WorldWideScience

Sample records for salt reactor experiment

  1. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Mueller, Donald E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-08-31

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  2. Complete Sensitivity/Uncertainty Analysis of LR-0 Reactor Experiments with MSRE FLiBe Salt and Perform Comparison with Molten Salt Cooled and Molten Salt Fueled Reactor Models

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mueller, Don [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    In September 2016, reactor physics measurements were conducted at Research Centre Rez (RC Rez) using the FLiBe (2 7LiF + BeF2) salt from the Molten Salt Reactor Experiment (MSRE) in the LR-0 low power nuclear reactor. These experiments were intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems using FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL), in collaboration with RC Rez, performed sensitivity/uncertainty (S/U) analyses of these experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objectives of these analyses were (1) to identify potential sources of bias in fluoride salt-cooled and salt-fueled reactor simulations resulting from cross section uncertainties, and (2) to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a final report on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. In the future, these S/U analyses could be used to inform the design of additional FLiBe-based experiments using the salt from MSRE. The key finding of this work is that, for both solid and liquid fueled fluoride salt reactors, radiative capture in 7Li is the most significant contributor to potential bias in neutronics calculations within the FLiBe salt.

  3. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material

  4. Validation of the TRACE code for the system dynamic simulations of the molten salt reactor experiment and the preliminary study on the dual fluid molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    He, Xun

    2016-06-14

    Molten Salt Reactor (MSR), which was confirmed as one of the six Generation IV reactor types by the GIF (Generation IV International Forum in 2008), recently draws a lot of attention all around the world. Due to the application of liquid fuels the MSR can be regarded as the most special one among those six GEN-IV reactor types in a sense. A unique advantage of using liquid nuclear fuel lies in that the core melting accident can be thoroughly eliminated. Besides, a molten salt reactor can have several fuel options, for instance, the fuel can be based on {sup 235}U, {sup 232}Th-{sup 233}U, {sup 238}U-{sup 239}Pu cycle or even the spent nuclear fuel (SNF), so the reactor can be operated as a breeder or as an actinides burner both with fast, thermal or epi-thermal neutron spectrum and hence, it has excellent features of the fuel sustainability and for the non-proliferation. Furthermore, the lower operating pressure not only means a lower risk of the explosion as well as the radioactive leakage but also implies that the reactor vessel and its components can be lightweight, thus lowering the cost of equipments. So far there is no commercial MSR being operated. However, the MSR concept and its technical validation dates back to the 1960s to 1970s, when the scientists and engineers from ORNL (Oak Ridge National Laboratory) in the United States managed to build and run the world's first civilian molten salt reactor called MSRE (Molten Salt Reactor Experiment). The MSRE was an experimental liquid-fueled reactor with 10 MW thermal output using {sup 4}LiF-BeF{sub 2}-ZrF{sub 4}-UF{sub 4} as the fuel also as the coolant itself. The MSRE is usually taken as a very important reference case for many current researches to validate their codes and simulations. Without exception it works also as a benchmark for this thesis. The current thesis actually consists of two main parts. The first part is about the validation of the current code for the old MSRE concept, while the second

  5. A descriptive model of the molten salt reactor experiment after shutdown: Review of FY 1995 progress

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.; Del Cul, G.D.; Toth, L.M.

    1996-01-01

    During FY 1995 considerable progress was made toward gaining a better understanding of the chemistry and transport processes that continue to govern the behavior of the Molten Salt Reactor Experiment (MSRE). As measurements in the MSRE proceed, laboratory studies continue, and better analyses are available, our understanding of the state of the MSRE and the best path toward remediation improves. Because of the immediate concern about the deposit in the auxiliary charcoal bed (ACB), laboratory studies in the past year focused on carbon-fluorine chemistry. Secondary efforts were directed toward investigation of gas generation from MSRE salts by both radiolytic and nonradiolytic pathways. In addition to the laboratory studies, field measurements at the MSRE provided the basis for estimating the inventory of uranium and fluorine in the ACB. Analysis of both temperature and radiation measurements provided independent and consistent estimates of about 2.6 kg of uranium deposited in the top of the ACB. Further analysis efforts included a refinement in the estimates of the fuel- salt source term, the deposited decay energy, and the projected rate of radiolytic gas generation. This report also provides the background material necessary to explain new developments and to review areas of particular interest. The detailed history of the MSRE is extensively documented and is cited where appropriate. This work is also intended to update and complement the more recent MSRE assessment reports.

  6. Thermal analysis to support decommissioning of the molten salt reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sulfredge, C.D.; Morris, D.G.; Park, J.E.; Williams, P.T.

    1996-06-01

    As part of the decommissioning process for the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory, several thermal-sciences issues were addressed. Apparently a mixture of UF{sub 6} and F{sub 2} had diffused into the upper portion of one charcoal column in the MSRE auxiliary charcoal bed (ACB), leading to radiative decay heating and possible chemical reaction sources. A proposed interim corrective action was planned to remove the water from the ACB cell to reduce criticality and reactivity concerns and then fill the ACB cell with an inert material. This report describes design of a thermocouple probe to obtain temperature measurements for mapping the uranium deposit, as well as development of steady-state and transient numerical models for the heat transfer inside the charcoal column. Additional numerical modeling was done to support filling of the ACB cell. Results from this work were used to develop procedures for meeting the goals of the MSRE Remediation Project without exceeding appropriate thermal limits.

  7. Identification and evaluation of alternatives for the disposition of fluoride fuel and flush salts from the molten salt reactor experiment at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-15

    This document presents an initial identification and evaluation of the alternatives for disposition of the fluoride fuel and flush salts stored in the drain tanks at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). It will serve as a resource for the U.S. Department of Energy contractor preparing the feasibility study for this activity under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). This document will also facilitate further discussion on the range of credible alternatives, and the relative merits of alternatives, throughout the time that a final alternative is selected under the CERCLA process.

  8. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

  9. Evaluation of the Molten Salt Reactor Experiment drain tanks for reuse in salt disposal, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This report was prepared to identify the source documentation used to evaluate the drain tanks in the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). The evaluation considered the original quality of the tanks, their service history, and their intended use during the removal of fluoride salts. It also includes recommendations for a quality verification plan. The estimates of corrosion damage to the salt containing system at the MSRE are low enough to lend optimism that the system will be fit for its intended use, which is disposal of the salt by transferring it to transport containers. The expected corrosion to date is estimated between 10 and 50 mil, or 2 to 10% of the shell wall. The expected corrosion rate when the tanks are used to remove the salt at 110 F is estimated to be .025 to 0.1 mil per hour of exposure to HF and molten salt. To provide additional assurance that the estimates of corrosion damage are accurate, cost effective nondestructive examination (NDE) has been recommended. The NDE procedures are compared with industry standards and give a perspective for the extent of additional measures taken in the recommendation. A methodology for establishing the remaining life has been recommended, and work is progressing towards providing an engineering evaluation based upon thickness and design conditions for the future use of the tanks. These extra measures and the code based analysis will serve to define the risk of salt or radioactive gases leaking during processing and transfer of the salt as acceptable.

  10. Investigation of molten salt fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Kenichi; Enuma, Yasuhiro; Tanaka, Yoshihiko; Konomura, Mamoru; Ichimiya, Masakazu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-06-01

    Phase I of Feasibility Studies on Commercialized Fast Reactor System is being performed for two years from Japanese Fiscal Year 1999. In this report, results of the study on fluid fuel reactors (especially a molten salt fast breeder reactor concept) are described from the viewpoint of technical and economical concerns of the plant system design. In JFY1999, we have started to investigate the fluid fuel reactors as alternative concepts of sodium cooled FBR systems with MOX fuel, and selected the unique concept of a molten chloride fast breeder reactor, whose U-Pu fuel cycle can be related to both light water reactors and fast breeder reactors on the basis of present technical data and design experiences. We selected a preliminary composition of molten fuel and conceptual plant design through evaluation of technical and economical issues essential for the molten salt reactors and then compared them with reference design concepts of sodium cooled FBR systems under limited information on the molten chloride fast breeder reactors. The following results were obtained. (1) The molten chloride fast breeder reactors have inherent safety features in the core and plant performances, ad the fluid fuel is quite promising for cost reduction of the fuel fabrication and reprocessing. (2) On the other hand, the inventory of the molten chloride fuel becomes high and thermal conductivity of the coolant is inferior compared to those of sodium cooled FBR systems, then, the size of main components such as IHX's becomes larger and the amount of construction materials is seems to be increased. (3) Furthermore economical vessel and piping materials which contact with the molten chloride salts are required to be developed. From the results, it is concluded that further steps to investigate the molten chloride fast breeder reactor concepts are too early to be conducted. (author)

  11. Health and safety plan for the Molten Salt Reactor Experiment remediation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Uziel, M.S.

    1995-12-01

    The Lockheed Martin Energy Systems, Inc., (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of the policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  12. Overview of the recovery and processing of {sup 233}U from the Oak Ridge molten salt reactor experiment (MSRE) remediation activities

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.; Icenhour, A.S.; Simmons, D.W.; Trowbridge, L.D.; Williams, D.F.; Toth, L.M.; Dai, S. [Oak Ridge National Lab., TN (United States)

    2001-07-01

    The Molten Salt Reactor Experiment (MSRE) was operated at Oak Ridge National Laboratory (ORNL) from 1965 to 1969 to test the concept of a high-temperature, homogeneous, fluid-fueled reactor. The discovery that UF{sub 6} and F{sub 2} migrated from the storage tanks into distant pipes and a charcoal bed resulted in significant activities to remove and recover the {sup 233}U and to decommission the reactor. The recovered fissile uranium will be converted into uranium oxide (U{sub 3}O{sub 8} ), which is a suitable form for long-term storage. This publication reports the research and several new developments that were needed to carry out these unique activities. (author)

  13. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    NARCIS (Netherlands)

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a

  14. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  15. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    Science.gov (United States)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  16. Hybrid Molten Salt Reactor (HMSR) System Study

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Robert D [PPPL; Miller, Laurence F [PPPL

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  17. Environmental health and safety plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Tiner, P.F.; Gosslee, R.C.

    1998-01-01

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to environmental protection and safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  18. Molten Salt Breeder Reactor Analysis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinsu; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Utilizing the uranium-thorium fuel cycle shows considerable potential for the possibility of MSR. The concept of MSBR should be revised because of molten salt reactor's advantage such as outstanding neutron economy, possibility of continuous online reprocessing and refueling, a high level of inherent safety, and economic benefit by keeping off the fuel fabrication process. For the development of MSR research, this paper provides the MSBR single-cell, two-cell and whole core model for computer code input, and several calculation results including depletion calculation of each models. The calculations are carried out by using MCNP6, a Monte Carlo computer code, which has CINDER90 for depletion calculation using ENDF-VII nuclear data. From the calculation results of various reactor design parameters, the temperature coefficients are all negative at the initial state and MTC becomes positive at the equilibrium state. From the results of core rod worth, the graphite control rod alone cannot makes the core subcritical at initial state. But the equilibrium state, the core can be made subcritical state only by graphite control rods. Through the comparison of the results of each models, the two-cell method can represent the MSBR core model more accurately with a little more computational resources than the single-cell method. Many of the thermal spectrum MSR have adopted a multi-region single-fluid strategy.

  19. Dynamics and control of molten-salt breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Vikram; Lish, Matthew R.; Chvala, Ondrej; Upadhyaya, Belle R. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR) system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  20. Conceptual design of Indian molten salt breeder reactor

    Indian Academy of Sciences (India)

    2015-08-28

    Aug 28, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 3. Conceptual design of Indian molten salt breeder ... India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian molten salt breeder reactor (IMSBR). Presently, various design options and ...

  1. Molten-salt reactor program. Semiannual progress report for period ending February 29, 1976

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, L.E.

    1976-08-01

    Separate abstracts and indexing were prepared for sections dealing with MSBR design and development; chemistry of fuel-salt and coolant-salt systems and analytical methods; materials development; fuel processing for molten-salt reactors; and salt production. (DG)

  2. Neutrino Experiments at Reactors

    Science.gov (United States)

    Reines, F.; Gurr, H. S.; Jenkins, T. L.; Munsee, J. H.

    1968-09-09

    A description is given of the electron-antineutrino program using a large fission reactor. A search has been made for a neutral weak interaction via the reaction (electron antineutrino + d .> p + n + electron antineutrino), the reaction (electron antineutrino + d .> n + n + e{sup +}) has now been detected, and an effort is underway to observe the elastic scattering reaction (electron antineutrino + e{sup -} .> electron antineutrino + e{sup -}) as well as to measure more precisely the reaction (electron antineutrino + p .> n + e{sup+}). The upper limit on the elastic scattering reaction which we have obtained with our large composite NaI, plastic, liquid scintillation detector is now about 50 times the predicted value.

  3. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    Science.gov (United States)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  4. Use of Nitrogen Trifluoride To Purify Molten Salt Reactor Coolant and Heat Transfer Fluoride Salts

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.; McNamara, Bruce K.

    2017-05-02

    Abstract: The molten salt cooled nuclear reactor is included as one of the Generation IV reactor types. One of the challenges with the implementation of this reactor is purifying and maintaining the purity of the various molten fluoride salts that will be used as coolants. The method used for Oak Ridge National Laboratory’s molten salt experimental test reactor was to treat the coolant with a mixture of H2 and HF at 600°C. In this article we evaluate thermal NF3 treatment for purifying molten fluoride salt coolant candidates based on NF3’s 1) past use to purify fluoride salts, 2) other industrial uses, 3) commercial availability, 4) operational, chemical, and health hazards, 5) environmental effects and environmental risk management methods, 6) corrosive properties, and 7) thermodynamic potential to eliminate impurities that could arise due to exposure to water and oxygen. Our evaluation indicates that nitrogen trifluoride is a viable and safer alternative to the previous method.

  5. Development of a safety analysis code for molten salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Dalin [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, 28 West Road Xian Ning Street, Xi' an 710049 (China); School of Nuclear Science and Technology, Xi' an Jiaotong University, 28 West Road Xian Ning Street, Xi' an 710049 (China); Qiu Suizheng, E-mail: szqiu@mail.xjtu.edu.c [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, 28 West Road Xian Ning Street, Xi' an 710049 (China); School of Nuclear Science and Technology, Xi' an Jiaotong University, 28 West Road Xian Ning Street, Xi' an 710049 (China); Su Guanghui [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, 28 West Road Xian Ning Street, Xi' an 710049 (China); School of Nuclear Science and Technology, Xi' an Jiaotong University, 28 West Road Xian Ning Street, Xi' an 710049 (China)

    2009-12-15

    The molten salt reactor (MSR) well suited to fulfill the criteria defined by the Generation IV International Forum (GIF) is presently revisited all around the world because of different attractive features of current renewed relevance. The MSRs are characterized by using the fluid-fuel, so that their technologies are fundamentally different from those used in the conventional solid-fuel reactors. In this work, in particular, the attention is focused on the safety characteristic analysis of the MSRs, in which a point kinetic model considering the flow effects of the fuel salt is established for the MSRs and calculated by developing a microcomputer code coupling with a simplified heat transfer model in the core. The founded models and developed code are applied to analyze the safety characteristics of the molten salt actinide recycler and transmuter system (MOSART) by simulating three types of basic transient conditions including the unprotected loss of flow, unprotected overcooling accident and unprotected transient overpower. Some reasonable results are obtained for the MOSART, which show that the MOSART conceptual design is an inherently stable reactor design. The present study provides some valuable information for the research and design of the new generation MSRs.

  6. Pore Scale Thermal Hydraulics Investigations of Molten Salt Cooled Pebble Bed High Temperature Reactor with BCC and FCC Configurations

    Directory of Open Access Journals (Sweden)

    Shixiong Song

    2014-01-01

    CFD results and empirical correlations’ predictions of pressure drop and local Nusselt numbers. Local pebble surface temperature distributions in several default conditions are investigated. Thermal removal capacities of molten salt are confirmed in the case of nominal condition; the pebble surface temperature under the condition of local power distortion shows the tolerance of pebble in extreme neutron dose exposure. The numerical experiments of local pebble insufficient cooling indicate that in the molten salt cooled pebble bed reactor, the pebble surface temperature is not very sensitive to loss of partial coolant. The methods and results of this paper would be useful for optimum designs and safety analysis of molten salt cooled pebble bed reactors.

  7. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    OpenAIRE

    Cisneros, Anselmo Tomas

    2013-01-01

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids - flibe (33%7Li2F-67%BeF) - from molten salt reactors. This combination of fuel and coolant enables FHRs to operate i...

  8. Fluoride Salt-Cooled High-Temperature Demonstration Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR

  9. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my [Centre of Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Cioncolini, Andrea; Iacovides, Hector [School of Mechanical, Aerospace, and Civil Engineering (MACE), University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom)

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  10. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Greenspan, Ehud [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X

  11. Experimental research on molten salt thermofluid technology using a high-temperature molten salt loop applied for a fusion reactor Flibe blanket

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Saburo; Chiba, Shinya E-mail: schiba@karma.qse.tohoku.ac.jp; Yuki, Kazuhisa; Omae, Masahiro; Sagara, Akio

    2002-12-01

    Experimental research on molten salt thermofluid technology using a high-temperature molten salt loop (MSL) is described in this paper. The MSL was designed to be able to use Flibe as a coolant, however, a simulant, heat transfer salt (HTS) has to be used alternatively since Flibe is difficult to operate under avoiding a biohazard of Be. Experiment on heat-transfer enhancement, that is required for applying to cool the high heat flux components of fusion reactors, is ongoing. Preliminary experimental results showed that an internal structure of a mixing chamber in the MSL was important to obtain accurate bulk temperatures under severe thermal conditions. For operating the loop, careful handling are needed to proceed how to melt the salt and to circulate it in starting the operation of the MSL. It is concluded that several improvements proposed from the present experiences should be applied for the future Flibe operation.

  12. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  13. RETRACTED ARTICLE: The Evaluation of Reactor Performance by using Flibe and Flinabe Molten Salts in the APEX Hybrid Reactor

    Science.gov (United States)

    Korkut, Turgay; Hançerlioğulları, Aybaba

    2012-04-01

    The modeling of APEX hybrid reactor, produced by using ARIES-RS hybrid reactor technology, has been performed by using the MCNP-4B computer code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (Li2BeF4) and Flinabe (LiNaBeF4) were used as cooling materials. APEX reactor was modeled in the torus form by adding nuclear materials of low significance in the specified percentages between percent 0-12 to the molten salts. The result of the study indicated that fissile material production, UF4 and ThF4 heavy metal salt increased nearly at the same percentage and it was observed that the percentage of it was practically the same in both materials. In order for the hybrid reactor to work itself in terms of tritium, TBR (tritium breeding ratio) should be lower than 1.05. When flibe molten salt was utilized in the APEX hybrid reactor, TBR was calculated as >1, 22 and when flinabe molten salt was used, TBR was calculated as >1.06.

  14. Double Chooz and Reactor Theta13 Experiments

    CERN Document Server

    ,

    2016-01-01

    This is a contribution paper from the Double Chooz experiment to the special issue of NPB on neutrino oscillations. The physics and history of the reactor theta13 experiments, as well as Double Chooz experiment and its neutrino oscillation analyses are reviewed.

  15. Results of the Nucifer reactor neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Christian; Lindner, Manfred [MPIK Heidelberg (Germany)

    2016-07-01

    Nuclear reactors are a strong and pure source of electron antineutrinos. With neutrino experiments close to compact reactor cores new insights into neutrino properties and reactor physics can be obtained. The Nucifer experiment is one of the pioneers in this class of very short baseline projects. Its detector to reactor distance is only about 7 m. The data obtained in the last years allowed to estimate the plutonium concentration in the reactor core by the neutrino flux measurement. This is of interest for safeguard applications and non proliferation efforts. The antineutrinos in Nucifer are detected via the inverse beta decay on free protons. Those Hydrogen nuclei are provided by 850 liters of organic liquid scintillator. For higher detection efficiency and background reduction the liquid is loaded with Gadolinium. Despite all shielding efforts and veto systems the background induced by the reactor activity and cosmogenic particles is still the main challenge in the experiment. The principle of the Nucifer detector is similar to the needs of upcoming experiments searching for sterile neutrinos. Therefore, the Nucifer results are also valuable input for the understanding and optimization of those next generation projects. The observation of sterile neutrinos would imply new physics beyond the standard model.

  16. Neutronic study of a nuclear reactor of fused salts; Estudio neutronico de un reactor nuclear de sales fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia B, F. B.; Francois L, J. L., E-mail: faviolabelen@gmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The reactors of fused salts called Molten Salt Reactor have presented a resurgence of interest in the last decade, due to they have a versatility in particular to operate, either with a thermal or fast neutrons spectrum. The most active development was by the middle of 1950 and principles of 1970 in the Oak Ridge National Laboratory. In this work some developed models are presented particularly and studied with the help of the MCNPX code, for the development of the neutronic study of this reactor, starting of proposed models and from a simple and homogeneous geometry until other more complex models and approximate to more real cases. In particular the geometry conditions and criticality of each model were analyzed, the isotopic balance, as well as the concentrations of the salts and different assigned fuel types. (Author)

  17. Detecting Dark Photons with Reactor Neutrino Experiments

    Science.gov (United States)

    Park, H. K.

    2017-08-01

    We propose to search for light U (1 ) dark photons, A', produced via kinetically mixing with ordinary photons via the Compton-like process, γ e-→A'e-, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ɛ , the A'-γ mixing parameter, ɛ , for dark-photon masses below 1 MeV of ɛ mass dark photons.

  18. Heat Transfer in Pebble-Bed Nuclear Reactor Cores Cooled by Fluoride Salts

    Science.gov (United States)

    Huddar, Lakshana Ravindranath

    With electricity demand predicted to rise by more than 50% within the next 20 years and a burgeoning world population requiring reliable emissions-free base-load electricity, can we design advanced nuclear reactors to help meet this challenge? At the University of California, Berkeley (UCB) Fluoride-salt-cooled High Temperature Reactors (FHR) are currently being investigated. FHRs are designed with better safety and economic characteristics than conventional light water reactors (LWR) currently in operation. These reactors operate at high temperature and low pressure making them more efficient and safer than LWRs. The pebble-bed FHR (PB-FHR) variant includes an annular nuclear reactor core that is filled with randomly packed pebble fuel. It is crucial to characterize the heat transfer within this unique geometry as this informs the safety limits of the reactor. The work presented in this dissertation focused on furthering the understanding of heat transfer in pebble-bed nuclear reactor cores using fluoride salts as a coolant. This was done through experimental, analytical and computational techniques. A complex nuclear system with a coolant that has never previously been in commercial use requires experimental data that can directly inform aspects of its design. It is important to isolate heat transfer phenomena in order to understand the underlying physics in the context of the PB-FHR, as well as to make decisions about further experimental work that needs to be done in support of developing the PB-FHR. Certain organic oils can simulate the heat transfer behaviour of the fluoride salt if relevant non-dimensional parameters are matched. The advantage of this method is that experiments can be done at a much lower temperature and at a smaller geometric scale compared to FHRs, thereby lowering costs. In this dissertation, experiments were designed and performed to collect data demonstrating similitude. The limitations of these experiments were also elucidated by

  19. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  20. US graphite reactor D&D experience

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE).

  1. Neutrino Oscillation Experiments at Nuclear Reactors

    CERN Document Server

    Gratta, Giorgio

    2000-01-01

    In this paper I give an overview of the status of neutrino oscillation experiments performed using nuclear reactors as sources of neutrinos. I review the present generation of experiments (Chooz and Palo Verde) with baselines of about 1 km as well as the next generation that will search for oscillations with a baseline of about 100 km. While the present detectors provide essential input towards the understanding of the atmospheric neutrino anomaly, in the future, the KamLAND reactor experiment represents our best opportunity to study very small mass neutrino mixing in laboratory conditions. In addition KamLAND with its very large fiducial mass and low energy threshold, will also be sensitive to a broad range of different physics.

  2. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  3. Experiments in connection with Salt Domes

    NARCIS (Netherlands)

    Escher, B.G.; Kuenen, Ph.H.

    1928-01-01

    The different theories concerning the origin of Salt Domes in Roumania, Germany, Texas, Louisiana, Colorado and Utah are discussed. In Roumania the salt occurs in cores of “Diapir” anticlines. The existance of hills of salt indicates, that the salt is still pushing upwards. In Germany the salt

  4. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to

  5. 78 FR 58575 - Review of Experiments for Research Reactors

    Science.gov (United States)

    2013-09-24

    ... COMMISSION Review of Experiments for Research Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Guide (RG) 2.4, ``Review of Experiments for Research Reactors.'' The guide is being withdrawn because... Experiments for Research Reactors,'' (ADAMS Accession No. ML003740131) because its guidance no longer provides...

  6. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Peterson, Per [Univ. of Wisconsin, Madison, WI (United States); Calderoni, Pattrick [Univ. of Wisconsin, Madison, WI (United States); Scheele, Randall [Univ. of Wisconsin, Madison, WI (United States); Casekka, Andrew [Univ. of Wisconsin, Madison, WI (United States); McNamara, Bruce [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  7. A Semi-Batch Reactor Experiment for the Undergraduate Laboratory

    Science.gov (United States)

    Derevjanik, Mario; Badri, Solmaz; Barat, Robert

    2011-01-01

    This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…

  8. Coatings for Heat Storage Reactors with Hygroscopic Salts

    NARCIS (Netherlands)

    De Jong, A.J.; Stevens, R.; Rentrop, C.; Hoegaerts, C.

    2015-01-01

    One of the bottlenecks for realizing a commercial system for thermochemical heat storage using hygroscopic salts is corrosion induced by chemical side-reactions. E.g. when Na2S hydrates are used, we basically deal with corrosion caused by the production of the volatile H2S, threatening metal parts

  9. Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Holcomb, David Eugene [ORNL

    2011-01-01

    Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

  10. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  11. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  12. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL; Flanagan, George F [ORNL; Peretz, Fred J [ORNL; Yoder Jr, Graydon L [ORNL

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  13. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  14. A simple model of reactor cores for reactor neutrino flux calculations for the KamLAND experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan)]. E-mail: kyo@awa.tohoku.ac.jp; Inoue, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Owada, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Suekane, F. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Suzuki, A. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Hirano, G. [TEPCO Systems Corporation, Tokyo 135-0034 (Japan); Kosaka, S. [TEPCO Systems Corporation, Tokyo 135-0034 (Japan); Ohta, T. [Tokyo Electric Power Company, Tokyo 100-8560 (Japan); Tanaka, H. [Tokyo Electric Power Company, Tokyo 100-8560 (Japan)

    2006-12-21

    KamLAND is a reactor neutrino oscillation experiment with a very long baseline. This experiment successfully measured oscillation phenomena of reactor antineutrinos coming mainly from 53 reactors in Japan. In order to extract the results, it is necessary to accurately calculate time-dependent antineutrino spectra from all the reactors. A simple model of reactor cores and code implementing it were developed for this purpose. This paper describes the model of the reactor cores used in the KamLAND reactor analysis.

  15. Utilization of Heavy Metal Molten Salts in the ARIES-RS Fusion Reactor

    Science.gov (United States)

    Übeyli, Mustafa; Yapıcı, Hüseyin

    2008-09-01

    ARIES-RS is one of the major magnetic fusion energy reactor designs that uses a blanket having vanadium alloy structure cooled by lithium [1, 2]. It is a deuterium-tritium (DT) fusion driven reactor, having a fusion power of 2170 MW [1, 2]. This study presents the neutronic analysis of the ARIES-RS fusion reactor using heavy metal molten salts in which Li2BeF4 as the main constituent was mixed with increased mole fractions of heavy metal salt (ThF4 or UF4) starting by 2 mol.% up to 12 mol.%. Neutron transport calculations were carried out with the help of the SCALE 4.3 system by solving the Boltzmann transport equation with the XSDRNPM code in 238 neutron groups and a S 8- P 3 approximation. According to the numerical results, tritium self-sufficiency was attained for the coolants, Flibe with 2% UF4 or ThF4 and 4% UF4. In addition, higher energy multiplication values were found for the salt with UF4 compared to that with ThF4. Furthermore, significant amount of high quality nuclear fuel was produced to be used in external reactors.

  16. Development of a steady state analysis code for a molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.L. [State Key Laboratory of Multi Phase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Qiu, S.Z. [State Key Laboratory of Multi Phase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)], E-mail: szqiu@mail.xjtu.edu.cn; Su, G.H. [State Key Laboratory of Multi Phase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Liu, C.L. [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2009-05-15

    The molten salt reactor (MSR), which is one of the 'Generation IV' concepts, can be used for transmutation, and production of electricity, hydrogen and fissile fuels. In this study, a single-liquid-fueled MSR is designed for conceptual research, in which no solid material is present in the core as moderator, except for the external reflector. The fuel salt flow makes the MSR neutronics different from that of conventional reactors using solid fuels, and couples the flow and heat transfer strongly. Therefore, it is necessary to study the core characteristics with due attention to the coupling among flow, heat transfer and neutronics. The standard turbulent model is adopted to establish the flow and heat transfer model, while the diffusion theory is used for the neutronics model, which consists of two-group neutron diffusion equations for fast and thermal neutron fluxes, and balance equations for six groups of delayed neutron precursors. These two models which are coupled through the temperature and heat source are coded in a microcomputer program. The distributions of the velocity, temperature, neutron fluxes, and delayed neutron precursors under the rated condition are obtained. In addition, the effects of the inflow temperature, inflow velocity, and the fuel salt residence time out of the core are discussed in detail. The results provide some valuable information for the research and design of the new generation molten salt reactors.

  17. Transient analyses for a molten salt fast reactor with optimized core geometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, R., E-mail: rui.li@kit.edu [Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Wang, S.; Rineiski, A.; Zhang, D. [Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Merle-Lucotte, E. [Laboratoire de Physique Subatomique et de Cosmologie – IN2P3 – CNRS/Grenoble INP/UJF, 53, rue des Martyrs, 38026 Grenoble (France)

    2015-10-15

    Highlights: • MSFR core is analyzed by fully coupling neutronics and thermal-hydraulics codes. • We investigated four types of transients intensively with the optimized core geometry. • It demonstrates MSFR has a high safety potential. - Abstract: Molten salt reactors (MSRs) have encountered a marked resurgence of interest over the past decades, highlighted by their inclusion as one of the six candidate reactors of the Generation IV advanced nuclear power systems. The present work is carried out in the framework of the European FP-7 project EVOL (Evaluation and Viability Of Liquid fuel fast reactor system). One of the project tasks is to report on safety analyses: calculations of reactor transients using various numerical codes for the molten salt fast reactor (MSFR) under different boundary conditions, assumptions, and for different selected scenarios. Based on the original reference core geometry, an optimized geometry was proposed by Rouch et al. (2014. Ann. Nucl. Energy 64, 449) on thermal-hydraulic design aspects to avoid a recirculation zone near the blanket which accumulates heat and very high temperature exceeding the salt boiling point. Using both fully neutronics thermal-hydraulic coupled codes (SIMMER and COUPLE), we also re-confirm the efforts step by step toward a core geometry without the recirculation zone in particular as concerns the modifications of the core geometrical shape. Different transients namely Unprotected Loss of Heat Sink (ULOHS), Unprotected Loss of Flow (ULOF), Unprotected Transient Over Power (UTOP), Fuel Salt Over Cooling (FSOC) are intensively investigated and discussed with the optimized core geometry. It is demonstrated that due to inherent negative feedbacks, an MSFR plant has a high safety potential.

  18. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, Heather Jean MacLean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven Lowe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dempsey, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  19. Experiments and Modeling in Support of Generic Salt Repository Science

    Energy Technology Data Exchange (ETDEWEB)

    Bourret, Suzanne Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Otto, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Peter Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-19

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  20. Simulation of Reactors for Antineutrino Experiments Using DRAGON

    OpenAIRE

    Winslow, L.

    2011-01-01

    From the discovery of the neutrino to the precision neutrino oscillation measurements in KamLAND, nuclear reactors have proven to be an important source of antineutrinos. As their power and our knowledge of neutrino physics has increased, more sensitive measurements have become possible. The next generation of reactor antineutrino experiments require more detailed simulations of the reactor core. Many of the reactor simulation codes are proprietary which makes detailed studies difficult. Here...

  1. On-line reprocessing of a molten salt reactor: a simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Nicole; Gastaldi, Olivier; Penit, Thomas; Cohin, Olivier; Campion, Pierre-Yves [DEN/CADDTN/STPA/LPC-CEA Cadarache, 13108 Saint Paul lez Durance (France)

    2008-07-01

    The molten salt reactor (MSR) is one of the concepts studied in the frame of GEN IV road-map. Due to the specific features of its liquid fuel, the reprocessing unit may be directly connected to the reactor. A modelling of this unit is presented. The final objective is to create a flexible computer reprocessing code which can use data from neutron calculations and can be coupled to a neutron code. Such a code allows the description of the whole behaviour of MSR, including, in a coupled manner, both the design of the core and the optimised reprocessing scheme effects. (authors)

  2. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  3. Radionuclides in primary coolant of a fluoride salt-cooled high-temperature reactor during normal operation

    National Research Council Canada - National Science Library

    Zhang, Guo-Qing; Wang, Shuai; Zhang, Hai-Qing; Zhu, Xing-Wang; Peng, Chao; Cai, Jun; He, Zhao-Zhong; Chen, Kun

    2017-01-01

    The release of fission products from coated particle fuel to primary coolant, as well as the activation of coolant and impurities, were analysed for a fluoride salt-cooled high-temperature reactor (FHR...

  4. A scaled experimental study of control blade insertion dynamics in Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buster, Grant C., E-mail: grant.buster@gmail.com; Laufer, Michael R.; Peterson, Per F.

    2016-07-15

    Highlights: • A granular dynamics scaling methodology is discussed. • Control blade insertion in a representative pebble-bed core is experimentally studied. • Control blade insertion forces and pebble displacements are experimentally measured. • X-ray tomography techniques are used to observe pebble displacement distributions. - Abstract: Direct control element insertion into a pebble-bed reactor core is proposed as a viable control system in molten-salt-cooled pebble-bed reactors. Unlike helium-cooled pebble-bed reactors, this reactor type uses spherical fuel elements with near-neutral buoyancy in the molten-salt coolant, thus reducing contact forces on the fuel elements. This study uses the X-ray Pebble Bed Recirculation Experiment facility to measure the force required to insert a control element directly into a scaled pebble-bed. The required control element insertion force, and therefore the contact force on fuel elements, is measured to be well below recommended limits. Additionally, X-ray tomography is used to observe how the direct insertion of a control element physically displaces spherical fuel elements. The tomography results further support the viability of direct control element insertion into molten-salt-cooled pebble-bed reactor cores.

  5. Development status and potential program for development of proliferation-resistant molten-salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Engel, J.R.; Bauman, H.F.; Dearing, J.F.; Grimes, W.R.; McCoy, H.E. Jr.

    1979-03-01

    Preliminary studies of existing and conceptual molten-salt reactor (MSR) designs have led to the identification of conceptual systems that are technologically attractive when operated with denatured uranium as the principal fissile fuel. These denatured MSRs would also have favorable resource-utilization characteristics and substantial resistance to proliferation of weapons-usable nuclear materials. The report presents a summary of the current status of technology and a discussion of the major technical areas of a possible base program to develop commercial denatured MSRs. The general areas treated are (1) reactor design and development, (2) safety and safety related technology, (3) fuel-coolant behavior and fuel processing, and (4) reactor materials. A substantial development effort could lead to authorization for construction of a molten-salt test reactor about 5 years after the start of the program and operation of the unit about 10 years later. A prototype commercial denatured MSR could be expected to begin operating 25 years from the start of the program. The postulated base program would extend over 32 years and would cost about $700 million (1978 dollars, unescalated). Additional costs to construct the MSTR, $600 million, and the prototype commercial plant, $1470 million, would bring the total program cost to about $2.8 billion. Additional allowances probably should be made to cover contingencies and incidental technology areas not explicitly treated in this preliminary review.

  6. An integrated model of tritium transport and corrosion in Fluoride Salt-Cooled High-Temperature Reactors (FHRs) – Part I: Theory and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John D., E-mail: john.stempien@inl.gov; Ballinger, Ronald G., E-mail: hvymet@mit.edu; Forsberg, Charles W., E-mail: cforsber@mit.edu

    2016-12-15

    Highlights: • A model was developed for use with FHRs and benchmarked with experimental data. • Model results match results of tritium diffusion experiments. • Corrosion simulations show reasonable agreement with molten salt loop experiments. • This is the only existing model of tritium transport and corrosion in FHRs. • Model enables proposing and evaluating tritium control options in FHRs. - Abstract: The Fluoride Salt-Cooled High-Temperature Reactor (FHR) is a pebble bed nuclear reactor concept cooled by a liquid fluoride salt known as “flibe” ({sup 7}LiF-BeF{sub 2}). A model of TRITium Diffusion EvolutioN and Transport (TRIDENT) was developed for use with FHRs and benchmarked with experimental data. TRIDENT is the first model to integrate the effects of tritium production in the salt via neutron transmutation, with the effects of the chemical redox potential, tritium mass transfer, tritium diffusion through pipe walls, tritium uptake by graphite, selective chromium attack by tritium fluoride, and corrosion product mass transfer. While data from a forced-convection polythermal loop of molten salt containing tritium did not exist for comparison, TRIDENT calculations were compared to data from static salt diffusion tests in flibe and flinak (0.465LiF-0.115NaF-0.42KF) salts. In each case, TRIDENT matched the transient and steady-state behavior of these tritium diffusion experiments. The corrosion model in TRIDENT was compared against the natural convection flow-loop experiments at the Oak Ridge National Laboratory (ORNL) from the 1960s and early 1970s which used Molten Salt Reactor Experiment (MSRE) fuel-salt containing UF{sub 4}. Despite the lack of data required by TRIDENT for modeling the loops, some reasonable results were obtained. The TRIDENT corrosion rates follow the experimentally observed dependence on the square root of the product of the chromium solid-state diffusion coefficient with time. Additionally the TRIDENT model predicts mass

  7. Aerobic digestion of tannery wastewater in a sequential batch reactor by salt-tolerant bacterial strains

    Science.gov (United States)

    Durai, G.; Rajasimman, M.; Rajamohan, N.

    2011-09-01

    Among the industries generating hyper saline effluents, tanneries are prominent in India. Hyper saline wastewater is difficult to treat by conventional biological treatment methods. Salt-tolerant microbes can adapt to these conditions and degrade the organics in hyper saline wastewater. In this study, the performance of a bench scale aerobic sequencing batch reactor (SBR) was investigated to treat the tannery wastewater by the salt-tolerant bacterial strains namely Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Styphylococcus aureus. The study was carried out under different operating conditions by changing the hydraulic retention time, organic loading rate and initial substrate concentration. From the results it was found that a maximum COD reduction of 90.4% and colour removal of 78.6% was attained. From this study it was found that the salt-tolerant microorganisms could improve the reduction efficiency of COD and colour of the tannery wastewater.

  8. Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors.

  9. Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; De Leon, Gerardo I. [Texas A& M University, Kingsville; Fetterly, Caitlin N. [Texas A& M University, Kingsville; Ramos, Jorge A. [Texas A& M University, Kingsville; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)

    2012-02-01

    Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental

  10. Assessment of the Neutronic and Fuel Cycle Performance of the Transatomic Power Molten Salt Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Sean [Transatomic Power Corp., Cambridge, MA (United States); Dewan, Leslie [Transatomic Power Corp., Cambridge, MA (United States); Massie, Mark [Transatomic Power Corp., Cambridge, MA (United States); Davidson, Eva E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This report presents results from a collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear (GAIN) Nuclear Energy Voucher program. The TAP concept is a molten salt reactor using configurable zirconium hydride moderator rod assemblies to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parameters necessary to simulate the continuously changing physics in this complex system. The implementation of continuous-energy Monte Carlo transport and depletion tools in ChemTriton provide for full-core three-dimensional modeling and simulation. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this concept. Additional analyses of mass feed rates and enrichments, isotopic removals, tritium generation, core power distribution, core vessel helium generation, moderator rod heat deposition, and reactivity coeffcients provide additional information to make informed design decisions. This work demonstrates capabilities of ORNL modeling and simulation tools for neutronic and fuel cycle analysis of molten salt reactor concepts.

  11. Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Robertson, Sean [Transatomic Power Corporation, Cambridge, MA (United States); Dewan, Leslie [Transatomic Power Corporation, Cambridge, MA (United States); Massie, Mark [Transatomic Power Corporation, Cambridge, MA (United States)

    2017-01-15

    This status report presents the results from the first phase of the collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear, Nuclear Energy Voucher program. The TAP design is a molten salt reactor using movable moderator rods to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parameters necessary to simulate the continuously changing physics in this complex system. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this design. Additional analyses of time step sizes, mass feed rates and enrichments, and isotopic removals provide additional information to make informed design decisions. This work further demonstrates capabilities of ORNL modeling and simulation tools for analysis of molten salt reactor designs and strongly positions this effort for the upcoming three-dimensional core analysis.

  12. Study of the pyrochemical treatment-recycling process of the Molten Salt Reactor fuel; Estudio de sistema de un proceso de tratamiento-reciclaje piroquimico del combustible de un reactor de sales fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Boussier, H.; Heuer, D.

    2010-07-01

    The Separation Processes Studies Laboratory (Commissariat a l'energie Atomique) has made a preliminary assessment of the reprocessing system associated with Molten Salt Fast Reactor (MSFR). The scheme studied in this paper is based on the principle of reductive extraction and metal transfer that constituted the core process designed for the Molten Salt Breeder Reactor (MSBR), although the flow diagram has been adapted to the current needs of the Molten Salt Fast Reactor (MSFR).

  13. Simulation of Reactors for Antineutrino Experiments Using DRAGON

    CERN Document Server

    Winslow, L

    2011-01-01

    From the discovery of the neutrino to the precision neutrino oscillation measurements in KamLAND, nuclear reactors have proven to be an important source of antineutrinos. As their power and our knowledge of neutrino physics has increased, more sensitive measurements have become possible. The next generation of reactor antineutrino experiments require more detailed simulations of the reactor core. Many of the reactor simulation codes are proprietary which makes detailed studies difficult. Here we present the results of the open source DRAGON code and compare it to other industry standards for reactor modeling. We use published data from the Takahama reactor to determine the quality of the simulations. The propagation of the uncertainty to the antineutrino flux is also discussed.

  14. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled high temperature reactor

    Directory of Open Access Journals (Sweden)

    Zhu Guifeng

    2016-01-01

    Full Text Available Sustainability of thorium fuel in a Pebble-Bed Fluoride salt-cooled High temperature Reactor (PB-FHR is investigated to find the feasible region of high discharge burnup and negative Flibe (2LiF-BeF2 salt Temperature Reactivity Coefficient (TRC. Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tristructural-isotropic (TRISO coated particle system for increasing fuel loading and decreasing excessive moderation. To analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared two refueling schemes (mixing flow pattern and directional flow pattern and two kinds of reflector materials (SiC and graphite. This method found that the feasible region of breeding and negative Flibe TRC is between 20 vol% and 62 vol% fuel loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, Flibe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong 9Be(n,2n reaction and low neutron absorption of 6Li (even at 1000 ppm in fast spectrum. Preliminary thermal hydraulic calculation shows good safety margin. The greatest challenge of this reactor may be the decades irradiation time of the pebble fuel.

  15. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) for Power and Process Heat

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Peterson, Per [Univ. of California, Berkeley, CA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-21

    In 2011 the U.S. Department of Energy through its Nuclear Energy University Program (NEUP) awarded a 3- year integrated research project (IRP) to the Massachusetts Institute of Technology (MIT) and its partners at the University of California at Berkeley (UCB) and the University of Wisconsin at Madison (UW). The IRP included Westinghouse Electric Company and an advisory panel chaired by Regis Matzie that provided advice as the project progressed. The first sentence of the proposal stated the goals: The objective of this Integrated Research Project (IRP) is to develop a path forward to a commercially viable salt-cooled solid-fuel high-temperature reactor with superior economic, safety, waste, nonproliferation, and physical security characteristics compared to light-water reactors. This report summarizes major results of this research.

  16. Molten salt rolling bubble column, reactors utilizing same and related methods

    Science.gov (United States)

    Turner, Terry D.; Benefiel, Bradley C.; Bingham, Dennis N.; Klinger, Kerry M.; Wilding, Bruce M.

    2015-11-17

    Reactors for carrying out a chemical reaction, as well as related components, systems and methods are provided. In accordance with one embodiment, a reactor is provided that includes a furnace and a crucible positioned for heating by the furnace. The crucible may contain a molten salt bath. A downtube is disposed at least partially within the interior crucible along an axis. The downtube includes a conduit having a first end in communication with a carbon source and an outlet at a second end of the conduit for introducing the carbon material into the crucible. At least one opening is formed in the conduit between the first end and the second end to enable circulation of reaction components contained within the crucible through the conduit. An oxidizing material may be introduced through a bottom portion of the crucible in the form of gas bubbles to react with the other materials.

  17. Engineering development studies for molten-salt breeder reactor processing No. 22

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, J.R. Jr. (comp.)

    1976-06-01

    Processing methods are being developed for use in a close-coupled facility for removing fission products, corrosion products, and fissile materials from the MSBR fuel. This report discusses the autoresistance heating for the continuous fluorinator, the metal transfer experiment, experiments for the salt-metal contactor, and fuel reconstitution. 10 fig. (DLC)

  18. Ageing management experience at NUR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Melllal, Sabrina; Rezig, Mohamed; Zamoun, Rachid; Ameur, Azeddin [Nuclear Research Center of Draria, Algiers (Algeria)

    2013-07-01

    NUR is a 1 MW, open pool reactor moderated and cooled by light water. It was commissioned in 1989. NUR is used for education and training in Nuclear Engineering and related topics for COMENA and National Scientific Community. It is also used to perform R and D works and services at national and regional levels. In this presentation, we describe the methodology and the main development activities related to the ageing management at NUR reactor. These activities include inspection actions and development actions to introduce modifications, to solve obsolescence issues in view to implement the required preventive and curative maintenance programs and to improve the performances of the installation. These actions involved mainly the Operation Assistance System of the Reactor (OAS), the secondary cooling loop, the cooling tower. A new OAS using a new technology and having more possibilities than the older one was introduced in the control system of the reactor. The OAS hardware structure, software structure and the main functions performed are presented. The second loop is entirely refurbished. Two new cooling towers are installed and connected to the main heat exchanger with new piping and valves. The architecture of this new installation is described and the performance assessed. Other actions which involve auxiliary systems like emergency electrical system, air pneumatic system and automatic fire extinguishing are presented.

  19. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition; Cycle thorium et reacteurs a sel fondu: exploration du champ des parametres et des contraintes definissant le 'Thorium Molten Salt Reactor'

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, L

    2005-09-15

    Producing nuclear energy in order to reduce the anthropic CO{sub 2} emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  20. Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Sherrell R [ORNL; Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Carbajo, Juan J [ORNL; Ilas, Dan [ORNL; Cisneros, Anselmo T [ORNL; Varma, Venugopal Koikal [ORNL; Corwin, William R [ORNL; Wilson, Dane F [ORNL; Yoder Jr, Graydon L [ORNL; Qualls, A L [ORNL; Peretz, Fred J [ORNL; Flanagan, George F [ORNL; Clayton, Dwight A [ORNL; Bradley, Eric Craig [ORNL; Bell, Gary L [ORNL; Hunn, John D [ORNL; Pappano, Peter J [ORNL; Cetiner, Sacit M [ORNL

    2011-02-01

    This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.

  1. An overview of the Daya Bay Reactor Neutrino Experiment

    CERN Document Server

    Cao, Jun

    2016-01-01

    The Daya Bay Reactor Neutrino Experiment discovered an unexpectedly large neutrino oscillation related to the mixing angle $\\theta_{13}$ in 2012. This finding paved the way to the next generation of neutrino oscillation experiments. In this article, we review the history, featured design, and scientific results of Daya Bay. Prospects of the experiment are also described.

  2. An overview of the Daya Bay reactor neutrino experiment

    OpenAIRE

    Cao, Jun; Luk, Kam-Biu

    2016-01-01

    The Daya Bay Reactor Neutrino Experiment discovered an unexpectedly large neutrino oscillation related to the mixing angle $\\theta_{13}$ in 2012. This finding paved the way to the next generation of neutrino oscillation experiments. In this article, we review the history, featured design, and scientific results of Daya Bay. Prospects of the experiment are also described.

  3. Molten salts in nuclear reactors; Les sels fondus dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Dirian, J.; Saint-James [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Collection of references dealing with the physicochemical studies of fused salts, in particular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thorium are examined, and the physical properties, density, viscosity, vapour pressure etc... going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recuperation after irradiation in a nuclear reactor is discussed. (author) [French] Bibliographie regroupant l'etude physico-chimique des sels fondus, en particulier des halogenures alcalins et alcalino-terreux. On etudie de nombreux systemes binaires, ternaires et quaternaires de ces halogenures avec des halogenures d'uranium, et de thorium. On etudie egalement les proprietes physiques des halogenures ou des melanges d'halogenures (densite, viscosite, tension de vapeur, etc...). On donne egalement des references quant a la corrosion des materiaux par ces sels, et le traitement de ceux-ci en vue de recuperation, apres irradiation dans un reacteur nucleaire. (auteur)

  4. Recovery of partial nitrification in a down-flow hanging sponge reactor by salt shock loading.

    Science.gov (United States)

    Matsubayashi, Miri; Harada, Hideki; Okubo, Tsutomu; Uemura, Shigeki

    2016-01-01

    Partial nitrification of ammonium-containing artificial wastewater was achieved using a down-flow hanging sponge (DHS) reactor with a hydraulic retention time (HRT) of 2 h by adjusting the influent salinity to 25 g Cl L(-1) with NaCl. The effect of HRT on partial nitrification was examined by varying HRT from 1 to 4 h. Extending HRT from 2 to 4 h had the effect of decreasing nitrite production and increasing nitrates. Since partial nitrification was not completely recovered after returning the HRT to 2 h, we examined the effect of salt shock loading on the recovery of partial nitrification. Salt shock loading with 150 gCl L(-1) for 72 h resulted in the fraction of NO2-N to total inorganic nitrogen in the effluent reaching 83.0% as much as 83 days after returning the salinity to the original level. Thus, despite the time required for the restoration of partial nitrification, the effectiveness of salt shock loading to achieve this aim was verified.

  5. DESAIN KONSEP TANGKI PENAMPUNG BAHAN BAKAR PASSIVE COMPACT MOLTEN SALT REACTOR

    Directory of Open Access Journals (Sweden)

    A. Hadiwinata

    2015-04-01

    Full Text Available Passive Compact Molten Salt Reactor (PCMSR merupakan pengembangan dari reaktor MSR. Desain reaktor PCMSR membutuhkan tempat khusus penampung sementara bahan bakar pada saat terjadi insiden, misalnya kecelakaan yang menyebabkan peningkatan suhu bahan bakar. Tangki penampung bahan bakar tersusun dari 3 bagian yang saling terhubung yaitu bagian penampung cairan bahan bakar, cerobong (chimney, dan penukar kalor. Dalam penelitian ini, tangki dimodelkan secara lump dan dilakukan variasi daya awal reaktor dan ketinggian cerobong. Syarat batas model ditetapkan suhu bahan bakar maksimum 1400 °C, yang didasarkan pada titik didih larutan garam LiF-BeF2-ThF4-UF4. Analisis dilakukan dengan cara menghitung rugi tekanan total dan transfer kalor untuk variasi daya awal antara 1800-3000 MWth dan ketinggian cerobong antara 1-10 m. Hasil penelitian menunjukan semakin besar daya reaktor, maka tinggi tangki penampung bahan bakar dan tinggi alat penukar kalor yang dibutuhkan akan semakin besar, tejadi kenaikan suhu fluida pendingin dan suhu udara pendingin, dan menyebabkan kenaikan laju aliran masa fluida pendingin, sedangkan laju aliran masa udara menurun. Peningkatan ketinggian cerobong menyebabkan ketinggian tangki penampung bahan bakar dan ketinggian alat penukar kalor semakin menurun, penurunan suhu fluida pendingin, tetapi suhu udara meningkat, dan menyebabkan peningkatan laju aliran masa fluida pendingin, tetapi laju aliran masa udara akan semakin menurun. Kata kunci: PCMSR, cerobong, alat penukar kalor, variasi daya.   The Passsive Compact Molten Salat Reactor (PCMSR reactor is developed from MSR reactor. The PCMSR reactor design requires special place to temporarily storage for reactor fuel when incident occurs, such as when there is an accident which caused the temperature of the fuel increases. The tank consist of three interconnected parts, the reservoir liquid fuel, chimney, and the heat exchanger. In this research, the tank system is modeled based on

  6. Integral and Separate Effects Tests for Thermal Hydraulics Code Validation for Liquid-Salt Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per

    2012-10-30

    The objective of the 3-year project was to collect integral effects test (IET) data to validate the RELAP5-3D code and other thermal hydraulics codes for use in predicting the transient thermal hydraulics response of liquid salt cooled reactor systems, including integral transient response for forced and natural circulation operation. The reference system for the project is a modular, 900-MWth Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a specific type of Fluoride salt-cooled High temperature Reactor (FHR). Two experimental facilities were developed for thermal-hydraulic integral effects tests (IETs) and separate effects tests (SETs). The facilities use simulant fluids for the liquid fluoride salts, with very little distortion to the heat transfer and fluid dynamics behavior. The CIET Test Bay facility was designed, built, and operated. IET data for steady state and transient natural circulation was collected. SET data for convective heat transfer in pebble beds and straight channel geometries was collected. The facility continues to be operational and will be used for future experiments, and for component development. The CIET 2 facility is larger in scope, and its construction and operation has a longer timeline than the duration of this grant. The design for the CIET 2 facility has drawn heavily on the experience and data collected on the CIET Test Bay, and it was completed in parallel with operation of the CIET Test Bay. CIET 2 will demonstrate start-up and shut-down transients and control logic, in addition to LOFC and LOHS transients, and buoyant shut down rod operation during transients. Design of the CIET 2 Facility is complete, and engineering drawings have been submitted to an external vendor for outsourced quality controlled construction. CIET 2 construction and operation continue under another NEUP grant. IET data from both CIET facilities is to be used for validation of system codes used for FHR modeling, such as RELAP5-3D. A set of

  7. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    Science.gov (United States)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  8. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnolet, G.; Baker, W. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Barker, D. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Beck, R. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Carroll, T.J.; Cesar, J. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Cushman, P. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Dent, J.B. [Department of Physics, University of Louisiana at Lafayette, Lafayette, LA 70504 (United States); De Rijck, S. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Dutta, B. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Flanagan, W. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Fritts, M. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Gao, Y. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Department of Physics & Astronomy, Wayne State University, Detroit 48201 (United States); Harris, H.R.; Hays, C.C. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Iyer, V. [School of Physical Sciences, National Institute of Science Education and Research, Jatni - 752050 (India); and others

    2017-05-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5–20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  9. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    Science.gov (United States)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  10. The detector system of the Daya Bay reactor neutrino experiment

    OpenAIRE

    An, F. P.; Carr, R.; McKeown, R.D.; Tsang, R. H. M.; Wu, F.F.

    2016-01-01

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world׳s most precise measurement of sin^2 2θ_(13) and the effective mass splitting Δm^2_(ee). The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world׳s most prolific sources of electron antineutrinos. Multiple antineutrino detect...

  11. Investigating the spectral anomaly with different reactor antineutrino experiments

    Directory of Open Access Journals (Sweden)

    C. Buck

    2017-02-01

    Full Text Available The spectral shape of reactor antineutrinos measured in recent experiments shows anomalies in comparison to neutrino reference spectra. New precision measurements of the reactor neutrino spectra as well as more complete input in nuclear data bases are needed to resolve the observed discrepancies between models and experimental results. This article proposes the combination of experiments at reactors which are highly enriched in U235 with commercial reactors with typically lower enrichment to gain new insights into the origin of the anomalous neutrino spectrum. The presented method clarifies, if the spectral anomaly is either solely or not at all related to the predicted U235 spectrum. Considering the current improvements of the energy scale uncertainty of present-day experiments, a significance of three sigma and above can be reached. As an example, we discuss the option of a direct comparison of the measured shape in the currently running Double Chooz near detector and the upcoming Stereo experiment. A quantitative feasibility study emphasizes that a precise understanding of the energy scale systematics is a crucial prerequisite in recent and next generation experiments investigating the spectral anomaly.

  12. Investigating the spectral anomaly with different reactor antineutrino experiments

    Science.gov (United States)

    Buck, C.; Collin, A. P.; Haser, J.; Lindner, M.

    2017-02-01

    The spectral shape of reactor antineutrinos measured in recent experiments shows anomalies in comparison to neutrino reference spectra. New precision measurements of the reactor neutrino spectra as well as more complete input in nuclear data bases are needed to resolve the observed discrepancies between models and experimental results. This article proposes the combination of experiments at reactors which are highly enriched in 235U with commercial reactors with typically lower enrichment to gain new insights into the origin of the anomalous neutrino spectrum. The presented method clarifies, if the spectral anomaly is either solely or not at all related to the predicted 235U spectrum. Considering the current improvements of the energy scale uncertainty of present-day experiments, a significance of three sigma and above can be reached. As an example, we discuss the option of a direct comparison of the measured shape in the currently running Double Chooz near detector and the upcoming Stereo experiment. A quantitative feasibility study emphasizes that a precise understanding of the energy scale systematics is a crucial prerequisite in recent and next generation experiments investigating the spectral anomaly.

  13. Salt dissolution and sinkhole formation: Results of laboratory experiments

    Science.gov (United States)

    Oz, Imri; Eyal, Shalev; Yoseph, Yechieli; Ittai, Gavrieli; Elad, Levanon; Haim, Gvirtzman

    2016-10-01

    The accepted mechanism for the formation of thousands of sinkholes along the coast of the Dead Sea suggests that their primary cause is dissolution of a salt layer by groundwater undersaturated with respect to halite. This is related to the drop in the Dead Sea level, which caused a corresponding drop of the freshwater-saltwater interface, resulting in fresher groundwater replacing the brines that were in contact with the salt layer. In this study we used physical laboratory experiments to examine the validity of this mechanism by reproducing the full dynamic natural process and to examine the impact of different hydrogeological characteristics on this process. The experimental results show surface subsidence and sinkhole formation. The stratigraphic configurations of the aquifer, together with the mechanical properties of the salt layer, determine the dynamic patterns of the sinkhole formation (instantaneous versus gradual formation). Laboratory experiments were also used to study the potential impact of future stratification in the Dead Sea, if and when the "Red Sea-Dead Sea Canal" project is carried out, and the Dead Sea level remains stable. The results show that the dissolution rates are slower by 1 order of magnitude in comparison with a nonstratified saltwater body, and therefore, the processes of salt dissolution and sinkhole formation will be relatively restrained under these conditions.

  14. Latest Results from the Daya Bay Reactor Neutrino Experiment

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Among all the fundamental particles that have been experimentally observed, neutrinos remain one of the least understood. The Daya Bay Reactor Neutrino Experiment in China consists of eight identical detectors placed underground at different baselines from three groups of nuclear reactors, a configuration that is ideally suited for studying the properties of these elusive particles. This talk will present three sets of results that have just recently been released by the Daya Bay Collaboration: (i) a precision measurement of the oscillation parameters that drive the disappearance of electron antineutrinos at short baselines, (ii) a search for sterile neutrino mixing, and (iii) a high-statistics determination of the absolute flux and spectrum of reactor-produced electron antineutrinos. All of these results extend the limits of our knowledge in their respective areas and thus shed new light on neutrinos and the physics that surround them.

  15. Training experience at Experimental Breeder Reactor II

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, J.W.; McCormick, R.P.; McCreery, H.I.

    1978-01-01

    The EBR-II Training Group develops, maintains,and oversees training programs and activities associated with the EBR-II Project. The group originally spent all its time on EBR-II plant-operations training, but has gradually spread its work into other areas. These other areas of training now include mechanical maintenance, fuel manufacturing facility, instrumentation and control, fissile fuel handling, and emergency activities. This report describes each of the programs and gives a statistical breakdown of the time spent by the Training Group for each program. The major training programs for the EBR-II Project are presented by multimedia methods at a pace controlled by the student. The Training Group has much experience in the use of audio-visual techniques and equipment, including video-tapes, 35 mm slides, Super 8 and 16 mm film, models, and filmstrips. The effectiveness of these techniques is evaluated in this report.

  16. Experimental and numerical thermal-hydraulics investigation of a molten salt reactor concept core

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2017-09-15

    In the paper measurement results of experimental modelling of a molten salt fast reactor concept will be presented and compared with three-dimensional computational fluid dynamics (CFD) simulation results. Purpose of this article is twofold, on one hand to introduce a geometry modification in order to avoid the disadvantages of the original geometry and discuss new measurement results. On the other hand to present an analysis in order to suggest a method of proper numerical modelling of the problem based on the comparison of calculation results and measurement data for the new, modified geometry. The investigated concept has a homogeneous cylindrical core without any internal structures. Previous measurements on the scaled and segmented plexiglas model of the concept core and simulation results have shown that this core geometry could be optimized for better thermal-hydraulics characteristics. In case of the original geometry strong undesired flow separation could develop, that could negatively affect the characteristics of the core from neutronics point of view as well. An internal flow distributor plate was designed and installed with the purpose of optimizing the flow field in the core by enhancing its uniformity. Particle image velocimetry (PIV) measurement results of the modified experimental model will be presented and compared to numerical simulation results with the purpose of CFD model validation.

  17. Recent Research of Thorium Molten-Salt Reactor from a Sustainability Viewpoint

    Directory of Open Access Journals (Sweden)

    Takashi Kamei

    2012-09-01

    Full Text Available The most important target of the concept “sustainability” is to achieve fairness between generations. Its expanding interpolation leads to achieve fairness within a generation. Thus, it is necessary to discuss the role of nuclear power from the viewpoint of this definition. The history of nuclear power has been the control of the nuclear fission reaction. Once this is obtained, then the economy of the system is required. On the other hand, it is also necessary to consider the internalization of the external diseconomy to avoid damage to human society caused by the economic activity itself, due to its limited capacity. An extreme example is waste. Thus, reducing radioactive waste resulting from nuclear power is essential. Nuclear non-proliferation must be guaranteed. Moreover, the FUKUSHIMA accident revealed that it is still not enough that human beings control nuclear reaction. Further, the most essential issue for sustaining use of one technology is human resources in manufacturing, operation, policy-making and education. Nuclear power will be able to satisfy the requirements of sustainability only when these subjects are addressed. The author will review recent activities of a thorium molten-salt reactor (MSR as a cornerstone for a sustainable society and describe its objectives and forecasts.

  18. New reactor concepts. An analysis of the actual research status; Neue Reaktorkonzepte. Eine Analyse des aktuellen Forschungsstands

    Energy Technology Data Exchange (ETDEWEB)

    Pistner, Christoph; Englert, Matthias

    2017-04-15

    The report on new reactor concepts covers the following issues: characterization and survey of new reactor concepts; evaluation criteria: safety, resources for fuel supply, waste problems, economy and proliferation; comprehensive relevant aspects: thorium as alternative resource, partitioning and transmutation; actual developments and preliminary experiences for fast breeding reactor (FBR), high-temperature reactor (HTR), molten salt reactor (MSR), small modular reactor (SMR).

  19. Design of a heterogeneous subcritical nuclear reactor with molten salts based on thorium; Diseno de un reactor nuclear subcritico heterogeneo con sales fundidas a base de torio

    Energy Technology Data Exchange (ETDEWEB)

    Medina C, D.; Hernandez A, P.; Letechipia de L, C.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Sajo B, L., E-mail: dmedina_c@hotmail.com [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of)

    2015-09-15

    This paper presents the design of a heterogeneous subcritical nuclear reactor with molten salts based on thorium, with graphite moderator and a {sup 252}Cf source, whose dose levels at the periphery allows its use in teaching and research activities. The design was realized by the Monte Carlo method, where the geometry, dimensions and the fuel was varied in order to obtain the best design. The result was a cubic reactor of 110 cm of side, with graphite moderator and reflector. In the central part having 9 ducts of 3 cm in diameter, eight of them are 110 cm long, which were placed on the Y axis; the separation between each duct is 10 cm. The central duct has 60 cm in length and this contains the {sup 252}Cf source, also there are two irradiation channels and the other six contain a molten salt ({sup 7}LiF - BeF{sub 2} - ThF{sub 4} - UF{sub 4}) as fuel. For the design the k{sub eff} was calculated, neutron spectra and ambient dose equivalent. In the first instance the above was calculated for a virgin fuel, was called case 1; then a percentage of {sup 233}U was used and the percentage of Th was decreased and was called case 2. This with the purpose of comparing two different fuels operating within the reactor. For the two irradiation ducts three positions are used: center, back and front, in each duct in order to have different flows. (Author)

  20. A general overview of generation IV molten salt reactor (MSR) and the use of thorium as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Carlos H.; Stefani, Giovanni L.; Santos, Thiago A., E-mail: carlos.yamaguchi@usp.br, E-mail: giovanni.stefani@ipen.br, E-mail: thiago.santos@ufabc.edu.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2017-07-01

    The molten salt reactors (MSRs) make use of fluoride salt as primary cooler, at low pressure. Although considered a generation IV reactor, your concept isn't new, since in the 1960 years the Oak Ridge National Laboratory created a little prototype of 8MWt. Over the 20{sup th} century, other countries, like UK, Japan, Russia, China and France also did research in the area, especially with the use of thorium as fuel. This goes with the fact that Brazil possess the biggest reserve of thorium in the world. In the center of nuclear engineering at IPEN is being created a study group connected to thorium reactors, which purpose is to investigate reactors using thorium to produce {sup 233}U and tailing burn, thus making the MSR using thorium as fuel, an object of study. This present work searches to do a general summary about the researches of MSR's, having as focus the utilization of thorium with the goal being to show it's efficiency and utilization is doable. (author)

  1. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam.

    Science.gov (United States)

    van der Star, Wouter R L; Abma, Wiebe R; Blommers, Dennis; Mulder, Jan-Willem; Tokutomi, Takaaki; Strous, Marc; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2007-10-01

    The first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days. The experience gained during this first startup in combination with the availability of seed sludge from this reactor, will lead to a faster startup of anammox reactors in the future. The anammox reactor type employed in Rotterdam was compared to other reactor types for the anammox process. Reactors with a high specific surface area like the granular sludge reactor employed in Rotterdam provide the highest volumetric loading rates. Mass transfer of nitrite into the biofilm is limiting the conversion of those reactor types that have a lower specific surface area. Now the first full-scale commercial anammox reactor is in operation, a consistent and descriptive nomenclature is suggested for reactors in which the anammox process is employed.

  2. Overview of Experiments for Physics of Fast Reactors from the International Handbooks of Evaluated Criticality Safety Benchmark Experiments and Evaluated Reactor Physics Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bess, J. D.; Briggs, J. B.; Gulliford, J.; Ivanova, T.; Rozhikhin, E. V.; Semenov, M. Yu.; Tsibulya, A. M.; Koscheev, V. N.

    2017-07-01

    Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energy Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning

  3. Flow effect on {sup 135}I and {sup 135}Xe evolution behavior in a molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianhui; Guo, Chen [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Cai, Xiangzhou [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Chenggang; Zou, Chunyan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Jianlong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jingen, E-mail: chenjg@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-04-01

    Highlights: • {sup 135}Xe and {sup 135}I evolution law in a molten salt reactor is analytically deduced. • The circulation of fuel salt through the primary loop decreases the concentration of {sup 135}I and {sup 135}Xe. • {sup 135}I and {sup 135}Xe concentration reduction is independent with the mass flow rate at normal core operating condition. • Increasing the external core volume would raise {sup 135}I and {sup 135}Xe concentration reduction caused by the flow effect. - Abstract: Molten Salt Reactor (MSR) employs fissile material dissolved in the fluoride salt as fuel which continuously circulates through the primary loop with the flow cycle time being a few tens of seconds. The nuclei evolution law is quite different from that in a solid fuel reactor. In this paper, we analytically deduce the nuclei evolution law of {sup 135}Xe and {sup 135}I which are entrained in the flowing salt, evaluate its concentration changing with the burnup time, and validate the result with the SCALE6. The circulation of fuel salt could decrease the concentration of {sup 135}Xe and {sup 135}I, and the reduction can achieve to around 40% and 50% for {sup 135}Xe and {sup 135}I respectively at a small power level (e.g., 2 MW) when the core has the same fuel salt volume as that of the outer-loop. Furthermore, it can be found that the reduction is inversely proportional to the core to outer-loop volume ratio, but uncorrelated with the mass flow rate under normal operating condition of a MSR. At low core power scale, the flow effect on {sup 135}Xe concentration reduction is apparent, but it is mitigated as the core power scale increases because of the rise of {sup 135}I concentration, which raises its decay to {sup 135}Xe and compensates the loss of {sup 135}Xe due to decay at the outer-loop. The decreased {sup 135}Xe concentration results in a core reactivity increase varying from around 150 pcm to 1000 pcm depending on the core power and core to outer-loop volume ratio.

  4. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  5. Recent Results from Daya Bay Reactor Neutrino Experiment

    CERN Document Server

    Hu, Bei-Zhen

    2015-01-01

    The Daya Bay reactor neutrino experiment announced the discovery of a non-zero value of \\sin^22\\theta_{13} with significance better than 5 \\sigma in 2012. The experiment is continuing to improve the precision of \\sin^22\\theta_{13} and explore other physics topics. In this talk, I will show the current oscillation and mass-squared difference results which are based on the combined analysis of the measured rates and energy spectra of antineutrino events, an independent measurement of \\theta_{13} using IBD events where delayed neutrons are captured on hydrogens, and a search for light sterile neutrinos.

  6. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    Energy Technology Data Exchange (ETDEWEB)

    Hastowo, Hudi; Tarigan, Alim [Multipurpose Reactor Center, National Nuclear Energy Agency of the Republic of Indonesia (PRSG-BATAN), Kawasan PUSPIPTEK Serpong, Tangerang (Indonesia)

    1999-08-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U{sub 3}O{sub 8}-Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  7. The detector system of the Daya Bay reactor neutrino experiment

    Science.gov (United States)

    An, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. L.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Carr, R.; Cen, W. R.; Chan, W. T.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H. Y.; Chen, H. S.; Chen, M. J.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chidzik, S.; Chow, K.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Dove, J.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Grassi, M.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, R. P.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Han, R.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hinrichs, P.; Ho, T. H.; Hoff, M.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. Z.; Huang, H. X.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Joseph, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Lewis, C. A.; Li, B.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, J.; Li, N. Y.; Li, Q. J.; Li, S. F.; Li, S. C.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Y. F.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. X.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S.; Liu, S. S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Monari Kebwaro, J.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pagac, A.; Pan, H.-R.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sands, W. R.; Seilhan, B.; Shao, B. B.; Shih, K.; Song, W. Y.; Steiner, H.; Stoler, P.; Stuart, M.; Sun, G. X.; Sun, J. L.; Tagg, N.; Tam, Y. H.; Tanaka, H. K.; Tang, W.; Tang, X.; Taychenachev, D.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, W. W.; Wang, X. T.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Wong, S. C. F.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, W.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, H. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. X.; Zhang, Q. M.; Zhang, S. H.; Zhang, X. T.; Zhang, Y. C.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhou, Z. Y.; Zhuang, H. L.; Zimmerman, S.; Zou, J. H.

    2016-03-01

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of νbare oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin2 2θ13 and the effective mass splitting Δ mee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  8. Reactor electron antineutrino disappearance in the Double Chooz experiment

    CERN Document Server

    Abe, Y; Anjos, J C dos; Barriere, J C; Bergevin, M; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chimenti, P; Classen, T; Collin, A P; Conover, E; Conrad, J M; Crespo-Anadón, J I; Crum, K; Cucoanes, A; D'Agostino, M V; Damon, E; Dawson, J V; Dazeley, S; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Ebert, J; Efremenko, Y; Elnimr, M; Etenko, A; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Franco, D; Franke, A J; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Goger-Neff, M; Gonzalez, L F G; Goodman, M C; Goon, J TM; Greiner, D; Haag, N; Hagner, C; Hara, T; Hartmann, F X; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G A; Hourlier, A; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L N; Kamyshkov, Y; Kaplan, D M; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Kibe, Y; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Langbrandtner, C; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; López-Castanõ, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Miletic, T; Milincic, R; Miyata, H; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Pepe, I M; Perasso, S; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Reichenbacher, J; Reinhold, B; Remoto, A; Rohling, M; Roncin, R; Roth, S; Sakamoto, Y; Santorelli, R; Sato, F; Schonert, S; Schoppmann, S; Schwetz, T; Shaevitz, M H; Shimojima, S; Shrestha, D; Sida, J-L; Sinev, V; Skorokhvatov, M; Smith, E; Spitz, J; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Stuken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Svoboda, R; Terao, K; Tonazzo, A; Toups, M; Thi, H H Trinh; Valdiviesso, G; Veyssiere, C; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yermia, F; Zimmer, V

    2012-01-01

    The Double Chooz experiment has observed 8,249 candidate electron antineutrino events in 227.93 live days with 33.71 GW-ton-years (reactor power x detector mass x livetime) exposure using a 10.3 cubic meter fiducial volume detector located at 1050 m from the reactor cores of the Chooz nuclear power plant in France. The expectation in case of theta13 = 0 is 8,937 events. The deficit is interpreted as evidence of electron antineutrino disappearance. From a rate plus spectral shape analysis we find sin^2 2{\\theta}13 = 0.109 \\pm 0.030(stat) \\pm 0.025(syst). The data exclude the no-oscillation hypothesis at 99.9% CL (3.1{\\sigma}).

  9. MHTGR: New production reactor summary of experience base

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    Worldwide interest in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) stems from the capability of the system to retain the advanced fuel and thermal performance while providing unparalleled levels of safety. The small power level of the MHTGR and its passive systems give it a margin of safety not attained by other concepts being developed for power generation. This report covers the experience base for the key nuclear system, components, and processes related to the MHTGR-NPR. 9 refs., 39 figs., 9 tabs.

  10. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  11. Kinematics and dynamics of salt movement driven by sub-salt normal faulting and supra-salt sediment accumulation - combined analogue experiments and analytical calculations

    Science.gov (United States)

    Warsitzka, Michael; Kukowski, Nina; Kley, Jonas

    2017-04-01

    In extensional sedimentary basins, the movement of ductile salt is mainly controlled by the vertical displacement of the salt layer, differential loading due to syn-kinematic deposition, and tectonic shearing at the top and the base of the salt layer. During basement normal faulting, salt either tends to flow downward to the basin centre driven by its own weight or it is squeezed upward due to differential loading. In analogue experiments and analytical models, we address the interplay between normal faulting of the sub-salt basement, compaction and density inversion of the supra-salt cover and the kinematic response of the ductile salt layer. The analogue experiments consist of a ductile substratum (silicone putty) beneath a denser cover layer (sand mixture). Both layers are displaced by normal faults mimicked through a downward moving block within the rigid base of the experimental apparatus and the resulting flow patterns in the ductile layer are monitored and analysed. In the computational models using an analytical approximative solution of the Navier-Stokes equation, the steady-state flow velocity in an idealized natural salt layer is calculated in order to evaluate how flow patterns observed in the analogue experiments can be translated to nature. The analytical calculations provide estimations of the prevailing direction and velocity of salt flow above a sub-salt normal fault. The results of both modelling approaches show that under most geological conditions salt moves downwards to the hanging wall side as long as vertical offset and compaction of the cover layer are small. As soon as an effective average density of the cover is exceeded, the direction of the flow velocity reverses and the viscous material is squeezed towards the elevated footwall side. The analytical models reveal that upward flow occurs even if the average density of the overburden does not exceed the density of salt. By testing various scenarios with different layer thicknesses

  12. Study on Utilization of Super Grade Plutonium in Molten Salt Reactor FUJI-U3 using CITATION Code

    Science.gov (United States)

    Wulandari, Cici; Waris, Abdul; Pramuditya, Syeilendra; Asril, Pramutadi AM; Novitrian

    2017-07-01

    FUJI-U3 type of Molten Salt Reactor (MSR) has a unique design since it consists of three core regions in order to avoid the replacement of graphite as moderator. MSR uses floride as a nuclear fuel salt with the most popular chemical composition is LiF-BeF2-ThF4-233UF4. ThF4 and 233UF4 are the fertile and fissile materials, respectively. On the other hand, LiF and BeF2 working as both fuel and heat transfer medium. In this study, the super grade plutonium will be utilized as substitution of 233U since plutonium is easier to be obtained compared to 233U as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2002 code with JENDL 3.2 as nuclear data library.

  13. On the use of a molten salt fast reactor to apply an idealized transmutation scenario for the nuclear phase out.

    Science.gov (United States)

    Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne

    2014-01-01

    In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described.

  14. On the use of a molten salt fast reactor to apply an idealized transmutation scenario for the nuclear phase out.

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    Full Text Available In the view of transmutation of transuranium (TRU elements, molten salt fast reactors (MSFRs offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs. In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described.

  15. On the Use of a Molten Salt Fast Reactor to Apply an Idealized Transmutation Scenario for the Nuclear Phase Out

    Science.gov (United States)

    Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne

    2014-01-01

    In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations – a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described. PMID:24690768

  16. Operational experiences and coping with ageing effects of the IRT-Sofia research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krezhov, K. [Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    1995-12-31

    The present paper gives a review on the efforts to cope with reactor equipment ageing effects and describes the major experience gained in the maintenance work necessary to keep the reactor in good condition throughout the years. Also, a short description of the modernization project with preserved reactor power level of 2 MW is given. (orig.)

  17. Experiment for search for sterile neutrino at SM-3 reactor

    Science.gov (United States)

    Serebrov, A. P.; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Cherniy, A. V.; Zherebtsov, O. M.; Martemyanov, V. P.; Zinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanasiev, V. V.; Matrosov, L. N.; Matrosova, M. Yu.

    2016-11-01

    In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.

  18. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen

    2008-09-26

    This project is investigating countercurrent flow and “flooding” phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the “surge line” and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008.

  19. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest University of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-09-15

    In the paper measurement results from the experimental modelling of a molten salt reactor concept will be presented along with detailed uncertainty analysis of the experimental system. Non-intrusive flow measurements are carried out on the scaled and segmented mock-up of a homogeneous, single region molten salt fast reactor concept. Uncertainty assessment of the particle image velocimetry (PIV) measurement system applied with the scaled and segmented model is presented in detail. The analysis covers the error sources of the measurement system (laser, recording camera, etc.) and the specific conditions (de-warping of measurement planes) originating in the geometry of the investigated domain. Effect of sample size in the ensemble averaged PIV measurements is discussed as well. An additional two-loop-operation mode is also presented and the analysis of the measurement results confirm that without enhancement nominal and other operation conditions will lead to strong unfavourable separation in the core flow. It implies that use of internal flow distribution structures will be necessary for the optimisation of the core coolant flow. Preliminary CFD calculations are presented to help the design of a perforated plate located above the inlet region. The purpose of the perforated plate is to reduce recirculation near the cylindrical wall and enhance the uniformity of the core flow distribution.

  20. Progress report on neutron beam experiments at Dalat Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Canh Hai; Tran Tuan Anh [Nuclear Physics Department, Nuclear Research Institute, Dalat (Viet Nam)

    2000-10-01

    The conduct and the utilizations of neutron beams at Dalat Nuclear Research Reactor was reported. In 1998 and 1999 the filtered thermal neutron beam at the beam tube using substances Si, Ti, C, Pb was extracted. The investigations on physical characteristics of reactor; neutron spectra and fluxes at beam tube; safety conditions have been carried out by calculations and experiments. The physical characteristics for the purposes of prompt gamma neutron activation analysis (PGNAA) and nuclear data measurement were improved. The delayed neutron analysis method is used to detect the neutron emission fragments produced by neutron irradiation of uranium and thorium. This method is to determine the concentrations of uranium and thorium simultaneously and detect 10{sup -6} g of uranium and 8x10{sup -6} g thorium in 10 g sample with a precision of 8 per cent. Beside the delayed neutron analysis facility, a gamma spectrometer system with HP-Ge 90 cm{sup 3} semiconductor detector was installed at pneumatic transfer for cyclic activation analysis (CAA). The CAA method has given analytical results quickly and sensitively for the isotopes with half-lives in order of seconds to minutes. (author)

  1. On possibility of realization NEUTRINO-4 experiment on search for oscillations of the reactor antineutrino into a sterile state

    OpenAIRE

    Serebrov, A. P.; Fomin, A. K.; Zinoviev, V. G.; Ivochkin, V. G.; Loginov, Yu. E.; Petrov, G. A.; Solovey, V. A.; Chernyi, A. V.; Zherebtsov, O. M.; Samoylov, R. M.; Martemyanov, V. P.; Tsinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.

    2013-01-01

    One has investigated possibility of performing NEUTRINO-4 experiment on search for reactor neutrino oscillations into a sterile state at research reactors. The simulated experiment has been conducted at 16 MW reactor WWR-M in PNPI with the purpose of implementing a full scale experiment with the help of 100 MW reactor SM-3 in RIAR. Background conditions for making such an experiment have been examined at both reactors. The conclusion has been made on possible implementation of a full scale ex...

  2. Resolving the Reactor Neutrino Anomaly with the KATRIN Neutrino Experiment

    CERN Document Server

    Barrett, J A Formaggio J

    2011-01-01

    The KArlsruhe TRItium Neutrino experiment (KATRIN) combines an ultra-luminous molecular tritium source with an integrating high-resolution spectrometer to gain sensitivity to the absolute mass scale of neutrinos. The projected sensitivity of the experiment on the electron neutrino mass is 200 meV at 90% C.L. With such unprecedented resolution, the experiment is also sensitive to physics beyond the Standard Model, particularly to the existence of additional sterile neutrinos at the eV mass scale. A recent analysis of available reactor data appears to favor the existence of such such a sterile neutrino with a mass splitting of $|\\Delta m_{\\rm sterile}|^2 \\ge 1.5$ eV$^2$ and mixing strength of $\\sin^2{2\\theta_{\\rm sterile}} = 0.17\\pm 0.08$ at 95% C.L. Upcoming tritium beta decay experiments should be able to rule out or confirm the presence of the new phenomenon for a substantial fraction of the allowed parameter space.

  3. Status of the JUNO reactor anti-neutrino experiment

    Science.gov (United States)

    Lu, Haoqi; JUNO Collaboration

    2017-06-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a reactor antineutrino experiment with the aim to determine the neutrino mass hierarchy. The detector will be filled with 20 kilotons of liquid scintillator and instrumented with 18000 20-inch PMTs to achieve an unprecedented energy resolution of 3%@1 MeV. A 35.4 m diameter acrylic sphere will be built as a liquid scintillator vessel.The detector will be constructed in a 700-m-deep-underground laboratory to reduce cosmogenic muon flux. An external veto cosisting of a water Cherenkov detector and a top tracker will be used for cosmogenic muon detection and background reduction. The mass hierarchy sensitivity is expected to reach 3-4σ after 6 years of data taking. Civil construction and detector R&D are underway. Data taking is expected to start in 2020.

  4. Study on the Neutrino Oscillation with a Next Generation Medium-Baseline Reactor Experiment

    Directory of Open Access Journals (Sweden)

    Chang Dong Shin

    2014-01-01

    Full Text Available For over fifty years, reactor experiments have played an important role in neutrino physics, in both discoveries and precision measurements. One of the methods to verify the existence of neutrino is the observation of neutrino oscillation phenomena. Electron antineutrinos emitted from a reactor provide the measurement of the small mixing angle θ13, providing rich programs of neutrino properties, detector development, nuclear monitoring, and application. Using reactor neutrinos, future reactor neutrino experiments, more precise measurements of θ12,  Δm122, and mass hierarchy will be explored. The precise measurement of θ13 would be crucial for measuring the CP violation parameters at accelerators. Therefore, reactor neutrino physics will assist in the complete understanding of the fundamental nature and implications of neutrino masses and mixing. In this paper, we investigated several characteristics of RENO-50, which is a future medium-baseline reactor neutrino oscillation experiment, by using the GloBES simulation package.

  5. The Status of Hawaii Askaryan Salt Radi Array (HASRA) experiment

    Energy Technology Data Exchange (ETDEWEB)

    Milincic, R [3141 Chestnut St. 12-816, Philadelphia, PA, 19104 USA (United States); Gorham, P W [2505 Correa Rd, Honolulu, HI, 96822 (United States); Miocinovic, P [2505 Correa Rd, Honolulu, HI, 96822 (United States); Rosen, M [2505 Correa Rd, Honolulu, HI, 96822 (United States); Saltzberg, D [3166 Knudsen Hall, Los Angeles CA 90095 (United States); Varner, G [2505 Correa Rd, Honolulu, HI, 96822 (United States)

    2007-09-15

    The exploration of GZK neutrinos through their interactions with matter via produced radio signals requires highly homogeneous material with small attenuation for radio frequencies. Rock salt in some salt dome formations provide dielectric material with great potential to host a large scale (100 km{sup 3}) water-equivalent ultra-high energy neutrino detector The Hawaii Askaryan in Salt Radio Array (HASRA) detector was built as a testbed for exploration of coherent radio Cherenkov emission in salt from interaction of cosmic ray induced cascades. We report results of 1 year of measurements of Askaryan effect with HASRA detector. Peformance of the detector its sensitivity and analysis of a newest data set will be presented.

  6. Ethanol steam reforming heated up by molten salt CSP: Reactor assessment

    NARCIS (Netherlands)

    De Falco, Marcello; Gallucci, F.

    2010-01-01

    In this paper hydrogen production via reforming of ethanol has been studied in a novel hybrid plant consisting in a ethanol reformer and a concentrating solar power (CSP) plant using molten salt as heat carrier fluid. The heat needed for the reforming of ethanol has been supplied to the system by

  7. Intermediate temperature embrittlement of one new Ni-26W-6Cr based superalloy for molten salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Li [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Science, Beijing 100049 (China); Ye, Xiangxi [University of Chinese Academy of Science, Beijing 100049 (China); Cui, Chuanyong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Huang, Hefei; Leng, Bin [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Zhijun, E-mail: lizhijun@sinap.ac.cn [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, Xingtai [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-06-21

    Ni-26W-6Cr based superalloy is considered a potential structure material for the molten salt reactors due to its high strength and good compatibility with the fluoride salt. In the present work, the temperature dependence of the tensile behavior of the alloy was studied by tensile tests in the temperature range of 25–850 °C. This alloy exhibited a good ductility at RT and 450 °C, a ductility minimum from 650 to 750 °C and an intermediate ductility at 850 °C. TEM and EBSD characterization was performed on specimens tested at three typical temperature points (RT, 650 °C and 850 °C) to determine the deformation and fracture mechanisms accounting for the intermediate temperature embrittlement. At RT, the grain boundaries can accommodate enough dislocations to provide compatibility of the sliding between adjacent grains, then M{sub 6}C carbides act as crack origins and cause the fracture. In case of 650 °C, the grain boundaries cannot withstand the local stress even if only a small number of dislocation pile-ups exist. The premature cracks at grain boundaries impede the development of plastic deformation from single slips to multiple ones and cause the low ductility. If tested at 850 °C, the fracture process is retarded by the dynamic recovery and local dynamic recrystallization at crack tips.

  8. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Borum, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chaleff, Ethan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogerson, Doug W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Batteh, John J. [Modelon Corporation (Sweden); Tiller, Michael M. [Xogeny Corporation, Canton, MI (United States)

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  9. Study on the Neutrino Oscillation with a Next Generation Medium-Baseline Reactor Experiment

    OpenAIRE

    Chang Dong Shin; Kyung Kwang Joo

    2014-01-01

    For over fifty years, reactor experiments have played an important role in neutrino physics, in both discoveries and precision measurements. One of the methods to verify the existence of neutrino is the observation of neutrino oscillation phenomena. Electron antineutrinos emitted from a reactor provide the measurement of the small mixing angle θ13 , providing rich programs of neutrino properties, detector development, nuclear monitoring, and application. Using reactor neutrinos, future reacto...

  10. Substantiation of physical concepts of fast reactors in Russia: experience and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P.N. [Russian Research Center ' Kurchatov Institute' (RRC KI), 1, Kurchatov Sq., Moscow, 123182 (Russian Federation); Vasiliev, B.A. [Experimental Design Bureau of Machine Building (OKBM) 15, Burnakovskiy Pr., N. Novgorod, 603074 (Russian Federation); Kormilitsyn, M.V. [State Scientific Center of Russian Federation - Research Institute of Atomic Reactors (NIIAR) Dimitrovgrad-10, Ulianovsk Reg., 433510 (Russian Federation); Lopatkin, A.V. [N.A. Dollezhal Research and Development Institute of Power Engineering (NIKIET) 2/8, M. Krasnoselskaya Str., Moscow, 107140 (Russian Federation); Seleznev, E.F. [All-Russian Research Institute for Nuclear Power Plant Operation (VNIIAES) 25, Ferganskaya, Moscow, 109507 (Russian Federation); Khomyakov, Yu.S.; Tsybulia, A.M. [State Scientific Center of the Russian Federation - A. I. Leypunsky Institute for Physics and Power Engineering (SSC RF- IPPE) 1, Bondarenko Sq., Obninsk, Kaluga Reg., 249033 (Russian Federation); Tocheny, L.V. [International Science and Technology Center (ISTC) 32-34 Krasnoproletarskaya Ulitsa, Moscow, 127473 (Russian Federation)

    2008-07-01

    The fast reactor concept in Russia has accumulated unique experience, since its advent in the 1950's and up to the present, from the creation of the first experimental installation BR-1, experimental reactors BR-5 and BOR-60, the pilot industrial reactors BN-350 in Kazakhstan and up to the BN-600 at Beloyarsk Atomic Power Station. Investigations on the first experimental installations BR-1 and BR-5/-10 proved the propriety of the idea that it is possible to create nuclear reactors that can produce more nuclear fuel than they consume, i.e. the idea of breeding. The architecture of such reactors was also designed, producing a current leader among fast reactors with sodium coolant and oxide uranium-plutonium fuel. Operational experience of BOR-60, BN-350 and, particularly, BN-600 confirmed the engineering and technical feasibility of the concept of fast reactors, the possibility for its realization both for power production and for certain other purposes as well, such as desalinisation of sea water (BN-350) and for radionuclide production (BN-350, BN-600), and it enabled the development and verification of different models, computer methods and codes. The paper presents a review of experience in the creation of plants with fast reactors, scientific research on these installations, principal results, the current status of experimental data analysis, and prospective directions in the development of fast reactors and the corresponding experimental basis in Russia. (authors)

  11. On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    2015-11-01

    Full Text Available An efficient burning of the plutonium produced during light water reactor (LWR operation has the potential to significantly improve the sustainability indices of LWR operations. The work offers a comparison of the efficiency of Pu burning in different reactor configurations—a molten salt fast reactor, a LWR with mixed oxide (MOX fuel, and a sodium cooled fast reactor. The calculations are performed using the HELIOS 2 code. All results are evaluated against the plutonium burning efficiency determined in the Consommation Accrue de Plutonium dans les Réacteurs à Neutrons RApides (CAPRA project. The results are discussed with special view on the increased sustainability of LWR use in the case of successful avoidance of an accumulation of Pu which otherwise would have to be forwarded to a final disposal. A strategic discussion is given about the unavoidable plutonium production, the possibility to burn the plutonium to avoid a burden for the future generations which would have to be controlled.

  12. FOEHN: The critical experiment for the Franco-German High Flux Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scharmer, K.; Eckert, H. G. [Kernforschungszentrum Karlsruhe GmbH (Germany)

    1991-01-01

    A critical experiment for the Franco-German High Flux Reactor was carried out in the French reactor EOLE (CEN Cadarache). The purpose of the experiment was to check the calculation methods in a realistic geometry and to measure effects that can only be calculated imprecisely (e.g. beam hole effects). The structure of the experiment and the measurement and calculation methods are described. A detailed comparison between theoretical and experimental results was performed. 30 refs., 105 figs.

  13. Recent performance experience with US light water reactor self-actuating safety and relief valves

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, C.G.

    1996-12-01

    Over the past several years, there have been a number of operating reactor events involving performance of primary and secondary safety and relief valves in U.S. Light Water Reactors. There are several different types of safety and relief valves installed for overpressure protection of various safety systems throughout a typical nuclear power plant. The following discussion is limited to those valves in the reactor coolant systems (RCS) and main steam systems of pressurized water reactors (PWR) and in the RCS of boiling water reactors (BWR), all of which are self-actuating having a setpoint controlled by a spring-loaded disk acting against system fluid pressure. The following discussion relates some of the significant recent experience involving operating reactor events or various testing data. Some of the more unusual and interesting operating events or test data involving some of these designs are included, in addition to some involving a number of similar events and those which have generic applicability.

  14. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  15. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover

    2009-09-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  16. An alternative method of determining the neutrino mass ordering in reactor neutrino experiments

    Directory of Open Access Journals (Sweden)

    S.M. Bilenky

    2017-09-01

    Full Text Available We discuss a novel alternative method of determining the neutrino mass ordering in medium baseline experiments with reactor antineutrinos. Results on the potential sensitivity of the new method are also presented.

  17. An alternative method of determining the neutrino mass ordering in reactor neutrino experiments

    Science.gov (United States)

    Bilenky, S. M.; Capozzi, F.; Petcov, S. T.

    2017-09-01

    We discuss a novel alternative method of determining the neutrino mass ordering in medium baseline experiments with reactor antineutrinos. Results on the potential sensitivity of the new method are also presented.

  18. Status of Physics and Safety Analyses for the Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, DT

    2005-12-15

    A study has been completed to develop a new baseline core design for the liquid-salt-cooled very high-temperature reactor (LS-VHTR) that is better optimized for liquid coolant and that satisfies the top-level operational and safety targets, including strong passive safety performance, acceptable fuel cycle parameters, and favorable core reactivity response to coolant voiding. Three organizations participated in the study: Oak Ridge National Laboratory (ORNL), Idaho National Laboratory (INL), and Argonne National Laboratory (ANL). Although the intent was to generate a new reference LS-VHTR core design, the emphasis was on performing parametric studies of the many variables that constitute a design. The results of the parametric studies not only provide the basis for choosing the optimum balance of design options, they also provide a valuable understanding of the fundamental behavior of the core, which will be the basis of future design trade-off studies. A new 2400-MW(t) baseline design was established that consists of a cylindrical, nonannular core cooled by liquid {sup 7}Li{sub 2}BeF{sub 4} (Flibe) salt. The inlet and outlet coolant temperatures were decreased by 50 C, and the coolant channel diameter was increased to help lower the maximum fuel and vessel temperatures. An 18-month fuel cycle length with 156 GWD/t burnup was achieved with a two-batch shuffling scheme, while maintaining a core power density of 10 MW/m{sup 3} using graphite-coated uranium oxicarbide particle fuel enriched to 15% {sup 235}U and assuming a 25 vol-% packing of the coated particles in the fuel compacts. The revised design appears to have excellent steady-state and transient performance. The previous concern regarding the core's response to coolant voiding has been resolved for the case of Flibe coolant by increasing the coolant channel diameter and the fuel loading. Also, the LSVHTR has a strong decay heat removal performance and appears capable of surviving a loss of forced

  19. Light water reactor fuel response during reactivity initiated accident experiments

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P. E.; McCardell, R. K.; Martinson, Z. R.; Seiffert, S. L.

    1979-01-01

    Experimental results from six recent Power Burst Facility (PBF) reactivity initiated accident (RIA) tests are compared with data from previous Special Power Excursion Reactor Test (SPERT), and Japanese Nuclear Safety Research Reactor (NSRR) tests. The RIA fuel behavior experimental program recently started in the PBF is being conducted with coolant conditions typical of hot-startup conditions in a commercial boiling water reactor. The SPERT and NSRR test programs investigated the behavior of single or small clusters of light water reactor (LWR) type fuel rods under approximate room temperature and atmospheric pressure conditions in capsules containing stagnant water. As observed in the SPERT and NSRR tests, energy deposition, and consequent enthalpy increase in the PBF test fuel, appears to be the single most important variable. However, the consequences of failure at boiling water hot-startup system conditions appear to be more severe than previously observed in either the stagnant capsule SPERT or NSRR tests. Metallographic examination of both previously unirradiated and irradiated PBF fuel rod cross sections revealed extensive variation in cladding wall thicknesses (involving considerable plastic flow) and fuel shattering along grain boundaries in both restructured and unrestructured fuel regions. Oxidation of the cladding resulted in fracture at the location of cladding thinning and disintegration of the rods during quench. In addition,swelling of the gaseous and potentially volatile fission products in previously irradiated fuel resulted in volume increases of up to 180% and blockage of the coolant channels within the flow shrouds surrounding the fuel rods.

  20. Study of trans-uranian incineration in molten salt reactor; Etude de l'incineration des transuraniens en reacteur a sel fondu

    Energy Technology Data Exchange (ETDEWEB)

    Valade, M

    2000-10-27

    With the emergence of new options for nuclear power, molten salt reactors are envisaged for waste management. The aim of this thesis is to show how molten salt reactors can help to solve the transuranics issue. Their high versatility regarding to isotopic vector allows to accommodate large fractions of minor actinides as compared to solid fuel system. In this thesis, a neutronics study of molten salt reactors, MSR, has been conducted. For this purpose, two reference systems were considered, TIER1 and AMSTER. In the case of TIER1, an optimisation was made to reach an equilibrium. The analysis of both systems showed the main characteristics of MSR: their link to chemistry and on line reprocessing. In this work, several methods to drive the system to a state of equilibrium have been implemented and compared. During this process the isotopic composition and neutron spectrum, thus the nuclear reaction cross sections, vary tremendously. It is essential to take these evolutions into account in order to accurately estimate the equilibrium state. This has been accomplished inside the multi-recycling procedure we set with ERANOS. A dedicated calculation schema has been realized to simulate superthermal systems with this computation code. These results were checked through a benchmark against other computer codes. Then, with multi-recycling method, several molten salt systems have been compared in order to define the optimal reactor for transuranics incineration. Nevertheless, a final choice can not only be done using only neutronics characteristics since chemistry and thermal-hydraulics constraints are really important for MSR. Moreover, a complete safety study would be required. (author)

  1. 8-channel prototype of SALT readout ASIC for Upstream Tracker in the upgraded LHCb experiment

    Science.gov (United States)

    Abellan Beteta, C.; Bugiel, S.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kane, C.; Moron, J.; Swientek, K.; Wang, J.

    2017-02-01

    SALT is a new 128-channel readout ASIC for silicon strip detectors in the upgraded Upstream Tracker of the LHCb experiment. It will extract and digitise analogue signals from the sensor, perform digital processing and transmit serial output data. SALT is designed in CMOS 130 nm process and uses a novel architecture comprising of an analogue front-end and an ultra-low power (fabricated and tested. A full 128-channel version was also submitted. The design and test results of the SALT8 prototype are presented showing its full functionality.

  2. LHCb - SALT, a dedicated readout chip for strip detectors in the LHCb Upgrade experiment

    CERN Multimedia

    Swientek, Krzysztof Piotr

    2015-01-01

    Silicon strip detectors in the upgraded Tracker of LHCb experiment will require a new readout 128-channel ASIC called SALT. It will extract and digitise analogue signals from the sensor, perform digital processing and transmit serial output data. SALT is designed in CMOS 130 nm process and uses a novel architecture comprising of analogue front-end and ultra-low power ($<$0.5 mW) fast (40 MSps) sampling 6-bit ADC in each channel. A prototype of first 8-channel version of SALT chip, comprising all important functionalities, was submitted. Its design and possibly first tests results will be presented.

  3. Salt Appetite Is Reduced by a Single Experience of Drinking Hypertonic Saline in the Adult Rat

    Science.gov (United States)

    Greenwood, Michael P.; Greenwood, Mingkwan; Paton, Julian F. R.; Murphy, David

    2014-01-01

    Salt appetite, the primordial instinct to favorably ingest salty substances, represents a vital evolutionary important drive to successfully maintain body fluid and electrolyte homeostasis. This innate instinct was shown here in Sprague-Dawley rats by increased ingestion of isotonic saline (IS) over water in fluid intake tests. However, this appetitive stimulus was fundamentally transformed into a powerfully aversive one by increasing the salt content of drinking fluid from IS to hypertonic saline (2% w/v NaCl, HS) in intake tests. Rats ingested HS similar to IS when given no choice in one-bottle tests and previous studies have indicated that this may modify salt appetite. We thus investigated if a single 24 h experience of ingesting IS or HS, dehydration (DH) or 4% high salt food (HSD) altered salt preference. Here we show that 24 h of ingesting IS and HS solutions, but not DH or HSD, robustly transformed salt appetite in rats when tested 7 days and 35 days later. Using two-bottle tests rats previously exposed to IS preferred neither IS or water, whereas rats exposed to HS showed aversion to IS. Responses to sweet solutions (1% sucrose) were not different in two-bottle tests with water, suggesting that salt was the primary aversive taste pathway recruited in this model. Inducing thirst by subcutaneous administration of angiotensin II did not overcome this salt aversion. We hypothesised that this behavior results from altered gene expression in brain structures important in thirst and salt appetite. Thus we also report here lasting changes in mRNAs for markers of neuronal activity, peptide hormones and neuronal plasticity in supraoptic and paraventricular nuclei of the hypothalamus following rehydration after both DH and HS. These results indicate that a single experience of drinking HS is a memorable one, with long-term changes in gene expression accompanying this aversion to salty solutions. PMID:25111786

  4. Salt appetite is reduced by a single experience of drinking hypertonic saline in the adult rat.

    Directory of Open Access Journals (Sweden)

    Michael P Greenwood

    Full Text Available Salt appetite, the primordial instinct to favorably ingest salty substances, represents a vital evolutionary important drive to successfully maintain body fluid and electrolyte homeostasis. This innate instinct was shown here in Sprague-Dawley rats by increased ingestion of isotonic saline (IS over water in fluid intake tests. However, this appetitive stimulus was fundamentally transformed into a powerfully aversive one by increasing the salt content of drinking fluid from IS to hypertonic saline (2% w/v NaCl, HS in intake tests. Rats ingested HS similar to IS when given no choice in one-bottle tests and previous studies have indicated that this may modify salt appetite. We thus investigated if a single 24 h experience of ingesting IS or HS, dehydration (DH or 4% high salt food (HSD altered salt preference. Here we show that 24 h of ingesting IS and HS solutions, but not DH or HSD, robustly transformed salt appetite in rats when tested 7 days and 35 days later. Using two-bottle tests rats previously exposed to IS preferred neither IS or water, whereas rats exposed to HS showed aversion to IS. Responses to sweet solutions (1% sucrose were not different in two-bottle tests with water, suggesting that salt was the primary aversive taste pathway recruited in this model. Inducing thirst by subcutaneous administration of angiotensin II did not overcome this salt aversion. We hypothesised that this behavior results from altered gene expression in brain structures important in thirst and salt appetite. Thus we also report here lasting changes in mRNAs for markers of neuronal activity, peptide hormones and neuronal plasticity in supraoptic and paraventricular nuclei of the hypothalamus following rehydration after both DH and HS. These results indicate that a single experience of drinking HS is a memorable one, with long-term changes in gene expression accompanying this aversion to salty solutions.

  5. Experimental salt marsh islands: A model system for novel metacommunity experiments

    Science.gov (United States)

    Balke, Thorsten; Lõhmus, Kertu; Hillebrand, Helmut; Zielinski, Oliver; Haynert, Kristin; Meier, Daniela; Hodapp, Dorothee; Minden, Vanessa; Kleyer, Michael

    2017-11-01

    Shallow tidal coasts are characterised by shifting tidal flats and emerging or eroding islands above the high tide line. Salt marsh vegetation colonising new habitats distant from existing marshes are an ideal model to investigate metacommunity theory. We installed a set of 12 experimental salt marsh islands made from metal cages on a tidal flat in the German Wadden Sea to study the assembly of salt marsh communities in a metacommunity context. Experimental plots at the same elevation were established within the adjacent salt marsh on the island of Spiekeroog. For both, experimental islands and salt marsh enclosed plots, the same three elevational levels were realised while creating bare patches open for colonisation and vegetated patches with a defined transplanted community. One year into the experiment, the bare islands were colonised by plant species with high fecundity although with a lower frequency compared to the salt marsh enclosed bare plots. Initial plant community variations due to species sorting along the inundation gradient were evident in the transplanted vegetation. Competitive exclusion was not observed and is only expected to unfold in the coming years. Our study highlights that spatially and temporally explicit metacommunity dynamics should be considered in salt marsh plant community assembly and disassembly.

  6. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems; Congres sur les reacteurs a sels fondus (RSF) pyrochimie et cycles des combustibles nucleaires du futur

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, Ph. [GEDEON, Groupement de Recherche CEA CNRS EDF FRAMATOME (France); Garzenne, C.; Mouney, H. [and others

    2002-07-01

    precipitation processes); cold salt: potentiality and preliminary results; TOPIC: redox control of MSR fuel (MSR: nominal operating conditions for the reprocessing process and redox control); technical aspects of R and D of some advanced non-aqueous reprocessing technologies for MSR systems (promising innovative separation and partitioning processes for the MSR fuel cycle); nominal operating conditions for MSR reprocessing process - data base needed and experiments for reprocessing validation; corrosion and materials for MSR and for pyro-chemistry processes; MSR reactor physics - dynamic behaviour; what safety principles for MSR? (MSR and integrated cycle (IFR) safety approach); experimental programmes in the frame of the SPHINX project of MS transmuter (programme of irradiated probes BLANKA, experimental facilities (MSR)); ISTC 1606 status - experimental study of molten salt technology for safe, low-waste and proliferation resistant treatment of radioactive waste and plutonium in accelerator-driven and critical systems. (J.S.)

  7. Rate-Only analysis with reactor-off data in the Double Chooz experiment

    CERN Document Server

    Novella, P

    2013-01-01

    Among ongoing reactor-based experiments, Double Chooz is unique in obtaining data when the reactor cores are brought down for maintenance. These reactor-off data allow for a clean measurement of the backgrounds of the experiment, thus being of uppermost importance for the theta13 oscillation analysis. While the oscillation results published by the collaboration in 2011 and 2012 rely on background models derived from reactor-on data, in this talk we present an independent study based on the handle provided by 7.53 days of reactor-off data. A global fit to both theta13 and the total background is performed by analyzing the observed neutrino rate as a function of the non-oscillated expected rate for different reactor power conditions. The result presented in this talk is fully consistent with the one already published by Double Chooz. As they both yield almost the same precision, this work stands as a prove of the reliability of the background estimates and the oscillation analysis of the experiment.

  8. Experiences with austenitic steels in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, O. [Preussische Elektrizitaets-AG (Preussenelektra), Hannover (Germany); Bruemmer, G. [Hamburgische Electricitaets-Werke AG., Hamburg (Germany)

    1997-05-01

    Stabilized austenitic steels are susceptible to intergranular stress corrosion cracking (IGSCC) under boiling water reactor (BWR) conditions. This important finding for the German nuclear power station industry arises from the detection of cracks during the last 3 years in reactor hot water pipes made from titanium-stabilized steel AISI 321 in six BWRs and in reactor core components made from the niobium-stabilized steel AISI 347 in one BWR. All the observed cracks had a common feature: they had their origin in the chromium carbide precipitates at the grain boundaries and in the associated chromium-depleted region near the grain boundary. These microstructural features in the heat-affected zones of the hot water pipe weldments were caused by the heat input during deposition of the root bead. The TiC partially dissolved in the region near the fusion line and the released carbon reacted to form chromium-rich M{sub 23}C{sub 6}. Regarding the cracks found in the core shroud and the core grid plates, it was shown that a sensitizing heat treatment of rings taken from the same heat of steel could give rise to a microstructure susceptible to IGSCC in the region of a weldment. High carbon contents coupled with low stabilization ratios led to sensitization. Residual stresses developed during welding provided the significant contributions to the tensile stress necessary for IGSCC. With regard to the service medium, the influence of the electrochemical corrosion potential (ECP) was recognized as a dominant factor, together with the conductivity. The corrosion potential was mainly determined by the radiolytic formation of H{sub 2}O{sub 2}; with increasing distance from the core, the H{sub 2}O{sub 2} content decreased owing to catalytic decomposition. For the pipes the problem of IGSCC could be resolved by the use of optimized steel (lower carbon content with maximum allowable stabilization ratio).

  9. Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment

    CERN Document Server

    Abe, Y; Akiri, T; Anjos, J C dos; Ardellier, F; Barbosa, A F; Baxter, A; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bongrand, M; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chimenti, P; Classen, T; Collin, A; Conover, E; Conrad, J M; Cormon, S; Crespo-Anadón, J I; Cribier, M; Crum, K; Cucoanes, A; D'Agostino, M V; Damon, E; Dawson, J V; Dazeley, S; Dierckxsens, M; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Efremenko, Y; Endo, Y; Etenko, A; Falk, E; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Fernandes, S M; Franco, D; Franke, A; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Göger-Neff, M; Gonzalez, L F G; Goodman, M C; Goon, J TM; Greiner, D; Guillon, B; Haag, N; Hagner, C; Hara, T; Hartmann, F X; Hartnell, J; Haruna, T; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L; Kamyshkov, Y; Kaplan, D; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Kibe, Y; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Langbrandtner, C; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; Liu, Y; López-Castanõ, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Miletic, T; Milincic, R; Milzstajn, A; Miyata, H; Motta, D; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Peeters, S J M; Pepe, I M; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Queval, R; Reichenbacher, J; Reinhold, B; Remoto, A; Reyna, D; Röhling, M; Roth, S; Rubin, H A; Sakamoto, Y; Santorelli, R; Sato, F; Schönert, S; Schoppmann, S; Schwan, U; Schwetz, T; Shaevitz, M; Shrestha, D; Sida, J-L; Sinev, V; Skorokhvatov, M; Smith, E; Stahl, A; Stancu, I; Strait, M; Stüken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Sun, Z; Svoboda, R; Tabata, H; Tamura, N; Terao, K; Tonazzo, A; Toups, M; Thi, H H Trinh; Veyssiere, C; Vignaud, D; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yanovitch, E; Yermia, F; Zbiri, K; Zimmer, V

    2011-01-01

    The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 $\\pm$ 0.016 (stat) $\\pm$ 0.040 (syst) observed to predicted events was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GW$_{th}$ reactors. The results were obtained from a single 10 m$^3$ fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 measurement as an anchor point. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter \\sang. Analyzing both the rate of the prompt positrons and their energy spectrum we find \\sang = 0.086 $\\pm$ 0.041 (stat) $\\pm$ 0.030 (syst), or, at 90% CL, 0.015 $<$ \\sang $\\ <$ 0.16.

  10. Study for Reactor Monitoring using Anti-neutrino Detection in the Neos experiment

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bo Young; Sun, Gwang Min [KAERI, Daejeon (Korea, Republic of); Jeon, Eun Ju [ISB, Daejeon (Korea, Republic of); and others

    2016-05-15

    In this study we describe a feasibility study of reactor monitoring using antineutrino detection in the Neutrino Experiment for Oscillation at Short baseline (NEOS) at Hanbit power plant. Recently, in the perspective of nonproliferation issues and misuse of nuclear energy as a fast-growing nuclear energy industry, the application of anti-neutrino measurement has been proposed and the feasibility studies has been carried out as a novel technology for monitoring the burning process of nuclear power reactor. The NEOS detector with 1000 L Gd-doped liquid scintillator was installed in tendon gallery at Hanbit power station unit 5 and has been collecting close to 2000 IBD events per day with the signal to noise ratio of ∼ 20. As a preliminary result, we demonstrate the possibility of monitoring nuclear power reactor with the IBD counting rate during reactor power ON, ramping up, and OFF.

  11. How not to salt popcorn, and other mad experiments

    Science.gov (United States)

    Harris, Margaret

    2009-12-01

    For experimentally minded readers, the warning "don't try this at home" is a real killjoy. However, coming from Theo Gray, it is also a seriously good piece of advice. Mad Science: Experiments You Can Do At Home - But Probably Shouldn't is a catalogue of inventive and terrifying things that Gray, a columnist with the Popular Science website and co-founder of the company behind Mathematica software, has done in the name of science. The book features step-by-step instructions, safety guidance and background information for 55 different experiments that range from a liquid-mercury motor to a dry-ice cloud chamber. As these two examples show, some of the experiments are far safer than others, and many have no place whatsoever in your garden shed - at least not if you want to see the shed again afterwards.

  12. A High Precision Reactor Neutrino Detector for the Double Chooz Experiment

    CERN Document Server

    Suekane, Fumihiko

    2009-01-01

    Double Chooz is a reactor neutrino experiment which investigates the last neutrino mixing angle; theta-13. It is necessary to measure reactor neutrino disappearance with precision 1% or better to detect finite value of theta-13. This requirement is the most strict compared to other reactor neutrino experiments performed so far. The Double Chooz experiment makes use of a number of techniques to reduce the possible errors to achieve the sensitivity. The detector is now under construction and it is expected to take first neutrino data in 2009 and to measure sin^22theta-13 with a sensitivity of 0.03 (90%C.L.) In this proceedings, the technical concepts of Double Chooz detector are explained stressing on how it copes with the systematic errors.

  13. Reactor physics experiments related to transmutation in the KUCA

    Energy Technology Data Exchange (ETDEWEB)

    Shiroya, Seiji [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1997-11-01

    At the Kyoto University Critical Assembly (KUCA), {sup 237}Np/{sup 235}U fission rate ratios are being measured using the back-to-back type double fission chamber to examine the nuclear data and the computational method for the transmutation of minor actinides (MA) in light water reactors (LWRs). The neutron spectra of cores are systematically being varied by changing the moderator-to-fuel volume ratio (V{sub m}/V{sub f}). The measured data are being compared with the calculated results by SRAC with three different nuclear data files. It has been indicated that the calculated results with JENDL-3.2 agreed better with the measured ones than those with JENDL-3.1 and ENDF/B-VI, although the calculated results underestimated the measured ones by around 10%. (author)

  14. Solubility and Solubility Product Determination of a Sparingly Soluble Salt: A First-Level Laboratory Experiment

    Science.gov (United States)

    Bonomo, Raffaele P.; Tabbi, Giovanni; Vagliasindi, Laura I.

    2012-01-01

    A simple experiment was devised to let students determine the solubility and solubility product, "K"[subscript sp], of calcium sulfate dihydrate in a first-level laboratory. The students experimentally work on an intriguing equilibrium law: the constancy of the product of the ion concentrations of a sparingly soluble salt. The determination of…

  15. Experience of on-site disposal of production uranium-graphite nuclear reactor.

    Science.gov (United States)

    Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G

    2018-04-01

    The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  17. Reactor design, cold-model experiment and CFD modeling for chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Ma, Jinchen; Hu, Xintao; Zhao, Haibo; Wang, Baowen; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    Chemical looping combustion (CLC) is an efficient, clean and cheap technology for CO{sub 2} capture, and an interconnected fluidized bed is more appropriate solution for CLC. This paper aims to design a reactor system for CLC, carry out cold-model experiment of the system, and model fuel reactor using commercial CFD software. As for the CLC system, the air reactor (AR) is designed as a fast fluidized bed while the fuel reactor (FR) is a bubbling bed; a cyclone is used for solid separation of the AR exit flow. The AR and FR are separated by two U-type loop seals to remain gas sealed. Considered the chemical kinetics of oxygen carrier, fluid dynamics, pressure balance and mass balance of the system simultaneously, some key design parameters of a CH{sub 4}-fueled and Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-based CLC reactor (thermal power of 50 kWth) are determined, including key geometric parameters (reactor cross-sectional area and reactor height) and operation parameters (bed material quantity, solid circulation rate, apparent gas velocity of each reactor). A cold-model bench having same geometric parameters with its prototype is built up to study the effects of various operation conditions (including gas velocity in the reactors and loop seals, and bed material height, etc.) on the solids circulation rate, gas leakage, and pressure balance. It is witnessed the cold-model system is able to meet special requirements for CLC system such as gas sealing between AR and FR, the circulation rate and particles residence time. Furthermore, the thermal FR reactor with oxygen carrier of Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} and fuel of CH{sub 4} is simulated by commercial CFD solver FLUENT. It is found that for the design case the combustion efficiency of CH{sub 4} reaches 88.2%. A few part of methane is unburned due to fast, large bubbles rising through the reactor.

  18. Kinetic Study of COS with Tertiary Alkanolamine Solutions. 1. Experiments in an Intensely Stirred Batch Reactor

    NARCIS (Netherlands)

    Littel, Rob J.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1992-01-01

    The reaction between COS and various tertiary alkanolamines in aqueous solutions has been studied in an intensely stirred batch reactor. Experiments for TEA, DMMEA, and DEMEA were carried out at 303 K; the reaction between COS and aqueous MDEA has been studied at temperatures ranging from 293 to 323

  19. Kinetic study of COS with tertiary alkanolamine solutions 1. Experiments in an intensely stirred batch reactor

    NARCIS (Netherlands)

    Littel, R.J.; Littel, R.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    The reaction between COS and various tertiary alkanolamines in aqueous solutions has been studied in an intensely stirred batch reactor. Experiments for TEA, DMMEA, and DEMEA were carried out at 303 K the reaction between COS and aqueous MDEA has been studied at temperaturm ranging from 293 to 323

  20. Resolving octant degeneracy at LBL experiment by combining Daya Bay reactor setup

    Science.gov (United States)

    Bora, Kalpana; Dutta, Debajyoti

    2014-03-01

    Long baseline Experiment(LBL) have promised to be a very powerful experimental setup to study various issues related to Neutrinos. Some ongoing and planned LBL and medium baseline experiments are- T2K, MINOS, NOvA, LBNE, LBNO etc. But, the long baseline experiments are crippled due to presence of some parameter degeneracies, like the Octant -degeneracy. In this work, we first show the presence of Octant degeneracy in LBL experiments and then combine it with Daya Bay Reactor experiment at different values of CP violation phase. We show that the Octant degeneracy in LBNE can be resolved completely with this proposal.

  1. Design Studies for a Multiple Application Thermal Reactor for Irradiation Experiments (MATRIX)

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Michael A.; Gougar, Hans D.; Ryskamp, J. M.

    2015-03-01

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Should unforeseen circumstances lead to the decommissioning of ATR, the U.S. Government would be left without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. A survey was conducted in order to catalogue the anticipated needs of potential customers. Then, concepts were evaluated to fill the role for this reactor, dubbed the Multi-Application Thermal Reactor Irradiation eXperiments (MATRIX). The baseline MATRIX design is expected to be capable of longer cycle lengths than ATR given a particular batch scheme. The volume of test space in In-Pile-Tubes (IPTs) is larger in MATRIX than in ATR with comparable magnitude of neutron flux. Furthermore, MATRIX has more locations of greater volume having high fast neutron flux than ATR. From the analyses performed in this work, it appears that the lead MATRIX design can be designed to meet the anticipated needs of the ATR replacement reactor. However, this design is quite immature, and therefore any requirements currently met must be re-evaluated as the design is developed further.

  2. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  3. A new MC-based method to evaluate the fission fraction uncertainty at reactor neutrino experiment

    CERN Document Server

    Ma, X B; Chen, Y X

    2016-01-01

    Uncertainties of fission fraction is an important uncertainty source for the antineutrino flux prediction in a reactor antineutrino experiment. A new MC-based method of evaluating the covariance coefficients between isotopes was proposed. It was found that the covariance coefficients will varying with reactor burnup and which may change from positive to negative because of fissioning balance effect, for example, the covariance coefficient between $^{235}$U and $^{239}$Pu changes from 0.15 to -0.13. Using the equation between fission fraction and atomic density, the consistent of uncertainty of fission fraction and the covariance matrix were obtained. The antineutrino flux uncertainty is 0.55\\% which does not vary with reactor burnup, and the new value is about 8.3\\% smaller.

  4. FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

    2012-10-30

    This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

  5. Supercritical Water Gasification of Biomass in a Ceramic Reactor: Long-Time Batch Experiments

    Directory of Open Access Journals (Sweden)

    Daniele Castello

    2017-10-01

    Full Text Available Supercritical water gasification (SCWG is an emerging technology for the valorization of (wet biomass into a valuable fuel gas composed of hydrogen and/or methane. The harsh temperature and pressure conditions involved in SCWG (T > 375 °C, p > 22 MPa are definitely a challenge for the manufacturing of the reactors. Metal surfaces are indeed subject to corrosion under hydrothermal conditions, and expensive special alloys are needed to overcome such drawbacks. A ceramic reactor could be a potential solution to this issue. Finding a suitable material is, however, complex because the catalytic effect of the material can influence the gas yield and composition. In this work, a research reactor featuring an internal alumina inlay was utilized to conduct long-time (16 h batch tests with real biomasses and model compounds. The same experiments were also conducted in batch reactors made of stainless steel and Inconel 625. The results show that the three devices have similar performance patterns in terms of gas production, although in the ceramic reactor higher yields of C2+ hydrocarbons were obtained. The SEM observation of the reacted alumina surface revealed a good resistance of such material to supercritical conditions, even though some intergranular corrosion was observed.

  6. Long-lived activation products in TRIGA Mark II research reactor concrete shield: calculation and experiment

    Science.gov (United States)

    Žagar, Tomaž; Božič, Matjaž; Ravnik, Matjaž

    2004-12-01

    In this paper, a process of long-lived activity determination in research reactor concrete shielding is presented. The described process is a combination of experiment and calculations. Samples of original heavy reactor concrete containing mineral barite were irradiated inside the reactor shielding to measure its long-lived induced radioactivity. The most active long-lived (γ emitting) radioactive nuclides in the concrete were found to be 133Ba, 60Co and 152Eu. Neutron flux, activation rates and concrete activity were calculated for actual shield geometry for different irradiation and cooling times using TORT and ORIGEN codes. Experimental results of flux and activity measurements showed good agreement with the results of calculations. Volume of activated concrete waste after reactor decommissioning was estimated for particular case of Jožef Stefan Institute TRIGA reactor. It was observed that the clearance levels of some important long-lived isotopes typical for barite concrete (e.g. 133Ba, 41Ca) are not included in the IAEA and EU basic safety standards.

  7. Background study for the KamLAND reactor neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, K; Minekawa, Y [RCNS, Tohoku University, Sendai 980-8578 (Japan)], E-mail: ichimura@awa.tohoku.ac.jp, E-mail: yukie@awa.tohoku.ac.jp

    2008-07-15

    One of the goals of the KamLAND experiment is a search for anti-neutrino oscillation via inverse {beta} decay with the characteristic delayed-coincidence method in the liquid scintillator. For a more precise measurement than previous KamLAND result [1], we have improved the background estimations of ({alpha}, n) and fast neutrons. We present the estimated number of backgrounds in our data set from Mar. 2002 to May 2007.

  8. Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Maldonado, Ivan [Univ. of Tennessee, Knoxville, TN (United States)

    2016-04-14

    The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate (“plank”) fuel. Proposal to FY12 NEUP entitled “Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors” was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed on December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project’s success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.

  9. Advanced Reactor Licensing: Experience with Digital I&C Technology in Evolutionary Plants

    Energy Technology Data Exchange (ETDEWEB)

    Wood, RT

    2004-09-27

    This report presents the findings from a study of experience with digital instrumentation and controls (I&C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l&C systems and identified lessons learned. The report (1) gives an overview of the modern l&C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States.

  10. Nuclear data covariances and sensitivity analysis, validation of a methodology based on the perturbation theory; application to an innovative concept: the molten thorium salt fueled reactor; Analyses de sensibilite et d'incertitude de donnees nucleaires. Contribution a la validation d'une methodologie utilisant la theorie des perturbations; application a un concept innovant: reacteur a sels fondus thorium a spectre epithermique

    Energy Technology Data Exchange (ETDEWEB)

    Bidaud, A

    2005-10-15

    Neutron transport simulation of nuclear reactors is based on the knowledge of the neutron-nucleus interaction (cross-sections, fission neutron yields and spectra...) for the dozens of nuclei present in the core over a very large energy range (fractions of eV to several MeV). To obtain the goal of the sustainable development of nuclear power, future reactors must have new and more strict constraints to their design: optimization of ore materials will necessitate breeding (generation of fissile material from fertile material), and waste management will require transmutation. Innovative reactors that could achieve such objectives - generation IV or ADS (accelerator driven system) - are loaded with new fuels (thorium, heavy actinides) and function with neutron spectra for which nuclear data do not benefit from 50 years of industrial experience, and thus present particular challenges. After validation on an experimental reactor using an international benchmark, we take classical reactor physics tools along with available nuclear data uncertainties to calculate the sensitivities and uncertainties of the criticality and temperature coefficient of a thorium molten salt reactor. In addition, a study based on the important reaction rates for the calculation of cycle's equilibrium allows us to estimate the efficiency of different reprocessing strategies and the contribution of these reaction rates on the uncertainty of the breeding and then on the uncertainty of the size of the reprocessing plant. Finally, we use this work to propose an improvement of the high priority experimental request list. (author)

  11. Summary of Thermocouple Performance During Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor and Out-of-Pile Thermocouple Testing in Support of Such Experiments

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Palmer; DC Haggard; J. W. Herter; M. Scervini; W. D. Swank; D. L. Knudson; R. S. Cherry

    2011-07-01

    High temperature gas reactor experiments create unique challenges for thermocouple based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B); and tungsten-rhenium thermocouples (Types C and W). For lower temperature applications, previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of these Nickel based thermocouples is limited when the temperature exceeds 1000°C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past ten years, three long-term Advanced Gas Reactor (AGR) experiments have been conducted with measured temperatures ranging from 700oC – 1200oC. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out of pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150oC and 1200oC for 2000 hours at each temperature, followed by 200 hours at 1250oC, and 200 hours at 1300oC. The standard Type N design utilizes high purity crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including Haynes 214 alloy sheath, spinel (MgAl2O4) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard fired alumina

  12. Summary of thermocouple performance during advanced gas reactor fuel irradiation experiments in the advanced test reactor and out-of-pile thermocouple testing in support of such experiments

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A. J.; Haggard, DC; Herter, J. W.; Swank, W. D.; Knudson, D. L.; Cherry, R. S. [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, (United States); Scervini, M. [University of Cambridge, Department of Material Science and Metallurgy, 27 Charles Babbage Road, CB3 0FS, Cambridge, (United Kingdom)

    2015-07-01

    High temperature gas reactor experiments create unique challenges for thermocouple-based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time-dependent change in composition and, as a consequence, a time-dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B) and tungsten-rhenium thermocouples (Type C). For lower temperature applications, previous experiences with Type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly, Type N thermocouples are expected to be only slightly affected by neutron fluence. Currently, the use of these nickel-based thermocouples is limited when the temperature exceeds 1000 deg. C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past 10 years, three long-term Advanced Gas Reactor experiments have been conducted with measured temperatures ranging from 700 deg. C - 1200 deg. C. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out-of-pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150 deg. C and 1200 deg. C for 2,000 hours at each temperature, followed by 200 hours at 1250 deg. C and 200 hours at 1300 deg. C. The standard Type N design utilizes high purity, crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including a Haynes 214 alloy sheath, spinel (MgAl{sub 2}O{sub 4}) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly

  13. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  14. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  15. Feasibility of conducting a dynamic helium charging experiment for vanadium alloys in the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1996-10-01

    The feasibility of conducting a dynamic helium charging experiment (DHCE) for vanadium alloys in the water-cooled Advanced Test Reactor (ATR) is being investigated as part of the U.S./Monbusho collaboration. Preliminary findings suggest that such an experiment is feasible, with certain constraints. Creating a suitable irradiation position in the ATR, designing an effective thermal neutron filter, incorporating thermocouples for limited specimen temperature monitoring, and handling of tritium during various phases of the assembly and reactor operation all appear to be feasible. An issue that would require special attention, however, is tritium permeation loss through the capsule wall at the higher design temperatures (>{approx}600{degrees}C). If permeation is excessive, the reduced amount of tritium entering the test specimens would limit the helium generation rates in them. At the lower design temperatures (<{approx}425{degrees}C), sodium, instead of lithium, may have to be used as the bond material to overcome the tritium solubility limitation.

  16. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  17. Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments

    Science.gov (United States)

    Kosmas, T. S.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2017-09-01

    We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated χ2-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.

  18. Study of in-reactor creep of vanadium alloy in the HFIR RB-12J experiment

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Konicek, C.F.; Tsai, H. [Argonne National Lab., IL (United States)

    1996-10-01

    Biaxial creep specimens will be included in the HFIR RB-12J experiment to study in-reactor creep of the V-4Cr-4Ti alloy at {approx}500{degrees}C and 5 dpa. These specimens were fabricated with the 500-kg, heat (832665) material and pressurized to attain 0, 50, 100, 150, and 200 MPa mid-wall hoop stresses during the irradiation.

  19. Indication of reactor ν(e) disappearance in the Double Chooz experiment.

    Science.gov (United States)

    Abe, Y; Aberle, C; Akiri, T; dos Anjos, J C; Ardellier, F; Barbosa, A F; Baxter, A; Bergevin, M; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bongrand, M; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P-J; Chimenti, P; Classen, T; Collin, A P; Conover, E; Conrad, J M; Cormon, S; Crespo-Anadón, J I; Cribier, M; Crum, K; Cucoanes, A; D'Agostino, M V; Damon, E; Dawson, J V; Dazeley, S; Dierckxsens, M; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Efremenko, Y; Elnimr, M; Endo, Y; Etenko, A; Falk, E; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Fernandes, S M; Franco, D; Franke, A J; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Göger-Neff, M; Gonzalez, L F G; Goodman, M C; Goon, J T M; Greiner, D; Guillon, B; Haag, N; Hagner, C; Hara, T; Hartmann, F X; Hartnell, J; Haruna, T; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G A; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L; Kamyshkov, Y; Kaplan, D M; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Kibe, Y; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Langbrandtner, C; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; Liu, Y; López-Castanõ, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Miletic, T; Milincic, R; Milzstajn, A; Miyata, H; Motta, D; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Peeters, S J M; Pepe, I M; Perasso, S; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Queval, R; Reichenbacher, J; Reinhold, B; Remoto, A; Reyna, D; Röhling, M; Roth, S; Rubin, H A; Sakamoto, Y; Santorelli, R; Sato, F; Schönert, S; Schoppmann, S; Schwan, U; Schwetz, T; Shaevitz, M H; Shrestha, D; Sida, J-L; Sinev, V; Skorokhvatov, M; Smith, E; Spitz, J; Stahl, A; Stancu, I; Strait, M; Stüken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Sun, Z; Svoboda, R; Tabata, H; Tamura, N; Terao, K; Tonazzo, A; Toups, M; Trinh Thi, H H; Veyssiere, C; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yanovitch, E; Yermia, F; Zbiri, K; Zimmer, V

    2012-03-30

    The Double Chooz experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. An observed-to-predicted ratio of events of 0.944±0.016(stat)±0.040(syst) was obtained in 101 days of running at the Chooz nuclear power plant in France, with two 4.25 GW(th) reactors. The results were obtained from a single 10 m(3) fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 flux measurement after correction for differences in core composition. The deficit can be interpreted as an indication of a nonzero value of the still unmeasured neutrino mixing parameter sin(2)2θ(13). Analyzing both the rate of the prompt positrons and their energy spectrum, we find sin(2)2θ(13)=0.086±0.041(stat)±0.030(syst), or, at 90% C.L., 0.017

  20. Assessment of subsurface salt water disposal experience on the Texas and Louisiana Gulf Coast for applications to disposal of salt water from geopressured geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, C.K.; Boardman, C.R.

    1978-08-04

    A representative cross section of the literature on the disposal of geothermal brine was perused and some of the general information and concepts is summarized. The following sections are included: disposal statistics--Texas Railroad Commission; disposal statistics--Louisiana Office of Conservation; policies for administering salt water disposal operations; salt water disposal experience of Gulf Coast operators; and Federal Strategic Petroleum Reserve Program's brine disposal operations. The literature cited is listed in the appended list of references. Additional literature is listed in the bibliography. (MHR)

  1. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the

  2. Optimization of Fast Critical Experiments to Reduce Nuclear Data Uncertainties in Support of a Fast Burner Reactor Design Concept

    Science.gov (United States)

    Stover, Tracy E., Jr.

    An optimization technique has been developed to select optimized experimental design specifications to produce data specifically designed to be assimilated to optimize a given reactor concept. Data from the optimized experiment is assimilated to generate posteriori uncertainties on the reactor concept's core attributes from which the design responses are computed. The reactor concept is then optimized with the new data to realize cost savings by reducing margin. The optimization problem iterates until an optimal experiment is found to maximize the savings. A new generation of innovative nuclear reactor designs, in particular fast neutron spectrum recycle reactors, are being considered for the application of closing the nuclear fuel cycle in the future. Safe and economical design of these reactors will require uncertainty reduction in basic nuclear data which are input to the reactor design. These data uncertainty propagate to design responses which in turn require the reactor designer to incorporate additional safety margin into the design, which often increases the cost of the reactor. Therefore basic nuclear data needs to be improved and this is accomplished through experimentation. Considering the high cost of nuclear experiments, it is desired to have an optimized experiment which will provide the data needed for uncertainty reduction such that a reactor design concept can meet its target accuracies or to allow savings to be realized by reducing the margin required due to uncertainty propagated from basic nuclear data. However, this optimization is coupled to the reactor design itself because with improved data the reactor concept can be re-optimized itself. It is thus desired to find the experiment that gives the best optimized reactor design. Methods are first established to model both the reactor concept and the experiment and to efficiently propagate the basic nuclear data uncertainty through these models to outputs. The representativity of the experiment

  3. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    of the mixture was varied from oxidizing to reducing conditions. Moreover, a series of experiments in an oxygen atmosphere instead of a nitrogen atmosphere has been done. A reaction mechanism based on a recent work by Burke et al. has been developed. In addition to modeling of the present experiments......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  4. On-site underground background measurements for the KASKA reactor-neutrino experiment

    Science.gov (United States)

    Furuta, H.; Sakuma, K.; Aoki, M.; Fukuda, Y.; Funaki, Y.; Hara, T.; Haruna, T.; Ishihara, N.; Katsumata, M.; Kawasaki, T.; Kuze, M.; Maeda, J.; Matsubara, T.; Matsumoto, T.; Miyata, H.; Nagasaka, Y.; Nakagawa, T.; Nakajima, N.; Nitta, K.; Sakai, K.; Sakamoto, Y.; Suekane, F.; Sumiyoshi, T.; Tabata, H.; Tamura, N.; Tsuchiya, Y.

    2006-12-01

    On-site underground background measurements were performed for the planned reactor-neutrino oscillation experiment KASKA at Kashiwazaki-Kariwa nuclear power station in Niigata, Japan. A small-diameter boring hole was excavated down to 70 m underground level, and a detector unit for γ-ray and cosmic-muon measurements was placed at various depths to take data. The data were analyzed to obtain abundance of natural radioactive elements in the surrounding soil and rates of cosmic muons that penetrate the overburden. The results will be reflected in the design of the KASKA experiment.

  5. Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors

    Directory of Open Access Journals (Sweden)

    Hong-Xin Wang

    2017-05-01

    Full Text Available We report the neutrino mass hierarchy (MH determination of medium baseline reactor neutrino experiments with multiple detectors, where the sensitivity of measuring the MH can be significantly improved by adding a near detector. Then the impact of the baseline and target mass of the near detector on the combined MH sensitivity has been studied thoroughly. The optimal selections of the baseline and target mass of the near detector are ∼12.5 km and ∼4 kton respectively for a far detector with the target mass of 20 kton and the baseline of 52.5 km. As typical examples of future medium baseline reactor neutrino experiments, the optimal location and target mass of the near detector are selected for the specific configurations of JUNO and RENO-50. Finally, we discuss distinct effects of the reactor antineutrino energy spectrum uncertainty for setups of a single detector and double detectors, which indicate that the spectrum uncertainty can be well constrained in the presence of the near detector.

  6. Overview of the 2014 Edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook)

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; J. Blair Briggs; Jim Gulliford; Ian Hill

    2014-10-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) is a widely recognized world class program. The work of the IRPhEP is documented in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Integral data from the IRPhEP Handbook is used by reactor safety and design, nuclear data, criticality safety, and analytical methods development specialists, worldwide, to perform necessary validations of their calculational techniques. The IRPhEP Handbook is among the most frequently quoted reference in the nuclear industry and is expected to be a valuable resource for future decades.

  7. Consolidated fuel reprocessing program: Criticality experiments with fast test reactor fuel pins in an organic moderator

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, S.R.

    1986-12-01

    The results obtained in a series of criticality experiments performed as part of a joint program on criticality data development between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan are presented in this report along with a complete description of the experiments. The experiments involved lattices of Fast Test Reactor (FTR) fuel pins in an organic moderator mixture similar to that used in the solvent extraction stage of fuel reprocessing. The experiments are designed to provide data for direct comparison with previously performed experimental measurements with water moderated lattices of FTR fuel pins. The same lattice arrangements and FTR fuel pin types are used in these organic moderated experimental assemblies as were used in the water moderated experiments. The organic moderator is a mixture of 38 wt % tributylphosphate in a normal paraffin hydrocarbon mixture of C{sub 11}H{sub 24} to C{sub 15}H{sub 32} molecules. Critical sizes of 1054.8, 599.2, 301.8, 199.5 and 165.3 fuel pins were obtained respectively for organic moderated lattices having 0.761 cm, 0.968 cm, 1.242 cm, 1.537 cm and 1.935 cm square lattice pitches as compared to 1046.9, 571.9, 293.9, 199.7 and 165.1 fuel pins for the same lattices water moderated.

  8. Computational Thermodynamic Modeling of Hot Corrosion of Alloys Haynes 242 and HastelloyTM N for Molten Salt Service in Advanced High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    V. Glazoff, Michael; Charit, Indrajt; Sabharwall, Piyush

    2014-09-17

    An evaluation of thermodynamic aspects of hot corrosion of the superalloys Haynes 242 and HastelloyTM N in the eutectic mixtures of KF and ZrF4 is carried out for development of Advanced High Temperature Reactor (AHTR). This work models the behavior of several superalloys, potential candidates for the AHTR, using computational thermodynamics tool (ThermoCalc), leading to the development of thermodynamic description of the molten salt eutectic mixtures, and on that basis, mechanistic prediction of hot corrosion. The results from these studies indicated that the principal mechanism of hot corrosion was associated with chromium leaching for all of the superalloys described above. However, HastelloyTM N displayed the best hot corrosion performance. This was not surprising given it was developed originally to withstand the harsh conditions of molten salt environment. However, the results obtained in this study provided confidence in the employed methods of computational thermodynamics and could be further used for future alloy design efforts. Finally, several potential solutions to mitigate hot corrosion were proposed for further exploration, including coating development and controlled scaling of intermediate compounds in the KF-ZrF4 system.

  9. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments using equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.

  10. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  11. First Test of Lorentz Violation with a Reactor-based Antineutrino Experiment

    CERN Document Server

    Abe, Y; Anjos, J C dos; Bergevin, M; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chimenti, P; Classen, T; Collin, A P; Conover, E; Conrad, J M; Crespo-Anadón, J I; Crum, K; Cucoanes, A; D'Agostino, M V; Damon, E; Dawson, J V; Dazeley, S; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Ebert, J; Efremenko, Y; Elnimr, M; Erickson, A; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Fischer, V; Franco, D; Franke, A J; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Göger-Neff, M; Gonzalez, L F G; Goodman, M C; Goon, J TM; Greiner, D; Haag, N; Habib, S; Hagner, C; Hara, T; Hartmann, F X; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G A; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L N; Kamyshkov, Y; Kaplan, D M; Katori, T; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; López-Castanõ, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Meyer, M; Miletic, T; Milincic, R; Miyata, H; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Pepe, I M; Perasso, S; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Pronost, G; Reichenbacher, J; Reinhold, B; Remoto, A; Röhling, M; Roncin, R; Roth, S; Rybolt, B; Sakamoto, Y; Santorelli, R; Sato, F; Schönert, S; Schoppmann, S; Schwetz, T; Shaevitz, M H; Shrestha, D; Sida, J -L; Sinev, V; Skorokhvatov, M; Smith, E; Spitz, J; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Stüken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Terao, K; Tonazzo, A; Toups, M; Thi, H H Trinh; Valdiviesso, G; Veyssiere, C; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yanovitch, E; Yermia, F; Zimmer, V

    2012-01-01

    We present a search for Lorentz violation with 8249 candidate electron antineutrino events taken by the Double Chooz experiment in 227.9 live days of running. This analysis, featuring a search for a sidereal time dependence of the events, is the first test of Lorentz invariance using a reactor-based antineutrino source. No sidereal variation is present in the data and the disappearance results are consistent with sidereal time independent oscillations. Under the Standard-Model Extension (SME), we set the first limits on fourteen Lorentz violating coefficients associated with transitions between electron and tau flavor, and set two competitive limits associated with transitions between electron and muon flavor.

  12. Experiment Needs and Facilities Study Appendix A Transient Reactor Test Facility (TREAT) Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-09-01

    The TREAT Upgrade effort is designed to provide significant new capabilities to satisfy experiment requirements associated with key LMFBR Safety Issues. The upgrade consists of reactor-core modifications to supply the physics performance needed for the new experiments, an Advanced TREAT loop with size and thermal-hydraulics capabilities needed for the experiments, associated interface equipment for loop operations and handling, and facility modifications necessary to accommodate operations with the Loop. The costs and schedules of the tasks to be accomplished under the TREAT Upgrade project are summarized. Cost, including contingency, is about 10 million dollars (1976 dollars). A schedule for execution of 36 months has been established to provide the new capabilities in order to provide timely support of the LMFBR national effort. A key requirement for the facility modifications is that the reactor availability will not be interrupted for more than 12 weeks during the upgrade. The Advanced TREAT loop is the prototype for the STF small-bundle package loop. Modified TREAT fuel elements contain segments of graphite-matrix fuel with graded uranium loadings similar to those of STF. In addition, the TREAT upgrade provides for use of STF-like stainless steel-UO{sub 2} TREAT fuel for tests of fully enriched fuel bundles. This report will introduce the Upgrade study by presenting a brief description of the scope, performance capability, safety considerations, cost schedule, and development requirements. This work is followed by a "Design Description". Because greatly upgraded loop performance is central to the upgrade, a description is given of Advanced TREAT loop requirements prior to description of the loop concept. Performance requirements of the upgraded reactor system are given. An extensive discussion of the reactor physics calculations performed for the Upgrade concept study is provided. Adequate physics performance is essential for performance of experiments with

  13. Neutrino-4 experiment on the search for a sterile neutrino at the SM-3 reactor

    Science.gov (United States)

    Serebrov, A. P.; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Chernyi, A. V.; Zherebtsov, O. M.; Martemyanov, V. P.; Tsinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanasiev, V. V.; Matrosov, L. N.; Matrosov, M. Yu.

    2015-10-01

    In view of the possibility of the existence of a sterile neutrino, test measurements of the dependence of the reactor antineutrino flux on the distance from the reactor core has been performed on SM-2 reactor with the Neutrino-2 detector model in the range of 6-11 m. Prospects of the search for reactor antineutrinos at short distances have been discussed.

  14. Neutrino-4 experiment on the search for a sterile neutrino at the SM-3 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Chernyi, A. V.; Zherebtsov, O. M. [National Research Centre “Kurchatov Institute,”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Martemyanov, V. P.; Tsinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I. [National Research Centre “Kurchatov Institute,” (Russian Federation); Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K. [State Scientific Centre Research Institute of Atomic Reactors (Russian Federation); and others

    2015-10-15

    In view of the possibility of the existence of a sterile neutrino, test measurements of the dependence of the reactor antineutrino flux on the distance from the reactor core has been performed on SM-2 reactor with the Neutrino-2 detector model in the range of 6–11 m. Prospects of the search for reactor antineutrinos at short distances have been discussed.

  15. Nuclear heating experiments for the validation of fusion reactor shielding performance

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Angelone, M. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Pillon, M. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Rado, V. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy)

    1997-05-01

    Nuclear heating experiments were performed at the 14 MeV Frascati neutron generator, with the purpose of validating the shielding performance of the International Thermonuclear Experiment Reactor (ITER) shielding system (first wall, shielding blanket and vacuum vessel). The experiments consisted of the irradiation, with 14 MeV neutrons, of large assemblies that simulated, for size and material composition, the shielding system and the toroidal field magnet. The nuclear heating was measured with different thermo-luminescent detectors, as a function of the penetration depth inside the assemblies. The experimental results obtained were compared with the same quantities calculated with the same nuclear database and code used for nuclear heating calculations in the ITER design. (orig.)

  16. Evaluation of Concepts for Mulitiple Application Thermal Reactor for Irradiation eXperiments (MATRIX)

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Michael A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryskamp, John M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Originally operated primarily in support of the Offcie of Naval Reactors (NR), the mission has gradually expanded to cater to other customers, such as the DOE Office of Nuclear Energy (NE), private industry, and universities. Unforeseen circumstances may lead to the decommissioning of ATR, thus leaving the U.S. Government without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. This work can be viewed as an update to a project from the 1990’s called the Broad Application Test Reactor (BATR). In FY 2012, a survey of anticipated customer needs was performed, followed by analysis of the original BATR concepts with fuel changed to low-enriched uranium. Departing from these original BATR designs, four concepts were identified for further analysis in FY2013. The project informally adopted the acronym MATRIX (Multiple-Application Thermal Reactor for Irradiation eXperiments). This report discusses analysis of the four MATRIX concepts along with a number of variations on these main concepts. Designs were evaluated based on their satisfaction of anticipated customer requirements and the “Cylindrical” variant was selected for further analysis of options. This downselection should be considered preliminary and the backup alternatives should include the other three main designs. The baseline Cylindrical MATRIX design is expected to be capable of higher burnup than the ATR (or longer cycle length given a

  17. Improvement of the Neutronic Performance of the PACER Fusion Concept Using Thorium Molten Salt with Reactor Grade Plutonium

    Science.gov (United States)

    Acır, Adem

    2013-02-01

    In this study, the improvement of neutronic performance of a dual purpose modified PACER concept has been investigated. Flibe as the main constituent are fixed as 92% coolant. ThF4 is mixed with increased mole-fractions of RG-PuF4 starting by 0 mol % up to 1 mol %. TBR variations for all the investigated salts with respect to the RG-PuF4 contents are computed. Tritium self-sufficiency is provided with the ThF4 when the adding RG-PuF4 content is higher than 0.75%. The energy multiplication of the blanket is increased as 70% with adding RG-PuF4 contents to ThF4. High quality fissile isotope 233U are produced with increasing RG-PuF4. DPA and helium production increases with increased RG-PuF4 content in molten salt. Radiation damage with dpa <1.7 and He <3.3 ppm after a plant operation period of 30 years will be well below the damage limit values.

  18. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  19. Experiment on Chloride Ion Content of Concrete Structure in Coastal Salt-fog Area

    Directory of Open Access Journals (Sweden)

    Nie Ming

    2016-01-01

    Full Text Available This paper chose the south-east coastal salt-fog area Shantou to carry out the experiment study on chloride ion content of concrete structure, through the chloride ion content field test on reinforced concrete structure in Shantou, respectively for the slat-fog atmosphere zone and the splash zone in marine environment, discuss the corrosion by chloride ion of long-time existing concrete structure.And then measure the chloride ion content of concrete cover in different depth, and determine the chloride ion diffusion model in different conditions concrete through comparative analysis.The result of study, can be used in directing the selection of design scheme for building in planning, and also it will help predict the corrosion time of reinforcement inside the concrete on different positions for existing structure.

  20. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  1. Salt reduction in the United Kingdom: a successful experiment in public health.

    Science.gov (United States)

    He, F J; Brinsden, H C; MacGregor, G A

    2014-06-01

    The United Kingdom has successfully implemented a salt reduction programme. We carried out a comprehensive analysis of the programme with an aim of providing a step-by-step guide of developing and implementing a national salt reduction strategy, which other countries could follow. The key components include (1) setting up an action group with strong leadership and scientific credibility; (2) determining salt intake by measuring 24-h urinary sodium, identifying the sources of salt by dietary record; (3) setting a target for population salt intake and developing a salt reduction strategy; (4) setting progressively lower salt targets for different categories of food, with a clear time frame for the industry to achieve; (5) working with the industry to reformulate food with less salt; (6) engaging and recruiting of ministerial support and potential threat of regulation by the Department of Health (DH); (7) clear nutritional labelling; (8) consumer awareness campaign; and (9) monitoring progress by (a) frequent surveys and media publicity of salt content in food, including naming and shaming, (b) repeated 24-h urinary sodium at 3-5 year intervals. Since the salt reduction programme started in 2003/2004, significant progress has been made as demonstrated by the reductions in salt content in many processed food and a 15% reduction in 24-h urinary sodium over 7 years (from 9.5 to 8.1 g per day, P<0.05). The UK salt reduction programme reduced the population's salt intake by gradual reformulation on a voluntary basis. Several countries are following the United Kingdom's lead. The challenge now is to engage other countries with appropriate local modifications. A reduction in salt intake worldwide will result in major public health improvements and cost savings.

  2. IEA-R1 Nuclear Research Reactor: 58 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra; Filho, Walter Ricci [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242 Cid Universitaria CEP: 05508-000- Sao Paulo-SP (Brazil)

    2015-07-01

    IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors. The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)

  3. Integral neutronics experiments in analytical mockups for blanket of a hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rong, E-mail: liurongzy@163.com; Zhu, Tonghua; Lu, Xinxin; Wang, Xinhua; Yan, Xiaosong; Feng, Song; Yang, Yiwei; Wang, Mei; Jiang, Li

    2014-12-15

    Highlights: • For checking property of the hybrid blanket by integral experiments, three mockups are established. • In spherical mockup with depleted uranium and cubic mockup with natural uranium, the plutonium production rates and uranium fission rates are measured. • In spherical mockup with depleted uranium and LiPb, tritium production rates are measured. • The measured results are compared to the calculated ones with MCNP-4B code and ENDF/B-VI library data. - Abstract: The paper describes recent progress in integral neutronics experiments in the analytical mockups for the blanket in a fusion-fission hybrid energy reactor. A conceptual blanket of the hybrid reactor is mainly loaded with natural uranium and lithium material. In the fission fuel region, uranium material and light water are arranged alternately. The mockups of the conceptual blanket are designed and used for checking neutron property of the blanket by integral experiments. Based on materials available, the spherical fission mockup for fission research and plutonium production consists of three layers of depleted uranium shells and several layers of polyethylene and graphite shells. The spherical lithium mockup for tritium production consists of depleted uranium and LiPb alloy shells. The cubic mockup consists of natural uranium and polyethylene and its structure is basically consistent with one of the fuel region. In the mockups with the D-T neutron source, the plutonium production rates, uranium fission rates and tritium production rates are measured, separately. The measured results are compared to the calculated ones with MCNP-4B code and ENDF/B-VI library data.

  4. A comparison of coal char reactivity determined from thermogravimetric and laminar flow reactor experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zolin, A.; Jensen, A.; Pedersen, L.S.; Dam-Johansen, K.; Toerslev, P. [Technical University of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1998-03-01

    The reactivity of nine different coals ranking from subbituminous to low-volatile bituminous has been studied by thermogravimetric analysis (TGA). At a standard set of conditions a qualitative fuel reactivity classification (ranking) with respect to one of the coals, Cerrejon, is presented. Particle reaction rates per unit external surface area and a normalized reactivity index based on raw experimental data were used as reactivity parameters to compare the fuels. The TGA chars were prepared at 900{degree}C with 15 min holding time and then combusted in a 20 mol % O{sub 2} environment at several temperatures in the range 450-650{degree}C. TGA reaction rate data were adequately interpreted by a random pore model. However, at 650{degree}C it is believed that particle ignition gave rise to a char reaction rate behavior that the model was incapable of describing properly. Except for two Southern Hemisphere coals, the reactivity ranking obtained with the TGA apparatus at a combustion temperature of 550{degree}C agrees well with a corresponding classification based on experiments carried out in another study with a laminar flow reactor (LFR) at {approximately} 1400{degree}C. The maximum difference in reaction rates based on external surface area between the coal chars in the low-temperature TGA experiments was 1 order of magnitude higher than in the high-temperature LFT experiments, due to the increasing effect of pore diffusion and thermal annealing of the coal chars in the LFR tests. The similarity in the reactivity ranking obtained for the Northern Hemisphere coals from both reactor systems indicates that a ranking can be performed by thermogravimetric analysis. This provides a simple means for determining a fuel reactivity ranking that could be applied to full scale suspension fired plants. 28 refs., 8 figs., 4 tabs.

  5. Reaction Rate Benchmark Experiments with Miniature Fission Chambers at the Slovenian TRIGA Mark II Reactor

    Science.gov (United States)

    Štancar, Žiga; Kaiba, Tanja; Snoj, Luka; Barbot, Loïc; Destouches, Christophe; Fourmentel, Damien; Villard, Jean-François AD(; )

    2018-01-01

    A series of fission rate profile measurements with miniature fission chambers, developed by the Commisariat á l'énergie atomique et auxénergies alternatives, were performed at the Jožef Stefan Institute's TRIGA research reactor. Two types of fission chambers with different fissionable coating (235U and 238U) were used to perform axial fission rate profile measurements at various radial positions and several control rod configurations. The experimental campaign was supported by an extensive set of computations, based on a validated Monte Carlo computational model of the TRIGA reactor. The computing effort included neutron transport calculations to support the planning and design of the experiments as well as calculations to aid the evaluation of experimental and computational uncertainties and major biases. The evaluation of uncertainties was performed by employing various types of sensitivity analyses such as experimental parameter perturbation and core reaction rate gradient calculations. It has been found that the experimental uncertainty of the measurements is sufficiently low, i.e. the total relative fission rate uncertainty being approximately 5 %, in order for the experiments to serve as benchmark experiments for validation of fission rate profiles. The effect of the neutron flux redistribution due to the control rod movement was studied by performing measurements and calculations of fission rates and fission chamber responses in different axial and radial positions at different control rod configurations. It was confirmed that the control rod movement affects the position of the maximum in the axial fission rate distribution, as well as the height of the local maxima. The optimal detector position, in which the redistributions would have minimum effect on its signal, was determined.

  6. Proposal on experience learning of a nuclear reactor for children in future. A basic concept on a nuclear reactor facility for demonstration and education

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Takashi [Kyoto Univ., Graduate School of Energy Science, Kyoto (Japan); Yoshiki, Nobuya; Kinehara, Yoshiki; Nakagawa, Haruo

    2001-12-01

    The Science Council of Japan indicates in a proposal on R and D on nuclear energy forward the 21st Century that it is important to expand the educational object on nuclear energy from colleges and gradual schools to elementary, middle high schools. And, the Committee of Japan Nuclear Energy Industries also proposed that as an effort forward security of reliability and popularization of knowledge, completeness of learning chance on energy and nuclear energy in education such as usage of general learning time, concept on establishment of educational reactor for demonstration and experience, is essential. Here was described on a concept on establishment of nuclear reactor for demonstration and experience at objectives of common national peoples, which was based on results of searches and investigations carried out by authors and aimed to supply to a field to grow up a literary adequately and widely capable of judging various information on the peoples by focusing to effectiveness of empirical learning as a method of promoting corrective understanding of common citizens on high class technical system and by establishment of the reactor aiming at general education on nuclear energy at a place easily accessible by common citizens, such as large city. (G.K.)

  7. Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment

    Science.gov (United States)

    Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan

    2013-01-01

    Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and

  8. Salt cookbook

    CERN Document Server

    Saha, Anirban

    2015-01-01

    If you are a professional associated with system and infrastructure management, looking at automated infrastructure and deployments, then this book is for you. No prior experience of Salt is required.

  9. Comparative study on neutron data in integral experiments of MYRRHA mockup critical cores in the VENUS-F reactor

    Science.gov (United States)

    Krása, Antonín; Kochetkov, Anatoly; Baeten, Peter; Vittiglio, Guido; Wagemans, Jan; Bécares, Vicente

    2017-09-01

    VENUS-F is a fast, zero-power reactor with 30% wt. metallic uranium fuel and solid lead as coolant simulator. It serves as a mockup of the MYRRHA reactor core. This paper describes integral experiments performed in two critical VENUS-F core configurations (with and without graphite reflector). Discrepancies between experiments and Monte Carlo calculations (MCNP5) of keff, fission rate spatial distribution and reactivity effects (lead void and fuel Doppler) depending on a nuclear data library used (JENDL-4.0, ENDF-B-VII.1, JEFF-3.1.2, 3.2, 3.3T2) are presented.

  10. Comparative study on neutron data in integral experiments of MYRRHA mockup critical cores in the VENUS-F reactor

    Directory of Open Access Journals (Sweden)

    Krása Antonín

    2017-01-01

    Full Text Available VENUS-F is a fast, zero-power reactor with 30% wt. metallic uranium fuel and solid lead as coolant simulator. It serves as a mockup of the MYRRHA reactor core. This paper describes integral experiments performed in two critical VENUS-F core configurations (with and without graphite reflector. Discrepancies between experiments and Monte Carlo calculations (MCNP5 of keff, fission rate spatial distribution and reactivity effects (lead void and fuel Doppler depending on a nuclear data library used (JENDL-4.0, ENDF-B-VII.1, JEFF-3.1.2, 3.2, 3.3T2 are presented.

  11. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO2, HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g-1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  12. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    2017-09-03

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties of Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.

  13. Initial Results from the CHOOZ Long Baseline Reactor Neutrino Oscillation Experiment

    CERN Document Server

    Apollonio, M

    1998-01-01

    Initial results are presented from CHOOZ, a long-baseline reactor-neutrino vacuum-oscillation experiment. Electron antineutrinos were detected by a liquid scintillation calorimeter located at a distance of about 1 km. The detector was constructed in a tunnel protected from cosmic rays by a 300 MWE rock overburden. This massive shielding strongly reduced potentially troublesome backgrounds due to cosmic-ray muons, leading to a background rate of about one event per day, more than an order of magnitude smaller than the observed neutrino signal. From the statistical agreement between detected and expected neutrino event rates, we find (at 90% confidence level) no evidence for neutrino oscillations in the electron antineutrino disappearance mode for the parameter region given approximately by deltam**2 > 0.9 10**(-3) eV**2 for maximum mixing and (sin(2 theta)**2) > 0.18 for large deltam**2.

  14. Analyzing the thermionic reactor critical experiments. [thermal spectrum of uranium 235 core

    Science.gov (United States)

    Niederauer, G. F.

    1973-01-01

    The Thermionic Reactor Critical Experiments (TRCE) consisted of fast spectrum highly enriched U-235 cores reflected by different thicknesses of beryllium or beryllium oxide with a transition zone of stainless steel between the core and reflector. The mixed fast-thermal spectrum at the core reflector interface region poses a difficult neutron transport calculation. Calculations of TRCE using ENDF/B fast spectrum data and GATHER library thermal spectrum data agreed within about 1 percent for the multiplication factor and within 6 to 8 percent for the power peaks. Use of GAM library fast spectrum data yielded larger deviations. The results were obtained from DOT R Theta calculations with leakage cross sections, by region and by group, extracted from DOT RZ calculations. Delineation of the power peaks required extraordinarily fine mesh size at the core reflector interface.

  15. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Rainer Moormann

    2008-01-01

    Full Text Available Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA. The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental pebble bed HTR, allow for a deeper insight into fission product transport behavior. The activity deposition per coolant pass was lower than expected and was influenced by fission product chemistry and by presence of carbonaceous dust. The latter lead also to inconsistencies between Cs plate out experiments in laboratory and in AVR. The deposition behavior of Ag was in line with present models. Dust as activity carrier is of safety relevance because of its mobility and of its sorption capability for fission products. All metal surfaces in pebble bed reactors were covered by a carbonaceous dust layer. Dust in AVR was produced by abrasion in amounts of about 5 kg/y. Additional dust sources in AVR were ours oil ingress and peeling of fuel element surfaces due to an air ingress. Dust has a size of about 1  m, consists mainly of graphite, is partly remobilized by flow perturbations, and deposits with time constants of 1 to 2 hours. In future reactors, an efficient filtering via a gas tight containment is required because accidents with fast depressurizations induce dust mobilization. Enhanced core temperatures in normal operation as in AVR and broken fuel pebbles have to be considered, as inflammable dust concentrations in the gas phase.

  16. Simulation of in-reactor experiments with the ELOCA.Mk5 code. AECL research No. AECL-11133

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.E.; Arimescu, V.I.; Carlucci, L.N.

    1994-12-31

    ELOCA.Mk5 is a FORTRAN-77 computer code developed to model the thermo-mechanical response and associated fission-product release behavior of CANDU fuel elements during high-temperature transients such as large-break loss of coolant accidents (LOCA). This paper reports the results of model runs conducted to simulate two in-reactor LOCA experiments, using ELOCA.Mk5 in the Mk4S mode. Mk4S is a thermo-mechanical mode capable of performing a multi-segment analysis of a CANDU fuel element, accounting for axial variations in sheath temperatures, metallurgical regions, and reactor neutron flux. The first LOCA experiment consisted of four elements subjected to a coolant depressurization in the Power Burst Facility at Idaho Falls. The second consisted of a single fresh element, with an artificially set internal gas pressure, subjected to a coolant depressurization in the NRX reactor.

  17. Status of the NGNP graphite creep experiments AGC-1 and AGC-2 irradiated in the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the next generation nuclear plant (NGNP) very high temperature gas reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have three different compressive loads applied to the top half of three diametrically opposite pairs of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment.

  18. Optimal design of radioactive particle tracking experiments for flow mapping in opaque multiphase reactors.

    Science.gov (United States)

    Roy, Shantanu; Larachi, Faical; Al-Dahhan, M H; Duduković, M P

    2002-03-01

    In the past decade, radioactive particle tracking techniques have emerged in the field of chemical engineering and have become increasingly popular for non-invasive flow mapping of the hydrodynamics in multiphase reactors. Based on gamma-ray sensitization of an array of scintillation detectors, the Computer Automated Radioactive Particle Tracking (CARPT) technique measures flow fields by monitoring the actual motion path of a single discrete radioactive flow follower which has the physical properties of the phase whose motion is being followed. A limitation to the accuracy of CARPT lies in the error associated with the reconstruction of the tracer particle position which affects the space-resolution capability of the technique. It is of interest, therefore, to minimize this error by choosing wisely the best hardware and an optimal configuration of CARPT detectors' array. Such choices are currently based on experience, without firm scientific basis. In this paper, through theoretical modeling and simulation, we describe how the accuracy of a radioactive particle tracking setup may be assessed a priori. Through an example of a proposed implementation of CARPT on a gas-solids riser, we demonstrate how this knowledge can be used for choosing the hardware required for the experiment. Finally, we show how the optimal arrangement of detectors can be effected for maximum accuracy for a given amount of monetary investment for the experiment.

  19. The Paucity Problem: Where Have All the Space Reactor Experiments Gone?

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D.; Marshall, Margaret A.

    2016-10-01

    The Handbooks of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) together contain a plethora of documented and evaluated experiments essential in the validation of nuclear data, neutronics codes, and modeling of various nuclear systems. Unfortunately, only a minute selection of handbook data (twelve evaluations) are of actual experimental facilities and mockups designed specifically for space nuclear research. There is a paucity problem, such that the multitude of space nuclear experimental activities performed in the past several decades have yet to be recovered and made available in such detail that the international community could benefit from these valuable historical research efforts. Those experiments represent extensive investments in infrastructure, expertise, and cost, as well as constitute significantly valuable resources of data supporting past, present, and future research activities. The ICSBEP and IRPhEP were established to identify and verify comprehensive sets of benchmark data; evaluate the data, including quantification of biases and uncertainties; compile the data and calculations in a standardized format; and formally document the effort into a single source of verified benchmark data. See full abstract in attached document.

  20. Experiences in the emptying of waste silos containing solid nuclear waste from graphite- moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wall, S.; Schwarz, T. [RWE NUKEM Limited, B7 Windscale, Seascale, Cumbria CA20 1PF (United Kingdom)

    2003-07-01

    Before reactor sites can be handed over for ultimate decommissioning, at some sites silos containing waste from operations need to be emptied. The form and physical condition of the waste demands sophisticated retrieval technologies taking into account the onsite situation in terms of infrastructure and silo geometry. Furthermore, in the case of graphite moderated reactors, this waste usually includes several tonnes of graphite waste requiring special HVAC and dust handling measures. RWE NUKEM Group has already performed several contracts dealing with such emptying tasks. Of particular interest for the upcoming decommissioning projects in France might be the activities at Vandellos, Spain and Trawsfynnyd, UK. Retrieval System for Vandellos NPP is discussed. Following an international competitive tender exercise, RWE NUKEM won the contract to provide a turn-key retrieval system. This involved the design, manufacture and installation of a system built around the modules of a 200 kg capacity version of the ARTISAN manipulator system. The ARTISAN 200 manipulator, with remote slave arm detach facility, was deployed on a telescopic mast inserted into the silos through the roof penetrations. The manipulator deployed a range of tools to gather the waste and load it into a transfer basket, deployed through an adjacent penetration. After commissioning, the system cleared the vaults in less than the scheduled period with no failures. At the Trawsfynnyd Magnox plants two types of intermediate level waste (ILW) accumulated on site; namely Miscellaneous Activated Components (MAC) and Fuel Element Debris (FED). MAC is predominantly components that have been activated by the reactor core and then discharged. FED mainly consists of fuel cladding produced when fuel elements were prepared for dispatch to the reprocessing facility. RWE NUKEM Ltd. was awarded a contract to design, supply, commission and operate equipment to retrieve, pack and immobilize the two waste streams. Major

  1. Uncertainty quantification of calculated temperatures for advanced gas reactor fuel irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Binh Thi-Cam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hawkes, Grant Lynn [Idaho National Lab. (INL), Idaho Falls, ID (United States); Einerson, Jeffrey James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    This paper presents the quantification of uncertainty of the calculated temperature data for the Advanced Gas Reactor (AGR) fuel irradiation experiments conducted in the Advanced Test Reactor at Idaho National Laboratory in support of the Advanced Reactor Technology Research and Development program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR tests, the results of the numerical simulations are used in combination with statistical analysis methods to improve qualification of measured data. The temperature simulation data for AGR tests are also used for validation of the fission product transport and fuel performance simulation models. These crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. To quantify the uncertainty of AGR calculated temperatures, this study identifies and analyzes ABAQUS model parameters of potential importance to the AGR predicted fuel temperatures. The selection of input parameters for uncertainty quantification of the AGR calculated temperatures is based on the ranking of their influences on variation of temperature predictions. Thus, selected input parameters include those with high sensitivity and those with large uncertainty. Propagation of model parameter uncertainty and sensitivity is then used to quantify the overall uncertainty of AGR calculated temperatures. Expert judgment is used as the basis to specify the uncertainty range for selected input parameters. The input uncertainties are dynamic accounting for the effect of unplanned events and changes in thermal properties of capsule components over extended exposure to high temperature and fast neutron irradiation. The sensitivity analysis performed in this work went beyond the traditional local sensitivity. Using experimental design, analysis of pairwise interactions of model parameters was performed to establish

  2. Contributions to safety studies for new concepts of nuclear reactors; Contributions aux etudes de surete pour des filieres innovantes de reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Perdu, F

    2003-12-01

    The complete study of molten salt reactors, designed for a massive and durable nuclear energy production, must include neutronics, hydraulics and thermal effects. This coupled study, using the MCNP and Trio{sub U} codes, is undertaken in the case of the MSRE (molten salt reactor experiment) prototype. The obtained results fit very well the experiment. Their extrapolation suggests ways of improving the safety coefficients of power molten salt reactors. A second part is devoted to accelerator driven subcritical reactors, developed to incinerate radioactive waste.We propose a method to measure the prompt reactivity from the decay following a neutron pulse. It relies only on the distribution of times between generations, which is a characteristic of the reactor. This method is implemented on the results of the MUSE 4 experiment, and the obtained reactivity is accurate within 5%. (author)

  3. Decay heat experiment and validation of calculation code systems for fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Wada, Masayuki

    1999-10-01

    Although accurate estimation of decay heat value is essential for safety analyses of fusion reactors against loss of coolant accidents and so on, no experimental work has been devoted to validating the estimation. Hence, a decay heat measurement experiment was performed as a task (T-339) of ITER/EDA. A new detector, the Whole Energy Absorption Spectrometer (WEAS), was developed for accurate and efficient measurements of decay heat. Decay heat produced in the thirty-two sample materials which were irradiated by 14-MeV neutrons at FNS/JAERI were measured with WEAS for a wide cooling time period from 1 min to 400 days. The data presently obtained were the first experimental decay heat data in the field of fusion. Validity of decay heat calculation codes of ACT4 and CINAC-V4, activation cross section libraries of FENDL/A-2.0 and JENDL Activation File, and decay data was investigated through analyses of the experiment. As a result, several points that should be modified were found in the codes and data. After solving the problems, it was demonstrated that decay heat valued calculated for most of samples were in good agreement with the experimental data. Especially for stainless steel 316 and copper, which were important materials for ITER, decay heat could be predicted with accuracy of {+-}10%. (author)

  4. Set of benchmark experiments on slit shielding compositions of thermonuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, M.I.; Afanasiev, V.V.; Belevitin, A.G.; Karaulov, A.V.; Romodanov, V.L. E-mail: rom@lng.mephi.msk.su; Sakharov, V.K.; Tikhomirov, G.V.; Vasiliev, A.P.; Kandiev, Ya. Z.; Lyutov, V.D.; Sokolov, Yu. A.; Terekhin, V.A.; Shmakov, V.M.; Androsenko, P.A.; Semenov, V.P.; Trykov, L.A.; Lopatkin, A.V.; Muratov, V.G

    2001-09-01

    The paper is based on the results of the ISTC project no. 180 that has recently been completed. The aim of the project was the development of methodical, hardware and design basis to carry out computational and experimental research on non-uniform shieldings of thermonuclear reactors. As a result a set of benchmark experiments were created. On their basis verification of the domestic and foreign computational codes with the nuclear data estimated was realized. For these purposes the iron hollow slits shielding compositions irradiated with 14.8 MeV energy neutrons were studied. The experimental installations allowed research of the shielding compositions with the following characteristics: a solid structure, a structure with one slit of a central symmetry, and the structures with asymmetric slits and with two slits. The thickness of shielding compositions in this research was 500 mm. The results of experiments were compared to the results of calculations by means of the MCNP-4a and PRIZMA computing codes with use of the FENDL-1.1, FENDL-2, JENDL-3.2 and BAS-78 libraries of nuclear data. The results of comparison made it possible to obtain the recommendations for use of these nuclear data.

  5. Preparations for deuterium--tritium experiments on the Tokamak Fusion Test Reactor*

    Energy Technology Data Exchange (ETDEWEB)

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Aschroft, D.; Barnes, C.W.; Barnes, G.; Batchelor, D.B.; Bateman, G.; Batha, S.; Baylor, L.A.; Beer, M.; Bell, M.G.; Biglow, T.S.; Bitter, M.; Blanchard, W.; Bonoli, P.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Burgess, T.; Bush, H.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Chang, Z.; Chen, L.; Cheng, C.Z.; Chrzanowski, J.; Collazo, I.; Collins, J.; Coward, G.; Cowley, S.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Faunce, J.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gettelfinger, G.; Gilbert, J.; Gioia, J.; Goldfinger, R.C.; Golian, T.; Gorelenkov, N.; Gouge, M.J.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Hermann, H.W.; Hill, K.W.; Hirshman, S.; Hoffman, D.J.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Ja

    1994-05-01

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. [bold 21], 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert[sup TM] system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium--deuterium (D--D) run to simulate expected deuterium--tritium (D--T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D--T experiments using D--D have been performed. The physics objectives of D--T operation are production of [approx]10 MW of fusion power, evaluation of confinement, and heating in deuterium--tritium plasmas, evaluation of [alpha]-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined [alpha] particles. Experimental results and theoretical modeling in support of the D--T experiments are reviewed.

  6. Experiments and Modelling Techniques for Heat and Mass Transfer in Light Water Reactors

    Directory of Open Access Journals (Sweden)

    W. Ambrosini

    2009-01-01

    Full Text Available The paper summarizes the lesson learned from theoretical and experimental activities performed at the University of Pisa, Pisa, Italy, in past decades in order to develop a general methodology of analysis of heat and mass transfer phenomena of interest for nuclear reactor applications. An overview of previously published results is proposed, highlighting the rationale at the basis of the performed work and its relevant conclusions. Experimental data from different sources provided information for model development and assessment. They include condensation experiments performed at SIET (Piacenza, Italy on the PANTHERS prototypical PCCS module, falling film evaporation tests for simulating AP600-like outer shell spraying conditions, performed at the University of Pisa, experimental data concerning condensation on finned tubes, collected by CISE (Piacenza, Italy in the frame of the INCON EU Project, and experimental tests performed in the CONAN experimental facility installed at the University of Pisa. The experience gained in these activities is critically reviewed and discussed to highlight the relevant obtained conclusions and the perspectives for future work.

  7. Salt tracer experiments in wetland ponds: will density stratification spoil the outcome?

    Science.gov (United States)

    Schmid, Bernhard H.; Hengl, Michael A.

    2017-04-01

    Wetland ponds are among the treatment options for peatland flows prior to their discharge into a receiving ambient water course or water body. The removal efficiency and effectiveness of wetland ponds (free water surface or FWS wetlands) is considered to be strongly related to the residence time or travel time distribution in the pond, with a narrow distribution (close to plug flow) being preferable to a wider one. This travel time distribution is, in turn, reflected by a breakthrough curve of an ideal tracer injected instantaneously into the flow (entering the wetland). As the term 'ideal tracer' suggests, such a substance, in real world cases, does not exist and can, at best, be approximated by a real tracer. Among the tracer groups in most widespread use, salt has the advantage of low cost, straightforward detection and analysis as well as low related environmental risk. In contrast, use of radioactive artificial tracers may meet with resistance from authorities and public, and fluorescent dyes are not necessarily devoid of problems, either (as recently discovered, there are two structural isomers of Rhodamin WT, the mixture of which may compromise the validity of breakthrough data analyses). From previous work by the authors it is known that density stratification may result from the injection of a salt tracer into a low Reynolds number free surface flow, which is a frequent characteristic of wetland ponds. As the formation of density layers in the course of a tracer experiment is highly undesirable, it may be useful to judge prior to beginning of the field work, if stratification is to be expected (and the experimental design should, consequently, be adapted suitably). The current work reported here employs an energy argument to extend existing criteria for density stratification in turbulent free surface flows. Vertical mixing is assumed to be sustained by a fraction of the frictional energy loss (expressed by Manning's law, but this can easily be adapted to

  8. Toward a Mechanistic Source Term in Advanced Reactors: A Review of Past U.S. SFR Incidents, Experiments, and Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Brunett, Acacia J.; Grabaskas, David

    2016-04-17

    In 2015, as part of a Regulatory Technology Development Plan (RTDP) effort for sodium-cooled fast reactors (SFRs), Argonne National Laboratory investigated the current state of knowledge of source term development for a metal-fueled, pool-type SFR. This paper provides a summary of past domestic metal-fueled SFR incidents and experiments and highlights information relevant to source term estimations that were gathered as part of the RTDP effort. The incidents described in this paper include fuel pin failures at the Sodium Reactor Experiment (SRE) facility in July of 1959, the Fermi I meltdown that occurred in October of 1966, and the repeated melting of a fuel element within an experimental capsule at the Experimental Breeder Reactor II (EBR-II) from November 1967 to May 1968. The experiments described in this paper include the Run-Beyond-Cladding-Breach tests that were performed at EBR-II in 1985 and a series of severe transient overpower tests conducted at the Transient Reactor Test Facility (TREAT) in the mid-1980s.

  9. Sea salt irradiation experiments relevant to the surface conditions of ocean worlds such as Europa and Enceladus

    Science.gov (United States)

    Hand, Kevin P.; Carlson, Robert W.

    2015-11-01

    We have conducted a set of laboratory experiments to measure changes in NaCl, KCl, MgCl2, and mixtures of these salts, as a function of exposure to the temperature, pressure, and radiation conditions relevant to ice covered ocean worlds in our solar system. Reagent grade salts were placed onto a diffuse aluminum target at the end of a cryostat coldfinger and loaded into an ultra-high vacuum chamber. The samples were then cooled to 100 K and the chamber pumped down to ~10-8 Torr, achieving conditions comparable to the surface of several moons of the outer solar system. Samples were subsequently irradiated with 10 keV electrons at an average current of 1 µA.We examined a range of conditions for NaCl including pure salts grains (~300 µm diameter), salt grains with water ice deposited on top, and evaporites. For the evaporites saturated salt water was loaded onto the cryostat target, the chamber closed, and then slowly pumped down to remove the water, leaving behind a salt evaporate for irradiation.The electron bombardment resulted in the trapping of electrons in halogen vacancies, yielding the the F- and M- color centers. After irraditiation we observed yellow-brown discoloration in NaCl. KCl was observed to turn a distinct violet. In NaCl these centers have strong absorptions at 450 nm and 720 nm, respectively, providing a highly diagnostic signature of otherwise transparent alkali halides, making it possible to remotely characterize and quantify the composition and salinity of ocean worlds.

  10. Air scaling and modeling studies for the 1/5-scale mark I boiling water reactor pressure suppression experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lai, W.; McCauley, E.W.

    1978-01-04

    Results of table-top model experiments performed to investigate pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peach Bottom Mark I boiling water reactor containment system guided subsequent conduct of the 1/5-scale torus experiment and provided new insight into the vertical load function (VLF). Pool dynamics results were qualitatively correct. Experiments with a 1/64-scale fully modeled drywell and torus showed that a 90/sup 0/ torus sector was adequate to reveal three-dimensional effects; the 1/5-scale torus experiment confirmed this.

  11. Basic experiments during loss of vacuum event (LOVE) in fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Masuro; Kunugi, Tomoaki; Seki, Yasushi (JAERI, Ibaraki (Japan))

    1993-06-01

    If a loss of vacuum event (LOVE) occurs due to damage of the vacuum vessel of a nuclear fusion experimental reactor, some chemical reactions such as a graphic oxidation and a buoyancy-driven exchange flow take place after equalization of the gas pressure between the inside and outside of the vacuum vessel. The graphite oxidation would generate inflammable carbon monoxide and release tritium retained in the graphite. The exchange flow through the breaches may transport the carbon monoxide and tritium out of the vacuum vessel. To add confidence to the safety evaluations and analyses, it is important to grasp the basic phenomena such as the exchange flow and the graphite oxidation. Experiments of the exchange flow and the graphite oxidation were carried out to obtain the exchange flow rate and the rate constant for the carbon monoxide combustion, respectively. These experimental results were compared with existing correlations. The authors plan a scaled-model test and a full-scale model test for the LOVE.

  12. A neutrino-induced deuteron disintegration experiment at the Krasnoyarsk nuclear reactor

    CERN Document Server

    Kozlov, Y V; Machulin, I N; Martemyanov, A V; Martemyanov, V P; Sabelnikov, A A; Tarasenkov, V G; Turbin, E V; Vyrodov, V N

    2002-01-01

    The results of studying antineutrino interactions with the nucleus of deuteron (CCD-and NCD reactions) and hydrogen (CCP) at the Krasnoyarsk underground reactor using Deuteron detector is presented. As a results, the cross sections for NCD and CCD were measured with 9% precision, and for the CCP precision is 3%: sigma sub e sub x sub p sup N sup C sup D = (3.35 +- 0.31) x 10 sup - sup 4 sup 4 cm sup 2 /fission sup 2 sup 3 sup 5 U, sigma sub e sub x sub p sup C sup C sup D = (1.08 +- 0.09) x 10 sup - sup 4 sup 4 cm sup 2 /fission sup 2 sup 3 sup 5 U, sigma sub e sub x sub p sup C sup C sup P = (6.39 +- 0.19) x 10 sup - sup 4 sup 3 cm sup 2 /fission sup 2 sup 3 sup 5 U. The precision of the experimental results is close to the theoretical one and is in a good agreement with the other experiments. The limit on the antineutrino oscillation parameters into the sterile state was obtained: DELTA m sup 2 <= 4.7 x 10 sup - sup 2 eV sup 2 , for sin sup 2 (2 theta) = 1.0 (68% C.L.). The comparison of the measured and...

  13. Solvothermal recrystallization of α-calcium sulfate hemihydrate: Batch reactor experiments and kinetic modelling

    Science.gov (United States)

    Macedo Portela da Silva, Nayane; Rong, Yi; Espitalier, Fabienne; Baillon, Fabien; Gaunand, Alain

    2017-08-01

    Under appropriate temperature conditions, natural gypsum CaSO4·2H2O, dispersed in an aqueous solution, turns into calcium hemihydrate CaSO4·½H2O. This transformation is performed in a 2 L stirred baffled reactor, where the temperature increase is measured and controlled on line. The water content of the suspension and its size distribution are measured on samples during the transformation. Experiments are achieved at nominal temperature of 140 °C, with three initial solid mass fractions 0.5, 0.33 and 0.25. The transformation takes place through a dissolution followed by re-crystallization. A model is proposed which takes into account the size distribution of the particles of gypsum, their dissolution rate, primary and secondary nucleation and growth rates of calcium hemihydrate. The set of equations is solved with a MATLAB software, which allows to test the assumptions on the kinetics of the transformation and fit their parameters. A satisfying representation of the variations of the extent of transformation and of volume and surface mean diameters of the suspension is obtained.

  14. Localized fast neutron flux enhancement for damage experiments in a research reactor; Accroissement local du flux rapide pour des experiences de dommages dans un reacteur de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, F

    2003-06-01

    In irradiation experiments on materials in the core of the Osiris reactor (CEA-Saclay) we seek to increase damage in irradiated samples and to reduce the duration of their stay in the core. Damage is essentially caused by fast neutrons (E {>=} 1 MeV); we have therefore pursued the possibility of a localized increase of their level in an irradiation experiment by using a flux converter device made up of fissile material arranged according to a suitable geometry that allows the converter to receive experiments. We have studied several parameters that are influential in the increase of fast neutron flux within the converter. We have also considered the problem of the converter's cooling in the core and its effect on the operation of the reactor. We have carried out a specific neutron calculation scheme based on the modular 2D-transport code APOLLO2 using a two-level transport method. Experimental validation of the flux calculation scheme was carried out in the ISIS reactor, the mock-up of OSIRIS, by optimizing the loading of fuel elements in the core. The experimental results show that the neutron calculation scheme computes the fluxes in close agreement with the measurements especially the fast flux. This study allows us to master the essential physical parameters needed for the design of a flux converter in an MTR reactor. (author)

  15. Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling

    KAUST Repository

    Rachidi, Mariam El

    2016-06-23

    This study is concerned with the identification and quantification of species generated during the combustion of cyclopentane in a jet stirred reactor (JSR). Experiments were carried out for temperatures between 740 and 1250K, equivalence ratios from 0.5 to 3.0, and at an operating pressure of 10atm. The fuel concentration was kept at 0.1% and the residence time of the fuel/O/N mixture was maintained at 0.7s. The reactant, product, and intermediate species concentration profiles were measured using gas chromatography and Fourier transform infrared spectroscopy. The concentration profiles of cyclopentane indicate inhibition of reactivity between 850-1000K for ϕ = 2.0 and ϕ = 3.0. This behavior is interesting, as it has not been observed previously for other fuel molecules, cyclic or non-cyclic. A kinetic model including both low- and high-temperature reaction pathways was developed and used to simulate the JSR experiments. The pressure-dependent rate coefficients of all relevant reactions lying on the PES of cyclopentyl+O, as well as the C-C and C-H scission reactions of the cyclopentyl radical were calculated at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The simulations reproduced the unique reactivity trend of cyclopentane and the measured concentration profiles of intermediate and product species. Sensitivity and reaction path analyses indicate that this reactivity trend may be attributed to differences in the reactivity of allyl radical at different conditions, and it is highly sensitive to the C-C/C-H scission branching ratio of the cyclopentyl radical decomposition.

  16. Coolant Compatibility Studies for Fusion and Fusion-Fission Hybrid Reactor Concepts: Corrosion of Oxide Dispersion Strengthened Iron-Chromium Steels and Tantalum in High Temperature Molten Fluoride Salts

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); El-dasher, Bassem [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferreira, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caro, Magdalena Serrano de [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kimura, Akihiko [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2010-05-04

    Alloys such as 12YWT & 14YWT have exceptional high-temperature strength at temperatures greater than 550 C. This class of materials has also demonstrated relatively little radiation induced swelling at damage levels of at least 75 dpa in sodium-cooled fast reactors. However, corrosion of oxide dispersion strengthened (ODS) steels in high temperature molten fluoride salts may limit the life of advanced reactor systems, including some fusion and fusionfission hybrid systems that are now under consideration. This paper reports corrosion studies of ODS steel in molten fluoride salts at temperatures ranging from 600 to 900 C. Electrochemical impedance spectroscopy (EIS) was used to measure the temperature dependence of charge transfer kinetics in situ, while an environmental electron microscope (ESEM) equipped with energy dispersive spectroscopy (EDS) was used for postexposure examination of test samples. ODS steel experienced corrosion in the molten fluoride salts at 550 to 900 C, even in carefully controlled glove-box environments with very low levels of oxygen and moisture. The observed rate of attack was found to accelerate dramatically at temperatures above 800 C. Tantalum and tantalum-based alloys such as Ta-1W and Ta-10W have exceptional high temperature strength, far better than ODS steels. Unlike ODS steels, tantalum has been found to exhibit some immunity to corrosive attack by molten fluoride salts at temperatures as high as 900 C, though there is some indication that grain boundary attack may have occurred. Unfortunately, tantalum alloys are known to become brittle during irradiation and exposure to hydrogen, both of which are important in fusion applications.

  17. Brine formation via deliquescence by salts found near Don Juan Pond, Antarctica: Laboratory experiments and field observational results

    Science.gov (United States)

    Gough, R. V.; Wong, J.; Dickson, J. L.; Levy, J. S.; Head, J. W.; Marchant, D. R.; Tolbert, M. A.

    2017-10-01

    The observed darkening of water tracks near Don Juan Pond (DJP) as well as the formation of wet patches elsewhere in the McMurdo Dry Valleys is attributed at least partially to deliquescence, a process by which salts absorb atmospheric water vapor and form brine, coupled with liquid-phase growth when the atmospheric relative humidity exceeds the water activity. Here we perform laboratory experiments to investigate the temperature and relative humidity conditions necessary for deliquescence to occur in calcium chloride-rich sediments collected from the DJP watershed. We use a Raman microscope equipped with an environmental cell to study both deliquescence and efflorescence (recrystallization) of the soluble salt component of DJP soils between -30 and +15 °C. In this temperature range, we find that the soluble salt component of the DJP sediments begins to deliquesce between 19 and 46% RH, slightly higher than the deliquescence relative humidity of the primary pure component, calcium chloride. We find a limited hysteresis between deliquescence and efflorescence, but much greater supersaturation of the salt brine can occur at temperatures above 0 °C. The relative humidity conditions were varied either slowly (over ∼8 h) to observe near-equilibrium phases or rapidly (over round hydrological cycle of the DJP watershed. Steep-sloped water tracks found near DJP have been suggested as a terrestrial analog for recurring slope lineae on Mars, for which salt deliquescence is a proposed formation mechanism. Therefore, understanding the formation of deliquescent brines in a hyper-arid region on Earth may have relevance to Mars.

  18. Reactor Neutrinos

    CERN Document Server

    Lasserre, T; Lasserre, Thierry; Sobel, Henry W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrino oscillation physics in the last years. It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the last undetermined neutrino mixing angle theta13. We conclude by opening on possible use of neutrinos for Society: NonProliferation of Nuclear materials and Geophysics.

  19. An Integrated Management System (IMS) for JM-1 SLOWPOKE-2 research reactor in Jamaica: experiences in documentation

    Energy Technology Data Exchange (ETDEWEB)

    Warner, T., E-mail: traceyann.warner02@uwimona.edu.jm [Univ. of West Indies, Mona (Jamaica)

    2014-07-01

    Since the first criticality in March 1984, the Jamaica SLOWPOKE-2 research reactor at the University of the West Indies, Mona located in the department of the International Centre for Environmental and Nuclear Sciences (ICENS) has operated for approximately 52% of the lifetime of the existing core configuration. The 20kW pool type research reactor has been primarily used for neutron activation analysis in environmental, agricultural, geochemical, health-related studies and mineral exploration in Jamaica. The involvement of the JM-1 reactor for research and teaching activities has segued into commercial applications which, coupled with the current core conversion programme from HEU to LEU, has demanded the implementation of management systems to satisfy regulatory requirements and assure compliance with internationally defined quality standards. At ICENS, documentation related to the Quality Management System aspect of an Integrated Management System (IMS) is well underway. The quality system will incorporate operational and nuclear safety, training, maintenance, design, utilization, occupational health and safety, quality service, and environmental management for its Nuclear Analytical Laboratory, NAL. The IMS is being designed to meet the requirements of the IAEA GS-R-3 with additional controls from international standards including: ISO/IEC 17025:2005, ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007. This paper reports on the experiences of the documentation process in a low power reactor facility characterized by limited human resource, where innovative mechanisms of system automation and modeling are included to increase productivity and efficiency. (author)

  20. Impact of soil nematodes on salt-marsh plants : a pilot experiment

    NARCIS (Netherlands)

    Dormann, CF; van der Wal, R

    2001-01-01

    We tested whether the removal of nematodes by means of nematicide application changed plant performance or influenced plant competition. The study involved the two common plant species Artemisia maritima and Festuca rubra growing in intact sods collected from a temperate salt marsh. Half of the sods

  1. Gap Size Uncertainty Quantification in Advanced Gas Reactor TRISO Fuel Irradiation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Binh T.; Einerson, Jeffrey J.; Hawkes, Grant L.; Lybeck, Nancy J.; Petti, David A.

    2016-10-01

    The Advanced Gas Reactor (AGR)-3/4 experiment is the combination of the third and fourth tests conducted within the tristructural isotropic fuel development and qualification research program. The AGR-3/4 test consists of twelve independent capsules containing a fuel stack in the center surrounded by three graphite cylinders and shrouded by a stainless steel shell. This capsule design enables temperature control of both the fuel and the graphite rings by varying the neon/helium gas mixture flowing through the four resulting gaps. Knowledge of fuel and graphite temperatures is crucial for establishing the functional relationship between fission product release and irradiation thermal conditions. These temperatures are predicted for each capsule using the commercial finite-element heat transfer code ABAQUS. Uncertainty quantification reveals that the gap size uncertainties are among the dominant factors contributing to predicted temperature uncertainty due to high input sensitivity and uncertainty. Gap size uncertainty originates from the fact that all gap sizes vary with time due to dimensional changes of the fuel compacts and three graphite rings caused by extended exposure to high temperatures and fast neutron irradiation. Gap sizes are estimated using as-fabricated dimensional measurements at the start of irradiation and post irradiation examination dimensional measurements at the end of irradiation. Uncertainties in these measurements provide a basis for quantifying gap size uncertainty. However, lack of gap size measurements during irradiation and lack of knowledge about the dimension change rates lead to gap size modeling assumptions, which could increase gap size uncertainty. In addition, the dimensional measurements are performed at room temperature, and must be corrected to account for thermal expansion of the materials at high irradiation temperatures. Uncertainty in the thermal expansion coefficients for the graphite materials used in the AGR-3/4 capsules

  2. 14MeV neutron irradiation experiment on window materials for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Fuminobu; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iida, Toshiyuki

    1997-06-01

    Data on wavelength spectra of photons emitted from window material during neutron and gamma-ray irradiation has been required for design of next D-T burning fusion reactor such as ITER. Thus, a photon measurement system has been developed to analyze wavelength spectra of photons emitted from the optical window materials during 14MeV-neutron irradiation, and the system consisted of a sample holder, a radiation-resistant optical fiber, a photon counting analyzer and other electronic devices. The irradiation experiments for synthesized sapphire, high-purity silica glass and synthesized quartz were performed using a fusion neutron source FNS. As for all the sample, number of photon emission was proportional to the 14MeV-neutron flux in the range of 10{sup 6}-10{sup 11}n/cm{sup 2}/sec. The photon emission efficiency of F-center luminescence of the sapphire was 2200 {+-} 700photons/MeV, while the efficiency of F{sup +}-center luminescence was two order less than that of F-center. The wavelength spectra of the high-purity silica glass had a large peak around 450nm, which was concerned with decay of self-trapped excitons in oxygen vacancies. Its photon emission efficiency for 14MeV-neutrons has been found to be about 5 {+-} 3photons/MeV in visible range, while that for gamma-rays to be about 135 {+-} 50photons/MeV. The spectrum of photons emitted from the quartz had two large peaks around not only 450nm but also 650nm, and the photon emission efficiency in the wavelength range of 350-750nm was 14 {+-} 4photons/MeV. (author)

  3. University of Illinois nuclear pumped laser program. [experiments with a TRIGA pulsed reactor with a broad pulse and a low peak flux

    Science.gov (United States)

    Miley, G. H.

    1979-01-01

    The development of nuclear pumped lasers with improved efficiency, energy storage capability, and UF6 volume pumping is reviewed. Results of nuclear pumped laser experiments using a TRIGA-type pulsed reactor are outlined.

  4. Potassium isotope fractionation between K-salts and saturated aqueous solutions at room temperature: Laboratory experiments and theoretical calculations

    Science.gov (United States)

    Li, Weiqiang; Kwon, Kideok D.; Li, Shilei; Beard, Brian L.

    2017-10-01

    Improvements in mass spectrometry have made it possible to identify naturally occurring K isotope (39K/41K) variability in terrestrial samples that can be used in a variety of geological and biological applications that involve cycling of K such as clay or evaporite formation. However, our ability to interpret K isotope variability is limited by a poor understanding of how K isotopes are fractionated at low temperatures. In this study, we conducted recrystallization experiments of eight K-salts in order to measure the K isotope fractionation factor between the salt and the saturated K solution (Δ41Kmin-sol). Measured Δ41Kmin-sol are +0.50‰ for K2CO3·1.5H2O, +0.32‰ for K2SO4, +0.23‰ for KHCO3, +0.06‰ for K2C2O4·H2O, +0.02‰ for KCl, -0.03‰ for K2CrO4, -0.15‰ for KBr, and -0.52‰ for KI. Overall the Δ41Kmin-sol decreases with increasing r for K in crystals, where r is the average distance between a K atom and its neighboring atoms of negative charge. Salts with monovalent anions and salts with divalent anion complexes define different linear trends with distinct slopes on a plot of Δ41Kmin-sol - r. We applied ab initio lattice dynamics and empirical crystal-chemistry models to calculation of K isotope fractionation factors between K salts; both methods showed that the calculated inter-mineral K isotope fractionation factors (Δ41Kmin-KCl) are highly consistent with experimentally derived Δ41Kmin-KCl under the assumption of consistent β factors for different saturated K solutions. Formulations for the crystal-chemistry model further indicate that both anion charge and bond length r are the principle controlling factors for K isotope fractionation, and the K isotope fractionation factors correlate with r following a 1/r3 relationship. Our experiment and theoretical study confirms the existence of significant equilibrium K isotope fractionation at ambient conditions, and the K isotope fractionation factors for halides and sulfate obtained in this

  5. Results of the radio-detection experiment HASRA (Hawaii Askaryan in Salt Radio Array) and prospect for UHE neutrino detection in salt

    Energy Technology Data Exchange (ETDEWEB)

    Milincic, Radovan, E-mail: radovan@physics.drexel.ed [Drexel University, Philadelphia, PA (United States); Gloucester County College, Sewell, NJ (United States)

    2010-01-01

    Measurements of radio emission, associated with Ultra High Energy Cosmic Ray particles interaction in a dense dielectric material, provide an effective method of their detection and exploration. The Hawaii Askaryan in Salt Radio Array (HASRA) was built to explore possibility of detection of coherent radio Cherenkov emission in rock salt from interaction of cosmic ray protons and air shower particles. Performance of the detector, the implemented detection techniques, and results of 1 year of measurements of Askaryan effect from CR particles with energy above 100 GeV will be reported. Also potential of the future detectors utilizing radio techniques in rock salt will be discussed.

  6. Column Experiments on the Salt Accumulation in Adjoining Different-Textured Soil Profiles with a Shallow Water Table

    OpenAIRE

    Kobayashi, Tetsuo; Yokoyama, Daisuke; Ebohara, Kenji; Sonoda, Yasutaka; Sakata, Yoshinobu; Urayama, Kazuki; Cho, Hiroyuki; Yoshikoshi, Hisashi; Kitano, Masaharu

    2008-01-01

    Two column experiments on the relation between soil texture and salinization in soil profiles with a shallow water table were conducted under rainless conditions using the concept of ECSAT. The buildup of salts due to evaporation from bare soil was confined within the superficial layer and its amount during a period could be assumed to equal the product of the total of evaporation during the period and the salinity of water supplied into the soil profile, such as irrigation water and/or groun...

  7. Experiments and modelling VOCs' removal in a DBD reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sarron, V.; Aubry, O.; Khacef, A.; Cormier, J.M. [Orleans Univ., Orleans Cedex (France). Polytech d' Orleans, Group for Research and Studies on Mediators of Inflamation

    2010-07-01

    Non-thermal plasma discharges are being considered as a means to convert volatile organic compounds (VOCs) diluted in air at atmospheric pressure. This study showed that the treatment of propane or ethane in a dielectric barrier discharge (DBD) reactor at a temperature of 800 K can be modeled from a chemical mechanism. The DBD reactor was simulated using consecutive elementary plug flow reactors (PFR). Streamer effects leading to active species production such as O-atoms in dry air from electronic dissociation of oxygen (O{sub 2}) were simulated by injection of O-atoms at the inlet of each elementary PFR. A good agreement was obtained for all the studied inlet mixtures, in which ethane concentrations and propane were varied in air. The concentration of O-atoms were found to play a role on carbon monoxide (CO) and carbon dioxide (CO{sub 2}) concentrations at a given energy density. An increase of O promoted CO{sub 2} concentration. In addition, the models made it possible to determine the concentrations levels of non measured by-products. The O-atom concentration was the main parameter of the developed model to simulate a DBD reactor. It was concluded that the obtained models can be efficient tools for predicting light hydrocarbons conversion in a non-thermal plasma. 7 refs., 10 figs.

  8. Measurement of neutrinos released in nuclear reactors through the Borexino experiment; Mesure des neutrinos de reacteurs nucleaires dans l'experience Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Dadoun, O

    2003-06-01

    The main goal of the Borexino experiment is to measure in real time the solar neutrino flux from the beryllium (Be{sup 7}) line at 862 keV. Beyond this pioneer low energy neutrino detection, Borexino will be able to measure solar neutrinos above the MeV, (B{sup 8} neutrinos and pep neutrinos), nuclear reactor neutrinos (with an average energy of 3 MeV) and the supernova neutrinos (their spectrum goes up to some ten MeV). In this work I mainly focus on the study of the nuclear reactors neutrinos. This field has recently been enriched by the results of the KamLAND experiment, which have greatly improved the determination of the neutrino oscillation parameters. In order to measure these events which are above the MeV, the Borexino collaboration entrusted the PCC group at College de France, with the tasks of developing a fast digit system running at 400 MHz: the FADC cards. The PCC group designed the FADC cards and completed them at the beginning of 2002. The first cards which were introduced in the main electronic acquisition unit allowed us to control their functioning and that of the acquisition software. FADC cards were also installed in the Borexino prototype, CTF. The data are analysed in order to determine a limit to the expected background noise of Borexino in measuring the nuclear reactor neutrinos. (author)

  9. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  10. Applicable regulations and development of surveillance experiments of criticality approach in the TRIGA III Mark reactor; Normativa aplicable y desarrollo de experimentos de vigilancia de aproximacion a criticidad en el reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, J.L.; Aguilar H, F.; Rivero G, T.; Sainz M, E. [Instituto nacional de Investigaciones Nucleares, Departamento de Automatizacion, A.P. 18-1027, Col. Escandon, 11801 Mexico D.F. (Mexico)

    2000-07-01

    In the procedure elaborated to repair the vessel of TRIGA III Mark reactor is required to move toward two tanks of temporal storage the fuel elements which are in operation and the spent fuel elements which are in decay inside the reactor pool. The National Commission of Nuclear Safety and Safeguards (CNSNS) has requested as protection measure that it is carried out a surveillance of the criticality approach of the temporal storages. This work determines the main regulation aspects that entails an experiment of criticality approach, moreover, informing about the results obtained in the developing of this experiments. The regulation aspects are not exclusives for this work in the TRIGA Mark III reactor but they also apply toward any assembling of fissile material. (Author)

  11. Two-phase flow experiments in a model of the hot leg of a pressurised water reactor. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Tobias; Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Deendarlianto

    2011-09-15

    In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264 C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which

  12. Advanced Instrumentation for Molten Salt Flow Measurements at NEXT

    Science.gov (United States)

    Tuyishimire, Olive

    2017-09-01

    The Nuclear Energy eXperiment Testing (NEXT) Lab at Abilene Christian University is building a Molten Salt Loop to help advance the technology of molten salt reactors (MSR). NEXT Lab's aim is to be part of the solution for the world's top challenges by providing safe, clean, and inexpensive energy, clean water and medical Isotopes. Measuring the flow rate of the molten salt in the loop is essential to the operation of a MSR. Unfortunately, there is no flow meter that can operate in the high temperature and corrosive environment of a molten salt. The ultrasonic transit time method is proposed as one way to measure the flow rate of high temperature fluids. Ultrasonic flow meter uses transducers that send and receive acoustic waves and convert them into electrical signals. Initial work presented here focuses on the setup of ultrasonic transducers. This presentation is the characterization of the pipe-fluid system with water as a baseline for future work.

  13. Effect of granular activated carbon concentration on the content of organic matter and salt, influencing E. coli activity and survival in fluidized bed disinfection reactor

    NARCIS (Netherlands)

    Racyte, J.; Langenhoff, A.A.M.; Ribeiro, A.F.M.M.R.; Paulitsch-Fuchs, A.H.; Bruning, H.; Rijnaarts, H.

    2014-01-01

    Granular activated carbon (GAC) is used in water treatment systems, typically to remove pollutants such as natural organic matter, volatile organic compounds, chlorine, taste, and odor. GAC is also used as a key component of a new technology that combines a fluidized bed reactor with radio frequency

  14. Evaluation of a Membrane Biological Reactor for Reclaiming Water, Alkalinity, Salts, Phosphorus, and Protein Contained in a High-Strength Aquacultural Wastewater

    Science.gov (United States)

    The capacity of a membrane biological reactor to provide nitrification, denitrification, and enhanced biological phosphorus removal of a high-strength aquaculture backwash flow (control condition), or the same flow amended with 100 mg/L of NO3-N and 3 mg/L of dissolved P (test condition), was assess...

  15. Solution of heat removal from nuclear reactors by natural convection

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2014-03-01

    Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  16. Experiments prior to construction of the Rapsodie reactor (1962); Experiences preliminaires a la construction de la pile rapsodie (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Vautrey, L.; Zaleski, C.P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1962-07-01

    Before proceeding to the construction of the various reactor components described in the paper 'Fast Breeder Reactor Rapsodie', many experimental studies of a hydraulic, thermal and mechanical character have been carried out, or are under consideration, to test the validity of the principles adopted in the Preliminary Project. This paper deals with the most important of these: 1. Studies of coolant circuit components: sodium pumps (mechanical or electromagnetic), Na-NaK and NaK ir heat exchangers, measuring instruments (flow rates, temperatures), sodium purification circuits, etc. 2. Studies in cooling of fuel and fertile assemblies: a) study of the sodium cooling carried out by means of hydraulic mockups (scale of 1: 1 or over) reproducing the flow of the coolant fluid in the piping, upstream from and inside the fuel and fertile elements. b) study of the cooling by gas and by immersion in lead, employed during handling and storage operations. 3. Studies of special reactor devices: fusible rotating linkage, parts of the control rod mechanisms. 4. Study of the reactor block and coolant circuits as a whole. This study is to begin at the end of the year. The mock-up, now nearing completion, reproduces on a scale of 1: 1 the installation provided in the Preliminary Project and includes: the reactor block, to which is connected a high flow ate sodium circuit, permitting of long-term tests and thermal shocks, and also, a control rod testing circuit; complete installation of the 1 MW and 10 MW coolant circuits, the performances of which it will be possible to check under various operational conditions. 5. A safety study carried out on a 3: 10 scale mock p comprising the whole of the reactor block and shielding, with the object of limiting the effects of any accidental liberation of energy of an explosive character. (authors) [French] Avant d'entreprendre la realisation des divers elements du reacteur decrit dans le rapport 'Reacteur rapide

  17. Clinical experience with and analytical confirmation of "bath salts" and "legal highs" (synthetic cathinones) in the United States.

    Science.gov (United States)

    Spiller, Henry A; Ryan, Mark L; Weston, Robert G; Jansen, Joanne

    2011-07-01

    Recently, there has been a worldwide rise in the popularity and abuse of synthetic cathinones. In 2009 and 2010, a significant rise in the abuse of a new group of synthetic cathinones was reported in Western Europe. In 2010, the rapid emergence of a new drug of abuse, referred to as bath salts or "legal high," occurred in the USA. The growing number of cases along with the alarming severity of the effects caused by the abuse of these substances prompted significant concern from both healthcare providers and legal authorities. We report the experience of the first 8 months of two regional poison centers after the emergence of a new group of substances of abuse. This was a retrospective case series of patients reported to two poison centers with exposures to bath salts. Additionally, 15 "product samples" were obtained and analyzed for drug content using GC/MS. There were 236 patients of which 184 (78%) were male. Age range was 16-64 years (mean 29 years, SD 9.4). All cases were intentional abuse. There were 37 separate "brand" names identified. Clinical effects were primarily neurological and cardiovascular and included: agitation (n = 194), combative behavior (n = 134), tachycardia (n = 132), hallucinations (n = 94), paranoia (n = 86), confusion (n = 83), chest pain (n = 40), myoclonus (n = 45), hypertension (n = 41), mydriasis (n = 31), CPK elevations (n = 22), hypokalemia (n = 10), and blurred vision (n = 7). Severe medical outcomes included death (n = 1), major (n = 8), and moderate (n = 130). Therapies included benzodiazepines (n = 125), antipsychotics (n = 47), and propofol (n = 10). Primary dispositions of patients were: 116 (49%) treated and released from ED, 50 (21%) admitted to critical care, 29 (12%) admitted to psych, and 28 (12%) lost to follow up. Nineteen patients had blood and/or urine analyzed using GC/MS. MDPV was detected in 13 of 17 live patients (range 24-241 ng/mL, mean 58 ng/mL). The four samples with no drug detected, reported last use of bath

  18. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  19. Deuterium retention in molten salt electrodeposition tungsten coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xu, Yu-Ping [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Sun, Ning-Bo; Zhang, Ying-Chun [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Mao, Hong-Min [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Ding, Fang; Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of Chinese Academy of Science, Hefei (China)

    2016-12-15

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  20. Salt impregnated desiccant matrices for ‘open’ thermochemical energy conversion and storage: improving energy density utilisation through hygrodynamic & thermodynamic reactor design

    OpenAIRE

    Casey, Sean P.; AYDIN, Devrim; Elvins, Jon; Riffat, Saffa

    2017-01-01

    In this study, the performance of three nano-composite energy storage absorbents; Vermiculite-CaCl2 (SIM-3a), Vermiculite-CaCl2-LiNO3 (SIM-3f), and the desiccant Zeolite 13X were experimentally investigated for suitability to domestic scale thermal energy storage. A novel 3 kWh open thermochemical reactor consisting of new meshed tube air diffusers was built to experimentally examine performance. The results were compared to those obtained using a previously developed flatbed experimental rea...

  1. Experience on impregnation of wood.en poles with water borne salts ...

    African Journals Online (AJOL)

    The paper brief ly describes the experience of the Ethiopian Electric Light and Power Authority in treatment of wooden poles used for over-head power transmission. Two types of treatment methods have been tried by the Authority. They are: 1. the COBRA treatment method 2. the FULL CELL treatment method. The first ...

  2. Experience with simulators for development and evaluation of operator support systems at the OECD Halden reactor project

    Energy Technology Data Exchange (ETDEWEB)

    Berg, O.; Holmstroem, C.O.B.; Volden, F. [Inst. for Energiteknikk, Halden (Norway)

    1994-12-31

    The OECD Halden Reactor Project carries out research and development of computer-based systems for nuclear power plants. The aim is to design, build and evaluate computer-based systems which can assist and support operators in their various cognitive tasks and through this improve the total performance and safety of complex plant operations. The operator support systems are tested and evaluated through experiments in the Halden Man-Machine Laboratory using the NORS pressurized water reactor simulator. An experiment to assess the impact on operator behaviour when using a rule-based expert system for fault diagnosis will be described. Two different computerised operator support systems utilising on-line simulation models are described. The first system is the core surveillance system SCORPIO which has been in operation at the Ringhals plant in Sweden since the end of 1987. This system performs core monitoring functions by logging and presenting measured data together with results from three-dimensional simulations of the core. In predictive mode the development during the coming two days may be simulated, and a strategy generator is available to facilitate transient planning. The second system is an early fault detection system for the feedwater system installed in the Loviisa plant in Finland. The method used is to run small, decoupled mathematical models which calculate the state of the process assuming no faults. The behaviour of these models is then compared with the behaviour of the real process, and if there is a deviation, an alarm is triggered. For both systems special emphasize has been put on making a user-friendly operator interface where simulator data are combined with measurements. (orig.) (8 refs., 10 figs.).

  3. A newly designed 45 to 60 mer oligonucleotide Agilent platform microarray for global gene expression studies of Synechocystis PCC6803: example salt stress experiment

    NARCIS (Netherlands)

    Aguirre von Wobeser, E.; Huisman, J.; Ibelings, B.; Matthijs, H.C.P.; Matthijs, H.C.P.

    2005-01-01

    A newly designed 45 to 60 mer oligonucleotide Agilent platform microarray for global gene expression studies of Synechocystis PCC6803: example salt stress experiment Eneas Aguirre-von-Wobeser 1, Jef Huisman1, Bas Ibelings2 and Hans C.P. Matthijs1 1 Universiteit van Amsterdam, Amsterdam, The

  4. Scintillation light production, propagation and detection in the Stereo reactor antineutrino experiment

    Science.gov (United States)

    Buck, Christian; Lindner, Manfred; Roca, Christian

    2017-09-01

    The Stereo experiment’s detector has been optimized to observe reactor antineutrinos via inverse beta decay within a 1800 liter volume filled with Gadolinium-doped organic liquid scintillator (LS). The main requirements for the scintillator in Stereo are compatibility with detector materials as the acrylic vessels, transparency, light yield, pulse shape discrimination capabilities as well as chemical and optical stability over several years of data taking. With these conditions in mind, the composition of the LS is mainly a mix of 75% LAB, 20%PXE and 5% DIN combined with the two wavelength-shifters PPO and Bis-MSB. The final admixture after the full scale production lead to an attenuation length of more than 5 meters for optical photons of 430 nm. The scintillation light produced in the Gd-loaded target volume and the Gd-free outer crown is detected by 48 eight inch PMTs on top of the detector. A correct performance of the PMTs has been ensured through several tests. Common characteristics for PMTs as gain, single photoelectron peak, time behaviour, dark rate and afterpulse ratio were measured resulting in a complete agreement with the manufacturer values.

  5. A Methodology for Loading the Advanced Test Reactor Driver Core for Experiment Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cowherd, Wilson M.; Nielsen, Joseph W.; Choe, Dong O.

    2016-11-01

    In support of experiments in the ATR, a new methodology was devised for loading the ATR Driver Core. This methodology will replace the existing methodology used by the INL Neutronic Analysis group to analyze experiments. Studied in this paper was the as-run analysis for ATR Cycle 152B, specifically comparing measured lobe powers and eigenvalue calculations.

  6. Oscillating Hydrofoils for Tidal Energy Extraction: Experiments, Simulations and Salt Water Field Tests

    Science.gov (United States)

    Mandre, S.; Franck, J.; Breuer, K.; Fawzi, A.; Cardona, J.; Miller, M. J.; Su, Y.; Medina, A.; Loera Loera, C.; Junquera, E.; Simeski, F.; Volkmann, K.; Lorick, R.; Cowles, S.; Luiz Rocha Ribeiro, B.; Winckler, S.; Derecktor, T.

    2015-12-01

    We report on the development of a new oscillating hydrofoil technology for tidal flow energy harvesting. A series of flume experiments and computational fluid dynamics (CFD) simulations have been performed over a wide range of frequencies, f, heave amplitudes, h, and pitch angles, θ. The flume model has chord, c, of 10 cm and aspect ratio of 4.5. Mechanical power extracted is estimated from the foil trajectory, force and moment data. A robust real-time algorithm has been developed to identify the kinematics that optimizes either the total power or the Betz efficiency. Optimal efficiency is found when the pitch and heave cycles are 90 degrees out of phase, oscillating at a reduced frequency, fc/U, of approximately 0.15, with a heave amplitude of approximately 1c, and a pitch amplitude of θ=75 degrees. The high pitch amplitude and sharp leading edge of the foil generates a transient leading edge vortex on the suction side of the foil, significantly enhancing the vertical force and power. The optimal frequency ensures that the vortex generation and ultimate shedding maximize these unsteady hydrodynamic effects. The flume results, including power and efficiency, as well as flow visualization and particle image velocimetry (PIV) exhibit excellent agreement with the CFD. Furthermore, extensive CFD and physical experiments have been performed to investigate the effects of operating in confined or shallow channels. It is found that the efficiency and power generation can significantly increase in confined areas due to the acceleration of the freestream flow around the device. Finally, the Leading Edge team has designed, built, and as of this date, is currently field-testing a 1kW prototype device consisting of two foils operating in parallel. The prototype is attached to the underside of a pontoon boat, and testing is currently underway in the Narragansett Bay near Providence RI. On completion of the field tests, in October 2015, data from the prototype will be analyzed

  7. Experience Gained during the Adaptation of Classical ChE Subjects to the Bologna Plan in Europe: The Case of Chemical Reactors

    Science.gov (United States)

    Ponsa, Sergio; Sanchez, Antoni

    2011-01-01

    At present, due to the overall adaptation to the European Higher Education Area (EHEA), a new concept regarding the teaching methodology was thought to be essential for engineering subjects. In this paper we describe our experience teaching the altered content of the courses on two classical subjects; Chemical Reactors (Chemical Engineering) and…

  8. Welding procedures used in the fabrication of fuel elements for the DON Reactor exponential experiment; La soldadura en la fabricacion de elementos combustibles destinados a una experiencia exponencial

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Beltran, A.; Jaraiz Franco, E.; Rivas Diaz, M. de las

    1965-07-01

    This exponential experiment required 74 units (37 loaded with UO{sub 2} and 37 with UC) to simulate the Reactor fuel channels. Each unit was enclosed in a tube similar to the calandria ones. It contained the pressure tube, the shroud and the 19 rods cluster. Within the pressure tube, in touch with the elements, was the organic liquid. (Author)

  9. Experiments in the experimental fast reactor VENUS-F: The FREYA project; Experimentos en el reactor rapido experimental VENUS-F: El proyecto FREYA

    Energy Technology Data Exchange (ETDEWEB)

    Villamarin, D.; Becares, V.; Cano, D.; Gonzalez, E.

    2011-07-01

    Due to the high flexibility of operation of the reactor VENUS-E, FREYA project has two main objectives. The first is the end of the study monitoring techniques reactivity and serve as validation of simulation codes. The second objective is to provide experimental support for design and licensing MYRRHA / FASTEE and TRF in collaboration with CDTy LEADER projects of the 7th Framework Programme of the EU.

  10. Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information

    Energy Technology Data Exchange (ETDEWEB)

    M. Chen; CM Regan; D. Noe

    2006-01-09

    Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas release and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.

  11. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  12. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  13. As-Run Physics Analysis for the UCSB-1 Experiment in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Joseph Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The University of California Santa Barbara (UCSB) -1 experiment was irradiated in the A-10 position of the ATR. The experiment was irradiated during cycles 145A, 145B, 146A, and 146B. Capsule 6A was removed from the test train following Cycle 145A and replaced with Capsule 6B. This report documents the as-run physics analysis in support of Post-Irradiation Examination (PIE) of the test. This report documents the as-run fluence and displacements per atom (DPA) for each capsule of the experiment based on as-run operating history of the ATR. Average as-run heating rates for each capsule are also presented in this report to support the thermal analysis.

  14. THERMAL NEUTRONIC REACTOR

    Science.gov (United States)

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  15. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  16. Review and future outlook of Dragon project/signatory organisations' collaborations in the integral reactor physics experiments - December 1973

    Energy Technology Data Exchange (ETDEWEB)

    Gutmann, H.

    1974-10-15

    The paper provides an overview of the collaborative reactor physics experiments conducted in the DRAGON Countries as of December 1973 summarizing those that have been conducted for high enriched uranium/thorium systems, those being conducted for low enriched uranium and plutonium systems, those conducted with irradiated fuel, and those on-going with integral fuel blocks. A list of relevant reports and papers on experiments is provided.

  17. High Fluency Low Flux Embrittlement Models of LWR Reactor Pressure Vessel Embrittlement and a Supporting Database from the UCSB ATR-2 Irradiation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-01-24

    Reactor pressure vessel embrittlement may limit the lifetime of light water reactors (LWR). Embrittlement is primarily caused by formation of nano-scale precipitates, which cause hardening and a subsequent increase in the ductile-to-brittle transition temperature of the steel. While the effect of Cu has historically been the largest research focus of RPV embrittlement, there is increasing evidence that Mn, Ni and Si are likely to have a large effect at higher fluence, where Mn-Ni-Si precipitates can form, even in the absence of Cu. Therefore, extending RPV lifetimes will require a thorough understanding of both precipitation and embrittlement at higher fluences than have ever been observed in a power reactor. To address this issue, test reactors that irradiate materials at higher neutron fluxes than power reactors are used. These experiments at high neutron flux can reach extended life neutron fluences in only months or several years. The drawback of these test irradiations is that they add additional complexity to interpreting the data, as the irradiation flux also plays a role into both precipitate formation and irradiation hardening and embrittlement. This report focuses on developing a database of both microstructure and mechanical property data to better understand the effect of flux. In addition, a previously developed model that enables the comparison of data taken over a range of neutron flux is discussed.

  18. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor

    OpenAIRE

    Rainer Moormann

    2008-01-01

    Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA). The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental ...

  19. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  20. High density LHRF experiments in Alcator C-Mod and implications for reactor scale devices

    Science.gov (United States)

    Baek, S. G.; Parker, R. R.; Bonoli, P. T.; Shiraiwa, S.; Wallace, G. M.; LaBombard, B.; Faust, I. C.; Porkolab, M.; Whyte, D. G.

    2015-04-01

    Parametric decay instabilities (PDI) appear to be an ubiquitous feature of lower hybrid current drive (LHCD) experiments at high density. In density ramp experiments in Alcator C-Mod and other machines the onset of PDI activity has been well correlated with a decrease in current drive efficiency and production of fast electron bremsstrahlung. However whether PDI is the primary cause of the ‘density limit’, and if so by exactly what mechanism (beyond the obvious one of pump depletion) has not been clearly established. In order to further understand the connection, the frequency spectrum of PDI activity occurring during Alcator C-Mod LHCD experiments has been explored in detail by means of a number of RF probes distributed around the periphery of the C-Mod tokamak including a probe imbedded in the inner wall. The results show that (i) the excited spectra consists mainly of a few discrete ion cyclotron (IC) quasi-modes, which have higher growth than the ion sound branch; (ii) PDI activity can begin either at the inner or outer wall, depending on magnetic configuration; (iii) the frequencies of the IC quasi-modes correspond to the magnetic field strength close to the low-field side (LFS) or high-field side separatrix; and (iv) although PDI activity may initiate near the inner separatrix, the loss in fast electron bremsstrahlung is best correlated with the appearance of IC quasi-modes characteristic of the magnetic field strength near the LFS separatrix. These data, supported by growth rate calculations, point to the importance of the LFS scrape-off layer (SOL) density in determining PDI onset and degradation in current drive efficiency. By minimizing the SOL density it is possible to extend the core density regime over which PDI can be avoided, thus potentially maximizing the effectiveness of LHCD at high density. Increased current drive efficiency at high density has been achieved in FTU and EAST through lithium coating and special fuelling methods, and in recent

  1. Development of reactor graphite

    Science.gov (United States)

    Haag, G.; Mindermann, D.; Wilhelmi, G.; Persicke, H.; Ulsamer, W.

    1990-04-01

    The German graphite development programme for High Temperature Reactors has been based on the assumption that reactor graphite for core components with lifetime fluences of up to 4 × 10 22 neutrons per cm 2 (EDN) at 400°C can be manufactured from regular pitch coke. The use of secondary coke and vibrational moulding techniques have allowed production of materials with very small anisotropy, high strength, and high purity which are the most important properties of reactor graphite. A variety of graphite grades has been tested in fast neutron irradiation experiments. The results show that suitable graphites for modern High Temperature Reactors with spherical fuel elements are available.

  2. Membrane reactors at Degussa.

    Science.gov (United States)

    Wöltinger, Jens; Karau, Andreas; Leuchtenberger, Wolfgang; Drauz, Karlheinz

    2005-01-01

    The review covers the development of membrane reactor technologies at Degussa for the synthesis of fine chemicals. The operation of fed-batch or continuous biocatalytic processes in the enzyme membrane reactor (EMR) is well established at Degussa. Degussa has experience of running EMRs from laboratory gram scale up to a production scale of several hundreds of tons per year. The transfer of the enzyme membrane reactor from biocatalysis to chemical catalysis in the chemzyme membrane reactor (CMR) is discussed. Various homogeneous catalysts have been investigated in the CMR, and the scope and limitation of this new technique is discussed.

  3. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  4. Hydrogen permeation through Flinabe fluoride molten salts for blanket candidates

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, Ryosuke, E-mail: r.nishiumi@aees.kyushu-u.ac.jp; Fukada, Satoshi; Nakamura, Akira; Katayama, Kazunari

    2016-11-01

    Highlights: • H{sub 2} diffusivity, solubility and permeability in Flinabe as T breeder are determined. • Effects in composition differences among Flibe, Fnabe and Flinabe are compared. • Changes of pressure dependence of Flinabe permeation rate are clarified. - Abstract: Fluoride molten salt Flibe (2LiF + BeF{sub 2}) is a promising candidate for the liquid blanket of a nuclear fusion reactor, because of its large advantages of tritium breeding ratio and heat-transfer fluid. Since its melting point is higher than other liquid candidates, another new fluoride molten salt Flinabe (LiF + NaF + BeF{sub 2}) is recently focused on because of its lower melting point while holding proper breeding properties. In this experiment, hydrogen permeation behavior through the three molten salts of Flibe (2LiF + BeF{sub 2}), Fnabe (NaF + BeF{sub 2}) and Flinabe are investigated in order to clarify the effects of their compositions on hydrogen transfer properties. After making up any of the three molten salts and purifying it using HF, hydrogen permeability, diffusivity and solubility of the molten salts are determined experimentally by using a system composed of tertiary cylindrical tubes. Close agreement is obtained between experimental data and analytical solutions. H{sub 2} permeability, diffusivity and solubility are correlated as a function of temperature and are compared among the three molten salts.

  5. Calculation of a materials relocation experiment simulating a core disruptive accident condition in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, T. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Ninokata, H. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Shimizu, A. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1995-07-01

    This paper describes an interpretation of the SIMBATH (Simulationsexperimente in Brennelementattrappen mit Thermit) experiments that use the SIMMER-II code. A series of SIMBATH experiments has aimed at simulating fuel pin disintegration and following materials relocation in the test sections of a single pin to 37-pin bundles. In the calculation, three modifications were incorporated into the SIMMER-II code. With these modifications, the calculation showed good agreement with the experimental measurements with respect to the void region propagation in sodium flow and the molten materials relocation leading to flow blockage. A set of parametric calculations has clarified the range of applicability of parameters for materials relocation and flow blockage formation. The particle radius r{sub p} in blockage regions and the mutiplier for particle viscosity (PARVIS) are recommended to be r{sub p}>or{approx}1/2D{sub h} and 0.001Pas

  6. Operating experience feedback report -- turbine-generator overspeed protection systems: Commercial power reactors. Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Ornstein, H.L.

    1995-04-01

    This report presents the results of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) review of operating experience of main turbine-generator overspeed and overspeed protection systems. It includes an indepth examination of the turbine overspeed event which occurred on November 9, 1991, at the Salem Unit 2 Nuclear Power Plant. It also provides information concerning actions taken by other utilities and the turbine manufacturers as a result of the Salem overspeed event. AEOD`s study reviewed operating procedures and plant practices. It noted differences between turbine manufacturer designs and recommendations for operations, maintenance, and testing, and also identified significant variations in the manner that individual plants maintain and test their turbine overspeed protection systems. AEOD`s study provides insight into the shortcomings in the design, operation, maintenance, testing, and human factors associated with turbine overspeed protection systems. Operating experience indicates that the frequency of turbine overspeed events is higher than previously thought and that the bases for demonstrating compliance with NRC`s General Design Criterion (GDC) 4, Environmental and dynamic effects design bases, may be nonconservative with respect to the assumed frequency.

  7. SBLOCA AND LOFW EXPERIMENTS IN A SCALED-DOWN IET FACILITY OF REX-10 REACTOR

    Directory of Open Access Journals (Sweden)

    YEON-GUN LEE

    2013-06-01

    Full Text Available This paper presents an experimental investigation of the small-break loss-of-coolant accident (SBLOCA and the loss-of-feedwater accident (LOFW in a scaled integral test facility of REX-10. REX-10 is a small integral-type PWR in which the coolant flow is driven by natural circulation, and the RCS is pressurized by the steam-gas pressurizer. The postulated accidents of REX-10 include the system depressurization initiated by the break of a nitrogen injection line connected to the steam-gas pressurizer and the complete loss of normal feedwater flow by the malfunction of control systems. The integral effect tests on SBLOCA and LOFW are conducted at the REX-10 Test Facility (RTF, a full-height full-pressure facility with reduced power by 1/50. The SBLOCA experiment is initiated by opening a flow passage out of the pressurizer vessel, and the LOFW experiment begins with the termination of the feedwater supply into the helical-coil steam generator. The experimental results reveal that the RTF can assure sufficient cooldown capability with the simulated PRHRS flow during these DBAs. In particular, the RTF exhibits faster pressurization during the LOFW test when employing the steam-gas pressurizer than the steam pressurizer. This experimental study can provide unique data to validate the thermal-hydraulic analysis code for REX-10.

  8. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Corradin, Michael [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Muci, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Dominguez, A. [Texas A & M Univ., College Station, TX (United States); Tokuhiro, Akira [Univ. of Idaho, Moscow, ID (United States); Hamman, K. [Univ. of Idaho, Moscow, ID (United States)

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  9. Development of An Embedded FPGA-Based Data Acquisition System Dedicated to Zero Power Reactor Noise Experiments

    Directory of Open Access Journals (Sweden)

    Arkani Mohammad

    2014-08-01

    Full Text Available An embedded time interval data acquisition system (DAS is developed for zero power reactor (ZPR noise experiments. The system is capable of measuring the correlation or probability distribution of a random process. The design is totally implemented on a single Field Programmable Gate Array (FPGA. The architecture is tested on different FPGA platforms with different speed grades and hardware resources. Generic experimental values for time resolution and inter-event dead time of the system are 2.22 ns and 6.67 ns respectively. The DAS can record around 48-bit x 790 kS/s utilizing its built-in fast memory. The system can measure very long time intervals due to its 48-bit timing structure design. As the architecture can work on a typical FPGA, this is a low cost experimental tool and needs little time to be established. In addition, revisions are easily possible through its reprogramming capability. The performance of the system is checked and verified experimentally.

  10. Microbial Diversity of Culinary Salts

    OpenAIRE

    Muske, Galen; Baxter, Bonnie

    2016-01-01

    Extremophiles are exceptional microorganisms that live on this planet in extraordinarily harsh environments. One such extremophiles are Halophiles, salt-loving microorganisms that can survive in extreme salinity levels, and have been found to survive inside salt crystals. We were curious is about the potential diversity of halophiles surviving in salts harvested from around the world. For this experiment various culinary salts were suspended in a 23 % NaCL growth media broth and allowed to gr...

  11. Thermal hydraulic test for reactor safety system - Critical heat flux experiment and development of prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Baek, Won Pil; Yang, Soo Hyung; No, Chang Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    To acquire CHF data through the experiments and develop prediction models, research was conducted. Final objectives of research are as follows: 1) Production of tube CHF data for low and middle pressure and mass flux and Flow Boiling Visualization. 2) Modification and suggestion of tube CHF prediction models. 3) Development of fuel bundle CHF prediction methodology base on tube CHF prediction models. The major results of research are as follows: 1) Production of the CHF data for low and middle pressure and mass flux. - Acquisition of CHF data (764) for low and middle pressure and flow conditions - Analysis of CHF trends based on the CHF data - Assessment of existing CHF prediction methods with the CHF data 2) Modification and suggestion of tube CHF prediction models. - Development of a unified CHF model applicable for a wide parametric range - Development of a threshold length correlation - Improvement of CHF look-up table using the threshold length correlation 3) Development of fuel bundle CHF prediction methodology base on tube CHF prediction models. - Development of bundle CHF prediction methodology using correction factor. 11 refs., 134 figs., 25 tabs. (Author)

  12. Aging assessment of reactor instrumentation and protection system components. Aging-related operating experiences

    Energy Technology Data Exchange (ETDEWEB)

    Gehl, A.C.; Hagen, E.W. [Oak Ridge National Lab., TN (United States)

    1992-07-01

    A study of the aging-related operating experiences throughout a five-year period (1984--1988) of six generic instrumentation modules (indicators, sensors, controllers, transmitters, annunciators, and recorders) was performed as a part of the Nuclear Plant Aging Research Program. The effects of aging from operational and environmental stressors were characterized from results depicted in Licensee Event Reports (LERs). The data are graphically displayed as frequency of events per plant year for operating plant ages from 1 to 28 years to determine aging-related failure trend patterns. Three main conclusions were drawn from this study: (1) Instrumentation and control (I&C) modules make a modest contribution to safety-significant events: 17% of LERs issued during 1984--1988 dealt with malfunctions of the six I&C modules studied, and 28% of the LERs dealing with these I&C module malfunctions were aging related (other studies show a range 25--50%); (2) Of the six modules studied, indicators, sensors, and controllers account for the bulk (83%) of aging-related failures; and (3) Infant mortality appears to be the dominant aging-related failure mode for most I&C module categories (with the exception of annunciators and recorders, which appear to fail randomly).

  13. Naval Reactors Prime Contractor Team (NRPCT) Experiences and Considerations With Irradiation Test Performance in an International Environment

    Energy Technology Data Exchange (ETDEWEB)

    MH Lane

    2006-02-15

    This letter forwards a compilation of knowledge gained regarding international interactions and issues associated with Project Prometheus. The following topics are discussed herein: (1) Assessment of international fast reactor capability and availability; (2) Japanese fast reactor (JOYO) contracting strategy; (3) NRPCT/Program Office international contract follow; (4) Completion of the Japan Atomic Energy Agency (JAEA)/Pacific Northwest National Laboratory (PNNL) contract for manufacture of reactor test components; (5) US/Japanese Departmental interactions and required Treaties and Agreements; and (6) Non-technical details--interactions and considerations.

  14. INNER SALTS

    Science.gov (United States)

    been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a...Products that have been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a mesomeric inner salt . (Author)...Novel phosphonium and phosphorane compounds ere prepared by a variety of m hods from triphenylphosphine and methylene bromide. Products that have

  15. Flow analyses for the LAVA-ERVC experiment and the KSNP under the external reactor vessel cooling using RELAP5/MOD3 code

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung-Ho; Park, Rae-Joon; Cho, Young-Ro; Kim, Sang-Baik

    2005-01-01

    Flow analyses were performed using RELAP5/MOD3 code to investigate and verify the steam binding phenomena in the LAVA-ERVC experiment and to investigate the occurrence and the effects of steam binding for the KSNP under the external reactor vessel cooling. Flow analyses for the LAVA-ERVC experiments confirmed the steam binding occurrence in case of the limited steam venting and represented the LAVA-ERVC experimental results quite well. The flow analyses results for the KSNP under the external reactor vessel cooling address that water ingression and steam ventilation through the insulator are crucial factors determining the effective cool down via boiling heat removal at the outer surface of the RPV lower plenum. The flow analyses results for the base cases of the SBO and the 9.6 inch LBLOCA imply that the limited steam venting through the insulator induced the steam binding and eventually prevented the effective cooling at the outer surface of the RPV lower plenum. From the sensitivity study on the additional flow area for the steam venting, it could be found that the RPV lower plenum experienced effective cooling by smooth water circulation. The current RELAP5 flow analyses results for the KSNP under the external reactor vessel cooling address that prevention of steam binding phenomena should be settled first for the in-vessel corium retention through the external reactor vessel cooling. Implementation of additional flow path for the effective steam ventilation is highly recommended as one of the most promising countermeasures to enhance the coolability through the external reactor vessel cooling.

  16. Thermochemical investigation of molten fluoride salts for Generation IV nuclear applications - an equilibrium exercise

    NARCIS (Netherlands)

    Meer, J.P.M. van der

    2006-01-01

    The concept of the Molten Salt Reactor, one of the so-called Generation IV future reactors, is that the fuel, a fissile material, which is dissolved in a molten fluoride salt, circulates through a closed circuit. The heat of fission is transferred to a second molten salt coolant loop, the heat of

  17. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo, E-mail: ahiru@ipen.b, E-mail: wricci@ipen.b, E-mail: carvalho@ipen.b, E-mail: jrretta@ipen.b, E-mail: amneto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  18. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  19. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    OpenAIRE

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-01-01

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation or neutrino oscillation by measuring neutrinos produced in the fission reactions of a nuclear power plant. Di...

  20. Electricity generation using molten salt technology

    OpenAIRE

    Osarinmwian, Charles

    2013-01-01

    The anodic release of carbon dioxide gas in the molten salt Hall-Heroult process can be used to power a turbine for electricity generation. The application of this new concept in molten salt reprocessing in the nuclear industry is considered because it could facilitate the suitability of carbon dioxide cycles to certain types of nuclear reactor. The theoretical power of 27.8 MW generated by a molten salt Hall-Heroult reactor is comparable with a next-generation biomass plant that sources low-...

  1. Management of Salt Waste from Electrochemical Processing of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Simpson; Michael N. Patterson; Joon Lee; Yifeng Wang; Joshua Versey; Ammon Williams; Supathorn Phongikaroon; James Allensworth; Man-Sung Yim

    2013-10-01

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electrorefiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form.

  2. Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Jose-Luis [Univ. of Colorado, Boulder, CO (United States)

    2016-02-01

    This grant was originally funded for deployment of a suite of aerosol instrumentation by our group in collaboration with other research groups and DOE/ARM to the Ganges Valley in India (GVAX) to study aerosols sources and processing. Much of the first year of this grant was focused on preparations for GVAX. That campaign was cancelled due to political reasons and with the consultation with our program manager, the research of this grant was refocused to study the applications of oxidation flow reactors (OFRs) for investigating secondary organic aerosol (SOA) formation and organic aerosol (OA) processing in the field and laboratory through a series of laboratory and modeling studies. We developed a gas-phase photochemical model of an OFR which was used to 1) explore the sensitivities of key output variables (e.g., OH exposure, O3, HO2/OH) to controlling factors (e.g., water vapor, external reactivity, UV irradiation), 2) develop simplified OH exposure estimation equations, 3) investigate under what conditions non-OH chemistry may be important, and 4) help guide design of future experiments to avoid conditions with undesired chemistry for a wide range of conditions applicable to the ambient, laboratory, and source studies. Uncertainties in the model were quantified and modeled OH exposure was compared to tracer decay measurements of OH exposure in the lab and field. Laboratory studies using OFRs were conducted to explore aerosol yields and composition from anthropogenic and biogenic VOC as well as crude oil evaporates. Various aspects of the modeling and laboratory results and tools were applied to interpretation of ambient and source measurements using OFR. Additionally, novel measurement methods were used to study gas/particle partitioning. The research conducted was highly successful and details of the key results are summarized in this report through narrative text, figures, and a complete list of publications acknowledging this grant.

  3. Homogeneous Reactor Experiment (HRE) Pond cryogenic barrier technology demonstration: Pre-barrier subsurface hydrology and contaminant transport investigation

    Energy Technology Data Exchange (ETDEWEB)

    Moline, G.R.

    1998-03-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes that has since been drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by a tributary that empties into Melton Branch Creek and that contains significant concentrations of radioactive contaminants, primarily {sup 90}Sr. Because of the proximity of the tributary to the HRE disposal site and the probable flow of groundwater from the site to the tributary, it is hypothesized that the HRE Pond is a source of contamination to he creek. As a means for temporary containment of contaminants within the impoundment, a cryogenic barrier technology demonstration was initiated in FY96 with a background hydrologic investigation that continued through FY97. Cryogenic equipment installation was completed in FY97, and freezing was initiated in September of 1997. This report documents the results of a hydrologic and geologic investigation of the HRE Pond/cryogenic barrier site. The purpose of this investigation is to evaluate the hydrologic conditions within and around the impoundment in order to meet the following objectives: (1) to provide a pre-barrier subsurface hydrologic baseline for post-barrier performance assessment; (2) to confirm that the impoundment is hydraulically connected to the surrounding sediments; and (3) to determine the likely contaminant exit pathways from the impoundment. The methods of investigation included water level and temperature monitoring in a network of wells and standpipes in and surrounding the impoundment, a helium tracer test conducted under ambient flow conditions, and geologic logging during the drilling of boreholes for installation of cryogenic probes and temperature monitoring wells.

  4. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  5. Universal salt iodization in the Central and Eastern Europe, Commonwealth of Independent States (CEE/CIS) Region during the decade 2000-09: experiences, achievements, and lessons learned.

    Science.gov (United States)

    van der Haar, Frits; Gerasimov, Gregory; Tyler, Vilma Qahoush; Timmer, Arnold

    2011-12-01

    By 2000, the global track record on universal salt iodization (USI) indicated 26% access to adequately iodized salt in the Central and Eastern Europe, Commonwealth of Independent States (CEE/ CIS) Region. Aimed at extracting lessons learned, this study examined experiences, achievements, and outcomes of USI strategies in CEE/CIS countries during the subsequent decade. Information from the design, timing, execution, outputs, multi-sector management and results of actions by national stakeholders yielded 20 country summaries. Analysis across countries used a LogFrame Analysis typical for public nutrition development. By 2009, USI strategies had reached the target and population iodine nutrition shown adequate levels in 9 countries, while in 6 others, USI was close and/or population iodine status showed only minor imperfection. True USI, i.e., iodization of salt destined both for the food industry and the household, had been made mandatory in 13 of these 15 countries. In the Balkan area, USI and iodine nutrition advanced more than in CIS. Of the 20 sample countries, 17 (85%) had exceeded the mark of 50% adequate access, while the overall regional score reached 55% by 2010. Experience from this region suggests that strong partnership collaboration, a new concept in post-Soviet societies, was a major success factor. Voluntary iodization or focusing on household salt alone was less likely conducive for success. Achieving optimum iodine nutrition required the setting of proper iodine standard Weak political leadership insistence in the Russian Federation and Ukraine to embrace USI is the main factor why the region remains behind in the global progress.

  6. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  7. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  8. In-air and pressurized water reactor environment fatigue experiments of 316 atainless ateel to study the effect of environment on cyclic hardening

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurindranath; Natesan, Krishnamurti

    2016-05-01

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy’s Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316SS) material which is widely used in the US reactors. Contrary to the conventional S~N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. In this paper (part-I) the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed. In a second paper (part-II) the related evolutionary cyclic plasticity material modeling techniques and results are discussed.

  9. CONVECTION REACTOR

    Science.gov (United States)

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  10. Student Collaboration in a Series of Integrated Experiments to Study Enzyme Reactor Modeling with Immobilized Cell-Based Invertase

    Science.gov (United States)

    Taipa, M. A^ngela; Azevedo, Ana M.; Grilo, Anto´nio L.; Couto, Pedro T.; Ferreira, Filipe A. G.; Fortuna, Ana R. M.; Pinto, Ine^s F.; Santos, Rafael M.; Santos, Susana B.

    2015-01-01

    An integrative laboratory study addressing fundamentals of enzyme catalysis and their application to reactors operation and modeling is presented. Invertase, a ß-fructofuranosidase that catalyses the hydrolysis of sucrose, is used as the model enzyme at optimal conditions (pH 4.5 and 45 °C). The experimental work involves 3 h of laboratory time…

  11. Ignition of DME and DME/CH4 at High Pressure: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    The pyrolysis and oxidation of dimethyl ether (DME) and its mixtures with methane were investigated at high pressures (50 and 100 bar) and intermediate temperatures (450―900 K) in a laminar flow reactor. DME pyrolysis started at 825 K (at 50 bar). The onset of DME reaction was detected at 525―550 K...

  12. Operating experience feedback report: Reliability of safety-related steam turbine-driven standby pumps. Commercial power reactors, Volume 10

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, J.R.

    1994-10-01

    This report documents a detailed analysis of failure initiators, causes and design features for steam turbine assemblies (turbines with their related components, such as governors and valves) which are used as drivers for standby pumps in the auxiliary feedwater systems of US commercial pressurized water reactor plants, and in the high pressure coolant injection and reactor core isolation cooling systems of US commercial boiling water reactor plants. These standby pumps provide a redundant source of water to remove reactor core heat as specified in individual plant safety analysis reports. The period of review for this report was from January 1974 through December 1990 for licensee event reports (LERS) and January 1985 through December 1990 for Nuclear Plant Reliability Data System (NPRDS) failure data. This study confirmed the continuing validity of conclusions of earlier studies by the US Nuclear Regulatory Commission and by the US nuclear industry that the most significant factors in failures of turbine-driven standby pumps have been the failures of the turbine-drivers and their controls. Inadequate maintenance and the use of inappropriate vendor technical information were identified as significant factors which caused recurring failures.

  13. New experiences on the time required for the appearance of fluoric cachexia in the guinea pig following ingestion of various fluorine salts

    Energy Technology Data Exchange (ETDEWEB)

    Cristiani, H.; Chausse, P.

    1926-01-01

    Experiments were performed to compare the time it took guinea pigs to develop cachexia after being given sodium fluosilicate or sodium fluoride. Results indicate that a dose-response relationship existed following the ingestion of the fluorine salts in relation to the time it took to produce cachexia. In addition, sodium fluosilicate was found to be more toxic than sodium fluoride. In guinea pigs which were given approximately 1/30 to 1/36 of the lethal dose, cachexia was produced from 44 to 70 days later. In guinea pigs given even smaller doses, cachexia did not appear for one to two years.

  14. Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge.

    Science.gov (United States)

    Wang, Zhongwei; van Loosdrecht, Mark C M; Saikaly, Pascal E

    2017-11-01

    Salinity can affect the performance of biological wastewater treatment in terms of nutrient removal. The effect of salt on aerobic granular sludge (AGS) process in terms of granulation and nutrient removal was examined in this study. Experiments were conducted to evaluate the effect of salt (15 g/L NaCl) on granule formation and nutrient removal in AGS system started with flocculent sludge and operated at DO of 2.5 mg/L (phase I). In addition, experiments were conducted to evaluate the effect of gradually increasing the salt concentration (2.5 g/L to 15 g/L NaCl) or increasing the DO level (2.5 mg/L to 8 mg/L) on nutrient removal in AGS system started with granular sludge (phase II) taken from an AGS reactor performing well in terms of N and P removal. Although the addition of salt in phase I did not affect the granulation process, it significantly affected nutrient removal due to inhibition of ammonia oxidizing bacteria (AOB) and phosphate accumulating organisms (PAOs). Increasing the DO to 8 mg/L or adapting granules by gradually increasing the salt concentration minimized the adverse effect of salt on nitrification (phase II). However, these strategies were not successful for mitigating the effect of salt on biological phosphorus removal. No nitrite accumulation occurred in all the reactors suggesting that inhibition of biological phosphorus removal was not due to the accumulation of nitrite as previously reported. Also, glycogen accumulating organisms were shown to be more tolerant to salt than PAO II, which was the dominant PAO clade detected in this study. Future studies comparing the salinity tolerance of different PAO clades are needed to further elucidate the effect of salt on PAOs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge

    KAUST Repository

    Wang, Zhongwei

    2017-08-13

    Salinity can affect the performance of biological wastewater treatment in terms of nutrient removal. The effect of salt on aerobic granular sludge (AGS) process in terms of granulation and nutrient removal was examined in this study. Experiments were conducted to evaluate the effect of salt (15 g/L NaCl) on granule formation and nutrient removal in AGS system started with flocculent sludge and operated at DO of 2.5 mg/L (phase I). In addition, experiments were conducted to evaluate the effect of gradually increasing the salt concentration (2.5 g/L to 15 g/L NaCl) or increasing the DO level (2.5 mg/L to 8 mg/L) on nutrient removal in AGS system started with granular sludge (phase II) taken from an AGS reactor performing well in terms of N and P removal. Although the addition of salt in phase I did not affect the granulation process, it significantly affected nutrient removal due to inhibition of ammonia oxidizing bacteria (AOB) and phosphate accumulating organisms (PAOs). Increasing the DO to 8 mg/L or adapting granules by gradually increasing the salt concentration minimized the adverse effect of salt on nitrification (phase II). However, these strategies were not successful for mitigating the effect of salt on biological phosphorus removal. No nitrite accumulation occurred in all the reactors suggesting that inhibition of biological phosphorus removal was not due to the accumulation of nitrite as previously reported. Also, glycogen accumulating organisms were shown to be more tolerant to salt than PAO II, which was the dominant PAO clade detected in this study. Future studies comparing the salinity tolerance of different PAO clades are needed to further elucidate the effect of salt on PAOs.

  16. Calculation of reactor antineutrino spectra in TEXONO

    CERN Document Server

    Chen Dong Liang; Mao Ze Pu; Wong, T H

    2002-01-01

    In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out

  17. A Compilation of Boiling Water Reactor Operational Experience for the United Kingdom's Office for Nuclear Regulation's Advanced Boiling Water Reactor Generic Design Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Liao, Huafei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    United States nuclear power plant Licensee Event Reports (LERs), submitted to the United States Nuclear Regulatory Commission (NRC) under law as required by 10 CFR 50.72 and 50.73 were evaluated for reliance to the United Kingdom’s Health and Safety Executive – Office for Nuclear Regulation’s (ONR) general design assessment of the Advanced Boiling Water Reactor (ABWR) design. An NRC compendium of LERs, compiled by Idaho National Laboratory over the time period January 1, 2000 through March 31, 2014, were sorted by BWR safety system and sorted into two categories: those events leading to a SCRAM, and those events which constituted a safety system failure. The LERs were then evaluated as to the relevance of the operational experience to the ABWR design.

  18. CER. Research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, Jerome [CEA, DEN, DER, Saint-Paul-lez-Durance (France). Jules Horowitz Reactor (JHR)

    2012-10-15

    Networking and the establishment of coalitions between research reactors are important to guarantee a high technical quality of the facility, to assure well educated and trained personnel, to harmonize the codes of standards and the know-ledge of the personnel as well as to enhance research reactor utilization. In addition to the European co-operation, country-specific working groups have been established for many years, such as the French research reactor Club d'Exploitants des Reacteurs (CER). It is the association of French research reactors representing all types of research reactors from zero power up to high flux reactors. CER was founded in 1990 and today a number of 14 research reactors meet twice a year for an exchange of experience. (orig.)

  19. Rheology of rock salt for salt tectonics modeling

    Directory of Open Access Journals (Sweden)

    Shi-Yuan Li

    2016-10-01

    Full Text Available Abstract Numerical modeling of salt tectonics is a rapidly evolving field; however, the constitutive equations to model long-term rock salt rheology in nature still remain controversial. Firstly, we built a database about the strain rate versus the differential stress through collecting the data from salt creep experiments at a range of temperatures (20–200 °C in laboratories. The aim is to collect data about salt deformation in nature, and the flow properties can be extracted from the data in laboratory experiments. Moreover, as an important preparation for salt tectonics modeling, a numerical model based on creep experiments of rock salt was developed in order to verify the specific model using the Abaqus package. Finally, under the condition of low differential stresses, the deformation mechanism would be extrapolated and discussed according to microstructure research. Since the studies of salt deformation in nature are the reliable extrapolation of laboratory data, we simplified the rock salt rheology to dislocation creep corresponding to power law creep (n = 5 with the appropriate material parameters in the salt tectonic modeling.

  20. The HLMA project: determination of high Δm2 LMA mixing parameters and constraint on |Ue3| with a new reactor neutrino experiment

    Science.gov (United States)

    Schönert, Stefan; Lasserre, Thierry; Oberauer, Lothar

    2003-03-01

    In the forthcoming months, the KamLAND experiment will probe the parameter space of the solar large mixing angle MSW solution as the origin of the solar neutrino deficit with ν¯e's from distant nuclear reactors. If however the solution realized in nature is such that Δm2sol>~2×10-4 eV2 (thereafter named the HLMA region), KamLAND will only observe a rate suppression but no spectral distortion and hence it will not have the optimal sensitivity to measure the mixing parameters. In this case, we propose a new medium baseline reactor experiment located at Heilbronn (Germany) to pin down the precise value of the solar mixing parameters. In this paper, we present the Heilbronn detector site, we calculate the ν¯e interaction rate and the positron spectrum expected from the surrounding nuclear power plants. We also discuss the sensitivity of such an experiment to |Ue3| in both normal and inverted neutrino mass hierarchy scenarios. We then outline the detector design, estimate background signals induced by natural radioactivity as well as by in situ cosmic ray muon interaction, and discuss a strategy to detect the anti-neutrino signal `free of background'.

  1. Permeability and hydraulic diffusivity of Waste Isolation Pilot Plant repository salt inferred from small-scale brine inflow experiments

    Energy Technology Data Exchange (ETDEWEB)

    McTigue, D.F.

    1993-06-01

    Brine seepage to 17 boreholes in salt at the Waste Isolation Pilot Plant (WIPP) facility horizon has been monitored for several years. A simple model for one-dimensional, radial, darcy flow due to relaxation of ambient pore-water pressure is applied to analyze the field data. Fits of the model response to the data yield estimates of two parameters that characterize the magnitude of the flow and the time scale over which it evolves. With further assumptions, these parameters are related to the permeability and the hydraulic diffusivity of the salt. For those data that are consistent with the model prediction, estimated permeabilities are typically 10{sup {minus}22} to 10{sup {minus}21} m{sup 2}. The relatively small range of inferred permeabilities reflects the observation that the measured seepage fluxes are fairly consistent from hole to hole, of the order of 10{sup {minus}10} m/s. Estimated diffusivities are typically 10{sup {minus}10} to 10{sup {minus}8} m{sup 2}/s. The greater scatter in inferred hydraulic diffusivities is due to the difficulty of matching the idealized model history to the observed evolution of the flows. The data obtained from several of the monitored holes are not consistent with the simple model adopted here; material properties could not be inferred in these cases.

  2. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each of the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.

  3. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  4. REACTOR COOLING

    Science.gov (United States)

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  5. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-05-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm / shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm / shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the “International Handbook of Evaluated Criticality Safety Benchmark Experiments” have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement / shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy

  6. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Quiping [The Ohio State Univ., Columbus, OH (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Chtistensen, Richard [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States); Yoder, Graydon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  7. Flibe use in fusion reactors -- An initial safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.; Longhurst, G.R.

    1999-03-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF{sub 2}) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material.

  8. Flibe Use in Fusion Reactors - An Initial Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles; Longhurst, Glen Reed

    1999-04-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF2) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material.

  9. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Soppet, William K., E-mail: soppet@anl.gov; Majumdar, Saurindranath, E-mail: majumdar@anl.gov; Natesan, Krishnamurti, E-mail: natesan@anl.gov

    2016-05-15

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S ∼ N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue

  10. Advanced High Temperature Reactor Systems and Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience

  11. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.T.

    2004-07-29

    A new reactor plant concept is presented that combines the benefits of ceramic-coated, high-temperature particle fuel with those of clean, high-temperature, low-pressure molten salt coolant. The Advanced High-Temperature Reactor (AHTR) concept is a collaboration of Oak Ridge National Laboratory, Sandia National Laboratories, and the University of California at Berkeley. The purpose of the concept is to provide an advanced design capable of satisfying the top-level functional requirements of the U.S. Department of Energy Next Generation Nuclear Plant (NGNP), while also providing a technology base that is sufficiently robust to allow future development paths to higher temperatures and larger outputs with highly competitive economics. This report summarizes the status of the AHTR preconceptual design. It captures the results from an intense effort over a period of 3 months to (1) screen and examine potential feasibility concerns with the concept; (2) refine the conceptual design of major systems; and (3) identify research, development, and technology requirements to fully mature the AHTR design. Several analyses were performed and are presented to quantify the AHTR performance expectations and to assist in the selection of several design parameters. The AHTR, like other NGNP reactor concepts, uses coated particle fuel in a graphite matrix. But unlike the other NGNP concepts, the AHTR uses molten salt rather than helium as the primary system coolant. The considerable previous experience with molten salts in nuclear environments is discussed, and the status of high-temperature materials is reviewed. The large thermal inertia of the system, the excellent heat transfer and fission product retention characteristics of molten salt, and the low-pressure operation of the primary system provide significant safety attributes for the AHTR. Compared with helium coolant, a molten salt cooled reactor will have significantly lower fuel temperatures (150-200-C lower) for the

  12. Electrically Heated Testing of the Kilowatt Reactor Using Stirling Technology (KRUSTY) Experiment Using a Depleted Uranium Core

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James

    2017-01-01

    The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one

  13. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  14. Analysis and evaluation of the Dual Fluid Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang

    2017-06-27

    The Dual Fluid Reactor is a molten salt fast reactor developed by IFK in Berlin based on the Gen-IV Molten-Salt Reactor concept and the Liquid-Metal Cooled Reactor. The design aims to combine these two concepts to improve these two concepts. The Dissertation focuses on the concept and performs diverse calculations and estimations on the subjects of neutron physics, depletion and thermal-hydraulic behaviors to validate the new features of the concept. Based on the results it is concluded that this concept is feasible to its desired purpose and with great potential.

  15. Mechanistic Model for Ash Deposit Formation in Biomass Suspension Firing. Part 1: Model Verification by Use of Entrained Flow Reactor Experiments

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    stronger influence of this parameter. Model #2 was able to provide a reasonable description of the influence of temperature on the deposit buildup rates observed in the EFR experiments. A parametric study was conducted to examine the influence of some physical parameters, including ash concentration...... used to describe the deposit formation rates and deposit chemistry observed in a series of entrained flow reactor (EFR) experiments using straw and wood as fuels. It was found that model #1 was not able to describe the observed influence of temperature on the deposit buildup rates, predicting a much......, viscosity of ash and deposits, surface tension, Young’s modulus, and porosity. On the basis of this model evaluation, where a wide range of temperatures (700–1000 °C) and fuels (straw and wood) were applied, model #2 can be regarded as a promising tool for the description of deposit formation from biomass...

  16. Reanalysis of the Gas-cooled fast reactor experiments at the zero power facility Proteus - Spectral indices

    Science.gov (United States)

    Perret, G.; Pattupara, R. M.; Girardin, G.; Chawla, R.

    2013-03-01

    PROTEUS is a zero power reactor at the Paul Scherrer Institute which has been employed during the 1970's to study experimentally the physics of the gas-cooled fast reactor. Reaction rate distributions, flux spectrum and reactivity effects have been measured in several configurations featuring PuO2/UO2 fuel, absorbers, large iron shields, and thorium oxide and thorium metal fuel either distributed quasihomogeneously in the reference PuO2/UO2 lattice or introduced in the form of radial and axial blanket zones. This papers focus on the spectral indices - including fission and capture in 232Th and 237Np - measured in the reference PuO2/UO2 lattices and their predictions with an MCNPX model specially developed for the PROTEUS-GCFR core. Predictions were obtained with JEFF-3.1 and -3.11, ENDF/B-VII.0 and VII.1, and JENDL-3.3 and -4.0. A general good agreement was demonstrated. The ratio of 232Th fission to 239Pu fission, however, was under-predicted by 8.7±2.1% and 6.5±2.1% using ENDF/B-VII.0 and VII.1, respectively. Finally, the capture rates in 237Np tended to be underpredicted by the JEFF and JENDL libraries, although the new cross section in JEFF-3.1.1 slightly improved the 237Np capture to 239Pu fission results (3.4±2.4%).

  17. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  18. Report detailing comparative analysis of results from high flux isotope reactor and national institute of standards technology small-angle neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mikhail A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Littrell, Ken [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Peter [Univ. of California, Santa Barbara, CA (United States); Cunningham, Nicholas J. [Univ. of California, Santa Barbara, CA (United States)

    2015-09-01

    The major issues regarding irradiation effects are discussed in [1-3] and have also been discussed in previous progress and milestone reports. As noted previously, of the many significant issues discussed, the issue considered to have the most impact on the current regulatory process is that associated with effects of neutron irradiation on RPV steels at high fluence, for long irradiation times, and as affected by neutron flux. It is clear that embrittlement of RPV steels is a critical issue that may limit LWR plant life extension. The primary objective of the LWRSP RPV task is to develop robust predictions of transition temperature shifts (TTS) at high fluence ( t) to at least 1020 n/cm2 (>1 MeV) pertinent to plant operation of some pressurized water reactors (PWR) for 80 full power years. Correlations between the high flux test reactor results and low flux surveillance specimens must be established for proper RPV embrittlement predictions of the current nuclear power fleet. Additionally, a complete understanding of defect evolution for high nickel RPV steels is needed to characterize the embrittlement potential of Mn-Ni-enriched precipitates (MNPs), particularly for the high fluence regime. While understanding of copper-enriched precipitates (CRPs) have been fully developed, the recent discovery and experimental verification [4] of late blooming MNPs with little to no copper for nucleation has stimulated research efforts to understand the evolution of these phases. New and existing databases will be combined to support developing physically based models of TTS for high fluence-low flux ( < 10 11n/cm2-s) conditions, beyond the existing surveillance database, to neutron fluences of at least 1 1020 n/cm2 (>1 MeV). Moreover, large number of various RPV materials have been irradiated in ATR-2 experiment and will be jointly studied by University of California Santa Barbara (UCSB) and ORNL to address majority of microstructural characteristics

  19. Report of blind start-up experiments carried out on the reactor Cabri between 4. and 8. July 1966; Compte rendu des experiences de demarrage en aveugle effectuees sur le reacteur cabri du 4 au 8 juillet 1966

    Energy Technology Data Exchange (ETDEWEB)

    Filipczak, N.; Filipczak, W. [Institut Basan Jadrowych Swerk pta, Otwock (Poland); Furet, J.; Kaiser, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    The blind start-up of a reactor without any neutronic data concerning a relatively wide range of power dynamics can be necessary when difficulties arise in the positioning of the detector or in neutron-gamma discrimination near the multiplying medium. The object of the experiments carried out on the reactor Cabri was to check the very complete analysis of the start-up accident which was studied on an analogue computer. The number of experiments carried out (12) is not sufficient to allow a definite conclusion. Nevertheless the blind start-up method advocated by N. FILIPCZAK and W. FILIPCZAK does not appear to be incompatible with the security during the operational phase (on condition that its dynamic characteristics are close to that of the reactor Cabri). (authors) [French] Le demarrage en aveugle d'un reacteur sans aucune information neutronique sur une dynamique de puissance relativement etendue peut se presenter lorsqu'il y a des difficultes de positionnement de detecteur ou de discrimination neutrons-gamma a proximite du milieu multiplicateur. Les experiences effectuees sur le reacteur CABRI avaient pour but de verifier l'analyse tres poussee de l'accident de demarrage etudie sur calculateur analogique. Le nombre d'experiences effectuees (12) n'est pas suffisant pour tirer des conclusions bien nettes. Neanmoins la methode de demarrage aveugle preconisee par N. PILIPCZAK et W. FILIPCZAK ne semble pas incompatible avec la securite pendant la phase d'exploitation du reacteur (a condition que ses caracteristiques dynamiques soient voisines de celles du reacteur CABRI). (auteurs)

  20. Radionuclide release from research reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, H., E-mail: h.curtius@fz-juelich.de [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany); Kaiser, G.; Mueller, E.; Bosbach, D. [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany)

    2011-09-01

    Numerous investigations with respect to LWR fuel under non oxidizing repository relevant conditions were performed. The results obtained indicate slow corrosion rates for the UO{sub 2} fuel matrix. Special fuel-types (mostly dispersed fuels, high enriched in {sup 235}U, cladded with aluminium) are used in German research reactors, whereas in German nuclear power plants, UO{sub 2}-fuel (LWR fuel, enrichment in {sup 235}U up to 5%, zircaloy as cladding) is used. Irradiated research reactor fuels contribute less than 1% to the total waste volume. In Germany, the state is responsible for fuel operation and for fuel back-end options. The institute for energy research (IEF-6) at the Research Center Juelich performs investigation with irradiated research reactor spent fuels under repository relevant conditions. In the study, the corrosion of research reactor spent fuel has been investigated in MgCl{sub 2}-rich salt brine and the radionuclide release fractions have been determined. Leaching experiments in brine with two different research reactor fuel-types were performed in a hot cell facility in order to determine the corrosion behaviour and the radionuclide release fractions. The corrosion of two dispersed research reactor fuel-types (UAl{sub x}-Al and U{sub 3}Si{sub 2}-Al) was studied in 400 mL MgCl{sub 2}-rich salt brine in the presence of Fe{sup 2+} under static and initially anoxic conditions. Within these experimental parameters, both fuel types corroded in the experimental time period of 3.5 years completely, and secondary alteration phases were formed. After complete corrosion of the used research reactor fuel samples, the inventories of Cs and Sr were quantitatively detected in solution. Solution concentrations of Am and Eu were lower than the solubility of Am(OH){sub 3}(s) and Eu(OH){sub 3}(s) solid phases respectively, and may be controlled by sorption processes. Pu concentrations may be controlled by Pu(IV) polymer species, but the presence of Pu(V) and Pu

  1. Corrosion of spent fuels from research and prototype reactors under conditions relevant to geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, Hilde; Bosbach, Dirk; Deissmann, Guido [Forschungszentrum Juelich GmbH (Germany). Inst. for Nuclear Waste Management and Reactor Safety (IEK-6)

    2015-07-01

    The reference inventory of high-level nuclear wastes designated for geological disposal in Germany as used within the preliminary safety assessment for a geological repository in the Gorleben salt dome (''vorlaeufige Sicherheitsanalyse Gorleben'', vSG) includes various types of spent nuclear fuels from research and prototype reactors, besides LWR spent fuels and vitrified high-level wastes. This paper will discuss the results of and conclusions from corrosion experiments on spent fuels from prototype high-temperature reactors (HTR) and research reactors that were performed under conditions relevant for a deep geological repository and provided the basis for the derivation of respective source terms in the vSG.

  2. Steady-state CFD simulations of an EPR™ reactor pressure vessel: A validation study based on the JULIETTE experiments

    Energy Technology Data Exchange (ETDEWEB)

    Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Laboratory for Reactor Physics and Systems Behaviour, PSI, 5232 Villigen (Switzerland); Zhou, L. [Science and Technology on Reactor System Design Technology Laboratory, NPIC, Chengdu (China); Zerkak, O.; Pautz, A. [Laboratory for Reactor Physics and Systems Behaviour, PSI, 5232 Villigen (Switzerland)

    2016-04-15

    Highlights: • CFD validation of k–ε (RANS model of EPR RPV. • Flat inlet velocity profile is not sufficient to correctly predict the pressure drops. • Swirl is responsible for asymmetric loads at the core barrel. • Parametric study to the turbulent Schmidt number for better predictions of passive-scalar transport. • The optimal turbulent Schmidt number was found to be one order of magnitude smaller than the standard value. - Abstract: Validating computational fluid dynamics (CFD) models against experimental measurements is a fundamental step towards a broader acceptance of CFD as a tool for reactor safety analysis when best-estimate one-dimensional thermal-hydraulic codes present strong modelling limitations. In the present paper numerical results of steady-state RANS analyses are compared to pressure, volumetric flow rate and concentration distribution measurements in different locations of an Areva EPR™ reactor pressure vessel (RPV) mock-up named JULIETTE. Several flow configurations are considered: Three different total volumetric flow rates, cold leg velocity field with or without swirl, three or four reactor coolant pumps functioning. Investigations on the influence of two types of inlet boundary profiles (i.e. flat or 1/7th power-law) and the turbulent Schmidt number have shown that the first affects sensibly the pressure loads at the core barrel whereas the latter parameter strongly affects the transport and the mixing of the tracer (passive scalar) and consequently its distribution at the core inlet. Furthermore, the introduction of an integral parameter as the swirl number has helped to decrease the large epistemic uncertainty associated with the swirling device. The swirl is found to be the cause of asymmetric loads on the walls of the core barrel and also asymmetries are enhanced for the tracer concentration distribution at the core inlet. The k–ϵ CFD model developed with the commercial code STAR-CCM+ proves to be able to predict

  3. Reanalysis of the Gas-cooled fast reactor experiments at the zero power facility Proteus – Spectral indices

    Directory of Open Access Journals (Sweden)

    Girardin G.

    2013-03-01

    Full Text Available PROTEUS is a zero power reactor at the Paul Scherrer Institute which has been employed during the 1970’s to study experimentally the physics of the gas-cooled fast reactor. Reaction rate distributions, flux spectrum and reactivity effects have been measured in several configurations featuring PuO2/UO2 fuel, absorbers, large iron shields, and thorium oxide and thorium metal fuel either distributed quasihomogeneously in the reference PuO2/UO2 lattice or introduced in the form of radial and axial blanket zones. This papers focus on the spectral indices – including fission and capture in 232Th and 237Np - measured in the reference PuO2/UO2 lattices and their predictions with an MCNPX model specially developed for the PROTEUS-GCFR core. Predictions were obtained with JEFF-3.1 and -3.11, ENDF/B-VII.0 and VII.1, and JENDL-3.3 and -4.0. A general good agreement was demonstrated. The ratio of 232Th fission to 239Pu fission, however, was under-predicted by 8.7±2.1% and 6.5±2.1% using ENDF/B-VII.0 and VII.1, respectively. Finally, the capture rates in 237Np tended to be underpredicted by the JEFF and JENDL libraries, although the new cross section in JEFF-3.1.1 slightly improved the 237Np capture to 239Pu fission results (3.4±2.4%.

  4. Experience feedback examination in PWR type reactors operating for the 1997-1999 period; Examen du retour d'experience en exploitation des reacteurs a eau sous pression pour la periode 1997-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The present report is relative to the examination that the permanent group has made on the experience feedback in operation for PWR type reactors for the period 1997-1999 that was on eleven themes chosen by the Nuclear Safety and Radiation Protection Authority. It used analysis reports made by I.R.S.N. in support of four meetings of the permanent group devoted to this examination from April 2001 to June 2002. The different themes were operating uncertainties, machining to vibrations, analysis of incidents and gaseous releases, circuits, human factors, behaviour of electric batteries, risk of cold source loss. (N.C.)

  5. Mechanism for salt scaling

    Science.gov (United States)

    Valenza, John J., II

    Salt scaling is superficial damage caused by freezing a saline solution on the surface of a cementitious body. The damage consists of the removal of small chips or flakes of binder. The discovery of this phenomenon in the early 1950's prompted hundreds of experimental studies, which clearly elucidated the characteristics of this damage. In particular it was shown that a pessimum salt concentration exists, where a moderate salt concentration (˜3%) results in the most damage. Despite the numerous studies, the mechanism responsible for salt scaling has not been identified. In this work it is shown that salt scaling is a result of the large thermal expansion mismatch between ice and the cementitious body, and that the mechanism responsible for damage is analogous to glue-spalling. When ice forms on a cementitious body a bi-material composite is formed. The thermal expansion coefficient of the ice is ˜5 times that of the underlying body, so when the temperature of the composite is lowered below the melting point, the ice goes into tension. Once this stress exceeds the strength of the ice, cracks initiate in the ice and propagate into the surface of the cementitious body, removing a flake of material. The glue-spall mechanism accounts for all of the characteristics of salt scaling. In particular, a theoretical analysis is presented which shows that the pessimum concentration is a consequence of the effect of brine pockets on the mechanical properties of ice, and that the damage morphology is accounted for by fracture mechanics. Finally, empirical evidence is presented that proves that the glue-small mechanism is the primary cause of salt scaling. The primary experimental tool used in this study is a novel warping experiment, where a pool of liquid is formed on top of a thin (˜3 mm) plate of cement paste. Stresses in the plate, including thermal expansion mismatch, result in warping of the plate, which is easily detected. This technique revealed the existence of

  6. Advancing Molten Salts and Fuels at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-26

    SNL has a combination of experimental facilities, nuclear engineering, nuclear security, severe nuclear accidents, and nuclear safeguards expertise that can enable significant progress towards molten salts and fuels for Molten Salt Reactors (MSRs). The following areas and opportunities are discussed in more detail in this white paper.

  7. NUCLEAR REACTOR

    Science.gov (United States)

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  8. A closer look at salt loaded microstructures

    OpenAIRE

    Rooij, M.R. de

    2006-01-01

    Many walls of ancient buildings are covered with plaster layers. Amongst the most recurrent causes of damage of plasters and substrates are moisture and salt decay processes. To combat these salt problems, special salt resistant plasters have been developed for application on salt loaded substrates. However, experience in the field has shown that failures regularly occur on these special mortars, making the situation little transparent for end-users. A European project called COMPASS has addr...

  9. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J.H.

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  10. Multi-physic simulations of irradiation experiments in a technological irradiation reactor; Modelisation pluridisciplinaire d'experiences d'irradiation dans un reacteur d'irradiation technologique

    Energy Technology Data Exchange (ETDEWEB)

    Bonaccorsi, Th

    2007-09-15

    A Material Testing Reactor (MTR) makes it possible to irradiate material samples under intense neutron and photonic fluxes. These experiments are carried out in experimental devices localised in the reactor core or in periphery (reflector). Available physics simulation tools only treat, most of the time, one physics field in a very precise way. Multi-physic simulations of irradiation experiments therefore require a sequential use of several calculation codes and data exchanges between these codes: this corresponds to problems coupling. In order to facilitate multi-physic simulations, this thesis sets up a data model based on data-processing objects, called Technological Entities. This data model is common to all of the physics fields. It permits defining the geometry of an irradiation device in a parametric way and to associate information about materials to it. Numerical simulations are encapsulated into interfaces providing the ability to call specific functionalities with the same command (to initialize data, to launch calculations, to post-treat, to get results,... ). Thus, once encapsulated, numerical simulations can be re-used for various studies. This data model is developed in a SALOME platform component. The first application case made it possible to perform neutronic simulations (OSIRIS reactor and RJH) coupled with fuel behavior simulations. In a next step, thermal hydraulics could also be taken into account. In addition to the improvement of the calculation accuracy due to the physical phenomena coupling, the time spent in the development phase of the simulation is largely reduced and the possibilities of uncertainty treatment are under consideration. (author)

  11. Thermal-hydraulic study of the LBE-cooled fuel assembly in the MYRRHA reactor: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pacio, J., E-mail: Julio.pacio@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Wetzel, T. [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Doolaard, H.; Roelofs, F. [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Van Tichelen, K. [Belgian Nuclear Reseach Center (SCK-CEN), Boeretang 200, Mol (Belgium)

    2017-02-15

    Heavy liquid metals (HLMs), such as lead-bismuth eutectic (LBE) and pure lead are prominent candidate coolants for many advanced systems based on fast neutrons. In particular, LBE is used in the first-of-its-kind MYRRHA fast reactor, to be built in Mol (Belgium), which can be operated either in critical mode or as a sub-critical accelerator-driven system. With a strong focus on safety, key thermal-hydraulic aspects of these systems, such as the proper cooling of fuel assemblies, must be assessed. Considering the complex geometry and low Prandtl number of LBE (Pr ∼ 0.025), this flow scenario is challenging for the models used in Computational Fluid Dynamics (CFD), e.g. for relating the turbulent transport of momentum and heat. Thus, reliable experimental data for the relevant scenario are needed for validation. In this general context, this topic is studied both experimentally and numerically in the framework of the European FP7 project SEARCH (2011–2015). An experimental campaign, including a 19-rod bundle with wire spacers, cooled by LBE is undertaken at KIT. With prototypical geometry and operating conditions, it is intended to evaluate the validity of current empirical correlations for the MYRRHA conditions and, at the same time, to provide validation data for the CFD simulations performed at NRG. The results of one benchmarking case are presented in this work. Moreover, this validated approach is then used for simulating a complete MYRRHA fuel assembly (127 rods).

  12. Preparation of actinide specimens for the US/UK joint experiment in the Dounreay Prototype Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Quinby, T C; Adair, H L; Kobisk, E H

    1982-05-01

    A joint research program involving the United States and the United Kingdom was initiated about four years ago for the purpose of studying the fuel behavior of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of integral cross sections of a wide variety of higher actinide isotopes (physics specimens) was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the fuel pellets and physics samples. The higher actinide samples chosen for the fuel study were /sup 241/Am and /sup 244/Cm in the forms of Am/sub 2/O/sub 3/, Cm/sub 2/O/sub 3/, and Am/sub 6/Cm(RE)/sub 7/O/sub 21/, where (RE) represents a mixture of lanthanides. Milligram quantities of actinide oxides of /sup 248/Cm, /sup 246/Cm, /sup 244/Cm, /sup 243/Cm, /sup 243/Am, /sup 241/Am, /sup 244/Pu, /sup 242/Pu, /sup 241/Pu, /sup 240/Pu, /sup 239/Pu, /sup 238/Pu, /sup 237/Np, /sup 238/U, /sup 236/U, /sup 235/U, /sup 234/U, /sup 233/U, /sup 232/Th, /sup 230/Th, and /sup 231/Pa were encapsulated to obtain nuclear cross section and reaction rate data for these materials.

  13. Reactor monitoring and safeguards using antineutrino detectors

    CERN Document Server

    Bowden, N S

    2008-01-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

  14. Gaseous fuel reactor research

    Science.gov (United States)

    Thom, K.; Schneider, R. T.

    1977-01-01

    The paper reviews studies dealing with the concept of a gaseous fuel reactor and describes the structure and plans of the current NASA research program of experiments on uranium hexafluoride systems and uranium plasma systems. Results of research into the basic properties of uranium plasmas and fissioning gases are reported. The nuclear pumped laser is described, and the main results of experiments with these devices are summarized.

  15. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  16. Two-phase flow experiments on Counter-Current Flow Limitation in a model of the hot leg of a pressurized water reactor (2015 test series)

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Matthias; Lucas, Dirk; Pietruske, Heiko; Szalinski, Lutz

    2016-12-15

    Counter-Current Flow Limitation (CCFL) is of importance for PWR safety analyses in several accident scenarios connected with loss of coolant. Basing on the experiences obtained during a first series of hot leg tests now new experiments on counter-current flow limitation were conducted in the TOPFLOW pressure vessel. The test series comprises air-water tests at 1 and 2 bar as well as steam-water tests at 10, 25 and 50 bar. During the experiments the flow structure was observed along the hot leg model using a high-speed camera and web-cams. In addition pressure was measured at several positions along the horizontal part and the water levels in the reactor-simulator and steam-generator-simulator tanks were determined. This report documents the experimental setup including the description of operational and special measuring techniques, the experimental procedure and the data obtained. From these data flooding curves were obtained basing on the Wallis parameter. The results show a slight shift of the curves in dependency of the pressure. In addition a slight decrease of the slope was found with increasing pressure. Additional investigations concern the effects of hysteresis and the frequencies of liquid slugs. The latter ones show a dependency on pressure and the mass flow rate of the injected water. The data are available for CFD-model development and validation.

  17. Short Baseline Reactor Antineutrino-Electron Scattering Experiments and Non-Standard Neutrino Interactions at Source and Detector

    OpenAIRE

    Khan, Amir N.; McKay, Douglas W.; Tahir, F

    2014-01-01

    We investigate non-standard interaction effects in antineutrino-electron scattering experiments with baselines short enough to ignore standard oscillation phenomena. The setup is free of ambiguities from the interference between new physics and oscillation effects and is sensitive to both semileptonic new physics at the source and purely leptonic new physics in the weak interaction scattering at the detector. We draw on the TEXONO experiment as the model system, extending its analysis of non-...

  18. NEUTRONIC REACTORS

    Science.gov (United States)

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  19. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  20. Mixed salt crystallisation fouling

    CERN Document Server

    Helalizadeh, A

    2002-01-01

    The main purpose of this investigation was to study the mechanisms of mixed salt crystallisation fouling on heat transfer surfaces during convective heat transfer and sub-cooled flow boiling conditions. To-date no investigations on the effects of operating parameters on the deposition of mixtures of calcium sulphate and calcium carbonate, which are the most common constituents of scales formed on heat transfer surfaces, have been reported. As part of this research project, a substantial number of experiments were performed to determine the mechanisms controlling deposition. Fluid velocity, heat flux, surface and bulk temperatures, concentration of the solution, ionic strength, pressure and heat transfer surface material were varied systematically. After clarification of the effect of these parameters on the deposition process, the results of these experiments were used to develop a mechanistic model for prediction of fouling resistances, caused by crystallisation of mixed salts, under convective heat transfer...

  1. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydén, Magnus

    2011-03-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor system. For the oxygen uncoupling experiments, it was found that the particles released O2 in gas phase at temperatures above 720°C when the fuel reactor was fluidized with CO2. The effect increased with increased temperature, and with the O2 partial pressure in the air reactor. At 950°C, the O2 concentration in the outlet from the fuel reactor was in the order of 4.0vol%, if the particles were oxidized in air. For the chemical-looping combustion experiments the combustion efficiency with standard process parameters was in the order of 95% at 950°C, using 1000kg oxygen carrier per MW natural gas, of which about 30% was located in the fuel reactor. Reducing the fuel flow so that 1900kg oxygen carrier per MW natural gas was used improved the combustion efficiency to roughly 99.8%. The particles retained their physical properties, reactivity with CH4 and ability to release gas-phase O2 reasonably well throughout the testing period and there were no problems with the fluidization or formation of solid carbon in the reactor. X-ray diffraction showed that the particles underwent changes in their phase composition though. © 2010 Elsevier Ltd.

  2. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  3. Patterns of Use, Acute Subjective Experiences, and Motivations for Using Synthetic Cathinones ("Bath Salts") in Recreational Users.

    Science.gov (United States)

    Ashrafioun, Lisham; Bonadio, Francis A; Baik, Kyoung Deok; Bradbury, Stacey L; Carhart, Victoria L; Cross, Nicole A; Davis, Alan K; Feuille, Margaret; Harper, Anna R; Lackey, Jennifer H; Lang, Brent; Lauritsen, Kirstin J; Leith, Jaclyn; Osborn, Lawrence A; Rosenberg, Harold; Stock, Jacob; Zaturenskaya, Mariya

    2016-01-01

    Given the variety and potential toxicity of synthetic cathinones, clinicians and educators would benefit from information about patterns of and motivations for use, frequency of psychosocial consequences, and experience of acute subjective effects. We administered a comprehensive, web-based survey to 104 recreational users of synthetic cathinones. Sixty percent of respondents consumed synthetic cathinones once or more per month, usually snorting or swallowing these drugs, typically at home, usually with others, customarily during the evening and nighttime hours, and often in combination with another drug such as alcohol or marijuana. Acute subjective effects attributed to synthetic cathinones were similar to those of other psychostimulants, including increased energy, rapid heartbeat, racing thoughts, difficulty sleeping, euphoria, decreased appetite, open-mindedness, and increased sex drive. Reported reasons for using synthetic cathinones included its stimulating effects, curiosity, substitution for another drug, and being at a party/music event. Respondents had experienced an average of six negative consequences of using synthetic cathinones during the previous year (e.g., tolerance, neglecting responsibilities, personality change). In combination with previously published investigations, these findings increase our understanding of the reported rationales and outcomes of recreational use of synthetic cathinones.

  4. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  5. [Arsenic (V) removal from drinking water by ferric salt and aluminum salt coagulation/microfiltration process].

    Science.gov (United States)

    Li, Xiao-bo; Wu, Shui-bo; Gu, Ping

    2007-10-01

    Two lab-scale coagulation/microfiltration membrane reactors were used to compare the arsenic removal from drinking water by ferric salt and aluminum salt coagulation/microfiltration process. FeCl3 and Al2(SO4)3 were appointed as the coagulants. The results show that the arsenic removal efficiency of the two processes are almost equal. Arsenic concentration can be lowered from about 100 microg/L to below 10 microg/L and the lowest is 1.68 microg x L(-1). All of the turbidity of the treated water is less than 0.1 NTU. The concentrations of ferric, aluminum and SO4(2-) of the treated water are entirely satisfied the standard of drinking water. After treated by ferric salt process, pH value of the treated water is increased about 0.5. However, aluminum salt process does not change pH of the drinking water. The concentration ratio of the ferric salt process is 1,791 which is about 2.54 times of the aluminum salt process. Arsenic concentration of the sludge of ferric salt process is also higher greatly than that of the aluminum salt process. Therefore, the volume of the sludge produced by the ferric salt process is smaller than that of the aluminum salt process when equal amount of drinking water was treated. Accordingly, ferric salt process should be used when only high concentration arsenic existed in drinking water. On the other hand, fluoride also can be removed simultaneously while arsenic was removed by aluminum salt process. The amount of coagulant needed is the amount of coagulant required to remove fluoride separately. Fluoride can not be removed from drinking water by the ferric salt process. It was concluded that aluminum salt process should be used to remove arsenic and fluoride simultaneously from high arsenic and high fluoride coexisted drinking water.

  6. Status of ITER task T213 collaborative irradiation screening experiment on Cu/SS joints in the Russian Federation SM-2-reactor

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States); Fabritsiev, S.A. [D.V. Efremov Inst., St. Petersburg (Russian Federation); Pokrovsky, A.S. [SRIAR, Dimitrovgrad (Russian Federation); Zinkle, S.J. [Oak Ridge National Lab., TN (United States)] [and others

    1996-04-01

    Specimen fabrication is underway for an irradiation screening experiment planned to start in January 1996 in the SM-2 reactor in Dimitrovgrad, Russia. The purpose of the experiment is to evaluate the effects of neutron irradiation at ITER-relevant temperatures on the bond integrity performance of Cu/SS and Be/Cu joints, as well as to further investigate the base metal properties of irradiated copper alloys. Specimens from each of the four ITER parties (U.S., EU, japan, and RF) will be irradiated to a dose of {approx}0.2 dpa at two different temperatures, 150 and 300{degrees}C. The specimens will consist of Cu/SS and Be/Cu joints in several different geometries, as well as a large number of specimens from the base materials. Fracture toughness data on base metal and Cu/SS bonded specimens will be obtained from specimens supplied by the U.S. Due to lack of material, the Be/Cu specimens supplied by the U.S will only be irradiated as TEM disks.

  7. Testing the {rho}* scaling of thermal transport models: predicted and measured temperatures in the Tokamak Fusion Test Reactor dimensionless scaling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D.R.; Scott, S.D. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Dorland, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1997-04-01

    Theoretical predictions of ion and electron thermal diffusivities are tested by comparing calculated and measured temperatures in low (L) mode plasmas from the Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25 , 1167 (1985)] nondimensional scaling experiments. The DIII-D [J. L. Luxon and L. G. Davis, Fusion Technol. 8 , 441 (1985)] L-mode {rho}* scalings, the transport models of Rebut-Lallia-Watkins (RLW), Boucher`s modification of RLW, and the Institute for Fusion Studies-Princeton Plasma Physics Laboratory (IFS-PPPL) model for transport due to ion temperature gradient modes are tested. The predictions use the measured densities in order to include the effects of density profile shape variations on the transport models. The uncertainties in the measured and predicted temperatures are discussed. The predictions based on the DIII- D scalings are within the measurement uncertainties. All the theoretical models predict a more favorable {rho}* dependence for the ion temperatures than is seen. Preliminary estimates indicate that sheared ow stabilization is important for some discharges, and that inclusion of its effects may bring the predictions of the IFS-PPPL model into agreement with the experiments.

  8. Antineutrino monitoring of thorium reactors

    Science.gov (United States)

    Akindele, Oluwatomi A.; Bernstein, Adam; Norman, Eric B.

    2016-09-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuel types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring. Thorium molten salt reactors breed 233U, that if diverted constitute a direct use material as defined by the International Atomic Energy Agency (IAEA). The antineutrino spectrum from the fission of 233U has been estimated for the first time, and the feasibility of detecting the diversion of 8 kg of 233U, within a 30 day timeliness goal has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos at a 25 m standoff. It was found that the diversion of a significant quantity of 233U could not be detected within the current IAEA timeliness detection goal using either tests. A rate-time based analysis exceeded the timeliness goal by 23 days, while a spectral based analysis exceeds this goal by 31 days.

  9. Protein separation through preliminary experiments concerning pH and salt concentration by tube radial distribution chromatography based on phase separation multiphase flow using a polytetrafluoroethylene capillary tube.

    Science.gov (United States)

    Kan, Hyo; Tsukagoshi, Kazuhiko

    2017-07-01

    Protein mixtures were separated using tube radial distribution chromatography (TRDC) in a polytetrafluoroethylene (PTFE) capillary (internal diameter=100µm) separation tube. Separation by TRDC is based on the annular flow in phase separation multiphase flow and features an open-tube capillary without the use of specific packing agents or application of high voltages. Preliminary experiments were conducted to examine the effects of pH and salt concentration on the phase diagram of the ternary mixed solvent solution of water-acetonitrile-ethyl acetate (8:2:1 volume ratio) and on the TRDC system using the ternary mixed solvent solution. A model protein mixture containing peroxidase, lysozyme, and bovine serum albumin was analyzed via TRDC with the ternary mixed solvent solution at various pH values, i.e., buffer-acetonitrile-ethyl acetate (8:2:1 volume ratio). Protein was separated on the chromatograms by the TRDC system, where the elution order was determined by the relation between the isoelectric points of protein and the pH values of the solvent solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Experiences with archived raw diffraction images data: capturing cisplatin after chemical conversion of carboplatin in high salt conditions for a protein crystal

    Energy Technology Data Exchange (ETDEWEB)

    Tanley, Simon W. M. [University of Manchester, Brunswick Street, Manchester M13 9Pl (United Kingdom); Diederichs, Kay [University of Konstanz (Germany); Kroon-Batenburg, Loes M. J.; Schreurs, Antoine M. M. [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk [University of Manchester, Brunswick Street, Manchester M13 9Pl (United Kingdom)

    2013-10-01

    Archiving of raw diffraction images data has led to new structural chemistry information being obtained for previously published results, which leads to the conclusion that carboplatin has partially converted to cisplatin in the high NaCl concentration conditions used in the crystallization procedure. The archiving of raw diffraction images data is the focus of an IUCr Diffraction Data Deposition Working Group. Experience in archiving and sharing of raw diffraction images data in collaboration between Manchester and Utrecht Universities, studying the binding of the important anti-cancer agents, cisplatin and carboplatin to histidine in a protein, has recently been published. Subsequently, these studies have been expanded due to further analyses of each data set of raw diffraction images using the diffraction data processing program XDS. The raw diffraction images, measured at Manchester University, are available for download at Utrecht University and now also mirrored at the Tardis Raw Diffraction Data Archive in Australia. Thus a direct comparison of processed diffraction and derived protein model data from XDS with the published results has been made. The issue of conversion of carboplatin to cisplatin under a high chloride salt concentration has been taken up and a detailed crystallographic assessment is provided. Overall, these new structural chemistry research results are presented followed by a short summary of developing raw data archiving policy and practicalities as well as documenting the challenge of making appropriate and detailed recording of the metadata for crystallography.

  11. Neutronic reactor

    Science.gov (United States)

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  12. Neutronic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, D.F.; Menegus, R.L.; Wende, C.W.

    1983-01-04

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  13. Characterizing oxidative flow reactor SOA production and OH radical exposure from laboratory experiments of complex mixtures (engine exhaust) and simple precursors (monoterpenes)

    Science.gov (United States)

    Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.

    2016-12-01

    Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the

  14. Can COSMOTherm Predict a Salting in Effect?

    Science.gov (United States)

    Toivola, Martta; Prisle, Nønne L; Elm, Jonas; Waxman, Eleanor M; Volkamer, Rainer; Kurtén, Theo

    2017-08-24

    We have used COSMO-RS, a method combining quantum chemistry with statistical thermodynamics, to compute Setschenow constants (K S ) for a large array of organic solutes and salts. These comprise both atmospherically relevant solute-salt combinations, as well as systems for which experimental data are available. In agreement with previous studies on single salts, the Setschenow constants predicted by COSMO-RS (as implemented in the COSMOTherm program) are generally too large compared to experiments. COSMOTherm overpredicts salting out (positive K S ), and/or underpredicts salting in (negative K S ). For ammonium and sodium salts, K S values are larger for oxalates and sulfates, and smaller for chlorides and bromides. For chloride and bromide salts, K S values usually increase with decreasing size of the cation, along the series Pr 4 N + salting in is predicted only for oxalic acid in sodium and ammonium oxalate, and sodium sulfate, solutions. COSMOTherm was thus unable to replicate the experimentally observed salting in of glyoxal in sulfate solutions, likely due to the overestimation of salting out effects. By contrast, COSMOTherm does qualitatively predict the experimentally observed salting in of multiple organic solutes in solutions of alkylaminium salts.

  15. Fast Reactor Fuel Type and Reactor Safety Performance

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  16. A study on the use of the reactor basic experiments in the U-D2O lattices of the RB critical assembly for validation of modern nuclear data libraries

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2016-01-01

    Full Text Available Demand on the availability of well-defined reactor experiments for validation of computer codes for use in nuclear industry and nuclear technology is everlasting. Users must be confident of the results obtained by the proven computer codes and nuclear data libraries chosen in the models. The well-defined (mostly historical and evaluated reactor experiments (about 5000 in 2015 were collected continuously as the benchmarks within the frame of the OECD/NEA international projects ICSBEP (since 1995 and IRPhEP (since 2003. The Handbooks of the Projects are published in electronic forms (at the NEA web site of the OECD and at a DVD media every year. This study is aimed to (a examine and evaluate reactor basic experiments, carried out in the lattice of the natural uranium metal fuel in the heavy water of the RB critical assembly first core in 1958, and (b demonstrate their possibility for validation of modern nuclear data libraries. These RB reactor basic experiments include: (1 approach to criticality, (2 determination of the reactivity gradient at the D2O critical level, (3 measurement of the dependence of the D2O critical level on the D2O temperature, i. e. dependence of the reactivity with change in the D2O temperature; (4 the critical reactor geometrical parameter (buckling measurements, (5 the migration length measurements, (6 determination of the neutron multiplication factor in the infinite lattice, and (7 the safety rods reactivity measurements. Results of the experiments are compared to the results obtained using modern nuclear data libraries of the ACE type by applying the MCNP6.1, a well-known and proven computer code based on the Monte Carlo method. A short overview of these experiments (done at the RB assembly is shown. A brief description of the neutron ACE type nuclear data libraries (created in the LANL, based on the ENDF/B-VII.0 and ENDF/B-VII.1 files, or created in the OECD/NEA, based on the JEFF-3.2 evaluated nuclear data files

  17. Reactor antineutrinos and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Balantekin, A.B. [University of Wisconsin, Department of Physics, Madison, WI (United States)

    2016-11-15

    Short-baseline reactor neutrino experiments successfully measured the neutrino parameters they set out to measure, but they also identified a shape distortion in the 5-7 MeV range as well as a reduction from the predicted value of the flux. Nuclear physics input into the calculations of reactor antineutrino spectra needs to be better refined if this anomaly is to be interpreted as due to sterile neutrino states. (orig.)

  18. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  19. Thermal-hydraulic interfacing code modules for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  20. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2005-04-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium

  1. Reactor safety research programs. Quarterly progress report, January 1--March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Romano, A.J. (comp.)

    1977-05-01

    The projects reported each quarter are the following: Gas Reactor Safety Evaluation, THOR Code Development, SSC Code Development, LMFBR and LWR Safety Experiments, Fast Reactor Safety Code Validation, Technical Coordination of Structural Integrity, and Fast Reactor Safety Reliability Assessment.

  2. Contribution of reactor physics in past and future. Is reactor physics useful?

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Toshikazu [Osaka Univ. (Japan); Kosaka, Shinya [TEPCO Systems Co. (Japan); Tatsumi, Masahiro [Nuclear Fuel Industries Ltd., Tokyo (Japan)] (and others)

    2003-02-01

    Reactor Physics is a science to create rector and to play an important role in application to calculation science and safety evaluation. This feature articles contains topics, interested problems and development problems in the following field of reactor physics such as theory and experiment of reactor physics, core control, safety evaluation, criticality safety, accelerator driven subcritical reactor (ADS), new type reactor and evaluation of reactor physics. An original nuclear calculation method developed in Japan has been applied to design and analysis of fast breeder reactor. Interested problems are a proposal of fundamental principles of progressive reactor, development of calculation science, new knowledge by application of best estimate method to safety evaluation and investigation of complicated phenomena of criticality safety. (S.Y.)

  3. Nuclear Reactors. Revised.

    Science.gov (United States)

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  4. Photocatalytic reactor

    Science.gov (United States)

    Bischoff, Brian L.; Fain, Douglas E.; Stockdale, John A. D.

    1999-01-01

    A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

  5. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    Science.gov (United States)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  6. Hybrid adsorptive membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  8. Reactor transient

    Energy Technology Data Exchange (ETDEWEB)

    Menegus, R.L.

    1956-05-31

    The authors are planning a calculation to be done on the Univac at the Louviers Building to estimate the effect of xenon transients, a high reactor power. This memorandum outlines the reasons why they prefer to do the work at Louviers rather than at another location, such as N.Y.U. They are to calculate the response of the reactor to a sudden change in position of the half rods. Qualitatively, the response will be a change in the rooftop ratio of the neutron flux. The rooftop ratio may oscillate with high damping, or, instead, it may oscillate for many cycles. It has not been possible for them to determine this response by hand calculation because of the complexity of the problem, and yet it is important for them to be certain that high power operation will not lead us to inherently unstable operation. Therefore they have resorted to machine computation. The system of differential equations that describes the response has seven dependent variables; therefore there are seven equations, each coupled with one or more of the others. The authors have discussed the problem with R.R. Haefner at the plant, and it is his opinion that the IBM 650 cannot adequately handle the system of seven equations because the characteristic time constants vary over a range of about 10{sup 8}. The Univac located at the Louviers Building is said to be satisfactory for this computation.

  9. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt

  10. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    Directory of Open Access Journals (Sweden)

    Sabharwall Piyush

    2015-01-01

    Full Text Available A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX and a secondary heat exchanger (SHX. Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 °C, high-pressure (7 MPa helium loop thermally integrated with a molten fluoride salt (KF-ZrF4 flow loop operating at low pressure (0.2 MPa, at a temperature of ∼450 °C. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift in measuring operational data for extended periods of times, as data collected will be

  11. Comparative physiology of salt and water stress.

    Science.gov (United States)

    Munns, R.

    2002-02-01

    Plant responses to salt and water stress have much in common. Salinity reduces the ability of plants to take up water, and this quickly causes reductions in growth rate, along with a suite of metabolic changes identical to those caused by water stress. The initial reduction in shoot growth is probably due to hormonal signals generated by the roots. There may be salt-specific effects that later have an impact on growth; if excessive amounts of salt enter the plant, salt will eventually rise to toxic levels in the older transpiring leaves, causing premature senescence, and reduce the photosynthetic leaf area of the plant to a level that cannot sustain growth. These effects take time to develop. Salt-tolerant plants differ from salt-sensitive ones in having a low rate of Na+ and Cl-- transport to leaves, and the ability to compartmentalize these ions in vacuoles to prevent their build-up in cytoplasm or cell walls and thus avoid salt toxicity. In order to understand the processes that give rise to tolerance of salt, as distinct from tolerance of osmotic stress, and to identify genes that control the transport of salt across membranes, it is important to avoid treatments that induce cell plasmolysis, and to design experiments that distinguish between tolerance of salt and tolerance of water stress.

  12. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  13. Extracting information from the molten salt database

    Science.gov (United States)

    Gadzuric, Slobodan; Suh, Changwon; Gaune-Escard, Marcelle; Rajan, Krishna

    2006-12-01

    Molten salt technology is a catchall phrase that includes some very diverse technologies; electrochemistry, heat transfer, chemical oxidation/reduction baths, and nuclear reactors. All of these technologies are linked by the general characteristics of molten salts that can function as solvents, have good heat-transfer characteristics, function like a fluid, can attain very high temperatures, can conduct electricity, and also may have chemical catalytic properties. The Janz molten salt database is the most comprehensive compilation of property data about molten salts available today and is widely used for both fundamental and applied purposes. Databases are traditionally viewed as “static” documents that are used in a “search and retrieval” mode. These static data can be transformed by informatics and data mining tools into a dynamic dataset for analysis of the properties of the, materials and for making predictions. While this approch has been successful in the chemical and biochemical sciences in searching for and establishing structure-property relationships, it is not widely used in the materials science community. Because the design of the original molten salt database was not oriented toward this informatics goal, it was essential to evaluate this dataset in terms of data mining standards. Two techniques were used—a projection (principal components analysis (PCA)) and a predictive method (partial least squares (PLS))—in conjunction with fundamental knowledge acquired from the long-term practice of molten salt chemistry.

  14. Thermohydraulic analysis of high-Prandtl-number fluid in complex duct simulating first wall in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Satake, Masaaki [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering Tohoku University, Aramaki-Aza-Aoba 6-6-01-2, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)], E-mail: msata@karma.qse.tohoku.ac.jp; Yuki, Kazuhisa [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering Tohoku University, Aramaki-Aza-Aoba 6-6-01-2, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)], E-mail: kyuki@qse.tohoku.ac.jp; Hashizume, Hidetoshi [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering Tohoku University, Aramaki-Aza-Aoba 6-6-01-2, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)], E-mail: hidetoshi.hashizume@qse.tohoku.ac.jp

    2010-04-15

    For fusion reactors, molten salt is one of the candidates for coolant materials. Molten salt is a high-Prandtl-number fluid; thus, it is necessary to enhance the heat transfer coefficient. It is proposed that rods are inserted into a duct to enhance the heat transfer coefficient. The flow field behind the rod in the duct is visualized to compare experimental data with simulation results. The trends and distributions in the numerical simulation are the same as those in the experiment, and furthermore, the magnitudes of the time and space scales in the numerical simulation are of the same order as those in the experiment. Thermohydraulic numerical analysis confirmed that the heat transfer coefficient is improved by inserting the rod when the fluid is a high-Prandtl-number fluid and the flow field is in the turbulent region. However, it is necessary for the rods to be arranged in the streamwise direction.

  15. Phosphorus removal in aerated stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghigliazza, R.; Lodi, A.; Rovatti, M. [Inst. of Chemical and Process Engineering ``G.B. Bonino``, Univ. of Genoa (Italy)

    1999-03-01

    The possibility to obtain biological phosphorus removal in strictly aerobic conditions has been investigated. Experiments, carried out in a continuous stirred tank reactor (CSTR), show the feasibility to obtain phosphorus removal without the anaerobic phase. Reactor performance in terms of phosphorus abatement kept always higher then 65% depending on adopted sludge retention time (SRT). In fact increasing SRT from 5 days to 8 days phosphorus removal and reactor performance increase but overcoming this SRT value a decreasing in reactor efficiency was recorded. (orig.) With 6 figs., 3 tabs., 18 refs.

  16. Helium-cooled high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D.B.

    1985-01-01

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  17. Utilisation of British University Research Reactors.

    Science.gov (United States)

    Duncton, P. J.; And Others

    British experience relating to the employment of university research reactors and subcritical assemblies in the education of nuclear scientists and technologists, in the training of reactor operators and for fundamental pure and applied research in this field is reviewed. The facilities available in a number of British universities and the uses…

  18. Impact of slope inclination on salt accumulation

    Science.gov (United States)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and

  19. SoLid: Search for Oscillation with a 6Li Detector at the BR2 research reactor

    OpenAIRE

    Michiels, Ianthe

    2016-01-01

    In the past decades, various nuclear reactor neutrino experiments have measured a deficit in the flux of antineutrinos coming from the reactor at short reactor-detector distances, when compared to theoretical calculations. One of the experiments designed to investigate this reactor antineutrino anomaly is the SoLid experiment. It uses the compact BR2 research reactor from the SCK-CEN in Mol, Belgium, to perform reactor antineutrino flux measurements at very short baseline. These proceedings d...

  20. Microchannel Reactors for ISRU Applications

    Science.gov (United States)

    Carranza, Susana; Makel, Darby B.; Blizman, Brandon; Ward, Benjamin J.

    2005-02-01

    Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. Successful in-situ resources utilization (ISRU) will require component technologies which provide optimal size, weight, volume, and power efficiency. Microchannel reactors enable the efficient chemical processing of in situ resources. The reactors can be designed for the processes that generate the most benefit for each mission. For instance, propellants (methane) can be produced from carbon dioxide from the Mars atmosphere using the Sabatier reaction and ethylene can be produced from the partial oxidation of methane. A system that synthesizes ethylene could be the precursor for systems to synthesize ethanol and polyethylene. Ethanol can be used as a nutrient for Astrobiology experiments, as well as the production of nutrients for human crew (e.g. sugars). Polyethylene can be used in the construction of habitats, tools, and replacement parts. This paper will present recent developments in miniature chemical reactors using advanced Micro Electro Mechanical Systems (MEMS) and microchannel technology to support ISRU of Mars and lunar missions. Among other applications, the technology has been demonstrated for the Sabatier process and for the partial oxidation of methane. Microchannel reactors were developed based on ceramic substrates as well as metal substrates. In both types of reactors, multiple layers coated with catalytic material are bonded, forming a monolithic structure. Such reactors are readily scalable with the incorporation of extra layers. In addition, this reactor structure minimizes pressure drop and catalyst settling, which are common problems in conventional packed bed reactors.

  1. Physics of reactor safety. Quarterly report, April--June 1977. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-01

    The work in the Applied Physics Division includes reports on reactor safety program by members of the Reactor Safety Appraisals Group, Monte Carlo analysis of safety-related critical assembly experiments by members of the Theoretical Fast Reactor Physics Group, and planning of safety-related critical experiments by members of the Zero Power Reactor (ZPR) Planning and Experiments Group. Work on Reactor core thermal-hydraulic code development performed in the Components Technology Division is also included in the report.

  2. Undergraduate Analytical Chemistry Experiment: The Determination of Formation Constants for Acetate and Mono-and Dichloroacetate Salts of Primary, Secondary, and Tertiary Methyl-and Ethylamines

    Science.gov (United States)

    D'Amelia, Ronald P.; Chiang, Stephanie; Pollut, Stephanie; Nirode, William F.

    2014-01-01

    The formation and the hydrolysis of organic salts produced by the titration of a 0.1 M solution of the following amines: methyl-, dimethyl-, trimethyl-, ethyl-, diethyl-, and triethylamine with a 0.1 M solution of acetic, chloroacetic, and dichloracetic acids are studied. The pK[subscript b] of the amine and the pH at the end point were determined…

  3. Study on the safety and on international developments of small modular reactors (SMR). Final report; Studie zur Sicherheit und zu internationalen Entwicklungen von Small Modular Reactors (SMR). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Sebastian; Kruessenberg, Anne; Schaffrath, Andreas; Zipper, Reinhard

    2015-05-15

    such a coupling were investigated, too. For simulation of the safety systems and the behaviour of the SMR in normal operation and in accident conditions the GRS codes for safety analyses e.g. ATHLET, COCOSYS, QUABOX/CUBBOX, etc. must be enhanced and validated. Specific examples for this are e.g. the implementation of material properties of cooling fluids (e.g. gases, liquid metals, molten salts, etc.), the simulation of highly compact steam generators (helical and plate heat exchanger), the simulation of the behaviour of large water pools with special treatment of thermal stratification and the behaviour and performance of passive safety systems. The work to be done depends strongly on the cooling fluid used. At GRS as well as worldwide, most experience has been gained for light water reactors and their behaviour both in operation and accident conditions but also for licensing issues. The compact and integral design of most SMR concepts requires extensive use of code coupling. It is advisable to perform the code development and validation described in this report within national and international research alliances.

  4. Response of Tomato Genotypes to Induced Salt Stress | Agong ...

    African Journals Online (AJOL)

    Thirteen tomato (Lycopersicon esculentum L.) genotypes were subjected to salt treatment under hydroponics and their responses monitored in a set of two experiments with the objective of advancing them as potential salt tolerant tomato scion and/or rootstocks. Salt applications ranged from 0 to 2% NaCl, with the resultant ...

  5. Degradation Mechanisms of Colloidal Organic Matter in Biofilm Reactors

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    The degradation mechanisms of colloidal organic matter in biofilm reactors have been studied in an idealized laboratory reactor system with soluble starch as a model substrate. Batch tests and experiments with different reactor configurations have shown that for this specific substrate, bulk liquid...

  6. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...

  7. Dynamic feedback characteristics of Ghana Research Reactor-1 ...

    African Journals Online (AJOL)

    Dynamic experiments were performed to investigate the effects of insertions of step and ramp reactivities on Ghana Research Reactor-1. These safety performance tests of the reactor show that the reactor is inherently safe. The peak powers were found to be low and could not lead to damage of fuel meat and cladding.

  8. The behaviour of salt and salt caverns

    NARCIS (Netherlands)

    Fokker, P.A.

    1995-01-01

    Salts are mined for both storage and extraction purposes, either via dry or solution mining techniques. For operational, environmental and geological purposes, it is important to understand and predict the in situ behaviour of salt, in particular the creep and strength characteristics. A

  9. Effect of Low Salt Diet on Insulin Resistance in Salt Sensitive versus Salt Resistant Hypertension

    OpenAIRE

    Garg, Rajesh; Sun, Bei; Williams, Jonathan

    2014-01-01

    Accumulating evidence shows an increase in insulin resistance on salt restriction. We compared the effect of low salt diet on insulin resistance in salt sensitive versus salt resistant hypertensive subjects. We also evaluated the relationship between salt sensitivity of blood pressure and salt sensitivity of insulin resistance in a multivariate regression model. Studies were conducted after one week of high salt (200 mmol/day Na) and one week of low salt (10 mmol/day Na) diet. Salt sensitivit...

  10. Determination and Fabrication of New Shield Super Alloys Materials for Nuclear Reactor Safety by Experiments and Cern-Fluka Monte Carlo Simulation Code, Geant4 and WinXCom

    Science.gov (United States)

    Aygun, Bünyamin; Korkut, Turgay; Karabulut, Abdulhalik

    2016-05-01

    Despite the possibility of depletion of fossil fuels increasing energy needs the use of radiation tends to increase. Recently the security-focused debate about planned nuclear power plants still continues. The objective of this thesis is to prevent the radiation spread from nuclear reactors into the environment. In order to do this, we produced higher performanced of new shielding materials which are high radiation holders in reactors operation. Some additives used in new shielding materials; some of iron (Fe), rhenium (Re), nickel (Ni), chromium (Cr), boron (B), copper (Cu), tungsten (W), tantalum (Ta), boron carbide (B4C). The results of this experiments indicated that these materials are good shields against gamma and neutrons. The powder metallurgy technique was used to produce new shielding materials. CERN - FLUKA Geant4 Monte Carlo simulation code and WinXCom were used for determination of the percentages of high temperature resistant and high-level fast neutron and gamma shielding materials participated components. Super alloys was produced and then the experimental fast neutron dose equivalent measurements and gamma radiation absorpsion of the new shielding materials were carried out. The produced products to be used safely reactors not only in nuclear medicine, in the treatment room, for the storage of nuclear waste, nuclear research laboratories, against cosmic radiation in space vehicles and has the qualities.

  11. Low-salt diet

    Science.gov (United States)

    Low-sodium diet; Salt restriction ... control many functions. Too much sodium in your diet can be bad for you. For most people, ... you limit salt. Try to eat a balanced diet. Buy fresh vegetables and fruits whenever possible. They ...

  12. Program review: Ground disposal of reactor effluent

    Energy Technology Data Exchange (ETDEWEB)

    Geier, R.G.

    1967-10-18

    With the exception of N Reactor the plutonium production reactors operated by Douglas United Nuclear, Inc., use treated Columbia River water as coolant on a once through basis. Thus, radionuclides formed by neutron activation of Columbia River salts not removed in the water treatment process and water treatment additives are discharged to the river. Although the quantity and possible effects of the radionuclides released are well within nationally accepted limits, emphasis has been placed for some time on reducing the releases to as low a level as possible. More recently increasing concern has been evidenced with regard to the heat which is also discharged to the river. This report discusses concept which not only would drastically reduce the radionuclide content of the river but which would also substantially decrease the heat discharge. This concept is the disposal of the reactor effluent to the ground either to a pond or to a network of trenches.

  13. Neutron imaging on the VR-1 reactor

    Science.gov (United States)

    Crha, J.; Sklenka, L.; Soltes, J.

    2016-09-01

    Training reactor VR-1 is a low power research reactor with maximal thermal power of 1 kW. The reactor is operated by the Faculty of Nuclear Science and Physical Engineering of the Czech Technical University in Prague. Due to its low power it suits as a tool for education of university students and training of professionals. In 2015, as part of student research project, neutron imaging was introduced as another type of reactor utilization. The low available neutron flux and the limiting spatial and construction capabilities of the reactor's radial channel led to the development of a special filter/collimator insertion inside the channel and choosing a nonstandard approach by placing a neutron imaging plate inside the channel. The paper describes preliminary experiments carried out on the VR-1 reactor which led to first radiographic images. It seems, that due to the reactor construction and low reactor power, the neutron imaging technique on the VR-1 reactor is feasible mainly for demonstration or educational and training purposes.

  14. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  15. Selection of support structure materials for irradiation experiments in the HFIR (High Flux Isotope Reactor) at temperatures up to 500 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.; Longest, A.W.

    1990-01-01

    The key factor in the design of capsules for irradiation of test specimens in the High Flux Isotope Reactor at preselected temperatures up to 500{degree}C utilizing nuclear heating is a narrow gas-filled gap which surrounds the specimens and controls the transfer of heat from the specimens through the wall of a containment tube to the reactor cooling water. Maintenance of this gap to close tolerances is dependent on the characteristics of the materials used to support the specimens and isolate them from the water. These support structure materials must have low nuclear heating rates, high thermal conductivities, and good dimensional stabilities under irradiation. These conditions are satisfied by certain aluminum alloys. One of these alloys, a powder metallurgy product containing a fine dispersion of aluminum oxide, is no longer manufactured. A new alloys of this type, with the trade name DISPAL, is determined to be a suitable substitute. 23 refs., 13 figs., 3 tabs.

  16. PREFACE: SANS-YuMO User Meeting at the Start-up of Scientific Experiments on the IBR-2M Reactor: Devoted to the 75th anniversary of Yu M Ostanevich's birth

    Science.gov (United States)

    Gordely, Valentin; Kuklin, Alexander; Balasoiu, Maria

    2012-03-01

    The Second International Workshop 'SANS-YuMO User Meeting at the Start-up of Scientific Experiments on the IBR-2M Reactor', devoted to the 75th anniversary of the birth of Professor Yu M Ostanevich (1936-1992), an outstanding neutron physicist and the founder of small-angle neutron scattering (field, group, and instrument) at JINR FLNPh, was held on 27-30 May at the Frank Laboratory of Neutron Physics. The first Workshop was held in October 2006. Research groups from different neutron centers, universities and research institutes across Europe presented more than 35 oral and poster presentations describing scientific and methodological results. Most of them were obtained with the help of the YuMO instrument before the IBR-2 shutdown in 2006. For the last four years the IBR-2 reactor has been shut down for refurbishment. At the end of 2010 the physical launch of the IBR-2M reactor was finally realized. Nowadays the small-angle neutron scattering (SANS) technique is applied to a wide range of scientific problems in condensed matter, soft condensed matter, biology and nanotechnology, and despite the fact that there are currently over 30 SANS instruments in operation worldwide at both reactor and spallation sources, the demand for beam-time is considerably higher than the time available. It must be remembered, however, that as the first SANS machine on a steady-state reactor was constructed at the Institute Laue Langevin, Grenoble, the first SANS instrument on a 'white' neutron pulsed beam was accomplished at the Joint Institute for Nuclear Research at the IBR-30 reactor, beamline N5. During the meeting Yu M Ostanevich's determinative and crucial contribution to the construction of spectrometers at the IBR-2 high-pulsed reactor was presented, as well as his contribution to the development of the time-of-flight (TOF) small-angle scattering technique, and a selection of other scientific areas. His leadership and outstanding scientific achievements in applications of the

  17. Capabilities of computer materials science and irradiation experiments for irradiation materials database and design methodology development (based on discussions at the {sup I}EA symposium on fusion reactor materials development)

    Energy Technology Data Exchange (ETDEWEB)

    Jitsukawa, S.; Suzuki, K.; Kaburaki, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Wiffen, F.W.; Stoller, R. [ORNL - Oak Ridge National Laboratory, Materials Science and Technology Div., AK TN (United States); Sharafat, S. [UCLA, Los Angeles, Mechanical and Aerospace Engineering Dept., AK CA (United States)

    2007-07-01

    Full text of publication follows: Irradiation by high-energy fusion neutrons of the first wall of a DEMO blanket introduces transmutation produced helium atoms and displacement damage in the structural material to levels of greater than 1000 appm and 100 displacement per atom during typical service lifetimes, respectively. To simulate high levels of helium atoms in materials, doping techniques using species with large helium producing cross sections are often used in fission reactor irradiation experiments. However, the capability of these techniques is rather limited due to the geometric accumulation of dopants and helium along grain boundaries. In recent years, significant progress in modeling and simulation studies on these irradiation effects using large-scale computational techniques has been achieved. However, further improvements in accuracy and reliability of modeling results are needed prior to application of these results to structural design analyses and licensing. Therefore, the community is anticipating the construction of an intense neutron source, such as the d-Li stripping reaction neutron source of the International Fusion Materials Irradiation Facility (IFMIF). At the recent 'IEA Symposium on Fusion Reactor Materials Development' held Tokyo, Japan 2006, accomplishments of modeling and simulation studies, results of fission neutron and ion irradiation experiments, and a gap between the knowledge of these activities and design methodology of fusion reactor components were presented and discussed. One of the major conclusions of the meeting was that 'IFMIF is an essential facility in the pursuit of a low-risk path to the rapid development of commercially-viable fusion energy (DEMO). To facilitate highly productive IFMIF and supporting efforts (theory, modeling, and computer materials science), it is also important to enhance the activities of materials development, by continuing irradiation experiments in fission reactors and at other

  18. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng

    2015-12-14

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  19. Hybrid plasmachemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  20. Attrition reactor system

    Science.gov (United States)

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  1. Guidebook to nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V. Jr.

    1976-05-01

    A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen.

  2. Developments and Tendencies in Fission Reactor Concepts

    Science.gov (United States)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC

  3. Final report: Initial ecosystem response of salt marshes to ditch plugging and pool creation: Experiments at Rachel Carson National Wildlife Refuge (Maine)

    Science.gov (United States)

    Adamowicz, S.C.; Roman, C.T.

    2002-01-01

    This study evaluates the response of three salt marshes, associated with the Rachel Carson National Wildlife Refuge (Maine), to the practice of ditch plugging. Drainage ditches, originally dug to drain the marsh for mosquito control or to facilitate salt hay farming, are plugged with marsh peat in an effort to impound water upstream of the plug, raise water table levels in the marsh, and increase surface water habitat. At two study sites, Moody Marsh and Granite Point Road Marsh, ditch plugs were installed in spring 2000. Monitoring of hydrology, vegetation, nekton and bird utilization, and marsh development processes was conducted in 1999, before ditch plugging, and then in 2000 and 2001 (all parameters except nekton), after ditch plugging. Each study site had a control marsh that was monitored simultaneously with the plugged marsh, and thus, we employed a BACI study design (before, after, control, impact). A third site, Marshall Point Road Marsh, was plugged in 1998. Monitoring of the plugged and control sites was conducted in 1999 and 2000, with limited monitoring in 2001, thus there was no ?before? plug monitoring. With ditch plugging, water table levels increased toward the marsh surface and the areal extent of standing water increased. Responding to a wetter substrate, a vegetation change from high marsh species (e.g., Spartina patens) to those more tolerant of flooded conditions (e.g., Spartina alterniflora) was noted at two of the three ditch plugged sites. Initial response of the nekton community (fishes and decapod crustaceans) was evaluated by monitoring utilization of salt marsh pools using a 1m2 enclosure trap. In general, nekton species richness, density, and community structure remained unchanged following ditch plugging at the Moody and Granite Point sites. At Marshall Point, species richness and density (number of individuals per m2) were significantly greater in the experimental plugged marsh than the control marsh (open water habitat vs. 11% of

  4. Experiment and modeling of CO{sub 2} capture from flue gases at high temperature in a fluidized bed reactor with Ca-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Fan Fang; Zhen-Shan Li; Ning-Sheng Cai [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education (MOE)

    2009-01-15

    The cyclic CO{sub 2} capture and CaCO{sub 3} regeneration characteristics in a small fluidized bed reactor were experimentally investigated with limestone and dolomite sorbents. Kinetic rate constants for carbonation and calcination were determined using thermogravimetric analysis (TGA) data. Mathematical models developed to model the Ca-based sorbent multiple cycles of CO{sub 2} capture and calcination in the bubbling fluidized bed reactor agreed with the experimental data. The experimental and simulated results showed that the CO{sub 2} in flue gases could be absorbed efficiently by limestone and dolomite. The time for high-efficiency CO{sub 2} capture decreased with an increasing number of cycles because of the loss of sorbent activity, and the final CO{sub 2} capture efficiency remained nearly constant as the sorbent reached its final residual capture capacity. In a continuous carbonation and calcination system, corresponding to the sorbent activity loss, the carbonation kinetic rates of sorbent undergoing various cycles are different, and the carbonation kinetic rates of sorbent circulating N times in the carbonation/calcination cycles are also different because of the different residence time of sorbent in the carbonator. Therefore, the average carbonation rate was given based on the mass balance and exit age distribution for sorbent in the carbonator. The CO{sub 2} capture characteristics in a continuous carbonation/calcination system were predicted, taking into consideration the mass balance, sorbent circulation rate, sorbent activity loss, and average carbonation kinetic rate, to give useful information for the reactor design and operation of multiple carbonation/calcination reaction cycles. 27 refs., 15 figs., 1 tab.

  5. Liquid Fluoride Salt Experimentation Using a Small Natural Circulation Cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Heatherly, Dennis Wayne [ORNL; Williams, David F [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; Caja, Joseph [Electrochemical Systems, Inc.; Caja, Mario [ORNL; Jordan, John [Texas A& M University, Kingsville; Salinas, Roberto [Texas A& M University, Kingsville

    2014-04-01

    A small molten fluoride salt experiment has been constructed and tested to develop experimental techniques for application in liquid fluoride salt systems. There were five major objectives in developing this test apparatus: Allow visual observation of the salt during testing (how can lighting be introduced, how can pictures be taken, what can be seen) Determine if IR photography can be used to examine components submerged in the salt Determine if the experimental configuration provides salt velocity sufficient for collection of corrosion data for future experimentation Determine if a laser Doppler velocimeter can be used to quantify salt velocities. Acquire natural circulation heat transfer data in fluoride salt at temperatures up to 700oC All of these objectives were successfully achieved during testing with the exception of the fourth: acquiring velocity data using the laser Doppler velocimeter. This paper describes the experiment and experimental techniques used, and presents data taken during natural circulation testing.

  6. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity], a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O2 cannot be ignored, especially for the FHR, in which environment the product, SiO2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.

  7. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Ayanna U. [Purdue University; Talaty, Nari [Purdue University; Cooks, R G [Purdue University; Van Berkel, Gary J [ORNL

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  8. NUCLEAR REACTOR CONTROL SYSTEM

    Science.gov (United States)

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  9. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  10. Numerical simulations of convection in the titanium reduction reactor

    Science.gov (United States)

    Teimurazov, A.; Frick, P.; Weber, N.; Stefani, F.

    2017-11-01

    We introduce a hydrodynamic model of convective flows in a titanium reduction reactor. The reactor retort is a cylindrical vessel with a radius of 0.75 m and a height up to 4 m, filled with liquid magnesium at a temperature of 850°C. The exothermic chemical reaction on the metal surface, cooling of the side wall and heating of the lower part of the retort cause strong temperature gradients in the reactor during the process. These temperature gradients cause intensive convective flows inside the reactor. As a result of the reaction, a block of titanium sponge grows at the retort bottom and the magnesium salt, whose density is close to the density of magnesium, settles down. The process of magnesium salt settling in a titanium reduction reactor was numerically studied in a two-dimensional (full size model) and three-dimensional (30% size of the real model) non-stationary formulation. A detailed analysis was performed for configurations with and without presence of convective flow due to work of furnace heaters. It has been established that magnesium salt is settling in drops with sizes from ≈ 3 cm to ≈ 10 cm. It was shown that convective flow can entrain the drop and carry it with the vortex.

  11. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  12. Three-dimensional reactor dynamics code for VVER type nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kyrki-Rajamaeki, R. [VTT Energy, Espoo (Finland)

    1995-10-01

    A three-dimensional reactor dynamics computer code has been developed, validated and applied for transient and accident analyses of VVER type nuclear reactors. This code, HEXTRAN, is a part of the reactor physics and dynamics calculation system of the Technical Research Centre of Finland, VTT. HEXTRAN models accurately the VVER core with hexagonal fuel assemblies. The code uses advanced mathematical methods in spatial and time discretization of neutronics, heat transfer and the two-phase flow equations of hydraulics. It includes all the experience of VTT from 20 years on the accurate three-dimensional static reactor physics as well as on the one-dimensional reactor dynamics. The dynamic coupling with the thermal hydraulic system code SMABRE also allows the VVER circuit-modelling experience to be included in the analyses. (79 refs.).

  13. Mechanical stratification of autochthonous salt: Implications from basin-scale numerical models of rifted margin salt tectonics

    Science.gov (United States)

    Ings, Steven; Albertz, Markus

    2014-05-01

    Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in

  14. Experience in Remote Demolition of the Activated Biological Shielding of the Multi Purpose Research Reactor (MZFR) on the German Karlsruhe Site - 12208

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, Beata; Fleisch, Joachim; Prechtl, Erwin; Suessdorf, Werner; Urban, Manfred [WAK Rueckbau- und Entsorgungs- GmbH, P.O.Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    In 2009, WAK Decommissioning and Waste Management GmbH (WAK) became owner and operator of the waste treatment facilities of Karlsruhe Institute of Technology (KIT) as well as of the prototype reactors, the Compact Sodium-Cooled Fast Reactor (KNK) and Multi-Purpose Reactor (MZFR), both being in an advanced stage of dismantling. Together with the dismantling and decontamination activities of the former WAK reprocessing facility since 1990, the envisaged demolishing of the R and D reactor FR2 and a hot cell facility, all governmentally funded nuclear decommissioning projects on the Karlsruhe site are concentrated under the WAK management. The small space typical of prototype research reactors represented a challenge also during the last phase of activated dismantling, dismantling of the activated biological shield of the MZFR. Successful demolition of the biological shield required detailed planning and extensive testing in the years before. In view of the limited space and the ambient dose rate that was too high for manual work, it was required to find a tool carrier system to take up and control various demolition and dismantling tools in a remote manner. The strategy formulated in the concept of dismantling the biological shield by means of a modified electro-hydraulic demolition excavator in an adaptable working scaffolding turned out to be feasible. The following boundary conditions were essential: - Remote exchange of the dismantling and removal tools in smallest space. - Positioning of various supply facilities on the working platform. - Avoiding of interfering edges. - Optimization of mass flow (removal of the dismantled mass from the working area). - Maintenance in the surroundings of the dismantling area (in the controlled area). - Testing and qualification of the facilities and training of the staff. Both the dismantling technique chosen and the proceeding selected proved to be successful. Using various designs of universal cutters developed on the basis of

  15. Results from the Salt Phase of SNO

    CERN Document Server

    Miknaitis, K; Ahmed, S N; Anthony, A E; Beier, E W; Bellerive, A; Bergevin, M; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Currat, C A; Dai, X; Dalnoki-Veress, F; Deng, H; Doe, P J; Dosanjh, R S; Doucas, G; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Frame, K; Frati, W; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heelan, L; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jelley, N A; Klein, J R; Kormos, L L; Kos, M S; Krüger, A; Kraus, C V; Krauss, C B; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Loach, J C; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Miin, C; Moffat, B A; Nally, C W; Neubauer, M S; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C V; Peeters, S J M; Poon, A W P; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Seibert, S R; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesic, G; Thomson, M; Thorman, M; Tsui, T; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Wan Chan Tseung, H; Wark, D L; Wendland, J; West, N; Wilkerson, J F; Wilson, J R; Wittich, P; Wouters, J M; Wright, A; Yeh, M; Zuber, K

    2005-01-01

    The Sudbury Neutrino Observatory (SNO) has recently completed an analysis of data from the salt phase of the experiment, in which NaCl was added to the heavy-water neutrino target to enhance sensitivity to solar neutrinos. Results from the 391-day salt data set are summarized, including the measured solar neutrino fluxes, the electron energy spectrum from charged current interactions, and the day-night neutrino flux asymmetries. Constraints on neutrino mixing parameters including the new measurements are also given.

  16. The AFR. An approved network of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Gabriele [Mainz Univ. (Germany). Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren (AFR)

    2012-10-15

    AFR (Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren) is the German acronym for 'Association for Research Reactor Operation and Safety Issues' which was founded in 1959. Reactor managers of European research reactors mainly from the German linguistic area meet regularly for their mutual benefit to exchange experience and knowledge in all areas of operating, managing and utilization of research reactors. In the last 2 years joint meetings were held together with the French association of research reactors CER (Club d'Exploitants des Reacteurs). In this contribution the AFR, its members, work and aims as well as the French partner CER are presented. (orig.)

  17. Nitrite toxicity of Litopenaeus vannamei in water containing low concentrations of sea salt or mixed salts

    Science.gov (United States)

    Sowers, A.; Young, S.P.; Isely, J.J.; Browdy, C.L.; Tomasso, J.R.

    2004-01-01

    The uptake, depuration and toxicity of environmental nitrite was characterized in Litopenaeus vannamei exposed in water containing low concentrations of artificial sea salt or mixed salts. In 2 g/L artificial sea salts, nitrite was concentrated in the hemolymph in a dose-dependent and rapid manner (steady-state in about 2 d). When exposed to nitrite in 2 g/L artificial sea salts for 4 d and then moved to a similar environment without added nitrite, complete depuration occurred within a day. Increasing salinity up to 10 g/L decreased uptake of environmental nitrite. Nitrite uptake in environments containing 2 g/L mixed salts (combination of sodium, potassium, calcium and magnesium chlorides) was similar to or lower than rates in 2 g/L artificial sea salt. Toxicity was inversely related to total dissolved salt and chloride concentrations and was highest in 2 g/L artificial sea salt (96-h medial lethal concentration = 8.4 mg/L nitrite-N). Animals that molted during the experiments did not appear to be more susceptible to nitrite than animals that did not molt. The shallow slope of the curve describing the relationship between toxicity and salinity suggests that management of nitrite toxicity in low-salinity shrimp ponds by addition of more salts may not be practical. ?? Copyright by the World Aquaculture Society 2004.

  18. Nuclear reactor overflow line

    Science.gov (United States)

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  19. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  20. Reducing the Salt Added to Takeaway Food: Within-Subjects Comparison of Salt Delivered by Five and 17 Holed Salt Shakers in Controlled Conditions.

    Directory of Open Access Journals (Sweden)

    Louis Goffe

    Full Text Available To determine if the amount of salt delivered by standard salt shakers commonly used in English independent takeaways varies between those with five and 17 holes; and to determine if any differences are robust to variations in: the amount of salt in the shaker, the length of time spent shaking, and the person serving.Four laboratory experiments comparing the amount of salt delivered by shakers. Independent variables considered were: type of shaker used (five or 17 holes, amount of salt in the shaker before shaking commences (shaker full, half full or nearly empty, time spent shaking (3s, 5s or 10s, and individual serving.Controlled, laboratory, conditions.A quota-based convenience sample of 10 participants (five women aged 18-59 years.Amount of salt delivered by salt shakers.Across all trials, the 17 holed shaker delivered a mean (SD of 7.86g (4.54 per trial, whilst the five holed shaker delivered 2.65g (1.22. The five holed shaker delivered a mean of 33.7% of the salt of the 17 holed shaker. There was a significant difference in salt delivered between the five and 17 holed salt shakers when time spent shaking, amount of salt in the shaker and participant were all kept constant (p<0.001. This difference was robust to variations in the starting weight of shakers, time spent shaking and participant shaking (pssalt shakers have the potential to reduce the salt content of takeaway food, and particularly food from Fish & Chip shops, where these shakers are particularly used. Further research will be required to determine the effects of this intervention on customers' salt intake with takeaway food and on total dietary salt intake.

  1. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  2. Facility for a Low Power Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chalker, R. G.

    1949-09-14

    Preliminary investigation indicates that a reactor facility with ample research provisions for use by University or other interested groups, featuring safety in design, can be economically constructed in the Los Angeles area. The complete installation, including an underground gas-tight reactor building, with associated storage and experiment assembly building, administration offices, two general laboratory buildings, hot latoratory and lodge, can be constructed for approxinately $1,500,000. This does not include the cost of the reactor itself or of its auxiliary equipment,

  3. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  4. Classification and salt tolerance analysis of barley varieties

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Fares, C.; Ceccarelli, S.; Grando, S.; Oweis, T.

    2006-01-01

    Six varieties of barley (Hordeum vulgare), five of which were provided by ICARDA, were tested in a green house experiment for their salt tolerance. Afterwards the ICARDA variety Melusine, selected from this experiment for its combination of high yield and salt tolerance, was compared in a lysimeter

  5. Experiments in the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the PTB in the Asse II salt mine - summary highlighting work performed and outlook

    CERN Document Server

    Neumaier, S; Zwiener, R

    2003-01-01

    Due to its extremely low area dose rate, the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the PTB at the 925 m level of the Asse II Salt Mine offers unique possibilities for the investigation and calibration of dosimetry systems of high sensitivity as are used, for example, in environmental monitoring. Due to its low area dose rate, this laboratory has an outstanding position worldwide. The low ambient dose equivalent rate in the UDO of approx. 1 nSv/h, that means of only approx. 1 percent of the ambient dose rate typically encountered at the Earth's surface, is mainly due to the following reasons: - At the depth at which the UDO is situated, the penetrating muon component of cosmic radiation which considerably contributes to the environmental equivalent dose rate at the Earth's surface (in Braunschweig, for example, approx. one third) is already attenuated by more than five orders of magnitude and is therefore completely negligible for dosimetric investigations; - The activity concentration...

  6. Current status of fast reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, H.H.

    1979-01-01

    The subject of calculation of reactivity coefficients for fast reactors is developed, starting with a discussion of the status of relevant nuclear data and proceeding to the subjects of group cross section generation and of methods of obtaining reactivity coefficients from group cross sections. Reactivity coefficients measured in critical experiments are compared with calculated values. Dependence of reactivity coefficients on reactor design is discussed. Finally, results of the recent international comparison of calculated reactivity coefficients are presented.

  7. Tensile properties of vanadium-base alloys irradiated in the Fusion-1 low-temperature experiment in the BOR-60 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gazda, J.; Nowicki, L.J.; Billone, M.C.; Smith, D.L. [Argonne National Lab., IL (United States)

    1998-09-01

    The irradiation has been completed and the test specimens have been retrieved from the lithium-bonded capsule at the Research Institute of Atomic Reactors (RIAR) in Russia. During this reporting period, the Argonne National Laboratory (ANL) tensile specimens were received from RIAR and initial testing and examination of these specimens at ANL has been completed. The results, corroborating previous findings showed a significant loss of work hardening capability in the materials. There appears to be no significant difference in behavior among the various heats of vanadium-base alloys in the V-(4-5)Cr-(4-5)Ti composition range. The variations in the preirradiation annealing conditions also produced no notable differences.

  8. POTENTIAL BENCHMARKS FOR ACTINIDE PRODUCTION IN HANFORD REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    PUIGH RJ; TOFFER H

    2011-10-19

    A significant experimental program was conducted in the early Hanford reactors to understand the reactor production of actinides. These experiments were conducted with sufficient rigor, in some cases, to provide useful information that can be utilized today in development of benchmark experiments that may be used for the validation of present computer codes for the production of these actinides in low enriched uranium fuel.

  9. Kinetic parameters of the GUINEVERE reference configuration in VENUS-F reactor obtained from a pile noise experiment using Rossi and Feynman methods

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, Benoit; Pepino, Alexandra; Blaise, Patrick; Mellier, Frederic [CEA, DEN, DER/SPEx, Cadarache, F-13108 St Paul Lez Durance (France); Lecouey, Jean-Luc [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, 6 Bd. Marechal Juin 14050 Caen cedex (France); Carta, Mario [ENEA, UTFISST-REANUC, C.R. Casaccia, S.P.040 via Anguillarese 301, 00123 S. Maria Di Galeria, Roma (Italy); Kochetkov, Anatoly; Vittiglio, Guido [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, BE-2400, Mol (Belgium); Billebaud, Annick [LPSC, CNRS, IN2P3/UJF/INPG, 53 Avenue des Martyrs, 38026 Grenoble cedex (France)

    2015-07-01

    A pile noise measurement campaign has been conducted by the CEA in the VENUS-F reactor (SCK-CEN, Mol Belgium) in April 2011 in the reference critical configuration of the GUINEVERE experimental program. The experimental setup made it possible to estimate the core kinetic parameters: the prompt neutron decay constant, the delayed neutron fraction and the generation time. A precise assessment of these constants is of prime importance. In particular, the effective delayed neutron fraction is used to normalize and compare calculated reactivities of different subcritical configurations, obtained by modifying either the core layout or the control rods position, with experimental ones deduced from the analysis of measurements. This paper presents results obtained with a CEA-developed time stamping acquisition system. Data were analyzed using Rossi-α and Feynman-α methods. Results were normalized to reactor power using a calibrated fission chamber with a deposit of Np-237. Calculated factors were necessary to the analysis: the Diven factor was computed by the ENEA (Italy) and the power calibration factor by the CNRS/IN2P3/LPC Caen. Results deduced with both methods are consistent with respect to calculated quantities. Recommended values are given by the Rossi-α estimator, that was found to be the most robust. The neutron generation time was found equal to 0.438 ± 0.009 μs and the effective delayed neutron fraction is 765 ± 8 pcm. Discrepancies with the calculated value (722 pcm, calculation from ENEA) are satisfactory: -5.6% for the Rossi-α estimate and -2.7% for the Feynman-α estimate. (authors)

  10. Nuclear energy. Which reactors for tomorrow?; Energie nucleaire quels reacteurs pour demain?

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, V

    2006-01-15

    Nuclear energy is making a strong come-back in energy strategies. However, to better manage the nuclear fuel resources, the future reactors will have to save it thanks to a higher burnup (more than 0.8% instead of 0.5% today) and recycling rate. Future reactors will be used also as heat generation sources (800-1000 deg. C) for the production of hydrogen, the gasification of coal, the steel-making industry, the petrochemistry etc.. Several technologies are under study: the main ones studied in France are the sodium-cooled FBR, the fast gas-cooled reactor and the very-high temperature reactor. Three other technologies are studied at the international scale: the fast lead-cooled reactor, the molten-salt reactor and the supercritical water reactor. This paper presents briefly the general principles of these technologies with their respective advantage and drawbacks. (J.S.)

  11. Permanent Disposal of Nuclear Waste in Salt

    Science.gov (United States)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  12. Neutron fluxes in test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  13. Conceptual design of Indian molten salt breeder reactor

    Indian Academy of Sciences (India)

    cooled options. Another option, which ... the quantity of waste. It is thus an optimum solution for meeting the energy needs of a large country like India in a sustainable manner, securing its energy freedom in the long term. Schematic of Indian ...

  14. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A

    2008-10-24

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0

  15. Hydroxycarboxylic acids and salts

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  16. SALT for Language Acquisition.

    Science.gov (United States)

    Bancroft, W. Jane

    1996-01-01

    Discusses Schuster's Suggestive-Accelerative Learning Techniques (SALT) Method, which combines Lozanov's Suggestopedia with such American methods as Asher's Total Physical Response and Galyean's Confluent Education. The article argues that students trained with the SALT Method have higher achievement scores and better attitudes than others. (14…

  17. Helium-cooled molten-salt fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; Devan, J.H.

    1984-12-01

    We present a new conceptual design for a fusion reactor blanket that is intended to produce fissile material for fission power plants. Fast fission is suppressed by using beryllium instead of uranium to multiply neutrons. Thermal fission is suppressed by minimizing the fissile inventory. The molten-salt breeding medium (LiF + BeF/sub 2/ + ThF/sub 4/) is circulated through the blanket and to the on-line processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket and the austenitic steel tubes that contain the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion by molten salt. We estimate that a breeder having 3000 MW of fusion power will produce 6500 kg of /sup 233/U per year. This amount is enough to provide makeup for 20 GWe of light-water reactors per year or twice that many high-temperature gas-cooled reactors or Canadian heavy-water reactors. Safety is enhanced because the afterheat is low and blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times a light-water reactor of the same power. The estimated cost of the /sup 233/U produced is $40/g for fusion plants costing 2.35 times that of a light-water reactor if utility owned or $16/g if government owned.

  18. Resedimented salt deposits

    Energy Technology Data Exchange (ETDEWEB)

    Slaczka, A.; Kolasa, K. (Jagiellonian Univ., Krakow (Poland))

    1988-08-01

    Carparthian foredeep's Wieliczka salt mine, unique gravity deposits were lately distinguished. They are mainly built of salt particles and blocks with a small admixture of fragments of Miocene marls and Carpathian rocks, deposited on precipitated salt. The pattern of sediment distribution is similar to a submarine fan. Gravels are dominant in the upper part and sands in lower levels, creating a series of lobes. Coarse-grained deposits are represented by disorganized, self-supported conglomerates passing into matrix-supported ones, locally with gradation, and pebbly sandstones consisting of salt grains and scattered boulder-size clasts. The latter may show in the upper part of a single bed as indistinct cross-bedding and parallel lamination. These sediments are interpreted as debris-flow and high-density turbidity current deposits. Salt sandstones (saltstones) which build a lower part of the fan often show Bouma sequences and are interpreted as turbidity-current deposits. The fan deposits are covered by a thick series of debrites (olistostromes) which consist of clay matrix with salt grains and boulders. The latter as represented by huge (up to 100,000 m{sup 3}) salt blocks, fragments of Miocene marls and Carpathian rocks. These salt debrites represent slumps and debris-flow deposits. The material for resedimented deposits was derived from the southern part of the salt basin and from the adjacent, advancing Carpathian orogen. The authors believe the distinct coarsening-upward sequence of the series is the result of progressive intensification of tectonic movements with paroxysm during the sedimentation of salt debrites (about 15 Ma).

  19. Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.; Wachs, D.; Carmack, J.; Woolstenhulme, N.

    2017-01-01

    The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, and salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.

  20. SCALE4.4a system validation using loading experiment performed at IPEN/MB-01 reactor; Avaliacao do sistema SCALE4.4a no reator IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Alfredo; Mendonca, Arlindo Gilson [Centro Tecnologico da Marinha (CTMSP), Sao Paulo, SP (Brazil); Yamaguchi, Mitsuo; Santos, Adimir dos [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2002-07-01

    CTMSP, a Brazilian navy technological institute, is carrying out a program for developing nuclear propulsion. This program englobes activities from the nuclear fuel cycle up to the construction of nuclear prototype for the navy applications. In order to carry out the fuel activities in a safe way is mandatory a criticality analysis to ensure the nuclear criticality safety of the equipment, processes, lay-outs and storage area of facility that processes fissile materials. The objective of this work is to evaluate a computational system, the SCALE4.4a, specially designed for criticality analysis. This system was acquired recently from RSICC. The evaluation of this system consists of the analysis of an experiment performed at IPEN/MB-01 reactor. In addition to that, it will be performed a comparison another systems such as GAMTEC-II/KENO-IV as well as MCNP, TORT and CITATION. (author)

  1. HORIZONTAL BOILING REACTOR SYSTEM

    Science.gov (United States)

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  2. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  3. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  4. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  5. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  6. Oscillatory flow chemical reactors

    National Research Council Canada - National Science Library

    Slavnić Danijela S; Bugarski Branko M; Nikačević Nikola M

    2014-01-01

    .... However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat...

  7. Pressurizing new reactors

    Energy Technology Data Exchange (ETDEWEB)

    Neill, J.S.

    1956-01-30

    The Technical Division was asked recently to consider designs for new reactors that would add 8000 MW capacity to the Savannah River Plant. One modification of the existing SRP design that would enable a higher power rating, and therefore require fewer new reactors, is an increase in the maximum pressure in the D{sub 2}O system. The existing reactors at SRP are designed for a maximum pressure in the gas plenum of only 5 psig. Higher pressures enable higher D{sub 2} temperatures and higher sheath temperatures without local boiling or burnout. The requirements in reactor cooling facilities at any given power level would therefore be reduced by pressurizing.

  8. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  9. Free convective controls on sequestration of salts into low-permeability strata: insights from sand tank laboratory experiments and numerical modelling

    NARCIS (Netherlands)

    Post, V.E.A.; Simmons, C.T.

    2009-01-01

    Using sand tank experiments and numerical models, local-scale solute-transport processes associated with free convection in both the region surrounding as well as within discrete low-permeability strata are explored. Different permeability geometries and contrasts between high- and low-permeability

  10. Impact of VOC Composition and Reactor Conditions on the Aging of Biomass Cookstove Emissions in an Oxidation Flow Reactor

    Science.gov (United States)

    Oxidation flow reactor (OFR) experiments in our lab have explored secondary organic aerosol (SOA) production during photochemical aging of emissions from cookstoves used by billions in developing countries. Previous experiments, conducted with red oak fuel under conditions of hig...

  11. Invasive Knotweeds are Highly Tolerant to Salt Stress

    Science.gov (United States)

    Rouifed, Soraya; Byczek, Coline; Laffray, Daniel; Piola, Florence

    2012-12-01

    Japanese knotweed s.l. are some of the most invasive plants in the world. Some genotypes are known to be tolerant to the saline concentrations found in salt marshes. Here we focus on tolerance to higher concentrations in order to assess whether the species are able to colonize and establish in highly stressful environments, or whether salt is an efficient management tool. In a first experiment, adult plants of Fallopia japonica, Fallopia × bohemica and Fallopia sachalinensis were grown under salt stress conditions by watering with saline concentrations of 6, 30, 120, or 300 g L-1 for three weeks to assess the response of the plants to a spill of salt. At the two highest concentrations, their leaves withered and fell. There were no effects on the aboveground parts at the lowest concentrations. Belowground dry weight and number of buds were reduced from 30 and 120 g L-1 of salt, respectively. In a second experiment, a single spraying of 120 g L-1 of salt was applied to individuals of F. × bohemica and their stems were clipped to assess the response to a potential control method. 60 % of the plants regenerated. Regeneration was delayed by the salt treatment and shoot growth slowed down. This study establishes the tolerance of three Fallopia taxa to strong salt stress, with no obvious differences between taxa. Their salt tolerance could be an advantage in their ability to colonize polluted environments and to survive to spills of salt.

  12. AOX determination in industrial waste water according to EN 1485, DEV H14. Experience with high salt freights and interfering organic matter; AOX-Bestimmungen in Industrieabwaessern nach EN 1485, DEV H14 Erfahrungen mit hohen Salzfrachten und organischen Stoerstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, B. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl und Pruefamt fuer Wasserguete- und Abfallwirtschaft

    1999-07-01

    AOX determination in industrial waste water is not always trivial on account of high salt freights or high organic loads. Interfering substances of inorganic or organic nature can cause increases or decreases of readings that often are not plausible or reproducible. In most cases the AOX enrichment step is limiting to quantitative analysis. In the present work, enrichment in two industrial waste waters was critically assessed according to EN 1485 DEV H14. In addition, experience with the enrichment method according to Dr. Lange is reported. For the elimination of high salt freights beside a low organic concentration, cleanup by means of solid-phase extraction is considered. The results suggest that the standardized procedure is not universally applicable to any type of sample. However, appropriate action can minimize flaws of enrichment and, thereby, AOX determination. (orig.) [German] Die AOX-Bestimmung aus Industrieabwaessern ist aufgrund hoher Salzfrachten oder hoher organischer Belastungen nicht immer trivial. Stoerstoffe anorganischer wie auch organischer Art koennen zu Mehr- oder Minderbefunden fuehren, die oft nicht plausibel und reproduzierbar sind. In den meisten Faellen ist der Anreicherungsschritt des AOX fuer die quantitative Analyse limitierend. In der vorliegenden Arbeit wurde die Anreicherung nach den EN 1485 DEV H14 fuer zwei Industrieabwaesser kritisch betrachtet. Zudem werden Erfahrungen mit der Anreicherungsmethode nach Dr. Lange vorgestellt. Zur Entfernung hoher Salzfrachten neben einer geringen organischen Konzentration wurde ein Clean-up mittels Festphasenextraktion betrachtet. Die Ergebnisse legen nahe, dass das genormte Verfahren nicht universell auf jeden Probentyp anwendbar ist. Durch ein gezieltes Vorgehen koennen jedoch Fehler bei der Anreicherung und damit bei der AOX-Bestimmung minimiert werden. (orig.)

  13. Review on the current status of molten chloride reactor and its future prospect

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Bin; Shin, Yukyung; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    This paper has summarized and reviewed the current status of MCR as an online pyroprocessing reactor, and introduced the related works in UNIST. As the developments of the next generation nuclear energy systems require the fuel sustainability, passive operation safety, nuclear proliferation, and reduction of highly radioactive waste, only several types of nuclear reactor systems survive to the last. Among these, molten salt reactor (MSR) is one of the most promising concepts of next generation nuclear reactor system that deliver on these requirements. MSR have great advantages in the fuel cycle and reduction of nuclear waste, since MSR can serve the online reprocessing system for the reprocessing of spent fuel. Especially, MSR utilizing chloride-based fuel, called molten chloride reactor (MCR) has been recently highlighted in USA under the DOE’s Gateway for Accelerated Innovation in Nuclear (GAIN) program. Recently, the interests in the molten chloride salt have arisen. The use of chloride-based salt gives great advantages to the reactor operating in a fast spectrum. Then MCR can serve waste management functions or fuel cycle sustainability functions, which can solve the current issues in nuclear field. Thus, research plan was established in UNIST which includes the investigation of thermal-hydraulic characteristics of chloride salt and optimization of heat transport system of MCR, using both numerical method and experimental method.

  14. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  15. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    OpenAIRE

    Georgy Toshinsky; Vladimir Petrochenko

    2012-01-01

    On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral) design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing...

  16. Amine salts of nitroazoles

    Science.gov (United States)

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  17. What Are Bath Salts?

    Science.gov (United States)

    ... reports of people becoming psychotic (losing touch with reality) and violent. Although it is rare, there have ... in bath salts can produce: feelings of joy increased social interaction increased sex drive paranoia nervousness hallucinations ( ...

  18. Technical specifications, Hanford production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.D. [comp.

    1962-06-25

    These technical specifications are applicable to the eight operating production reactor facilities, B, C, D, DR, F, H, KE, and KW. Covered are operating and performance restrictions and administrative procedures. Areas covered by the operating and performance restrictions are reactivity, reactor control and safety elements, power level, temperature and heat flux, reactor fuel loadings, reactor coolant systems, reactor confinement, test facilities, code compliance, and reactor scram set points. Administrative procedures include process control procedures, training programs, audits and inspections, and reports and records.

  19. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  20. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  1. REFLECTOR FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Fraas, A.P.

    1963-08-01

    A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)

  2. Study of a Multi-Phase Hybrid Heat Exchanger-Reactor (HEX Reactor): Part 2 - Numerical Prediction of Thermal Performance (Postprint)

    Science.gov (United States)

    2014-01-01

    working fluids , and PHE configurations. 15. SUBJECT TERMS ammonium carbamate, HEX Reactor, thermal management, plate heat exchanger, reacting flow...energy in bulk AC salt. Schmidt [7] proposed forming reacting slur- ry by immersing small AC salt particles in a non -reactive heat transfer fluid (HTF) to...secondary flows characteristic of PHEs. Negligible conduction heat transfer in the axial direction. Fluids are Newtonian and incompressible. In accordance

  3. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  4. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  5. Iodized Salt Use and Salt Iodine Content among Household Salts from Six Districts of Eastern Nepal.

    Science.gov (United States)

    Khatiwada, S; Gelal, B; Tamang, M K; Kc, R; Singh, S; Lamsal, M; Baral, N

    2014-01-01

    Universal salt iodization is considered the best strategy for controlling iodine deficiency disorders in Nepal. This study was done to find iodized salt use among Nepalese population and the iodine content of household salts. Six districts (Siraha, Saptari, Jhapa, Udayapur, Ilam and Panchthar) were chosen randomly from 16 districts of eastern Nepal for the study. In each district, three schools (private and government) were chosen randomly for sample collection. A total of 1803 salt samples were collected from schools of those districts. For sample collection a clean air tight plastic pouch was provided to each school child and was asked to bring approximately 15 gm of their kitchen salt. The information about type of salt used; 'two child logo' iodized salt or crystal salt was obtained from each child and salt iodine content was estimated using iodometric titration. At the time of study, 85% (n=1533) of Nepalese households were found to use iodized salt whereas 15% (n=270) used crystal salt. The mean iodine content in iodized and crystal salt was 40.8±12.35 ppm and 18.43±11.49 ppm respectively. There was significant difference between iodized and crystal salts use and salt iodine content of iodized and crystal salt among different districts (p value <0.001 at confidence level of 95%). Of the total samples, only 169 samples (9.4% of samples) have iodine content<15 ppm. Most Nepalese households have access to iodized salt most salt samples have sufficient iodine content.

  6. Not salt taste perception but self-reported salt eating habit predicts actual salt intake.

    Science.gov (United States)

    Lee, Hajeong; Cho, Hyun-Jeong; Bae, Eunjin; Kim, Yong Chul; Kim, Suhnggwon; Chin, Ho Jun

    2014-09-01

    Excessive dietary salt intake is related to cardiovascular morbidity and mortality. Although dietary salt restriction is essential, it is difficult to achieve because of salt palatability. However, the association between salt perception or salt eating habit and actual salt intake remains uncertain. In this study, we recruited 74 healthy young individuals. We investigated their salt-eating habits by questionnaire and salt taste threshold through a rating scale that used serial dilution of a sodium chloride solution. Predicted 24-hr urinary salt excretions using Kawasaki's and Tanaka's equations estimated dietary salt intake. Participants' mean age was 35 yr, and 59.5% were male. Salt sense threshold did not show any relationship with actual salt intake and a salt-eating habit. However, those eating "salty" foods showed higher blood pressure (P for trend=0.048) and higher body mass index (BMI; P for trend=0.043). Moreover, a salty eating habit was a significant predictor for actual salt intake (regression coefficient [β] for Kawasaki's equation 1.35, 95% confidence interval [CI] 10-2.69, P=0.048; β for Tanaka's equation 0.66, 95% CI 0.01-1.31, P=0.047). In conclusion, a self-reported salt-eating habit, not salt taste threshold predicts actual salt intake.

  7. Detection and removal of molten salts from molten aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    K. Butcher; D. Smith; C. L. Lin; L. Aubrey

    1999-08-02

    Molten salts are one source of inclusions and defects in aluminum ingots and cast shapes. A selective adsorption media was used to remove these inclusions and a device for detection of molten salts was tested. This set of experiments is described and the results are presented and analyzed.

  8. Potentiometric titration curves of aluminium salt solutions and its ...

    African Journals Online (AJOL)

    A new concept of critical point is expounded by analysing the potentiometric titration curves of aluminium salt solutions under the moderate slow rate of base injection. The critical point is defined as the characteristic spot of the Al3+ salt solutions potentiometric titration curve, which is related to the experiment conditions.

  9. Systems and methods for enhancing isolation of high-temperature reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per F.

    2017-09-26

    A high-temperature containment-isolation system for transferring heat from a nuclear reactor containment to a high-pressure heat exchanger is presented. The system uses a high-temperature, low-volatility liquid coolant such as a molten salt or a liquid metal, where the coolant flow path provides liquid free surfaces a short distance from the containment penetrations for the reactor hot-leg and the cold-leg, where these liquid free surfaces have a cover gas maintained at a nearly constant pressure and thus prevent high-pressures from being transmitted into the reactor containment, and where the reactor vessel is suspended within a reactor cavity with a plurality of refractory insulator blocks disposed between an actively cooled inner cavity liner and the reactor vessel.

  10. Studies on the liquid fluoride thorium reactor: Comparative neutronics analysis of MCNP6 code with SRAC95 reactor analysis code based on FUJI-U3-(0)

    Energy Technology Data Exchange (ETDEWEB)

    Jaradat, S.Q., E-mail: sqjxv3@mst.edu; Alajo, A.B., E-mail: alajoa@mst.edu

    2017-04-01

    Highlights: • The verification for FUJI-U3-(0)—a molten salt reactor—was performed. • The MCNP6 was used to study the reactor physics characteristics for FUJI-U3 type. • The results from the MCNP6 were comparable with the ones obtained from literature. - Abstract: The verification for FUJI-U3-(0)—a molten salt reactor—was performed. The reactor used LiF-BeF2-ThF4-UF4 as the mixed liquid fuel salt, and the core was graphite moderated. The MCNP6 code was used to study the reactor physics characteristics for the FUJI-U3-(0) reactor. Results for reactor physics characteristic of the FUJI-U3-(0) exist in literature, which were used as reference. The reference results were obtained using SRAC95 (a reactor analysis code) coupled with ORIGEN2 (a depletion code). Some modifications were made in the reconstruction of the FUJI-U3-(0) reactor in MCNP due to unavailability of more detailed description of the reactor core. The assumptions resulted in two representative models of the reactor. The results from the MCNP6 models were compared with the reference results obtained from literature. The results were comparable with each other, but with some notable differences. The differences are because of the approximations that were done on the SRAC95 model of the FUJI-U3 to simplify the simulation. Based on the results, it is concluded that MCNP6 code predicts well the overall simulation of neutronics analysis to the previous simulation works using SRAC95 code.

  11. Prospects for Tokamak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  12. Effect of Low Salt Diet on Insulin Resistance in Salt Sensitive versus Salt Resistant Hypertension

    Science.gov (United States)

    Garg, Rajesh; Sun, Bei; Williams, Jonathan

    2014-01-01

    Accum