayed neutron precursors considering the flow effect of fuel salt. The spatial discretization of the above models is based on the finite volume method,and the discretization equations are computed by the source iteration method.The distributions of neutron fluxes and the distributions of the delayed neutron precursors in the core are obtained.The numerical calculated results show that,the fuel salt flow has little effect on the distribution of fast and thermal neutron fluxes and the effective multiplication factor;however,it affects the distribution of the delayed neutron precursors significantly,especially the long-lived one.In addition,it could be found that the delayed neutron precursors influence the nentronics slightly under the steady condition.

  7. Steady state investigation on neutronics of a molten salt reactor considering the flow effect of fuel salt

    International Nuclear Information System (INIS)

    Zhang Dalin; Qiu Suizheng; Su Guanghui; Liu Changliang

    2008-01-01

    The Molten Salt Reactor (MSR), one of the 'Generation IV' concepts, is a liquid-fuel reactor, which is different from the conventional reactors using solid fissile materials due to the flow effect of fuel salt. The study on its neutronics considering the fuel salt flow, which is the base of the thermal-hydraulic calculation and safety analysis, must be done. In this paper, the theoretical model on neutronics under steady condition for a single-liquid-fueled MSR is conducted and calculated by numerical method. The neutronics model consists of two group neutron diffusion equations for fast and thermal neutron fluxes, and balance equations for six-group delayed neutron precursors considering the flow effect of fuel salt. The spatial discretization of the above models is based on the finite volume method, and the discretization equations are computed by the source iteration method. The distributions of neutron fluxes and the distributions of the delayed neutron precursors in the core are obtained. The numerical calculated results show that, the fuel salt flow has little effect on the distribution of fast and thermal neutron fluxes and the effective multiplication factor; however, it affects the distribution of the delayed neutron precursors significantly, especially the long-lived one. In addition, it could be found that the delayed neutron precursors influence the neutronics slightly under the steady condition. (authors)

  8. Effect of water in salt repositories. Final report

    International Nuclear Information System (INIS)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ΔP rather than sigma ΔP 2 (sigma is the uniaxial stress normal to the interface and ΔP is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model

  9. Effect of water in salt repositories. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  10. Effects, tolerance mechanisms and management of salt stress in grain legumes.

    Science.gov (United States)

    Farooq, Muhammad; Gogoi, Nirmali; Hussain, Mubshar; Barthakur, Sharmistha; Paul, Sreyashi; Bharadwaj, Nandita; Migdadi, Hussein M; Alghamdi, Salem S; Siddique, Kadambot H M

    2017-09-01

    Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of

  11. Zechstein salt Denmark. Vol. 1

    International Nuclear Information System (INIS)

    Lyngsie Jacobsen, F.; Soenderholm, M.; Springer, N.; Gutzon Larsen, J.; Lagoni, P.; Fabricius, J.

    1984-01-01

    The Salt Research Project EFP-81 has mainly been aiming upon an elucidation of the stratigraphy of the Danish Zechstein evaporites. Also an attempt to clarify the connection between the fabric and the strength of the strongly deformed domal rock salt is performed. The unravelling of the stratigraphy is carried out by means of renewed interpretations of new and old data from all the wells drilling in the Danish Permian basin in connection with a revaluation of the core descriptions. By means of trace elements analysis it is possible to some extent to distinguish between Zestein 1 and 2 ''grey salt''. A description of the transition zone between Zechstein 1 and 2 is carried out. New methods of fabric analyses are introduced and the strength measurements of the rock salt are treated statistically in connection with new defined rock salt parameters. An investigation of fluid inclusions in halite and quartz crystals from dome salt has resulted in the determination of salinity and chemical composition of the brines present in the salt. Temperatures and corresponding pressures during the evolution of the salt pillow and salt dome have been established. The dehydration conditions of natural carnallite in situ are clarified. (author)

  12. Residual Salt Separation from the Metal Products Reduced in a LiCl-Li{sub 2}O Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jin Mok; Hong, Sun Seok; Kang, Dae Seung; Jeong, Meong Soo; Seo, Chung Seok

    2006-02-15

    The electrochemical reduction of spent nuclear fuel in a LiCl-Li{sub 2}O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for the active tests. Fresh uranium metal prepared from the electrochemical reduction of U{sub 3}O{sub 8} powder was used as the surrogates of the spent nuclear fuel components which might be metallized by the electrochemical reduction process. LiCl, Li{sub 2}O, Y{sub 2}O{sub 3} and SrCl{sub 2} were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li{sub 2}O and LiCl-SrCl{sub 2} led to a melting point which was lower than that of a LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li{sub 2}O and LiCl-SrCl{sub 2} was achieved below temperatures which could make the uranium metal oxidation by Li{sub 2}O possible. The salt vaporization rates at 950 .deg. C were measured as follows: LiCl-8 wt% Li{sub 2}O > LiCl > LiCl-8 wt% SrCl{sub 2} > SrCl{sub 2}.

  13. Salt evaporation behaviors of uranium deposits from an electrorefiner

    International Nuclear Information System (INIS)

    Sung Bin Park; Dong Wook Cho; Gyu Hwan Oh; Sung Chan Hwang; Young Ho Kang; Hansoo Lee; Eung Ho Kim; Seong-Won Park; Jong Hyeon Lee

    2010-01-01

    From an electrorefining process, uranium deposits were recovered at the solid cathode of an electrorefining system. The uranium deposits from the electrorefiner contained about 30-40 wt% salts. In order to recover pure uranium and transform it into metal ingots, these salts have to be removed. A salt distiller was adapted for a salt evaporation. A batch operation for the salt removal was carried out by a heating and a vacuum evaporation. The operational conditions were a 700-1,000 deg C hold temperature and less than a 1 Torr under Argon atmosphere, respectively. The behaviors of the salt evaporations were investigated by focusing on the effects of the pressure and the holding temperature for the salt distillation. The removal efficiencies of the salts were obtained with regard to the operational conditions. The experimental results of the salt evaporations were evaluated by using the Hertz-Langmuir relation. The effective evaporation coefficients of this relation were obtained with regards to the vacuum pressures and the hold temperatures. The higher the vacuum pressure and the higher the holding temperature were, the higher the removal efficiencies of the salts were. (author)

  14. ADR salt pill design and crystal growth process for hydrated magnetic salts

    Science.gov (United States)

    Shirron, Peter J. (Inventor); DiPirro, Michael J. (Inventor); Canavan, Edgar R. (Inventor)

    2013-01-01

    A process is provided for producing a salt pill for use in very low temperature adiabatic demagnetization refrigerators (ADRs). The method can include providing a thermal bus in a housing. The thermal bus can include an array of thermally conductive metal conductors. A hydrated salt can be grown on the array of thermally conductive metal conductors. Thermal conductance can be provided to the hydrated salt.

  15. Liquid chromatography-tandem mass spectrometric assay for the tyrosine kinase inhibitor afatinib in mouse plasma using salting-out liquid-liquid extraction

    NARCIS (Netherlands)

    Sparidans, Rolf W; van Hoppe, Stephanie; Rood, Johannes J M; Schinkel, Alfred H; Schellens, Jan H M; Beijnen, Jos H

    2016-01-01

    A quantitative bioanalytical liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay for afatinib, an irreversible inhibitor of the ErbB (erythroblastic leukemia viral oncogene homolog) tyrosine kinase family, was developed and validated. Plasma samples were pre-treated using salting-out

  16. Economic feasibility of producing inside-out beams from small-diameter logs

    Science.gov (United States)

    David W. Patterson; Richard A. Kluender; James E. Granskog

    2002-01-01

    Previous work has shown that it is technically feasible to produce inside-out (ISO) beams by taking small-diameter (5 to 7 in.) logs, slabbing four sides, quartering the cant, and turning the quarters inside out and gluing them together. After drying, the beams were found to be straight, with no cracks, and of equal or better mechanical properties than solid sawn...

  17. Hofmeister effect of salt mixtures on thermo-responsive poly(propylene oxide)

    DEFF Research Database (Denmark)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2015-01-01

    of aqueous solutions of poly(propylene oxide) is affected by mixtures of ions with different location in the Hofmeister series. Our results show that the Hofmeister effects of pure salt species are not always linearly additive and that the relative effect of some ions can be reversed depending...... on the composition of the salt mixture as well as by the absolute and relative concentration of the different species. We suggest that these results can lead to a better understanding of the potential role of the Hofmeister effect in regulation of biological processes, which does always take place in salt mixtures...... rather than solutions containing just single salt species....

  18. Effect of Magnesium Salts on Growth and Production of Garlic (Allium sativum L.

    Directory of Open Access Journals (Sweden)

    Ikbal M. Al-Barzinji

    2014-03-01

    Full Text Available A Randomized Complete Block Design (R.C.B.D. experiment with three replicates was conducted to investigate the effect of foliar application of magnesium salts on growth, yield components and some inorganic minerals of leaves of garlic (Allium sativum L. local variety. The salts (MgSO4.7H2O, Mg(NO32.6H2O and MgCl2.6H2O addition to untreated plants as control. The concentration of Mg were used was constant (1.97 g Mg. L-1 which comes from 2% MgSO4.7H2O. The results revealed that vegetative growth of garlic was affected significantly by magnesium salts. Highest number of leaves was found in plants treated with MgCl2, the treatment which gave the lowest plant height, each of MgSO4 and Mg(NO32 had the highest shoot dry weight. Foliar spraying with Mg(NO32 produced highest shoot dry matter percent and highest percent of leaves Phosphorus leaves content, significantly compared to other treatments. The results showed that spraying plants with Mg(NO32 and MgSO4 improved yield components where head diameter , head weight, cloves number per head and bulbs yield were increased. Foliar spray with MgSO4 had a significant effects on head scale thickness, whereas there were non- significant effects between different Magnesium salts spraying on each of clove dry matter and percent of TSS content. This study concluded that spraying plants with MgSO4 or Mg(NO32 twice (45 days after planting and a month later increased garlic yield and yield quality.

  19. Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts

    Science.gov (United States)

    Belchior, Diana C. V.; Sintra, Tânia E.; Carvalho, Pedro J.; Soromenho, Mário R. C.; Esperança, José M. S. S.; Ventura, Sónia P. M.; Rogers, Robin D.; Coutinho, João A. P.; Freire, Mara G.

    2018-05-01

    This work provides a comprehensive evaluation of the effect of the cation alkyl side chain length of the 1-alkyl-3-methylimidazolium chloride series ([CnC1im]Cl, n = 2-14) of ionic liquids (ILs) on their capability to form aqueous biphasic systems (ABSs) with salts and self-aggregation derived properties. The liquid-liquid phase behavior of ternary systems composed of [CnC1im]Cl, water, and K3PO4 or K2CO3 and the respective Setschenow salting-out coefficients (ks), a quantitative measure of the two-phase formation ability, were determined. An odd-even effect in the ks values along the number of methylene groups of the longest IL cation alkyl side chain was identified for the ABS formed by K2CO3, a weaker salting-out agent where the phenomenon is clearly identified. In general, cations with even alkyl side chains, being likely to display higher molar volumes, are more easily salted-out and thus more prone to undergo phase separation. The odd-even effect in the ks values is, however, more significant in ILs up to n = 6, where the nanostructuration/nanosegregation of ILs plays a less relevant role. Still, with the [CnC1im]Cl (n = 7-14) series of ILs, an odd-even effect was also identified in the ILs' ionization degree, molar conductivity, and conductivity at infinite dilution. In summary, it is shown here that the ILs' odd-even effect occurs in IL aqueous solutions and not just in neat ILs, an already well-established phenomenon occurring in a series of ILs' properties described as a result of the orientation of the terminal methyl groups to the imidazolium ring cation and consequent effect in the ILs' cohesive energy.

  20. Effect of salt on the glass transition of condensed tapioca starch systems.

    Science.gov (United States)

    Chuang, Lillian; Panyoyai, Naksit; Shanks, Robert A; Kasapis, Stefan

    2017-08-15

    This work examines the effect of including hydrated NaCl and CaCl 2 (up to 6% w/w) on the physicochemical properties of condensed tapioca starch. Samples were prepared by hot pressing at 120°C to produce condensed systems that covered a range of moisture contents from 7.34% w/w (23% relative humidity) to 19.52% w/w (75% relative humidity). Tensile storage modulus and heat flow measurements were taken using DMA and MDSC, which were accompanied by FTIR, WAXD and ESEM. Increasing the salt level enhances the mechanical strength of starch in the glassy state and shifts the glass transition temperature to a higher value. Antiplasticising effects of NaCl and CaCl 2 on the non-phosphorylated tapioca starch are indistinguishable from each other. Observations are complemented by intensification of absorbance peaks in FTIR spectra and a systematic change in shape and intensity of diffraction patterns with increasing addition of salt consistent with interactions between added ions and macromolecule. Copyright © 2017. Published by Elsevier Ltd.

  1. Salt consumption and the effect of salt on mineral metabolism in horses.

    Science.gov (United States)

    Schryver, H F; Parker, M T; Daniluk, P D; Pagan, K I; Williams, J; Soderholm, L V; Hintz, H F

    1987-04-01

    The voluntary salt consumption of mature unexercised horses was measured weekly for up to 45 weeks. Voluntary intake among horses was quite variable ranging from 19 to 143 g of salt per day and was inversely related to total salt intake (salt in feeds plus voluntary intake). Mean daily voluntary salt consumption was 53 g. Season of the year did not influence voluntary intake. In preference tests which evaluated every two choice combination of 0.2% and 4% NaCl in test diets fed daily for four days, ponies generally preferred diets containing the lower amount of salt. In similar preference studies which used NaHCO3 as a sodium source, ponies always preferred the diet containing the lower level of NaHCO3. Metabolism studies employing diets containing 1, 3 or 5% NaCl showed that urinary excretion was the major excretory pathway for sodium and chloride. Fecal excretion, intestinal absorption and retention of sodium were not affected by level of salt intake. Urinary calcium excretion was unaffected by salt intake but calcium and phosphorus absorption and retention were enhanced when ponies were fed diets containing 3 or 5% sodium chloride. Magnesium and copper metabolism were unaffected by salt intake. Horses voluntarily consume relatively large amounts of sodium chloride but it is likely that not all voluntary consumption is related to the salt requirement of the horse. Habit and taste preference could also be involved. Salt consumption at the levels used in these studies does not appear to be detrimental to the metabolism of other minerals in the horse.

  2. Mechanical stratification of autochthonous salt: Implications from basin-scale numerical models of rifted margin salt tectonics

    Science.gov (United States)

    Ings, Steven; Albertz, Markus

    2014-05-01

    Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in

  3. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Hosseini, Rahim; Jamehbozorg, Bahman

    2008-01-01

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied

  4. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Hosseini, Rahim; Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2008-09-15

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied.

  5. Irradiation effects on the rock-salt HAW-Asse Project

    International Nuclear Information System (INIS)

    Palut, J.M.

    1991-01-01

    Since 1988 ANDRA is involved in the HAW project, a test disposal of high level radioactive canisters in a salt dome, at Asse in FRG. ANDRA is responsible of in situ measurements, laboratory analyses and predictive calculations. Thus are delayed in situ dose measurements. Two methods have been developed, one is based on thermoluminescent dosemeters and measure an integrated dose, the other uses ionization chambers and gives a dose rate. Specific equipments had to be developed: manufacturing and testing. Geomechanics is also concerned by in situ measurement, especially rocksalt deformation, induced by the heat production of the canisters. Three groups of tiltmeters have been installed, providing informations on both natural creeping of rocksalt and effect of electrical heating in two boreholes. Laboratory studies consist in analyzing gases released by Asse salt samples irradiated under various conditions. Most of the 150 sample irradiations are completed. The last topic to the project intends to predict gamma ray flux and spectrum in the HAW test field using computer models. The work carried out and discussed includes digitalization of test data (sources, borehole lining, rocksalt), Bremsstrahlung sensitivity analysis, and calculation of both energy deposited and dose rate around the sources. This calculation was performed for 50 points, requiring 400 runs of Mercure-5 models. Interpolation functions are also provided in order to give values between these 50 points. The next step aim to determine gamma spectrum in salt and also energy deposited at various locations in the dummy canister where samples are intended to be emplaced. TRIPOLI-2 Model will be used for these purposes [fr

  6. Salt effects on ionization equilibria of histidines in myoglobin.

    Science.gov (United States)

    Kao, Y H; Fitch, C A; Bhattacharya, S; Sarkisian, C J; Lecomte, J T; García-Moreno E, B

    2000-09-01

    The salt dependence of histidine pK(a) values in sperm whale and horse myoglobin and in histidine-containing peptides was measured by (1)H-NMR spectroscopy. Structure-based pK(a) calculations were performed with continuum methods to test their ability to capture the effects of solution conditions on pK(a) values. The measured pK(a) of most histidines, whether in the protein or in model compounds, increased by 0.3 pH units or more between 0.02 M and 1.5 M NaCl. In myoglobin two histidines (His(48) and His(36)) exhibited a shallower dependence than the average, and one (His(113)) showed a steeper dependence. The (1)H-NMR data suggested that the salt dependence of histidine pK(a) values in the protein was determined primarily by the preferential stabilization of the charged form of histidine with increasing salt concentrations rather than by screening of electrostatic interactions. The magnitude and salt dependence of interactions between ionizable groups were exaggerated in pK(a) calculations with the finite-difference Poisson-Boltzmann method applied to a static structure, even when the protein interior was treated with arbitrarily high dielectric constants. Improvements in continuum methods for calculating salt effects on pK(a) values will require explicit consideration of the salt dependence of model compound pK(a) values used for reference in the calculations.

  7. Salting-Out Assisted Liquid-Liquid Extraction for Quantification of Febuxostat in Plasma Using RP-HPLC and Its Pharmacokinetic Application.

    Science.gov (United States)

    Tandel, Devang; Shah, Purvi; Patel, Kalpana; Thakkar, Vaishali; Patel, Kirti; Gandhi, Tejal

    2016-11-01

    A rapid and sensitive reversed-phase high-performance liquid chromatography (HPLC) method using novel salting-out assisted liquid-liquid extraction technique has been developed for the quantitative determination of febuxostat (FEB), used for the treatment of gout, in rat plasma. The method was validated according to US FDA guideline. Separation was achieved using a Phenomenex Luna-C 18 (250 × 4.60 mm, 5 µm) column and mobile phase composed of potassium dihydrogen orthophosphate buffer 25 mM, adjusted to pH 6.8 with triethylamine:methanol in a ratio of 35:65 (v/v) showing retention time 5.56 and 8.86 min for FEB and internal standard, respectively. The optimal salting-out parameters; 1 mL of acetonitrile and 200 µL of 2 M ammonium acetate salt showed extraction recovery >90% for FEB from plasma. This extraction procedure afforded clear samples resulting in convenient and cost-saving procedure and showed good linear relationship (r > 0.9997) between peak area ratio and concentration from 0.3 to 20 µg/mL. The results of pharmacokinetic study showed that absorption profile of spherical agglomerate of FEB compared to marketed formulation was higher indicating greater systemic absorption. In conclusion, the developed SALLE-HPLC method with simple ultraviolet detection offered a number of advantages including good quantitative ability, wide linear range, high recovery, short analysis time as well as low cost. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Salts in soil and water within the arid climate zone. Effects on engineering geology, exemplified from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Jergman, K.

    1981-01-01

    In the arid climate zone, where the potential evaporation is much higher than the precipitation, soil and water generally are enriched by salts. In this research project it has been pointed out how salts affect engineering geology in different ways. The extensive study of the Al Khafji area in Saudi Arabia has shown that salts have affected soil and water so that - the crust hardness has increased due to a development of duricrust. The strength of the upper part of the crust is similar to weak rock. - the coastal terrace area moves vertically - groundwater affects the salinization of the soil profile A general description of the effect of salts on engineering geology can be summarized as below: The precipitated salts affect the profile so that 1.Stability changes. 2.Swelling alternatively contraction can occur due to variations of the water content. 3.Vegetation growth becomes difficult or impossible. 4.Excavation work is difficult. 5.Aggregate sources are affected. 6.Concrete corrosion is caused. 7.There is demand for proper field and laboratory tests and for special design criteria.The occurance of salts in the water causes due special conditions that 1.The soil profile is enriched by salts 2. The plants are damaged. 3.Concrete corrosion is developed. 4.The water is not suitable for drinking or irrigation purposes. 5. The density increases to such an extent that it effects the direction of the groundwater flow.

  9. CROATIAN AND INTERNATIONAL COPPER AND SALT ROUTES IN THE PART OF EUROPE

    Directory of Open Access Journals (Sweden)

    Berislav Šebečić

    2001-12-01

    Full Text Available Middle Ages as well as in modern times. Those were caravan and cart routes and navigable river routes adapted to the possibilities of the then traffic. The iinportance of the copper and salt trade has been fin pointed out. From ancient times up until the mid-nineteenth century copper was pro-duced from copper ores in Rude near Samobor and from the mid-nine-teenth century until the beginning of the World War I mostly in Trgovi and Bešinac in Trgovska gora. The main copper trade was carried out from Rude over Dubovac (Karlovac, later on and Vrbovsko to Bakar and later on to Rijeka. I have named that the most important Croatian copper route. Intense intenational trade through Croatia that took place at the late fifteenth and in the course of the sixteenth centuries was a combination of river and cart traffic from the former foundries iu Bans-ka Bistrica (in Slovakia todayover Budim, Zagreb, Dubovac and Mod-ruš to Senj from where cargo was loaded on the ships sailing to Venice and all over the world. That route I have named the intenational copper route. Sea-salt was transported from the Adriatic saltvorks towards inland areas (Croatia salts routes; rock-salt was imported from Hungarian salt-works (todaj in ihe western Roumania and from the Tuzla salts works to the northern part of Croatia (International salt routes (the paper is published in Croatian.

  10. Legacy of road salt: Apparent positive larval effects counteracted by negative postmetamorphic effects in wood frogs.

    Science.gov (United States)

    Dananay, Kacey L; Krynak, Katherine L; Krynak, Timothy J; Benard, Michael F

    2015-10-01

    Road salt runoff has potentially large effects on wetland communities, but is typically investigated in short-term laboratory trials. The authors investigated effects of road salt contamination on wood frogs (Rana sylvatica) by combining a field survey with 2 separate experiments. The field survey tested whether wood frog larval traits were associated with road salt contamination in natural wetlands. As conductivity increased, wood frog larvae were less abundant, but those found were larger. In the first experiment of the present study, the authors raised larvae in outdoor artificial ponds under 4 salt concentrations and measured larval vital rates, algal biomass, and zooplankton abundance. Salt significantly increased larval growth, algal biomass, and decreased zooplankton abundance. In the second experiment, the authors raised larvae to metamorphosis in the presence and absence of salt contamination and followed resulting juvenile frogs in terrestrial pens at high and low densities. Exposure to road salt as larvae caused juvenile frogs to have greater mortality in low-density terrestrial environments, possibly because of altered energy allocation, changes in behavior, or reduced immune defenses. The present study suggests that low concentrations of road salt can have positive effects on larval growth yet negative effects on juvenile survival. These results emphasize the importance of testing for effects of contaminants acting through food webs and across multiple life stages as well as the potential for population-level consequences in natural environments. © 2015 SETAC.

  11. Effects of de-icing salt on soil enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Guentner, M; Wilke, B M

    1983-01-01

    Effects of de-icing salt on dehydrogenase, urease, alkalinephosphatase and arylsulfatase activity of O/sub L/- and A/sub h/-horizons of a moder and a mull soil were investigated using a field experiment. Additions of 2.5 kg m/sup -2/ and 5.0 kg m/sup -2/ of de-icing salt reduced activities of most enzymes within four weeks. Eleven months after salt addition there was nearly no reduction of enzyme activity to be measured on salt treated soils. The percentage of reduced enzyme activity was generally higher in the moder soil. It was concluded that reductions of enzyme activity were due to decreases of microbial activity and not to inactivation of enzymes.

  12. Laboratory investigations of the effects of geologic heterogeneity on groundwater salinization and flush-out times from a tsunami-like event.

    Science.gov (United States)

    Vithanage, M; Engesgaard, P; Jensen, K H; Illangasekare, T H; Obeysekera, J

    2012-08-01

    This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a

  13. Salt effect on sensitized photooxidations. A kinetic approch to environmental decomposition of marine contaminants

    Directory of Open Access Journals (Sweden)

    María I. Gutiérrez

    1998-09-01

    Full Text Available The salt effect on the kinetics of singlet molecular oxygen [O2(1Δg]-mediated photooxidations of sea water contaminants was investigated. Two families of photooxidizable compounds were employed in the study: anthracene derivatives and phenols. The presence of salt (NaCl in H2O and LiCl in MeCN, in both cases in the range 0-0.45 M produces changes in the photooxidation rate. For solvent-polarity-dependent reactions, this behavior can be predicted, by knowing the solvent-polarity dependence of the rate constant for chemical reaction of the substrates with O2(1Δ g in non-saline solutions (kr. For the cases of photooxidations possessing solvent-polarity-independent or scantily-dependent kr values, the photooxidation rates decrease as the salt content in the solution increases, mainly due to a predominance of the physical quenching pathway. In addition, the quantum yield for O2(1 Δg generation (ΦΔ was determined in a series of saline solutions, in the range of 0-0.45 M in water and MeCN solutions, in the presence of NaCl and LiCl respectively. The Δ values are independent, within the experimental error on the salt content.

  14. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Maqshoof Ahmad

    2013-12-01

    Full Text Available Halo-tolerant, auxin producing bacteria could be used to induce salt tolerance in plants. A number of Rhizobium and auxin producing rhizobacterial strains were assessed for their ability to tolerate salt stress by conducting osmoadaptation assay. The selected strains were further screened for their ability to induce osmotic stress tolerance in mung bean seedlings under salt-stressed axenic conditions in growth pouch/jar trials. Three most effective strains of Rhizobium and Pseudomonas containing ACC-deaminase were evaluated in combination, for their ability to induce osmotic stress tolerance in mung bean at original, 4, and 6 dS m-1 under axenic conditions. Results showed that sole inoculation of Rhizobium and Pseudomonas strains improved the total dry matter up to 1.4, and 1.9 fold, respectively, while the increase in salt tolerance index was improved up to 1.3 and 2.0 fold by the Rhizobium and Pseudomonas strains, respectively. However, up to 2.2 fold increase in total dry matter and salt tolerance index was observed due to combined inoculation of Rhizobium and Pseudomonas strains. So, combined application of Rhizobium and Pseudomonas strains could be explored as an effective strategy to induce osmotic stress tolerance in mung bean.

  15. Characterization of the effects of continuous salt processing on the performance of molten salt fusion breeder blankets

    International Nuclear Information System (INIS)

    Patterson-Hine, F.A.; Davidson, J.W.; Klein, D.E.; Lee, J.D.

    1985-01-01

    Several continuous salt processing options are available for use in molten salt fusion breeder blanket designs: fluorination only, fluorination plus reductive extraction, and fluorination, plus reductive extraction, plus metal transfer. The effects of processing on blanket performance have been assessed for these three levels of processing and various equilibrium uranium concentrations in the salt. A one-dimensional model of the blanket was used in the neutronics analysis, which incorporated transport calculations with time-dependent isotope generation and depletion calculations. The method of salt processing was found to have little affect on the level of radioactivity, toxicity, or the thermal behavior of the salt during operation of the reactor. The processing rates necessary to maintain the desired uranium concentrations in the suppressed-fission environment were quite low, which permitted only long-lived species to be removed from the salt. The effects of the processing therefore became apparent only after the radioactivity due to the short-lived species diminished. The effect of the additional processing (reductive extraction and metal transfer) could be seen after approximately 1 year of decay, but were not significant at times closer to shutdown. The reduced radioactivity and corresponding heat deposition were thus of no consequence in accident or maintenance situations. Net fissile production in the Be/MS blanket concept at a fusion power level of 3000 MW at 70% capacity ranged from 5100 kg/year to 5170 kg/year for uranium concentrations of 0.11% and 1.0% 233 U in thorium, respectively, with fluorination-only processing. The addition of processing by reductive extraction resulted in 5125 kg/year for the 0.11% 233 U case and 5225 kg/year for the 1.0% 233 U case

  16. Preliminary design of a low-cost greenhouse for salt production in Indonesia

    Science.gov (United States)

    Jaziri, A. A.; Guntur; Setiawan, W.; Prihanto, A. A.; Kurniawan, A.

    2018-04-01

    Salt is an assential material of industry, not only in food industry point of view but also in various industries such as chemical, oil drilling, and animal feed industries, even less than half of salt needs used to household consumption. It is crucial to ensure salt production in Indonesia reaches the national target (3.7 million tons) due to relatively low technology and production level. Thus salt production technology is developed to facilitate farmers consisted of geomembrane and filtering-threaded technology. However, the use of those technologies in producing salt was proved less effective due to unpredictable weather conditions. Therefore, greenhouse technology is proposed to be used for salt production for several good reasons. This paper describes the preliminary design of a low-cost greenhouse designed as a pyramid model that uses bamboo, mono-layer and high density polyethylene plastics. The results confirmed that the yield of salt produced by greenhouse significantly incresed compared with prior technology and the NaCl content increased as well. The cost of greenhouse was IDR 5,688,000 and easy to assembly.

  17. Aluminium silicate fertilization in the quality of wheat seeds under salt stress

    Directory of Open Access Journals (Sweden)

    César Iván Suárez Castellanos

    2015-06-01

    Full Text Available Wheat is used as raw material in the production of several foods and it is the first cereal as in the world production of grains. However, the agricultural production is limited for the salinity effect in about 50% of irrigated areas in the world. An alternative to reduce the salt stresses caused in the plants is the silicon use. The objective of this study was to evaluate the fertilizing effect with aluminum silicate using kaolin as a source, on seed quality of wheat produced under salt stress. The experiment was accomplished in greenhouse using wheat seeds of Quartzo cultivar sowed in pots of 10 L containing soil and maintained until harvest. The kaolin (77.9% SiO2 was applied in doses of 0 (control; 1,000; 2,000 and 3,000 kg ha-1. Salt stress was simulated through irrigation with NaCl solutions in the concentrations of 0 (control, 8 and 16 mM. Agronomic characteristics and the physiologic seed quality were evaluated. The results showed that the salt irrigation caused decrease in the number of ears per plant, number of ears with seeds, in the weight of the ears without threshing and in the weight of the produced seeds. The aluminum silicate use increased the weight of a thousand seeds independent of the presence of salt stress. Silicon application contributed to increase the percentage of germination of the produced seeds when the plants were not exposed to the salt stress.

  18. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain.

    Science.gov (United States)

    Adessi, Alessandra; Concato, Margherita; Sanchini, Andrea; Rossi, Federico; De Philippis, Roberto

    2016-03-01

    Hydrogen represents a possible alternative energy carrier to face the growing request for energy and the shortage of fossil fuels. Photofermentation for the production of H2 constitutes a promising way for integrating the production of energy with waste treatments. Many wastes are characterized by high salinity, and polluted seawater can as well be considered as a substrate. Moreover, the application of seawater for bacterial culturing is considered cost-effective. The aims of this study were to assess the capability of the metabolically versatile freshwater Rhodopseudomonas palustris 42OL of producing hydrogen on salt-containing substrates and to investigate its salt stress response strategy, never described before. R. palustris 42OL was able to produce hydrogen in media containing up to 3 % added salt concentration and to grow in media containing up to 4.5 % salinity without the addition of exogenous osmoprotectants. While the hydrogen production performances in absence of sea salts were higher than in their presence, there was no significant difference in performances between 1 and 2 % of added sea salts. Nitrogenase expression levels indicated that the enzyme was not directly inhibited during salt stress, but a regulation of its expression may have occurred in response to salt concentration increase. During cell growth and hydrogen production in the presence of salts, trehalose was accumulated as a compatible solute; it protected the enzymatic functionality against salt stress, thus allowing hydrogen production. The possibility of producing hydrogen on salt-containing substrates widens the range of wastes that can be efficiently used in production processes.

  19. Effects of metal salt catalysts on yeast cell growth in ethanol conversion

    Science.gov (United States)

    Chung-Yun Hse; Yin Lin

    2009-01-01

    The effects of the addition of metal salts and metal salt-catalyzed hydrolyzates on yeast cell growth in ethanol fermentation were investigated. Four yeast strains (Saccharomyces cerevisiae WT1, Saccharomyces cerevisiae MT81, Candida sp. 1779, and Klumaromyces fragilis), four metal salts (CuCl2, FeCl3, AgNO3, and I2), two metal salt-catalyzed hydrolyzates (...

  20. Salt brickwork as long-term sealing in salt formations

    International Nuclear Information System (INIS)

    Walter, F.; Yaramanci, U.

    1993-01-01

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in these potential pathways to prevent radioactive release into the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made from compressed salt-powder are understood to be the first choice long-term sealing material. Seals built of salt bricks will be ductile. Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. This provides for the good adhesive strength of the mortar to the bricks and the high shear-strength of the mortar itself. To test the interaction of rock salt with an emplaced long-term seal, experiments will be carried out in situ, in the Asse salt mine in Germany. Simple borehole sealing experiments will be performed in horizontal holes and a complicated drift sealing experiment is planned, to demonstrate the technology of sealing a standard size drift or shaft inside a disturbed rock mass. Especially, the mechanical stability of the sealing system has to be demonstrated

  1. Accelerator molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kuroi, Hideo; Kato, Yoshio; Oomichi, Toshihiko.

    1979-01-01

    Purpose: To obtain fission products and to transmute transuranium elements and other radioactive wastes by the use of Accelerator Molten-Salt Breeder Reactor. Constitution: Beams from an accelerator pipe at one end of a target vessel is injected through a window into target molten salts filled inside of the target vessel. The target molten salts are subjected to pump recycling or spontaneous convection while forcively cooled by blanket molten salts in an outer vessel. Then, energy is recovered from the blanket molten salts or the target molten salts at high temperatures through electric power generation or the like. Those salts containing such as thorium 232 and uranium 238 are used as the blanket molten salts so that fission products may be produced by neutrons generated in the target molten salts. PbCl 2 -PbF 2 and LiF-BeF 2 -ThF 4 can be used as the target molten salts and as the blanket molten salts respectively. (Seki, T.)

  2. Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.

    1984-01-01

    The products of a molten salt combustion of hazardous wastes are converted into a cooled gas, which can be filtered to remove hazardous particulate material, and a dry flowable mixture of salts, which can be recycled for use in the molten salt combustion, by means of gas/liquid contact between the gaseous products of combustion of the hazardous waste and a solution produced by quenching the spent melt from such molten salt combustion. The process results in maximizing the proportion of useful materials recovered from the molten salt combustion and minimizing the volume of material which must be discarded. In a preferred embodiment a spray dryer treatment is used to achieve the desired gas/liquid contact

  3. Complete Sensitivity/Uncertainty Analysis of LR-0 Reactor Experiments with MSRE FLiBe Salt and Perform Comparison with Molten Salt Cooled and Molten Salt Fueled Reactor Models

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mueller, Don [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    In September 2016, reactor physics measurements were conducted at Research Centre Rez (RC Rez) using the FLiBe (2 7LiF + BeF2) salt from the Molten Salt Reactor Experiment (MSRE) in the LR-0 low power nuclear reactor. These experiments were intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems using FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL), in collaboration with RC Rez, performed sensitivity/uncertainty (S/U) analyses of these experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objectives of these analyses were (1) to identify potential sources of bias in fluoride salt-cooled and salt-fueled reactor simulations resulting from cross section uncertainties, and (2) to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a final report on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. In the future, these S/U analyses could be used to inform the design of additional FLiBe-based experiments using the salt from MSRE. The key finding of this work is that, for both solid and liquid fueled fluoride salt reactors, radiative capture in 7Li is the most significant contributor to potential bias in neutronics calculations within the FLiBe salt.

  4. Excess maternal salt intake produces sex-specific hypertension in offspring: putative roles for kidney and gastrointestinal sodium handling.

    Directory of Open Access Journals (Sweden)

    Clint Gray

    Full Text Available Hypertension is common and contributes, via cardiovascular disease, towards a large proportion of adult deaths in the Western World. High salt intake leads to high blood pressure, even when occurring prior to birth - a mechanism purported to reside in altered kidney development and later function. Using a combination of in vitro and in vivo approaches we tested whether increased maternal salt intake influences fetal kidney development to render the adult individual more susceptible to salt retention and hypertension. We found that salt-loaded pregnant rat dams were hypernatraemic at day 20 gestation (147±5 vs. 128±5 mmoles/L. Increased extracellular salt impeded murine kidney development in vitro, but had little effect in vivo. Kidneys of the adult offspring had few structural or functional abnormalities, but male and female offspring were hypernatraemic (166±4 vs. 149±2 mmoles/L, with a marked increase in plasma corticosterone (e.g. male offspring; 11.9 [9.3-14.8] vs. 2.8 [2.0-8.3] nmol/L median [IQR]. Furthermore, adult male, but not female, offspring had higher mean arterial blood pressure (effect size, +16 [9-21] mm Hg; mean [95% C.I.]. With no clear indication that the kidneys of salt-exposed offspring retained more sodium per se, we conducted a preliminary investigation of their gastrointestinal electrolyte handling and found increased expression of proximal colon solute carrier family 9 (sodium/hydrogen exchanger, member 3 (SLC9A3 together with altered faecal characteristics and electrolyte handling, relative to control offspring. On the basis of these data we suggest that excess salt exposure, via maternal diet, at a vulnerable period of brain and gut development in the rat neonate lays the foundation for sustained increases in blood pressure later in life. Hence, our evidence further supports the argument that excess dietary salt should be avoided per se, particularly in the range of foods consumed by physiologically immature young.

  5. Thorium Molten-Salt Nuclear Energy Synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Lecocq, A.; Kato, Yoshio; Mitachi, Kohshi.

    1990-01-01

    In the next century, the 'fission breeder' concept will not be practical to solve the global energy problems, including environmental and North-South problems. As a new measure, a simple rational Th molten salt breeding fuel cycle system, named 'Thorium Molten-Salt Nuclear Energy Synergetics (THORIMS-NES)', which composed of simple power stations and fissile producers, is proposed. This is effective to establish the essential improvement in issues of resources, safety, power-size flexibility, anti-nuclear proliferation and terrorism, radiowaste, economy, etc. securing the simple operation, maintenance, chemical processing, and rational breeding fuel cycle. As examples, 155 MWe fuel self-sustaining power station 'FUJI-II', 7 MWe pilot-plant 'miniFUJI-II', 1 GeV-300 mA proton Accelerator Molten-Salt Breeder 'AMSB', and their combined fuel cycle system are explained. (author)

  6. Buffering effects of calcium salts in kimchi: lowering acidity, elevating lactic acid bacterial population and dextransucrase activity.

    Science.gov (United States)

    Chae, Seo Eun; Moon, Jin Seok; Jung, Jee Yun; Kim, Ji-Sun; Eom, Hyun-Ju; Kim, So-Young; Yoon, Hyang Sik; Han, Nam Soo

    2009-12-01

    This study investigates the buffering effects of calcium salts in kimchi on total acidity, microbial population, and dextransucrase activity. Calcium chloride or calcium carbonate was added in dongchimi-kimchi, a watery-radish kimchi, and their effects on various biochemical attributes were analyzed. The addition of 0.1% calcium chloride produced a milder decrease in the pH after 24 days of incubation, which allowed the lactic acid bacteria to survive longer than in the control. In particular, the heterofermentative Leuconostoc genus population was 10-fold higher than that in the control. When sucrose and maltose were also added along with the calcium salts, the dextransucrase activity in the kimchi was elevated and a higher concentration of isomaltooligosaccharides was synthesized when compared with the control. Calcium chloride was determined as a better activator compound of dextransucrase than calcium carbonate, probably because of its higher solubility. Therefore, the results of this study confirm the ability of the proposed approach to modulate the kimchi fermentation process and possibly enhance the quality of kimchi based on the addition of dietary calcium salts.

  7. Study on Salting out-Steam Distillation Extraction Technology and Antibacterial Activities of Essential Oil from Cumin Seeds

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2014-11-01

    Full Text Available The effects of different factors on the yield of essential oil from were discussed, and the extraction conditions of essential oil from cumin seeds by salting out-steam distillation technology based on single-factor test and orthogonal experiment, as well as its antibacterial activities on several common food spoilage bacteria were studied in this paper. The results showed that, the impact order of the influence factors was liquid/solid ratio > distilling time > NaCl concentration, and optimized extraction conditions were as follows, liquid to material ratio 15:1, soaking time 1 h, 4% NaCl, steam distilling time 3 h. The yield of essential oil was up to 4.48% under these conditions. The results of antibacterial activity assays showed that the essential oil from cumin seeds exhibited the different antibacterial activities against some food borne pathogens, especially it presented the best inhibitory effect against Bacillus subtilis with the minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC values of 6.25 and 12.5 mg/mL respectively, followed by Staphylococcus albus and Staphylococcus aureus, the lowest for Pseudomonas aeruginosa and Shigella dysenteriae

  8. Salt Stability - The Effect of pHmax on Salt to Free Base Conversion.

    Science.gov (United States)

    Hsieh, Yi-Ling; Merritt, Jeremy M; Yu, Weili; Taylor, Lynne S

    2015-09-01

    The aim of this study was to investigate how the disproportionation process can be impacted by the properties of the salt, specifically pHmax. Five miconazole salts and four sertraline salts were selected for this study. The extent of conversion was quantified using Raman spectroscopy. A mathematical model was utilized to estimate the theoretical amount of conversion. A trend was observed that for a given series of salts of a particular basic compound (both sertraline and miconazole are bases), the extent of disproportionation increases as pHmax decreases. Miconazole phosphate monohydrate and sertraline mesylate, although exhibiting significantly different pHmax values (more than 2 units apart), underwent a similar extent of disproportionation, which may be attributed to the lower buffering capacity of sertraline salts. This work shows that the disproportionation tendency can be influenced by pHmax and buffering capacity and thus highlights the importance of selecting the appropriate salt form during the screening process in order to avoid salt-to-free form conversion.

  9. Radioactivity levels in soil of salt field area Kelambakkam, Tamil Nadu, India

    International Nuclear Information System (INIS)

    Ravisankar, R.; Rajalakshmi, A.; Manikandan, E.; Gajendiran, V.; Meenakshisundaram, V.

    2006-01-01

    Mother nature has gifted mankind with lot of precious gifts. Common salt is one of them. In the globe, Tamilnadu is one of the ideal locations for producing salt. Kelambakkam salt field area is one of the leading producers of salt in global market. The climate, soil and availability of brine are a great asset for producing quality salts. In the present work, the primordial radionuclides concentration in soil samples collected in and around the salt field area, Kelambakkam, Tamilnadu was measured using gamma ray spectrometer

  10. Combined effect of salt and drought on boron toxicity in Puccinellia tenuiflora.

    Science.gov (United States)

    Liu, Chunguang; Dai, Zheng; Xia, Jingye; Chang, Can; Sun, Hongwen

    2018-08-15

    Boron toxicity is a worldwide problem, usually accompanied by salt (NaCl) and drought. The combined stresses may induce complex toxicity to the plant. The aim of the present study was to investigate how the combined stresses of salt and drought affect B toxicity in plants. Puccinellia tenuiflora seedlings were planted in vermiculite. A three (B) × three (salt) × three (drought) factorial experiment (for a total of 27 treatments) was conducted. After a 30-day cultivation, plants were harvested to determine dry weight and the concentrations of B, Na + , K + , Ca 2+ , and Mg 2+ . Plant growth was inhibited by B toxicity, which was alleviated by salt and drought. B stress enhanced B uptake and transport of the plant, which was inhibited by salt and drought. B stress had a little effect on K + and Na + concentration and caused Ca 2+ and Mg 2+ accumulation in the plant. Salt addition increased Na + concentration and inhibited Ca 2+ and Mg 2+ accumulation. Drought addition inhibited Na + accumulation and enhanced Ca 2+ and Mg 2+ accumulation. The combined stresses of salt and drought had a greater alleviation on the inhibition of dry weight caused by B than individual salt and drought. Besides, the combined stresses of salt and drought also enhanced B uptake and inhibited B transport. The results indicate that salt, drought, and the combined stresses of salt and drought all can alleviate B toxicity in P. tenuiflora, the main mechanism of which is the restriction of B and Na + uptake caused by salt and drought. The combined stresses of salt and drought have a greater effect on B toxicity than individual salt and drought. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The Effects of Cation Ratios on Root Lamella Suberization in Rice (Oryza sativa L. with Contrasting Salt Tolerance

    Directory of Open Access Journals (Sweden)

    M. R. Momayezi

    2012-01-01

    Full Text Available Rice is an important produced cereal in the world. We evaluated the effect of salt compositions including NaCl and Na2SO4 on suberin lamellae as a major barrier to radial ion and water movements in two rice genotypes representing contrasting salt tolerance levels under salinity stress. Two rice genotypes, Fajr as salt tolerant and Khazar as salt sensitive, were transplanted in sand culture under glasshouse condition. Rice seedlings were treated with five salt compositions including NaCl, Na2SO4, 1 : 1, 1 : 2, and 2 : 1 molar ratios for 40 days. It was proven that suberin lamellae in endodermis of root cell wall were thickened with Na2SO4 treatment. The results demonstrated that the number of passage cells was higher in Fajr genotype than that in Khazar genotype under saline condition. Calcium concentration in root tissue decreased as the SO42- concentration in root media increased. It can be concluded that Fajr genotype is able to keep some passage cells open to maintain Ca2+ uptake. The Ca2+/Na+ ratio in shoot tissue can be also a reliable index for the early recognition of salt stress in these rice genotypes.

  12. Spanish participation in the Haw Project: Laboratory investigations on Gamma irradiation effects in rock salt

    International Nuclear Information System (INIS)

    Cuevas, C. de las; Miralles, L.; Teixidor, P.; Garcia Veigas, J.; Dies, X.; Ortega, X.; Pueyo, J.J.

    1993-01-01

    In order to prove the safe disposal of high-level radioactive waste (HAW) in salt rock, a five years test disposal of thirty highly radioactive radiation sources is planned in the Asse salt mine, in the Federal Republic of Germany. The thirty radiation sources consist of steel canisters containing the vitrified radionuclides Caesium 137 and Strontium 90 in quantities sufficient to cover the bandwidth of heat generation and gamma radiation of real HAW. The radiation sources will be emplaced in six boreholes located in two galleries at the 800 m level. Two electrical heater tests were already started in November 1988 and are continuosly surveyed in respect of the rock mass. Also the handling system necessary for the emplacement of the radioactive canisters was developed and succesfully tested. A laboratory investigation programme on radiation effects in salt is being performed in advance to the radioactive canister emplacement. This programme includes the investigation of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Part of this programme has been carried out since 1988 at the University of Barcelona, basically what refers to colloidal sodium determinations by light absorption measurements and microstructural studies on irradiated salt samples. For gamma dose and dose rate measurements in the test field, measuring systems consisting of ionisation chambers as well as solid state dosemeters were developed and tested. Thermomechanical computer code validation is performed by calculational predictions and parallel investigation of the stress and displacement fields in the underground test field

  13. Experiments in a 600m borehole in the Asse II salt mine

    International Nuclear Information System (INIS)

    Heijdra, J.J.

    1992-07-01

    In the design and fabrication of underground disposal sites for radio-active waste in salt formations and the assessment of the safety of such disposal facilities, the thermo-mechanical behaviour of rock salt plays an important role. In previous research programmes models have been developed which need to be verified by in-situ experiments. It has been proven during the COSA project that computations based on laboratory scale experiments do not agree with in-situ measurements. Based on the experiments performed already and on the associated validation work, two items were considered to be of special concern, viz. the consecutive behaviour of rock salt and the rock pressure in the Asse salt mine. A particular problem in the constitutive relations is the elastic or apparent elastic behaviour of rock salt. It appeared that the salt around openings is weaker than could be expected on the basis of laboratory experiments. Possible explanations are primary creep and the weakening effect of micro cracks. In the research programme discussed here, in-situ experiments will be carried out in the Asse II salt mine in the Federal Republic of Germany. The measurements will be carried out in dry drilled boreholes. The development of the drilling technique was part of a related programme carried out under supervision of GSF-Forschungszentrum fuer Umwelt und Gesundheit (Research Centre for Environment and Health). (author). 3 refs

  14. Fracture and Healing of Rock Salt Related to Salt Caverns

    International Nuclear Information System (INIS)

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-01-01

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in

  15. Correlation of high-temperature stability of alpha-chymotrypsin with 'salting-in' properties of solution.

    Science.gov (United States)

    Levitsky VYu; Panova, A A; Mozhaev, V V

    1994-01-15

    A correlation between the stability of alpha-chymotrypsin against irreversible thermal inactivation at high temperatures (long-term stability) and the coefficient of Setchenov equation as a measure of salting-in/out efficiency of solutes in the Hofmeister series has been found. An increase in the concentration of salting-in solutes (KSCN, urea, guanidinium chloride, formamide) leads to a many-fold decrease of the inactivation rate of the enzyme. In contrast, addition of salting-out solutes has a small effect on the long-term stability of alpha-chymotrypsin at high temperatures. The effects of solutes are additive with respect to their salting-in/out capacities; the stabilizing action of the solutes is determined by the calculated Setchenov coefficient of solution. The correlation is explained by a solute-driven shift of the conformational equilibrium between the 'low-temperature' native and the 'high-temperature' denatured forms of the enzyme within the range of the kinetic scheme put forward in the preceding paper in this journal: irreversible inactivation of the high-temperature form proceeds much more slowly compared with the low-temperature form.

  16. Effects of salts on protein-surface interactions: applications for column chromatography.

    Science.gov (United States)

    Tsumoto, Kouhei; Ejima, Daisuke; Senczuk, Anna M; Kita, Yoshiko; Arakawa, Tsutomu

    2007-07-01

    Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. Copyright 2007 Wiley-Liss, Inc.

  17. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  18. Effects of Hofmeister salt series on gluten network formation: Part I. Cation series.

    Science.gov (United States)

    Tuhumury, H C D; Small, D M; Day, L

    2016-12-01

    Different cationic salts were used to investigate the effects of the Hofmeister salt series on gluten network formation. The effects of cationic salts on wheat flour dough mixing properties, the rheological and the chemical properties of the gluten extracted from the dough with different respective salts, were investigated. The specific influence of different cationic salts on the gluten structure formation during dough mixing, compared to the sodium ion, were determined. The effects of different cations on dough and gluten of different flours mostly followed the Hofmeister series (NH4(+), K(+), Na(+), Mg(2+) and Ca(2+)). The impacts of cations on gluten structure and dough rheology at levels tested were relatively small. Therefore, the replacement of sodium from a technological standpoint is possible, particularly by monovalent cations such as NH4(+), or K(+). However the levels of replacement need to take into account sensory attributes of the cationic salts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of salinity and sea salt type on egg activation, fertilization, buoyancy and early embryology of European eel, Anguilla anguilla

    DEFF Research Database (Denmark)

    Sørensen, Sune Riis; Butts, Ian; Munk, Peter

    2016-01-01

    sizes, while the remaining four salt types resulted in smaller eggs. All salt types except NaCl treatments led to high fertilization rates and had no effect on fertilization success as well as egg neutral buoyancies at 7 h post-fertilization. The study points to the importance of considering ionic...... and egg buoyancy. Egg diameter after activation, using natural seawater adjusted to different salinities, varied among female eels, but no consistent pattern emerged. Activation salinities between 30–40 practical salinity unit (psu) produced higher quality eggs and generally larger egg diameters. Chorion...

  20. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition

    International Nuclear Information System (INIS)

    Mathieu, L.

    2005-09-01

    Producing nuclear energy in order to reduce the anthropic CO 2 emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  1. Molten salt reactors: chemistry

    International Nuclear Information System (INIS)

    1983-01-01

    This work is a critical analysis of the 1000 MW MSBR project. Behavior of rare gases in the primary coolant circuit, their extraction from helium. Coating of graphite by molybdenum, chemistry of protactinium and niobium produced in the molten salt, continuous reprocessing of the fuel salt and use of stainless steel instead of hastelloy are reviewed [fr

  2. Low-Salt Intake during Mating or Gestation in Rats Is Associated with Low Birth and Survival Rates of Babies

    Directory of Open Access Journals (Sweden)

    Ranna Chou

    2014-01-01

    Full Text Available We investigated the influence of maternal salt restriction during mating or gestation on birth rate and offspring growth in Dahl salt-sensitive rats (DS. DS were divided into 5 groups: DS fed a low-salt (0.3% NaCl, w/w (DS-low or high-salt (4% NaCl, w/w diet (DS-high during mating and DS-high or DS-low during gestation, and DS fed regular chow (0.75% NaCl, w/w (DS-regular throughout mating and gestation. During the unspecified periods, the rats were given regular chow. DS-low during mating delivered fewer infants than high-salt mothers (P<0.05. The birth rate on regular chow was 87%. Six out of 11 DS-low rats during pregnancy produced pups while the rats fed a high-salt diet all delivered pups (P<0.025. The pup survival rate was 67% for high-salt mothers during mating and 54% for mothers on a low-salt diet. The pup survival rate was 95% for mothers on a high-salt diet during pregnancy and 64% for mothers on a low-salt diet (P<0.0001. Seven out of 8 DS-regular rats during mating delivered 59 neonates. However, 66% of the neonates survived. A low-salt diet during mating or pregnancy lowers birth rate and the neonates from low-salt mothers during pregnancy were more likely to die than those from high-salt mothers.

  3. The effectiveness of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) on the impurities removal of saturated salt solution

    Science.gov (United States)

    Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.

    2018-01-01

    Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.

  4. Effects of drought and salt stresses on growth characteristics of euhalophyte Suaeda salsa in coastal wetlands

    Science.gov (United States)

    Jia, Jia; Huang, Chen; Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Wen, Xiaojun

    2018-02-01

    The pot experiment was carried out in the Yellow River Delta to investigate the effects of drought and salt stresses on growth characteristics of Suaeda salsa, and to reveal the role of nitrogen (N) application in alleviation effects of drought and salt stresses on Suaeda salsa in coastal wetlands. In this study, plants were exposed to two water contents treatments (i.e., 14% and 26% water content), four salinity treatments (i.e., 2 g/kg, 4 g/kg, 6 g/kg, and 8 g/kg NaCl) and two N application treatments (i.e., 0 and 200 N mg/kg) in field conditions. Growth characteristics of Suaeda salsa were assessed as fresh weight, dry weight, height, total nitrogen (TN) and total carbon (TC). Our results showed that fresh weight, dry weight and height of Suaeda salsa promoted at lower salinity treatments but reduced at higher salinity treatments, while TN and TC contents kept stable with increasing salinity levels. Drought stress diminished the fresh weight, dry weight and height of Suaeda salsa, whereas enhanced TN contents. Under the interactive stresses of drought and salt, fresh weight and dry weight showed slight increases at lower salinity treatments, whereas decreases at higher salinity treatments. N application promoted the fresh weight, dry weight and TN contents other than the height and TC contents of Suaeda salsa. The interaction between N application and salt stress exhibited a significant influence on the fresh weight and dry weight of Suaeda salsa, whereas no significant interaction between N application and drought stress was observed. These findings of this study suggested that higher salinity, drought and the interaction of drought and higher salinity would retard the growth of Suaeda salsa, whereas N application could only mitigate the deleterious effects of salt stress on Suaeda salsa.

  5. The Synthesis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution

    International Nuclear Information System (INIS)

    Sri Budi Harmani; Dewi Sondari; Agus Haryono

    2008-01-01

    Described in this research are the synthesis of silver nanoparticle produced by chemical reduction of silver salt (silver nitrate AgNO 3 ) solution. As a reducer, sodium citrate (C 6 H 5 O 7 Na 3 ) was used. Preparation of silver colloid is done by using chemical reduction method. In typical experiment 150 ml of 1.10 -3 M AgNO 3 solution was heated with temperature variation such as 90, 100, 110 degree of Celsius. To this solution 15 ml of 1 % trisodium citrate was added into solution drop by drop during heating. During the process, solution was mixed vigorously. Solution was heated until colour's change is evident (pale yellow solution is formed). Then it was removed from the heating element and stirred until cooled to room temperature. Experimental result showed that diameter of silver nanoparticles in colloid solution is about 28.3 nm (Ag colloid, 90 o C); 19.9 nm (Ag colloid, 100 o C)and 26.4 nm (Ag colloid, 110 o C). Characterization of the silver nanoparticle colloid conducted by using UV-Vis Spectroscopy, Particles Size Analyzer (PSA) and Scanning Electron Microscope (SEM) indicate the produced structures of silver nanoparticles. (author)

  6. ERG [Engineering Review Group] review of the SRP [Salt Repository Project] salt irradiation effects program: Technical report

    International Nuclear Information System (INIS)

    Clark, D.E.

    1986-11-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The August 1985 meeting of the ERG reviewed the Salt Repository Project (SRP) salt irradiation effects program. This report documents the ERG's comments and recommendations on these subjects and the ONWI response to the specific points raised by the ERG

  7. Study on a Salt Evaporation of the Uranium Deposits from an Electro-refiner

    International Nuclear Information System (INIS)

    Sung Bin Park; Dong Wook Cho; Gyu Hwan Oh; Jong Hyeon Lee; Sung Chan Hwang; Young Ho Kang; Han Soo Lee; Eung Ho Kim; Seong Won Park

    2008-01-01

    Uranium metal is electrodeposited onto a solid cathode during the electrorefining process. Uranium deposits from an electro-refiner contain about 30∼40 wt% salts. In order to recover pure uranium and transform it into metal ingots, the salts have to be removed. A salt distiller is adapted for a salt evaporation. A batch operation for the salt removal is carried out by a heating and vacuum evaporation. It is operated at 700 ∼ 1000 deg. C and less than 1 Torr, respectively. The behaviors of the salt evaporations were investigated by focusing on the effects of the vacuum pressure and the holding temperature on the salt distillation. The salt removal efficiencies were obtained with regards to the operational conditions. The Hertz-Langmuir relation was applied to the experimental results of the salt evaporations. The effective evaporation coefficients of the relation were obtained with regards to the operational conditions. The lower the vacuum pressure and the higher the holding temperature were, the higher the removal efficiencies of the salts were. (authors)

  8. Effect of Salt Forms of Chitosan on In Vitro Permeability ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of chitosan (CS) salt forms and pH condition on the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer for enhanced permeability. Methods: Solutions (2 %w/v) of four different salt forms of CS-aspartate (CS-A), CS-ethylene diamine tetraacetate (CS-EDTA), ...

  9. SALT: How two Norwegian Early Career Scientists made a living out of their passion for marine Science and Education, Outreach, and Communication

    Science.gov (United States)

    Rokkan Iversen, K.; Busch, K. T.

    2011-12-01

    outside the universities and university colleges. Through their support, these national funding sources have given SALT a unique possibility to show the societal potential laying within EOC. The SALT project "The Sailing Marine Biologists", funded by NRC and The RENATE Centre, is a good example of innovative EOC-activities. In this project, SALT will sail with the coastal steamer Hurtigruten along the coast of Norway's very northern county of Finnmark, visiting schools with a magic mixture of our SALT tale, a mobile tidal zone, a neighboring squid, and an engaged dialog on how the local youth can gain their personal potential as well as build their own future society. The central message onboard this SALT cruise, is that it is possible to live your dream - with the help of (science) education. SALT believes that it is important to show youth outside the university cities that their possibilities are as unlimited as everyone else's. The value of bringing this message into their own world is to show how important it is for the Norwegian society, that everyone knows the potential they carry within. SALT is taking "The Sailing Marine Biologists" out to see throughout the winter of 2011/2012, and is excited to show some first glimpse of our experiences with this innovative EOC-project at AGU.

  10. Optical Modeling of Sea Salt Aerosols: The Effects of Nonsphericity and Inhomogeneity

    Science.gov (United States)

    Bi, Lei; Lin, Wushao; Wang, Zheng; Tang, Xiaoyun; Zhang, Xiaoyu; Yi, Bingqi

    2018-01-01

    The nonsphericity and inhomogeneity of marine aerosols (sea salts) have not been addressed in pertinent radiative transfer calculations and remote sensing studies. This study investigates the optical properties of nonspherical and inhomogeneous sea salts using invariant imbedding T-matrix simulations. Dry sea salt aerosols are modeled based on superellipsoidal geometries with a prescribed aspect ratio and roundness parameter. Wet sea salt particles are modeled as coated superellipsoids, as spherical particles with a superellipsoidal core, and as homogeneous spheres depending on the level of relative humidity. Aspect ratio and roundness parameters are found to be critical to interpreting the linear depolarization ratios (LDRs) of NaCl crystals from laboratory measurements. The optimal morphology parameters of NaCl necessary to reproduce the measurements are found to be consistent with data gleaned from an electron micrograph. The LDRs of wet sea salts are computed based on inhomogeneous models and compared with the measured data from ground-based LiDAR. The dependence of the LDR on relative humidity is explicitly considered. The increase in the LDR with relative humidity at the initial phase of deliquescence is attributed to both the size increase and the inhomogeneity effect. For large humidity values, the LDR substantially decreases because the overall particle shape becomes more spherical and the inhomogeneity effect in a particle on the LDR is suppressed for submicron sea salts. However, the effect of inhomogeneity on optical properties is pronounced for coarse-mode sea salts. These findings have important implications for atmospheric radiative transfer and remote sensing involving sea salt aerosols.

  11. Effects of heating on salt-occluded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Hash, M.C.; Pereira, C.; Ackerman, J.P.

    1996-01-01

    The electrometallurgical treatment of spent nuclear fuel generates a waste stream of fission products in the electrolyte, LiCl-KCl eutectic salt. Argonne National Laboratory is developing a mineral waste form for this waste stream. The waste form consists of a composite formed by hot pressing salt-occluded zeolite and a glass binder. Pressing conditions must be judiciously chosen. For a given pressure, increasing temperatures and hold times give denser products but the zeolite is frequently converted to sodalite. Reducing the temperature or hold time leads to a porous zeolite composite. Therefore, conditions that affect the thermal stability of salt-occluded zeolite both with and without glass are being investigated in an ongoing study. The parameters varied in this stage of the work were heating time, temperature, salt loading, and glass content. The heat-treated samples were examined primarily by X-ray diffraction. Large variations were found in the rate at which salt-occluded zeolite converted to other phases such as nepheline, salt, and sodalite. The products depended on the initial salt loading. Heating times required for these transitions depended on the procedure and temperature used to prepare the salt-occluded zeolite. Mixtures of glass and zeolite reacted much faster than the pure salt-occluded zeolite and were almost always converted to sodalite

  12. Effect of Pre-rigor Salting Levels on Physicochemical and Textural Properties of Chicken Breast Muscles.

    Science.gov (United States)

    Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Yeo, Eui-Joo; Jeong, Tae-Jun; Choi, Yun-Sang; Kim, Cheon-Jei

    2015-01-01

    This study was conducted to evaluate the effect of pre-rigor salting level (0-4% NaCl concentration) on physicochemical and textural properties of pre-rigor chicken breast muscles. The pre-rigor chicken breast muscles were de-boned 10 min post-mortem and salted within 25 min post-mortem. An increase in pre-rigor salting level led to the formation of high ultimate pH of chicken breast muscles at post-mortem 24 h. The addition of minimum of 2% NaCl significantly improved water holding capacity, cooking loss, protein solubility, and hardness when compared to the non-salting chicken breast muscle (prigor salting level caused the inhibition of myofibrillar protein degradation and the acceleration of lipid oxidation. However, the difference in NaCl concentration between 3% and 4% had no great differences in the results of physicochemical and textural properties due to pre-rigor salting effects (p>0.05). Therefore, our study certified the pre-rigor salting effect of chicken breast muscle salted with 2% NaCl when compared to post-rigor muscle salted with equal NaCl concentration, and suggests that the 2% NaCl concentration is minimally required to ensure the definite pre-rigor salting effect on chicken breast muscle.

  13. Effects of salicylic acid on wheat salt sensitivity | Erdal | African ...

    African Journals Online (AJOL)

    In this study, investigations on the effects of foliar-applied SA on salt sensitivity, hydrogen peroxide (H2O2) generation and activities of antioxidant enzymes like peroxidase (POX) and catalase (CAT) in plant tissues under salt stress was performed. SA treatment significantly increased the fresh and dry weights in both root ...

  14. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    Science.gov (United States)

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  15. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats.

    Directory of Open Access Journals (Sweden)

    Rebeca Caldeira Machado Berger

    Full Text Available Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%, low salt (LS: 0.03%, and high salt diet (HS: 3% until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm.

  16. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica)

    International Nuclear Information System (INIS)

    Sanzo, Domenico; Hecnar, Stephen J.

    2006-01-01

    Vast networks of roads cover the earth and have numerous environmental effects including pollution. A major component of road runoff in northern countries is salt (mostly NaCl) used as a winter de-icing agent, but few studies of effects of road salts on aquatic organisms exist. Amphibians require aquatic habitats and chemical pollution is implicated as a major factor in global population declines. We exposed wood frog tadpoles to NaCl. Tests revealed 96-h LC50 values of 2636 and 5109 mg/l and tadpoles experienced reduced activity, weight, and displayed physical abnormalities. A 90 d chronic experiment revealed significantly lower survivorship, decreased time to metamorphosis, reduced weight and activity, and increased physical abnormalities with increasing salt concentration (0.00, 0.39, 77.50, 1030.00 mg/l). Road salts had toxic effects on larvae at environmentally realistic concentrations with potentially far-ranging ecological impacts. More studies on the effects of road salts are warranted. - Road salts have toxic effects on amphibians at environmentally realistic concentrations

  17. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica)

    Energy Technology Data Exchange (ETDEWEB)

    Sanzo, Domenico [Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1 (Canada); Hecnar, Stephen J. [Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1 (Canada)]. E-mail: stephen.hecnar@lakeheadu.ca

    2006-03-15

    Vast networks of roads cover the earth and have numerous environmental effects including pollution. A major component of road runoff in northern countries is salt (mostly NaCl) used as a winter de-icing agent, but few studies of effects of road salts on aquatic organisms exist. Amphibians require aquatic habitats and chemical pollution is implicated as a major factor in global population declines. We exposed wood frog tadpoles to NaCl. Tests revealed 96-h LC50 values of 2636 and 5109 mg/l and tadpoles experienced reduced activity, weight, and displayed physical abnormalities. A 90 d chronic experiment revealed significantly lower survivorship, decreased time to metamorphosis, reduced weight and activity, and increased physical abnormalities with increasing salt concentration (0.00, 0.39, 77.50, 1030.00 mg/l). Road salts had toxic effects on larvae at environmentally realistic concentrations with potentially far-ranging ecological impacts. More studies on the effects of road salts are warranted. - Road salts have toxic effects on amphibians at environmentally realistic concentrations.

  18. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Science.gov (United States)

    Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng

    2018-02-01

    Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  19. A review of in situ investigations in salt

    International Nuclear Information System (INIS)

    Kuehn, K.

    1985-01-01

    In situ investigations for the disposal of radioactive wastes in rock salt formations have the longest history in the field. Well known names are Project Salt Vault (PSV) which was performed in the Lyons Mine, Kansas/USA, and the Asse salt mine in Germany. The overall objective for in situ investigations is twofold: 1. To produce all necessary data for the construction and operation of repositories and 2. to produce all necessary data for a performance assessment for repositories

  20. Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion

    Science.gov (United States)

    Wang, Heng; van der Wal, Daphne; Li, Xiangyu; van Belzen, Jim; Herman, Peter M. J.; Hu, Zhan; Ge, Zhenming; Zhang, Liquan; Bouma, Tjeerd J.

    2017-07-01

    Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and vegetation properties) affecting the erosion of salt marsh edges. In this study, we quantified rates of cliff lateral retreat (i.e., the eroding edge of a salt marsh plateau) using a time series of aerial photographs taken over four salt marsh sites in the Westerschelde estuary, the Netherlands. In addition, we experimentally quantified the erodibility of sediment cores collected from the marsh edge of these four marshes using wave tanks. Our results revealed the following: (i) at the large scale, wind exposure and the presence of pioneer vegetation in front of the cliff were the key factors governing cliff retreat rates; (ii) at the intermediate scale, foreshore morphology was partially related to cliff retreat; (iii) at the local scale, the erodibility of the sediment itself at the marsh edge played a large role in determining the cliff retreat rate; and (iv) at the mesocosm scale, cliff erodibility was determined by soil properties and belowground root biomass. Thus, both extrinsic and intrinsic factors determined the fate of the salt marsh but at different scales. Our study highlights the importance of understanding the scale dependence of the factors driving the evolution of salt marsh landscapes.

  1. Improvement of seawater salt quality by hydro-extraction and re-crystallization methods

    Science.gov (United States)

    Sumada, K.; Dewati, R.; Suprihatin

    2018-01-01

    Indonesia is one of the salt producing countries that use sea water as a source of raw materials, the quality of salt produced is influenced by the quality of sea water. The resulting average salt quality contains 85-90% NaCl. The Indonesian National Standard (SNI) for human salt’s consumption sodium chloride content is 94.7 % (dry base) and for industrial salt 98,5 %. In this study developed the re-crystallization without chemical and hydro-extraction method. The objective of this research to choose the best methods based on efficiency. The results showed that re-crystallization method can produce salt with NaCl content 99,21%, while hydro-extraction method content 99,34 % NaCl. The salt produced through both methods can be used as a consumption and industrial salt, Hydro-extraction method is more efficient than re-crystallization method because re-crystallization method requires heat energy.

  2. Comparison the effects of nitric oxide and spermidin pretreatment on alleviation of salt stress in chamomile plant (Matricaria recutita L.

    Directory of Open Access Journals (Sweden)

    Fazelian Nasrin

    2012-08-01

    Full Text Available Salt stress is an important environmental stress that produces reactive oxygen species in plants and causes oxidative injuries. In this investigation, salt stress reduced the shoot and root length, while increased the content of malondealdehyde, Hydrogen peroxide, and the activity of Ascorbate peroxidase andguaiacol peroxidase. Pretreatment of chamomile plants under salt stress with sodium nitroprussideand Spermidin caused enhancement of growth parameters and reduction of malondealdehyde and Hydrogen peroxide content. Pretreatment of plants with sodium nitroprusside remarkably increased Ascorbate peroxidase activity, while Spermidin pre-treatment significantly increased guaiacol peroxidase activity. Application of sodium nitroprusside or Spermidin with Methylene blue which is known to block cyclic guanosine monophosphate signaling pathway, reduced the protective effects of sodium nitroprussideand Spermidin in plants under salinity condition. The result of this study indicated that Methylene blue could partially and entirely abolish the protective effect of Nitric oxide on some physiological parameter. Methylene blue also has could reduce the alleviation effect of Spermidin on some of parameters in chamomile plant under salt stress, so with comparing the results of this study it seems that Spermidin probably acts through Nitric oxide pathway, but the use of 2-4- carboxyphenyl- 4,4,5,5- tetramethyl-imidazoline-1-oxyl-3-oxide is better to prove.

  3. Study of the character of the effect of various squeezing out agents on the squeezing out process

    Energy Technology Data Exchange (ETDEWEB)

    Begnazarov, T.

    1979-01-01

    Results are examined of the study of the process of squeezing out petroleum with water with additives of a chemical reagent as a multifactor experiment, carried out in laboratory conditions. The tests were carried out in inactive petroleum of the Mishkin deposits. In the capacity of the squeezing out agents, water, solutions of caustic soda, and acetic acid were used. The basic factors, affecting the process of waterless squeezing out, included porosity, permeability in respect to gas, water saturation, pressure gradient, volume of the injection of the squeezing out agent were selected. The waterless coefficient of squeezing out also shows an effect on the complete coefficient of squeezing out. As a result of the study of the paired connections, corresponding coefficients of the regression equations and correlation coefficient were produced. The difference according to the forms of the connection between the various squeezing out agent were analyzed.

  4. The Effect of Potassium on the Controlling of Salt in Evening Primrose (Oenothera macrocarpa

    Directory of Open Access Journals (Sweden)

    M. Goldani

    2016-07-01

    simultaneously with irrigation water applied. 6 weeks after the treatments, the rate of photosynthesis, chlorophyll relative content and stomata conductance was measured. The analysis of variance was estimated using SAS software. The statistical comparison was done by Duncan's multiple range tests. Charts were drawn using Excel software. Results and Discussion: According to the result of the analysis of variance, increasing the density of sodium chloride in the planting areas had a special effect on the size of the leaves and the weight of dried plant and the weight of each leaf and dried root. This effect showed a meaningful variation between the weight of dried leaves and its dried root and shoots. The salty areas have a lot of negative ions like Magnesium, Chlorine, sodium and sulfate. These materials are harmful by themselves or cause effective disorder in the plants metabolism. Salinity treatments applied to significant influence (01/0> p on the characteristics of photosynthesis, stomata conductance and numbers were read out by spade. For example, sodium and potassium competition and competition between chlorine and nitrate impairs the absorption of nutrients. The result of this reaction is that the plant needs more energy for producing organic matter so it loses most of its energy to resist against salt. This situation of the plant causes a low activity of the root and the growing of the shoot consequently reduce. At this situation the weight and length of the plant reduce too. For example existing potassium in salty lands cause the reduction of sodium in the shoot of the plants. This research was done in a pot with the same amount of salt. Potassium causes the reduction of Toxicity effects of sodium. Research has shown that the potassium in regulating osmotic pressure and permeability of plant cell membranes is effective and cause Increase plant tolerance to salinity. Conclusion: Some biological indexes of evening primrose plant were negatively affected by increasing

  5. Effect of salt stress on growth, inorganic ion and proline ...

    African Journals Online (AJOL)

    The inhibitory effect of salt stress in rice is complex and is one of the main reasons for reduction of plant growth and crop productivity. In the present study, the response of rice callus cultivar Khao Dawk Mali 105 (KDML105), commonly known as Thai jasmine rice, to salt stress was examined. Callus cultures of KDML105 rice ...

  6. Investigation of molten salt fast reactor

    International Nuclear Information System (INIS)

    Kubota, Kenichi; Konomura, Mamoru

    2002-01-01

    On survey research for practicability strategy of fast reactor (FR) (phase 1), to extract future practicability image candidates of FR from wide options, in addition to their survey and investigation objects of not only solid fuel reactors of conventional research object but also molten salt reactor as a flowing fuel reactor, investigation on concept of molten salt FR plant was carried out. As a part of the first step of the survey research for practicability strategy, a basic concept on plant centered at nuclear reactor facility using chloride molten salt reactor capable of carrying out U-Pu cycle was examined, to perform a base construction to evaluate economical potential for a practical FBR. As a result, a result could be obtained that because of inferior fuel inventory and heat transmission to those in Na cooling reactor in present knowledge, mass of reactor vessel and intermediate heat exchanger were to widely increased to expect reduction of power generation unit price even on considering cheapness of its fuel cycle cost. Therefore, at present step further investigation on concept design of the chloride molten salt reactor plant system is too early in time, and it is at a condition where basic and elementary researches aiming at upgrading of economical efficiency such as wide reduction of fuel inventory, a measure expectable for remarkable rationalization effect of reprocessing system integrating a reactor to a processing facility, and so on. (G.K.)

  7. Effect of Pre-rigor Salting Levels on Physicochemical and Textural Properties of Chicken Breast Muscles

    Science.gov (United States)

    Choi, Yun-Sang

    2015-01-01

    This study was conducted to evaluate the effect of pre-rigor salting level (0-4% NaCl concentration) on physicochemical and textural properties of pre-rigor chicken breast muscles. The pre-rigor chicken breast muscles were de-boned 10 min post-mortem and salted within 25 min post-mortem. An increase in pre-rigor salting level led to the formation of high ultimate pH of chicken breast muscles at post-mortem 24 h. The addition of minimum of 2% NaCl significantly improved water holding capacity, cooking loss, protein solubility, and hardness when compared to the non-salting chicken breast muscle (psalting level caused the inhibition of myofibrillar protein degradation and the acceleration of lipid oxidation. However, the difference in NaCl concentration between 3% and 4% had no great differences in the results of physicochemical and textural properties due to pre-rigor salting effects (p>0.05). Therefore, our study certified the pre-rigor salting effect of chicken breast muscle salted with 2% NaCl when compared to post-rigor muscle salted with equal NaCl concentration, and suggests that the 2% NaCl concentration is minimally required to ensure the definite pre-rigor salting effect on chicken breast muscle. PMID:26761884

  8. Effects of Spray Drying on Physicochemical Properties of Chitosan Acid Salts

    OpenAIRE

    Cervera, Mirna Fernández; Heinämäki, Jyrki; de la Paz, Nilia; López, Orestes; Maunu, Sirkka Liisa; Virtanen, Tommi; Hatanpää, Timo; Antikainen, Osmo; Nogueira, Antonio; Fundora, Jorge; Yliruusi, Jouko

    2011-01-01

    The effects of spray-drying process and acidic solvent system on physicochemical properties of chitosan salts were investigated. Chitosan used in spray dryings was obtained by deacetylation of chitin from lobster (Panulirus argus) origin. The chitosan acid salts were prepared in a laboratory-scale spray drier, and organic acetic acid, lactic acid, and citric acid were used as solvents in the process. The physicochemical properties of chitosan salts were investigated by means of solid-state CP...

  9. HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.; Stippler, R.

    1988-01-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in an one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. The project is funded by the BMFT and the CEC and carrier out in close co-operation with the Netherlands Energy Research Foundation (ECN)

  10. Short-term effects of salt exposure on the maize chloroplast protein pattern.

    Science.gov (United States)

    Zörb, Christian; Herbst, Ramona; Forreiter, Christoph; Schubert, Sven

    2009-09-01

    It is of fundamental importance to understand the physiological differences leading to salt resistance and to get access to the molecular mechanisms underlying this physiological response. The aim of this work was to investigate the effects of short-term salt exposure on the proteome of maize chloroplasts in the initial phase of salt stress (up to 4 h). It could be shown that sodium ions accumulate quickly and excessively in chloroplasts in the initial phase of moderate salt stress. A change in the chloroplast protein pattern was observed without a change in water potential of the leaves. 2-DE revealed that 12 salt-responsive chloroplast proteins increased while eight chloroplast proteins decreased. Some of the maize chloroplast proteins such as CF1e and a Ca(2+)-sensing receptor show a rather transient response for the first 4 h of salt exposure. The enhanced abundance of the ferredoxin NADPH reductase, the 23 kDa polypeptide of the photosystem II, and the FtsH-like protein might reflect mechanism to attenuate the detrimental effects of Na(+) on the photosynthetic machinery. The observed transient increase and subsequent decrease of selected proteins may exhibit a counterbalancing effect of target proteins in this context. Intriguingly, several subunits of the CF1-CF0 complex are unequally affected, whereas others do not respond at all.

  11. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    International Nuclear Information System (INIS)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu; Zhang, Hongxia

    2009-01-01

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na + content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na + homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  12. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China); Zhang, Hongxia, E-mail: hxzhang@sippe.ac.cn [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China)

    2009-05-08

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na{sup +} content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na{sup +} homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  13. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Directory of Open Access Journals (Sweden)

    W. Gong

    2018-02-01

    Full Text Available Salt intrusion in the Pearl River estuary (PRE is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  14. Effect of Salt Water in the Production of Concrete | Mbadike ...

    African Journals Online (AJOL)

    In this research work, the effect of salt water in the production of concrete was investigated. A total of ninety (90) concrete cubes were cast for compression strength test i.e. forty five cubes were cast using fresh water and the other forty five cubes were also cast using salt water. Similarly, a total of ninety (90) concrete beams ...

  15. Protozoa inhibition by different salts: Osmotic stress or ionic stress?

    Science.gov (United States)

    Li, Changhao; Li, Jingya; Lan, Christopher Q; Liao, Dankui

    2017-09-01

    Cell density and morphology changes were tested to examine the effects of salts including NaHCO 3 , NaCl, KHCO 3 , and KCl at 160 mM on protozoa. It was demonstrated that ionic stress rather than osmotic stress led to protozoa cell death and NaHCO 3 was shown to be the most effective inhibitor. Deformation of cells and cell shrinkage were observed when protozoan cells were exposed to polyethylene glycol (PEG) or any of the salts. However, while PEG treated cells could fully recover in both number and size, only a small portion of the salt-treated cells survive and cell size was 36-58% smaller than the regular. The disappearance of salt-treated protozoa cells was hypothetically attributed to disruption of the cytoplasmic membrane of these cells. It is further hypothesized that the PEG-treated protozoan cells carried out regulatory volume increase (RVI) after the osmotic shock but the RVI of salt-treated protozoa was hurdled to varied extents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1418-1424, 2017. © 2017 American Institute of Chemical Engineers.

  16. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats.

    Science.gov (United States)

    Bielinska, Klaudia; Radkowski, Marek; Grochowska, Marta; Perlejewski, Karol; Huc, Tomasz; Jaworska, Kinga; Motooka, Daisuke; Nakamura, Shota; Ufnal, Marcin

    2018-03-22

    A high-salt diet is considered a cardiovascular risk factor; however, the mechanisms are not clear. Research suggests that gut bacteria-derived metabolites such as trimethylamine N-oxide (TMAO) are markers of cardiovascular diseases. We evaluated the effect of high salt intake on gut bacteria and their metabolites plasma level. Sprague Dawley rats ages 12-14 wk were maintained on either water (controls) or 0.9% or 2% sodium chloride (NaCl) water solution (isotonic and hypertonic groups, respectively) for 2 wk. Blood plasma, urine, and stool samples were analyzed for concentrations of trimethylamine (TMA; a TMAO precursor), TMAO, and indoxyl sulfate (indole metabolite). The gut-blood barrier permeability to TMA and TMA liver clearance were assessed at baseline and after TMA intracolonic challenge test. Gut bacterial flora was analyzed with a 16S ribosomal ribonucleic acid (rRNA) gene sequence analysis. The isotonic and hypertonic groups showed a significantly higher plasma TMAO and significantly lower 24-hr TMAO urine excretion than the controls. However, the TMA stool level was similar between the groups. There was no significant difference between the groups in gut-blood barrier permeability and TMA liver clearance. Plasma indoxyl concentration and 24-hr urine indoxyl excretion were similar between the groups. There was a significant difference between the groups in gut bacteria composition. High salt intake increases plasma TMAO concentration, which is associated with decreased TMAO urine excretion. Furthermore, high salt intake alters gut bacteria composition. These findings suggest that salt intake affects an interplay between gut bacteria and their host homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Assessment of the Capability of Molten Salt Reactors as a Next Generation High Temperature Reactors

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2017-01-01

    Molten Salt Reactor according to Aircraft Reactor Experiment (ARE) and the Molten Salt Reactor Experiment (MSRE) programs, was designed to be the first full-scale, commercial nuclear power plant utilizing molten salt liquid fuels that can be used for producing electricity, and producing fissile fuels (breeding)burning actinides. The high temperature in the primary cycle enables the realization of efficient thermal conversion cycles with net thermal efficiencies reach in some of the designs of nuclear reactors greater than 45%. Molten salts and liquid salt because of their low vapor pressure are excellent candidates for meeting most of the requirements of these high temperature reactors. There is renewed interest in MSRs because of changing goals and new technologies in the use of high-temperature reactors. Molten Salt Reactors for high temperature create substantial technical challenges to have high effectiveness intermediate heat transfer loop components. This paper will discuss and investigate the capability and compatibility of molten salt reactors, toward next generation high temperature energy system and its technical challenges

  18. Effect of salt stress on some sweet corn (Zea mays L. var. saccharata genotypes

    Directory of Open Access Journals (Sweden)

    Shtereva Lydia A.

    2015-01-01

    Full Text Available An experiment was carried out hydroponically under laboratory conditions to investigate the effect of salt stress on several physiological and biochemical parameters of three sweet corn (Zea mays L. var. saccharata genotypes: lines 6-13, C-6 (pollen source and their heterotic F1 hybrid “Zaharina”. The degree of salinity tolerance among these genotypes was evaluated at three different sodium chloride (NaCl concentrations: 0 mM, 100 mM, 125 mM and 150 mM. Seed germination, plant growth and biochemical stress determining parameters such as malondialdehyde (MDA, proline content and hydrogen peroxide (H2O2 levels were compared between seedlings of lines and hybrid. The obtained results indicated that both lines and hybrid have similar responses at different salinity levels for all examined traits. All the seedlings’ growth parameters, such as germination percentage, root length, shoot length, root and shoot fresh and dry weight, decreased with increasing salinity level. MDA, proline and H2O2 increased at different saline conditions in comparison to the control. Based on the results, of the three genotypes examined, the hybrid Zaharina, followed by line C-6, was more salt-sensitive than line 6-13 in salt stress condition.

  19. Stopped-flow studies of changes in fluorescence of 8-anilino-1-naphthalene sulfonic acid caused by magnesium and salt binding to yeast enolase.

    Science.gov (United States)

    Brewer, J M

    1976-12-11

    Stopped-flow studies of magnesium and salt (potassium chloride and acetate) effects on yeast enolase were carried out by following 8-anilino-1-naphthalenesulfonic acid fluorescence changes. The fluorescence changes appear to be largely caused by subunit association and dissociation, though there is evidence in some reactions for large changes in fluorescence occurring within the dead time of the stopped-flow measurements. These data are combined with measurements of initial enzyme activity after incubation in various solvents with or without magnesium to obtain subunit association and dissociation rates. From these, it is concluded that magnesium and the salts act by directly changing the affinities of the subunits for each other, apparently by producing a rapid change in protein conformation.

  20. Salinity stress effects on [14C-1]- and [14C-6]-glucose metabolism of a salt-tolerant and salt-susceptible variety of wheat

    International Nuclear Information System (INIS)

    Krishnaraj, S.; Thorpe, T.A.

    1996-01-01

    The effect of salt (sodium sulfate) on carbohydrate metabolism was studied in a salt-tolerant (Kharchia-65) variety and a salt-susceptible (Fielder) variety of wheat (Triticum aestivum L.) by comparing their responses under control and stress conditions. Leaf segments of Kharchia-65 showed increased activity through both the pentose phosphate pathway (PPP) and the glycolytic pathway of glucose oxidation, with the former being comparatively more active in response to salt. In Fielder, there was an increase in PPP activity at the expense of glycolytic pathway activity. Label from glucose was found in the lipid, neutral sugar, amino acid, organic acid, and phosphate ester fractions in all treatments. On the basis of the label distribution patterns, it appears that Fielder leaves incubated with [ 14 C-6]-glucose were not able to utilize glucose efficiently under saline conditions. This finding was further supported by decreased label incorporation into all the fractions, especially the amino acid and organic acid fractions. Adenosine phosphate and reduced pyridine nucleotide concentrations were consistent with these observations. We conclude therefore that the salt-tolerant variety had an enhanced metabolic activity compared with the salt-susceptible variety, which contributed to its ability to overcome the adverse effects of salt. (author)

  1. Liquid chromatography-tandem mass spectrometric assay for the quantitative determination of the tyrosine kinase inhibitor quizartinib in mouse plasma using salting-out liquid-liquid extraction

    NARCIS (Netherlands)

    Retmana, Irene A; Wang, Jing; Schinkel, Alfred H; Schellens, Jan H M; Beijnen, Jos H; Sparidans, Rolf W

    2017-01-01

    A bioanalytical assay for quizartinib -a potent, and selective FLT3 tyrosine kinase inhibitor- in mouse plasma was developed and validated. Salting-out assisted liquid-liquid extraction (SALLE), using acetonitrile and magnesium sulfate, was selected as sample pretreatment with deuterated quizartinib

  2. An Investigation into the Effects of Temperature Gradient on the Soil Water–Salt Transfer with Evaporation

    Directory of Open Access Journals (Sweden)

    Rong Ren

    2017-06-01

    Full Text Available Temperature gradients exist in the field under brackish water irrigation conditions, especially in northern semi–arid areas of China. Although there are many investigators dedicated to studying the mechanism of brackish water irrigation and the effect of brackish water irrigation on crops, there are fewer investigations of the effects of temperature gradient on the water–salt transport. Based on the combination of a physical experiment and a mathematical model, this study was conducted to: (a build a physical model and observe the redistribution of soil water–heat–salt transfer; (b develop a mathematical model focused on the influence of a temperature gradient on soil water and salt redistribution based on the physical model and validate the proposed model using the measured data; and (c analyze the effects of the temperature gradient on the soil water–salt transport by comparing the proposed model with the traditional water–salt model in which the effects of temperature gradient on the soil water–salt transfer are neglected. Results show that the soil temperature gradient has a definite influence on the soil water–salt migration. Moreover, the effect of temperature gradient on salt migration was greater than that of water movement.

  3. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  4. Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity

    Science.gov (United States)

    Dashtian, Hassan; Shokri, Nima; Sahimi, Muhammad

    2018-02-01

    Salt transport and precipitation in porous media constitute a set of complex and fascinating phenomena that are of considerable interest to several important problems, ranging from storage of CO2 in geological formations, to soil fertility, and protection of pavements and roads, as well as historical monuments. The phenomena occur at the pore scale and are greatly influenced by the heterogeneity of the pore space morphology. We present a pore-network (PN) model to study the phenomena. Vapor diffusion, capillary effect at the brine-vapor interface, flow of brine, and transport of salt and its precipitation in the pores that plug the pores partially or completely are all accounted for. The drying process is modeled by the invasion percolation, while transport of salt in brine is accounted for by the convective-diffusion equation. We demonstrate that the drying patterns, the clustering and connectivity of the pore throats in which salt precipitation occurs, the saturation distribution, and the drying rate are all strongly dependent upon the pore-size distribution, the correlations among the pore sizes, and the anisotropy of the pore space caused by stratification that most natural porous media contain. In particular, if the strata are more or less parallel to the direction of injection of the gas that dries out the pore space (air, for example) and/or causes salt precipitation (CO2, for example), the drying rate increases significantly. Moreover, salt tends to precipitate in clusters of neighboring pores that are parallel to the open surface of the porous medium.

  5. Effects of salt stress levels on five maize ( Zea mays L.) cultivars at ...

    African Journals Online (AJOL)

    Effects of salt stress levels on five maize ( Zea mays L.) cultivars at germination stage. ... To investigation the effects of salt stress levels (0, 50, 100, 150, 200 and 250 mM NaCl) on five maize (Zea mays L.) cultivars at ... from 32 Countries:.

  6. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Michael F. Simpson

    2013-01-01

    Full Text Available Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separating fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.

  7. Where Does Road Salt Go - a Static Salt Model

    Science.gov (United States)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  8. Salt briquette: the form of salt monopoly in madura, 1883-1911

    Science.gov (United States)

    Wisnu; Alrianingrum, S.; Artono; Liana, C.

    2018-01-01

    This study describes the history of the salt monopoly in Indonesia because it is associated with the issue of salt crisis lately, widely reported in various media. This study tried to find answers to the relationship between monopoly and crisis events through the study of history. Monopoly policy by the government of the colonial period is actually an industrial modernization effort, but it turned out another impact. Although the colonial government wanted to issue a policy that ends strengthens the position of the government in the industry, but ultimately backfire and disasters in the salt industry at the time. This article discusses only the focus of the salt monopoly in Madura as a selection of events, arguing the island as a center of salt in Indonesia. The method used in this study using a review of history. Therefore, their explanations using historical sources. Methodologically through the process of collecting historical sources, criticize these sources, synthesize and interpret the analysis in an array of historical writing. In conclusion, although the salt monopoly policy gives a great advantage to the colonial government, but the overall population of Madura remains in a poor state. It is evident that the Madurese to migrate Madurese to various areas outside the island of Madura, to fix the economy.

  9. Effect of Dried Lake Salt (Kanwa) on Lipid profile and Heart ...

    African Journals Online (AJOL)

    Peripatum cardiomyopathy is a devastating form of cardiac failure affecting women mainly in their last month of pregnancy or early postpartum with high incidence in Northern Nigeria where the consumption of dried lake salt postpartum is high. The current work was designed to study the effect of dried lake salt on lipid ...

  10. Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    Using atomic-scale molecular dynamics simulations, we consider the intrinsic cell membrane potential that is found to originate from a subtle interplay between lipid transmembrane asymmetry and the asymmetric distribution of monovalent salt ions on the two sides of the cell membrane. It turns out......Cl saline solution and the PE leaflet is exposed to KCl, the outcome is that the effects of asymmetric lipid and salt ion distributions essentially cancel one another almost completely. Overall, our study highlights the complex nature of the intrinsic potential of cell membranes under physiological...... that both the asymmetric distribution of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipids across a membrane and the asymmetric distribution of NaCl and KCl induce nonzero drops in the transmembrane potential. However, these potential drops are opposite in sign. As the PC leaflet faces a Na...

  11. An application of LOTEM around salt dome near Houston, Texas

    Science.gov (United States)

    Paembonan, Andri Yadi; Arjwech, Rungroj; Davydycheva, Sofia; Smirnov, Maxim; Strack, Kurt M.

    2017-07-01

    A salt dome is an important large geologic structure for hydrocarbon exploration. It may seal a porous reservoir of rocks that form petroleum reservoirs. Several techniques such as seismic, gravity, and electromagnetic including magnetotelluric have successfully yielded salt dome interpretation. Seismic has difficulties seeing through the salt because the seismic energy gets trapped by the salt due to its high velocity. Gravity and electromagnetics are more ideal methods. Long Offset Transient Electromagnetic (LOTEM) and Focused Source Electromagnetic (FSEM) were tested over a salt dome near Houston, Texas. LOTEM data were recorded at several stations with varying offset, and the FSEM tests were also made at some receiver locations near a suspected salt overhang. The data were processed using KMS's processing software: First, for assurance, including calibration and header checking; then transmitter and receiver data are merged and microseismic data is separated; Finally, data analysis and processing follows. LOTEM processing leads to inversion or in the FSEM case 3D modeling. Various 3D models verify the sensitivity under the salt dome. In addition, the processing was conducted pre-stack, stack, and post-stack. After pre-stacking, the noise was reduced, but showed the ringing effect due to a low-pass filter. Stacking and post-stacking with applying recursive average could reduce the Gibbs effect and produce smooth data.

  12. The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Sarah L. Perry

    2014-06-01

    Full Text Available Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt (pAA and poly(allylamine hydrochloride (pAH, as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specific interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.

  13. The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Sarah; Li, Yue; Priftis, Dimitrios; Leon, Lorraine; Tirrell, Matthew

    2014-06-01

    Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt) (pAA) and poly(allylamine hydrochloride) (pAH), as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specific interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.

  14. Salt effects in electromembrane extraction

    DEFF Research Database (Denmark)

    Seip, Knut Fredrik; Jensen, Henrik; Kieu, Thanh Elisabeth

    2014-01-01

    Electromembrane extraction (EME) was performed on samples containing substantial amounts of NaCl to investigate how the presence of salts affected the recovery, repeatability, and membrane current in the extraction system. A group of 17 non-polar basic drugs with various physical chemical...... this loss and the physical chemical properties of these substances was seen. The recovery loss was hypothesized to be caused by ion pairing in the SLM, and a mathematical model for the extraction recovery in the presence of salts was made according to the experimental observations. Some variations...... to the EME system reduced this recovery loss, such as changing the SLM solvent from NPOE to 6-undecanone, or by using a different EME setup with more favorable volume ratios. This was in line with the ion pairing hypothesis and the mathematical model. This thorough investigation of how salts affect EME...

  15. Immobilization of IFR salt wastes in mortar

    International Nuclear Information System (INIS)

    Fischer, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes produced by the fuel cycles of Integral Fast Reactors (IFR). The IFR is a sodium-cooled fast reactor with metal alloy fuels. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500/degree/C. This cell has a liquid cadmium anode in which the fuels are dissolved and a liquid salt electrolyte. The salt will be a mixture of either lithium, potassium, and sodium chlorides or lithium, calcium, barium, and sodium chlorides. One method being considered for immobilizing the treated nontransuranic salt waste is to disperse the salt in a portland cement-base mortar that will be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canister-molds where it will solidify into a strong, leach-resistant material. The set times must be longer than a few hours to allow sufficient time for processing, and the mortar must reach a reasonable compressive strength (/approximately/7 MPa) within three days to permit handling. Because fission product heating will be high, about 0.6 W/kg for a mortar containing 10% waste salt, the effects of elevated temperatures during curing and storage on mortar properties must be considered

  16. The effects of pre-salting methods on salt and water distribution of heavily salted cod, as analyzed by 1H and 23Na MRI, 23Na NMR, low-field NMR and physicochemical analysis

    DEFF Research Database (Denmark)

    Guðjónsdóttir, María; Traoré, Amidou; Jónsson, Ásbjörn

    2015-01-01

    The effect of different pre-salting methods (brine injection with salt with/without polyphosphates, brining and pickling) on the water and salt distribution in dry salted Atlantic cod (Gadus morhua) fillets was studied with proton and sodium NMR and MRI methods, supported by physicochemical analy...

  17. Effect of salt stress on growth and contents of organic and inorganic ...

    African Journals Online (AJOL)

    Effect of salt stress on growth and contents of organic and inorganic compounds in noni ( Morinda citrifolia L.) ... seedlings at 1, 10, 20, 30 and 40 days of salt stress in a 5 x 2 completely randomized experimental design. ... from 32 Countries:.

  18. Molten-salt reactor strategies viewed from fuel conservation effect, (1)

    International Nuclear Information System (INIS)

    Furuhashi, Akira

    1976-01-01

    Saving of material requirements in the long-term fuel cycle is studied by introducing molten-salt reactors with good neutron economy into a projection of nuclear generating capacity in Japan. In this first report an examination is made on the effects brought by the introduction of molten-salt converter reactors starting with Pu which are followed by 233 U breeders of the same type. It is shown that the sharing of some Pu in the light water- and fast breeder-reactor system with molten-salt reactors provides a more rapid transition to the self-supporting, breeding cycle than the simple fast breeding system, thus leading to an appreciable fuel conservation. Considerations are presented on the strategic repartition of generating capacity among reactor types and it is shown that all of the converted 233 U should be promptly invested to molten-salt breeders to quickly establish the dual breeding system, instead of recycling to converters themselves. (auth.)

  19. Salting Effects as an Illustration of the Relative Strength of Intermolecular Forces

    Science.gov (United States)

    Person, Eric C.; Golden, Donnie R.; Royce, Brenda R.

    2010-01-01

    This quick and inexpensive demonstration of the salting of an alcohol out of an aqueous solution illustrates the impact of intermolecular forces on solubility using materials familiar to many students. Ammonium sulfate (fertilizer) is added to an aqueous 35% solution of isopropyl alcohol (rubbing alcohol and water) containing food coloring as a…

  20. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands.

    Science.gov (United States)

    Nosetto, Marcelo D; Jobbágy, Esteban G; Tóth, Tibor; Di Bella, Carlos M

    2007-07-01

    Plants, by influencing water fluxes across the ecosystem-vadose zone-aquifer continuum, can leave an imprint on salt accumulation and distribution patterns. We explored how the conversion of native grasslands to oak plantations affected the abundance and distribution of salts on soils and groundwater through changes in the water balance in naturally salt-affected landscapes of Hortobagy (Hungary), a region where artificial drainage performed approximately 150 years ago lowered the water table (from -2 to -5 m) decoupling it from the surface ecosystem. Paired soil sampling and detailed soil conductivity transects revealed consistently different salt distribution patterns between grasslands and plantations, with shallow salinity losses and deep salinity gains accompanying tree establishment. Salts accumulated in the upper soil layers during pre-drainage times have remained in drained grasslands but have been flushed away under tree plantations (65 and 83% loss of chloride and sodium, respectively, in the 0 to -0.5 m depth range) as a result of a five- to 25-fold increase in infiltration rates detected under plantations. At greater depth, closer to the current water table level, the salt balance was reversed, with tree plantations gaining 2.5 kg sodium chloride m(-2) down to 6 m depth, resulting from groundwater uptake and salt exclusion by tree roots in the capillary fringe. Diurnal water table fluctuations, detected in a plantation stand but not in the neighbouring grasslands, together with salt mass balances suggest that trees consumed approximately 380 mm groundwater per year, re-establishing the discharge regime and leading to higher salt accumulation rates than those interrupted by regional drainage practices more than a century ago. The strong influences of vegetation changes on water dynamics can have cascading consequences on salt accumulation and distribution, and a broad ecohydrological perspective that explicitly considers vegetation-groundwater links is

  1. With a pinch of extra salt-Did predatory protists steal genes from their food?

    Science.gov (United States)

    Czech, Laura; Bremer, Erhard

    2018-02-01

    The cellular adjustment of Bacteria and Archaea to high-salinity habitats is well studied and has generally been classified into one of two strategies. These are to accumulate high levels either of ions (the "salt-in" strategy) or of physiologically compliant organic osmolytes, the compatible solutes (the "salt-out" strategy). Halophilic protists are ecophysiological important inhabitants of salt-stressed ecosystems because they are not only very abundant but also represent the majority of eukaryotic lineages in nature. However, their cellular osmostress responses have been largely neglected. Recent reports have now shed new light on this issue using the geographically widely distributed halophilic heterotrophic protists Halocafeteria seosinensis, Pharyngomonas kirbyi, and Schmidingerothrix salinarum as model systems. Different approaches led to the joint conclusion that these unicellular Eukarya use the salt-out strategy to cope successfully with the persistent high salinity in their habitat. They accumulate various compatible solutes, e.g., glycine betaine, myo-inositol, and ectoines. The finding of intron-containing biosynthetic genes for ectoine and hydroxyectoine, their salt stress-responsive transcription in H. seosinensis, and the production of ectoine and its import by S. salinarum come as a considerable surprise because ectoines have thus far been considered exclusive prokaryotic compatible solutes. Phylogenetic considerations of the ectoine/hydroxyectoine biosynthetic genes of H. seosinensis suggest that they have been acquired via lateral gene transfer by these bacterivorous Eukarya from ectoine/hydroxyectoine-producing food bacteria that populate the same habitat.

  2. The effects of ascorbic acid on salt induced alfalfa (Medicago sativa L.)

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    contribute to the high electrical conductivity of salt-affected lands3. ... the cellular mechanisms of the stress and its application at the .... Fig 2: Effect of salt and ascorbic acid on a) stem length, b) root length, c) root number, d) dry weight of ...

  3. Lung health and heart rate variability changes in salt workers.

    Science.gov (United States)

    Glad Mohesh, M I; Sundaramurthy, A

    2016-04-01

    India is the third largest salt producing country in the World, with a global annual production of 230 million tonnes. Large number of salt workers get employed in these salt milling plants risking their life from the effects of salt. Recent foreign evidences reported that these salt workers are exposed to aerosol salt particles that disturb their lung and cardiovascular autonomic control. To compare the status of lung health, cardiovascular autonomic control and biochemical changes in a group of salt industry workers with that of the age-matched normal subjects. Volunteers of both sexes (25-35 years) were divided into Group I (n=10) controls and Group II (n=10) non-brine salt workers in salt milling plants. From fasting blood sample, complete blood count, plasma electrolyte and lipid profile estimation were done. After resting for 15min, blood pressure and lead II ECG were recorded. Spirometry was done using RMS Helios spirometer. Data collected were later analysed using GraphPad Prism 5.0 with statistical significance set at p4.0, 112.8±1.7, pindustry has shown a little or no impact on the respiratory system, however there are changes in the blood and cardiovascular system, which need to be further studied to understand the long-term influences of salt in this population. Copyright © 2015 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.

  4. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers

    Energy Technology Data Exchange (ETDEWEB)

    Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of); Shakiba, Atefeh [Department of Material Science and Metallurgy, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Vahdati-Khaki, Jalil; Zebarjad, Seyed Mojtaba [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of)

    2016-02-15

    Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reaction temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.

  5. Durability of building stones against artificial salt crystallization

    Science.gov (United States)

    Min, K.; Park, J.; Han, D.

    2005-12-01

    Salts have been known as the most powerful weathering agents, especially when combined with frost action. Salt crystallization test along with freezing-thawing test and acid immersion test was carried out to assess the durability of building stones against weathering. Granite, limestone, marble and basalt were sampled from different quarries in south Korea for this study. One cycle of artificial salt crystallization test was composed of immersion of cored rock specimens in oversaturated solutions of CaCl2, KCl, NaCl and Na2SO4, respectively for 15 hours and successive drying in an oven of 105°C for 3 hours and cooling at room temperature. Tests were performed up to 30 cycles, and specific gravity and ultrasonic velocity were measured after experiencing every 10 cycles and uniaxial compressive strength was measured only after 30 cycles. During the repeated Na2SO4 salt crystallization, some rock samples were gradually deformed excessively and burst after 20 to 30 cycles of test. The variation patterns of physical properties during the salt crystallization tests are too variable to generalize the effect of salt weathering on physical properties but limestone, marble and basalt samples showed relatively greater change of physical properties than granite samples. The recrystallized salts were well observed in the cracks of rock samples through the scanning electron microscope. In the all salt crystallization tests, apparent specific gravities for all tested samples increased generally but not so significantly due to recrystallization of salts. It can be inferred that filling the pores with salt crystals cause the increase of ultrasonic velocity during the early stage of salt crystallization and then in later stages the repeated cycles of salt crystallization result in development of cracks leading decrease of ultrasonic velocity for some rock samples.

  6. Feasibility and antihypertensive effect of replacing regular salt with mineral salt -rich in magnesium and potassium- in subjects with mildly elevated blood pressure

    Directory of Open Access Journals (Sweden)

    Sarkkinen Essi S

    2011-09-01

    Full Text Available Abstract Background High salt intake is linked to hypertension whereas a restriction of dietary salt lowers blood pressure (BP. Substituting potassium and/or magnesium salts for sodium chloride (NaCl may enhance the feasibility of salt restriction and lower blood pressure beyond the sodium reduction alone. The aim of this study was to determine the feasibility and effect on blood pressure of replacing NaCl (Regular salt with a novel mineral salt [50% sodium chloride and rich in potassium chloride (25%, magnesium ammonium potassium chloride, hydrate (25%] (Smart Salt. Methods A randomized, double-blind, placebo-controlled study was conducted with an intervention period of 8-weeks in subjects (n = 45 with systolic (SBP 130-159 mmHg and/or diastolic (DBP 85-99 mmHg. During the intervention period, subjects consumed processed foods salted with either NaCl or Smart Salt. The primary endpoint was the change in SBP. Secondary endpoints were changes in DBP, daily urine excretion of sodium (24-h dU-Na, potassium (dU-K and magnesium (dU-Mg. Results 24-h dU-Na decreased significantly in the Smart Salt group (-29.8 mmol; p = 0.012 and remained unchanged in the control group: resulting in a 3.3 g difference in NaCl intake between the groups. Replacement of NaCl with Smart Salt resulted in a significant reduction in SBP over 8 weeks (-7.5 mmHg; p = 0.016. SBP increased (+3.8 mmHg, p = 0.072 slightly in the Regular salt group. The difference in the change of SBP between study groups was significant (p Conclusions The substitution of Smart Salt for Regular salt in subjects with high normal or mildly elevated BP resulted in a significant reduction in their daily sodium intake as well as a reduction in SBP. Trial Registration ISRCTN: ISRCTN01739816

  7. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    Science.gov (United States)

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the

  8. Effects of salting processes and time on the chemical composition, textural properties, and microstructure of cooked duck egg.

    Science.gov (United States)

    Kaewmanee, Thammarat; Benjakul, Soottawat; Visessanguan, Wonnop

    2011-03-01

    Chemical composition, textural properties, and microstructure of cooked duck egg salted by 2 methods (coating and immersing) were determined during 4 wk of salting. As the salting time increased, moisture content increased and salt content decreased for both cooked salted egg white and yolk. Oil exudation of cooked yolk and expressible water content of cooked egg white obtained from both salting methods increased as salting proceeded (P cooking, oil exudation accompanied by the solubilized pigments, especially at the outer layer of yolk, was obtained. At week 3 of salting, egg yolk from coating method had the higher egg exudation than that from immersing method. As the salting times increased, the lower hardness, springiness, gumminess, chewiness, and resilience with higher adhesiveness and cohesiveness were generally found in cooked salted egg white (P cooked yolk increased continuously and reached the maximum at week 2 and 2 to 3 for immersing and coating method (P egg after heating, compared with the fresh counterpart. As visualized by scanning electron microscope, gel of cooked salted egg white was coagulum type with larger voids. Salting methods determined oil exudation in egg yolk and texture profile of egg white gel after cooking; however, those attributes were also governed by the salting time. Salted duck egg can be made by 2 methods (coating and immersing) affecting the characteristic of salted egg white and yolk after cooking. Desirable cooked salted egg having the red yolk with hardness and high oil exudation could be obtained when salting was carried out for 3 and 4 wk for immersing and coating method, respectively.

  9. Enterotoxin Producing Ability And Antimicrobial Susceptibility Of Coagulase-Negative Staphylococci Isolated From Goat Milk Cheese And Salted Yoghurt In Turkey

    Directory of Open Access Journals (Sweden)

    S. Pehlivanlar Onen

    2017-10-01

    Full Text Available The aim of this study was to determine enterotoxin producing ability and antimicrobial susceptibility of coagulase negative staphylococci CNS in goats bulk milk cheese and salted yoghurt. CNS strains were identified by using GP card in VITEK 2 system. The presence of enterotoxins was determined by enzyme immunoassay test by using RIDASCREEN test kit. Antibiotic susceptibility in CNS strains was detected by using AST-P640 card in VITEK 2 system. A total of 100 CNS strains were isolated in 22 55 bulk milk samples and in 23 57.5 cheese samples. Staphylococcus spp. could not be isolated from salted yoghurt samples. The most encountered species were S. caprae 51.9 S. chromogenes 11.5 and S. xylosus 9.6 from milk samples and S. saprophyticus 60.4 S. xylosus 12.5 and S. haemolyticus 8.3 from cheese samples. Four CNS strains 4 isolated from samples were capable of producing enterotoxin. While all isolates were resistant to at least one antibiotic 74 of CNS strains showed resistance to two or more antibiotics. Enterotoxin production ability and high antibiotic resistance of the CNS strains isolated from goat bulk milk and cheese can lead to a risk for public health.

  10. The relative biological effectiveness of out-of-field dose

    International Nuclear Information System (INIS)

    Balderson, Michael; Koger, Brandon; Kirkby, Charles

    2016-01-01

    Purpose: using simulations and models derived from existing literature, this work investigates relative biological effectiveness (RBE) for out-of-field radiation and attempts to quantify the relative magnitudes of different contributing phenomena (spectral, bystander, and low dose hypersensitivity effects). Specific attention is paid to external beam radiotherapy treatments for prostate cancer. Materials and methods: using different biological models that account for spectral, bystander, and low dose hypersensitivity effects, the RBE was calculated for different points moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE was found by taking the ratio of the equivalent dose with the physical dose. Equivalent doses were calculated by determining what physical dose would be necessary to produce the same overall biological effect as that predicted using the different biological models. Results: spectral effects changed the RBE out-of-field less than 2%, whereas response models incorporating low dose hypersensitivity and bystander effects resulted in a much more profound change of the RBE for out-of-field doses. The bystander effect had the largest RBE for points located just outside the edge of the primary radiation beam in the cranial caudal (z-direction) compared to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander effect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre. Conclusions: spectral, bystander, and low dose hypersensitivity effects can all increase the RBE for out-of-field radiation doses. In most cases, bystander effects seem to play the largest role followed by low dose hypersensitivity. Spectral effects were unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and spectral effect increased the RBE much more in the cranial caudal direction (z-direction) compared with the coplanar directions. (paper)

  11. Effect of hurricanes and violent storms on salt marsh

    Science.gov (United States)

    Leonardi, N.; Ganju, N. K.; Fagherazzi, S.

    2016-12-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  12. The 'Salting Out' Effect: Investigating the Influence of Both the Nature and Concentration of Salt on the Partition Coefficient of Butan-1,4-Dioic Acid

    Science.gov (United States)

    McCullagh, John

    2018-01-01

    This sixth-form chemistry activity describes how students can use acid-base titrimetry to investigate how adding salt to the aqueous phase may change the value of the partition coefficient of an organic acid between water and 2-methylpropan-1-ol. While the presence of lithium chloride and sodium chloride increases the value of the partition…

  13. Crushed Salt Constitutive Model

    International Nuclear Information System (INIS)

    Callahan, G.D.

    1999-01-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well

  14. The simplified convergence rate calculation for salt grit backfilled caverns in rock salt

    International Nuclear Information System (INIS)

    Navarro, Martin

    2013-03-01

    Within the research and development project 3609R03210 of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, different methods were investigated, which are used for the simplified calculation of convergence rates for mining cavities in salt rock that have been backfilled with crushed salt. The work concentrates on the approach of Stelte and on further developments based on this approach. The work focuses on the physical background of the approaches. Model specific limitations are discussed and possibilities for further development are pointed out. Further on, an alternative approach is presented, which implements independent material laws for the convergence of the mining cavity and the compaction of the crushed salt backfill.

  15. EFFECTS OF THALLIUM SALTS ON NEURONAL MITOCHONDRIA IN ORGANOTYPIC CORD-GANGLIA-MUSCLE COMBINATION CULTURES

    Science.gov (United States)

    Spencer, Peter S.; Peterson, Edith R.; Madrid A., Ricardo; Raine, Cedric S.

    1973-01-01

    A functionally coupled organotypic complex of cultured dorsal root ganglia, spinal cord peripheral nerve, and muscle has been employed in an experimental approach to the investigation of the neurotoxic effects of thallium. Selected cultures, grown for up to 12 wk in vitro, were exposed to thallous salts for periods ranging up to 4 days. Cytopathic effects were first detected after 2 h of exposure with the appearance of considerably enlarged mitochondria in axons of peripheral nerve fibers. With time, the matrix space of these mitochondria became progressively swollen, transforming the organelle into an axonal vacuole bounded by the original outer mitochondrial membrane. Coalescence of adjacent axonal vacuoles produced massive internal axon compartments, the membranes of which were shown by electron microprobe mass spectrometry to have an affinity for thallium. Other axoplasmic components were displaced within a distended but intact axolemma. The resultant fiber swelling caused myelin retraction from nodes of Ranvier but no degeneration. Impulses could still propagate along the nerve fibers throughout the time course of the experiment. Comparable, but less severe changes were seen in dorsal root ganglion neurons and in central nerve fibers. Other cell types showed no mitochondrial change. It is uncertain how these findings relate to the neurotoxic effects of thallium in vivo, but a sensitivity of the nerve cell and especially its axon to thallous salts is indicated. PMID:4125375

  16. The Effects of Salt Water on the Slow Crack Growth of Soda Lime Silicate Glass

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth parameters of soda-lime silicate were measured in distilled and salt water of various concentrations in order to determine if stress corrosion susceptibility is affected by the presence of salt and the contaminate formation of a weak sodium film. Past research indicates that solvents effect the rate of crack growth, however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the slow crack growth parameters A and n. However, for typical engineering purposes, the effect can be ignored.

  17. Effects of salting treatment on the physicochemical properties, textural properties, and microstructures of duck eggs

    Science.gov (United States)

    Xu, Lilan; Zhao, Yan; Xu, Mingsheng; Yao, Yao; Nie, Xuliang; Du, Huaying

    2017-01-01

    In order to illuminate the forming process of salted egg, the effects of the brine solution with different salt concentrations on the physicochemical properties, textural properties, and microstructures of duck eggs were evaluated using conventional physicochemical property determination methods. The results showed that the moisture contents of both the raw and cooked egg whites and egg yolks, the springiness of the raw egg yolks and cooked egg whites exhibited a decreasing trend with the increase in the salting time and salt concentration. The salt content, oil exudation and the hardness of the raw egg yolks showed a constantly increasing trend. Viscosity of the raw egg whites showed an overall trend in which it first deceased and then increased and decreased again, which was similar to the trend of the hardness of the cooked egg whites and egg yolks. As the salting proceeded, the pH value of the raw and cooked egg whites declined remarkably and then declined slowly, whereas the pH of the raw and cooked egg yolks did not show any noticeable changes. The effect of salting on the pH value varied significantly with the salt concentration in the brine solution. Scanning electron microscopy (SEM) revealed that salted yolks consist of spherical granules and embedded flattened porosities. It was concluded that the treatment of salt induces solidification of yolk, accompanied with higher oil exudation and the development of a gritty texture. Different salt concentrations show certain differences. PMID:28797071

  18. The effect of salt replacers and flavor enhancer on the processing characteristics and consumer acceptance of turkey sausages.

    Science.gov (United States)

    Pietrasik, Zeb; Gaudette, Nicole J

    2015-07-01

    Producing high-quality processed meats that contain reduced amounts of sodium chloride is a major challenge facing industry owing to the importance of sodium chloride toward the functional, microbial stability and sensory properties of these products. In order to create reduced sodium alternatives, a number of commercial salt replacers and flavor enhancers have entered the market; however, their ability to be applied in processed meats requires investigation. In this study, two salt replacers (Ocean's Flavor - OF45, OF60) and one flavor enhancer (Fonterra™ Savoury Powder - SP) were evaluated for their ability to effectively reduce sodium while maintaining the functional and sensory properties of turkey sausages. Functionality via instrumental measures (yield, purge loss, pH, expressible moisture, proximate composition, sodium content, color, texture), safety (microbiological assessment) and consumer acceptability were obtained on all samples. All non-control treatments resulted in products with sodium chloride contents below Canada's Health Check™ Program target for processed meats. There was no detrimental effect on water binding and texture in treatments when NaCl was substituted with OF60 sea salt replacers. Sodium reduction had no negative effect on the shelf life of the turkey sausages with up to 60 days of refrigerated storage. Consumer acceptability for all attributes did not differ significantly, except for aftertaste, which scored lowest for OF45 compared with the control (regular NaCl content). This work demonstrated that salt replacers could potentially substitute for NaCl in smoked turkey sausages; however, further flavor optimization may be required to suppress undesirable levels of bitterness elicited by some of these ingredients. © 2014 Society of Chemical Industry.

  19. Effect of salt intensity in soup on ad libitum intake and on subsequent food choice.

    Science.gov (United States)

    Bolhuis, Dieuwerke P; Lakemond, Catriona M M; de Wijk, Rene A; Luning, Pieternel A; de Graaf, Cees

    2012-02-01

    The effect of salt intensity on ad libitum intake of tomato soup was investigated when soup was served as a first course and as a second course. Also the effect of salt intensity in soup on subsequent sweet vs. savory choice of sandwich fillings was investigated. Forty-three healthy subjects consumed ad libitum a low-salt (LS), ideal-salt (IS) and high-salt (HS) tomato soup in both meal settings. The salt concentrations were selected on an individual basis, in a way that IS was most pleasant and LS and HS were similar in pleasantness. The ad libitum intake of IS soup was higher than that of LS and HS soup, and the ad libitum intake of LS soup was higher than that of HS soup. The meal setting, soup as a first or as a second course, did not affect ad libitum intake. Salt intensity in soup did not predict sweet vs. savory choice of fillings in grams or energy, although most sodium from fillings was consumed after intake of HS soup. In conclusion, a higher salt intensity lead to lower ad libitum intake of soup similar in palatability (LS vs. HS). In addition, salt intensity in soup does not predict sweet vs. savory food choice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Biological treatment of waste waters of high salt content; Depuracion biologica de efluentes con alto contenido salino

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.I.; Goytia, M.; Muguruza, I.; Blanco, F. [GAIKER, Zamudio (Spain)

    1996-09-01

    The fish canning industry, a national industrial sector of economical significance, generates high volumes of wastewater containing a high organic load and salt concentration. In addition to other problems presented for the aerobic biological treatment of these effluents, the presence of a high chloride concentration produces an inhibitory effect on the growth of aerobic microorganisms. In this work the inhibitory effect of chloride has been analyzed by means of a biokinetic study carried out using the electrolytic respirometry techniques and tuna boiling water as wastewater. This kind of study is highly appropriated for the search of solutions to specific problems created during the treatment of different industrial sectors wastewater. (Author) 10 refs.

  1. Effects of read-out light sources and ambient light on radiochromic film

    International Nuclear Information System (INIS)

    Butson, Martin J.; Yu, Peter K.N.; Metcalfe, Peter E.

    1998-01-01

    Both read-out light sources and ambient light sources can produce a marked effect on coloration of radiochromic film. Fluorescent, helium neon laser, light emitting diode (LED) and incandescent read-out light sources produce an equivalent dose coloration of 660 cGy h -1 , 4.3 cGy h -1 , 1.7 cGy h -1 and 2.6 cGy h -1 respectively. Direct sunlight, fluorescent light and incandescent ambient light produce an equivalent dose coloration of 30 cGy h -1 , 18 cGy h -1 and 0 cGy h -1 respectively. Continuously on, fluorescent light sources should not be used for film optical density evaluation and minimal exposure to any light source will increase the accuracy of results. (author)

  2. Cum grano salis - NAA of selected salts

    International Nuclear Information System (INIS)

    Steinhauser, G.; Sterba, J.H.; Poljanc, K.; Bichler, M.; Buchtela, K.

    2006-01-01

    The aim of this study was to investigate the trace element concentrations of salt samples from different regions, in particular Austria, Germany, Pakistan, Poland, Switzerland, and Ukraine. Investigated types of salt were Rock-, Sea-, Lake-, and Evaporated Salt. The main objective was to find out whether the consumption of salt can contribute significantly to the daily human requirements of trace elements. Therefore, trace element concentrations in the untreated samples were compared to those of specially treated samples, simulating digestive uptake using a simple model. Salt is a non-trivial matrix for Neutron Activation Analysis (NAA) because of very high background activities from 38 Cl and 24 Na, as well as the bremsstrahlung of 32 P (originating from 35 Cl(n,α) 32 P). Because of this fact, detection limits in salt are higher compared to other matrices. Nevertheless, several elements could be detected, namely Al, Ba, Br, (Ca), Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, La, Mn, Na, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, and Zn, some of them only in single samples. In most samples the concentrations of trace elements in salt were too low to show biological effects. Salt can therefore only significantly contribute the essential elements sodium, chlorine, and, if added on purpose, fluorine and iodine to human nutrition. The contribution of all other traces in salt to the average daily human requirements can be neglected. Thus, from an analytical point of view, there is no health reason to use unpurified salt. There are, however, a few drawbacks to the use of unpurified salt, as hygroscopic compounds like MgCl 2 , and even toxic heavy metals like chromium or thorium. Especially rare earth element (REE) concentrations can often be used to obtain a chemical fingerprint, which can be used to identify the origin of an unknown sample. In the case of this study, the sample number from each region was too small to collect significant data. Therefore more analytical information is needed

  3. Magnesium and iron nanoparticles production using microorganisms and various salts

    Science.gov (United States)

    Kaul, R. K.; Kumar, P.; Burman, U.; Joshi, P.; Agrawal, A.; Raliya, R.; Tarafdar, J. C.

    2012-09-01

    Response of five fungi and two bacteria to different salts of magnesium and iron for production of nanoparticles was studied. Pochonia chlamydosporium, and Aspergillus fumigatus were exposed to three salts of magnesium while Curvularia lunata, Chaetomium globosum, A. fumigatus, A. wentii and the bacteria Alcaligenes faecalis and Bacillus coagulans were exposed to two salts of iron for nanoparticle production. The results revealed that P. chlamydosporium induces development of extracellular nanoparticles in MgCl2 solution while A. fumigatus produces also intracellular nanoparticles when exposed to MgSO4 solution. C. globosum was found as the most effective in producing nanoparticles when exposed to Fe2O3 solution. The FTIR analysis of the nanoparticles obtained from Fe2O3 solution showed the peaks similar to iron (Fe). In general, the species of the tested microbes were selective to different chemicals in their response for synthesis of nanoparticles. Further studies on their characterization and improving the efficiency of promising species of fungi need to be undertaken before tapping their potential as nanonutrients for plants.

  4. The effect of salt composition on reductive extraction of some typical elements from molten LiF-BeF2 salt into liquid bismuth

    International Nuclear Information System (INIS)

    Hirotake, M.; Jun, O.; Kimikazu, M.; Kunimitsu, Y.; Yasunobu, T.

    1983-01-01

    The distribution coefficients of thorium and radium between molten LiF-BeF 2 and liquid bismuth solutions were measured at 600 0 C in support of the processing of the molten-salt breeder reactor (MSBR) fuel. The increasing mole fraction of LiF in the salt phase from 40 to 70 mol% resulted in the rapid decrease of the distribution coefficient of thorium and in the slow decrease of that of radium. A comprehensive correlation of distribution behavior with salt composition is given by taking into account the formation of complex ions. The equilibrium distribution data affirm that thorium and radium exist mainly as Li 2 ThF 6 and RaF 2 , respectively, in the salt phase. It is suggested that the lower mole fraction of LiF in the fuel salt is effective in the MSBR fuel processing

  5. Accelerator Measurments of the Askaryan Effect in Rock Salt: A Roadmap Toward Teraton Underground Neutrino Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gorham, P.

    2004-12-15

    We report on further SLAC measurements of the Askaryan effect: coherent radio emission from charge asymmetry in electromagnetic cascades. We used synthetic rock salt as the dielectric medium, with cascades produced by GeV bremsstrahlung photons at the Final Focus Test Beam. We extend our prior discovery measurements to a wider range of parameter space and explore the effect in a dielectric medium of great potential interest to large scale ultra-high energy neutrino detectors: rock salt (halite), which occurs naturally in high purity formations containing in many cases hundreds of cubic km of water-equivalent mass. We observed strong coherent pulsed radio emission over a frequency band from 0.2-15 GHz. A grid of embedded dual-polarization antennas was used to confirm the high degree of linear polarization and track the change of direction of the electric-field vector with azimuth around the shower. Coherence was observed over 4 orders of magnitude of shower energy. The frequency dependence of the radiation was tested over two orders of magnitude of UHF and microwave frequencies. We have also made the first observations of coherent transition radiation from the Askaryan charge excess, and the result agrees well with theoretical predictions. Based on these results we have performed detailed and conservative simulation of a realistic GZK neutrino telescope array within a salt-dome, and we find it capable of detecting 10 or more contained events per year from even the most conservative GZK neutrino models.

  6. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    Science.gov (United States)

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  7. Stabilization of molten salt materials using metal chlorides for solar thermal storage.

    Science.gov (United States)

    Dunlop, T O; Jarvis, D J; Voice, W E; Sullivan, J H

    2018-05-29

    The effect of a variety of metal-chlorides additions on the melting behavior and thermal stability of commercially available salts was investigated. Ternary salts comprised of KNO 3, NaNO 2, and NaNO 3 were produced with additions of a variety of chlorides (KCl, LiCl, CaCl 2 , ZnCl 2 , NaCl and MgCl 2 ). Thermogravimetric analysis and weight loss experiments showed that the quaternary salt containing a 5 wt% addition of LiCl and KCl led to an increase in short term thermal stability compared to the ternary control salts. These additions allowed the salts to remain stable up to a temperature of 630 °C. Long term weight loss experiments showed an upper stability increase of 50 °C. A 5 wt% LiCl addition resulted in a weight loss of only 25% after 30 hours in comparison to a 61% loss for control ternary salts. Calorimetry showed that LiCl additions allow partial melting at 80 °C, in comparison to the 142 °C of ternary salts. This drop in melting point, combined with increased stability, provided a molten working range increase of almost 100 °C in total, in comparison to the control ternary salts. XRD analysis showed the oxidation effect of decomposing salts and the additional phase created with LiCl additions to allow melting point changes to occur.

  8. Cost-effectiveness analysis of salt reduction policies to reduce coronary heart disease in Syria, 2010-2020.

    Science.gov (United States)

    Wilcox, Meredith L; Mason, Helen; Fouad, Fouad M; Rastam, Samer; al Ali, Radwan; Page, Timothy F; Capewell, Simon; O'Flaherty, Martin; Maziak, Wasim

    2015-01-01

    This study presents a cost-effectiveness analysis of salt reduction policies to lower coronary heart disease in Syria. Costs and benefits of a health promotion campaign about salt reduction (HP); labeling of salt content on packaged foods (L); reformulation of salt content within packaged foods (R); and combinations of the three were estimated over a 10-year time frame. Policies were deemed cost-effective if their cost-effectiveness ratios were below the region's established threshold of $38,997 purchasing power parity (PPP). Sensitivity analysis was conducted to account for the uncertainty in the reduction of salt intake. HP, L, and R+HP+L were cost-saving using the best estimates. The remaining policies were cost-effective (CERs: R=$5,453 PPP/LYG; R+HP=$2,201 PPP/LYG; R+L=$2,125 PPP/LYG). R+HP+L provided the largest benefit with net savings using the best and maximum estimates, while R+L was cost-effective with the lowest marginal cost using the minimum estimates. This study demonstrated that all policies were cost-saving or cost effective, with the combination of reformulation plus labeling and a comprehensive policy involving all three approaches being the most promising salt reduction strategies to reduce CHD mortality in Syria.

  9. Long-term sealing of openings in salt formations

    International Nuclear Information System (INIS)

    Walter, F.; Stockmann, N.; Yaramanci, U.; Laurens, J.F.

    1993-01-01

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in those potential pathways to prevent radioactive release to the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made of compressed salt-powder are understood to be the first choice long-term sealing material. Seals built from salt bricks will be ductile. The permeability of the salt bricks is assumed to be in the order of 2*10 -15 m 2 . Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. The permeability of the mortar decreases with its salt content to approx. 2*10 -14 m 2 . Moistened saliferous clay may show temporary swelling. Sealing experiments will be carried out in the Asse salt mine. Long-term seals will be built into holes of 1 m diameter. The contact and merging of the brick-wall with the surrounding rock salt will be investigated in long-term tests. Within the in situ sealing program a number of geophysical methods are applied. Acoustic emission measurements are used to study the effects of high pressure gas injection and a geoelectrical observation program is aiming to estimate the permeability in and around the long-term seal. High frequency electromagnetic methods contribute to the knowledge of the petrophysical rock properties. 11 refs., 12 figs

  10. [Effects of salt stress on germination and in vitro growth of pistachio (Pistacia vera L.)].

    Science.gov (United States)

    Benmahioul, Benamar; Daguin, Florence; Kaid-Harche, Meriem

    2009-08-01

    In order to study the salinity tolerance of pistachio (Pistacia vera L.), embryos developed from mature seeds were isolated and cultured in vitro and subjected to different NaCl concentrations (0, 42.8, 85.5, 171.1 and 256.6 mM) for 30 days. The results showed that in vitro germination of embryonic axes was not affected by the salt concentration. However, the germinated embryo survival rates decreased from 100% for the control to 62.9% for the highest salt concentration (256.6 mM). In addition, the plantlet growth (length of aerial and root parts, number of leaf produced per embryo, as well as the production of total fresh and dry matter for both aerial parts and roots) showed significant differences according the various salt concentrations.

  11. What Are Bath Salts?

    Science.gov (United States)

    ... bath salts can produce: feelings of joy increased social interaction increased sex drive paranoia nervousness hallucinations (see or ... Institutes of Health; U.S. Department of Health and Human Services. Cite this article APA Style MLA Style ...

  12. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content.

    Science.gov (United States)

    Cantabella, Daniel; Piqueras, Abel; Acosta-Motos, José Ramón; Bernal-Vicente, Agustina; Hernández, José A; Díaz-Vivancos, Pedro

    2017-06-01

    In order to cope with challenges linked to climate change such as salinity, plants must develop a wide spectrum of physiological and molecular mechanisms to rapidly adapt. Stevia rebaudiana Bertoni plants are a case in point. According to our findings, salt stress has no significant effect on plant growth in these plants, which accumulate sodium (Na + ) in their roots, thus avoiding excessive Na + accumulation in leaves. Furthermore, salt stress (NaCl stress) increases the potassium (K + ), calcium (Ca 2+ ), chloride ion (Cl - ) and proline concentrations in Stevia leaves, which could contribute to osmotic adjustment. We also found that long-term NaCl stress does not produce changes in chlorophyll concentrations in Stevia leaves, reflecting a mechanism to protect the photosynthesis process. Interestingly, an increase in chlorophyll b (Chlb) content occured in the oldest plants studied. In addition, we found that NaCl induced reactive oxygen species (ROS) accumulation in Stevia leaves and that this accumulation was more evident in the presence of 5 g/L NaCl, the highest concentration used in the study. Nevertheless, Stevia plants are able to induce (16 d) or maintain (25 d) antioxidant enzymes to cope with NaCl-induced oxidative stress. Low salt levels did not affect steviolbioside and rebaudioside A contents. Our results suggest that Stevia plants induce tolerance mechanisms in order to minimize the deleterious effects of salt stress. We can thus conclude that saline waters can be used to grow Stevia plants and for Steviol glycosides (SGs) production. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. On salting in effect of the second group metal rhodanides on aqueous-amine solutions

    International Nuclear Information System (INIS)

    Krupatkin, I.L.; Ostrovskaya, E.M.; Vorob'eva, L.D.; Kamyshnikova, G.V.

    1978-01-01

    The ''salting in'' effect of rhodanides of Group 2 metals (magnesium, calcium, strontium, barium) on aqueous-amine solutions (water-aniline, and water-o-toluidine systems) is studied. The solubility in these systems has been determined by the isothermal method at 25 deg C. Compositions of the co-existing liquid phases have been determined by refractometry. The phase diagrams of water-aniline-rhodanide of magnesium, calcium and strontium systems have the same qualitative view. These rhodanides ''salt in'' the water-aniline system so strongly that the systems are completely homogenized. According to the decreasing homogenization effect on the water-aniline and water-o-toluidine systems the salts may be arranged into the following series Mg(NCS) 2 >Ca(NCS) 2 >Sr(NCS) 2 >Ba(NCS) 2 . The ''salting in'. effect is weaker in the water-o-toluidine system rather than in the water-aniline one

  14. Salt effect on physiological, biochemical and anatomical structures ...

    African Journals Online (AJOL)

    In this study, we evaluated the salt concentration effect on plant growth, mineral composition, antioxidant responses and anatomical structure of two varieties of Origanum majorana after exposure to NaCl treatment. Our results show an inclusive behaviour of the two varieties, since the majority of sodium was exported and ...

  15. Assessment of a Salt Reduction Intervention on Adult Population Salt Intake in Fiji

    Directory of Open Access Journals (Sweden)

    Arti Pillay

    2017-12-01

    Full Text Available Reducing population salt intake is a global public health priority due to the potential to save lives and reduce the burden on the healthcare system through decreased blood pressure. This implementation science research project set out to measure salt consumption patterns and to assess the impact of a complex, multi-faceted intervention to reduce population salt intake in Fiji between 2012 and 2016. The intervention combined initiatives to engage food businesses to reduce salt in foods and meals with targeted consumer behavior change programs. There were 169 participants at baseline (response rate 28.2% and 272 at 20 months (response rate 22.4%. The mean salt intake from 24-h urine samples was estimated to be 11.7 grams per day (g/d at baseline and 10.3 g/d after 20 months (difference: −1.4 g/day, 95% CI −3.1 to 0.3, p = 0.115. Sub-analysis showed a statistically significant reduction in female salt intake in the Central Division but no differential impact in relation to age or ethnicity. Whilst the low response rate means it is not possible to draw firm conclusions about these changes, the population salt intake in Fiji, at 10.3 g/day, is still twice the World Health Organization’s (WHO recommended maximum intake. This project also assessed iodine intake levels in women of child-bearing age and found that they were within recommended guidelines. Existing policies and programs to reduce salt intake and prevent iodine deficiency need to be maintained or strengthened. Monitoring to assess changes in salt intake and to ensure that iodine levels remain adequate should be built into future surveys.

  16. Discretionary salt use in airline meal service.

    Science.gov (United States)

    Wallace, S; Wellman, N S; Dierkes, K E; Johnson, P M

    1987-02-01

    Salt use in airline meal service was studied through observation of returned meal trays of 932 passengers. Observation and weighing of salt packets on returned trays revealed that 64% of passengers did not salt their airline dinner, while 6% used the entire salt packet, 0.92 gm NaCl (362 mg Na). Average discretionary salt use among the 234 passengers (25%) who added salt was 0.57 gm NaCl (232 mg Na). Estimates of total sodium in the four airline dinners averaged 2.0 gm NaCl (786 mg Na). Laboratory assays of menu items produced by the airline foodservice differed 3% to 19% from estimated values. Sodium content of the four airline dinner menus was similar and did not affect salt use. Discretionary salt use was related to the total amount of entrée consumed but was not affected by the amount of salad consumed. It is postulated that salt use in the "captive" airline situation is predicated on consistent, habitual practices. Lowering sodium consumption in this setting may require alteration in both food preparation methods and quantity of salt presented in the packets.

  17. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.

    Science.gov (United States)

    Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2009-04-01

    The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.

  18. Screening and isolation of halophilic bacteria producing industrially important enzymes.

    Science.gov (United States)

    Kumar, Sumit; Karan, Ram; Kapoor, Sanjay; S P, Singh; S K, Khare

    2012-10-01

    Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology.

  19. Sugar and Salt in a Young Child’s Diet: Effect on Health

    Directory of Open Access Journals (Sweden)

    Vera A. Skvortsova

    2016-01-01

    Full Text Available Salt and sugar are traditional components of a daily diet for both adults and children. These flavor additives have been used by human for centuries. Sugar and salt not only enhance the taste of food, but also play an important role in metabolic processes. We have already accumulated some data on long-term adverse effects related to excessive consumption of salt and sugar. However, the need for sodium and sucrose has not been finally established yet. We anticipate the reduction in sugar consumption rates. Daily intake of salt and sugar can be optimized by forming proper eating habits in early childhood, with a particular focus on complementary foods free of nutritional supplements, which is necessary for an adequate development of taste.

  20. Effects of basal media, salt concentrations, antioxidant supplements ...

    African Journals Online (AJOL)

    antioxidants than MS, LS and D basal media. Five different levels of N6 medium salts (10, 30, 50, 70 and 100%) were tested, and the highest transformation efficiency was 15.9% under a 50% salt concentration, followed by 6.4% transformation efficiency with 70 and 3.2% under 100% salt conditions. More than 95% of ...

  1. Savannah River Site - Salt-stone Disposal Facility Performance Assessment Update

    International Nuclear Information System (INIS)

    Newman, J.L.

    2009-01-01

    The Savannah River Site (SRS) Salt-stone Facility is currently in the midst of a Performance Assessment revision to estimate the effect on human health and the environment of adding new disposal units to the current Salt-stone Disposal Facility (SDF). These disposal units continue the ability to safely process the salt component of the radioactive liquid waste stored in the underground storage tanks at SRS, and is a crucial prerequisite for completion of the overall SRS waste disposition plan. Removal and disposal of low activity salt waste from the SRS liquid waste system is required in order to empty tanks for future tank waste processing and closure operations. The Salt-stone Production Facility (SPF) solidifies a low-activity salt stream into a grout matrix, known as salt-stone, suitable for disposal at the SDF. The ability to dispose of the low-activity salt stream in the SDF required a waste determination pursuant to Section 3116 of the Ronald Reagan National Defense Authorization Act of 2005 and was approved in January 2006. One of the requirements of Section 3116 of the NDAA is to demonstrate compliance with the performance objectives set out in Subpart C of Part 61 of Title 10, Code of Federal Regulations. The PA is the document that is used to ensure ongoing compliance. (authors)

  2. The effects of naturally occurring impurities in rock salt

    Indian Academy of Sciences (India)

    Askaryan effect [1] travel through salt, and so the propagation medium has a ... where the real part is the relative permittivity and the imaginary part is the ... When a time-varying field is applied, the complex electronic polarizability is given by.

  3. Effect of salt and urban water samples on bacterivory by the ciliate, Tetrahymena thermophila

    Energy Technology Data Exchange (ETDEWEB)

    St Denis, C.H.; Pinheiro, M.D.O.; Power, M.E. [Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1 (Canada); Bols, Niels C., E-mail: ncbols@uwaterloo.c [Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1 (Canada)

    2010-02-15

    The effect of road salt on the eating of bacteria or bacterivory by the ciliate, Tetrahymena thermophila, was followed in non-nutrient Osterhout's solution with Escherichia coli expressing green fluorescent protein. Bacterivory was impaired at between 0.025 and 0.050% w/v but the ciliates appeared to have normal morphologies and motilities, whereas at above 0.1%, bacterivory was blocked and many ciliates died. By contrast, E. coli remained viable, suggesting salt could alter predator-prey relationships in microbial communities. In nutrient medium, salt was not toxic and the ciliates grew. After growth in salt, ciliates consumed bacteria in 0.2% salt, indicating the salt acclimation of bacterivory. Bacteria and ciliates were added to urban creek samples to compare their capacity to support exogenous bacterivory. Even though samples were collected weekly for a year and be expected to have fluctuating salt levels as a result of deicing, all creek samples supported a similar level of bacterivory. - Road salt at some concentrations inhibits bacterivory by ciliates, and thus potentially could alter the microbial food web.

  4. Effect of salt and urban water samples on bacterivory by the ciliate, Tetrahymena thermophila

    International Nuclear Information System (INIS)

    St Denis, C.H.; Pinheiro, M.D.O.; Power, M.E.; Bols, Niels C.

    2010-01-01

    The effect of road salt on the eating of bacteria or bacterivory by the ciliate, Tetrahymena thermophila, was followed in non-nutrient Osterhout's solution with Escherichia coli expressing green fluorescent protein. Bacterivory was impaired at between 0.025 and 0.050% w/v but the ciliates appeared to have normal morphologies and motilities, whereas at above 0.1%, bacterivory was blocked and many ciliates died. By contrast, E. coli remained viable, suggesting salt could alter predator-prey relationships in microbial communities. In nutrient medium, salt was not toxic and the ciliates grew. After growth in salt, ciliates consumed bacteria in 0.2% salt, indicating the salt acclimation of bacterivory. Bacteria and ciliates were added to urban creek samples to compare their capacity to support exogenous bacterivory. Even though samples were collected weekly for a year and be expected to have fluctuating salt levels as a result of deicing, all creek samples supported a similar level of bacterivory. - Road salt at some concentrations inhibits bacterivory by ciliates, and thus potentially could alter the microbial food web.

  5. Effects of salt stress on tillering nodes to the growth of winter wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Qiong, Y.; Yuan, G.; Zhixia, X.; Xiaojing, L.

    2016-01-01

    In monsoon climate regions, the tillering nodes of winter wheat can be stressed by high salt accumulation on the soil surface in spring, thereby leading to salt-induced damage. To understand whether tillering nodes could be stressed by salinity and to estimate its effects on the growth of winter wheat under salt stress, the tillering nodes of two wheat cultivars, H-4589 (salt-sensitive) and J-32 (salt-tolerant), were treated with salinity to investigate the physiological and biochemical changes in seedling growth. The results indicated that salt stress on tillering nodes significantly reduced plant height and shoot dry weight; increased Na+ accumulation, soluble sugar and proline in both H-4589 and J-32; which demonstrated remarkable effects on the growth of winter wheat when the tillering nodes were under salt stress. Furthermore, equivalent Na+ accumulations were discovered in two cultivars when tillering nodes were under salt stress, while remarkably different Na+ accumulations were discovered in two cultivars when roots were under salt stress. Based on the results from anatomic analyses, we speculated that no anatomic differences in tillering nodes between two cultivars could give reason to the equivalent Na+ accumulations in two cultivars when tillering nodes were under salt stress; and more lignified endodermis in primary roots as well as larger reduction of lateral root number in salt-tolerant cultivars which contributed to preventing Na+ influx could explain the remarkably lower Na+ accumulation in salt-tolerant cultivar when roots were under salt stress. All of these results indicated that the tillering nodes could mediate Na+ influx from the environment leading to salt-induced damage to the growth of winter wheat. (author)

  6. On change of iodobenzene electroreduction mechanism with change of tetraethylammonium salts concentration

    International Nuclear Information System (INIS)

    Majranovskij, S.G.; Rubinskaya, T.Ya.; Proskurovskaya, I.V.

    1975-01-01

    The effect of the nature and concentration of tetraethylammonium salt on the mechanism of electroreduction of iodobenzene at the mercury electrode was studied. For this purpose a microelectrolysis of iodobenzene solution was carried out with a subsequent chromatographic analysis of the yield products (with tetraethylammonium bromide as an indifferent electrolyte). Diphenylmercury was found on the background of tetraethylammonium salts at 0.08 to 0.2M concentrations among the electrolysis products besides the main product-benzene. At 0.01 and 1M salt concentrations even traces of diphenylmercury weren't detected. The diphenyl mercury content somewhat increases, if the electrolysis is conducted at the potentials of the startrise of the iodobenzene reduction wave, i. e. at E=-1.45V. Thus, the change of tetraethylammonium salt concentration may partially alter the iodobenzene reduction mechanism

  7. ELECTRODIALYSIS IN THE CONVERSION STEP OF THE CONCENTRATED SALT SOLUTIONS IN THE PROCESS OF BATTERY SCRAP

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2014-01-01

    Full Text Available Summary. The concentrated sodium sulfate solution is formed during the processing of waste battery scrap. A promising way to further treatment of the concentrated salt solution could be the conversion of these salts into acid and bases by electrodialysis, that can be reused in the same technical process cycle. For carrying out the process of conversion of salts into the corresponding acid and base several cells schemes with different combinations of cation, anion and bipolar membranes are used. At this article a comparative analysis of these cells is carried out. In the cells there were used the membranes МC-40, МА-41 and МB-2I. Acid and base solutions with higher concentration may be obtained during the process of electrodialysis in the circulation mode, when a predetermined amount of salt in the closed loop is run through a set of membranes to obtain the desired concentration of the product. The disadvantages of this method are the high cost of buffer tanks and the need to work with small volumes of treated solutions. In industrial applications it is advisable to use continuous electrodialysis with bipolar membranes, since this configuration allows to increase the number of repeating sections, which is necessary to reduce the energy costs. The increase of the removal rate of salts can be achieved by increasing the process steps, and to produce a more concentrated products after the conversion step can be applied electrodialysis-concentrator or evaporator.

  8. Salt-induced root protein profile changes in seedlings of maize inbred lines with differing salt tolerances

    Directory of Open Access Journals (Sweden)

    Yujing Cheng

    2014-12-01

    Full Text Available Salt stress is one of the severest growth limited-factors to agriculture production. To gain in-depth knowledge of salt-stress response mechanisms, the proteomics analysis from two maize (Zea mays L. inbred lines was carried out using two-dimensional gel electrophoresis (2-DGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS. There were 57 salt-regulated proteins identified, 21 and 36 proteins were differentially regulated in inbred lines 'Nongda 1145' (salt-resistant and 'D340' (salt-sensitive, respectively. The identified proteins were distributed in 11 biological processes and seven molecular functions. Under salt stress, proteins related to antioxidation and lignin synthesis were increased in both inbred lines. The relative abundance of proteins involved in translation initiation, elongation, and protein proteolysis increased in 'Nongda 1145' and decreased in 'D340'. In addition, the abundance of proteins involved in carbohydrate metabolism, protein refolding, ATP synthase and transcription differed between the two inbred lines. Our results suggest that the enhanced ability of salt-tolerant inbred line 'Nongda 1145' to combat salt stress occurs via regulation of transcription factors promoting increased antioxidation and lignin biosynthesis, enhanced energy production, and acceleration of protein translation and protein proteolysis.

  9. Halomonas sp. BS4, A biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance

    OpenAIRE

    Donio, Mariathason Birdilla Selva; Ronica, Fernando Arul; Viji, Vijayaragavan Thanga; Velmurugan, Subramanian; Jenifer, John Selesteen Charles Adlin; Michaelbabu, Mariavincent; Dhar, Prasenjit; Citarasu, Thavasimuthu

    2013-01-01

    Halophilic bacteria were isolated from Thamaraikulam solar salt works in India. After routine biosurfactant screening by various methods, the biosurfactant producing bacteria, Halomonas sp BS4 was confirmed by 16?S rRNA sequencing. The growth optimization of Halomonas sp BS4 revealed their optimum growth at 8% NaCl and 6-8?pH in the growth medium. Further the partially purified biosurfactants were characterized by TLC, FTIR and GC-MS analysis. GC-MS results revealed that, the partial purified...

  10. Evaluation of the salt deposition on the canister surface of concrete cask. Part 3. Long-term measurement of salt concentration in air and evaluation of the salt deposition

    International Nuclear Information System (INIS)

    Wataru, Masumi; Takeda, Hirofumi

    2015-01-01

    To realize the dry storage using concrete cask in Japan, it is important to develop the evaluation method of the SCC of the canister. One of the key issues is sea salt deposition on the canister surface during the storage period. If the amount of salt deposition exceeds the critical value, the SCC may occur. The amount of salt deposition depends on the ambient air condition. We developed the measurement device of salt in air to make clear the ambient condition. The device sucks the air including sea salt and the sea salt dissolves in water. We analyze the water including sea salt. This device works automatically for one or two months. In this study, the performance of this device was verified comparing the data obtained by the air sampler using filter pack. In Yokosuka area of CRIEPI, we measured the ambient air condition using this device for three years. Furthermore, we performed the salt deposition test using the small ducts in the same area. The ambient air including sea salt flows in the duct and the sea salt deposits on the test specimen put on the duct inner surface. We took out the specimen after certain time and measured the salt amount on the test specimen. Using these data, we obtained the relation between the salt deposition and the time on this ambient condition. The results of this study are useful to evaluate the SCC of the canister. (author)

  11. Method for making a Pellet-type LiCl-KCl-UCl3 SALT

    International Nuclear Information System (INIS)

    Woo, M. S.; JIN, H. J.; Lee, H. S.; Kim, J. G.

    2012-01-01

    A pyrometallurgical partitioning technology to recover uranium from a uranium-TRU mixture which is the product material of electroreduction system is being developed at KAERI since 1997. In the process, the reactor of an electrorefiner consists of the electrodes and the molten chloride salt which is LiCl-KCl-UCl 3 . The role of uranium chloride salt (UCl 3 ) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 The apparatus for producing UCl 3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of a pelletizer by a transfer system to make a pellet type salt

  12. Salt Effect on the Cloud Point Phenomenon of Amphiphilic Drug-Hydroxypropylmethyl Cellulose System

    Directory of Open Access Journals (Sweden)

    Mohd. Sajid Ali

    2014-01-01

    Full Text Available Effect of two amphiphilic drugs (tricyclic antidepressant, nortriptyline hydrochloride (NORT, and nonsteroidal anti-inflammatory drug, sodium salt of ibuprofen (IBF on the cloud point of biopolymer hydroxypropylmethyl cellulose (HPMC was studied. Effect of NaCl was also seen on the CP of HPMC-drug system. CP of HPMC increases uniformly on increasing the (drug. Both drugs, though one being anionic (IBF and other cationic (NORT, affect the CP in almost the same manner but with different extent implying the role of hydrophobicity in the interaction between drug and polymer. Salt affects the CP of the drug in a dramatic way as low concentration of salt was only able to increase the value of the CP, though not affecting the pattern. However, in presence of high concentration of salts, minimum was observed on CP versus (drug plots. Various thermodynamic parameters were evaluated and discussed on the basis of the observed results.

  13. [Pilocarpin eye drops with a novel Pilocarpin polymeric salt (author's transl)].

    Science.gov (United States)

    Stodtmeister, R; Brenner, J; Baur, M P

    1979-02-01

    A new pilocarpin salt was obtained by chemically linking pilocarpin to a polymere substance. By galenic processing to the respective emulsion, eye drops containing this pilocarpin salt were produced, which enable a retarded pilocarpin delivery in vitro. With respect to glaucoma therapy, clinical tests showed that frequency of application can considerably be reduced. In the present investigations on a collective of 30 normal volunteers the effect of a commercial aqueous pilocarpin solution on the IOP, pupillary diameter and accommodation was compared with that of the novel pilocarpin drops.

  14. Lithium isotope effect in the extraction systems of polyethers: effect of salt concentration

    International Nuclear Information System (INIS)

    Fang Shengqiang; Fu Lian

    1991-01-01

    Separation factors of lithium isotopes at 20 deg C were determined in the extraction systems of B15C5-CHCl 3 /LiBr-H 2 O. The initial concentration of LiBr was controlled in the extent of more than 2 mol/l. It may be established that the increase of LiBr concentration causes a remarkable increase of the separation factor. The essence of this effect due to the change in salt concentration was discussed in connection with examination of relevant phenomena in literature. It can be concluded that the relationship between α and Cm, the concentration of lithium salt, is dependent on K Q and K P express respectively, lithium isotope exchange equilibrium constants between Li-crownether complex and hydrated lithium ion for lithium concentration less than 1-2 mol/l, and between lithium salt ion pair and hydrated lithium ion for lithium concentration more than 2 mol/l in aqueous phase

  15. Brine migration test - Asse salt mine, Federal Republic of Germany

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Wieczorek, K.; Feddersen, H.K.; Staupendahl, G.; Coyle, A.J.; Kalia, H.; Eckert, J.

    1988-03-01

    This document is the final report on the Cooperative German-American 'Brine Migration Tests' that were performed at the Asse Salt Mine in the Federal Republic of Germany (FRG), the Office of Nuclear Waste Isolation (ONWI), Columbus, Ohio, and the Institut fuer Tieflagerung (IfT), Braunschweig, of the Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen (GSF). Final test and equipment design as well as manufacturing and installation was carried out by Westinghouse Electric Corporation. The tests were designed to simulate a nuclear waste repository to measure the effects of heat and gamma radiation on brine migration, salt decrepitation, disassociation of brine, and gases collected. The thermal mechanical behavior of salt, such as room closure, stresses and changes of the properties of salt are measured and compared with predicted behavior. The performance of an array of candidate waste package materials, test equipment and procedures under repository conditions will be evaluated with a view towards future in-depth testing of potential repository sites. (orig./RB)

  16. Compatibility studies of potential molten-salt breeder reactor materials in molten fluoride salts

    International Nuclear Information System (INIS)

    Keiser, J.R.

    1977-05-01

    The molten fluoride salt compatibility studies carried out during the period 1974--76 in support of the Molten-Salt Reactor Program are summarized. Thermal-convection and forced-circulation loops were used to measure the corrosion rate of selected alloys. Results confirmed the relationship of time, initial chromium concentration, and mass loss developed by previous workers. The corrosion rates of Hastelloy N and Hastelloy N modified by the addition of 1--3 wt percent Nb were well within the acceptable range for use in an MSBR. 13 figures, 3 tables

  17. Ultrasonic characterization of pork meat salting

    International Nuclear Information System (INIS)

    García-Pérez, J V; De Prados, M; Pérez-Muelas, N; Cárcel, J A; Benedito, J

    2012-01-01

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p 2 = 0.975) and moisture (R 2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  18. Dosage Effects of Salt and pH Stresses on Saccharomyces cerevisiae as Monitored via Metabolites by Using Two Dimensional NMR Spectroscopy

    International Nuclear Information System (INIS)

    Chae, Young Kee; Kim, Seol Hyun; Ellinger, James E.; Markley, John L.

    2013-01-01

    Saccharomyces cerevisiae, which is a common species of yeast, is by far the most extensively studied model of a eukaryote because although it is one of the simplest eukaryotes, its basic cellular processes resemble those of higher organisms. In addition, yeast is a commercially valuable organism for ethanol production. Since the yeast data can be extrapolated to the important aspects of higher organisms, many researchers have studied yeast metabolism under various conditions. In this report, we analyzed and compared metabolites of Saccharomyces cerevisiae under salt and pH stresses of various strengths by using two-dimensional NMR spectroscopy. A total of 31 metabolites were identified for most of the samples. The levels of many identified metabolites showed gradual or drastic increases or decreases depending on the severity of the stresses involved. The statistical analysis produced a holistic outline: pH stresses were clustered together, but salt stresses were spread out depending on the severity. This work could provide a link between the metabolite profiles and mRNA or protein profiles under representative and well studied stress conditions

  19. Developing an objective function to characterize the tradeoffs in salting out and the foam and droplet fractionation processes

    Directory of Open Access Journals (Sweden)

    Cherry J.

    2000-01-01

    Full Text Available There are many methods for separating and purifying proteins from dilute solutions, such as salting out/precipitation, adsorption/chromatography, foam fractionation, and droplet fractionation. In order to determine the optimal condition for a selected separation and purification process, an objective function is developed. The objective function consists of three parameters, which are the protein mass recovery, the separation ratio, and the enzymatic activity ratio. In this paper the objective function is determined as a function of the pH of the bulk solution for egg albumin, cellulase, and sporamin (for foam fractionation and invertase ( for droplet fractionation. It is found that the optimal pH for all the systems except for cellulase is near their isoelectric point.

  20. Cumulates, Dykes and Pressure Solution in the Ice-Salt Mantle of Europa: Geological Consequences of Pressure Dependent Liquid Compositions and Volume Changes During Ice-Salt Melting Reactions.

    Science.gov (United States)

    Day, S.; Asphaug, E.; Bruesch, L.

    2002-12-01

    Water-salt analogue experiments used to investigate cumulate processes in silicate magmas, along with observations of sea ice and ice shelf behaviour, indicate that crystal-melt separation in water-salt systems is a rapid and efficient process even on scales of millimetres and minutes. Squeezing-out of residual melts by matrix compaction is also predicted to be rapid on geological timescales. We predict that the ice-salt mantle of Europa is likely to be strongly stratified, with a layered structure predictable from density and phase relationships between ice polymorphs, aqueous saline solutions and crystalline salts such as hydrated magnesium sulphates (determined experimentally by, inter alia, Hogenboom et al). A surface layer of water ice flotation cumulate will be separated from denser salt cumulates by a cotectic horizon. This cotectic horizon will be both the site of subsequent lowest-temperature melting and a level of neutral buoyancy for the saline melts produced. Initial melting will be in a narrow depth range owing to increasing melting temperature with decreasing pressure: the phase relations argue against direct melt-though to the surface unless vesiculation occurs. Overpressuring of dense melts due to volume expansion on cotectic melting is predicted to lead to lateral dyke emplacement and extension above the dyke tips. Once the liquid leaves the cotectic, melting of water ice will involve negative volume change. Impact-generated melts will drain downwards through the fractured zones beneath crater floors. A feature in the complex crater Mannan'an, with elliptical ring fractures around a conical depression with a central pit, bears a close resemblance to Icelandic glacier collapse cauldrons produced by subglacial eruptions. Other structures resembling Icelandic cauldrons occur along Europan banded structures, while resurgence of ice rubble within collapse structures may produce certain types of chaos region. More general contraction of the ice mantle

  1. High temperature salt corrosion cracking of intermediate products of titanium alloys

    International Nuclear Information System (INIS)

    Sinyavskij, V.S.; Usova, V.V.; Lunina, S.I.; Kushakevich, S.A.; Makhmutova, E.A.; Khanina, Z.K.

    1982-01-01

    The high temperature salt corrosion cracking (HTSCC) of intermediate products from titanium base alloys in the form of hot rolled plates and rods has been studied. The investigated materials are as follows: VT20 pseudo-α-alloy, VT6 and VT14 α+β alloys; the comparison has been carried out with commercial titanium and low-alloyed OT4-1 α-alloy. The experiments have been held at 400 and 500 deg C, defining different stress levels: 0.4; 0.5; 0.75 and 0.9 tausub(0.2). The test basis - not less than 100 h. Standard tensile samples of circular cross section with NaCl (approximately 0.2-0.3 mg/cm 2 ) salt coatings, cut off from hot-rolled rods along the direction of rolling and hot-rolled plates along and across the direction of rolling have been tested. It has been extablished before hand that the notch doesn't affect the resistance of titanium alloys to HTSCC. The sensitivity of titanium alloy subproducts to HTSCC is estimated as to the time until the failure of the sample with salt coatings and without them. It is shown that salt coating practically doesn't affect the behaviour of titanium, that allows to consider it to be resistant to HTSCC. Titanium alloys alloying with β-isomorphous stabilizing additions increases it's HTSCC resistance. Vanadium alloying of the alloy (VT6 alloy of Ti-Al-V system) produces a favourable effect; intermediate products of VT14 (α+β) alloy (Ti-Al-V-Mo system), containing two β-stabilizing additions-vanadium and molybdenum, have satisfactory HTSCC resistance. It is shown that by changes is mechanical properties of alloys during HTSCC one can indirectly judge about their HTSCC sensitivity

  2. Landscape Changes and a Salt Production Sustainable Approach in the State of Salt Pan Area Decreasing on the Coast of Tianjin, China

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2015-07-01

    Full Text Available Landsat images from 1979, 1988, 1999, 2008, and 2013 were used to analyze the landscape area change of salt pans lying on the coast of Tianjin. While initially (1979–1988, the area of Tianjin’s salt pan increased, later (1988–2013 it declined dramatically. In the first phase (1979–1988 of the studied period the primary roll-in landscape of the salt pan wasbarren land with an area of 60.0 km2. By 1988, the area of Tianjin’s salt pan rose to 457.8 km2. The main roll-out landscape of the salt pan during 1988–2013 was urban, barren land, village/town, harbor, and road whose area amounted to 69.8, 35.9, 27.3, 25.5 and 18.4 km2 respectively. The roll-out barren land will be transformed to construction land ultimately. By 2013, the total loss reached 167.3 km2, which was 36.5% of the salt pan area of Tianjin in 1988. With the development of coastal economy, the salterns with a lower economic value were transformed to and replaced by land use types with a higher economic value. This trend would influence the production of sea salt and the development of sodium hydroxide and sodium carbonate industries. Seawater desalination provides an opportunity for the restoration and compensation of salt production capacity. Based on the theory of circular economy and industrial symbiosis, in this article an industrial symbiosis model for sea salt production and sea water desalination is explored: “mariculture–power plant cooling–seawater desalination–Artemia culture–bromide extraction–sea salt production–salt chemical industry”. Through the application of this process sustainable development of the sea salt production in Tianjin could be achieved.

  3. Salting-out-enhanced ionic liquid microextraction with a dual-role solvent for simultaneous determination of trace pollutants with a wide polarity range in aqueous samples.

    Science.gov (United States)

    Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong

    2017-11-01

    In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several

  4. Effect of Sugar as an Additive on the Longevity of Salt on Pavements

    OpenAIRE

    Ebersten, Roger Berge

    2015-01-01

    In winter maintenance of roads chemicals are applied to the road with the aim of ensuring that the friction is at an acceptable level so that the road is safe and accessible. Sodium chloride is a common used chemical due to its effect and price. There is however negative impacts related to the use of salt, it is not good for the environment (like vegetation and groundwater). A reduction of the salt usage is therefore highly desirable. One way of reducing the salt applied on the...

  5. Calculating potential of mean force between like-charged nanoparticles: A comprehensive study on salt effects

    International Nuclear Information System (INIS)

    Wu, Yuan-Yan; Wang, Feng-Hua; Tan, Zhi-Jie

    2013-01-01

    Ions are critical to the structure and stability of polyelectrolytes such as nucleic acids. In this work, we systematically calculated the potentials of mean force between two like-charged nanoparticles in salt solutions by Monte Carlo simulations. The pseudo-spring method is employed to calculate the potential of mean force and compared systematically with the inversed-Boltzmann method. An effective attraction is predicted between two like-charged nanoparticles in divalent/trivalent salt solution and such attraction becomes weakened at very high salt concentration. Our analysis reveals that for the system, the configuration of ion-bridging nanoparticles is responsible for the attraction, and the invasion of anions into the inter-nanoparticles region at high salt concentration would induce attraction weakening rather than the charge inversion effect. The present method would be useful for calculating effective interactions during nucleic acid folding.

  6. Effect of a Sodium and Calcium DL-β-Hydroxybutyrate Salt in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Tobias Fischer

    2018-01-01

    Full Text Available Background. Ketone body therapy and supplementation are of high interest for several medical and nutritional fields. The intake of ketone bodies is often discussed in relation to rare metabolic diseases, such as multiple acyl-CoA dehydrogenase deficiency (MADD, that have no alternatives for treatment. Case reports showed positive results of therapy using ketone bodies. The number of ketone body salts offered on the wellness market is increasing steadily. More information on the kinetics of intake, safety, and tolerance of these products is needed. Methods. In a one-dose kinetic study, six healthy subjects received an intervention (0.5 g/kg bw using a commercially available ketone body supplement. The supplement contained a mixture of sodium and calcium D-/L-β-hydroxybutyrate (βHB as well as food additives. The blood samples drawn in the study were tested for concentrations of D-βHB, glucose, and electrolytes, and blood gas analyses were done. Data on sensory evaluation and observed side effects of the supplement were collected. The product also went through chemical food analysis. Results. The supplement led to a significant increase of D-βHB concentration in blood 2.5 and 3 h after oral intake (p=0.033;  p=0.043. The first significant effect was measured after 2 h with a mean value of 0.598 ± 0.300 mmol/L at the peak, which was recorded at 2.5 h. Changes in serum electrolytes and BGA were largely unremarkable. Taking the supplement was not without side effects. One subject dropped out due to gastrointestinal symptoms and two others reported similar but milder problems. Conclusions. Intake of a combination of calcium and sodium D-/L-βHB salt shows a slow resorption with a moderate increase of D-βHB in serum levels. An influence of βHB salts on acid-base balance could not be excluded by this one-dose study. Excessive regular consumption without medical observation is not free of adverse effects. The tested product can

  7. EFFECTS OF INORGANIC SALT SOLUTION ON SOME PROPERTIES OF COMPACTED CLAY LINERS

    Directory of Open Access Journals (Sweden)

    KHALID R. MAHMOOD AL-JANABI

    2017-12-01

    Full Text Available Processed and natural clays are widely used to create impermeable liners in solid waste disposal landfills. The engineering properties of clay liners can be significantly affected by the leachate from the waste mass. In this study, the effect of inorganic salt solutions will be investigated. These solutions used at different concentrations. Two type of inorganic salt MnSO4 and FeCl3 are used at different concentration 2%,5%, 10%. Clay used in this study was the CL- clay (kaolinite. The results show that the consistency limits and unconfined compressive strength increased as the concentration of salts increased. While the permeability tends to decrease as salt concentration increased. Also, the compression index decreases as the concentration increased from 2% to 5%. The swelling index tends to increase slightly as the concentration of MnSO4 increased, while its decrease as the concentration of FeCl3. In this paper, it is aimed to investigate the performance of compacted clay liner exposed to the certain chemicals generated by the leachate and their effects on the geotechnical properties of compacted clay liner such consistency limits, permeability coefficient, compressibility characteristics and unconfined compressive strength.

  8. A novel method of non-violent dissolution of sodium metal in a concentrated aqueous solution of Epsom salt

    International Nuclear Information System (INIS)

    Lakshmanan, A.R.; Prasad, M.V.R.; Ponraju, D.; Krishnan, H.

    2004-01-01

    A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO 4 .7H 2 O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO 4 and Na 2 SO 4 as well as Mg(OH) 2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting

  9. The variability of reported salt levels in fast foods across six countries: opportunities for salt reduction.

    Science.gov (United States)

    Dunford, Elizabeth; Webster, Jacqueline; Woodward, Mark; Czernichow, Sebastien; Yuan, Wen Lun; Jenner, Katharine; Ni Mhurchu, Cliona; Jacobson, Michael; Campbell, Norm; Neal, Bruce

    2012-06-12

    Several fast food companies have made commitments to reduce the levels of salt in the foods they serve, but technical issues are often cited as a barrier to achieving substantial reductions. Our objective was to examine the reported salt levels for products offered by leading multinational fast food chains. Data on salt content for products served by six fast food chains operating in Australia, Canada, France, New Zealand, the United Kingdom and the United States were collected by survey in April 2010. Mean salt contents (and their ranges) were calculated and compared within and between countries and companies. We saw substantial variation in the mean salt content for different categories of products. For example, the salads we included in our survey contained 0.5 g of salt per 100 g, whereas the chicken products we included contained 1.6 g. We also saw variability between countries: chicken products from the UK contained 1.1 g of salt per 100 g, whereas chicken products from the US contained 1.8 g. Furthermore, the mean salt content of food categories varied between companies and between the same products in different countries (e.g., McDonald's Chicken McNuggets contain 0.6 g of salt per 100 g in the UK, but 1.6 g of salt per 100 g in the US). The salt content of fast foods varies substantially, not only by type of food, but by company and country in which the food is produced. Although the reasons for this variation are not clear, the marked differences in salt content of very similar products suggest that technical reasons are not a primary explanation. In the right regulatory environment, it is likely that fast food companies could substantially reduce the salt in their products, translating to large gains for population health.

  10. Effect of halopriming on the induction of nacl salt tolerance in different wheat genotypes

    International Nuclear Information System (INIS)

    Muhammad, Z.; Hussain, F.; Rehmanullah, M.; Majeed, A.

    2015-01-01

    Salinity is a major environmental stress limiting plant growth and productivity of wide range of crops with impairing effects on germination and yield. The present study was conducted to assess the induction of salt tolerance in seven wheat genotypes (Bakhtawar-92, Bhakar-2002, Fakhar-e-Sarhad, Khyber-87, Nasir-2000, Pirsabak-2005, and Uqab-2000) at germination and seedling stage through halo-priming with NaCl. Seeds of each wheat genotype were halo-primed separately. Halo-primed seeds of each wheat genotype were subjected to 0.02 (control), 2, 4, 6 and 8 dS/m NaCl salinity under laboratory conditions. Germination percentage age varied significantly among various wheat genotypes; however, differences between different salt concentrations were non-significant. All the seedling growth characters (germination, plumule growth, fresh and dry weight of seedling and moisture contents) exhibited significant differences among wheat genotypes as well as under the applied salt concentration except for radicle growth which varied non-significantly under salt stress. Interaction between various wheat genotypes and salt concentration was also significant for all the seedling growth characters, while it was non-significant for germination percentage age. It is concluded that NaCl proved to be effective priming agents in inducing salt tolerance in the tested wheat genotypes. (author)

  11. Salting by Vacuum Brine Impregnation in Nitrite-Free Lonza: Effect on Enterobacteriaceae.

    Science.gov (United States)

    Serio, Annalisa; Chaves-López, Clemencia; Rossi, Chiara; Pittia, Paola; Rosa, Marco Dalla; Paparella, Antonello

    2017-01-24

    Lonza is a traditional Italian meat product made from whole pork muscles, which is typically cured by dry salting. In this work, we study the effects of vacuum brine impregnation (VBI) as an alternative salting method on the survival of Enterobacteriaceae, in presence and in absence of nitrites. In comparison with the traditional brining process, VBI contributed to reducing the Enterobacteriaceae population on product surface but induced contamination of the inner muscle tissues. Our results suggest that the species isolated became adapted to processing conditions, and salt tolerance was species- or strain-dependent. This result is of particular importance for future applications of VBI in lonza manufacturing.

  12. Salting by vacuum brine impregnation in nitrite-free lonza: effect on Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    Annalisa Serio

    2017-01-01

    Full Text Available Lonza is a traditional Italian meat product made from whole pork muscles, which is typically cured by dry salting. In this work, we study the effects of vacuum brine impregnation (VBI as an alternative salting method on the survival of Enterobacteriaceae, in presence and in absence of nitrites. In comparison with the traditional brining process, VBI contributed to reducing the Enterobacteriaceae population on product surface but induced contamination of the inner muscle tissues. Our results suggest that the species isolated became adapted to processing conditions, and salt tolerance was species- or straindependent. This result is of particular importance for future applications of VBI in lonza manufacturing.

  13. High throughput salt separation from uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.W.; Park, K.M.; Kim, J.G.; Kim, I.T.; Park, S.B., E-mail: swkwon@kaeri.re.kr [Korea Atomic Energy Research Inst. (Korea, Republic of)

    2014-07-01

    It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites in pyroprocessing. Multilayer porous crucible system was proposed to increase a throughput of the salt distiller in this study. An integrated sieve-crucible assembly was also investigated for the practical use of the porous crucible system. The salt evaporation behaviors were compared between the conventional nonporous crucible and the porous crucible. Two step weight reductions took place in the porous crucible, whereas the salt weight reduced only at high temperature by distillation in a nonporous crucible. The first weight reduction in the porous crucible was caused by the liquid salt penetrated out through the perforated crucible during the temperature elevation until the distillation temperature. Multilayer porous crucibles have a benefit to expand the evaporation surface area. (author)

  14. Effects of salt-drought stress on growth and physiobiochemical characteristics of Tamarix chinensis seedlings.

    Science.gov (United States)

    Liu, Junhua; Xia, Jiangbao; Fang, Yanming; Li, Tian; Liu, Jingtao

    2014-01-01

    The present study was designed to clarify the effects of salinity and water intercross stresses on the growth and physiobiochemical characteristics of Tamarix chinensis seedlings by pots culture under the artificial simulated conditions. The growth, activities of SOD, POD, and contents of MDA and osmotic adjusting substances of three years old seedlings of T. chinensis were studied under different salt-drought intercross stress. Results showed that the influence of salt stress on growth was greater than drought stress, the oxidation resistance of SOD and POD weakened gradually with salt and drought stresses intensified, and the content of MDA was higher under severe drought and mild and moderate salt stresses. The proline contents increased with the stress intensified but only significantly higher than control under the intercross stresses of severe salt-severe drought. It implied that T. chinensis could improve its stress resistance by adjusted self-growth and physiobiochemical characteristics, and the intercross compatibility of T. chinensis to salt and drought stresses can enhance the salt resistance under appropriate drought stress, but the dominant factors influencing the physiological biochemical characteristics of T. chinensis were various with the changing of salt-drought intercross stresses gradients.

  15. Effects of Salt-Drought Stress on Growth and Physiobiochemical Characteristics of Tamarix chinensis Seedlings

    Directory of Open Access Journals (Sweden)

    Junhua Liu

    2014-01-01

    Full Text Available The present study was designed to clarify the effects of salinity and water intercross stresses on the growth and physiobiochemical characteristics of Tamarix chinensis seedlings by pots culture under the artificial simulated conditions. The growth, activities of SOD, POD, and contents of MDA and osmotic adjusting substances of three years old seedlings of T. chinensis were studied under different salt-drought intercross stress. Results showed that the influence of salt stress on growth was greater than drought stress, the oxidation resistance of SOD and POD weakened gradually with salt and drought stresses intensified, and the content of MDA was higher under severe drought and mild and moderate salt stresses. The proline contents increased with the stress intensified but only significantly higher than control under the intercross stresses of severe salt-severe drought. It implied that T. chinensis could improve its stress resistance by adjusted self-growth and physiobiochemical characteristics, and the intercross compatibility of T. chinensis to salt and drought stresses can enhance the salt resistance under appropriate drought stress, but the dominant factors influencing the physiological biochemical characteristics of T. chinensis were various with the changing of salt-drought intercross stresses gradients.

  16. Processing of effluent salt from the direct oxide reduction process

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.

    1992-01-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon

  17. Cumulative effects of road de-icing salt on amphibian behavior.

    Science.gov (United States)

    Denoël, Mathieu; Bichot, Marion; Ficetola, Gentile Francesco; Delcourt, Johann; Ylieff, Marc; Kestemont, Patrick; Poncin, Pascal

    2010-08-15

    Despite growing evidence of the detrimental effect of chemical substances on organisms, limited research has focused on changes in behavioral patterns, in part due to the difficulties to obtain detailed quantitative data. Recent developments in efficient computer-based video analyses have allowed testing pesticide effects on model species such as the zebrafish. However, these new techniques have not yet been applied to amphibians and directly to conservation issues, i.e., to assess toxicological risks on threatened species. We used video-tracking analyses to test a quantitative effect of an environmental contaminant on the locomotion of amphibian tadpoles (Rana temporaria) by taking into account cumulative effects. Because recent research has demonstrated effects of de-icing salts on survival and community structure, we used sodium chloride in our experimental design (25 replicates, 4 concentrations, 4 times) to test for an effect at the scale of behavior at environmentally relevant concentrations. Analysis of 372 1-h video-tracks (5 samples/s) showed a complex action of salts on behavioral patterns with a dose and cumulative response over time. Although no effects were found on mortality or growth, the highest salt concentrations reduced the speed and movement of tadpoles in comparison with control treatments. The reduced locomotor performance could have detrimental consequences in terms of tadpoles' responses to competition and predation and may be an indicator of the low concentration effect of the contaminant. On one hand, this study demonstrates the usefulness of examining behavior to address conservation issues and understand the complex action of environmental factors and, more particularly, pollutants on organisms. On the other hand, our results highlight the need of new computerized techniques to quantitatively analyze these patterns. (c) 2010 Elsevier B.V. All rights reserved.

  18. Compatibility of molten salt and structural materials

    International Nuclear Information System (INIS)

    Kawakami, Masahiro

    1994-01-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF 2 was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.)

  19. Geochemistry and toxicity of sediment porewater in a salt-impacted urban stormwater detention pond

    International Nuclear Information System (INIS)

    Mayer, T.; Rochfort, Q.; Borgmann, U.; Snodgrass, W.

    2008-01-01

    A comprehensive study was carried out to investigate the impacts of road salts on the benthic compartment of a small urban detention facility, Rouge River Pond. Although the pond is an engineered water body, it is representative of many small urban lakes, ponds and wetlands, which receive road runoff and are probable high impact areas. Specific objectives of the study were to document the porewater chemistry of an aquatic system affected by elevated salt concentrations and to carry out a toxicological assessment of sediment porewater to determine what factors may cause porewater toxicity. The results indicate that the sediment porewater may itself attain high salt concentrations. The computations show that increased chloride levels have important implications on the Cd complexation, augmenting its concentration in porewater. The toxicity tests suggest that the toxicity in porewater is caused by metals or other toxic chemicals, rather than high levels of chloride. - Effects of chlorides on metal chemistry and toxicity of sediment porewater in a stormwater detention pond impacted by road salts

  20. Conceptual design of Indian molten salt breeder reactor

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Basak, A.; Dulera, I.V.; Vaze, K.K.; Basu, S.; Sinha, R.K.

    2014-01-01

    The fuel in a molten salt breeder reactor is in the form of a continuously circulating molten salt. Fluoride based salts have been almost universally proposed. A crucial part for achieving reasonable breeding in such reactors is the need to reprocess the salt continuously, either online or in batch mode. This constitutes a major technological challenge for this type of reactors. India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian Molten Salt Breeder Reactor (IMSBR). Presently various design options and possibilities are being studied from the point of view of reactor physics and thermal hydraulic design. In parallel fundamental studies as regards various molten salts have also been initiated. This paper would discuss conceptual design of these reactors, as well as associated issues and technologies

  1. Effect of salt intensity in soup on ad libitum intake and on subsequent food choice

    NARCIS (Netherlands)

    Bolhuis, D.P.; Lakemond, C.M.M.; Wijk, de R.A.; Luning, P.A.; Graaf, de C.

    2012-01-01

    The effect of salt intensity on ad libitum intake of tomato soup was investigated when soup was served as a first course and as a second course. Also the effect of salt intensity in soup on subsequent sweet vs. savory choice of sandwich fillings was investigated. Forty-three healthy subjects

  2. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Nakahara, Yasuaki; Kato, Yoshio; Ohno, Hideo; Mitachi, Kohshi.

    1990-01-01

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233 U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  3. Pseudomacrocyclic effect in extraction processes of metal salts by polyethers from nitric acid solutions

    International Nuclear Information System (INIS)

    Yakshin, V.V.; Vilkova, O.M.; Kotlyar, S.A.; Kamalov, G.L.

    1997-01-01

    Comparison of macrocyclic (ME) and pseudmacrocyclic effects (PME), originating by conduct of the metal salt extraction processes (Cs, Sr, In, Zr, Cd, etc) from nitric acid solutions through linear and cyclic polyethers, containing 5 or 6 atoms of ether oxygen and having close molecular masses (290-360), is carried out. It is shown that ordinary ethers practically do not extract the studied metals from nitric acid solutions. By transfer from linear polyethers to their macrocyclic analogs the ME impact is expressed clearly enough: the separation coefficient value grows by tens and hundred times. At the some time the PME role in the extraction processes of metal nitrates through crown-ethers with alkyl and groups is expressed less clearly

  4. Disposition of the fluoride fuel and flush salts from the Molten Salt Reactor experiment at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1996-01-01

    The Molten Salt Reactor Experiment (MSRE) is an 8 MW reactor that was operated at Oak Ridge National Laboratory (ORNL) from 1965 through 1969. The reactor used a unique liquid salt fuel, composed of a mixture of LIF, BeF 2 , ZrF 4 , and UF 4 , and operated at temperatures above 600 degrees C. The primary fuel salt circulation system consisted of the reactor vessel, a single fuel salt pump, and a single primary heat exchanger. Heat was transferred from the fuel salt to a coolant salt circuit in the primary heat exchanger. The coolant salt was similar to the fuel salt, except that it contains only LiF (66%) and BeF, (34%). The coolant salt passed from the primary heat exchanger to an air-cooled radiator and a coolant salt pump, and then returned to the primary heat exchanger. Each of the salt loops was provided with drain tanks, located such that the salt could be drained out of either circuit by gravity. A single drain tank was provided for the non-radioactive coolant salt. Two drain tanks were provided for the fuel salt. Since the fuel salt contained radioactive fuel, fission products, and activation products, and since the reactor was designed such that the fuel salt could be drained immediately into the drain tanks in the event of a problem in the fuel salt loop, the fuel salt drain tanks were provided with a system to remove the heat generated by radioactive decay. A third drain tank connected to the fuel salt loop was provided for a batch of flush salt. This batch of salt, similar in composition to the coolant salt, was used to condition the fuel salt loop after it had been exposed to air and to flush the fuel salt loop of residual fuel salt prior to accessing the reactor circuit for maintenance or experimental activities. This report discusses the disposition of the fluoride fuel and flush salt

  5. Salt content labelling of foods in supermarkets in Finland

    Directory of Open Access Journals (Sweden)

    M. NÄRHINEN

    2008-12-01

    Full Text Available The aim of the study was to assess the extent to which lightly salted food products are included in the assortments of Finnish supermarkets and prominently placed on shelves. The study was carried out in eastern Finland in four supermarkets of different food chains. Six food groups of importance for people's salt intake were considered. The food labels of 689 packaged food products were checked for salt and sodium information on the basis of Finnish regulations on salt. Products with reduced salt contents were found in most food groups but not among whole-meat or ready-to-eat foods. Half of the products with reduced amounts of salt were labelled "lightly salted". All four supermarkets had a similar assortment of lightly salted products. From the public health point of view, the food industry should increase the supply of lightly salted products, and make a special effort to develop lightly salted ready-to-eat foods.

  6. Effect of using FLiBe and FLiNaBe molten salts bearing plutonium fluorides on the neutronic performance of PACER

    International Nuclear Information System (INIS)

    Acir, Adem

    2012-01-01

    In this paper, the effects of using FLiBe and FLiNaBe Molten Salts Bearing Plutonium Fluorides on the neutronic performance of the PACER are investigated. The optimum radial thickness for tritium self-sufficiency of the blankets addition of plutonium fluorides to FLiNaBe (LiF-/NaF BeF 2 ) and FLiBe (LiF-/BeF 2 ) of a dual purpose modified PACER concept are determined. The calculations are carried out with the one dimensional transport code XSDRNPM/SCALE5. The tritium breeding capacities of FLiNaBe and FLiBe with addition of plutonium fluorides in molten salt zone are investigated and compared. The optimum molten salt zone thickness is computed as 155 cm for tritium self-sufficiency of the blankets using FLiBe +1% PuF 4 whereas, the optimum thickness with FLiNaBe +1% PuF 4 is calculated as 170 cm. In addition, neutron transport calculations have been performed to evaluate the energy multiplication factor, total fission rate, displacement per atom and helium gas generation for optimal radial thickness in the blanket. Also, the tritium production and the radiation damage limits should be evaluated together in a fusion blanket for determining the optimum thickness of molten salt layer. (orig.)

  7. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition; Cycle thorium et reacteurs a sel fondu: exploration du champ des parametres et des contraintes definissant le 'Thorium Molten Salt Reactor'

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, L

    2005-09-15

    Producing nuclear energy in order to reduce the anthropic CO{sub 2} emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  8. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    Science.gov (United States)

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  9. Ultrasonic velocimetry studies on different salts of chitosan: Effect of ion size.

    Science.gov (United States)

    Mohan, C Raja; Sathya, R; Nithiananthi, P; Jayakumar, K

    2017-11-01

    In the present investigation, the effect of ion size on the thermodynamical properties such as ultrasonic velocity (U), adiabatic compressibility (β), acoustic impedance (Z), adiabatic bulk modulus (K s ), relaxation strength (r s ) have been obtained for the different salts of chitosan viz., formate (3.5Å), acetate (4.5Å), Succinate (5Å) and Adipate (6Å). To find the effect of ion size, the effect due to water has been removed by calculating the change in ultrasonic velocity (dU), change in adiabatic compressibility (dβ), in acoustic impedance (dZ), in adiabatic bulk modulus (dK s ), and in relaxation strength (dr s ). Space filling factor and polarizability has been obtained from the refractive index data through Lorentz-Lorentz relation. FTIR studies confirm the formation of different quaternary salts of chitosan and their size (mass) effects which has been verified with Hooke's law. All the said properties vary both with ion size and concentration of different salts of chitosan. This investigation may throw some light on better usage of chitosan in biomedical applications. The detailed results are presented and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of Ni-Co Ternary Molten Salt Catalysts on Coal Catalytic Pyrolysis Process

    Science.gov (United States)

    Cui, Xin; Qi, Cong; Li, Liang; Li, Yimin; Li, Song

    2017-08-01

    In order to facilitate efficient and clean utilization of coal, a series of Ni-Co ternary molten salt crystals are explored and the catalytic pyrolysis mechanism of Datong coal is investigated. The reaction mechanisms of coal are achieved by thermal gravimetric analyzer (TGA), and a reactive kinetic model is constructed. The microcosmic structure and macerals are observed by scanning electron microscope (SEM). The catalytic effects of ternary molten salt crystals at different stages of pyrolysis are analyzed. The experimental results show that Ni-Co ternary molten salt catalysts have the capability to bring down activation energy required by pyrolytic reactions at its initial phase. Also, the catalysts exert a preferable catalytic action on macromolecular structure decomposition and free radical polycondensation reactions. Furthermore, the high-temperature condensation polymerization is driven to decompose further with a faster reaction rate by the additions of Ni-Co ternary molten salt crystal catalysts. According to pyrolysis kinetic research, the addition of catalysts can effectively decrease the activation energy needed in each phase of pyrolysis reaction.

  11. Comparative miRomics of Salt-Tolerant and Salt-Sensitive Rice

    Directory of Open Access Journals (Sweden)

    Goswami Kavita

    2017-06-01

    Full Text Available Increase in soil salt causes osmotic and ionic stress to plants, which inhibits their growth and productivity. Rice production is also hampered by salinity and the effect of salt is most severe at the seedling and reproductive stages. Salainity tolerance is a quantitative property controlled by multiple genes coding for signaling molecules, ion transporters, metabolic enzymes and transcription regulators. MicroRNAs are key modulators of gene-expression that act at the post-transcriptional level by translation repression or transcript cleavage. They also play an important role in regulating plant’s response to salt-stress. In this work we adopted the approach of comparative and integrated data-mining to understand the miRNA-mediated regulation of salt-stress in rice. We profiled and compared the miRNA regulations using natural varieties and transgenic lines with contrasting behaviors in response to salt-stress. The information obtained from sRNAseq, RNAseq and degradome datasets was integrated to identify the salt-deregulated miRNAs, their targets and the associated metabolic pathways. The analysis revealed the modulation of many biological pathways, which are involved in salt-tolerance and play an important role in plant phenotype and physiology. The end modifications of the miRNAs were also studied in our analysis and isomiRs having a dynamic role in salt-tolerance mechanism were identified.

  12. Effect of umami taste on pleasantness of low-salt soups during repeated testing.

    Science.gov (United States)

    Roininen, K; Lähteenmäki, L; Tuorila, H

    1996-09-01

    In the present study the effects of the umami substances, monosodium glutamate (0.2%) and 5'-ribonucleotides (0.05%), on the acceptance of low-salt soups in two groups of subjects, one with low-salt (n = 21) and the other with high-salt (n = 23) preferences were assessed. The groups were presented with soups containing 0.3% sodium chloride (low-salt group) and 0.5% sodium chloride (high-salt group). The subjects three times consumed leek-potato or minestrone soup with umami and three times the other soup without umami during six sessions over 5 weeks (sessions 2-7). In addition they tasted these and two other soups (lentil and mushroom soup) during sessions 1 and 8, during which they evaluated the pleasantness, taste intensity, and ideal saltiness of the soups with and without added umami. These ratings were higher when soups contained umami in both the low- and high-salt groups, and they remained higher regardless of which of the soups served for lunch contained umami. The low- and high-salt groups did not differ in pleasantness ratings, although the former rated the taste intensity of their soups higher and ideal saltiness closer to the ideal than did the latter. The pleasantness ratings of soups without umami were significantly lower at the end of the study than at the beginning, whereas those of soups with umami remained unchanged. These data suggest that the pleasantness of reduced-salt foods could be increased by addition of appropriate flavors.

  13. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    International Nuclear Information System (INIS)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin

    2014-01-01

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  14. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  15. The effect of social class on the amount of salt intake in patients with hypertension.

    Science.gov (United States)

    Mazloomy Mahmoodabad, Seyed Saeed; Tehrani, Hadi; Gholian-Aval, Mahdi; Gholami, Hasan; Nematy, Mohsen

    2016-12-01

    Reducing salt intake is a factor related to life style which can influence the prevention of blood pressure. This study was conducted to assess the impact of social class on the amount of salt intake in patients with hypertension in Iran. This was an observational on the intake of salt, as estimated by Kawasaki formula in a sample from Iranian population, stratified for social background characteristics. The finding in general was that the estimated salt intake was somewhat higher in subjects from a lower social background, while the opposite was true for lipid levels (LDL and HDL cholesterol). There was also a significant correlation between salt intake and the level of systolic blood pressure, but not the level of diastolic blood pressure. Considering high salt intake (almost double the standard amount in Iran), especially in patients with low-social class and the effects of salt on human health, it is suggested to design and perform suitable educational programs based on theories and models of health education in order to reduce salt intake.

  16. Effect of potassium-salt muds on gamma ray, and spontaneous potential measurements

    International Nuclear Information System (INIS)

    Cox, J.W.; Raymer, L.L.

    1976-01-01

    Interpretations of the gamma ray and Spontaneous Potential curves generally assume the presence of sodium chloride as the dominant salt in both the formation water and the mud filtrate. However, potassium-salt muds are increasingly being used by the oil industry. The potassium cation is significantly different from the sodium cation in its radioactive and electrochemical properties. Natural potassium contains a radioactive isotope which emits gamma rays. Thus, the presence of potassium salts in the mud system may contribute to Gamma-Ray tool response. Since the Gamma Ray is used quantitatively in many geological sequences as an indicator of clay content, a way to correct for the effect of potassium in the mud column is desirable. Correction methods and charts based on laboratory measurements and field observations are presented. The effect of temperature on the resistivity of potassium muds is also briefly discussed. From data available, it appears to be similar to that for NaCl muds. On the bases of field observations and laboratory work, the electrochemical properties of potassium-chloride and potassium-carbonate muds and mud filtrates are discussed. Activity relationships are proposed, and the influence of these salts on the SP component potentials--namely, the liquid-junction, membrane, and bi-ionic potentials--is described. Several field examples are presented

  17. Salt decontamination demonstration test results

    International Nuclear Information System (INIS)

    Snell, E.B.; Heng, C.J.

    1983-06-01

    The Salt Decontamination Demonstration confirmed that the precipitation process could be used for large-scale decontamination of radioactive waste sale solution. Although a number of refinements are necessary to safely process the long-term requirement of 5 million gallons of waste salt solution per year, there were no observations to suggest that any fundamentals of the process require re-evaluation. Major accomplishments were: (1) 518,000 gallons of decontaminated filtrate were produced from 427,000 gallons of waste salt solution from tank 24H. The demonstration goal was to produce a minimum of 200,000 gallons of decontaminated salt solution; (2) cesium activity in the filtrate was reduced by a factor of 43,000 below the cesium activity in the tank 24 solution. This decontamination factor (DF) exceeded the demonstration goal of a DF greater than 10,000; (3) average strontium-90 activity in the filtrate was reduced by a factor of 26 to less than 10 3 d/m/ml versus a goal of less than 10 4 d/m/ml; and (4) the concentrated precipitate was washed to a final sodium ion concentration of 0.15 M, well below the 0.225 M upper limit for DWPF feed. These accomplishments were achieved on schedule and without incident. Total radiation exposure to personnel was less than 350 mrem and resulted primarily from sampling precipitate slurry inside tank 48. 3 references, 6 figures, 2 tables

  18. Diclofenac Salts. V. Examples of Polymorphism among Diclofenac Salts with Alkyl-hydroxy Amines Studied by DSC and HSM

    Directory of Open Access Journals (Sweden)

    Adamo Fini

    2010-04-01

    Full Text Available Nine diclofenac salts prepared with alkyl-hydroxy amines were analyzed for their properties to form polymorphs by DSC and HSM techniques. Thermograms of the forms prepared from water or acetone are different in most cases, suggesting frequent examples of polymorphism among these salts. Polymorph transition can be better highlighted when analysis is carried out by thermo-microscopy, which in most cases made it possible to observe the processes of melting of the metastable form and re-crystallization of the stable one. Solubility values were qualitatively related to the crystal structure of the salts and the molecular structure of the cation.

  19. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  20. Effect of metal salts on antibacterial activity of zingiber officinale roscoe extract

    International Nuclear Information System (INIS)

    Sohail, T.; Yaqeen, Z.; Imran, H.; Rehman, Z.; Fatima, N.

    2013-01-01

    The antibacterial activity of ethanol extract of Zingiber Officinale Roscoe (ginger) and its combination with different salts like CuSO/sub 4/, ZnSO/sub 4/ and MnCl/sub 2/ was investigated. Both Gram positive and Gram negative bacteria were tested by agar diffusion method. The results showed that ethanol extract of Zingiber Officinale gave the maximum zone of inhibition at 50 mg/ml concentrations against Escherichia coli among Gram negative bacteria and against Staphylococcus aureus in Gram positive bacteria. However antibacterial activity of the ginger and metal salts combination was greater than activity of ethanol extract. These investigations indicate that though ethanol extract has antibacterial activity against Gram positive and Gram negative bacteria, ginger and metal salts complex has more inhibitory effect on microorganisms. Antibacterial activity was also compared with standard drug ampicillin. The minimum inhibitory concentration (MIC) of ginger extract and metal salts complexes against all test organisms ranged from 0.3125 to 2.5 mg/ml. (author)

  1. The HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.

    1988-04-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in a one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./HP)

  2. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis.

    Science.gov (United States)

    Ben-Hayyim, G; Kochba, J

    1983-07-01

    A NaCl-tolerant cell line which was selected from ovular callus of ;Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na(+) and Cl(-) uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K(+) and Cl(-) accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl(-). (d) Removal of Ca(2+) from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change.

  3. An optimized symbiotic fusion and molten-salt fission reactor system

    International Nuclear Information System (INIS)

    Blinkin, V.L.; Novikov, V.M.

    A symbiotic fusion-fission reactor system which breeds nuclear fuel is discussed. In the blanket of the controlled thermonuclear reactor (CTR) uranium-233 is generated from thorium, which circulates in the form of ThF 4 mixed with molten sodium and beryllium fluorides. The molten-salt fission reactor (MSR) burns up the uranium-233 and generates tritium for the fusion reactor from lithium, which circulates in the form of LiF mixed with BeF 2 and 233 UF 4 through the MSR core. With a CTR-MSR thermal power ratio of 1:11 the system can produce electrical energy and breed fuel with a doubling time of 4-5 years. The system has the following special features: (1) Fuel reprocessing is much simpler and cheaper than for contemporary fission reactors; reprocessing consists simply in continuous removal of 233 U from the salt circulating in the CTR blanket by the fluorination method and removal of xenon from the MSR fuel salt by gas scavenging; the MSR fuel salt is periodically exchanged for fresh salt and the 233 U is then removed from it; (2) Tritium is produced in the fission reactor, which is a much simpler system than the fusion reactor; (3) The CTR blanket is almost ''clean''; no tritium is produced in it and fission fragment activity does not exceed the activity induced in the structural materials; (4) Almost all the thorium introduced into the CTR blanket can be used for producing 233 U

  4. Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge

    KAUST Repository

    Wang, Zhongwei; van Loosdrecht, Mark C.M.; Saikaly, Pascal

    2017-01-01

    Salinity can affect the performance of biological wastewater treatment in terms of nutrient removal. The effect of salt on aerobic granular sludge (AGS) process in terms of granulation and nutrient removal was examined in this study. Experiments were conducted to evaluate the effect of salt (15 g/L NaCl) on granule formation and nutrient removal in AGS system started with flocculent sludge and operated at DO of 2.5 mg/L (phase I). In addition, experiments were conducted to evaluate the effect of gradually increasing the salt concentration (2.5 g/L to 15 g/L NaCl) or increasing the DO level (2.5 mg/L to 8 mg/L) on nutrient removal in AGS system started with granular sludge (phase II) taken from an AGS reactor performing well in terms of N and P removal. Although the addition of salt in phase I did not affect the granulation process, it significantly affected nutrient removal due to inhibition of ammonia oxidizing bacteria (AOB) and phosphate accumulating organisms (PAOs). Increasing the DO to 8 mg/L or adapting granules by gradually increasing the salt concentration minimized the adverse effect of salt on nitrification (phase II). However, these strategies were not successful for mitigating the effect of salt on biological phosphorus removal. No nitrite accumulation occurred in all the reactors suggesting that inhibition of biological phosphorus removal was not due to the accumulation of nitrite as previously reported. Also, glycogen accumulating organisms were shown to be more tolerant to salt than PAO II, which was the dominant PAO clade detected in this study. Future studies comparing the salinity tolerance of different PAO clades are needed to further elucidate the effect of salt on PAOs.

  5. Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge

    KAUST Repository

    Wang, Zhongwei

    2017-08-13

    Salinity can affect the performance of biological wastewater treatment in terms of nutrient removal. The effect of salt on aerobic granular sludge (AGS) process in terms of granulation and nutrient removal was examined in this study. Experiments were conducted to evaluate the effect of salt (15 g/L NaCl) on granule formation and nutrient removal in AGS system started with flocculent sludge and operated at DO of 2.5 mg/L (phase I). In addition, experiments were conducted to evaluate the effect of gradually increasing the salt concentration (2.5 g/L to 15 g/L NaCl) or increasing the DO level (2.5 mg/L to 8 mg/L) on nutrient removal in AGS system started with granular sludge (phase II) taken from an AGS reactor performing well in terms of N and P removal. Although the addition of salt in phase I did not affect the granulation process, it significantly affected nutrient removal due to inhibition of ammonia oxidizing bacteria (AOB) and phosphate accumulating organisms (PAOs). Increasing the DO to 8 mg/L or adapting granules by gradually increasing the salt concentration minimized the adverse effect of salt on nitrification (phase II). However, these strategies were not successful for mitigating the effect of salt on biological phosphorus removal. No nitrite accumulation occurred in all the reactors suggesting that inhibition of biological phosphorus removal was not due to the accumulation of nitrite as previously reported. Also, glycogen accumulating organisms were shown to be more tolerant to salt than PAO II, which was the dominant PAO clade detected in this study. Future studies comparing the salinity tolerance of different PAO clades are needed to further elucidate the effect of salt on PAOs.

  6. Recovery of metal chlorides from their complexes by molten salt displacement

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes a process for recovering zirconium or hafnium chloride from a complex of zirconium or hafnium tetrachloride and phosphorus oxychloride. The process comprising: introducing liquid complex of zirconium or hafnium tetrachloride and phosphorus oxychloride into an upper portion of a feed column containing zirconium or hafnium tetrachloride vapor and phosphorus oxychloride vapor. The liquid complex absorbing zirconium or hafnium tetrachloride vapor and producing a bottoms liquid and also producing a phosphorus oxychloride vapor stripped of zirconium or hafnium tetrachloride; introducing the bottoms liquid into a molten salt containing displacement reactor, the reactor containing molten salt comprising at least 30 mole percent lithium chloride and at least 30 mole percent of at least one other alkali metal chloride, the reactor being heated to 30-450 0 C to displace phosphorus oxychloride from the complex and product zirconium or hafnium tetrachloride vapor and phosphorus oxychloride vapor and zirconium or hafnium tetrachloride-containing molten salt; introducing the zirconium or hafnium tetrachloride vapor and the phosphorus oxychloride vapor into the feed column below the point of introduction of the liquid stream; introducing the zirconium or hafnium tetrachloride containing-molten salt into a recovery vessel where zirconium or hafnium tetrachloride is removed from the molten salt to produce zirconium or hafnium tetrachloride product and zirconium or hafnium chloride-depleted molten salt; and recycling the zirconium or hafnium tetachloride-depleted molten salt to the displacement reactor

  7. Context-driven Salt Seeking Test (Rats)

    Science.gov (United States)

    Chang, Stephen E.; Smith, Kyle S.

    2018-01-01

    Changes in reward seeking behavior often occur through incremental learning based on the difference between what is expected and what actually happens. Behavioral flexibility of this sort requires experience with rewards as better or worse than expected. However, there are some instances in which behavior can change through non-incremental learning, which requires no further experience with an outcome. Such an example of non-incremental learning is the salt appetite phenomenon. In this case, animals such as rats will immediately seek out a highly-concentrated salt solution that was previously undesired when they are put in a novel state of sodium deprivation. Importantly, this adaptive salt-seeking behavior occurs despite the fact that the rats never tasted salt in the depleted state, and therefore never tasted it as a highly desirable reward. The following protocol is a method to investigate the neural circuitry mediating adaptive salt seeking using a conditioned place preference (CPP) procedure. The procedure is designed to provide an opportunity to discover possible dissociations between the neural circuitry mediating salt seeking and salt consumption to replenish the bodily deficit after sodium depletion. Additionally, this procedure is amenable to incorporating a number of neurobiological techniques for studying the brain basis of this behavior.

  8. Compatibility of molten salt and structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Masahiro [Toyohashi Univ. of Technology, Aichi (Japan)

    1994-12-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF{sub 2} was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.).

  9. Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation.

    Science.gov (United States)

    Dai, Jian-Ying; Ma, Lin-Hui; Wang, Zhuang-Fei; Guan, Wen-Tian; Xiu, Zhi-Long

    2017-03-01

    Acetoin is a natural flavor and an important bio-based chemical which could be separated from fermentation broth by solvent extraction, salting-out extraction or recovered in the form of derivatives. In this work, a novel method named as sugaring-out extraction coupled with fermentation was tried in the acetoin production by Bacillus subtilis DL01. The effects of six solvents on bacterial growth and the distribution of acetoin and glucose in different solvent-glucose systems were explored. The operation parameters such as standing time, glucose concentration, and volume ratio of ethyl acetate to fermentation broth were determined. In a system composed of fermentation broth, glucose (100%, m/v) and two-fold volume of ethyl acetate, nearly 100% glucose was distributed into bottom phase, and 61.2% acetoin into top phase without coloring matters and organic acids. The top phase was treated by vacuum distillation to remove solvent and purify acetoin, while the bottom phase was used as carbon source to produce acetoin in the next batch of fermentation.

  10. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    International Nuclear Information System (INIS)

    Bulanov, Alexey V.; Nagorny, Ivan G.

    2015-01-01

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained

  11. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    Science.gov (United States)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  12. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  13. Radiolytic gas generation in salt cake technical task plan

    International Nuclear Information System (INIS)

    Walker, D.D.; Crawford, C.L.; Bibler, N.E.

    1993-01-01

    High-level radioactive wastes are stored in large, steel tanks in the Savannah River Site Tank Farms. The liquid levels in these tanks are monitored to detect leakage of waste out of tanks or leakage of liquids into the tanks. Recent unexplained level fluctuations in high-level waste (HLW) tanks have caused High Level Waste Engineering (HLWE) to develop a program to better understand tank level behavior. Interim Waste Technology (IWT) has been requested by HLWE to obtain data which will lead to a better understanding of the radiolytic generations of gases in salt cake. The task described below will provide data from laboratory experiments with simulated wastes which can be used in tank level fluctuation modeling. The following experimental programs have been formulated to meet the task requirements of the customer: (A) determine whether radiolytically generated gas bubbles can be trapped in salt cake; (B) determine the composition of gases produced by radiolysis; (C) determine the yield of radiolysis gases as a function of radiation dose; (D) determine bubble distribution

  14. A consumer-based approach to salt reduction: Case study with bread.

    Science.gov (United States)

    Antúnez, Lucía; Giménez, Ana; Ares, Gastón

    2016-12-01

    In recent years high sodium intake has raised growing concern worldwide. A widespread reduction of salt concentration in processed foods has been claimed as one of the most effective strategies to achieve a short-term impact on global health. However, one of the major challenges in reducing salt in food products is its potential negative impact on consumer perception. For this reason, gradual salt reduction has been recommended. In this context, the aim of the present work was to present a consumer-based approach to salt reduction, using bread as case study. Two consumer studies with a total of 303 consumers were carried out. In the first study, four sequential difference thresholds were determined through paired-comparison tests, starting at a salt concentration of 2%. In the second study, 99 consumers performed a two-bite evaluation of their sensory and hedonic perception of five bread samples: a control bread containing 2% salt and four samples with reduced salt content according to the difference thresholds determined in the first study. Survival analysis was used to determine average difference thresholds, which ranged from 9.4% to 14.3% of the salt concentration of the control bread. Results showed that salt concentration significantly influenced consumer overall liking of the bread samples. However, large heterogeneity was found in consumer hedonic reaction towards salt reduction: two groups of consumers with different preference and hedonic sensitivity to salt reduction were found. Results from the present work confirm that cumulative series of small salt reductions may be a feasible strategy for reducing the sodium content of bread without affecting consumer hedonic perception and stress the importance of considering consumer perception in the design of gradual salt reduction programmes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ellipsometric study of salt film formation during passivation

    Energy Technology Data Exchange (ETDEWEB)

    Wiechmann, Lee Warren [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1979-01-01

    An experimental program was carried out to gain further understanding into the kinetics of salt film formation during repassivation of a corroding metal. Experiments were conducted using an ellipsometer to examine an electrode surface undergoing anodic dissolution and passivation. Because of the constraints of the ellipsometer, the sample had to be mounted vertically. As a consequence natural convection currents had to be taken into account. Calculation showed that the mass transfer limiting current was exceeded by transient currents, indicating that natural convection was present to an extent that could drastically change the system from the diffusion model that was proposed. It was determined that recessing the electrode led to minimized natural convective effects, and to uniform current distribution. The ellipsometer output provided times which were associated with precipitation and dissolution of the salt film. The experimental data was in good agreement with the mathematical model, further strengthening the precipitation-dissolution mechanism of passivation. Furthermore, a dimensionless model was shown capable of a first approximation of the passivation behavior of any metal. Investigations reported here were carried out on iron, nickel, and cobalt.

  16. Bile salts stimulate mucin secretion by cultured dog gallbladder epithelial cells independent of their detergent effect.

    OpenAIRE

    Klinkspoor, J H; Yoshida, T; Lee, S P

    1998-01-01

    1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoprot...

  17. Establishment of a permeability/porosity equation for salt grit and damming materials

    International Nuclear Information System (INIS)

    Fein, E.; Mueller-Lyda, I.; Storck, R.

    1996-09-01

    The flow resistance of stowing and sealing materials hinder the transport of brines in an ultimate storage site in salt rock strata. This effect can be seen when brines flow into the storage areas and when contaminated brines are pressed out of the underground structure. The main variable determining flow resistance is permeability. The convergence process induced by rock pressure reduces the size of the available residual cavern and also the permeability of the stowing and sealing materials. In the long-term safety analyses carried out so far, the interdependence between porosity and permeability in the case of salt grit was commonly described by a power function. The present investigation uses the data available until the end of 1994 to derive an improved relation between permeability and porosity for salt grit stowing material. The results obtained show that the power function used until now is still applicable with only a slight modification of parameters. In addition, the statistical distribution functions of the correlated parameters of the permeability/porosity relation were determined for the first time for a probabilistic safety analysis. (orig./DG) [de

  18. Cotton fabrics with UV blocking properties through metal salts deposition

    International Nuclear Information System (INIS)

    Emam, Hossam E.; Bechtold, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Introducing metal salt based UV-blocking properties into cotton fabric. • A quite simple technique used to produce wash resistant UV-absorbers using different Cu-, Zn- and Ti-salts. • Good UPF was obtained after treatment with Cu and Ti salts, and ranged between 11.6 and 14. • The efficiency of the deposited metal oxides is compared on molar basis. - Abstract: Exposure to sunlight is important for human health as this increases the resistance to diverse pathogens, but the higher doses cause skin problems and diseases. Hence, wearing of sunlight protective fabrics displays a good solution for people working in open atmosphere. The current study offered quite simple and technically feasible ways to prepare good UV protection fabrics based on cotton. Metal salts including Zn, Cu and Ti were immobilized into cotton and oxidized cotton fabrics by using pad-dry-cure technique. Metal contents on fabrics were determined by AAS; the highest metal content was recorded for Cu-fabric and it was 360.6 mmol/kg after treatment of oxidized cotton with 0.5 M of copper nitrate. Ti contents on fabrics were ranged between 168.0 and 200.8 mmol/kg and it showed the lowest release as only 38.1–46.4% leached out fabrics after five laundry washings. Metal containing deposits were specified by scanning electron microscopy and energy dispersive X-ray spectroscopy. UV-transmission radiation over treated fabrics was measured and ultraviolet protection factor (UPF) was calculated. UPF was enhanced after treatment with Cu and Ti salts to be 11.6 and 14, respectively. After five washings, the amount of metal (Cu or Ti) retained indicates acceptable laundering durability.

  19. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part 'CIRCUITS' regroups under a condensed form - in French and using international units - the essential information contained in both basic documents of the American project for a molten-salt breeder power plant. This part is only dealing with things relating to the CEA-EDF workshop 'CIRCUITS'. It is not concerned with information on: the reactor and the moderator replacement, the primary and secondary salts, and the fuel salt reprocessing, that are dealt with in parts 'CORE' and 'CHEMISTRY' respectively. The possible evolutions in the data - and solutions - taken by the American designers for their successive projects (1970 to 1972) are shown. The MSBR power plant comprises three successive heat transfer circuits. The primary circuit (Hastelloy N), radioactive and polluted, containing the fuel salt, includes the reactor, pumps and exchangers. The secondary circuit (pipings made of modified Hastelloy N) contaminated in the exchanger, ensures the separation between the fuel and the fluid operating the turbo-alternator. The water-steam circuit feeds the turbine with steam. This steam is produced in the steam generator flowed by the secondary fluid. Some subsidiary circuits (discharge and storage of the primary and secondary salts, ventilation of the primary circuit ...) complete the three principal circuits which are briefly described. All circuits are enclosed inside the controlled-atmosphere building of the nuclear boiler. This building also ensures the biological protection and the mechanical protection against outer aggressions [fr

  20. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Eun; Yoon, Sung Ho [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2012-10-15

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly.

  1. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    International Nuclear Information System (INIS)

    Hwang, Young Eun; Yoon, Sung Ho

    2012-01-01

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly

  2. Deconjugated bile salts produced by extracellular bile-salt hydrolase-like activities from the probiotic Lactobacillus johnsonii La1 inhibit Giardia duodenalis in vitro growth

    Directory of Open Access Journals (Sweden)

    Marie-Agnès Travers

    2016-09-01

    Full Text Available Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting or releasing BSH-like activity(ies in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present.

  3. Method for making a Pellet-type LiCl-KCl-UCl{sub 3} SALT

    Energy Technology Data Exchange (ETDEWEB)

    Woo, M. S.; JIN, H. J.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A pyrometallurgical partitioning technology to recover uranium from a uranium-TRU mixture which is the product material of electroreduction system is being developed at KAERI since 1997. In the process, the reactor of an electrorefiner consists of the electrodes and the molten chloride salt which is LiCl-KCl-UCl{sub 3}. The role of uranium chloride salt (UCl{sub 3}) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form CdCl{sub 2} occurring in a Cd layer, followed by a process to produce UCl{sub 3} by the reaction of U in the LiCl-KCl eutectic salt and CdCl{sub 2} The apparatus for producing UCl{sub 3} consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of a pelletizer by a transfer system to make a pellet type salt

  4. Soluble salts: their incidence on the protection of metallic structures by paint coatings

    International Nuclear Information System (INIS)

    Morcillo, M.

    2003-01-01

    The presence of soluble salts at the metal/paint interface is known to have a detrimental effect on the integrity of most paint systems. Though this is a long-standing problem, it has recently come to receive greater attention from the protective coatings industry. In the paper the following points are reviewed: degradation mechanisms of the metal/paint system, the role of the metallic substrate, the nature, origin and detection os soluble salts, expected levels of soluble salts in practice, critical thresholds of soluble salts and risk levels for premature failures, role of the type and thickness of paint systems and exposure conditions, and prevention measures. The author presents an overview of the subject, making reference to the related research that has been carried out by him and his co-workers over the last 16 years. (Author) 58 refs

  5. Effects of Gamma Irradiation on Quality in the Processing of Low Salted and Fermented Shrimp

    International Nuclear Information System (INIS)

    Shin Myung-Gon; Lee Cherl-Ho

    2000-01-01

    Irradiation technology was applied to develop low salted and fermented shrimp that has better sensory quality and a longer shelf-life without any food additives. Different levels of salt (10, 15, and 20%, w/w) were added to the salted and fermented shrimp and the samples were irradiated at 0, 2.5, 5.0, 7.5, and 10.0 kGy with a gamma source (Co-60). Proximate composition, salinity, water activity (a), pH, total bacterial count, and general acceptance were analyzed during fermentation at 15 degrees after irradiation. The proximate analysis, salinity, and a were not affected by gamma irradiation during fermentation. However, pH and total bacteria, as well as sensory evaluation, were changed variously with processing conditions such as sodium chloride concentration and irradiation dose. The combinations of 15% salt concentration with 10 kGy irradiation dose and 20% with 5 kGy or above were effective for shelf-life enhancement of the salted and fermented shrimp by adequate suppression of microorganisms during fermentation at 15 degrees. The results showed that the sensory quality of the sample was maintained up to 10 weeks after fermentation. Therefore, it was considered that gamma irradiation was effective in processing low salted and fermented shrimp and extending their shelf-life without adding any food additives

  6. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary

  7. Alleviation of salt stress in lemongrass by salicylic acid.

    Science.gov (United States)

    Idrees, Mohd; Naeem, M; Khan, M Nasir; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2012-07-01

    Soil salinity is one of the key factors adversely affecting the growth, yield, and quality of crops. A pot study was conducted to find out whether exogenous application of salicylic acid could ameliorate the adverse effect of salinity in lemongrass (Cymbopogon flexuosus Steud. Wats.). Two Cymbopogon varieties, Krishna and Neema, were used in the study. Three salinity levels, viz, 50, 100, and 150 mM of NaCl, were applied to 30-day-old plants. Salicylic acid (SA) was applied as foliar spray at 10(-5) M concentration. Totally, six SA-sprays were carried out at 10-day intervals, following the first spray at 30 days after sowing. The growth parameters were progressively reduced with the increase in salinity level; however, growth inhibition was significantly reduced by the foliar application of SA. With the increase in salt stress, a gradual decrease in the activities of carbonic anhydrase and nitrate reductase was observed in both the varieties. SA-treatment not only ameliorated the adverse effects of NaCl but also showed a significant improvement in the activities of these enzymes compared with the untreated stressed-plants. The plants supplemented with NaCl exhibited a significant increase in electrolyte leakage, proline content, and phosphoenol pyruvate carboxylase activity. Content and yield of essential oil was also significantly decreased in plants that received salinity levels; however, SA overcame the unfavorable effects of salinity stress to a considerable extent. Lemongrass variety Krishna was found to be more adapted to salt stress than Neema, as indicated by the overall performance of the two varieties under salt conditions.

  8. Nuclear energy synergetics and molten-salt technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1988-01-01

    There are various problems with nuclear energy techniques in terms of resources, safety, environmental effects, nuclear proliferation, reactor size reduction and overall economics. To overcome these problems, future studies should be focused on utilization of thorium resources, separation of multiplication process and power generation process, and application of liquid nuclear fuel. These studies will lead to the development of molten thorium salt nuclear synergetics. The most likely candidate for working medium is Lif-BeF 2 material (flibe). 233 U production facilities are required for the completion of the Th cycle. For this, three ideas have been proposed: accelerator M.S. breeder, impact fusion MSB and inertial conf. fusion hybrid MSB. The first step toward the development of molten Th salt nuclear energy synergetics will be the construction of a pilot plant of an extreme small size. As candidate reactor, the author has selected mini FUJI-II (7.0 MWe), an extremely small molten salt power reactor. Mini FUJI-II facilities are expected to be developed in 7 - 8 years. For the next step (demonstration step), the designing of a small power reactor (FUJI 160 MWe) has already been carried out. A small molten salt reactor will have good safety characteristics in terms of chemistry, material, structure, nuclear safety and design basis accidents. Such reactors will also have favorable economic aspects. (Nogami, K.)

  9. Probability safety assessment of LOOP accident to molten salt reactor

    International Nuclear Information System (INIS)

    Mei Mudan; Shao Shiwei; Yu Zhizhen; Chen Kun; Zuo Jiaxu

    2013-01-01

    Background: Loss of offsite power (LOOP) is a possible accident to any type of reactor, and this accident can reflect the main idea of reactor safety design. Therefore, it is very important to conduct a study on probabilistic safety assessment (PSA) of the molten salt reactor that is under LOOP circumstance. Purpose: The aim is to calculate the release frequency of molten salt radioactive material to the core caused by LOOP, and find out the biggest contributor to causing the radioactive release frequency. Methods: We carried out the PSA analysis of the LOOP using the PSA process risk spectrum, and assumed that the primary circuit had no valve and equipment reliability data based on the existing mature power plant equipment reliability data. Results: Through the PSA analysis, we got the accident sequences of the release of radioactive material to the core caused by LOOP and its frequency. The results show that the release frequency of molten salt radioactive material to the core caused by LOOP is about 2×10 -11 /(reactor ·year), which is far below that of the AP1000 LOOP. In addition, through the quantitative analysis, we obtained the point estimation and interval estimation of uncertainty analysis, and found that the biggest contributor to cause the release frequency of radioactive material to the core is the reactor cavity cooling function failure. Conclusion: This study provides effective help for the design and improvement of the following molten salt reactor system. (authors)

  10. Bile salts stimulate mucin secretion by cultured dog gallbladder epithelial cells independent of their detergent effect.

    Science.gov (United States)

    Klinkspoor, J H; Yoshida, T; Lee, S P

    1998-05-15

    1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoproteins. We also attempted to alter the fluidity of the apical membrane of the cells through extraction of cholesterol with beta-cyclodextrin (2.5-15 mM). The effect on TUDC-induced mucin secretion was studied. Cell viability was assessed by measuring lactate dehydrogenase (LDH) leakage or 51Cr release. 3. In contrast with the bile salts, the detergents were not able to cause an increase in mucin secretion without causing concomitant cell lysis. Concentrations of detergent that increased mucin release (>100 microM Triton X-100, >0.8 mM Tween-20), caused increased LDH release. Incubation with beta-cyclodextrin resulted in effective extraction of cholesterol without causing an increase in 51Cr release. However, no effect of the presumed altered membrane fluidity on TUDC (10 mM)-induced mucin secretion was observed. 4. The stimulatory effect of bile salts on mucin secretion by gallbladder epithelial cells is not affected by the fluidity of the apical membrane of the cells and also cannot be mimicked by other detergents. We conclude that the ability of bile salts to cause mucin secretion by the gallbladder epithelium is not determined by their detergent properties.

  11. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  12. Effect of nitrogen salts on the growth of Ceratonia siliqua L. Shoot cultures

    Directory of Open Access Journals (Sweden)

    Vinterhalter Branka

    2007-01-01

    Full Text Available Effects of reduced nitrogen salt nutriton on the growth, lenticel hypertrophy and anthocyanin accumulation of carob (Ceratonia siliqua L. shoot cultures were investigated in conditions of light and darkness. Growth of shoot cultures was not significantly affected until nitrogen salts were reduced to less than ¼ of full-strength MS (Murashige and Skoog, 1962 values. Cultures in darkness were less affected and their main shoots even increased in length. Appearance of hypertrophied lenticels in light decreased, while in darkness they were absent in all treatments. Reduced nitrogen salt nutrition strongly affected anthocyanin accumulation of shoots and leaves, which greatly increased in both light and darkness. .

  13. Salt and nitric oxide synthase inhibition-induced hypertension: kidney dysfunction and brain anti-oxidant capacity.

    Science.gov (United States)

    Oktar, Süleyman; Ilhan, Selçuk; Meydan, Sedat; Aydin, Mehmet; Yönden, Zafer; Gökçe, Ahmet

    2010-01-01

    The specific aim of this study was to examine the effects of salt-loading on kidney function and brain antioxidant capacity. Wistar rats were divided into four groups: Control rats were given normal drinking water and no drug treatment for 2 weeks. LNNA group: rats were given normal drinking water and the nitric oxide (NO) inhibitor NG-nitro-L-arginine (L-NNA), 3 mg/kg/day. LNNA + Salt group: rats were given drinking water containing salt 2% and 3 mg/kg L-NNA. Salt group: rats were given drinking water containing salt 2% and no drug treatment. Basal blood pressure and the levels of serum BUN, creatinine, uric acid, cortisol, electrolyte, serum antioxidant capacity, and oxidative stress were measured. NO, superoxide dismutase (SOD), and catalase (CAT) levels were measured in the hypothalamus, brainstem, and cerebellum. Salt overload increased the blood pressure of the LNNA + Salt group. Salt-loading enhanced BUN, creatinine, sodium retention. High salt produced an increase in uric acid levels and a decrease in cortisol levels in serum. Additionally, the oxidative stress index in serum increased in the LNNA + Salt group. Salt-loading enhanced brain NO levels, but not SOD and CAT activity. L-NNA increased brain SOD activity, but not CAT and NO levels. In conclusion, salt-loading causes hypertension, kidney dysfunction, and enhances oxidative stress in salt-sensitive rats.

  14. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.

    Science.gov (United States)

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-05-19

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO₃-NaNO₃ binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  15. Spectroscopic Characterization of Omeprazole and Its Salts

    Directory of Open Access Journals (Sweden)

    Tomislav Vrbanec

    2017-01-01

    Full Text Available During drug development, it is important to have a suitable crystalline form of the active pharmaceutical ingredient (API. Mostly, the basic options originate in the form of free base, acid, or salt. Substances that are stable only within a certain pH range are a challenge for the formulation. For the prazoles, which are known to be sensitive to degradation in an acid environment, the formulation is stabilized with alkaline additives or with the application of API formulated as basic salts. Therefore, preparation and characterization of basic salts are needed to monitor any possible salinization of free molecules. We synthesized salts of omeprazole from the group of alkali metals (Li, Na, and K and alkaline earth metals (Mg, Ca. The purpose of the presented work is to demonstrate the applicability of vibrational spectroscopy to discriminate between the OMP and OMP-salt molecules. For this reason, the physicochemical properties of 5 salts were probed using infrared and Raman spectroscopy, NMR, TG, DSC, and theoretical calculation of vibrational frequencies. We found out that vibrational spectroscopy serves as an applicable spectroscopic tool which enables an accurate, quick, and nondestructive way to determine the characteristic of OMP and its salts.

  16. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Feriduni, Behruz; Mogaddam, Mohammad Reza Afshar

    2016-01-01

    In this paper, a new extraction method based on counter current salting-out homogenous liquid-liquid extraction (CCSHLLE) followed by dispersive liquid-liquid microextraction (DLLME) has been developed for the extraction and preconcentration of widely used pesticides in fruit juice samples prior to their analysis by gas chromatography-flame ionization detection (GC-FID). In this method, initially, sodium chloride as a separation reagent is filled into a small column and a mixture of water (or fruit juice) and acetonitrile is passed through the column. By passing the mixture sodium chloride is dissolved and the fine droplets of acetonitrile are formed due to salting-out effect. The produced droplets go up through the remained mixture and collect as a separated layer. Then, the collected organic phase (acetonitrile) is removed with a syringe and mixed with 1,1,2,2-tetrachloroethane (extraction solvent at µL level). In the second step, for further enrichment of the analytes the above mixture is injected into 5 mL de-ionized water placed in a test tube with conical bottom in order to dissolve acetonitrile into water and to achieve a sedimented phase at µL-level volume containing the enriched analytes. Under the optimal extraction conditions (extraction solvent, 1.5 mL acetonitrile; pH, 7; flow rate, 0.5 mL min(-1); preconcentration solvent, 20 µL 1,1,2,2-tetrachloroethane; NaCl concentration; 5%, w/w; and centrifugation rate and time, 5000 rpm and 5 min, respectively), the extraction recoveries and enrichment factors ranged from 87% to 96% and 544 to 600, respectively. Repeatability of the proposed method, expressed as relative standard deviations, ranged from 2% to 6% for intra-day (n=6, C=250 or 500 µg L(-1)) and inter-days (n=4, C=250 or 500 µg L(-1)) precisions. Limits of detection are obtained between 2 and 12 µg L(-1). Finally, the proposed method is applied for the determination of the target pesticide residues in the juice samples. Copyright © 2015

  17. Biological Effect of Gas Plasma Treatment on CO2 Gas Foaming/Salt Leaching Fabricated Porous Polycaprolactone Scaffolds in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Tae-Yeong Bak

    2014-01-01

    Full Text Available Porous polycaprolactone (PCL scaffolds were fabricated by using the CO2 gas foaming/salt leaching process and then PCL scaffolds surface was treated by oxygen or nitrogen gas plasma in order to enhance the cell adhesion, spreading, and proliferation. The PCL and NaCl were mixed in the ratios of 3 : 1. The supercritical CO2 gas foaming process was carried out by solubilizing CO2 within samples at 50°C and 8 MPa for 6 hr and depressurization rate was 0.4 MPa/s. The oxygen or nitrogen plasma treated porous PCL scaffolds were prepared at discharge power 100 W and 10 mTorr for 60 s. The mean pore size of porous PCL scaffolds showed 427.89 μm. The gas plasma treated porous PCL scaffolds surface showed hydrophilic property and the enhanced adhesion and proliferation of MC3T3-E1 cells comparing to untreated porous PCL scaffolds. The PCL scaffolds produced from the gas foaming/salt leaching and plasma surface treatment are suitable for potential applications in bone tissue engineering.

  18. Ionic Salt Effect on the Phase Transition of PS-b-P2VP Copolymers

    Science.gov (United States)

    Kim, Bokyung; An, Hyungju; Ryu, Du Yeol; Kim, Jehan

    2009-03-01

    Solid-state electrolytes have long been considered as suitable candidates owing to the simple and easy processes for rechargeable battery manufactures, compared to conventional liquid electrolyte counterparts. Especially, polymer/salt systems involving PMMA and PVP complex forms have been studied since they provide stable electrochemical characteristics as well as mechanical properties. We studied the phase behavior of PS-b-P2VP upon the salt addition by small angle x-ray scattering (SAXS) and depolarized light scattering. Transition temperatures of block copolymer were significantly influenced by the salt addition in addition to the changes of d-spacings, which is caused by the effective coordinative interaction between P2VP block and salt. This study suggests a simple approach to solid-state block copolymer electrolytes.

  19. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis1

    Science.gov (United States)

    Ben-Hayyim, Gozal; Kochba, Joshua

    1983-01-01

    A NaCl-tolerant cell line which was selected from ovular callus of `Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na+ and Cl− uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K+ and Cl− accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl−. (d) Removal of Ca2+ from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change. Images Fig. 3 PMID:16663067

  20. Fundamental study on the salt distillation from the mixtures of rare earth precipitates and LiCl-KCl eutectic salt

    International Nuclear Information System (INIS)

    Yang, H. C.; Eun, H. C.; Cho, Y. Z.; Lee, H. S.; Kim, I. T.

    2008-01-01

    An electrorefining process of spent nuclear fuel generates waste salt containing some radioactive metal chlorides. The most effective method to reduce salt waste volume is to separate radioactive metals from non-radioactive salts. A promising approach is to change radioactive metal chlorides into salt-insoluble oxides by an oxygen sparging. Following this, salt distillation process is available to effectively separate the precipitated particulate metal oxides from salt. This study investigated the distillation rates of LiCl-KCl eutectic salt under different vacuums at elevated temperatures. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. In the second part, we tested the removal of eutectic salt from the RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature of mixture, the degree of vacuum and the time

  1. Performance evaluation of two protective treatments on salt-laden limestones and marble after natural and artificial weathering.

    Science.gov (United States)

    Salvadori, Barbara; Pinna, Daniela; Porcinai, Simone

    2014-02-01

    Salt crystallization is a major damage factor in stone weathering, and the application of inappropriate protective products may amplify its effects. This research focuses on the evaluation of two protective products' performance (organic polydimethylsiloxane and inorganic ammonium oxalate (NH4)2(COO)2·H2O) in the case of a salt load from behind. Experimental laboratory simulations based on salt crystallization cycles and natural weathering in an urban area were carried out. The effects were monitored over time, applying different methods: weight loss evaluation, colorimetric and water absorption by capillarity measurements, stereomicroscope observations, FTIR and SEM-EDS analyses. The results showed minor impact exerted on the short term on stones, particularly those treated with the water repellent, by atmospheric agents compared to salt crystallization. Lithotypes with low salt load (Gioia marble) underwent minor changes than the heavily salt-laden limestones (Lecce and Ançã stones), which were dramatically damaged when treated with polysiloxane. The results suggest that the ammonium oxalate treatment should be preferred to polysiloxane in the presence of soluble salts, even after desalination procedures which might not completely remove them. In addition, the neo-formed calcium oxalate seemed to effectively protect the stone, improving its resistance against salt crystallization without occluding the pores and limiting the superficial erosion caused by atmospheric agents.

  2. The effect of postirradiation application of aspartic acid salts on hemopoietic recovery in sublethally X-irradiated mice

    International Nuclear Information System (INIS)

    Pospisil, M.; Netikova, J.; Vasku, J.; Urbanek, E.

    1979-01-01

    The effect of aspartic acid salts, especially of K and Mg aspartates, on certain hematological changes in the peripheral blood and hemopoietic organs of sublethally X-irratiated male mice of the strain C57Bl/10 was investigated. Salts of aspartic acid were administered in tap water after irradiation. A favorable effect of aspartic acid salts on erythropoietic recovery and on regeneration of thymus weight was found during the first two weeks after irradiation. (orig.) [de

  3. Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization.

    Science.gov (United States)

    Njauw, Ching-Wei; Cheng, Chih-Yang; Ivanov, Viktor A; Khokhlov, Alexei R; Tung, Shih-Huang

    2013-03-26

    It has been known that the addition of bile salts to lecithin organosols induces the formation of reverse wormlike micelles and that the worms are similar to long polymer chains that entangle each other to form viscoelastic solutions. In this study, we further investigated the effects of different bile salts and bile acids on the growth of lecithin reverse worms in cyclohexane and n-decane. We utilized rheological and small-angle scattering techniques to analyze the properties and structures of the reverse micelles. All of the bile salts can transform the originally spherical lecithin reverse micelles into wormlike micelles and their rheological behaviors can be described by the single-relaxation-time Maxwell model. However, their efficiencies to induce the worms are different. In contrast, before phase separation, bile acids can induce only short cylindrical micelles that are not long enough to impart viscoelasticity. We used Fourier transform infrared spectroscopy to investigate the interactions between lecithin and bile salts/acids and found that different bile salts/acids employ different functional groups to form hydrogen bonds with lecithin. Such effects determine the relative positions of the bile salts/acids in the headgroups of lecithin, thus resulting in varying efficiencies to alter the effective critical packing parameter for the formation of wormlike micelles. This work highlights the importance of intermolecular interactions in molecular self-assembly.

  4. Summary of Remediated Nitrate Salt Surrogate Formulation and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leonard, Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hartline, Ernest Leon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tian, Hongzhao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    High Explosives Science and Technology (M-7) completed all required formulation and testing of Remediated Nitrate Salt (RNS) surrogates on April 27, 2016 as specified in PLAN-TA9-2443 Rev B, "Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing Standard Procedure", released February 16, 2016. This report summarizes the results of the work and also includes additional documentation required in that test plan. All formulation and testing was carried out according to PLAN-TA9-2443 Rev B. The work was carried out in three rounds, with the full matrix of samples formulated and tested in each round. Results from the first round of formulation and testing were documented in memorandum M7-J6-6042, " Results from First Round of Remediated Nitrate Salt Surrogate Formulation and Testing." Results from the second round of formulation and testing were documented in M7-16-6053 , "Results from the Second Round of Remediated Nitrate Salt Surrogate Formulation and Testing." Initial results from the third round were documented in M7-16-6057, "Initial Results from the Third Round of Remediated Nitrate Salt Formulation and Testing."

  5. Comparison of several ethanol productions using xylanase, inorganic salts, surfactant

    Science.gov (United States)

    Wu, Yan; Lu, Jie; Yang, Rui-feng; Song, Wen-jing; Li, Hai-ming; Wang, Hai-song; Zhou, Jing-hui

    2017-03-01

    Liquid hot water (LHW) pretreatment is an effective and environmentally friendly method to produce bioethanol with lignocellulosic materials. Corn stover was pretreated with liquid hot water (LHW) and then subjected to semi-simultaneous saccharification and fermentation (S-SSF) to obtain high ethanol concentration and yield. The present study aimed to confirm the effect of several additives on the fermentation digestibility of unwashed WIS of corn stover pretreated with LHW. So we also investigated the process, such as enzyme addition, inorganic salts, surfactant and different loading Triton. Results show that high ethanol concentration is necessary to add xylanase in the stage of saccharification. The ethanol concentration increased mainly with magnesium ion on fermentation. Comparing with Tween 80, Span 80 and Polyethylene glycol, Triton is the best surfactant. In contrast to using xylanase and Triton respectively, optimization can make up the lack of stamina and improve effect of single inorganic salts.

  6. Borehole-inclusion stressmeter measurements in bedded salt

    International Nuclear Information System (INIS)

    Cook, C.W.; Ames, E.S.

    1980-07-01

    Sandia purchased borehole-inclusion stressmeters from a commercial supplier to measure in situ stress changes in bedded salt. However, the supplied stressmeters were difficult to set in place and gave erratic results in bedded salt. These problems were overcome with a new extended platen design. Also a straingaged transducer was designed which can be read with a conventional data logger. Due to the nonlinear behavior of bedded salt under uniaxial loading, a new empirical calibration scheme was devised. In essence, the stressmeters are calibrated as force transducers and this calibration curve is then used to determine the relationship between uniaxial stress changes in bedded salt and the gage's output. The stressmeter and calibration procedures have been applied under mine conditions and produced viable results. Future work will involve finite element analysis to calculate the observed behavior of the stressmeters. The response of the stressmeters in bedded salt is neither that of a true stressmeter or of a true strainmeter. However, repeatable calibrations make the gages very useful

  7. Quenching of acridine orange fluorescence by salts in aqueous solutions: Effects of aggregation and charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Amado, A.M. [Departamento de Física, FFCLRP, USP (Brazil); Ramos, A.P. [Departamento de Química, FFCLRP, USP (Brazil); Silva, E.R. [Departamento de Física, FFCLRP, USP (Brazil); Borissevitch, I.E., E-mail: iouribor@usp.br [Departamento de Física, FFCLRP, USP (Brazil)

    2016-10-15

    Acridine orange (AO) is widely applied in biology and medicine as a fluorescence probe, an intracellular pH indicator, and a photosensitizer in photodynamic therapy due to its adequate spectroscopic characteristics and high affinity to biological structures. Being introduced in an organism, AO is dispersed in blood plasma characterized by high ionic strength (ca. 0.36 M in humans). We have investigated the effect of ionic strength upon AO spectral characteristics and fluorescence quenching. The effect of pH on these characteristics was also tested. Salts quench AO fluorescence, the quenching constant (k{sub q}) increasing with the AO concentration. Salts stimulate AO aggregation, the process depending weakly on the salt origin. On the other hand, k{sub q} does depend on the salt anion origin, increasing as the anion oxidation potential decreases, and is virtually independent of the cation origin. This means that at least two different mechanisms of the AO fluorescence quenching by salts exist: fluorescence intensity decrease due to AO aggregation and quenching by partial electron transfer from salt anion to AO molecule in its singlet excited state (the exciplex formation).

  8. Parametric studies on the fuel salt composition in thermal molten salt breeder reactors

    International Nuclear Information System (INIS)

    Nagy, K.; Kloosterman, J.L.; Lathouwers, D.; Van der Hagen, T.H.J.J.

    2008-01-01

    In this paper the salt composition and the fuel cycle of a graphite moderated molten salt self-breeder reactor operating on the thorium cycle is investigated. A breeder molten salt reactor is always coupled to a fuel processing plant which removes the fission products and actinides from the core. The efficiency of the removal process(es) has a large influence on the breeding capacity of the reactor. The aim is to investigate the effect on the breeding ratio of several parameters such as the composition of the molten salt, moderation ratio, power density and chemical processing. Several fuel processing strategies are studied. (authors)

  9. Assay of uranium in fused salt cake generated at the natural uranium metal fuel fabrication plants by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Kalsi, P.C.; Bhanu, A.U.; Sahoo, S.; Iyer, R.H.

    1986-01-01

    A passive gamma-ray spectroscopic method is employed for the assay of uranium in fused salt cake, a scrap produced at the natural uranium metal fuel fabrication plants. The method makes use of NaI(TI) detector coupled with a multichannel analyser. The 1 MeV gamma-ray of 238 U was used for the calibration. The calibration curve was made by counting synthetic mixtures made of U 3 O 8 powder, the heat treatment salt and iron in the form of fine powder. The uranium content in these synthetic mixtures was kept in the range of 1-11 per cent. 23 lots of the fused salt cake taken from three different batches of the salt cake were then analysed by this method. The uranium content of fused salt cake was found to be in the range of 1.70-11.43 per cent. To compare the gamma spectrometric results with a completely independent method, chemical analysis of all the fused salt cakes were also carried out. The NDA results were found to agree within ± 17 per cent with the chemical analysis results. (author)

  10. Salt tectonics in Santos Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, David G.; Nielsen, Malene; Raven, Madeleine [Maersk Oil and Gas, Copenhagen (Denmark); Menezes, Paulo [Maersk Oil and Gas, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    From Albian to end Cretaceous times, the inboard part of the Santos Basin in Brazil was affected by extension as salt flowed basinwards under the effect of gravity. Salt rollers, flip-flop salt diapirs and the famous Albian Gap were all formed by this process. Outboard of these extensional structures, contraction was taken up in a wide zone of thickened salt where salt collected. The overburden was carried on top of the salt as it flowed down-dip, with up to 40 km of translation recorded in Albian strata. (author)

  11. Numerical investigation of road salt impact on an urban wellfield.

    Science.gov (United States)

    Bester, M L; Frind, E O; Molson, J W; Rudolph, D L

    2006-01-01

    The impact of road salt on a wellfield in a complex glacial moraine aquifer system is studied by numerical simulation. The moraine underlies an extensive urban and industrial landscape, which draws its water supply from >20 wellfields, several of which are approaching or have exceeded the drinking water limit for chloride. The study investigates the mechanisms of road salt infiltration, storage, and transport in the subsurface and assesses the effectiveness of mitigation measures designed to reduce the impact. The three-dimensional transport model accounts for increases in salt loading, as well as growth of the urbanized area and road network over the past 50 years. The simulations, which focus on one impacted wellfield, show chloride plumes originating mainly at arterial roads and migrating through aquitard windows into the water supply aquifers. The results suggest that the aquifer system contains a large and heterogeneously distributed mass of chloride and that concentrations in the aquifer can be substantially higher than the concentrations in the well water. Future impact scenarios indicate that although the system responds rapidly to reductions in salt loading, the residual chloride mass may take decades to flush out, even if road salting were discontinued. The implications with respect to urban wellfields in typical snow-belt areas are discussed.

  12. Salt tolerances of some mainland tree species select as through nursery screening.

    Science.gov (United States)

    Miah, Md Abdul Quddus

    2013-09-15

    A study of salt tolerance was carried out on germination, survival and height growth performance of important mesophytic species such as Acacia auriculiformis, Acacia hybrid, Artocarpus heterophyllus, Albizia procera, Albizia lebbeck, Acacia nilotica, Achras sapota, Casuarina equisetifolaia, Emblica officinalis, Leucaena leucocephala, Samania saman, Swetenia macrophylla, Terminalia arjuna, Tamarindus indica, Terminalia bellirica and Thespesia populnea in nursery stage using fresh water and salt (NaCl) solutions of 10, 15 and 20 ppm. Effect of salt on germination, survival performance and height growth performance were examined in this condition. Based on the observation, salt tolerance of these species has been determined Acacia auriculiformis, Acacia hybrid, Achras sapota, Casuarina equisetifolia, Leucaena leucocephala and Tamarindus indica has showed the best capacity to perform in different salinity conditions. Acacia nilotica, Emblica officinalis, Thespesia populnea has performed better. Albizia procera, Samania saman and Terminalia bellirica, germination and height performance showed good but when salinity increases survivability were decreases.

  13. Halomonas sp. BS4, A biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance.

    Science.gov (United States)

    Donio, Mariathason Birdilla Selva; Ronica, Fernando Arul; Viji, Vijayaragavan Thanga; Velmurugan, Subramanian; Jenifer, John Selesteen Charles Adlin; Michaelbabu, Mariavincent; Dhar, Prasenjit; Citarasu, Thavasimuthu

    2013-12-01

    Halophilic bacteria were isolated from Thamaraikulam solar salt works in India. After routine biosurfactant screening by various methods, the biosurfactant producing bacteria, Halomonas sp BS4 was confirmed by 16 S rRNA sequencing. The growth optimization of Halomonas sp BS4 revealed their optimum growth at 8% NaCl and 6-8 pH in the growth medium. Further the partially purified biosurfactants were characterized by TLC, FTIR and GC-MS analysis. GC-MS results revealed that, the partial purified biosurfactants contain 1, 2-Ethanediamine N, N, N', N'-tetra, 8-Methyl-6-nonenamide, (Z)-9-octadecenamide and a fatty acid derivative. Pharmacological screening of antibacterial, antifungal, antiviral and anticancer assays revealed that, the biosurfactant extracted from Halomonas sp BS4 effectively controlled the human pathogenic bacteria and fungi an aquaculturally important virus, WSSV. The biosurfactant also suppressed the proliferation of mammary epithelial carcinoma cell by 46.77% at 2.5 μg concentration. Based on these findings, the present study concluded that, there is a possibility to develop eco-friendly antimicrobial and anticancer drugs from the extremophilic origin.

  14. Effects of temperature, temperature gradients, stress, and irradiation on migration of brine inclusions in a salt repository

    International Nuclear Information System (INIS)

    Jenks, G.H.

    1979-07-01

    Available experimental and theoretical information on brine migration in bedded salt are reviewed and analyzed. The effects of temperature, thermal gradients, stress, irradiation, and pressure in a salt repository are among the factors considered. The theoretical and experimental (with KCl) results of Anthony and Cline were used to correlate and explain the available data for rates of brine migration at temperatures up to 250 0 C in naturally occurring crystals of bedded salt from Lyons and Hutchinson, Kansas. Considerations of the effects of stressing crystals of bedded salt on the migratin properties of brine inclusions within the crystals led to the conclusion that the most probable effects are a small fractional increase in the solubility of the salt within the liquid and a concomitant and equal fractional increase in the rate of the thermal gradient-induced migration of the brine. The greatest uncertainty relative to the prediction of rates of migration of brine into a waste emplacement cavity in bedded salt is associated with questions concerning the effects of the grain boundaries (within the aggregates of single crystals which comprise a bedded salt deposit) on brine migration through the deposit. The results of some of the estimates of rates and total amounts of brine inflow to HLW and SURF waste packages emplaced in bedded salt were included to illustrate the inflow volumes which might occur in a repository. The results of the brine inflow estimates for 10-year-old HLW emplaced at 150 kW/acre indicated inflow rates starting at 0.7 liter/year and totaling 12 liters at 30 years after emplacement. The results of the estimates for 10-year-old PWR SURF emplaced at 60 kW/acre indicated a constant inflow of 0.035 liter/year for the first 35 years after emplacement

  15. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    International Nuclear Information System (INIS)

    Noubigh, Adel; Abderrabba, Manef; Provost, Elise

    2007-01-01

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies (Δ sol H 0 ) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC (Δ tr G 0 ) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies (Δ tr H 0 ) and entropies (Δ tr S 0 ) of transfer have also been calculated. The decrease in solubility is correlated to the positive Δ tr G 0 value which is mainly of enthalpic origin

  16. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Lasfargues

    2017-05-01

    Full Text Available Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  17. Uranium metal production by molten salt electrolysis

    International Nuclear Information System (INIS)

    Takasawa, Yutaka

    1999-01-01

    Atomic vapor laser isotope separation (AVLIS) is a promising uranium enrichment technology in the next generation. Electrolytic reduction of uranium oxides into uranium metal is proposed for the preparation of uranium metal as a feed material for AVLIS plant. Considering economical performance, continuos process concept and minimizing the amount of radioactive waste, an electrolytic process for producing uranium metal directly from uranium oxides will offer potential advantages over the existing commercial process. Studies of uranium metal by electrolysis in fluoride salts (BaF 2 -LiF-UF 4 (74-11-15 w/o) at 1150-1200degC, using both a laboratory scale apparatus and an engineering scale one, and continuous casting of uranium metal were carried out in order to decide the optimum operating conditions and the design of the industrial electrolytic cells. (author)

  18. A study on the reduction of uranium oxide to uranium metal in LiCl molten salt

    International Nuclear Information System (INIS)

    Seo, J. S.; Hur, J. M.; Lee, W. K.; Hong, S. S.; Kang, D. S.; Park, S. W.

    2002-01-01

    Research for the analysis on a metallization process of uranium oxide in LiCl-Li molten salt was carried out. Effect of a concentration of Li 2 O on the metallization process was also studied. The new concept, electrochemical reduction of uranium oxide in LiCl-Li 2 O molten salt was proposed. The concept is based on the integrated process of metallization of UO 2 with simultaneous electrochemical reduction of Li 2 O which is recycled in a closed system. In a LiCl-Li molten salt system, U 3 O 8 whose conversion ratio to U turns out to be 97.1%, showed a better metallization characteristic than UO 2 . It is verified that electrochemically reduced Li is well deposited on the UO 2 powder cathode through a porous magnesia filter in LiCl-Li 2 O molten salt. In that process Li 2 O was from by the reduction process of UO 2 to U. This electrochemical reduction process showed good results to covert UO 2 to U

  19. Effect of indomethacin and salt depletion on renal proton MR imaging

    International Nuclear Information System (INIS)

    Heyman, S.N.; Mammen, M.

    1991-01-01

    Blockade of the synthesis of vasodilating prostaglandins with non-steroidal anti-inflammatory drugs (NSAID) renders the renal medulla susceptible to hypoxic injury with reduced renal function, especially in clinical conditions characterized by volume depletion. Alterations in renal hemodynamics and urine production may effect renal MR imaging under these circumstances. We injected salt-depleted and control rats undergoing proton MR imaging with indomethacin 10 mg/kg. Indomethacin abolished the cortico-medullary T2-gradient and markedly diminished the overall renal signal in salt-depleted rats only. These changes, which progressed over a period of 40 min after indomethacin was injected, probably result from renal oligemia and decreased urine production, with an associated decrease in T2-values. We suggest that a history of consumption of non-steroidal anti-inflammatory drugs should be obtained and taken into account in the evaluation of renal proton MR imaging, especially in the presence of salt and volume depletion. (orig.)

  20. Studying of the combined salts effect on the engineering properties of clayey soil

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Anwar

    2018-01-01

    Full Text Available In recent years, a number of studies had been performed to investigate the effect of pore water chemistry on the strength and compressibility characteristics of soil. Although the effect of chloride and sulfates salts separately in pore fluids on the geotechnical properties of soil seems to be well understood, but the influence of combined effect of sulfates and chlorides in pore water on the behavior of soil is still unclear mostly due to the limited numbers of studies as well as the complexity of processes that may occur in soil (with the presence of salts in pore water-soil interaction. Southern regions of Iraq, especially Basra suffers from low water levels in the summer season in addition to the lack of rain water, which causes a significant increase of salt in the Shatt al Arab. Water salinity continues to increase with time. To investigate the combined impacts of water salinity on the behavior of clayey soils, the basic characteristics of the soil brought from Al-Nahrawan site was studied. Chemical methods were done with three types of water (distilled, water of highly saline as Shatt Al-Arab water and water of Tarmiya as moderate saline water. The effect of water salinity on the geotechnical properties of fine grain soil was investigated. Different laboratory tests such as Atterberg limits, standard compaction, consolidation and shear strength of soil .Results showed that the presence of perceptible amounts of dissolved salts in water can lead to changes in the engineering properties of the soil.

  1. Solar gasification of biomass: design and characterization of a molten salt gasification reactor

    Science.gov (United States)

    Hathaway, Brandon Jay

    The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus

  2. Modelling of the thermomechanical behaviour of salt rock

    International Nuclear Information System (INIS)

    Albers, G.; Graefe, V.; Korthaus, E.; Pudewillis, A.; Prij, J.

    1986-01-01

    The modelling of the thermomechanical behaviour of salt rock is examined, with respect to the disposal of radioactive waste in salt formations. The calculation methods and programmes currently available for the modelling are described. Some examples are given of calculations carried out in parallel with tests. Some results of modelling calculations for a repository are presented by way of illustration. (U.K.)

  3. LiCl-KCl-UCl3 Salt production and Transfer for the Uranium Electrorefining

    International Nuclear Information System (INIS)

    Woo, Moon Sik; Kang, Hee Suk; Lee, Han Soo

    2009-01-01

    A pyrometallurgical partitioning technology to recover uranium from an uranium-TRU mixture which is the product material of electroreduction system is being developed at KAERI since 1997. In the process, the reactor of an electrorefiner consists of the electrodes and the molten chloride salt which is LiCl-KCl-UCl 3 . The role of uranium chloride salt (UCl 3 ) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 . The apparatus for producing UCl 3 consists of a chlorine gas generator, a chlorinator, and a off-gas wet scrubber. The temperature of the reactants are maintained at about 600 .deg. C . After the reaction is completed, the product salt is transferred from the vessel to the electrorefiner by a transfer system

  4. Effects of Salt Stress on Three Ecologically Distinct Plantago Species.

    Science.gov (United States)

    Al Hassan, Mohamad; Pacurar, Andrea; López-Gresa, María P; Donat-Torres, María P; Llinares, Josep V; Boscaiu, Monica; Vicente, Oscar

    2016-01-01

    Comparative studies on the responses to salt stress of taxonomically related taxa should help to elucidate relevant mechanisms of stress tolerance in plants. We have applied this strategy to three Plantago species adapted to different natural habitats, P. crassifolia and P. coronopus-both halophytes-and P. major, considered as salt-sensitive since it is never found in natural saline habitats. Growth inhibition measurements in controlled salt treatments indicated, however, that P. major is quite resistant to salt stress, although less than its halophytic congeners. The contents of monovalent ions and specific osmolytes were determined in plant leaves after four-week salt treatments. Salt-treated plants of the three taxa accumulated Na+ and Cl- in response to increasing external NaCl concentrations, to a lesser extent in P. major than in the halophytes; the latter species also showed higher ion contents in the non-stressed plants. In the halophytes, K+ concentration decreased at moderate salinity levels, to increase again under high salt conditions, whereas in P. major K+ contents were reduced only above 400 mM NaCl. Sorbitol contents augmented in all plants, roughly in parallel with increasing salinity, but the relative increments and the absolute values reached did not differ much in the three taxa. On the contrary, a strong (relative) accumulation of proline in response to high salt concentrations (600-800 mM NaCl) was observed in the halophytes, but not in P. major. These results indicate that the responses to salt stress triggered specifically in the halophytes, and therefore the most relevant for tolerance in the genus Plantago are: a higher efficiency in the transport of toxic ions to the leaves, the capacity to use inorganic ions as osmotica, even under low salinity conditions, and the activation, in response to very high salt concentrations, of proline accumulation and K+ transport to the leaves of the plants.

  5. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  6. Salt impact studies at WIPP effects of surface storage of salt on microbial activity

    International Nuclear Information System (INIS)

    Rodriguez, A.L.

    1988-01-01

    The Waste Isolation Pilot Plant (WIPP) currently under construction in southeastern New Mexico is a research and development facility to demonstrate the safe disposal of transuranic waste in a deep geological formation (bedded salt). The Ecological Monitoring Program at WIPP is designed to detect and measure changes in the local ecosystem which may be the result of WIPP construction activities. The primary factor which may affect the system prior to waste emplacement is windblown salt from discrete stockpiles. Both vegetation and soil microbial processes should reflect changes in soil chemistry due to salt importation. Control and experimental (potentially affected) plots have been established at the site, and several parameters are measured quarterly in each plot as part of the soil microbial sampling subprogram. This subprogram was designed to monitor a portion of the biological community which can be affected by changes in the chemical properties at the soil surface

  7. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  8. Experimental studies on natural circulation in molten salt loops

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.

    2015-01-01

    Molten salts are increasingly getting attention as a coolant and storage medium in solar thermal power plants and as a liquid fuel, blanket and coolant in Molten Salt Reactors (MSR’s). Two different test facilities named Molten Salt Natural Circulation Loop (MSNCL) and Molten Active Fluoride salt Loop (MAFL) have been setup for thermal hydraulics, instrument development and material related studies relevant to MSR and solar power plants. The working medium for MSNCL is a molten nitrate salt which is a mixture of NaNO 3 and KNO 3 in 60:40 ratio and proposed as one of the coolant option for molten salt based reactor and coolant as well as storage medium for solar thermal power application. On the other hand, the working medium for MAFL is a eutectic mixture of LiF and ThF 4 and proposed as a blanket salt for Indian Molten Salt Breeder Reactor (MSBR). Steady state natural circulation experiments at different power level have been performed in the MSNCL. Transient studies for startup of natural circulation, loss of heat sink, heater trip and step change in heater power have also been carried out in the same. A 1D code LeBENC, developed in-house to simulate the natural circulation characteristics in closed loops, has been validated with the experimental data obtained from MSNCL. Further, LeBENC has been used for Pretest analysis of MAFL. This paper deals with the description of both the loops and experimental studies carried out in MSNCL. Validation of LeBENC along with the pretest analysis of MAFL using the same are also reported in this paper. (author)

  9. Diclofenac Salts. V. Examples of Polymorphism among Diclofenac Salts with Alkyl-hydroxy Amines Studied by DSC and HSM

    OpenAIRE

    Fini, Adamo; Cavallari, Cristina; Ospitali, Francesca

    2010-01-01

    Nine diclofenac salts prepared with alkyl-hydroxy amines were analyzed for their properties to form polymorphs by DSC and HSM techniques. Thermograms of the forms prepared from water or acetone are different in most cases, suggesting frequent examples of polymorphism among these salts. Polymorph transition can be better highlighted when analysis is carried out by thermo-microscopy, which in most cases made it possible to observe the processes of melting of the metastable form and re-crystalli...

  10. Comparative effects of neutral salt and alkaline salt stress on seed ...

    African Journals Online (AJOL)

    ajl user 4

    2012-04-27

    Apr 27, 2012 ... 0991-8583259. Abbreviations: AsA, Ascorbic acid; Car, carotenoids; CAT, ... the most critical stages in the life cycle of plants when ... 2008a). The mechanisms for adaptation of the halophyte to salt ..... Plant Soil, 39: 205-207.

  11. Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out

    Science.gov (United States)

    Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen

    2014-05-01

    The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.

  12. The Search for a Lipid Trigger: The Effect of Salt Stress on the Lipid Profile of the Model Microalgal Species Chlamydomonas reinhardtii for Biofuels Production.

    Science.gov (United States)

    Hounslow, Emily; Kapoore, Rahul Vijay; Vaidyanathan, Seetharaman; Gilmour, D James; Wright, Phillip C

    2016-11-01

    Algal cells produce neutral lipid when stressed and this can be used to generate biodiesel. Salt stressed cells of the model microalgal species Chlamydomonas reinhardtii were tested for their suitability to produce lipid for biodiesel. The starchless mutant of C. reinhardtii (CC-4325) was subjected to salt stress (0.1, 0.2 and 0.3 M NaCl) and transesterification and GC analysis were used to determine fatty acid methyl ester (FAME) content and profile. Fatty acid profile was found to vary under salt stress conditions, with a clear distinction between 0.1 M NaCl, which the algae could tolerate, and the higher levels of NaCl (0.2 and 0.3 M), which caused cell death. Lipid content was increased under salt conditions, either through long-term exposure to 0.1 M NaCl, or short-term exposure to 0.2 and 0.3 M NaCl. Palmitic acid (C16:0) and linolenic acid (C18:3n3) were found to increase significantly at the higher salinities. Salt increase can act as a lipid trigger for C. reinhardtii.

  13. Physiological and proteomic analyses of Saccharum spp. grown under salt stress.

    Directory of Open Access Journals (Sweden)

    Aline Melro Murad

    Full Text Available Sugarcane (Saccharum spp. is the world most productive sugar producing crop, making an understanding of its stress physiology key to increasing both sugar and ethanol production. To understand the behavior and salt tolerance mechanisms of sugarcane, two cultivars commonly used in Brazilian agriculture, RB867515 and RB855536, were submitted to salt stress for 48 days. Physiological parameters including net photosynthesis, water potential, dry root and shoot mass and malondialdehyde (MDA content of leaves were determined. Control plants of the two cultivars showed similar values for most traits apart from higher root dry mass in RB867515. Both cultivars behaved similarly during salt stress, except for MDA levels for which there was a delay in the response for cultivar RB867515. Analysis of leaf macro- and micronutrients concentrations was performed and the concentration of Mn(2+ increased on day 48 for both cultivars. In parallel, to observe the effects of salt stress on protein levels in leaves of the RB867515 cultivar, two-dimensional gel electrophoresis followed by MS analysis was performed. Four proteins were differentially expressed between control and salt-treated plants. Fructose 1,6-bisphosphate aldolase was down-regulated, a germin-like protein and glyceraldehyde 3-phosphate dehydrogenase showed increased expression levels under salt stress, and heat-shock protein 70 was expressed only in salt-treated plants. These proteins are involved in energy metabolism and defense-related responses and we suggest that they may be involved in protection mechanisms against salt stress in sugarcane.

  14. Reducing the Salt Added to Takeaway Food: Within-Subjects Comparison of Salt Delivered by Five and 17 Holed Salt Shakers in Controlled Conditions.

    Directory of Open Access Journals (Sweden)

    Louis Goffe

    Full Text Available To determine if the amount of salt delivered by standard salt shakers commonly used in English independent takeaways varies between those with five and 17 holes; and to determine if any differences are robust to variations in: the amount of salt in the shaker, the length of time spent shaking, and the person serving.Four laboratory experiments comparing the amount of salt delivered by shakers. Independent variables considered were: type of shaker used (five or 17 holes, amount of salt in the shaker before shaking commences (shaker full, half full or nearly empty, time spent shaking (3s, 5s or 10s, and individual serving.Controlled, laboratory, conditions.A quota-based convenience sample of 10 participants (five women aged 18-59 years.Amount of salt delivered by salt shakers.Across all trials, the 17 holed shaker delivered a mean (SD of 7.86g (4.54 per trial, whilst the five holed shaker delivered 2.65g (1.22. The five holed shaker delivered a mean of 33.7% of the salt of the 17 holed shaker. There was a significant difference in salt delivered between the five and 17 holed salt shakers when time spent shaking, amount of salt in the shaker and participant were all kept constant (p<0.001. This difference was robust to variations in the starting weight of shakers, time spent shaking and participant shaking (pssalt shakers have the potential to reduce the salt content of takeaway food, and particularly food from Fish & Chip shops, where these shakers are particularly used. Further research will be required to determine the effects of this intervention on customers' salt intake with takeaway food and on total dietary salt intake.

  15. Pluronic®-bile salt mixed micelles.

    Science.gov (United States)

    Patel, Vijay; Ray, Debes; Bahadur, Anita; Ma, Junhe; Aswal, V K; Bahadur, Pratap

    2018-06-01

    The present study was aimed to examine the interaction of two bile salts viz. sodium cholate (NaC) and sodium deoxycholate (NaDC) with three ethylene polyoxide-polypropylene polyoxide (PEO-PPO-PEO) triblock copolymers with similar PPO but varying PEO micelles with a focus on the effect of pH on mixed micelles. Mixed micelles of moderately hydrophobic Pluronic ® P123 were examined in the presence of two bile salts and compared with those from very hydrophobic L121 and very hydrophilic F127. Both the bile salts increase the cloud point (CP) of copolymer solution and decreased apparent micelle hydrodynamic diameter (D h ). SANS study revealed that P123 forms small spherical micelles showing a decrease in size on progressive addition of bile salts. The negatively charged mixed micelles contained fewer P123 molecules but progressively rich in bile salt. NaDC being more hydrophobic displays more pronounced effect than NaC. Interestingly, NaC shows micellar growth in acidic media which has been attributed to the formation of bile acids by protonation of carboxylate ion and subsequent solubilization. In contrast, NaDC showed phase separation at higher concentration. Nuclear Overhauser effect spectroscopy (NOESY) experiments provided information on interaction and location of bile salts in micelles. Results are discussed in terms of hydrophobicity of bile salts and Pluronics ® and the site of bile salt in polymer micelles. Proposed molecular interactions are useful to understand more about bile salts which play important role in physiological processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Methods of producing adsorption media including a metal oxide

    Science.gov (United States)

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  17. Water uptake by salts during the electrolyte processing for thermal batteries

    Science.gov (United States)

    Masset, Patrick; Poinso, Jean-Yves; Poignet, Jean-Claude

    Water uptake of single salts and electrolytes were measured in industrial conditions (dry-room). The water uptake rate ϑ (g h -1 cm -2) was expressed with respect to the apparent area of contact of the salt with atmosphere of the dry room. The water uptake by potassium-based salts was very low. LiF and LiCl salts were found to behave similarly. For LiBr- and LiI-based salts and mixtures, we pointed out a linear relationship between the water uptake and the elapsed time. Water uptake by magnesium oxide reached a limit after 200 h. This work provides a set of data concerning the rate of water uptake by single salts, salt mixtures and magnesia used in thermal battery electrolytes.

  18. Effect of salt-stresses on the hormonal regulation of growth, photosynthesis and distribution of 14C - assimilates in bean plants

    International Nuclear Information System (INIS)

    Starck, Z.; Karwowska, R.

    1978-01-01

    The experiments were carried out to study the effect of salt-stresses and ABA on the growth photosynthesis and translocation of assimilates in bean plants. It was planned to reduce the content of GA 3 and cytokinins and increase ABA content in salinized plants. The results show that salt-stress (NaCl and concentrated nutrient solution), reduces all the investigated processes in a different degree. NaCl-stress retarded most seriously growth of apical part and blades in contrast to 7-times concentrated nutrient solution decreasing mainly the rate of root and blade growth. Photosynthesis and 14 C-translocation of 14 C-assimilates were retarded more seriously by NaCl than by 7-times concentrated nutrient solution. In the case of seriously stressed plants GA 3 and cytokinins (more effectively) reversed the negative effect of stress conditions both on the photosynthesis and on the 14 C-translocation. On the basis of the obtained results, it seems that changes in the rate of investigated processes in salinized plants are due to hormonal disturbances which cause directly or indirectly retardation of photosynthesis and translocation of assimilates. (author)

  19. Effect of salt-stresses on the hormonal regulation of growth, photosynthesis and distribution of 14C-assimilates in bean plants

    Directory of Open Access Journals (Sweden)

    Z. Starck

    2015-01-01

    Full Text Available The experiments were carried out to study the effect of salt-stresses and ABA on the growth, photosynthesis and translocation of assimilates in bean plants. It was planed to reduce the content of GA3 and cytokinins and increase ABA content in salinized plants. The results show that salt-stress (NaCl and concentrated nutrient solution, reduce all the investigated processes in a different degree. NaCl-stress retarded most seriously growth of apical part and blades in contrast to 7-times concentrated nutrient solution decreasing mainly the rate of root and blade growth. Photosynthesis and 14C-translocation of 14C-assimilates were retarded more seriously by NaCl than by 7-times concentrated nutrient. solution. In the case of seriously stressed plants GA3 and cytokinins (more effectively reversed the ,negative effect of stress conditions both on the photosynthesis and on the 14C-tramslocation. On the basis of the obtained results, it seemes that changes in the rate of investigated processes in salinized plants are due to hormonal disturbances which cause directly or indirectly retardation of photosynthesis and trans-location of assimilates.

  20. Radiolysis salt phenomenology: application to storage of high level radioactive waste

    International Nuclear Information System (INIS)

    Akram, Najib

    1993-01-01

    In France, rock salt is a candidate repository for highly radioactive waste. Rock salt contains water and adsorbed gases which can be released in boreholes after heating due to vitrified wastes. In addition, waste-induced irradiation in near-field conditions induce radiolytic reactions which also contribute to gas release. The aim of this work is to understand and evaluate the effects of heat and irradiation produced by waste containers in a deep disposal, primarily concerning gas production. This is justified by the impact of gases on long-term safety: toxicity, explosibility, chemical reactivity, pressure build-up. We have evidenced the influence of integrated dose, filling gases, temperature and grain size on an homogeneous medium (Asse Mine rock salt). We have then studied heterogeneous samples, which allowed to determine the influence of the chemical and mineralogical composition of rock salt (bedded rock salt from the Mine de Potasse d'Alsace). The role played by organic matter on gas production is important, leading for instance to high consumption rates of oxygen. Through this study, we have also considered the behaviour of clay-rich materials under irradiation. Our results constitute important bases for the future modelling of the phenomena which will take place in the near-field of a rock salt-type repository, especially concerning its long-term safety. (author) [fr

  1. Extraction mechanism of sulfamethoxazole in water samples using aqueous two-phase systems of poly(propylene glycol) and salt

    Energy Technology Data Exchange (ETDEWEB)

    Xie Xueqiao; Wang Yun; Han Juan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan Yongsheng, E-mail: yys@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2011-02-14

    Based on the poly(propylene glycol){sub 400} (PPG{sub 400})-salt aqueous two-phase system (ATPS), a green, economical and effective sample pretreatment technique coupled with high performance liquid chromatography was proposed for the separation and determination of sulfamethoxazole (SMX). The extraction yield of SMX in PPG{sub 400}-salt ATPS is influenced by various factors, including the salt species, the amount of salt, pH, and the temperature. Under the optimum conditions, most of SMX was partitioning into the polymer-rich phase with the average extraction efficiency of 99.2%, which may be attributed to the hydrophobic interaction and salting-out effect. This extraction technique has been successfully applied to the analysis of SMX in real water samples with the recoveries of 96.0-100.6%, the detection limits of 0.1 {mu}g L{sup -1}, and the linear ranges of 2.5-250.0 {mu}g L{sup -1}.

  2. Effect of oral salt loading on blood pressure and lymphocyte sodium metabolism in borderline hypertension

    DEFF Research Database (Denmark)

    Pedersen, K E; Jest, P; Klitgaard, N A

    1986-01-01

    A randomized double-blind cross-over trial was performed to test the effects of oral salt loading (normal diet + 200 mmol NaCl/day for 4 weeks followed by normal diet + 400 mmol/day for 1 week) against placebo on blood pressure and lymphocyte sodium homeostasis in 10 young borderline hypertensive...... men, genetically predisposed for essential hypertension. Salt loading caused no significant changes in blood pressure levels, lymphocyte sodium content and efflux. In conclusion, our subjects seem insensitive to a few weeks of excessive salt intake....

  3. Folding and fracturing of rock adjacent to salt diapirs

    Science.gov (United States)

    Rowan, Mark G.

    2017-04-01

    When John Ramsay wrote his groundbreaking book in 1967, deformation around salt diapirs was not something he covered. At the time, most geologists considered diapirs to form due to density inversion, rising through thick overlying strata due to buoyancy. In doing so, salt was thought to shove aside the younger rocks, shearing and fracturing them in drag folds and supposedly producing "salt gouge". Even after it was realized that the majority of diapirs spend most of their history growing at or just beneath the surface, the relative rise of salt and sinking of minibasins were (and are) still thought by many to be accommodated in part by shear and fracturing of rocks in a collar zone around the salt. There are two arguments against this model. The first is mechanical: whereas halite behaves as a viscous fluid, even young sediment deforms as a brittle material with layer anisotropy. Thus, the salt-sediment interface is the outer margin of an intrasalt shear zone caused by viscous drag against the diapir margin. The velocity of salt flow decreases dramatically toward the edge of the diapir, so that the outermost salt effectively doesn't move. Hence, no shear or fracturing is expected in surrounding strata. The second and more important argument is that empirical field data do not support the idea of drag folds and associated deformation. Certainly, strata are typically folded and thinned adjacent to diapirs. However, stratal upturn is generated by monoclinal drape folding of the diapir roof over the edge of the rising salt, and thinning is caused by deposition onto the bathymetric highs formed by the diapirs, often supplemented by roof erosion and slumping. Halokinetic sequences observed in numerous salt basins (e.g., Paradox Basin, La Popa Basin, Spanish Pyrenees, Sivas Basin, Zagros Mountains, Kuqa Basin) contain no diapir-parallel shear zones and minimal thinning and fracturing caused by diapir rise. Even megaflaps, in which strata extend for kilometers up the sides

  4. Effects of road salts on groundwater and surface water ...

    Science.gov (United States)

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current baseflow salinity does not exceed water quality recommendations, but rapid “first flush” storm flow was approximately one-third that of seawater. Comparisons between the upstream and downstream study reaches suggest that a major interstate highway is the primary road salt source. A heavily used road parallels most of MBR and was an additional source to GW concentrations, especially the downstream right bank. A baseflow synoptic survey identified zones of increased salinity. Downstream piezometer wells exhibited increases in salt concentrations and there was evidence that Na+ is exchanging Ca2+ and Mg2+ on soils. SW salt concentrations were generally elevated above GW concentrations. Salinity levels persisted at MBR throughout the year and were above background levels at Bynum Run, a nearby reference stream not bisected by a major highway, suggesting that GW is a long-term reservoir for accumulating road salts. Chronic salinity levels may be high enough to damage vegetation and salinity peaks could impact other biota. Beneficial uses and green infrastructure investments may be at risk from salinity driven degradation. Therefore, road salt may represent an environmental risk that could af

  5. Radiation effects in rock salt. A status report

    International Nuclear Information System (INIS)

    Gies, H.; Hild, W.; Kuehle, T.; Moenig, J.

    1994-01-01

    Knowledge of the irradiation defects and the accompanying energy storage in rock salt resulting from the absorption of ionizing radiation emitted by vitrified high level radioactive waste (HLW) disposed off in geological rock salt formations in an important prerequisite for a realistic assessment of possible consequences. Based on a critical review of the scientific status this report attempts to evaluate whether the available database is satisfactory and sufficiently reliable for the performance of such an assessment. Apart from a brief description of the radiation-and temperature-conditions prevailing in a HLW-repository, a detailed presentation is given of both the interaction of radiation with rock salt and the theories and models developed for their quantification

  6. New primary energy source by thorium molten-salt reactor technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kato, Yoshio; Furuhashi, Akira; Numata, Hiroo; Mitachi, Koushi; Yoshioka, Ritsuo; Sato, Yuzuru; Arakawa, Kazuto

    2005-01-01

    Among the next 30 years, we have to implement a practical measure in the global energy/environmental problems, solving the followings: (1) replacing the fossil fuels without CO 2 emission, (2) no severe accidents, (3) no concern on military, (4) minimizing wastes, (5) economical, (6) few R and D investment and (7) rapid/huge global application supplying about half of the total primary energy till 50 years later. For this purpose the following system was proposed: THORIMS-NES [Thorium Molten-Salt Nuclear Energy Synergetic System], which is composed of (A) simple fission Molten-Salt power stations (FUJI), and (B) fissile-producing Accelerator Molten-Salt Breeder (AMSB). It has been internationally prepared a practical Developmental Program for its huge-size industrialization of Th breeding fuel cycle to produce a new rational primary energy. Here it is explained the social meaning, the conceptual system design and technological bases, especially, including the molten fluoride salt technology, which was developed as the triple-functional medium for nuclear-engineering, heat-transfer and chemical engineering. The complex function of this system is fully achieved by the simplified facility using a single phase molten-salt only. (author)

  7. Probiotic Properties of Exopolysaccharide-Producing Lactobacillus Strains Isolated from Tempoyak

    Directory of Open Access Journals (Sweden)

    Eilaf Suliman Khalil

    2018-02-01

    Full Text Available Tempoyak is a functional Malaysian food (an acid-fermented condiment which is produced from the pulp of the durian (Durio zibethinus fruit. The current study aimed to isolate and identify potential exopolysaccharide (EPS-producing Lactobacillus strains from tempoyak for potential use as probiotics. Seven isolates (DUR2, DUR4, DUR5, DUR8, DUR12, DUR18, and DUR20 out of 44 were able to produce EPS, and exhibited resistance to acid and bile salt compared to the reference strains Lactobacillus rhmnosus (ATCC53103 and L. plantarum (ATCC8014. The seven isolated strains belonged to five different species—L. plantarum, L. fermentum, L. crispatus, L. reuteri, and L. pentosus—which were identified using API 50 CHL and 16S rRNA gene sequences (Polymerase chain reaction, PCR – based. The seven strains displayed different ability to produce EPS (100–850 mg/L. Isolates exhibited a high survivability to acid (pH 3.0, bile salts (0.3%, and gastrointestinal tract model (<70%. Results showed that the auto-aggregation and cell surface hydrophobicity ranged from 39.98% to 60.09% and 50.80% to 80.53%, respectively, whereas, the highest co-aggregation value (66.44% was observed by L. fermentum (DUR8 with Pseudomonas aeruginosa. The isolates showed good inhibitory activity against tested pathogens, high antioxidant activity (32.29% to 73.36%, and good ability to reduce cholesterol (22.55% to 75.15%. Thus, the seven tested strains have value as probiotics.

  8. Salt ingestion caves.

    Directory of Open Access Journals (Sweden)

    Lundquist Charles A.

    2006-01-01

    Full Text Available Large vertebrate herbivores, when they find a salt-bearing layer of rock, say in a cliff face, can produce sizable voids where, overgenerations, they have removed and consumed salty rock. The cavities formed by this natural animal process constitute a uniqueclass of caves that can be called salt ingestion caves. Several examples of such caves are described in various publications. Anexample in Mississippi U.S.A., Rock House Cave, was visited by the authors in 2000. It seems to have been formed by deer orbison. Perhaps the most spectacular example is Kitum Cave in Kenya. This cave has been excavated to a length over 100 metersby elephants. An ancient example is La Cueva del Milodon in Chile, which is reported to have been excavated by the now extinctmilodon, a giant ground sloth. Still other possible examples can be cited. This class of caves deserves a careful definition. First, thecavity in rock should meet the size and other conventions of the locally accepted definition of a cave. Of course this requirement differsin detail from country to country, particularly in the matter of size. The intent is to respect the local conventions. The characteristicthat human entry is possible is judged to be a crucial property of any recognized cave definition. Second, the cavity should besignificantly the result of vertebrate animal consumption of salt-bearing rock. The defining process is that rock removed to form thecave is carried away in the digestive track of an animal. While sodium salts are expected to be the norm, other salts for which thereis animal hunger are acceptable. Also some other speleogenesis process, such as solution, should not be excluded as long as it issecondary in formation of a cave in question.

  9. Method of producing grouting mortar

    Energy Technology Data Exchange (ETDEWEB)

    Shelomov, I K; Alchina, S I; Dizer, E I; Gruzdeva, G A; Nikitinskii, V I; Sabirzyanov, A K

    1980-10-07

    A method of producing grouting mortar by mixing the cement with an aqueous salt solution is proposed. So as to increase the quality of the mortar through an acceleration of the time for hardening, the mixture is prepared in two stages, in the first of which 20-30% of the entire cement batch hardens, and in the second of which the remainder of the cement hardens; 1-3-% of an aqueous salt solution is used in quantities of 0.5/1 wt.-% of weight of the cement. The use of this method of producing grouting mortar helps to increase the flexural strength of the cement brick up to 50% after two days ageing by comparison with the strength of cement brick produced from grouting mortar by ordinary methods utilizing identical quantities of the initial components (cement, water, chloride).

  10. Chemical and physical parameters of dried salted pork meat

    Directory of Open Access Journals (Sweden)

    Petronela Cviková

    2016-07-01

    Full Text Available The aim of the present study was analysed and evaluated chemical and physical parameters of dried salted pork neck and ham. Dried salted meat is one of the main meat products typically produced with a variety of flavors and textures. Neck (14 samples and ham (14 samples was salted by nitrite salt mixture during 1week. The nitrite salt mixture for salting process (dry salting was used. This salt mixture contains: salt, dextrose, maltodextrin, flavourings, stabilizer E316, taste enhancer E621, nitrite mixture. The meat samples were dried at 4 °C and relative humudity 85% after 1 week salting. The weight of each sample was approximately 1 kg. After salting were vacuum-packed and analysed after 1 week. The traditional dry-cured meat such as dry-cured ham and neck obtained after 12 - 24 months of ripening under controlled conditions. The average protein content was significantly (p <0.001 lower in dried pork neck in comparison with dried salted pork ham. The average intramuscular fat was significantly (p <0.001 lower in dried pork ham in comparison with dried salted pork neck. The average moisture was significantly lower (p ≤0.05 in dried salted ham in comparison with dried pork neck. The average pH value was 5.50 in dried salted pork ham and 5.75 in dried salted pork neck. The content of arginine, phenylalanine, isoleucine, leucine and threonine in dried salted ham was significantly lower (p <0.001 in comparison with dried salted pork neck. The proportion of analysed amino acids from total proteins was 56.31% in pork salted dried ham and 56.50% in pork salted dried neck.  Normal 0 21 false false false EN-GB X-NONE X-NONE Normal 0 21 false false false SK X-NONE X-NONE

  11. The effects of snow and salt on ice table stability in University Valley, Antarctica

    Science.gov (United States)

    Williams, Kaj; Heldmann, Jennifer L.; McKay, Christopher P.; Mellon, Michael T.

    2018-01-01

    The Antarctic Dry Valleys represent a unique environment where it is possible to study dry permafrost overlaying an ice-rich permafrost. In this paper, two opposing mechanisms for ice table stability in University Valley are addressed: i) diffusive recharge via thin seasonal snow deposits and ii) desiccation via salt deposits in the upper soil column. A high-resolution time-marching soil and snow model was constructed and applied to University Valley, driven by meteorological station atmospheric measurements. It was found that periodic thin surficial snow deposits (observed in University Valley) are capable of drastically slowing (if not completely eliminating) the underlying ice table ablation. The effects of NaCl, CaCl2 and perchlorate deposits were then modelled. Unlike the snow cover, however, the presence of salt in the soil surface (but no periodic snow) results in a slight increase in the ice table recession rate, due to the hygroscopic effects of salt sequestering vapour from the ice table below. Near-surface pore ice frequently forms when large amounts of salt are present in the soil due to the suppression of the saturation vapour pressure. Implications for Mars high latitudes are discussed.

  12. The Effects of Road Salt on Lithobates clamitans Tadpoles

    OpenAIRE

    Lim, Rachel; Bernal, Ximena; Siddons, Spencer

    2017-01-01

    In areas that see heavy snowfall and icy roads, road salt is used to improve driving conditions. However, after snow melts, road salt does not disappear. Instead, it dissolves into melted snow and flows into bodies of water where amphibians breed and live. Altering the salinity of the environment has been seen to affect different species of frogs. It is unclear, however, whether those findings generalize to other anurans. Here, we examined how exposure to road salt affects the development of ...

  13. Waste Isolation Pilot Plant Salt Decontamination Testing

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  14. The effects of soluble salts at the metal/paint interface: advances in knowledge

    OpenAIRE

    Fuente, Daniel de la; Chico, Belén; Morcillo, Manuel

    2006-01-01

    The presence of soluble salts (particularly sulphates and chlorides) at the metal/paint interface is known to have a detrimental effect on the integrity of most paint systems. Though this is a long-standing problem, it has recently come to receive greater attention from the protective coatings industry. International Standards Organization (ISO) has for some time been trying to develop a standard about guidance levels for water-soluble salt contamination before the application of paints and r...

  15. Effect of Hofmeister series salts on Absorptivity of aqueous solutions on Sodium polyacrylate

    Science.gov (United States)

    Korrapati, Swathi; Pullela, Phani Kumar; Vijayalakshmi, U.

    2017-11-01

    Sodium polyacrylate (SPA) is a popular super absorbent commonly used in children diapers, sanitary pads, adult diapers etc. The use of SPA is in force from past 30 years and the newer applications like as food preservant are evolving. SPA is recently discovered by our group for improvement of sensitivity of colorimetric agents. Though the discovery of improvement in sensitivity is phenomenal, the mechanism still remains a puzzle. A typical assay reagent contains colorimetric/fluorescent reagents, buffers, salts, stabilizers etc. These chemicals are known to influence the water absorptivity of SPA. If we were to perform chemical/biochemical assays on SPA absorbed reagents effect of salts and other excipients on colorimetric/fluorescence compounds absorbed on SPA is very important. The hofmeister series are standard for studying effect of salts on permeability, stability, aggregation, fluorescence quenching etc. We recently studied affect of urea, sodium chloride, ammonium sulfate, guanidine thiocayanate on fluorescence characteristics of fluorescence compounds and noted that except urea all other reagents have resulted in fluorescence quenching and urea had an opposite effect and increased the fluorescence intensity. This result was attributed to the different water structure around fluorescent in urea solution versus other chaotropic agents.

  16. Salt on roads and the environment (VB)

    DEFF Research Database (Denmark)

    Hessberg, Philipp von; Jørgensen, Michael Søgaard

    2000-01-01

    This report descripes the extent of use of salt on roads in Denmark and the environmental consequences of this. Alternative strategies for reducing the risk of greasy roads and different ways of alleviating the vegetation are also discussed.The different consequences for the environment...... that this report discusses are:- The ground water.- Lakes and streams.- Plants and trees along roads.The consequences for the economy through usage of salt on roads has not been carried out....

  17. The effect of salt on the morphologies of compositionally asymmetric block copolymer electrolytes

    Science.gov (United States)

    Loo, Whitney; Maslyn, Jacqueline; Oh, Hee Jeung; Balsara, Nitash

    Block copolymer electrolytes are promising for applications in lithium metal solid-state batteries. Due to their ability to microphase separate into distinct morphologies, their ion transport and mechanical properties can be decoupled. The addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt to poly(styrene)-block-poly(ethylene oxide) (SEO) has been shown to increase microphase separation in symmetric block copolymer systems due to an increase in the effective interaction parameter (χeff) ; however the effect of block copolymer compositional asymmetry is not well-understood. The effect of compositional asymmetry on polymer morphology was investigated through small and wide angle X-ray scattering (SAXS/WAXS). The effective Flory-Huggins interaction parameter was extracted from the scattering profiles in order to construct a phase diagram to demonstrate the effect of salt and compositional asymmetry on block copolymer morphology.

  18. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  19. Isotopic study of water origin in salt mines in Poland

    International Nuclear Information System (INIS)

    Dulinski, M.; Grabczak, J.; Garlicki, A.; Zuber, A.

    1998-01-01

    The most important results of isotopic analyses carried out so far in salt mines in Wieliczka, Bochnia, Klodawa, Wapno and Inowroclaw are presented. Discussion of these results for individual leakages proofs that isotopic methods are fully useful in determining of the origin of water appearing in salt mines. (author)

  20. Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors.

    Science.gov (United States)

    Hu, Yuanyuan; Rengert, Zachary D; McDowell, Caitlin; Ford, Michael J; Wang, Ming; Karki, Akchheta; Lill, Alexander T; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2018-04-24

    Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated. In addition, systematic electrical and structural characterizations reveal how the doping enhances the performance of OFETs. Furthermore, it is shown that this organic salt doping method is feasible for both p- and n-doping by using different organic salts and, thus, can be utilized to achieve high-performance OFETs and organic complementary circuits.

  1. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    Science.gov (United States)

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Development of High Throughput Salt Separation System with Integrated Liquid Salt Separation - Salt Distillation Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sangwoon; Park, K. M.; Kim, J. G.; Jeong, J. H.; Lee, S. J.; Park, S. B.; Kim, S. S.

    2013-01-15

    The capacity of a salt distiller should be sufficiently large to reach the throughput of uranium electro-refining process. In this study, an assembly composing a liquid separation sieve and a distillation crucible was developed for the sequential operation of a liquid salt separation and a vacuum distillation in the same tower. The feasibility of the sequential salt separation was examined by the rotation test of the sieve-crucible assembly and sequential operation of a liquid salt separation and a vacuum distillation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation. From the results of this study, it could be concluded that efficient salt separation can be realized by the sequential operation of liquid salt separation and vacuum distillation in one distillation tower since the operation procedures are simplified and no extra operation of cooling and reheating is necessary.

  3. Sea Salt vs. Table Salt: What's the Difference?

    Science.gov (United States)

    ... and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, texture ...

  4. Emerging indirect and long-term road salt effects on ecosystems.

    Science.gov (United States)

    Findlay, Stuart E G; Kelly, Victoria R

    2011-03-01

    Widespread use of salts as deicing agents on roads has been perceived as a significant source of environmental and economic damage. Early studies focused on near-road and short-term effects where concentrations can exceed several grams per liter. Evidence is accumulating that the use of salts has significant effects over broader areas, longer time frames, and is affecting a range of ecological processes. Concentrations of NaCl can be elevated throughout an ecosystem to >100 mg Cl(-) /L, which may have nonlethal and possibly subtle effects on sensitive life stages of several organisms. NaCl seems subject to retention within terrestrial and aquatic ecosystems, thus prolonging the actual duration of exposure and leading to elevated warm-season concentrations when reproduction may be occurring or other sensitive life stages are present. Many of the alternatives to NaCl reduce some of these negative effects, although are currently cost prohibitive for large-scale use. Some techniques for managing application rates are improvements in technology, while others involve novel mixtures of organic compounds that may have new environmental consequences. The increasing evidence of these widespread and persistent environmental consequences must be brought into decisions on deicing procedures. © 2011 New York Academy of Sciences.

  5. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)]. E-mail: Adel.anoubigh@ipest.rnu.tn; Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France)

    2007-02-15

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies ({delta}{sub sol} H {sup 0}) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr} G {sup 0}) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies ({delta}{sub tr} H {sup 0}) and entropies ({delta}{sub tr} S {sup 0}) of transfer have also been calculated. The decrease in solubility is correlated to the positive {delta}{sub tr} G {sup 0} value which is mainly of enthalpic origin.

  6. Effects of salt on the pattern of protein synthesis in barley roots

    International Nuclear Information System (INIS)

    Hurkman, W.J.; Tanaka, C.K.

    1987-01-01

    The effect of salt stress on the incorporation of [ 3 5 S]methionine into protein was examined in roots of barley (Hordeum vulgare L.cv California Mariout 72). Plants were grown in nutrient solution with or without 200 millimolar NaCl. Roots of intact plants were labeled in vivo and proteins were extracted and analyzed by fluorography of two-dimensional gels. Although the protein patterns for control and salt-stressed plants were qualitatively similar, the net synthesis of a number of proteins was quantitatively changed. The most striking change was a significant increase of label in two protein pairs that had pls of approximately 6.3 and 6.5. Each pair consisted of proteins of approximately 26 and 27 kilodaltons (kD). In roots of control plants, the 27-kD proteins were more heavily labeled in the microsomal fraction relative to the 26-kD proteins, whereas the 26-kD proteins were enriched in the post 178,000g supernatant fraction; in roots of salt treated plants, the 26- and 27-kD proteins were more intensely labeled in both fractions. Labeling of the 26- and 27-kD proteins returned to control levels when salt-stressed plants were transferred to nutrient solution without NaCl. No cross-reaction was detected between the antibody to the 26-kD protein from salt-adapted tobacco cells and the 26- and 27-kD proteins of barley

  7. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    Science.gov (United States)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  8. Aerobic Granular Sludge: Effect of Salt and Insights into Microbial Ecology

    KAUST Repository

    Wang, Zhongwei

    2017-12-01

    Aerobic granular sludge (AGS) technology is a next-generation technology for the biological treatment of wastewater. The advantages of AGS in terms of small footprint, low operation and capital cost and high effluent quality makes it a strong candidate for replacing conventional biological wastewater treatment based on activated sludge (CAS) process, and potentially become the standard for biological wastewater treatment in the future. Saline wastewater is generated from many industrial processes as well as from the use of sea water as a secondary quality water for non-potable use such as toilet flushing to mitigate shortage of fresh water in some coastal cities. Salt is known to inhibit biological wastewater treatment processes in terms of organic and nutrient removal. In the first part of my dissertation, I conducted three lab-scale experiments to 1) evaluate the effect of salt on granulation and nutrient removal in AGS (330 days); 2) develop engineering strategies to mitigate the adverse effect of salt on nutrient removal of AGS (164 days); and 3) compare the effect of salt on the stoichiometry and kinetics of different phosphate accumulating organisms (PAO) clades (PAOI and PAOII) and to determine the effect of potassium and sodium ions on the activities of different PAO clades (225 days). Like other artificial microbial ecosystems (e.g. CAS plant and anaerobic digester), a firm understanding of the microbial ecology of AGS system is essential for process design and optimization. The second part of my dissertation reported the first microbial ecology study of a full-scale AGS plant with the aim of addressing the role of regional (i.e. immigration) versus local factors in shaping the microbial community assembly of different-sized microbial aggregates in AGS. The microbial communities in a full-scale AGS plant in Garmerwolde, The Netherlands, was characterized periodically over 180 days using Illumina sequencing of 16S ribosomal RNA amplicons of the V3-V4

  9. Combined effects of road salt and an insecticide on wetland communities.

    Science.gov (United States)

    Stoler, Aaron B; Walker, Brent M; Hintz, William D; Jones, Devin K; Lind, Lovisa; Mattes, Brian M; Schuler, Matthew S; Relyea, Rick A

    2017-03-01

    As the numbers of chemical contaminants in freshwater ecosystems increase, it is important to understand whether contaminants interact in ecologically important ways. The present study investigated the independent and interactive effects of 2 contaminants that frequently co-occur in freshwater environments among higher latitudes, including a commonly applied insecticide (carbaryl) and road salt (NaCl). The hypothesis was that the addition of either contaminant would result in a decline in zooplankton, an algal bloom, and the subsequent decline of both periphyton and periphyton consumers. Another hypothesis was that combining the contaminants would result in synergistic effects on community responses. Outdoor mesocosms were used with communities that included phytoplankton, periphyton, zooplankton, amphipods, clams, snails, and tadpoles. Communities were exposed to 4 environmentally relevant concentrations of salt (27 mg Cl - L -1 , 77 mg Cl - L -1 , 277 mg Cl - L -1 , and 727 mg Cl - L -1 ) fully crossed with 4 carbaryl treatments (ethanol, 0 µg L -1 , 5 µg L -1 , and 50 µg L -1 ) over 57 d. Contaminants induced declines in rotifer and cladoceran zooplankton, but only carbaryl induced an algal bloom. Consumers exhibited both positive and negative responses to contaminants, which were likely the result of both indirect community interactions and direct toxicity. In contrast to the hypothesis, no synergistic effects were found, although copepod densities declined when high concentrations of both chemicals were combined. The results suggest that low concentrations of salt and carbaryl are likely to have mostly independent effects on aquatic communities. Environ Toxicol Chem 2017;36:771-779. © 2016 SETAC. © 2016 SETAC.

  10. Effect of Consuming Iodized Salt on Fertility Indices in Male Adult Rats

    Directory of Open Access Journals (Sweden)

    M. Mehrabani Natanzi

    2017-06-01

    Full Text Available Introduction: Today about 27.4 percent of female 15-44 years and 1 percent of female in fertility age are affected by infertility. Iodine is a rare element that is essential for the synthesis of thyroid hormones. Concentration of the thyroid hormones in blood under the influence of iodine intake and changes in thyroid hormones levels interact with reproductive system. Today, all the people of Iran consuming iodized salt regardless of iodine status in their body. In this study according to high prevalence of the infertility among young couples, iodized salt intake on fertility in male rats were investigated. Materials and Methods: In this study 20 male and 20 female adult Wistar rats were used. Twenty male adult Wistar rats were randomly divided into 2 groups. Including the control group and treatment group that received iodine and female adult Wistar were fed with a regular diet. Five male rats from each group were killed at the end of the fourth weeks in order to evaluate the possible effect of iodized salt on sperm analysis and weight of testis. After a month, male and female rats were placed in pairs in separate cages and their offspring were investigated in terms of number, gender and health. Results: The result of this study showed that the number of healthy offspring of treated male rats was significantly lower than the control group. Conclusion: Due to the negative effect of excessive iodine intake on fertility rate, it is recommended to couples to perform functional tests of their thyroid glands before intake of iodized salts.

  11. Evaluation of Salt Removal from Azulejo Tiles and Mortars using Electrodesalination

    DEFF Research Database (Denmark)

    Ferreira, Célia Maria Dias; Ottosen, Lisbeth M.; Christensen, Iben Vernegren

    2011-01-01

    Azulejo tiles are part of the Portuguese cultural heritage and are worldwide appreciated. The durability of this building material is affected by the accumulation of salts, causing fractures and peeling of the glazing and ultimately leading to the degradation of the tile panels and the irremediable...... loss of historic value. In this work preliminary studies with single tiles presenting an underlying layer of mortar have been conducted to assess the amount of salts that can be removed from the building material using a new technique called “electrodesalination”, in which the salt’s ions...... are transported out from the tiles by applying an electric current on the backside. Results shown here include an assessment of how much of the salts did come out in comparison to what was originally there, and additionally if the electrodesalination succeeded in removing salts down to a point where the tile...

  12. Effect of Salts on the Emulsifying Properties of Adansonia digitata (Baobab) Seed Flour

    OpenAIRE

    H.O. Adubiaro; O. Olaofe; E.T. Akintayo

    2012-01-01

    The effect of salts NaCl, CaCl2 KCl, CH3 CO2 Na and NaNO3 on the emulsifying properties of Adansonia digitata (Baobab) flour were investigated. Simple and objective means that allowed precise determination of the inversion point was used in investigating the capacity of the protein to emulsify fat. Its relative efficiency as emulsion stabilizer was also investigated. Results showed that the emulsion capacity decreased with increase in salt concentrations and also there was a decrease in emuls...

  13. Mixing of zeolite powders and molten salt

    International Nuclear Information System (INIS)

    Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product

  14. Reduction of nitrate and nitrite salts under hydrothermal conditions

    International Nuclear Information System (INIS)

    Foy, B.R.; Dell'Orco, P.C.; Wilmanns, E.; McInroy, R.; Ely, J.; Robinson, J.M.; Buelow, S.J.

    1994-01-01

    The feasibility of reducing nitrate/nitrite salts under hydrothermal conditions for the treatment of aqueous mixed wastes stored in the underground tanks at the Department of Energy site at Hanford, Washington was studied. The reduction of nitrate and nitrite salts by reaction with EDTA using a tank waste simulant was examined at temperatures between 623K and 800K and pressures between 0.6 and 1.2 kbar. Continuous flow reactors were used to determine kinetics and products of reactions. All reactions were studied under pressures high enough to produce single phase conditions. The reactions are rapid, go to completion in less than a minute, and produce simple products, such as carbonate, nitrogen, and nitrous oxide gases. The experimental results demonstrate the ability of chemical reactions under hydrothermal conditions to reduce the nitrate and nitrite salts and destroy organic compounds in the waste mixtures

  15. Fast, simple and efficient salting-out assisted liquid-liquid extraction of naringenin from fruit juice samples prior to their enantioselective determination by liquid chromatography.

    Science.gov (United States)

    Magiera, Sylwia; Kwietniowska, Ewelina

    2016-11-15

    In this study, an easy, simple and efficient method for the determination of naringenin enantiomers in fruit juices after salting-out-assisted liquid-liquid extraction (SALLE) and high-performance liquid chromatography (HPLC) with diode-array detection (DAD) was developed. The sample treatment is based on the use of water-miscible acetonitrile as the extractant and acetonitrile phase separation under high-salt conditions. After extraction, juice samples were incubated with hydrochloric acid in order to achieve hydrolysis of naringin to naringenin. The hydrolysis parameters were optimized by using a half-fraction factorial central composite design (CCD). After sample preparation, chromatographic separation was obtained on a Chiralcel® OJ-RH column using the mobile phase consisting of 10mM aqueous ammonium acetate:methanol:acetonitrile (50:30:20; v/v/v) with detection at 288nm. The average recovery of the analyzed compounds ranged from 85.6 to 97.1%. The proposed method was satisfactorily used for the determination of naringenin enantiomers in various fruit juices samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review.

    Science.gov (United States)

    Numan, Muhammad; Bashir, Samina; Khan, Yasmin; Mumtaz, Roqayya; Shinwari, Zabta Khan; Khan, Abdul Latif; Khan, Ajmal; Al-Harrasi, Ahmed

    2018-04-01

    Approximately 5.2 billion hectare agriculture land are affected by erosion, salinity and soil degradation. Salinity stress has significantly affecting the fertile lands, and therefore possesses a huge impact on the agriculture and economy of a country. Salt stress has severe effects on the growth and development of plants as well as reducing its yield. Plants are inherently equipped with stress tolerance ability to responds the specific type of stress. Plants retained specific mechanisms for salt stress mitigation, such as hormonal stimulation, ion exchange, antioxidant enzymes and activation of signaling cascades on their metabolic and genetic frontiers that sooth the stressed condition. Additional to the plant inherent mechanisms, certain plant growth promoting bacteria (PGPB) also have specialized mechanism that play key role for salt stress tolerance and plant growth promotion. These bacteria triggers plants to produce different plant growth hormones like auxin, cytokinine and gibberellin as well as volatile organic compounds. These bacteria also produces growth regulators like siderophore, which fix nitrogen, solubilize organic and inorganic phosphate. Considering the importance of PGPB in compensation of salt tolerance in plants, the present study has reviewed the different aspect and mechanism of bacteria that play key role in promoting plants growth and yield. It can be concluded that PGPB can be used as a cost effective and economical tool for salinity tolerance and growth promotion in plants. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. Integration of membrane distillation into traditional salt farming method: Process development and modelling

    Science.gov (United States)

    Hizam, S.; Bilad, M. R.; Putra, Z. A.

    2017-10-01

    Farmers still practice the traditional salt farming in many regions, particularly in Indonesia. This archaic method not only produces low yield and poor salt quality, it is also laborious. Furthermore, the farming locations typically have poor access to fresh water and are far away from electricity grid, which restrict upgrade to a more advanced technology for salt production. This paper proposes a new concept of salt harvesting method that improves the salt yield and at the same time facilitates recovery of fresh water from seawater. The new concept integrates solar powered membrane distillation (MD) and photovoltaic cells to drive the pumping. We performed basic solar still experiments to quantify the heat flux received by a pond. The data were used as insight for designing the proposed concept, particularly on operational strategy and the most effective way to integrate MD. After the conceptual design had been developed, we formulated mass and energy balance to estimate the performance of the proposed concept. Based on our data and design, it is expected that the system would improve the yield and quality of the salt production, maximizing fresh water harvesting, and eventually provides economical gain for salt farmers hence improving their quality of life. The key performance can only be measured via experiment using gain output ratio as performance indicator, which will be done in a future study.

  18. Effect of sodium monofluorophosphate treatment on microstructure and frost salt scaling durability of slag cement paste

    International Nuclear Information System (INIS)

    Copuroglu, O.; Fraaij, A.L.A.; Bijen, J.M.J.M.

    2006-01-01

    Sodium-monofluorophosphate (Na-MFP) is currently in use as a surface applied corrosion inhibitor in the concrete industry. Its basic mechanism is to protect the passive layer of the reinforcement steel against disruption due to carbonation. Carbonation is known as the most detrimental environmental effect on blast furnace slag cement (BFSC) concrete with respect to frost salt scaling. In this paper the effect of Na-MFP on the microstructure and frost salt scaling resistance of carbonated BFSC paste is presented. The results of electron microscopy, mercury intrusion porosimetry (MIP) and X-ray diffraction (XRD) are discussed. It is found that the treatment modifies the microstructure and improves the resistance of carbonated BFSC paste against frost salt attack

  19. Producing tantalum or columbium powder

    International Nuclear Information System (INIS)

    Rerat, C.F.

    1979-01-01

    A process is described for the production of tantalum or columbium powder with a high yield within a desired range of particle sizes. A molten salt bath of a double salt comprising either an alkali metal tantalum fluoride or an alkali metal columbium fluoride and a relatively large amount of alkali metal halide diluent salt to act as a heat sink is initially maintained at a temperature a little above the liquidus temperature of the salt mixture. A liquid alkali metal at a comparatively low temperature is added to the continuously stirred bath at a high mass flow rate, and reduces the double salt, producing tantalum or columbium. The reaction is exothermic and causes the temperature to rise rapidly to a desired final reaction temperature within the range 760 to 1000 0 . The liquid alkali metal is thereafter fed at a high mass flow rate to complete the reaction quickly at the final reaction temperature. Forced cooling at a heat extraction rate not less than 42 kilojoules/min./kg. of double salt is used during at least a portion of the reaction cycle at a rate sufficient to maintain the final reaction temperature within a desired range. (author)

  20. Salt exploitation in the later prehistory of the Carpathian Basin

    Directory of Open Access Journals (Sweden)

    Anthony Harding

    2015-12-01

    Full Text Available Salt is a necessity for humans and animals, today as in the ancient past. The ways in which salt was produced in ancient times vary from area to area, and could use briquetage, deep mining (as at Hallstatt, or the technique specific to Transylvania, based on wooden troughs, perforated in the base. How these troughs functioned is still uncertain. In the Iron Age a different technique was employed, involving deep shafts dug down to the rock salt surface. As well as technological considerations, it is crucial to understand the social and economic importance of salt in the ancient world.

  1. Materials considerations for molten salt accelerator-based plutonium conversion systems

    International Nuclear Information System (INIS)

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-03-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF 2 molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized

  2. Materials considerations for molten salt accelerator-based plutonium conversion systems

    International Nuclear Information System (INIS)

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-02-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF 2 molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized

  3. A simplified burnup calculation strategy with refueling in static molten salt reactor

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Gupta, Anurag; Krishnani, P.D.

    2015-01-01

    Molten Salt Reactors, by nature can be refuelled and reprocessed online. Thus, a simulation methodology has to be developed which can consider online refueling and reprocessing aspect of the reactor. To cater such needs a simplified burnup calculation strategy to account for refueling and removal of molten salt fuel at any desired burnup has been identified in static molten salt reactor in batch mode as a first step of way forward. The features of in-house code ITRAN has been explored for such calculations. The code also enables us to estimate the reactivity introduced in the system due to removal of any number of considered nuclides at any burnup. The effect of refueling fresh fuel and removal of burned fuel has been studied in batch mode with in-house code ITRAN. The effect of refueling and burnup on change in reactivity per day has been analyzed. The analysis of removal of 233 Pa at a particular burnup has been carried out. The similar analysis has been performed for some other nuclides also. (author)

  4. [Effect of exogenous sucrose on growth and active ingredient content of licorice seedlings under salt stress conditions].

    Science.gov (United States)

    Liu, Fu-zhi; Yang, Jun

    2015-11-01

    Licorice seedlings were taken as experimental materials, an experiment was conducted to study the effects of exogenous sucrose on growth and active ingredient content of licorice seedlings under NaCl stress conditions. The results of this study showed that under salt stress conditions, after adding a certain concentration of exogenous sucrose, the licorice seedlings day of relative growth rate was increasing, and this stress can be a significant weakening effect, indicating that exogenous sucrose salt stress-relieving effect. The total flavonoids and phenylalanine ammonia lyase (PAL) activity were significantly increased, the exogenous sucrose can mitigated the seedling roots under salt stress, the licorice flavonoid content in the enhanced growth was largely due to the activity of PAL an increased, when the concentration of exogenous sucrose wae 10 mmol x L(-1), PAL activity reaching a maximum, when the concentration of exogenous sucrose was 15 mmol x L(-1), PAL activity turned into a downward trend, the results indicating that this mitigation has concentration effect. After applying different concentrations of exogenous sugar, the contents of liquiritin changes with the change of flavonoids content was similar. After applying different concentrations of exogenous sucrose, the content of licorice acid under salt stress was higher than the levels were not reached during salt stress, the impact of exogenous sucrose concentration gradient of licorice acid accumulation was not obvious.

  5. Assessment of salt concentration in bread commonly consumed in the Eastern Mediterranean Region.

    Science.gov (United States)

    Al Jawaldeh, Ayoub; Al-Khamaiseh, Manal

    2018-04-05

    Hypertension is the most important cardiovascular risk factor in the World Health Organization (WHO) Eastern Mediterranean Region. Excessive salt and sodium intake is directly related to hypertension, and its reduction is a priority of WHO. Bread is the leading staple food in the Region; therefore, reducing the amount of salt added to bread could be an effective measure for reducing salt intake. The study sought to determine the levels of sodium and salt in locally produced staple bread from 8 countries in the Region. Bread samples were collected randomly from bakeries located in the capital cities of the selected countries. The samples were analysed for sodium content using atomic absorption spectroscopy. The mean salt content of breads varied from 4.28 g/kg in Jordan to 12.41 g/kg in Tunisia. The mean salt and sodium content in bread for all countries was 7.63 (SD 3.12) and 3.0 (SD 1.23) g/kg, respectively. The contribution of bread to daily salt intake varied considerably between countries, ranging from 1.3 g (12.5%) in Jordan to 3.7 g (33.5%) in Tunisia. Interventions to reduce population salt intake should target reduction of salt in bread in all countries. The amount of salt added to bread should be standardized and relevant legislation developed to guide bakers. Setting an upper limit for salt content in flat bread (pita or Arabic bread) at 0.5% is strongly recommended. However, salt levels at ≤ 1% would be appropriate for other kind of breads. Copyright © World Health Organization (WHO) 2018. Some rights reserved. This work is available under the CC BY-NC-SA 3.0 IGO license (https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

  6. Crop production in salt affected soils: A biological approach

    Energy Technology Data Exchange (ETDEWEB)

    Malik, K A [National Inst. for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan)

    1995-01-01

    Plant are susceptible to various stresses, affecting growth productivity. Among the abiotic stresses, soil salinity is most significant and prevalent in both developed and developing countries. As a result, good productive lands are being desertified at a very high pace. To combat this problem various approaches involving soil management and drainage are underway but with little success. It seems that a durable solution of the salinity and water-logging problems may take a long time and we may have to learn to live with salinity and to find other ways to utilize the affected lands fruitfully. A possible approach could be to tailor plants to suit the deleterious environment. The saline-sodic soils have excess of sodium, are impermeable, have little or no organic matter and are biologically almost dead. Introduction of a salt tolerant crop will provide a green cover and will improve the environment for biological activity, increase organic matter and will improve the soil fertility. The plant growth will result in higher carbon dioxide levels, and would thus create acidic conditions in the soil which would dissolve the insoluble calcium carbonate and will help exchange sodium with calcium ions on the soil complex. The biomass produced could be used directly as fodder or by the use of biotechnological and other procedures it could be converted into other value added products. However, in order to tailor plants to suit these deleterious environments, acquisition of better understanding of the biochemical and genetic aspects of salt tolerance at the cellular/molecular level is essential. For this purpose model systems have been carefully selected to carry out fundamental basic research that elucidates and identifies the major factors that confer salt tolerance in a living system. With the development of modern biotechnological methods it is now possible to introduce any foreign genetic material known to confer salt tolerance into crop plants. (Abstract Truncated)

  7. Measurements of the Suitability of Large Rock Salt Formations for Radio Detection of High-Energy Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Odian, Allen C.

    2001-09-14

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant (WIPP), located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors.

  8. Measurements of the suitability of large rock salt formations for radio detection of high-energy neutrinos

    International Nuclear Information System (INIS)

    Gorham, Peter; Saltzberg, David; Odian, Allen; Williams, Dawn; Besson, David; Frichter, George; Tantawi, Sami

    2002-01-01

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant, located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors

  9. Evaluation of potential crushed-salt constitutive models

    International Nuclear Information System (INIS)

    Callahan, G.D.; Loken, M.C.; Sambeek, L.L. Van; Chen, R.; Pfeifle, T.W.; Nieland, J.D.; Hansen, F.D.

    1995-12-01

    Constitutive models describing the deformation of crushed salt are presented in this report. Ten constitutive models with potential to describe the phenomenological and micromechanical processes for crushed salt were selected from a literature search. Three of these ten constitutive models, termed Sjaardema-Krieg, Zeuch, and Spiers models, were adopted as candidate constitutive models. The candidate constitutive models were generalized in a consistent manner to three-dimensional states of stress and modified to include the effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt was used to determine material parameters for the candidate constitutive models. Nonlinear least-squares model fitting to data from the hydrostatic consolidation tests, the shear consolidation tests, and a combination of the shear and hydrostatic tests produces three sets of material parameter values for the candidate models. The change in material parameter values from test group to test group indicates the empirical nature of the models. To evaluate the predictive capability of the candidate models, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the models to predict the test data, the Spiers model appeared to perform slightly better than the other two candidate models. The work reported here is a first-of-its kind evaluation of constitutive models for reconsolidation of crushed salt. Questions remain to be answered. Deficiencies in models and databases are identified and recommendations for future work are made. 85 refs

  10. Impact assessment of salt iodization on the prevalence of goiter in district Swat

    International Nuclear Information System (INIS)

    Akhtar, J.; Zahoor-Ullah; Paracha, P.I.; Lutfullah, G.

    2004-01-01

    Background: To eliminate Iodine Deficiency Disorders, (IDD) universal salt iodization is the widely practiced intervention. District Swat (a hilly area of NWFP, highly endemic for IDDs is selected as a first model district of the province for salt iodization program. Objectives: To find out the proportion of the families using iodized salt, iodine contents of the salts used by the families, urinary iodine levels in school children and the effect on goiter prevalence in Swat selected as a model district in 1998. Subject and Methods: The study was conducted in 960 children of both sexes, age 8-10 years in primary schools of district Swat in the year 2000. A replicate model used for base line study in 1998 was adopted. The students were clinically examined for goiter using palpation method. 960 edible salt samples for its iodine content and 240 urine samples for iodine level were analysed. Results: The overall goiter prevalence was found to be 52 and 45% in boys and girls respectively. 23% salt samples were found un-iodized, while in 25.6% the iodine content was less than 7ppm. The results revealed 18% decrease in total goiter rate and 35% increase in the use of iodized salt from the base line survey conducted in 1998, in school children of district Swat. Conclusions: The study revealed that since the area of Swat is still highly endemic for Iodine Deficiency Disorders, sustained efforts are required to ensure 100% salt iodization. (author)

  11. [Effects of salt stress on physiological characters and salt-tolerance of Ulmus pumila in different habitats].

    Science.gov (United States)

    Liu, Bing-Xiang; Wang, Zhi-Gang; Liang, Hai-Yong; Yang, Min-Sheng

    2012-06-01

    Taking the Ulmus pumila seedlings from three different habitats (medium-, mild-, and non-saline soils) as test materials, an experiment was conducted to study their salt-tolerance thresholds and physiological characteristic under different levels (0, 2, 4, 6, 8, and 10 g X kg(-1)) of salt stress. With increasing level of the salt stress, the seedlings taken from medium- and mild- saline habitats had a lower increment of leaf membrane permeability, Na+ content, and Na+/K+ but a higher increment of leaf proline, soluble sugar, and K+ contents, and a lower decrement of leaf starch content, net photosynthetic rate, transpiration rate, intercellular CO2 concentration, and stomatic conductance, as compared with the seedlings taken from non-saline habitat. The salt-tolerance thresholds of the seedlings taken from different habitats were in the order of medium- saline habitat (7.76 g X kg(-1)) > mild- saline habitat (7.37 g X kg(-1)) > non-saline habitat (6.95 g X kg(-1)). It was suggested that the U. pumila seedlings in medium- and mild-saline habitats had a stronger adaptability to saline soil environment than the U. pumila seedlings in non-saline soil environment.

  12. Effects of road salt on larval amphibian susceptibility to parasitism through behavior and immunocompetence.

    Science.gov (United States)

    Milotic, Dino; Milotic, Marin; Koprivnikar, Janet

    2017-08-01

    Large quantities of road salts are used for de-icing in temperate climates but often leach into aquatic ecosystems where they can cause harm to inhabitants, including reduced growth and survival. However, the implications of road salt exposure for aquatic animal susceptibility to pathogens and parasites have not yet been examined even though infectious diseases can significantly contribute to wildlife population declines. Through a field survey, we found a range of NaCl concentrations (50-560mg/L) in ponds known to contain larval amphibians, with lower levels found in sites close to gravel- rather than hard-surfaced roads. We then investigated how chronic exposure to environmentally-realistic levels of road salt (up to 1140mg/L) affected susceptibility to infection by trematode parasites (helminths) in larval stages of two amphibian species (Lithobates sylvaticus - wood frogs, and L. pipiens - northern leopard frogs) by considering effects on host anti-parasite behavior and white blood cell profiles. Wood frogs exposed to road salt had higher parasite loads, and also exhibited reduced anti-parasite behavior in these conditions. In contrast, infection intensity in northern leopard frogs had a non-monotonic response to road salts even though lymphocytes were only elevated at the highest concentration. Our results indicate the potential for chronic road salt exposure to affect larval amphibian susceptibility to pathogenic parasites through alterations of behavior and immunocompetence, with further studies needed at higher concentrations, as well as that of road salts on free-living parasite infectious stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Salted neutrinos our favourite seasoning is helping to solve a great cosmic mystery

    CERN Multimedia

    Chown, M

    2001-01-01

    Underground salt domes could be the neutrino detectors of the future and help scientists to understand where high-energy cosmic rays originate. Neutrinos are extremely difficult to detect because they rarely interact with matter. Inside salt crystals though, neutrinos will occasionally strike an atomic nucleus and produce a shower of charged particles which in turn produces an intense burst of radio waves (1/2 page).

  14. The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms

    International Nuclear Information System (INIS)

    Butcher, B.M.; Novak, C.F.; Jercinovic, M.

    1991-04-01

    A 70/30 wt% salt/bentonite mixture is shown to be preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant (WIPP). This report discusses several selection criteria used to arrive at this conclusion: the need for low permeability and porosity after closure, chemical stability with the surroundings, adequate strength to avoid shear erosion from human intrusion, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a final state of impermeability (i.e., ≤ 10 -18 m 2 ) adequate for satisfying federal nuclear regulations. Any advantage of the salt/bentonite mixture is dependent upon bentonite's potential for sorbing brine and radionuclides. Estimates suggest that bentonite's sorption potential for water in brine is much less than for pure water. While no credit is presently taken for brine sorption in salt/bentonite backfill, the possibility that some amount of inflowing brine would be chemically bound is considered likely. Bentonite may also sorb much of the plutonium, americium, and neptunium within the disposal room inventory. Sorption would be effective only if a major portion of the backfill is in contact with radioactive brine. Brine flow from the waste out through highly localized channels in the backfill would negate sorption effectiveness. Although the sorption potentials of bentonite for both brine and radionuclides are not ideal, they are distinctly beneficial. Furthermore, no detrimental aspects of adding bentonite to the salt as a backfill have been identified. These two observations are the major reasons for selecting salt/bentonite as a backfill within the WIPP. 39 refs., 16 figs., 6 tabs

  15. Proteomic studies on the effects of Lipo-chitooligosaccharide and Thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sowmyalakshmi Subramanian

    2016-08-01

    Full Text Available Plants, being sessile organisms, are exposed to widely varying environmental conditions throughout their life cycle. Compatible plant-microbe interactions favor plant growth and development, and help plants deal with these environmental challenges. Microorganisms produce a diverse range of elicitor molecules to establish symbiotic relationships with the plants they associate with, in a given ecological niche. Lipo-chitooligosaccharide (LCO and thuricin 17 (Th17 are two such compounds shown to positively influence plant growth of both legumes and non-legumes. Arabidopsis thaliana responded positively to treatment with the bacterial signal compounds LCO and Th17 in the presence of salt stress (up to 250 mM NaCl. Shotgun proteomics of unstressed and 250 mM NaCl stressed A. thaliana rosettes (7 days post stress in combination with the LCO and Th17 revealed many known, putative, hypothetical and unknown proteins. Overall, carbon and energy metabolic pathways were affected under both unstressed and salt stressed conditions when treated with these signals. PEP carboxylase, Rubisco-oxygenase large subunit, pyruvate kinase, and proteins of photosystem I and II were some of the noteworthy proteins enhanced by the signals, along with other stress related proteins. These findings suggest that the proteome of A. thaliana rosettes is altered by the bacterial signals tested, and more so under salt stress, thereby imparting a positive effect on plant growth under high salt stress. The roles of the identified proteins are discussed here in relation to salt stress adaptation, which, when translated to field grown crops can be a crucial component and of significant importance in agriculture and global food production. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD004742.

  16. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  17. Effect of low-dose gamma irradiation on storage properties in light salted Pseudosciaena crocea

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Yang Xianshi; Li Xueying; Guo Quanyou

    2012-01-01

    To explore the preservation effect of γ irradiation on light salted Pseudosciaena crocea, the influence of 1 kGy low-dose γ irradiation on sensory quality, microbiological and chemical quality including TVC, TVB-N and TBARS contents of light salted P. crocea stored at 25 ℃ was discussed. The results showed that the number of total viable counts significantly decreased after irradiation, during the whole storage, the bacteria numbers of light salted P. crocea treated with irradiation were still less than the control. The concentrations of TVB-N was significantly reduced after irradiation, whereas lipid oxidation was less accelerated. The shelf life could be remarkably prolonged after low-dose γ irradiation. While the shelf life of control group were 9 and 11 days, the shelf life of irradiated light salted P. crocea were extended to 16 and 20 days, respectively. The results can provide technical references for commercial application of seafood irradiation. (authors)

  18. Placing Salt/Soy Sauce at Dining Tables and Out-Of-Home Behavior Are Related to Urinary Sodium Excretion in Japanese Secondary School Students.

    Science.gov (United States)

    Okuda, Masayuki; Asakura, Keiko; Sasaki, Satoshi

    2017-11-28

    We investigated whether home environment, salt knowledge, and salt-use behavior were associated with urinary sodium (Na) excretion in Japanese secondary school students. Students (267; mean age, 14.2 years) from Suo-Oshima, Japan, collected three overnight urine samples and completed a salt environment/knowledge/behavior questionnaire. A subset of students ( n = 66) collected, on non-consecutive days, two 24 h urine samples, and this subset was used to derive a formula for estimating 24 h Na excretion. Generalized linear models were used to examine the association between salt environment/knowledge/behavior and Na excretions. Students that had salt or soy sauce placed on the dining table during meals excreted more Na than those that did not ( p for trend trend = 0.005). The students who frequently bought foods at convenience stores or visited restaurants excreted more Na in urine than those who seldom bought foods ( p for trend < 0.05). Knowledge about salt or discretionary seasoning use was not significantly associated with Na excretion. The associations found in this study indicate that home environment and salt-use behavior may be a target for a public health intervention to reduce salt intake of secondary school students.

  19. Pyro-oxidation of plutonium spent salts with sodium carbonate

    International Nuclear Information System (INIS)

    Bourges, G.; Godot, A.; Valot, C.; Devillard, D.

    2001-01-01

    The purification of plutonium generates spent salts, which are temporarily stored in a nuclear building. A development programme for pyrochemical treatment is in progress to stabilize and concentrate these salts in order to reduce the quantities for long-term disposal. The treatment, inspired by work previously done by LANL, consists of a pyro-oxidation of the salt with sodium carbonate to convert the actinides into oxides, then of a vacuum distillation to separate the oxides from the volatile salt matrix. Pyro-oxidation of NaCl/KCl base spent salts first produces a 'black salt' which contains more than 97% of the initial actinides. XRD analyses indicate PuO 2 as major plutonium species and sodium plutonates or plutonium sub-oxides PuO 2-x can also be identified. Next appears a 'white salt' containing less than 500 ppm of plutonium, which meets the operational criterion for LLW discard. For these salts, the pyro-oxidation process in and of itself is expected to reduce the quantities to be stored on-site by more than one-third. The pyro-oxidation of CaCl 2 /NaCl base americium extraction salts leads to oxides PuO 2 and probably AmO 2 , but the yield of concentration in the black salt is lower and the white salt cannot be discarded as LLW. During vacuum distillation, excess carbonate can dissociate and damage the efficiency of the process. Appropriate chlorine sparging at the end of the oxidation can eliminate this carbonate. (authors)

  20. Effect of D.C. electric field on salt bath nitriding for 35 steel and kinetics analysis

    International Nuclear Information System (INIS)

    Zhou, Zhengshou; Dai, Mingyang; Shen, Zhiyuan; Hu, Jing

    2015-01-01

    Highlights: • A rapid salt bath nitriding technology enhanced by D.C. electric field was developed primarily. • The heating duration could be shortened to less than a half. • Higher surface hardness, modestly higher sub-surface hardness and superior hardness profile were obtained. • The diffusion coefficient of nitrogen was increased to more than 1.9 times and Q value was decrease. • Chemical reactions were promoted and active atoms were forced to diffuse directionally toward the treated specimen. - Abstract: A rapid salt bath nitriding technology was primarily developed by additionally applying direct current (D.C.) electric field on the basis of traditional technique (NM). Characterization of the modified surface layers was made by means of optical microscopy, Vickers micro-hardness test and X-ray diffraction analysis. The results showed that D.C. electric field could significantly enhance the nitriding efficiency and the enhancement effect was closely related to the intensity of D.C. electric field. By applying D.C electric field of 7.5 V, even a little thicker compound layer could be obtained at only half duration of that in traditional technique, and the thickness of compound layer increased more than 60%, from 18 μm up to 29 μm at the same treating temperature of 848 K and holding duration of 100 min. Meanwhile, higher surface hardness, modestly higher sub-surface hardness and superior hardness profile were obtained assisted by D.C. electric field. It was also found that the diffusion coefficient of nitrogen was increased more than 1.9 times and activation energy was decreased from 184 kJ/mol to 159 kJ/mol enhanced by D.C. electric field. The possible enhancement mechanism is that D.C. electric field can promote chemical reactions and produce more active nitrogen atoms in the salt bath, positively charge the active atoms and force them diffuse directionally toward the surface of the treated specimen, and hence significantly improve the efficiency

  1. Effect of state of tetraoctylammonium and trioctylpropylammonium salts in extracts on coextraction of micro- and macroelements

    International Nuclear Information System (INIS)

    Bagreev, V.V.; Kardivarenko, L.M.; Zolotov, Yu.A.

    1988-01-01

    State effect of halide simple and metal-bearing tetraoctyl- and trioctylpropylammonium salts in benzene and nitrobenzene on inhibition of indium and cobalt trace amounts extraction from HCl solutions by the extractable macrocomponents-gallium and zinc, respectively, is investigated. Dissociation constants (K dis ) for metal-bearing salts and tetraoctylammonium and trioctylpropylammonium bromides in nitrobenzene as well are calculated. It is shown, that inhibition of trace elements extraction is the more higher, the more is the difference between K dis for alkylammonium metal-bearing and simple salts

  2. Effect of Bile Salt on Permeation Characteristics of the Oral Mucosal ...

    African Journals Online (AJOL)

    An attempt was made to study the effect of bile salt [sodium glycocholate (SG)] as a permeation enhancer on mucoadhesive buccal patches of diltiazem hydrochloride (anti-anginal drug) using various polymers like hydroxypropyl methyl cellulosee (HPMC), Eudragit RL100, ethyl cellulose alone and in combination with PVP.

  3. Mass transport in bedded salt and salt interbeds

    International Nuclear Information System (INIS)

    Hwang, Y.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-08-01

    Salt is the proposed host rock for geologic repositories of nuclear waste in several nations because it is nearly dry and probably impermeable. Although experiments and experience at potential salt sites indicate that salt may contain brine, the low porosity, creep, and permeability of salt make it still a good choice for geologic isolation. In this paper we summarize several mass-transfer and transport analyses of salt repositories. The mathematical details are given in our technical reports

  4. High-temperature vacuum distillation separation of plutonium waste salts

    International Nuclear Information System (INIS)

    Garcia, E.

    1996-01-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen

  5. Phase transformation of aluminium hydroxide to aα- alumina prepared from different aluminium salts

    International Nuclear Information System (INIS)

    Masliana Muslimin; Meor Yusoff Meor Sulaiman

    2006-01-01

    The study intends to look at the most suitable aluminium salt to produce a single-phase a-alumina by the hydrothermal method. In the process to produce alumina from the calcination of aluminium hydroxide (Al(OH) 3 ), three different aluminium salts namely aluminium sulfate (Al 2 (SO 4) 2), aluminium nitrate (A(NO 3 ) 3 ) and aluminium chloride (AlCl 3 ) were tried. The process involved the used of NH 4 OH as the precipitating medium. Aluminium hydroxide produced from each of these salts were characterised by x-ray diffraction (XRD) technique to identity the crystalline phase. Aluminium hydroxide produced by all the different aluminium salts is present as boehmite or pseudo-boehmite phase. Aluminium hydroxide produced from Al 2 (SO) 2 , Al(NO) 3 and AlCl 3 shows the transformation of the boehmite phase to a α-alumina phase at 500 0 C. On further heating, the α-alumina continuously formed at 800 o C followed soon at 1000 o C. But for the Al(NO3) 3 salts a different phase transitions occurs on heating especially at 1000 o C. Here it was observed not a single alumina phase is presence but the presence of both α and γ--alumina phases. At 1300 o C, the single α-alumina phase was formed. The study concluded that aluminium sulphate is recommended in order to obtain a single-phase α-alumina with the required characteristics. (Author)

  6. Effect of prenatal exposure to different salt concentration on the third month's weight and blood pressure in wistar rat

    International Nuclear Information System (INIS)

    Fereidoun, H.

    2009-01-01

    In utero alterations in fluid and electrolyte endocrine systems may result in permanent effects on offspring. A low sodium intake during prenatal life jeopardizes growth in young rats, prenatal high-salt diet in Sprague-Dawley rats caused an increase in MAP at postnatal day 30. The objective of this study was to determine the effect of prenatal exposure to different salt concentrations on the third month's weight and blood pressure in Wistar rat. This study was performed at the Department of Physiology, Isfahan University of Medical Science, Isfahan, Iran, over a period from 1998 to 2003. Six groups of rat, 1 male and 5 female in each group were exposed to 0.5, 1, 1.4, 1.6, 1.8 and 2 percent of salt concentrations during pre-pregnancy, pregnancy and lactation period, another test group consumed distilled water and control group used Isfahan tap water, other living conditions for all groups were similar. Exposure to different salt concentrations on the third month's weight and blood pressure was evaluated. Prenatal exposure to 0.5 and 1% salt concentrations gives birth to more alive and healthy infants, and third month's weight increased significantly, but blood pressure was not influenced significantly. Salt concentrations higher than 1% increased the maternal and infant mortality rate and blood pressure significantly, but some concentrations decreased third month's weight significantly. Level of dietary salt during intrauterine development can influence on the number of alive and healthy infants, birth weight, third month' weight and blood pressure significantly. There is no need to introduce a salt restricted diet in prenatal care, a balanced diet in sodium during pregnancy is recommended, high salt diet creates harmful effect. (author)

  7. Chemical characteristic of salt fermented meat inoculated with Pediococcus ssp

    Science.gov (United States)

    Pramono, Y. B.; Rahayu, E. S.; Suparmo; Utami, T.; Nurwantoro; Yunianto, V. D.

    2018-01-01

    The research goal is knowing of the characteristict of salt fermented meat by Pediococcus ssp. There were microbiological, chemical, and off-flavor compound during fermentation. This study was conducted on research of influence of salt-meat fermentation inoculated used starter. They were included microbiological characteristics, and chemical characteristics. Microbiological characteristics observed were total bacteria, number of coliform groups, bacteria producing bioamine, and total lactic acid bacteria. The result showed that decreasing of coliform and bioamine producer bacteria, and total lactic acid bacteria decreased 3 log cycle. While the soluble protein increased of 7-8% and bioamine increased of 5-6 mg/100 g. And then Off-flavour compound, TVN and TMA increased of 36-20 mg/100g and 16-30 mg/100g, respectively. Conclusion of the research that Pedioccoccus ssp. influenced salt fermented meat.

  8. Selection and genetic relationship of salt tolerant rice mutants by in vitro mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Young; Kim, Dong Sub; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Lee, Myung Chul [National Academy of Agriculture and Science, Suwon (Korea, Republic of); Yun, Song Joong [Chonbuk National University, Jeonju (Korea, Republic of)

    2010-12-15

    Plants have evolved physiological, biochemical and metabolic mechanisms to increase their survival under the adverse conditions. This present study has been performed to select salt tolerant rice mutant lines through in vivo and in vitro mutagenesis with gamma-rays. For the selection of the salt-tolerant rice mutants, we conducted three times of selection procedure using 1,500 gamma ray mutant lines resulted from an embryo culture of the original rice cv. Dongan (wild-type, WT): first, selection in the a nutrient solution with 171 mM NaCI: second, selection under in vitro condition with 171 mM NaCI: and third, selection in a reclaimed saline land. Based on a growth comparison of the entries, out of the mutant lines, two putative 2 salt tolerant (ST) rice mutant lines, ST-87 and ST-301, were finally selected. The survival rate of the WT, ST-87 and ST-301 were 36.6%, 60% and 66.3% after 7 days in 171 mM NaCI treatment, respectively. The WT and two salt tolerant mutant lines were used to analyze their genetic variations. A total of 21 EcoRI and Msel primer combinations were used to analyze the genetic relationship of among the two salt tolerant lines and the WT using the ABI3130 capillary electrophoresis system. In the AFLP analysis, a total of 1469 bands were produced by the 21 primer combinations, and 700 (47.6%) of them were identified as having polymorphism. The genetic similarity coefficients were ranged from 0.52 between the ST-87 and WT to 0.24 between the ST-301 and the WT. These rice mutant lines will be used as a control plot for physiological analysis and genetic research on salt tolerance.

  9. Plant osmoregulation as an emergent water-saving adaptation under salt-stress conditions

    Science.gov (United States)

    Perri, S.; Entekhabi, D.; Molini, A.

    2017-12-01

    Ecohydrological models have been widely used in studying plant-environment relations and hydraulic traits in response to water, light and nutrient limitations. In this context, models become a tool to investigate how plants exploit available resources to maximize transpiration and growth, eventually pointing out possible pathways to adaptation. In contrast, ecohydrologists have rarely focused on the effects of salinity on plant transpiration, which are commonly considered marginal in terrestrial biomes. The effect of salinity, however, cannot be neglected in the case of salt affected soils - estimated to cover over 9 billion ha worldwide - and in intertidal and coastal ecosystems. The objective of this study is to model the effects of salinity on plant-water relations in order to better understand the interplay of soil hyperosmotic conditions and osmoregulation strategies in determining different transpiration patterns. Salinity reduces the water potential, therefore is expected to affect the plant hydraulics and reduce plant conductance (eventually leading to cavitation for very high salt concentrations). Also, plant adaptation to short and long-term exposure to salinity comes into place to maintain an efficient water and nutrients uptake. We introduce a parsimonious soil-plant-atmosphere continuum (SPAC) model that incorporates parameterizations for morphological, physiological and biochemical mechanisms involving varying salt concentrations in the soil water solution. Transpiration is expressed as a function of soil water salinity and salt-mediated water flows within the SPAC (the conceptual representation of the model is shown in Figure c). The model is used to explain a paradox observed in salt-tolerant plants where maximum transpiration occurs at an intermediate value of salinity (CTr,max), and is lower in more fresh (CTr,max) and more saline (C>CTr,max) conditions (Figure a and b). In particular, we show that - in salt-tolerant species - osmoregulation

  10. Reverse time migration of prism waves for salt flank delineation

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2013-01-01

    In this paper, we present a new reverse time migration method for imaging salt flanks with prism wave reflections. It consists of four steps: (1) migrating the seismic data with conventional RTM to give the RTM image; (2) using the RTM image as a reflectivity model to simulate source-side reflections with the Born approximation; (3) zero-lag correlation of the source-side reflection wavefields and receiver-side wavefields to produce the prism wave migration image; and (4) repeating steps 2 and 3 for the receiver-side reflections. An advantage of this method is that there is no need to pick the horizontal reflectors prior to migration of the prism waves. It also separately images the vertical structures at a different step to reduce crosstalk interference. The disadvantage of prism wave migration algorithm is that its computational cost is twice that of conventional RTM. The empirical results with a salt model suggest that prism wave migration can be an effective method for salt flank delineation in the absence of diving waves.

  11. Reverse time migration of prism waves for salt flank delineation

    KAUST Repository

    Dai, Wei

    2013-09-22

    In this paper, we present a new reverse time migration method for imaging salt flanks with prism wave reflections. It consists of four steps: (1) migrating the seismic data with conventional RTM to give the RTM image; (2) using the RTM image as a reflectivity model to simulate source-side reflections with the Born approximation; (3) zero-lag correlation of the source-side reflection wavefields and receiver-side wavefields to produce the prism wave migration image; and (4) repeating steps 2 and 3 for the receiver-side reflections. An advantage of this method is that there is no need to pick the horizontal reflectors prior to migration of the prism waves. It also separately images the vertical structures at a different step to reduce crosstalk interference. The disadvantage of prism wave migration algorithm is that its computational cost is twice that of conventional RTM. The empirical results with a salt model suggest that prism wave migration can be an effective method for salt flank delineation in the absence of diving waves.

  12. Assessment of crushed salt consolidation and fracture healing processes in a nuclear waste repository in salt

    International Nuclear Information System (INIS)

    1984-11-01

    For a nuclear waste repository in salt, two aspects of salt behavior are expected to contribute to favorable conditions for waste isolation. First, consolidation of crushed salt backfill due to creep closure of the underground openings may result in a backfill barrier with low permeability. Second, fractures created in the salt by excavation may heal under the influence of stress and temperature following sealing. This report reviews the status of knowledge regarding crushed salt consolidation and fracture healing, provides analyses which predict the rates at which the processes will occur under repository conditions, and develops requirements for future study. Analyses of the rate at which crushed salt will consolidate are found to be uncertain because of unexplained wide variation in the creep properties of crushed salt obtained from laboratory testing, and because of uncertainties in predictions of long term closure rates of openings in salt. This uncertainty could be resolved to a large degree by additional laboratory testing of crushed salt. Similarly, additional testing of fracture healing processes is required to confirm that healing will be effective under repository conditions. Extensive references, 27 figures, 5 tables

  13. Salting-out assisted liquid-liquid extraction coupled to ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of tetracycline residues in infant foods.

    Science.gov (United States)

    Moreno-González, David; García-Campaña, Ana M

    2017-04-15

    The use of salting-out assisted liquid-liquid extraction (SALLE) combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) has been evaluated for the determination of tetracyclines in infant foods based on meat and vegetables or in milk. To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized. Analytical performances of the method were satisfactory, obtaining limits of quantification lower than 0.48μgkg -1 in all cases. The precision, expressed as relative standard deviation (%, RSD) was below 11.3%. The extraction efficiency for fortified samples ranged from 89.2 to 96.8%, with RSDs lower than 7.3%. Matrix effect was evaluated for all samples studied, being lower than |21|% in all cases. In relation to the low solvent consumption, the proposed methodology could be considered rapid, cheap and environmentally friendly. Its applicability has been successfully tested in a wide range of infant foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effects of mixed volatile fatty acid sodium salt on insulin-like growth ...

    African Journals Online (AJOL)

    Effects of mixed volatile fatty acid sodium salt on insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-3 (IGFBP-3) in plasma and rumen tissue, and rumen epithelium development in lambs.

  15. Generic aspects of salt repositories

    International Nuclear Information System (INIS)

    Laughon, R.B.

    1979-01-01

    The history of geological disposal of radioactive wastes in salt is presented from 1957 when a panel of the National Academy of Sciences-National Research Council recommended burial in bedded salt deposits. Early work began in the Kansas, portion of the Permian Basin where simulated wastes were placed in an abandoned salt mine at Lyons, Kansas, in the late 1960's. This project was terminated when the potential effect of nearby solution mining activities could not be resolved. Evaluation of bedded salts resumed a few years later in the Permian Basin in southeastern New Mexico, and search for suitable sites in the 1970's resulted in the formation of the National Waste Terminal Storage Program in 1976. Evaluation of salt deposits in many regions of the United States has been virtually completed and has shown that deposits having the greatest potential for radioactive waste disposal are those of the largest depositional basins and salt domes of the Gulf Coast region

  16. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions.

    Science.gov (United States)

    Zheng, Jian; Ma, Xiaohua; Zhang, Xule; Hu, Qingdi; Qian, Renjuan

    2018-03-01

    Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus , which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.

  17. Field and laboratory investigations on the effects of road salt (NaCl) on stream macroinvertebrate communities

    International Nuclear Information System (INIS)

    Blasius, B.J.; Merritt, R.W.

    2002-01-01

    Short-term exposure to road salt did not significantly affect stream macro-invertebrate communities. - Field and laboratory experiments were conducted to examine the effects of road salt (NaCl) on stream macroinvertebrates. Field studies investigated leaf litter processing rates and functional feeding group composition at locations upstream and downstream from point source salt inputs in two Michigan, USA streams. Laboratory studies determined the effects of increasing NaCl concentrations on aquatic invertebrate drift, behavior, and survival. Field studies revealed that leaves were processed faster at upstream reference sites than at locations downstream from road salt point source inputs. However, it was sediment loading that resulted in partial or complete burial of leaf packs, that affected invertebrate activity and confounded normal leaf pack colonization. There were no significant differences that could be attributed to road salt between upstream and downstream locations in the diversity and composition of invertebrate functional feeding groups. Laboratory drift and acute exposure studies demonstrated that drift of Gammarus (Amphipoda) may be affected by NaCl at concentrations greater than 5000 mg/l for a 24-h period. This amphipod and two species of limnephilid caddisflies exhibited a dose response to salt treatments with 96-h LC 50 values of 7700 and 3526 mg NaCl/l, respectively. Most other invertebrate species and individuals were unaffected by NaCl concentrations up to 10,000 mg/l for 24 and 96 h, respectively

  18. Effects of bile salt flux variations on the expression of hepatic bile salt transporters in vivo in mice

    NARCIS (Netherlands)

    Wolters, H; Elzinga, BM; Baller, JFW; Boverhof, R; Schwarz, M; Stieger, B; Verkade, HJ; Kuipers, F

    2002-01-01

    Background/Aims: Expression of hepatic bile salt transporters is partly regulated by bile salts via activation of nuclear farnesoid X-activated receptor (Fxr). We investigated the physiological relevance of this regulation by evaluating transporter expression in mice experiencing different

  19. Effects of bile salt flux variations on the expression of hepatic bile salt transporters in vivo in mice

    NARCIS (Netherlands)

    Wolters, H; Elzinga, BM; Baller, JFW; Boverhof, R; Schwarz, M; Stieger, B; Verkade, HJ; Kuipers, F

    Background/Aims: Expression of hepatic bile salt transporters is partly regulated by bile salts via activation of nuclear farnesoid X-activated receptor (Fxr). We investigated the physiological relevance of this regulation by evaluating transporter expression in mice experiencing different

  20. Optimization of Fluorescent Silicon Nano material Production Using Peroxide/ Acid/ Salt Technique

    International Nuclear Information System (INIS)

    Abuhassan, L.H.

    2009-01-01

    Silicon nano material was prepared using the peroxide/ acid/ salt technique in which an aqueous silicon-based salt solution was added to H 2 O 2 / HF etchants. In order to optimize the experimental conditions for silicon nano material production, the amount of nano material produced was studied as a function of the volume of the silicon salt solution used in the synthesis. A set of samples was prepared using: 0, 5, 10, 15, and 20 ml of an aqueous 1 mg/ L metasilicate solution. The area under the corresponding peaks in the infrared (ir) absorption spectra was used as a qualitative indicator to the amount of the nano material present. The results indicated that using 10 ml of the metasilicate solution produced the highest amount of nano material. Furthermore, the results demonstrated that the peroxide/ acid/ salt technique results in the enhancement of the production yield of silicon nano material at a reduced power demand and with a higher material to void ratio. A model in which the silicon salt forms a secondary source of silicon nano material is proposed. The auxiliary nano material is deposited into the porous network causing an increase in the amount of nano material produced and a reduction in the voids present. Thus a reduction in the resistance of the porous layer, and consequently reduction in the power required, are expected. (author)

  1. The Dead Sea Mud and Salt: A Review of Its Characterization, Contaminants, and Beneficial Effects

    Science.gov (United States)

    Bawab, Abeer Al; Bozeya, Ayat; Abu-Mallouh, Saida; Abu Irmaileh, Basha'er; Daqour, Ismail; Abu-Zurayk, Rund A.

    2018-02-01

    The Dead Sea has been known for its therapeutic and cosmetic properties. The unique climatic conditions in the Dead Sea area make it a renowned site worldwide for the field of climatotherapy, which is a natural approach for the provision of medications for many human diseases including unusual exclusive salt composition of the water, a special natural mud, thermal mineral springs, solar irradiation, oxygen-rich and bromine-rich haze. This review focuses on the physical, chemical, and biological characteristics of the Dead Sea mud and salts, in addition to their contaminants, allowing this review to serve as a guide to interested researchers to their risks and the importance of treatment. Beneficial effects of Dead Sea mud and salts are discussed in terms of therapy and cosmetics. Additional benefits of both Dead Sea mud and salts are also discussed, such as antimicrobial action of the mud in relation to its therapeutic properties, and the potency of mud and salts to be a good medium for the growth of a halophilic unicellular algae, used for the commercial production of β-carotene Dunaliella.

  2. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    Science.gov (United States)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is

  3. Process for improving the energy density of feedstocks using formate salts

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  4. Production of dried shrimp mixed with turmeric and salt by Spouted Bed technique enter the rectangular chamber.

    Science.gov (United States)

    Thanthong, P.; Mustafa, Y.; Ngamrungroj, D.

    2017-09-01

    Today, dried shrimp in the market were refused food colour and drying until shrimp are colourful and tasty. Meanwhile, Community groups, women’s health trying to produce food products come from herbs. As an alternative to consumers. The production process is also a traditional way to dry. In order to extend the shelf life longer. Sometimes, potential risks, both in quality and quantity of products. As a result, consumers are enormous. Thus, this research aims to study the possibility to produce shrimp dried mixed with turmeric and salt. Then dried shrimp mixed with turmeric and salt to keep up the quality criteria of the Food and Drug Administration-FDA It can reduce the risk of the consumer and can keep up in a kitchen Thailand. When buying shrimp from the fisherman’s boat Will be made clear, clean impurities and shaking the sand to dry. Prepare a mixture of turmeric and salt. The shrimp were dipped into a beef with stirrer for 3 minutes. And scoop up centrifugal shrimp with dried. Measurement of initial moisture content averaging 78%wb. Then drying technique Spouted enter the rectangular chamber a continuous manner. Until average moisture content to 17%wb. The air temperature in the drying chamber at 180 °C and hot air speed 4.5 m/s, a state heat transfer Mass and moisture within the shrimp. In chamber when drying, the shrimp have moved freely behaviour can spit water out faster does not burn. Shaving legs of shrimp shell fragments lightweight is sorting out the top of drying chamber. Private shrimp were dried out to the front of the quad drying chamber. Power consumption 27.5 MJ/kg, divided into electrical energy 12.3 MJ/kg and thermal energy is 15.2 MJ/kg. The hot air comes from burning LPG gas burner with dual automatic. And can adjustable to room temperature drying characteristics modulation setting.

  5. A Cost Effectiveness Analysis of Salt Reduction Policies to Reduce Coronary Heart Disease in Four Eastern Mediterranean Countries

    Science.gov (United States)

    Mason, Helen; Shoaibi, Azza; Ghandour, Rula; O'Flaherty, Martin; Capewell, Simon; Khatib, Rana; Jabr, Samer; Unal, Belgin; Sözmen, Kaan; Arfa, Chokri; Aissi, Wafa; Romdhane, Habiba Ben; Fouad, Fouad; Al-Ali, Radwan; Husseini, Abdullatif

    2014-01-01

    Background Coronary Heart Disease (CHD) is rising in middle income countries. Population based strategies to reduce specific CHD risk factors have an important role to play in reducing overall CHD mortality. Reducing dietary salt consumption is a potentially cost-effective way to reduce CHD events. This paper presents an economic evaluation of population based salt reduction policies in Tunisia, Syria, Palestine and Turkey. Methods and Findings Three policies to reduce dietary salt intake were evaluated: a health promotion campaign, labelling of food packaging and mandatory reformulation of salt content in processed food. These were evaluated separately and in combination. Estimates of the effectiveness of salt reduction on blood pressure were based on a literature review. The reduction in mortality was estimated using the IMPACT CHD model specific to that country. Cumulative population health effects were quantified as life years gained (LYG) over a 10 year time frame. The costs of each policy were estimated using evidence from comparable policies and expert opinion including public sector costs and costs to the food industry. Health care costs associated with CHDs were estimated using standardized unit costs. The total cost of implementing each policy was compared against the current baseline (no policy). All costs were calculated using 2010 PPP exchange rates. In all four countries most policies were cost saving compared with the baseline. The combination of all three policies (reducing salt consumption by 30%) resulted in estimated cost savings of $235,000,000 and 6455 LYG in Tunisia; $39,000,000 and 31674 LYG in Syria; $6,000,000 and 2682 LYG in Palestine and $1,3000,000,000 and 378439 LYG in Turkey. Conclusion Decreasing dietary salt intake will reduce coronary heart disease deaths in the four countries. A comprehensive strategy of health education and food industry actions to label and reduce salt content would save both money and lives. PMID:24409297

  6. Laminar iridium coating produced by pulse current electrodeposition from chloride molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Li’an, E-mail: mr_zla@163.com; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2013-10-01

    Due to the unique physical and chemical properties, Iridium (Ir) is one of the most promising oxidation-resistant coatings for refractory materials above 1800 °C in aerospace field. However, the Ir coatings prepared by traditional methods are composed of columnar grains throughout the coating thickness. The columnar structure of the coating is considered to do harm to its oxidation resistance. The laminar Ir coating is expected to have a better high-temperature oxidation resistance than the columnar Ir coating does. The pulse current electrodeposition, with three independent parameters: average current density (J{sub m}), duty cycle (R) and pulse frequency (f), is considered to be a promising method to fabricate layered Ir coating. In this study, laminar Ir coatings were prepared by pulse current electrodeposition in chloride molten salt. The morphology, roughness and texture of the coatings were determined by scanning electron microscope (SEM), profilometer and X-ray diffraction (XRD), respectively. The results showed that the laminar Ir coatings were composed of a nucleation layer with columnar structure and a growth layer with laminar structure. The top surfaces of the laminar Ir coatings consisted of cauliflower-like aggregates containing many fine grains, which were separated by deep grooves. The laminar Ir coating produced at the deposition condition of 20 mA/cm{sup 2} (J{sub m}), 10% (R) and 6 Hz (f) was quite smooth (R{sub a} 1.01 ± 0.09 μm) with extremely high degree of preferred orientation of 〈1 1 1〉, and its laminar structure was well developed with clear boundaries and uniform thickness of sub-layers.

  7. Effect of Salt on the Metabolism of ‘Candidatus Accumulibacter’ Clade I and II

    KAUST Repository

    Wang, Zhongwei; Dunne, Aislinn; van Loosdrecht, Mark C. M.; Saikaly, Pascal

    2018-01-01

    Saline wastewater is known to affect the performance of phosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) process. However, studies comparing the effect of salinity on different PAO clades are lacking. In this study, 'Candidatus Accumulibacter phosphatis' Clade I and II (hereafter referred to as PAOI and PAOII) were highly enriched (~90% in relative abundance as determined by quantitative FISH) in the form of granules in two sequencing batch reactors. Anaerobic and aerobic batch experiments were conducted to evaluate the effect of salinity on the kinetics and stoichiometry of PAOI and PAOII. PAOI and PAOII communities showed different priority in using polyphosphate (poly-P) and glycogen to generate ATP in the anaerobic phase when exposed to salt, with PAOI depending more on intracellular poly-P degradation (e.g., the proportion of calculated ATP derived from poly-P increased by 5-6% at 0.256 mol/L NaCl or KCl) while PAOII on glycolysis of intracellularly stored glycogen (e.g., the proportion of calculated ATP derived from glycogen increased by 29-30% at 0.256 mol/L NaCl or KCl). In the aerobic phase, the loss of phosphate uptake capability was more pronounced in PAOII due to the higher energy cost to synthesize their larger glycogen pool compared to PAOI. For both PAOI and PAOII, aerobic conversion rates were more sensitive to salt than anaerobic conversion rates. Potassium (K) and sodium (Na) ions exhibited different effect regardless of the enriched PAO culture, suggesting that the composition of salt is an important factor to consider when studying the effect of salt on EBPR performance.

  8. Effect of Salt on the Metabolism of ‘Candidatus Accumulibacter’ Clade I and II

    Directory of Open Access Journals (Sweden)

    Zhongwei Wang

    2018-03-01

    Full Text Available Saline wastewater is known to affect the performance of phosphate-accumulating organisms (PAOs in enhanced biological phosphorus removal (EBPR process. However, studies comparing the effect of salinity on different PAO clades are lacking. In this study, ‘Candidatus Accumulibacter phosphatis’ Clade I and II (hereafter referred to as PAOI and PAOII were highly enriched (∼90% in relative abundance as determined by quantitative FISH in the form of granules in two sequencing batch reactors. Anaerobic and aerobic batch experiments were conducted to evaluate the effect of salinity on the kinetics and stoichiometry of PAOI and PAOII. PAOI and PAOII communities showed different priority in using polyphosphate (poly-P and glycogen to generate ATP in the anaerobic phase when exposed to salt, with PAOI depending more on intracellular poly-P degradation (e.g., the proportion of calculated ATP derived from poly-P increased by 5–6% at 0.256 mol/L NaCl or KCl while PAOII on glycolysis of intracellularly stored glycogen (e.g., the proportion of calculated ATP derived from glycogen increased by 29–30% at 0.256 mol/L NaCl or KCl. In the aerobic phase, the loss of phosphate uptake capability was more pronounced in PAOII due to the higher energy cost to synthesize their larger glycogen pool compared to PAOI. For both PAOI and PAOII, aerobic conversion rates were more sensitive to salt than anaerobic conversion rates. Potassium (K+ and sodium (Na+ ions exhibited different effect regardless of the enriched PAO culture, suggesting that the composition of salt is an important factor to consider when studying the effect of salt on EBPR performance.

  9. Effect of Salt on the Metabolism of ‘Candidatus Accumulibacter’ Clade I and II

    KAUST Repository

    Wang, Zhongwei

    2018-03-16

    Saline wastewater is known to affect the performance of phosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) process. However, studies comparing the effect of salinity on different PAO clades are lacking. In this study, \\'Candidatus Accumulibacter phosphatis\\' Clade I and II (hereafter referred to as PAOI and PAOII) were highly enriched (~90% in relative abundance as determined by quantitative FISH) in the form of granules in two sequencing batch reactors. Anaerobic and aerobic batch experiments were conducted to evaluate the effect of salinity on the kinetics and stoichiometry of PAOI and PAOII. PAOI and PAOII communities showed different priority in using polyphosphate (poly-P) and glycogen to generate ATP in the anaerobic phase when exposed to salt, with PAOI depending more on intracellular poly-P degradation (e.g., the proportion of calculated ATP derived from poly-P increased by 5-6% at 0.256 mol/L NaCl or KCl) while PAOII on glycolysis of intracellularly stored glycogen (e.g., the proportion of calculated ATP derived from glycogen increased by 29-30% at 0.256 mol/L NaCl or KCl). In the aerobic phase, the loss of phosphate uptake capability was more pronounced in PAOII due to the higher energy cost to synthesize their larger glycogen pool compared to PAOI. For both PAOI and PAOII, aerobic conversion rates were more sensitive to salt than anaerobic conversion rates. Potassium (K) and sodium (Na) ions exhibited different effect regardless of the enriched PAO culture, suggesting that the composition of salt is an important factor to consider when studying the effect of salt on EBPR performance.

  10. Specific investigations related to salt rock behaviour

    International Nuclear Information System (INIS)

    Vons, L.H.

    1985-01-01

    In this paper results are given of work in various countries in rather unrelated areas of research. Nevertheless, since the studies have been undertaken to better understand salt behaviour, both from mechanical and chemical points of view, some connection between the studies can be found. In the French contribution the geological conditions have been investigated that might promote or prevent the formation of salt domes from layers in view of possible use of the latter type of formation. This was done theoretically by the finite element method, and a start was made with centrifuge tests. The density of a number of samples from salt and overburden from the Bresse basin was measured and it was shown that a favourable condition exists in this region for waste disposal. In the German contribution various subjects are touched upon, one being the effect of water on the mobility in the early stages of salt dome formation. Evidence was found for an anisotropy in salt. One Dutch contribution describes results of studies on the effect of small amounts of water on the rheology of salt. The results imply that flow laws obtained for salt at rapid strain rates and/or low confining pressure cannot be reliably extrapolated to predict the long term behaviour of wet or even very dry material under natural conditions. Preliminary results on the effect of water upon ion-mobility indicate a certain pseudo-absorptive capacity of salt e.g. for Sr

  11. Hepatic farnesoid X-receptor isoforms α2 and α4 differentially modulate bile salt and lipoprotein metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Marije Boesjes

    Full Text Available The nuclear receptor FXR acts as an intracellular bile salt sensor that regulates synthesis and transport of bile salts within their enterohepatic circulation. In addition, FXR is involved in control of a variety of crucial metabolic pathways. Four FXR splice variants are known, i.e. FXRα1-4. Although these isoforms show differences in spatial and temporal expression patterns as well as in transcriptional activity, the physiological relevance hereof has remained elusive. We have evaluated specific roles of hepatic FXRα2 and FXRα4 by stably expressing these isoforms using liver-specific self-complementary adeno-associated viral vectors in total body FXR knock-out mice. The hepatic gene expression profile of the FXR knock-out mice was largely normalized by both isoforms. Yet, differential effects were also apparent; FXRα2 was more effective in reducing elevated HDL levels and transrepressed hepatic expression of Cyp8b1, the regulator of cholate synthesis. The latter coincided with a switch in hydrophobicity of the bile salt pool. Furthermore, FXRα2-transduction caused an increased neutral sterol excretion compared to FXRα4 without affecting intestinal cholesterol absorption. Our data show, for the first time, that hepatic FXRα2 and FXRα4 differentially modulate bile salt and lipoprotein metabolism in mice.

  12. Effects of mineral salt supplement on enteric methane emissions, ruminal fermentation and methanogen community of lactating cows.

    Science.gov (United States)

    Li, Xiaohua; Liu, Chong; Chen, Yongxing; Shi, Rongguang; Cheng, Zhenhua; Dong, Hongmin

    2017-08-01

    We evaluated the effects of mineral salt supplement on enteric methane emissions, ruminal fermentation and methanogen community of dairy cows over a whole lactation period. Ten Holstein cows fed a total mixed ration (TMR) diet were randomly allocated into two groups, one supplied with mineral salts as the treatment group and the other as the control group. The methane measurement showed that the ingestion of mineral salts lowered enteric methane emissions significantly (P methane emissions by mineral salt intake could be attributed to decreased density of methanogenic archaea and that fluctuations in methane emission over the lactation period might be related to Methanobrevibacter diversity. © 2016 Japanese Society of Animal Science.

  13. Use of experimentally determined Henry's Law and salting-out constants for ethanol in seawater for determination of the saturation state of ethanol in coastal waters.

    Science.gov (United States)

    Willey, Joan D; Powell, Jacqueline P; Avery, G Brooks; Kieber, Robert J; Mead, Ralph N

    2017-09-01

    The Henry's law constant for ethanol in seawater was experimentally determined to be 221 ± 4 M/atm at 22 °C compared with 247 ± 6 M/atm in pure water. The salting out coefficient for ethanol was 0.13 M -1 . In seawater ln(K H ) = -(12.8 ± 0.7) + (5310 ± 197)/T where K H is in M atm -1 and temperature is in K. This plus the salting out coefficient allow calculation of K H for any estuarine or sea water between 1 and 35 °C. High concentrations of dissolved organic carbon do not affect K H values in fresh or seawater. Nearshore surface waters were usually undersaturated with respect to gas phase ethanol except when air concentrations decreased, whereas surface seawater 40 km from shore was supersaturated. The percent saturation in surface waters is driven primarily by changes in air concentrations because these change quickly (hours) and more extensively than surface water. This study allows calculation of ethanol saturation states from air and surface water concentrations which is a necessary step to define the role of surface oceans in the global biogeochemical cycling of ethanol both now and in the future as use of ethanol biofuel continues to grow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Chemical implications of heat and radiation damage to rock salt

    International Nuclear Information System (INIS)

    Pederson, L.R.

    1984-11-01

    Chemical changes induced in Palo Duro and Paradox Basin natural rock salts and in synthetic NaCl by heat and gamma radiation were investigated. Heating of unirradiated natural rock salts to 300 0 C resulted in HCl (most prevalent), SO 2 , CO 2 , and H 2 S evolution, and increased the base content of the remaining salt by not more than 10 microequivalents per gram; whereas, heating of synthetic NaCl gave no product. Gamma irradiation produced sodium colloids and neutral chlorine in amounts similar to the results of Levy and coworkers. When the irradiated salts were heated, three reactions were apparent: (1) radiation-induced defects recombined; (2) neutral chlorine was evolved; and (3) HCl, SO 2 , CO 2 , and H 2 S were evolved, similar to results for unirradiated salts. Because reaction (1) appeared to dominate over reaction (2), it is expected that the influence of radiation damage to salt on the near-field chemical environment will be minor. 4 figures, 1 table

  15. 21 CFR 100.155 - Salt and iodized salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the...

  16. Development of High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2011-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes which is composed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyrometallurgical processing, the development of high-temperature molten salt transport technologies is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature transport technology for molten salt, and the performance test of the apparatus was performed. And also, predissolution test of the salt was carried out using the reactor with furnace in experimental apparatus

  17. Physico-chemical analysis of traditional vegetal salts obtained from three provinces of Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Janarthanan Gopalakrishnan

    2015-06-01

    Full Text Available Objective: To determine the chemical constituents of the traditional vegetal salts and find out if they are safe to consume. Methods: Seven different salts have been obtained from three provinces, of which five belong to Morobe Province. The cations were determined using inductively coupled plasma atomic emission spectroscopy and anions using titrimetry, gravimetry and spectrophotometry. Others like solubility, electrical conductivity, pH, antimicrobial, Fourier transform infrared spectral and volatility studies have been carried out for these salts. Results: While few salts were found to be stable, others were deliquescent; and the colour varies from white to black through yellow and brown. It was found that the potassium ion was dominant while others including sodium and calcium were found in lower concentrations. For the first time, certain d-block metal concentrations were measured though most of them were found to be present at very low levels. Other parameters like volatility, solubility, electrical conductivity, antimicrobial and Fourier transform infrared spectral studies were carried out for the first time for these vegetal salts in Papua New Guinea. Conclusions: The salt’s deliquescence could be correlated to the presence of anions like carbonate, bicarbonate and hydroxide which strongly contribute towards it. Similarly, solubility and conductivity of the salts could be correlated well. The salts were found to be harmless for consumption, but for the high potassium content.

  18. Constitutive behavior of reconsolidating crushed salt

    International Nuclear Information System (INIS)

    Callahan, G.D.; Mellegard, K.D.; Hansen, F.D.

    1998-02-01

    The constitutive model used to describe deformation of crushed salt is presented in this paper. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--are combined to form the basis for the constitutive model governing deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Recently completed creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant (WIPP) and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from shear consolidation tests and a combination of shear and hydrostatic tests produces two sets of material parameter values for the model. Changes in material parameter values from test group to test group indicate the empirical nature of the model but show significant improvement over earlier work. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on fitting statistics and ability of the model to predict test data, the model appears to capture the creep consolidation behavior of crushed salt quite well

  19. Accumulated energy determination in salts rocks irradiated by means of thermoluminescence techniques: application to the high level radioactive wastes repositories analysis

    International Nuclear Information System (INIS)

    Dies, J.; Ortega. J.; Tarrasa. F.; Cuevas, C.

    1995-01-01

    The report summarizes the study carried out to develop the radiation effects on salt rocks in order to repository the high level radioactive wastes. The study is structured into 3 main aspects: 1.- Analysis of irradiation experiences in Haw project of Pet ten reactor. 2.- Irradiation of salt sample of CESAR industrial irradiator. 3.- Correlation study between the accumulated energy, termoluminescence answer and the defect concentration

  20. Overlap knock-out effects in the CERN intersecting storage rings (ISR)

    CERN Document Server

    Gourber, J P; Myers, S

    1977-01-01

    Overlap knock-out arises from an overlap between frequencies present in a bunched beam and the betatron frequencies in a stack. The 'single ring' effect in the interaction of a bunched beam with a stack in the same ring. Here the coupling forces are fairly linear and are transmitted by machine elements. The 'two-ring' effect is the interaction of a bunched beam with a stack in the other ring. Here the coupling forces are nonlinear since they are produced by the beam-beam interaction. A brief outline of the general theory of these effects is given. The single ring and two-ring dipole effects have been observed and shown to cause a large increase in the transverse size of the stacked beam. (4 refs).