WorldWideScience

Sample records for salt destruction process

  1. Destruction of high explosives and wastes containing high explosives using the molten salt destruction process

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Brummond, W.A.; Pruneda, C.O.

    1992-01-01

    This paper reports the Molten Salt Destruction (MSD) Process which has been demonstrated for the destruction of HE and HE-containing wastes. MSD has been used by Rockwell International and by Anti-Pollution Systems to destroy hazardous wastes. MSD converts the organic constituents (including the HE) of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. In the case of HE-containing mixed wastes, any actinides in the waste are retained in the molten salt, thus converting the mixed wastes into low-level wastes. (Even though the MSD process is applicable to mixed wastes, this paper will emphasize HE-treatment.) The destruction of HE is accomplished by introducing it, together with oxidant gases, into a crucible containing a molten salt, such as sodium carbonate, or a suitable mixture of the carbonates of sodium, potassium, lithium and calcium. The temperature of the molten salt can be between 400 to 900 degrees C. The combustible organic components of the waste react with oxygen to produce carbon dioxide, nitrogen and steam

  2. Molten salt destruction process for mixed wastes

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.; Karlsen, C.E.

    1993-04-01

    We are developing an advanced two-stage process for the treatment of mixed wastes, which contain both hazardous and radioactive components. The wastes, together with an oxidant gas, such as air, are injected into a bed of molten salt comprising a mixture of sodium-, potassium-, and lithium-carbonates, with a melting point of about 580 degree C. The organic constituents of the mixed waste are destroyed through the combined effect of pyrolysis and oxidation. Heteroatoms. such as chlorine, in the mixed waste form stable salts, such as sodium chloride, and are retained in the melt. The radioactive actinides in the mixed waste are also retained in the melt because of the combined action of wetting and partial dissolution. The original process, consists of a one-stage unit, operated at 900--1000 degree C. The advanced two-stage process has two stages, one for pyrolysis and one for oxidation. The pyrolysis stage is designed to operate at 700 degree C. The oxidation stage can be operated at a higher temperature, if necessary

  3. Waste salt recovery, recycle, and destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1992-12-01

    Starting in 1943 and continuing into the 1970s, radioactive wastes resulting from plutonium processing at Hanford were stored underground in 149 single shell tanks. Of these tanks, 66 are known or believedto be leaking, and over a period are believed to have leaked about 750,000 gal into the surrounding soil. The bulk of the aqueous solution has been removed and transferred to double shell tanks, none of which are leaking. The waste consists of 37 million gallons of salt cake and sludge. Most of the salt cake is sodium nitrate and other sodium salts. A substantial fraction of the sludge is sodium nitrate. Small amounts of the radionuclides are present in the sludge as oxides or hydroxides. In addition, some of the tanks contain organic compounds and ferrocyanide complexes, many of which have undergone radiolytic induced chemical changes during the years of storage. As part of the Hanford site remediation effort, the tank wastes must be removed, treated, and the residuals must be immobilized and disposed of in an environmentally acceptable manner. Removal methods of the waste from the tanks fall generally into three approaches: dry removal, slurry removal, and solution removed. The latter two methods are likely to result in some additional leakage to the surrounding soil, but that may be acceptable if the tank can be emptied and remediated before the leaked material permeates deeply into the soil. This effort includes three parts: salt splitting, acid separation, and destruction, with initial emphasis on salt splitting

  4. Molten salt processing of mixed wastes with offgas condensation

    International Nuclear Information System (INIS)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R.; Gay, R.L.; Stewart, A.; Yosim, S.

    1991-01-01

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000 degrees C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700 degrees C. 15 refs., 5 figs., 1 tab

  5. Molten salt destruction of rubber and chlorinated solvents

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.

    1994-09-01

    Acceptable methods for the treatment of mixed wastes are not currently available. The authors have investigated Molten Salt Destruction (MSD) as an alternative to incineration of mixed wastes. MSD differs from incineration in several ways: there is no evidence of open flames in MSD, the containment of actinides is accomplished by chemical means (wetting and dissolution), the operating temperature of MSD is much lower (700--590 C vs 1,000--1,200 C) thus lowering the volatility of actinides. Furthermore, no acid gases are released from MSD. These advantages provide the main incentive for developing MSD as an alternative to incineration. The authors have demonstrated the viability of the MSD process to cleanly destroy rubber and chlorinated solvents

  6. Molten salt destruction as an alternative to open burning of energetic material wastes

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.; Brummond, W.A.

    1994-01-01

    LLNL has built a small-scale (about 1 kg/hr throughput unit to test the destruction of energetic materials using the Molten Salt Destruction (MSD) process. We have modified the unit described in the earlier references to inject energetic waste material continuously into the unit. In addition to the HMX, other explosives we have destroyed include RDX, PETN, ammonium picrate, TNT, nitroguanadine, and TATB. We have also destroyed a liquid gun propellant comprising hydroxyl ammonium nitrate, triethanolammonium nitrate and water. In addition to these pure components, we have destroyed a number of commonly used formulations, such as LX-10 (HMX/Viton), LX-16 (PETN/FPC461, LX-17 (TATB/Kel F), and PBX-9404 (HMX)/CEF/Nitro cellulose). Our experiments have demonstrated that energetic materials can be safely and effectively treated by MSD.We have also investigated the issue of steam explosions in molten salt units, both experimentally and theoretically, and concluded that steam explosions can be avoided under proper design and operating conditions. We are currently building a larger unit (nominal capacity 5 kg/hr,) to investigate the relationship between residence time, temperature, feed concentration and throughputs, avoidance of back-burn, a;nd determination of the products of combustion under different operating conditions

  7. Recent advances in the molten salt technology for the destruction of energetic materials

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.

    1995-11-01

    The DOE has thousands of pounds of energetic materials which result from dismantlement operations at the Pantex Plant. The authors have demonstrated the Molten Salt Destruction (MSD) Process for the treatment of explosives and explosive-containing wastes on a 1.5 kilogram of explosive per hour scale and are currently building a 5 kilogram per hour unit. MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. Any inorganic constituents of the waste, such as binders and metallic particles, are retained in the molten salt. The destruction of energetic material waste is accomplished by introducing it, together with air, into a crucible containing a molten salt, in this case a eutectic mixture of Na, K, and Li carbonates. The following pure component DOE and DoD explosives have been destroyed in LLNL's experimental unit at their High Explosives Applications Facility (HEAF): ammonium picrate, HMX, K-6, NQ, NTO, PETN, RDX, TATB, and TNT. In addition, the following formulations were also destroyed: Comp B, LX-10, LX-16, LX-17, PBX-9404, and XM46, a US Army liquid gun propellant. In this 1.5 kg/hr unit, the fractions of carbon converted to CO and of chemically bound nitrogen converted to NOx were found to be well below 1T. In addition to destroying explosive powders and molding powders the authors have also destroyed materials that are typical of real world wastes. These include shavings from machined pressed parts of plastic bonded explosives and sump waste containing both explosives and non-explosive debris. Based on the information obtained on the smaller unit, the authors have constructed a 5 kg/hr MSD unit, incorporating LLNL's advanced chimney design. This unit is currently under shakedown tests and evaluation

  8. Removal of uranium from spent salt from the moltensalt oxidation process

    International Nuclear Information System (INIS)

    Summers, L.; Hsu, P.C.; Holtz, E.V.; Hipple, D.; Wang, F.; Adamson, M.

    1997-03-01

    Molten salt oxidation (MSO) is a thermal process that has the capability of destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials. In this process, combustible waste and air are introduced into the molten sodium carbonate salt. The organic constituents of the waste materials are oxidized to carbon dioxide and water, while most of the inorganic constituents, including toxic metals, minerals, and radioisotopes, are retained in the molten salt bath. As these impurities accumulate in the salt, the process efficiency drops and the salt must be replaced. An efficient process is needed to separate these toxic metals, minerals, and radioisotopes from the spent carbonate to avoid generating a large volume of secondary waste. Toxic metals such as cadmium, chromium, lead, and zinc etc. are removed by a method described elsewhere. This paper describes a separation strategy developed for radioisotope removal from the mixed spent salt, as well as experimental results, as part of the spent salt cleanup. As the MSO system operates, inorganic products resulting from the reaction of halides, sulfides, phosphates, metals and radionuclides with carbonate accumulate in the salt bath. These must be removed to prevent complete conversion of the sodium carbonate, which would result in eventual losses of destruction efficiency and acid scrubbing capability. There are two operational modes for salt removal: (1) during reactor operation a slip-stream of molten salt is continuously withdrawn with continuous replacement by carbonate, or (2) the spent salt melt is discharged completely and the reactor then refilled with carbonate in batch mode. Because many of the metals and/or radionuclides captured in the salt are hazardous and/or radioactive, spent salt removed from the reactor would create a large secondary waste stream without further treatment. A spent salt clean up/recovery system is necessary to segregate these materials and minimize the amount of

  9. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  10. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1976-01-01

    Research devoted to development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors is reported. During this report period, engineering development progressed on continuous fluorinators for uranium removal, the metal transfer process for rare-earth removal, the fuel reconstitution step, and molten salt--bismuth contactors to be used in reductive extraction processes. The metal transfer experiment MTE-3B was started. In this experiment all parts of the metal transfer process for rare-earth removal are demonstrated using salt flow rates which are about 1 percent of those required to process the fuel salt in a 1000-MW(e) MSBR. During this report period the salt and bismuth phases were transferred to the experimental vessels, and two runs with agitator speeds of 5 rps were made to measure the rate of transfer of neodymium from the fluoride salt to the Bi--Li stripper solution. The uranium removed from the fuel salt by fluorination must be returned to the processed salt in the fuel reconstitution step before the fuel salt is returned to the reactor. An engineering experiment to demonstrate the fuel reconstitution step is being installed. In this experiment gold-lined equipment will be used to avoid introducing products of corrosion by UF 6 and UF 5 . Alternative methods for providing the gold lining include electroplating and mechanical fabrication

  11. Study Effect of Salt Washing Process on Content and Iodium Stability of Salt

    Directory of Open Access Journals (Sweden)

    Nelson Saksono

    2010-10-01

    Full Text Available Effect of Salt Washing Process on Content and Iodium Stability of Salt. Salt washing process should increase the saltquality. It should clean the salt from sludge or clay and also reduce the impurity compound such as Mg, Ca and the reductor content. The objective of these reseach is to assess the effect of washing process on the content og hygroscopic impurities compound (Ca and Mg, and reductor content of salt. The research also investigate the water absorbing, pH, KIO3 content as function of time to obtain effect of washing process on KIO3 stability in salt. The experiment result shows that the lowest content of Mg and reductor compound 0.016 % wt and 2.65 ppm respectively which is reached at the fi ne salt washing process using 27 % wt brine. The analysis of water content indicates an increase the Ca and Mg content, causing an water absorbtion in salt , However the effect on pH the is not clear.

  12. Schumpeter's process of creative destruction and the Scandinavian systems

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth; Dahl, Michael Slavensky; Lundvall, Bengt-Åke

    The paper studies of the process of creative destruction according to Schumpeter's programme of making a 'Theoretical, Historical, and Statistical Analysis of the Capitalist Process'. He had both a Mark I and a Mark II of concept of creative destruction, and they are important for understanding...... the coevolution between economic life and socio-political life. A method for partitioning of evolutionary change into a selection effect and an innovation effect is described, and sketches of the historical experience of Denmark and Sweden are made accordingly. Finally, a statistical study of creative destruction...

  13. Application of lithium in molten-salt reduction processes

    International Nuclear Information System (INIS)

    Gourishankar, K. V.

    1998-01-01

    Metallothermic reductions have been extensively studied in the field of extractive metallurgy. At Argonne National Laboratory (ANL), we have developed a molten-salt based reduction process using lithium. This process was originally developed to reduce actinide oxides present in spent nuclear fuel. Preliminary thermodynamic considerations indicate that this process has the potential to be adapted for the extraction of other metals. The reduction is carried out at 650 C in a molten-salt (LiCl) medium. Lithium oxide (Li 2 O), produced during the reduction of the actinide oxides, dissolves in the molten salt. At the end of the reduction step, the lithium is regenerated from the salt by an electrowinning process. The lithium and the salt from the electrowinning are then reused for reduction of the next batch of oxide fuel. The process cycle has been successfully demonstrated on an engineering scale in a specially designed pyroprocessing facility. This paper discusses the applicability of lithium in molten-salt reduction processes with specific reference to our process. Results are presented from our work on actinide oxides to highlight the role of lithium and its effect on process variables in these molten-salt based reduction processes

  14. Applications of molten salts in plutonium processing

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

    1987-01-01

    Plutonium is efficiently recovered from scrap at Los Alamos by a series of chemical reactions and separations conducted at temperatures ranging from 700 to 900 0 C. These processes usually employ a molten salt or salt eutectic as a heat sink and/or reaction medium. Salts for these operations were selected early in the development cycle. The selection criteria are being reevaluated. In this article we describe the processes now in use at Los Alamos and our studies of alternate salts and eutectics

  15. Ultrasonic process for destruction of chlorinated organic compounds in aqueous solution

    International Nuclear Information System (INIS)

    Wu, Jiann M.; Huang, Hann S.

    1993-01-01

    Laboratory investigations of the ultrasonic process for destruction of low concentrations of carbon tetrachloride (CCl 4 ) into nonhazardous end products were carried out in a bench-scale batch reactor, equipped with a 600-W ultrasonic power supply. Process parameters studied included irradiation time, concentration, steady-state operating temperature, pH, and the intensity of applied ultrasonic-wave energy. High destruction efficiencies of greater than 99% were achieved through this process, and the irradiation time and the intensity of applied energy were identified to be the most important process parameters. The irradiation time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. In addition, a detailed chemical reaction mechanism for the destruction of CCl 4 in water was formulated. The agreement between the model and experimental results is generally good

  16. Molten salts processes and generic simulation

    International Nuclear Information System (INIS)

    Ogawa, Toru; Minato, Kazuo

    2001-01-01

    Development of dry separation process (pyrochemical process) using molten salts for the application of spent-nuclear fuel reprocessing requires a rather complete fundamental database as well as process simulation technique with wide applicability. The present report concerns recent progress and problems in this field taking behaviors of co-electrodeposition of UO 2 and PuO 2 in molten salts as an example, and using analytical simulation of local equilibrium combined with generic diffusion. (S. Ohno)

  17. Molten salt processes in special materials preparation

    International Nuclear Information System (INIS)

    Krishnamurthy, N.; Suri, A.K.

    2013-01-01

    As a class, molten salts are the largest collection of non aqueous inorganic solvents. On account of their stability at high temperature and compatibility to a number of process requirements, molten salts are considered indispensable to realize many of the numerous benefits of high temperature technology. They play a crucial role and form the basis for numerous elegant processes for the preparation of metals and materials. Molten salt are considered versatile heat transfer media and have led to the evolution of many interesting reactor concepts in fission and possibly in fusion. They also have been the basis of thinking for few novel processes for power generation. While focusing principally on the actual utilization of molten salts for a variety of materials preparation efforts in BARC, this lecture also covers a few of the other areas of technological applications together with the scientific basis for considering the molten salts in such situations. (author)

  18. Molten salts processes and generic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toru; Minato, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    Development of dry separation process (pyrochemical process) using molten salts for the application of spent-nuclear fuel reprocessing requires a rather complete fundamental database as well as process simulation technique with wide applicability. The present report concerns recent progress and problems in this field taking behaviors of co-electrodeposition of UO{sub 2} and PuO{sub 2} in molten salts as an example, and using analytical simulation of local equilibrium combined with generic diffusion. (S. Ohno)

  19. Simulation of salt production process

    Science.gov (United States)

    Muraveva, E. A.

    2017-10-01

    In this paper an approach to the use of simulation software iThink to simulate the salt production system has been proposed. The dynamic processes of the original system are substituted by processes simulated in the abstract model, but in compliance with the basic rules of the original system, which allows one to accelerate and reduce the cost of the research. As a result, a stable workable simulation model was obtained that can display the rate of the salt exhaustion and many other parameters which are important for business planning.

  20. Dehydration of ethanol with salt extractive distillation-a comparative analysis between processes with salt recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ligero, E.L.; Ravagnani, T.M.K. [Departamento de Engenharia de Sistemas Qumicos, Faculdade de Engenharia Qumica, Universidade Estadual de Campinas, Campinas, Sao Paulo (Brazil)

    2003-07-01

    Anhydrous ethanol can be obtained from a dilute aqueous solution of ethanol via extractive distillation with potassium acetate. Two process flowsheets with salt recovery were proposed. In the first, dilute ethanol is directly fed to a salt extractive distillation column and, after that, the salt is recovered in a multiple effect evaporator followed by a spray dryer. In the second, the concentrated ethanol from conventional distillation is fed to a salt extractive distillation column. In this case, salt is recovered in a single spray dryer. In both processes the recovered salt is recycled to be used in the extractive distillation column. Every component of each process was rigorously modeled and its behavior was simulated for a wide range of operating conditions. A global simulation was then carried out. The results show that the second process is more interesting in terms of energy consumption than the first. Furthermore, it would be easier to implement changes on existing benzene extractive anhydrous ethanol plants to convert them to more ecologically attractive concentrated ethanol feed processes. (author)

  1. MSO spent salt clean-up recovery process; TOPICAL

    International Nuclear Information System (INIS)

    Adamson, M G; Brummond, W A; Hipple, D L; Hsu, P C; Summers, L J; Von Holtz, E H; Wang, F T

    1997-01-01

    An effective process has been developed to separate metals, mineral residues, and radionuclides from spent salt, a secondary waste generated by Molten Salt Oxidation (MSO). This process includes salt dissolution, pH adjustment, chemical reduction and/or sulfiding, filtration, ion exchange, and drying. The process uses dithionite to reduce soluble chromate and/or sulfiding agent to suppress solubilities of metal compounds in water. This process is capable of reducing the secondary waste to less than 5% of its original weight. It is a low temperature, aqueous process and has been demonstrated in the laboratory[1

  2. Ultrasonic characterization of pork meat salting

    International Nuclear Information System (INIS)

    García-Pérez, J V; De Prados, M; Pérez-Muelas, N; Cárcel, J A; Benedito, J

    2012-01-01

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p 2 = 0.975) and moisture (R 2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  3. ADR salt pill design and crystal growth process for hydrated magnetic salts

    Science.gov (United States)

    Shirron, Peter J. (Inventor); DiPirro, Michael J. (Inventor); Canavan, Edgar R. (Inventor)

    2013-01-01

    A process is provided for producing a salt pill for use in very low temperature adiabatic demagnetization refrigerators (ADRs). The method can include providing a thermal bus in a housing. The thermal bus can include an array of thermally conductive metal conductors. A hydrated salt can be grown on the array of thermally conductive metal conductors. Thermal conductance can be provided to the hydrated salt.

  4. Artisanal salt production in Aveiro/Portugal - an ecofriendly process.

    Science.gov (United States)

    Rodrigues, Carolina M; Bio, Ana; Amat, Francisco; Vieira, Natividade

    2011-11-04

    Solar salinas are man-made systems exploited for the extraction of salt, by solar and wind evaporation of seawater. Salt production achieved by traditional methods is associated with landscapes and environmental and patrimonial values generated throughout history. Since the mid-twentieth century, this activity has been facing a marked decline in Portugal, with most salinas either abandoned or subjected to destruction, making it necessary to find a strategy to reverse this trend.It is, however, possible to generate revenue from salinas at several levels, not merely in terms of good quality salt production, but also by obtaining other products that can be commercialized, or by exploring their potential for tourism, and as research facilities, among others. Furthermore, with an adequate management, biodiversity can be restored to abandoned salinas, which constitute important feeding and breeding grounds for resident and migratory aquatic birds, many of which are protected by European Community Directives.The aims of this manuscript are to present a brief overview on the current state of sea salt exploitation in Portugal and to stress the importance of recovering these salinas for the conservation of this particular environment, for the regional economy, the scientific community and the general public. The Aveiro salina complex is presented in detail, to exemplify salina structure and functioning, as well as current problems and potential solutions for artisanal salinas.

  5. Processing of effluent salt from the direct oxide reduction process

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.

    1992-01-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon

  6. Model of the discrete destruction process of a solid body

    Science.gov (United States)

    Glagolev, V. V.; Markin, A. A.

    2018-03-01

    Destruction is considered as a discrete thermomechanical process, in which the deformation of a solid body is achieved by changing the boundary stresses acting on the part of the volume being destroyed with the external load unchanged. On the basis of the proposed concept, a model for adhesive stratification of a composite material is constructed. When adhesive stratification is used, the stress state of one or two boundaries of the adhesive layer changes to zero if the bonds with the joined body are broken. As a result of the stratification, the interaction between the part of the composite, which may include an adhesive layer and the rest of the body stops. When solving the elastoplastic problem of cohesive stratification, the region in which the destruction criterion is achieved is identified. With the help of a repeated solution of the problem of subcritical deformation with the known law of motion of the boundary of the region, the distribution of the load (nodal forces) acting from the region to the body is located. The next step considers the change in the stress–strain state of the body in the process of destruction of the selected area. The elastoplastic problem is solved with a simple unloading of the formed surface of the body and preservation of the external load corresponding to the beginning of the process of destruction.

  7. Characterization of the effects of continuous salt processing on the performance of molten salt fusion breeder blankets

    International Nuclear Information System (INIS)

    Patterson-Hine, F.A.

    1984-05-01

    Several continuous salt processing options are available for use in molten salt fusion breeder blanket designs. The effects of processing on blanket performance have been assessed for three levels of processing and various equilibrium uranium concentrations in the salt. A one-dimensional model of the blanket was used in the neutronics analysis which incorporated transport calculations with time-dependent isotope generation and depletion calculations. The level of salt processing was found to have little effect on the behavior of the blanket during reactor operation; however, significant effects were observed during the decay period after reactor shutdown

  8. Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.

    1984-01-01

    The products of a molten salt combustion of hazardous wastes are converted into a cooled gas, which can be filtered to remove hazardous particulate material, and a dry flowable mixture of salts, which can be recycled for use in the molten salt combustion, by means of gas/liquid contact between the gaseous products of combustion of the hazardous waste and a solution produced by quenching the spent melt from such molten salt combustion. The process results in maximizing the proportion of useful materials recovered from the molten salt combustion and minimizing the volume of material which must be discarded. In a preferred embodiment a spray dryer treatment is used to achieve the desired gas/liquid contact

  9. Treatment of waste salt from the advanced spent fuel conditioning process (I): characterization of Zeolite A in Molten LiCl Salt

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    The oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) and the long-lived radioactive nuclides partitioning process based on electro-refining process, which are being developed ay the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as LiCl salt and LiCl-KCl eutectic salt, respectively. These waste salts must meet some criteria for disposal. A conditioning process for LiCl salt waste from ACP has been developed using zeolite A. This treatment process of waste salt using zeolite A was first developed by US ANL (Argonne National Laboratory) for LiCl-KCl eutectic salt waste from an electro-refining process of EBR (Experimental Breeder Reactor)-II spent fuel. This process has been developed recently, and a ceramic waste form (CWF) is produced in demonstration-scale V-mixer (50 kg/batch). However, ANL process is different from KAERI treatment process in waste salt, the former is LiCl-KCl eutectic salt and the latter is LiCl salt. Because of melting point, the immobilization of eutectic salt is carried out at about 770 K, whereas LiCl salt at around 920 K. Such difference has an effect on properties of immobilization media, zeolite A. Here, zeolite A in high-temperature (923 K) molten LiCl salt was characterized by XRD, Ion-exchange, etc., and evaluated if a promising media or not

  10. Sol-gel processing with inorganic metal salt precursors

    Science.gov (United States)

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  11. Salt processed food and gastric cancer in a Chinese population.

    Science.gov (United States)

    Lin, Si-Hao; Li, Yuan-Hang; Leung, Kayee; Huang, Cheng-Yu; Wang, Xiao-Rong

    2014-01-01

    To investigate the association between salt processed food and gastric cancer, a hospital based case-control study was conducted in a high risk area of China. One hundred and seven newly diagnosed cases with histological confirmation of gastric cancer and 209 controls were recruited. Information on dietary intake was collected with a validated food frequency questionnaire. Unconditional logistic regression was applied to estimate the odds ratios with adjustment for other potential confounders. Comparing the high intake group with never consumption of salt processed foods, salted meat, pickled vegetables and preserved vegetables were significantly associated with increased risk of gastric cancer. Meanwhile, salt taste preference in diet showed a dose-response relationship with gastric cancer. Our results suggest that consumption of salted meat, pickled and preserved vegetables, are positively associated with gastric cancer. Reduction of salt and salt processed food in diets might be one practical measure to preventing gastric cancer.

  12. [Food processing industry--the salt shock to the consumers].

    Science.gov (United States)

    Doko Jelinić, Jagoda; Nola, Iskra Alexandra; Andabaka, Damir

    2010-05-01

    Industrial food production and processing is necessarily connected with the use of salt. Salt or sodium chloride is used as a preservative, spice, agent for color maintenance, texture, and to regulate fermentation by stopping the growth of bacteria, yeast and mold. Besides kitchen salt, other types of salt that also contain sodium are used in various technological processes in food preparing industry. Most of the "hidden" salt, 70%-75%, can be brought to the body by using industrial food, which, unfortunately, has been increasingly used due to the modern way of life. Bread and bakery products, meat products, various sauces, dried fish, various types of cheese, fast food, conserved vegetables, ready-made soups and food additives are the most common industrial foods rich in sodium. Many actions have been taken all over the world to restrict salt consumption. The World Health Organization recommends the upper limit of salt input of 5 g per day. These actions appeal to food industry to reduce the proportion of salt in their products. Besides lower salt addition during manufacture, food industry can use salt substitutes, in particular potassium chloride (KCl), in combination with additives that can mask the absence of salt, and flavor intensifiers that also enhance the product salinity. However, food industry is still quite resistant to reducing salt in their products for fear from losing profits.

  13. Assessment of crushed salt consolidation and fracture healing processes in a nuclear waste repository in salt

    International Nuclear Information System (INIS)

    1984-11-01

    For a nuclear waste repository in salt, two aspects of salt behavior are expected to contribute to favorable conditions for waste isolation. First, consolidation of crushed salt backfill due to creep closure of the underground openings may result in a backfill barrier with low permeability. Second, fractures created in the salt by excavation may heal under the influence of stress and temperature following sealing. This report reviews the status of knowledge regarding crushed salt consolidation and fracture healing, provides analyses which predict the rates at which the processes will occur under repository conditions, and develops requirements for future study. Analyses of the rate at which crushed salt will consolidate are found to be uncertain because of unexplained wide variation in the creep properties of crushed salt obtained from laboratory testing, and because of uncertainties in predictions of long term closure rates of openings in salt. This uncertainty could be resolved to a large degree by additional laboratory testing of crushed salt. Similarly, additional testing of fracture healing processes is required to confirm that healing will be effective under repository conditions. Extensive references, 27 figures, 5 tables

  14. Treatment of plutonium process residues by molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  15. Treatment of plutonium process residues by molten salt oxidation

    International Nuclear Information System (INIS)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.

    1999-01-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible 238 Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na 2 SO 4 , Na 3 PO 4 and NaAsO 2 or Na 3 AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the 238 Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox

  16. Comparison of destructive and nondestructive assay of heterogeneous salt residues

    International Nuclear Information System (INIS)

    Fleissner, J.G.; Hume, M.W.

    1986-01-01

    To study problems associated with nondestructive assay (NDA) measurements of molten salt residues, a joint study was conducted by the Rocky Flats Plant, Golden, CO and Mound Laboratories, Miamisburg, OH. Extensive NDA measurements were made on nine containers of molten salt residues by both Rocky Flats and Mound followed by dissolution and solution quantification at Rocky Flats. Results of this study verify that plutonium and americium can be measured in such salt residues by a new gamma-ray spectral analysis technique coupled with calorimetry. Biases with respect to the segmented gamma-scan technique were noted

  17. Characterization of the effects of continuous salt processing on the performance of molten salt fusion breeder blankets

    International Nuclear Information System (INIS)

    Patterson-Hine, F.A.; Davidson, J.W.; Klein, D.E.; Lee, J.D.

    1985-01-01

    Several continuous salt processing options are available for use in molten salt fusion breeder blanket designs: fluorination only, fluorination plus reductive extraction, and fluorination, plus reductive extraction, plus metal transfer. The effects of processing on blanket performance have been assessed for these three levels of processing and various equilibrium uranium concentrations in the salt. A one-dimensional model of the blanket was used in the neutronics analysis, which incorporated transport calculations with time-dependent isotope generation and depletion calculations. The method of salt processing was found to have little affect on the level of radioactivity, toxicity, or the thermal behavior of the salt during operation of the reactor. The processing rates necessary to maintain the desired uranium concentrations in the suppressed-fission environment were quite low, which permitted only long-lived species to be removed from the salt. The effects of the processing therefore became apparent only after the radioactivity due to the short-lived species diminished. The effect of the additional processing (reductive extraction and metal transfer) could be seen after approximately 1 year of decay, but were not significant at times closer to shutdown. The reduced radioactivity and corresponding heat deposition were thus of no consequence in accident or maintenance situations. Net fissile production in the Be/MS blanket concept at a fusion power level of 3000 MW at 70% capacity ranged from 5100 kg/year to 5170 kg/year for uranium concentrations of 0.11% and 1.0% 233 U in thorium, respectively, with fluorination-only processing. The addition of processing by reductive extraction resulted in 5125 kg/year for the 0.11% 233 U case and 5225 kg/year for the 1.0% 233 U case

  18. Process for the preparation of protected dihydroxypropyl trialkylammonium salts and derivatives thereof

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, R.I.; Wang, G.

    2000-07-04

    A process for the preparation of protected dihydroxypropyl trialkylammonium salts, particularly in chiral form is described. In particular, a process for the preparation of (2,2-dimethyl-1,3-dioxolan-4-ylmethyl)trialkylammonium salts, particularly in chiral form is described. Furthermore, a process is described wherein the (2,2-dimethyl-1,3-dioxolan-4ylmethyl)trialkylammonium salts is a 2,2-dimethyl-1,3-dioxolan-4-ylmethyl trimethylammonium salt, preferably in chiral form. The protected dihydroxypropyl trialkylammonium salts lead to L-carnitine when in chiral form.

  19. Process for the preparation of protected dihydroxypropyl trialkylammonium salts and derivatives thereof

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Rawle I. (Haslett, MI); Wang, Guijun (East Lansing, MI)

    2000-01-01

    A process for the preparation of protected dihydroxypropyl trialkylammonium salts, particularly in chiral form is described. In particular, a process for the preparation of (2,2-dimethyl-1,3-dioxolan-4-ylmethyl)trialkylammonium salts, particularly in chiral form is described. Furthermore, a process is described wherein the (2,2-dimethyl-1,3-dioxolan-4ylmethyl)trialkylammonium salts is a 2,2-dimethyl-1,3-dioxolan-4-ylmethyl trimethylammonium salt, preferably in chiral form. The protected dihydroxypropyl trialkylammonium salts lead to L-carnitine (9) when in chiral form (5).

  20. Organic waste processing using molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  1. Non-destructive testing of tubes by electromagnetic processes

    International Nuclear Information System (INIS)

    Kowarski, A.

    1979-01-01

    This article reviews and assesses the non destructive testing techniques used for locating defects in tubes by electromagnetic processes. These form the basis of many testing devices, the diversity of which results from various factors: range of materials, methods of fabrication, specific defects of the product. There are two distinct main families of devices utilising two different principles: dispersion flow and Foucault currents [fr

  2. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  3. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-01-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone ''Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures'' (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  4. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blanco-Martin, Laura [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  5. Salt separation of uranium deposits generated from electrorefining in pyro process

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Electrorefining is a key step in a pyro processing. Electrorefining process is generally composed of two recovery steps- deposit of uranium onto a solid cathode(electrorefining) and then the recovery of the remaining uranium and TRU(TransUranic) elements simultaneously by a liquid cadmium cathode(electrowinning). The uranium ingot is prepared from the deposits after the salt separation. In this study, the sequential operation of the liquid salt separation? distillation of the residual salt was attempted for the achievement of high throughput performance in the salt separation. The effects of deposit size and packing density were also investigated with steel chips, steel chips, and uranium dendrites. The apparent evaporation rate decreased with the increasing packing density or the increasing size of deposits due to the hindrance of the vapor transport by the deposits. It was found that the packing density and the geometry of deposit crucible are important design parameters for the salt separation system. Base on the results of the study, an engineering scale salt distiller was developed and installed in the argon cell. The salt distiller is a batch-type, and the process capacity to about 50 kg U-deposits/day. The design of the salt distiller is based on the remote operation by Master Slave Manipulator (MSM) and a hoist. The salt distiller is composed of two large blocks of the distillation tower and the crucible loading system for the transportation to maintenance room via the Large Transfer Lock (LTL)

  6. Salt separation of uranium deposits generated from electrorefining in pyro process

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Electrorefining is a key step in a pyro processing. Electrorefining process is generally composed of two recovery steps- deposit of uranium onto a solid cathode(electrorefining) and then the recovery of the remaining uranium and TRU(TransUranic) elements simultaneously by a liquid cadmium cathode(electrowinning). The uranium ingot is prepared from the deposits after the salt separation. In this study, the sequential operation of the liquid salt separation? distillation of the residual salt was attempted for the achievement of high throughput performance in the salt separation. The effects of deposit size and packing density were also investigated with steel chips, steel chips, and uranium dendrites. The apparent evaporation rate decreased with the increasing packing density or the increasing size of deposits due to the hindrance of the vapor transport by the deposits. It was found that the packing density and the geometry of deposit crucible are important design parameters for the salt separation system. Base on the results of the study, an engineering scale salt distiller was developed and installed in the argon cell. The salt distiller is a batch-type, and the process capacity to about 50 kg U-deposits/day. The design of the salt distiller is based on the remote operation by Master Slave Manipulator (MSM) and a hoist. The salt distiller is composed of two large blocks of the distillation tower and the crucible loading system for the transportation to maintenance room via the Large Transfer Lock (LTL)

  7. Secondary Aluminum Processing Waste: Salt Cake Characterization and Reactivity

    Science.gov (United States)

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leac...

  8. Applicability of molten salt oxidation to the destruction of actinide-contaminated wastes

    International Nuclear Information System (INIS)

    West, M.H.; Garcia, E.; Griego, W.J.; Court, D.B.; Rodriguez, L.

    1992-01-01

    A 1989 ban on incineration in the state of New Mexico caused cessation of actinide-contaminated cheesecloth, paper, and wood incineration within the Plutonium Facility (TA-55) at Los Alamos National Laboratory. Subsequently, plastic wipes were substituted for cheesecloth in the cleaning of glovebox interiors. However, waste minimization is not achieved by these measures since the wipes are discarded as Waste Isolation Pilot Plant certifiable wastes. After the ban was instituted, thermal decomposition of cheesecloth under argon at elevated temperature was examined and found satisfactory although scale of operation and speed were inferior to incineration. In 1991, the ban on incineration was lifted in New Mexico but Alamos has not chosen to pursue renewal of incineration at the Plutonium Facility. This paper reports that Los Alamos is looking from alternatives to incineration and thermal decomposition which are compatible with molten salt processing technology, historically a strength in actinide research at the Laboratory. Also, the technology must significantly reduce the volume of the waste upon treatment, i.e. waste minimization. Molten salt oxidation (MSO) has the promise of such a technology

  9. Nutritional modelling: distributions of salt intake from processed foods in New Zealand.

    Science.gov (United States)

    Thomson, Barbara M

    2009-09-01

    The salt content of processed foods is important because of the high intake of Na by most New Zealanders. A database of Na concentrations in fifty-eight processed foods was compiled from existing and new data and combined with 24 h diet recall data from two national nutrition surveys (5771 respondents) to derive salt intakes for seven population groups. Mean salt intakes from processed foods ranged from 6.9 g/d for young males aged 19-24 years to 3.5 g/d for children aged 5-6 years. A total of > or = 50 % of children aged 5-6 years, boys aged 11-14 years and young males aged 19-24 years had salt intakes that exceeded the upper limit for Na, calculated as salt (3.2-5.3 g/d), from processed foods only. Bread accounted for the greatest contribution to salt intake for each population group (35-43 % of total salt intake). Other foods that contributed 2 % or more and common across most age groups were sausage, meat pies, pizza, instant noodles and cheese. The Na concentrations of key foods have changed little over the 16-year period from 1987 to 2003 except for corned beef and whole milk that have decreased by 34 and 50 % respectively. Bread is an obvious target for salt reduction but the implication on iodine intake needs consideration as salt is used as a vehicle for iodine fortification of bread.

  10. Combined gettering and molten salt process for tritium recovery from lithium

    International Nuclear Information System (INIS)

    Sze, D.K.; Finn, P.A.; Bartlit, J.; Tanaka, S.; Teria, T.; Yamawaki, M.

    1988-02-01

    A new tritium recovery concept from lithium has been developed as part of the US/Japan collaboration on Reversed-Field Pinch Reactor Design Studies. This concept combines the γ-gettering process as the front end to recover tritium from the coolant, and a molten salt recovery process to extract tritium for fuel processing. A secondary lithium is used to regenerate the tritium from the gettering bed and, in the process, increases the tritium concentration by a factor of about 20. That way, the required size of the molten salt process becomes very small. A potential problem is the possible poisoning of the gettering bed by the salt dissolved in lithium. 16 refs., 6 figs

  11. Study on application of molten salt oxidation technology (MSO) for PVC wastes treatment

    International Nuclear Information System (INIS)

    Tran Thu Ha; Nguyen Hong Quy; Pham Quoc Ky; Nguyen Quang Long; Vuong Thu Bac; Dang Duc Nhan

    2007-01-01

    The project 'Study on application of molten salt oxidation (MSO) for PVC plastic wastes treatment' aims at three followings: 1) Installation of lab-scale MSO unit with essential compositions builds up foundation for the 2) estimation of waste destruction efficiency of the technology. 3) Based on the results of testing PVC - the chlorinated organic wastes on the lab-scale unit, the ability of the technology application at pilot-scale level will be primary estimated. The adjustment and correction of some compositions in the lab-scale unit theoretically designed during experiment overcame the shortages by design and fabrication such as heat distribution regime, feeding wastes and draining spent salt. These solutions adapt to the technical requirement of operation as well as scientific requirement of the research on MSO process. PVC waste treatment was tested on the MSO lab-scale unit in different conditions of operation temperature, superficial air velocity related to air/oxygen feeding rate, waste feeding rate. The testing results showed that destruction efficiency of chlorine in MSO technology was almost absolute. HCl and Cl 2 emission were insignificant in different operation conditions. HCl and Cl 2 emission depend on resident time and nature of molten salt. However, with inherent attributes of MSO technology emission of CO is not avoided in processing waste treatment. Therefore, finding active solutions for reduction CO emission is essential to complete the technology. The experiments also were carried in conditions of single molten salt (Na 2 CO 3 ) and molten (Na 2 CO 3 - K 2 CO 3 ) eutectic. The comparison of efficiency of these tests gives idea of using molten salt eutectic to reduce operation cost in MSO technology. Based on operation parameters and scientific verification results during experiments, the introductory procedure of waste treatment by MSO process was built up. Thereby, primary estimation of development of the technology in pilot-scale is given

  12. Preconceptual design of a salt splitting process using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R. [Pacific Northwest National Lab., Richland, WA (United States); Balagopal, S.; Landro, T.; Sutija, D.P. [Ceramatec, Inc., Salt Lake City, UT (United States)

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  13. Preconceptual design of a salt splitting process using ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R.; Balagopal, S.; Landro, T.; Sutija, D.P.

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate

  14. Novel waste printed circuit board recycling process with molten salt.

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  15. Novel waste printed circuit board recycling process with molten salt

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  16. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1975-01-01

    Progress is reported on the development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors. The metal transfer experiment MTE-3 (for removing rare earths from MSRE fuel salt) was completed and the equipment used in that experiment was examined. The examination showed that no serious corrosion had occurred on the internal surfaces of the vessels, but that serious air oxidation occurred on the external surfaces of the vessels. Analyses of the bismuth phases indicated that the surfaces in contact with the salts were enriched in thorium and iron. Mass transfer coefficients in the mechanically agitated nondispersing contactors were measured in the Salt/Bismuth Flow-through Facility. The measured mass transfer coefficients are about 30 to 40 percent of those predicted by the preferred literature correlation, but were not as low as those seen in some of the runs in MTE-3. Additional studies using water--mercury systems to simulate molten salt-bismuth systems indicated that the model used to interpret results from previous measurements in the water--mercury system has significant deficiencies. Autoresistance heating studies were continued to develop a means of internal heat generation for frozen-wall fluorinators. Equipment was built to test a design of a side arm for the heating electrode. Results of experiments with this equipment indicate that for proper operation the wall temperature must be held much lower than that for which the equipment was designed. Studies with an electrical analog of the equipment indicate that no regions of abnormally high current density exist in the side arm. (JGB)

  17. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Science.gov (United States)

    Razavi, Behnaz; Song, Weihua; Santoke, Hanoz; Cooper, William J.

    2011-03-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( rad OH) and reducing aqueous electron (e -aq), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with rad OH determined, (6.96±0.16)×10 9, (2.92±0.06)×10 9, (4.16±0.13)×10 9, and (3.13±0.15)×10 9 M -1 s -1, and for e -aq (2.31±0.06)×10 9, (0.45±0.01)×10 9, (1.26±0.01)×10 9, and (0.69±0.02)×10 9 M -1 s -1, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  18. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    International Nuclear Information System (INIS)

    Razavi, Behnaz; Song Weihua; Santoke, Hanoz; Cooper, William J.

    2011-01-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( · OH) and reducing aqueous electron (e - aq ), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with · OH determined, (6.96±0.16)x10 9 , (2.92±0.06)x10 9 , (4.16±0.13)x10 9 , and (3.13±0.15)x10 9 M -1 s -1 , and for e - aq (2.31±0.06)x10 9 , (0.45±0.01)x10 9 , (1.26±0.01)x10 9 , and (0.69±0.02)x10 9 M -1 s -1 , respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137 Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  19. Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice

    KAUST Repository

    Hairmansis, Aris

    2014-08-14

    Background Soil salinity is an abiotic stress wide spread in rice producing areas, limiting both plant growth and yield. The development of salt-tolerant rice requires efficient and high-throughput screening techniques to identify promising lines for salt affected areas. Advances made in image-based phenotyping techniques provide an opportunity to use non-destructive imaging to screen for salinity tolerance traits in a wide range of germplasm in a reliable, quantitative and efficient way. However, the application of image-based phenotyping in the development of salt-tolerant rice remains limited. Results A non-destructive image-based phenotyping protocol to assess salinity tolerance traits of two rice cultivars (IR64 and Fatmawati) has been established in this study. The response of rice to different levels of salt stress was quantified over time based on total shoot area and senescent shoot area, calculated from visible red-green-blue (RGB) and fluorescence images. The response of rice to salt stress (50, 75 and 100 mM NaCl) could be clearly distinguished from the control as indicated by the reduced increase of shoot area. The salt concentrations used had only a small effect on the growth of rice during the initial phase of stress, the shoot Na+ accumulation independent phase termed the ‘osmotic stress’ phase. However, after 20 d of treatment, the shoot area of salt stressed plants was reduced compared with non-stressed plants. This was accompanied by a significant increase in the concentration of Na+ in the shoot. Variation in the senescent area of the cultivars IR64 and Fatmawati in response to a high concentration of Na+ in the shoot indicates variation in tissue tolerance mechanisms between the cultivars. Conclusions Image analysis has the potential to be used for high-throughput screening procedures in the development of salt-tolerant rice. The ability of image analysis to discriminate between the different aspects of salt stress (shoot ion

  20. High-speed image processing systems in non-destructive testing

    Science.gov (United States)

    Shashev, D. V.; Shidlovskiy, S. V.

    2017-08-01

    Digital imaging systems are using in most of both industrial and scientific industries. Such systems effectively solve a wide range of tasks in the field of non-destructive testing. There are problems in digital image processing for decades associated with the speed of the operation of such systems, sufficient to efficiently process and analyze video streams in real time, ideally in mobile small-sized devices. In this paper, we consider the use of parallel-pipeline computing architectures in image processing problems using the example of an algorithm for calculating the area of an object on a binary image. The approach used allows us to achieve high-speed performance in the tasks of digital image processing.

  1. Sulfomethylated lignite salt as a sacrifical agent in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Kudchadker, M.V.; Weiss, W.J.

    1978-02-07

    A process is described for recovering petroleum from oil reservoirs by secondary recovery methods. The process involves injecting via an injection well into the reservoir an aqueous solution of sulfomethylated lignite salt as a sacrificial agent to inhibit the deposition of surfactant and polymer on the reservoir matrix. The process is conducted by first injecting the lignite salt into the formation through the injection well and following it with either a polymer or a surfactant solution, which also may contain the lignite salt. The polymer or surfactant would then be followed by a drive fluid, such as water, to push the chemicals and oil to the production well. (18 claims)

  2. Cation exchange process for molten salt extraction residues

    International Nuclear Information System (INIS)

    Proctor, S.G.

    1975-01-01

    A new method, utilizing a cation exchange technique, has been developed for processing molten salt extraction (MSE) chloride salt residues. The developed ion exchange procedure has been used to separate americium and plutonium from gross quantities of magnesium, potassium, and sodium chloride that are present in the residues. The recovered plutonium and americium contained only 20 percent of the original amounts of magnesium, potassium, and sodium and were completely free of any detectable amounts of chloride impurity. (U.S.)

  3. Contribution of expert systems to data processing in non-destructive control

    International Nuclear Information System (INIS)

    Augendre, H.; Perron, M.C.

    1990-01-01

    The increase of non-destructive control in industrial applications requires the development of new data processing methods. The expert system approach is able to provide signal modelling means which are closer to the human behaviour. Such methods used in more traditional programs lead to substantial improvements. These investigations come within our design to apply sophisticated methods to industrial non-destructive control. For defect characterization purposes in ultrasonic control, various supervised learning methods have been investigated in an experimental study. The traditional approach is concerned with statistics based methods, whereas the second one lies in learning logical decision rules valid within a numerical description space [fr

  4. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Behnaz, E-mail: brazavi@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Song Weihua, E-mail: wsong@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Santoke, Hanoz, E-mail: hsantoke@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Cooper, William J., E-mail: wcooper@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States)

    2011-03-15

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ({sup {center_dot}O}H) and reducing aqueous electron (e{sup -}{sub aq}), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with {sup {center_dot}O}H determined, (6.96{+-}0.16)x10{sup 9}, (2.92{+-}0.06)x10{sup 9}, (4.16{+-}0.13)x10{sup 9}, and (3.13{+-}0.15)x10{sup 9} M{sup -1} s{sup -1}, and for e{sup -}{sub aq} (2.31{+-}0.06)x10{sup 9}, (0.45{+-}0.01)x10{sup 9}, (1.26{+-}0.01)x10{sup 9}, and (0.69{+-}0.02)x10{sup 9} M{sup -1} s{sup -1}, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using {sup 137}Cs {gamma}-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  5. Molten salt extractive distillation process for zirconium-hafnium separation

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a process for zirconium-hafnium separation. It utilizes an extractive distillation column with a mixture of zirconium and hafnium tetrachlorides introduced into a distillation column having a top and bottom with hafnium enriched overheads taken from the top of the column and a molten salt solvent circulated through the column to provide a liquid phase, and with molten salt solvent containing zirconium chloride being taken from the bottom of the distillation column. The improvements comprising: utilizing a molten salt solvent consisting principally of lithium chloride and at least one of sodium, potassium, magnesium and calcium chlorides; stripping of the zirconium chloride taken from the bottom of the distillation column by electrochemically reducing zirconium from the molten salt solvent; and utilizing a pressurized reflux condenser on the top of the column to add the hafnium chloride enriched overheads to the molten salt solvent previously stripped of zirconium chloride

  6. Novel waste printed circuit board recycling process with molten salt

    OpenAIRE

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450?470??C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, a...

  7. Electrodialysis-based separation process for salt recovery and recycling from waste water

    Science.gov (United States)

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  8. Leach resistance properties and release processes for salt-occluded zeolite A

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Laidler, J.J.

    1992-01-01

    The pyrometallurgical processing of spent fuel from the Integral Fast Reactor (IFR) results in a waste of LiCl-KCl-NaCl salt containing approximately 10 wt% fission products, primarily CsCl and SrCl 2 . For disposal, this waste must be immobilized in a form that it is leach resistant. A salt-occluded zeolite has been identified as a potential waste form for the salt. Its leach resistance properties were investigated using powdered samples. The results were that strontium was not released and cesium had a low release, 0.056 g/m 2 for the 56 day leach test. The initial release (within 7 days) of alkali metal cations was rapid and subsequent releases were much smaller. The releases of aluminum and silicon were 0.036 and 0.028 g/m 2 , respectively, and were constant. Neither alkali metal cation hydrolysis nor exchange between cations in the leachate and those in the zeolite was significant. Only sodium release followed t 0.5 kinetics. Selected dissolution of the occluded salt was the primary release process. These results confirm that salt-occluded zeolite has promise as the waste form for IFR pyroprocess salt

  9. Technical review of Molten Salt Oxidation

    International Nuclear Information System (INIS)

    1993-12-01

    The process was reviewed for destruction of mixed low-level radioactive waste. Results: extensive development work and scaleup has been documented on coal gasification and hazardous waste which forms a strong experience base for this MSO process; it is clearly applicable to DOE wastes such as organic liquids and low-ash wastes. It also has potential for processing difficult-to-treat wastes such as nuclear grade graphite and TBP, and it may be suitable for other problem waste streams such as sodium metal. MSO operating systems may be constructed in relatively small units for small quantity generators. Public perceptions could be favorable if acceptable performance data are presented fairly; MSO will likely require compliance with regulations for incineration. Use of MSO for offgas treatment may be complicated by salt carryover. Figs, tabs, refs

  10. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  11. A novel bread making process using salt-stressed Baker's yeast.

    Science.gov (United States)

    Yeh, Lien-Te; Charles, Albert Linton; Ho, Chi-Tang; Huang, Tzou-Chi

    2009-01-01

    By adjusting the mixing order of ingredients in traditional formula, an innovative bread making process was developed. The effect of salt-stressed Baker's yeast on bread dough of different sugar levels was investigated. Baker's yeast was stressed in 7% salt solution then mixed into dough, which was then evaluated for fermentation time, dough fermentation producing gas, dough expansion, bread specific volumes, and sensory and physical properties. The results of this study indicated that salt-stressed Baker's yeast shortened fermentation time in 16% and 24% sugar dough. Forty minutes of salt stress produced significant amount of gas and increased bread specific volumes. The bread was softer and significantly improved sensory properties for aroma, taste, and overall acceptability were obtained.

  12. Study of the pyrochemical treatment-recycling process of the Molten Salt Reactor fuel

    International Nuclear Information System (INIS)

    Boussier, H.; Heuer, D.

    2010-01-01

    The Separation Processes Studies Laboratory (Commissariat a l'energie Atomique) has made a preliminary assessment of the reprocessing system associated with Molten Salt Fast Reactor (MSFR). The scheme studied in this paper is based on the principle of reductive extraction and metal transfer that constituted the core process designed for the Molten Salt Breeder Reactor (MSBR), although the flow diagram has been adapted to the current needs of the Molten Salt Reactor Fast (MSFR).

  13. Kinetics and mechanism of azo dye destruction in advanced oxidation processes

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Palfi, T.; Takacs, E.

    2007-01-01

    The kinetics and mechanism of dye destruction in advanced oxidation processes is discussed on the example of Apollofix Red (Ar-28) radiolysis in aqueous solution. When the reactive intermediate reacts with the color bearing part of the molecule causing with nearly 100% efficiency destruction of the conjugation, the dose dependence, or time dependence of color disappearance is linear. In this case, spectrophotometry can be used to follow-up dye decomposition. Linear dependence was observed when hydrated electrons or hydrogen atoms reacted with the dye. In hydroxyl radical reactions some colored products form with spectra similar to those of the starting dye molecules. For that reason, spectrophotometry gives false result about the intact dye molecule concentration. Analysis by the HPLC reveals logarithmic time dependence in agreement with a theoretical model developed

  14. ALTERNATIVE METHODS OF TECHNOLOGICAL PROCESSING TO REDUCE SALT IN MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    E. K. Tunieva

    2017-01-01

    Full Text Available The world trends in table salt reduction in meat products contemplate the use of different methods for preservation of taste and consistency in finished products as well as shelf life prolongation. There are several approaches to a sodium chloride reduction in meat products. The paper presents a review of the foreign studies that give evidence of the possibility to maintain quality of traditional meat products produced with the reduced salt content. The studies in the field of salty taste perception established that a decrease in a salt crystal size to 20 µm enabled reducing an amount of added table salt due to an increase in the salty taste intensity in food products. Investigation of the compatibility of different taste directions is also interesting as one of the approaches to a sodium chloride reduction in food products. The use of water-in-oil-in-water (w/o/w double emulsions allows controlling a release of encapsulated ingredients (salt, which enables enhancement of salty taste. The other alternative method of technological processing of meat raw material for reducing salt in meat products is the use of high pressure processing. This method has several advantages and allows not only an increase in the salty taste intensity, but also formation of a stable emulsion, an increase in water binding capacity of minced meat and extension of shelf-life.

  15. Destruction of commercial pesticides by cerium redox couple mediated electrochemical oxidation process in continuous feed mode

    International Nuclear Information System (INIS)

    Balaji, Subramanian; Chung, Sang Joon; Ryu, Jae-Yong; Moon, Il Shik

    2009-01-01

    Mediated electrochemical oxidation was carried out for the destruction of commercial pesticide formulations using cerium(IV) in nitric acid as the mediator electrolyte solution in a bench scale set up. The mediator oxidant was regenerated in situ using an electrochemical cell. The real application of this sustainable process for toxic organic pollutant destruction lies in its ability for long term continuous operation with continuous organic feeding and oxidant regeneration with feed water removal. In this report we present the results of fully integrated MEO system. The task of operating the continuous feed MEO system for a long time was made possible by continuously removing the feed water using an evaporator set up. The rate of Ce(IV) regeneration in the electrochemical cell and the consumption for the pesticide destruction was matched based on carbon content of the pesticides. It was found that under the optimized experimental conditions for Ce(III) oxidation, organic addition and water removal destruction efficiency of ca. 99% was obtained for all pesticides studied. It was observed that the Ce(IV) concentration was maintained nearly the same throughout the experiment. The stable operation for 6 h proved that the process can be used for real applications and for possible scale up for the destruction of larger volumes of toxic organic wastes.

  16. Influence of salt content and processing time on sensory characteristics of cooked "lacón".

    Science.gov (United States)

    Purriños, Laura; Bermúdez, Roberto; Temperán, Sara; Franco, Daniel; Carballo, Javier; Lorenzo, José M

    2011-04-01

    The influence of salt content and processing time on the sensory properties of cooked "lacón" were determined. "Lacón" is a traditional dry-cured and ripened meat product made in the north-west of Spain from the fore leg of the pig, following a similar process to that of dry-cured ham. Six batches of "lacón" were salted with different amounts of salt (LS (3 days of salting), MS (4 days of salting) and HS (5 days of salting)) and ripened during two times (56 and 84 days of dry-ripening). Cured odour in all batches studied, red colour and rancid odour in MS and HS batches, flavour intensity in MS batch and fat yellowness, rancid flavour and hardness in the HS batch were significantly different with respect to the time of processing. Appearance, odour, flavour and texture were not significantly affected by the salt content (P>0.05). However, the saltiness score showed significant differences with respect to the salt levels in all studied batches (56 and 84 days of process). The principal component analysis showed that physicochemical traits were the most important ones concerning the quality of dry-cured "lacón" and offered a good separation of the mean samples according to the dry ripening days and salt level. © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  17. INVESTIGATION OF DENTURE REMOVAL PROCESS BY MEANS OF DESTRUCTION OF FIXING CEMENT BY ULTRASOUND ACTION

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2007-01-01

    Full Text Available The paper contains results of experimental investigations in respect of denture removal processes using as models so natural teeth as well and this removal process presupposes destruction of fixing cement by ultrasound action. It has been established that the best conditions for separation of a denture from a tooth body are ensured while ultrasound is acting on non-removable denture structure in liquid phase (water. At the expense of sound-capillary effect water fills in porous structure of fixing cement at high speed and a cavitation that appears in it leads to intensive cement destruction (dispersion.

  18. A comparison of conventional and prototype nondestructive measurements on molten salt extraction residues

    International Nuclear Information System (INIS)

    Longmire, V.L.; Hurd, J.R.; Sedlacek, W.E.; Scarborough, A.M.

    1987-01-01

    Fourteen molten salt extraction residues were assayed by conventional and prototype nondestructive assay (NDA) techniques to be compared with destructive chemical analysis in an effort to identify acceptable NDA measurement methods for this matrix. NDA results on seven samples and destructive results on four samples are presented

  19. Combining a gas turbine modular helium reactor and an accelerator and for near total destruction of weapons grade plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, A.M.; Lane, R.K.; Sherman, R. [General Atomics, San Diego, CA (United States)

    1995-10-01

    Fissioning surplus weapons-grade plutonium (WG-Pu) in a reactor is an effective means of rendering this stockpile non-weapons useable. In addition the enormous energy content of the plutonium is released by the fission process and can be captured to produce valuable electric power. While no fission option has been identified that can accomplish the destruction of more than about 70% of the WG-Pu without repeated reprocessing and recycling, which presents additional opportunities for diversion, the gas turbine modular helium-cooled reactor (GT-MHR), using an annular graphite core and graphite inner and outer reflectors combines the maximum plutonium destruction and highest electrical production efficiency and economics in an inherently safe system. Accelerator driven sub-critical assemblies have also been proposed for WG-Pu destruction. These systems offer almost complete WG-Pu destruction, but achieve this goal by using circulating aqueous or molten salt solutions of the fuel, with potential safety implications. By combining the GT-MHR with an accelerator-driven sub-critical MHR assembly, the best features of both systems can be merged to achieve the near total destruction of WG-Pu in an inherently safe, diversion-proof system in which the discharged fuel elements are suitable for long term high level waste storage without the need for further processing. More than 90% total plutonium destruction, and more than 99.9% Pu-239 destruction, could be achieved. The modular concept minimizes the size of each unit so that both the GT-MHR and the accelerator would be straightforward extensions of current technology.

  20. Process for the recovery of alkali metal salts from aqueous solutions thereof

    International Nuclear Information System (INIS)

    Vitner, J.

    1984-01-01

    In an integrated process for the recovery of alkakli metal phenates and carboxylates from aqueous solutions thereof, the aqueous solution is spray dried and the drying gas stream is contacted with an aqueous alkali metal salt solution which dissolves the particles of the alkali metal salt that were entrained in the drying gas stream. The salt-free inert gas stream is then dried, heated, and returned to the spray dryer

  1. Collisional destruction of fast hydrogen Rydberg atoms

    International Nuclear Information System (INIS)

    King, M.R.

    1984-01-01

    A new modulated electric field technique was developed to study Rydberg atom destruction processes in a fast beam. The process of destruction of a band of Rydberg atom destruction of a band of Rydberg atoms through the combined processes of ionization, excitation, and deexcitation was studied for collisions with gas targets. Rydberg atoms of hydrogen were formed by electron capture, and detected by field ionization. The modulated field technique described proved to be an effective technique for producing a large signal for accurate cross section measurements. The independent particle model for Rydberg atom destruction processes was found to hold well for collisions with molecular nitrogen, argon, and carbon dioxide. The resonances in the cross sections for the free electron scattering with these targets were found to also occur in Rydberg destruction. Suggestions for future investigations of Rydberg atom collision processes in the fast beam regime are given

  2. Targets and timelines for reducing salt in processed food in the Americas.

    Science.gov (United States)

    Campbell, Norm; Legowski, Barbara; Legetic, Branka; Ferrante, Daniel; Nilson, Eduardo; Campbell, Christine; L'Abbé, Mary

    2014-09-01

    Reducing dietary salt is one of the most effective interventions to lessen the burden of premature death and disability. In high-income countries and those in nutrition transition, processed foods are a significant if not the main source of dietary salt. Reformulating these products to reduce their salt content is recommended as a best buy to prevent chronic diseases across populations. In the Americas, there are targets and timelines for reduced salt content of processed foods in 8 countries--Argentina, Brazil, Canada, Chile, Ecuador, Mexico, and the National Salt Reduction Initiative in the United States and Paraguay. While there are common elements across the countries, there are notable differences in their approaches: 4 countries have exclusively voluntary targets, 2 countries have combined voluntary and regulated components, and 1 country has only regulations. The countries have set different types of targets and in some cases combined them: averages, sales-weighted averages, upper limits, and percentage reductions. The foods to which the targets apply vary from single categories to comprehensive categories accounting for all processed products. The most accessible and transparent targets are upper limits per food category. Most likely to have a substantive and sustained impact on salt intake across whole populations is the combination of sales-weighted averages and upper limits. To assist all countries with policies to improve the overall nutritional value of processed foods, the authors call for food companies to supply food composition data and product sales volume data to transparent and open-access platforms and for global companies to supply the products that meet the strictest targets to all markets. Countries participating in common markets at the subregional level can consider harmonizing targets, nutrition labels, and warning labels. ©2014 Wiley Periodicals, Inc.

  3. Modified ADS molten salt processes for back-end fuel cycle of PWR spent fuel

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Yeon, Jei-Won; Kim, Won-Ho

    2002-01-01

    The back-end fuel cycle concept for PWR spent fuel is explained. This concept is adequate for Korea, which has operated both PWR and CANDU reactors. Molten salt processes for accelerator driven system (ADS) were modified both for the transmutation of long-lived radioisotopes and for the utilisation of the remained fissile uranium in PWR spent fuels. Prior to applying molten salt processes to PWR fuel, hydrofluorination and fluorination processes are applied to obtain uranium hexafluoride from the spent fuel pellet. It is converted to uranium dioxide and fabricated into CANDU fuel. From the remained fluoride compounds, transuranium elements can be separated by the molten salt technology such as electrowinning and reductive extraction processes for transmutation purpose without weakening the proliferation resistance of molten salt technology. The proposed fuel cycle concept using fluorination processes is thought to be adequate for our nuclear program and can replace DUPIC (Direct Use of spent PWR fuel in CANDU reactor) fuel cycle. Each process for the proposed fuel cycle concept was evaluated in detail

  4. Features of destruction of solids by laser radiation in process of formation of multiply charged ions

    International Nuclear Information System (INIS)

    Bedilov, R.M.; Bedilov, M.R.; Sabitov, M.M.; Matnazarov, A.; Niyozov, B.

    2004-01-01

    Full text: It is known, under interaction of laser radiation with solid surface a power density q > 0.01 W/cm 2 are observed destruction of a solid and issue of electrons, ions, neutrals, neutrons, plasmas, and also radiation in a wide ranges of a spectra. Despite of a plenty of works, devoted to study of processes of interaction, the studies of feature of destruction of solids by laser beam in process of formation multiply charged ions are insufficiently investigated. The results of study feature of destruction of solids by laser radiation in process of formation multiply charged ions are given in this work. In our experiments, we used the mass spectrometer with single-channel laser radiation. The laser installation had the following parameters: a power density of laser radiation q=(0.1-50) GW/cm 2 ; the angle of incidence a=18 deg. to the target surface Al, (W). It was obtained experimentally dynamics of morphology of destruction and also mass - charge and energy spectra of multiply charged ions formed under interaction of laser radiation with Al (W) in the intensity range q=(0.1-50) GW/cm 2 . These studies showed features of destruction Al(W) by laser radiation, i.e. invariable of value evaporation mass from a surface of a solid increase as the laser intensity q. But thus temperature a pair increases in accordance with increase of flow density of a laser radiation. Increase of temperature the pair gives in formation of multiply charged plasma. It is typical that, as q of the laser increases the maximum charge number of ions in laser plasma considerably increase and their energy spectra extend toward higher energies. For example, under q=0.1 GW/cm 2 and 50 GW/cm 2 the maximum charge number of ions Al (W) are equal to Z max = 1 and 7, respectively. From the experimental data obtained, we can conclude that, the formed multiply charged plasma practically completely absorption laser radiation and 'shielding' a target surface for various metals at power densities

  5. Use of alternative curing salts for processing salamis

    Directory of Open Access Journals (Sweden)

    Dong-Gyun Yim

    2018-01-01

    Full Text Available Objective This study was performed to determine effects of different curing salts on the quality of salamis and to assess feasibility of using NaCl-alternative salts. Methods Various types of curing salts (KCl or MgCl2 as well as NaCl (sun-dried or refined were incorporated for processing of salamis. The proximate composition, fatty acids, nucleotide-related compounds, and free amino acids of the salamis were analyzed during 40 days of ripening. Results The substitution of NaCl by KCl caused higher fat and ash content, but lower moisture content of the salami after 20 days of ripening (p<0.05. Compared with the sun-dried NaCl, use of KCl in salami also led to greater inosine 5′-monophosphate whereas refined NaCl had more inosine (p<0.05. KCl-added salami also had a higher C12:0, C17:1, and C20:0 than other types of salami (p<0.05. MgCl2-added salami had higher content of free amino acids compared to the other salamis (p<0.05. Conclusion Alternative curing salts such as KCl and MgCl2 could substitute NaCl in consideration of quality factor of a fermented meat product. Especially replacement of NaCl with KCl will be a suitable strategy for developing relatively low sodium salami products without compromising product quality.

  6. Engineering development studies for molten-salt breeder reactor processing No. 21

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1976-03-01

    The status of the following programs is reported: (1) continuous fluorinator development: autoresistance heating test AHT-4; (2) development of the metal transfer process; (3) salt-metal contactor development: experiments with a mechanically agitated, nondispersing contactor using water and mercury and in the salt-bismuth flowthrough facility; and (4) fuel reconstitution development: installation of equipment for a fuel reconstitution engineering experiment

  7. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  8. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  9. Process technology for the molten-salt reactor 233U--Th cycle

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1975-01-01

    After a brief description of the design features of the molten-salt breeder reactor, fuel processing for removal of 233 Pa and fission products is examined. Some recent developments in processing technology are discussed

  10. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Cosden, S; Cosden, J S

    1937-09-08

    A means and process are described for the destructive distillation of solid carbonaceous materials in which the process comprises charging the material, in a finely divided condition into a stream of hot combustion gases, and allows the hot gases to act pyrolytically on the organic compounds contained in the material, separating the volatile liberated constituents from residuary constituents. Hot reaction gases are generated by fuel ignition means in a generator and are immediately intermingled with comminuted carbonaceous material from a hopper, in a narrow conduit. The mixture of material and reaction fluid is then passed through an elongated confined path, which is exteriorly heated by the combustion chamber of the furnace, where the destructive distillation is effected. Volatile and solid constituents are separated in the chamber, and the volatile constituents are fractionated and condensed.

  11. Using process instrumentation to obviate destructive examination of canisters of HLW glass

    International Nuclear Information System (INIS)

    Kuhn, W.L.; Slate, S.C.

    1983-01-01

    An important concern of a manufacturer of packages of solidified high-level waste (HLW) is quality assurance of the waste form. The vitrification of HLW as a borosilicate glass is considered, and, based on a reference vitrification process, it is proposed that information from process instrumentation may be used to assure quality without the need for additional information obtained by destructive examining (core drilling) canisters of glass. This follows mainly because models of product performance and process behavior must be previously established in order to confidently select the desired glass formulation, and to have confidence that the process is well enough developed to be installed and operated in a nuclear facility

  12. Actinide removal from molten salts by chemical oxidation and salt distillation

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, J.A.; Garcia, E.; Dole, V.R. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed.

  13. Actinide removal from molten salts by chemical oxidation and salt distillation

    International Nuclear Information System (INIS)

    McNeese, James A.; Garcia, Eduardo; Dole, Vonda R.; Griego, Walter J.

    1995-01-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed

  14. Modelling of fiberglass pipe destruction process

    Directory of Open Access Journals (Sweden)

    А. К. Николаев

    2017-03-01

    Full Text Available The article deals with important current issue of oil and gas industry of using tubes made of high-strength composite corrosion resistant materials. In order to improve operational safety of industrial pipes it is feasible to use composite fiberglass tubes. More than half of the accidents at oil and gas sites happen at oil gathering systems due to high corrosiveness of pumped fluid. To reduce number of accidents and improve environmental protection we need to solve the issue of industrial pipes durability. This problem could be solved by using composite materials from fiberglass, which have required physical and mechanical properties for oil pipes. The durability and strength can be monitored by a fiberglass winding method, number of layers in composite material and high corrosion-resistance properties of fiberglass. Usage of high-strength composite materials in oil production is economically feasible; fiberglass pipes production is cheaper than steel pipes. Fiberglass has small volume weight, which simplifies pipe transportation and installation. In order to identify the efficiency of using high-strength composite materials at oil production sites we conducted a research of their physical-mechanical properties and modelled fiber pipe destruction process.

  15. Cathodic processes in high-temperature molten salts for the development of new materials processing methods

    International Nuclear Information System (INIS)

    Schwandt, Carsten

    2017-01-01

    Molten salts play an important role in the processing of a range of commodity materials. This includes the large-scale production of iron, aluminium, magnesium and alkali metals as well as the refining of nuclear fuel materials. This presentation focuses on two more recent concepts in which the cathodic reactions in molten salt electrolytic cells are used to prepare high-value-added materials. Both were developed and advanced at the Department of Materials Science and Metallurgy at the University of Cambridge and are still actively being pursued. One concept is now generally known as the FFC-Cambridge process. The presentation will highlight the optimisation of the process towards high selectivities for tubes or particles depict a modification of the method to synthesize tin-filled carbon nanomaterial, and illustrate the implementation of a novel type of process control to enable the preparation of gramme quantities of material within a few hours with simple laboratory equipment. Also discussed will be the testing of these materials in lithium ion batteries

  16. Signal processing for non-destructive testing of railway tracks

    Science.gov (United States)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  17. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-08

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components, antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).

  18. The destruction of organic matter

    CERN Document Server

    Gorsuch, T T

    1970-01-01

    International Series of Monographs in Analytical Chemistry, Volume 39: The Destruction of Organic Matter focuses on the identification of trace elements in organic compounds. The monograph first offers information on the processes involved in the determination of trace elements in organic matters, as well as the methods not involving complete destruction of these elements. The text surveys the sources of errors in the processes responsible in pinpointing elements in organic compounds. These processes include sampling, disruption of the samples, manipulation, and measurements. The book

  19. Stochastic simulation of destruction processes in self-irradiated materials

    Directory of Open Access Journals (Sweden)

    T. Patsahan

    2017-09-01

    Full Text Available Self-irradiation damages resulting from fission processes are common phenomena observed in nuclear fuel containing (NFC materials. Numerous α-decays lead to local structure transformations in NFC materials. The damages appearing due to the impacts of heavy nuclear recoils in the subsurface layer can cause detachments of material particles. Such a behaviour is similar to sputtering processes observed during a bombardment of the material surface by a flux of energetic particles. However, in the NFC material, the impacts are initiated from the bulk. In this work we propose a two-dimensional mesoscopic model to perform a stochastic simulation of the destruction processes occurring in a subsurface region of NFC material. We describe the erosion of the material surface, the evolution of its roughness and predict the detachment of the material particles. Size distributions of the emitted particles are obtained in this study. The simulation results of the model are in a qualitative agreement with the size histogram of particles produced from the material containing lava-like fuel formed during the Chernobyl nuclear power plant disaster.

  20. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  1. A daily salt balance model for stream salinity generation processes following partial clearing from forest to pasture

    Directory of Open Access Journals (Sweden)

    M. A. Bari

    2006-01-01

    Full Text Available We developed a coupled salt and water balance model to represent the stream salinity generation process following land use changes. The conceptual model consists of three main components with five stores: (i Dry, Wet and Subsurface Stores, (ii a saturated Groundwater Store and (iii a transient Stream zone Store. The Dry and Wet Stores represent the salt and water movement in the unsaturated zone and also the near-stream dynamic saturated areas, responsible for the generation of salt flux associated with surface runoff and interflow. The unsaturated Subsurface Store represents the salt bulge and the salt fluxes. The Groundwater Store comes into play when the groundwater level is at or above the stream invert and quantifies the salt fluxes to the Stream zone Store. In the stream zone module, we consider a 'free mixing' between the salt brought about by surface runoff, interflow and groundwater flow. Salt accumulation on the surface due to evaporation and its flushing by initial winter flow is also incorporated in the Stream zone Store. The salt balance model was calibrated sequentially following successful application of the water balance model. Initial salt stores were estimated from measured salt profile data. We incorporated two lumped parameters to represent the complex chemical processes like diffusion-dilution-dispersion and salt fluxes due to preferential flow. The model has performed very well in simulating stream salinity generation processes observed at Ernies and Lemon experimental catchments in south west of Western Australia. The simulated and observed stream salinity and salt loads compare very well throughout the study period with NSE of 0.7 and 0.4 for Ernies and Lemon catchment respectively. The model slightly over predicted annual stream salt load by 6.2% and 6.8%.

  2. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    International Nuclear Information System (INIS)

    Ebert, W. L.; Snyder, C. T.; Frank, Steven; Riley, Brian

    2016-01-01

    This report describes the scientific basis underlying the approach being followed to design and develop ''advanced'' glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na_2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl- in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste

  3. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, C. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Brian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease

  4. Treatment of waste salt from the advanced spent fuel conditioning process (II) : optimum immobilization condition

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    Since zeolite is known to be stable at a high temperature, it has been reported as a promising immobilization matrix for waste salt. The crystal structure of dehydrated zeolite A breaks down above 1060 K, resulting in the formation of an amorphous solid and re-crystallization to beta-Cristobalite. This structural degradation depends on the existence of chlorides. When contacted to HCl, zeolite 4A is not stable even at 473 K. The optimum consolidation condition for LiCl salt waste from the oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) has been studied using zeolite A since 2001. Actually the constituents of waste salt are water-soluble. And, alkali halides are known to be readily radiolyzed to yield interstitial halogens and metal colloids. For disposal in a geological repository, the waste salt must meet the acceptance criteria. For a waste form containing chloride salt, two of the more important criteria are leach resistance and waste form durability. In this work, we prepared some samples with different mixing ratios of LiCl salt to zeolite A, and then compared some characteristics such as thermal stability, salt occlusion, free chloride content, leach resistance, mixing effect, etc

  5. Ultrasonic Technique for Predicting Grittiness of Salted Duck Egg

    Science.gov (United States)

    Erawan, S.; Budiastra, I. W.; Subrata, I. D. M.

    2018-05-01

    Grittiness of egg yolk is a major factor in consumer acceptance of salted duck egg product. Commonly, the grittiness level is determined by the destructive method. Salted egg industries need a grading system that can judge the grittiness accurately and nondestructively. The purpose of this study was to develop a method for determining grittiness of salted duck eggs nondestructively based on ultrasonic method. This study used 100 samples of salted duck eggs with 7,10,14 and 21 days of salting age. Velocity and attenuation were measured by an ultrasonic system at frequency 50 kHz, followed by physicochemical properties measurement (hardness of egg yolks and salt content), and organoleptic test. Ultrasonic wave velocity in salted duck eggs ranged from 620.6 m/s to 1334.6 m/s, while the coefficient of attenuation value ranged from – 0.76 dB/m to -0.51 dB/m. Yolk hardness was 2.68 N at 7 days to 5.54 N at 21 days of salting age. Salt content was 1.81 % at 7 days to 5.71 % at 21 days of salting age. Highest scores of organoleptic tests on salted duck eggs were 4.23 and 4.18 for 10 and 14 days of salting age, respectively. Discriminant function using ultrasonic velocity variables in minor and major diameter could predict grittiness with 95 % accuracy.

  6. Application of molten salts in pyrochemical processing of reactive metals

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1992-01-01

    Various mixes of chloride and fluoride salts are used as the media for conducting pyrochemical processes in the production and purification of reactive metals. These processes generate a significant amount of contaminated waste that has to be treated for recycling or disposal. Molten calcium chloride based salt systems have been used in this work to electrolytically regenerate calcium metal from calcium oxide for the in situ reduction of reactive metal oxides. The recovery of calcium is characterized by the process efficiency to overcome back reactions in the electrowinning cell. A thermodynamic analysis, based on fundamental rate theory, has been performed to understand the process parameters controlling the metal deposition, rate, behavior of the ceramic anode-sheath and influence of the back-reactions. It has been observed that the deposition of calcium is dependent on the ionic diffusion through the sheath. It has also been evidenced that the recovered calcium is completely lost through the back-reactions in the absence of a sheath. A practical scenario has also been presented where the electrowon metal can be used in situ as a reductant to reduce another reactive metal oxide

  7. Estimation of zirconium in various process streams in molten salt electrorefining process

    International Nuclear Information System (INIS)

    Suganthi, S.; Vandarkuzhali, S.; Venkatesh, P.; Prabhakara Reddy, B.; Nagarajan, K.

    2012-01-01

    Molten salt electrorefining process is a non-aqueous pyrochemical process suitable for reprocessing spent metallic fuel. In this process the spent fuel is taken at the anode and the fuel elements are selectively electrotransported to a suitable cathode (either a solid steel cathode or liquid cadmium cathode) using molten LiCl-KCI as electrolyte. We have demonstrated electrorefining of UZr alloy at engineering scale level. 1 Kg U-6%Zr alloy was taken at the anode and pure uranium was recovered at a steel cathode using molten LiCIKCI-5%UCI 3 as electrolyte at 773 K. In this paper we present the method of dissolution, sample preparation and estimation of zirconium in various process streams in the electrorefining experiments carried out in our laboratory

  8. Destruction of nitric acid in purex process streams by formaldehyde treatment

    International Nuclear Information System (INIS)

    Kumar, S.V.; Nadkarni, M.N.; Mayankutty, P.C.; Pillai, N.S.; Shinde, S.S.

    1974-01-01

    Efficiency of destruction of nitric acid in purex process streams with formaldehyde has been studied as a function of initial acidity, uranium concentration, rate of addition of formaldehyde and temperature in the range 6 - 0.5M acid. Guidelines are suggested for the accurate calculations of the volume of formaldehyde needed to effect the required change of acidity at 100degC. Sodium nitrite has been established as a 'key' to initiate the reaction and water as an effective scrubber for collecting the acid fumes emanating from the reaction vessel. (author)

  9. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  10. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; McKellar, Michael; Anderson, Nolan

    2011-01-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  11. NUMERICAL SIMULATIONS OF SUPERNOVA DUST DESTRUCTION. I. CLOUD-CRUSHING AND POST-PROCESSED GRAIN SPUTTERING

    International Nuclear Information System (INIS)

    Silvia, Devin W.; Smith, Britton D.; Michael Shull, J.

    2010-01-01

    We investigate through hydrodynamic simulations the destruction of newly formed dust grains by sputtering in the reverse shocks of supernova (SN) remnants. Using an idealized setup of a planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains in size and composition. We then post-process the simulation output to calculate the grain sputtering for a variety of species and size distributions. We explore the parameter space appropriate for this problem by altering the overdensity of the ejecta clumps and the speed of the reverse shocks. Since radiative cooling could lower the temperature of the medium in which the dust is embedded and potentially protect the dust by slowing or halting grain sputtering, we study the effects of different cooling methods over the timescale of the simulations. In general, our results indicate that grains with radii less than 0.1 μm are sputtered to much smaller radii and often destroyed completely, while larger grains survive their interaction with the reverse shock. We also find that, for high ejecta densities, the percentage of dust that survives is strongly dependent on the relative velocity between the clump and the reverse shock, causing up to 50% more destruction for the highest velocity shocks. The fraction of dust destroyed varies widely across grain species, ranging from total destruction of Al 2 O 3 grains to minimal destruction of Fe grains (only 20% destruction in the most extreme cases). C and SiO 2 grains show moderate to strong sputtering as well, with 38% and 80% mass loss. The survival rate of grains formed by early SNe is crucial in determining whether or not they can act as the 'dust factories' needed to explain high-redshift dust.

  12. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    1938-07-05

    A process and apparatus for the destructive distillation at low temperature of mineral or organic material particularly oil shale, is given in which the process comprises distilling the material in a horizontal gaseous stream, subjecting the hot residues to the action of a gaseous stream containing a predetermined amount of oxygen so as to burn, at least partly, the carbon-containing substances, and the process uses the gases from this combustion for the indirect heating of the gases serving for the distillation.

  13. Candidate molten salt investigation for an accelerator driven subcritical core

    International Nuclear Information System (INIS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-01-01

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated

  14. Candidate molten salt investigation for an accelerator driven subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Sooby, E., E-mail: soobyes@tamu.edu [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Baty, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Beneš, O. [European Commission, DG Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); McIntyre, P.; Pogue, N. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Salanne, M. [Université Pierre et Marie Curie, CNRS, Laboratoire PECSA, F-75005 Paris (France); Sattarov, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States)

    2013-09-15

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated.

  15. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  16. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  17. Use of sodium salt electrolysis in the process of continuous ...

    Indian Academy of Sciences (India)

    Use of sodium salt electrolysis in the process of continuous modification of eutectic EN ... the plastic groundmass of the solid solution α (Al), have an effect on their ..... Onyia C, Okorie B, Neife S and Obayi C 2013 World J. Eng. Technol. 1 9. 35.

  18. Candidate molten salt investigation for an accelerator driven subcritical core

    Science.gov (United States)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  19. Destruction of explosives in groundwater and process water using photocatalytic and biological methods

    Energy Technology Data Exchange (ETDEWEB)

    Rodacy, P.J.; Leslie, P.K.; Prairie, M.R. [and others

    1996-04-01

    The environmentally safe destruction of pinkwater is a significant problem that requires a multidisciplinary approach to solve. We have investigated the application of advanced oxidation processes, including the use of both UV light source and laser technologies. The reactions were run under both oxidizing and reducing atmospheres. Aerobic and anaerobic biotreatments were examined as both pre- and post-treatments to the oxidation processes. The toxicity of the wastewater at various stages of treatment was determined. Membrane preconcentration schemes were examined to determine their effectiveness as part of the total pinkwater treatment scheme.

  20. Avoidable and unavoidable exergy destruction and exergoeconomic evaluation of the thermal processes in a real industrial plant

    Directory of Open Access Journals (Sweden)

    Vučković Goran D.

    2012-01-01

    Full Text Available Exergy analysis is a universal method for evaluating the rational use of energy. It can be applied to any kind of energy conversion system or chemical process. An exergy analysis identifies the location, the magnitude and the causes of thermodynamic inefficiencies and enhances understanding of the energy conversion processes in complex systems. Conventional exergy analyses pinpoint components and processes with high irreversibility. To overcome the limitations of the conventional analyses and to increase our knowledge about a plant, advanced exergy-based analyses are developed. These analyses provide additional information about component interactions and reveal the real potential for improvement of each component constituting a system, as well as of the overall system. In this paper, a real industrial plant is analyzed using both conventional and advanced exergy analyses, and exergoeconomic evaluation. Some of the exergy destruction in the plant components is unavoidable and constrained by technological, physical and economic limitations. Calculations related to the total avoidable exergy destruction caused by each component of the plant supplement the outcome of the conventional exergy analysis. Based on the all-reaching analysis, by improving the boiler operation (elimination of approximately 1 MW of avoidable exergy destruction in the steam boiler the greatest improvement in the efficiency of the overall system can be achieved.

  1. A Non-destructive and Continuous Measurement of Gelatinization of Rice in Rice Cooking Process

    OpenAIRE

    Hagura, Yoshio; Suzuki, Kanichi

    2002-01-01

    A non-destructive and continuous method to measure gelatinization of rice samples in a rice-water system during rice cooking process was examined. An aluminum pot and a lid of a rice cooker were used as two electrode plates, and changes in dielectric properties (capacitance : C, and dielectric dissipation factor : tan δ) of the samples in the rice cooking process were measured by a capacitance meter. Differential scanning calorimetry (DSC) was used to measure gelatinization enthalpy and to de...

  2. Development of a vacuum distillation process for Pu pyro-chemistry spent salts treatment

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Baudrot, C.; Pescayre, L.; Thiebaut, C.

    2004-01-01

    The pyrochemical purification of plutonium has generated spent salts, which are disposed in nuclear facility. To reduce stored quantities, the development of a pyrochemical treatment is in progress. The feed salt, typically composed of various Pu and Am species spread into monovalent or divalent chloride matrix, is first oxidized to convert the actinides into oxides. Then the chlorides are separated from the actinide oxides by vacuum distillation. Temperatures higher than 750 deg C for mono-chloride salts mixture NaCl/KCl and higher than 1100 deg C for divalent CaCl 2 base salts, are required to produce an industrial flow of vaporization. Inactive qualification of the process for NaCl/KCl base salt has been carried with lanthanide surrogates. Then, a pilot equipment, called Distillator has been designed and built for production-scale distillation of NaCl/KCl and CaCl 2 oxidized plutonium salts. Industrial flows of vaporization have been obtained with this pilot equipment: about 4 g/cm 2 /h for NaCl/KCl at 800 - 900 deg C and 1 Pa, and more than 1.5 g/cm 2 /h for CaCl 2 base salts between 1000 - 1200 deg C at 0.1 Pa. The last step will be the integration of the Distillator into a glove box. (authors)

  3. Separation and Fixation of Toxic Components in Salt Brines Using a Water-Based Process

    International Nuclear Information System (INIS)

    Franks, Carrie J.; Quach, Anh P.; Birnie, Dunbar P.; Ela, Wendell P.; Saez, Avelino E.; Zelinski, Brian J.; Smith, Harry D.; Smith, Gary Lynn L.

    2004-01-01

    Efforts to implement new water quality standards, increase water reuse and reclamation, and minimize the cost of waste storage motivate the development of new processes for stabilizing waste water residuals that minimize waste volume, water content and the long-term environmental risk from related by products. This work explores the use of an aqueous-based emulsion process to create an epoxy/rubber matrix for separating and encapsulating waste components from salt laden, arsenic contaminated, amorphous iron hydrate sludges. Such sludges are generated from conventional water purification precipitation/adsorption processes, used to convert aqueous brine streams to semi-solid waste streams, such as ion exchange/membrane separation, and from other precipitative heavy metal removal operations. In this study, epoxy and polystyrene butadiene (PSB) rubber emulsions are mixed together and then combined with a surrogate sludge. The surrogate sludge consists of amorphous iron hydrate with 1 part arsenic fixed to the surface of the hydrate per 10 parts iron mixed with sodium nitrate and chloride salts and water. The resulting emulsion is cured and dried at 80 C to remove water. Microstructure characterization by electron microscopy confirms that the epoxy/PSB matrix surrounds and encapsulates the arsenic laden amorphous iron hydrate phase while allowing the salt to migrate to internal and external surfaces of the sample. Salt extraction studies indicate that the porous nature of the resulting matrix promotes the separation and removal of as much as 90% of the original salt content in only one hours time. Long term leaching studies based on the use of the infinite slab diffusion model reveal no evidence of iron migration or, by inference, arsenic migration, and demonstrate that the diffusion coefficients of the unextracted salt yield leachability indices within regulations for non-hazardous landfill disposal. Because salt is the most mobile species, it is inferred that arsenic

  4. Parametric studies on the fuel salt composition in thermal molten salt breeder reactors

    International Nuclear Information System (INIS)

    Nagy, K.; Kloosterman, J.L.; Lathouwers, D.; Van der Hagen, T.H.J.J.

    2008-01-01

    In this paper the salt composition and the fuel cycle of a graphite moderated molten salt self-breeder reactor operating on the thorium cycle is investigated. A breeder molten salt reactor is always coupled to a fuel processing plant which removes the fission products and actinides from the core. The efficiency of the removal process(es) has a large influence on the breeding capacity of the reactor. The aim is to investigate the effect on the breeding ratio of several parameters such as the composition of the molten salt, moderation ratio, power density and chemical processing. Several fuel processing strategies are studied. (authors)

  5. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  6. Experimental investigation of molten salt droplet quenching and solidification processes of heat recovery in thermochemical hydrogen production

    International Nuclear Information System (INIS)

    Ghandehariun, S.; Wang, Z.; Naterer, G.F.; Rosen, M.A.

    2015-01-01

    Highlights: • Thermal efficiency of a thermochemical cycle of hydrogen production is improved. • Direct contact heat recovery from molten salt is analyzed. • Falling droplets quenched into water are investigated experimentally. - Abstract: This paper investigates the heat transfer and X-ray diffraction patterns of solidified molten salt droplets in heat recovery processes of a thermochemical Cu–Cl cycle of hydrogen production. It is essential to recover the heat of the molten salt to enhance the overall thermal efficiency of the copper–chlorine cycle. A major portion of heat recovery within the cycle can be achieved by cooling and solidifying the molten salt exiting an oxygen reactor. Heat recovery from the molten salt is achieved by dispersing the molten stream into droplets. In this paper, an analytical study and experimental investigation of the thermal phenomena of a falling droplet quenched into water is presented, involving the droplet surface temperature during descent and resulting composition change in the quench process. The results show that it is feasible to quench the molten salt droplets for an efficient heat recovery process without introducing any material imbalance for the overall cycle integration.

  7. Development of High Throughput Salt Separation System with Integrated Liquid Salt Separation - Salt Distillation Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sangwoon; Park, K. M.; Kim, J. G.; Jeong, J. H.; Lee, S. J.; Park, S. B.; Kim, S. S.

    2013-01-15

    The capacity of a salt distiller should be sufficiently large to reach the throughput of uranium electro-refining process. In this study, an assembly composing a liquid separation sieve and a distillation crucible was developed for the sequential operation of a liquid salt separation and a vacuum distillation in the same tower. The feasibility of the sequential salt separation was examined by the rotation test of the sieve-crucible assembly and sequential operation of a liquid salt separation and a vacuum distillation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation. From the results of this study, it could be concluded that efficient salt separation can be realized by the sequential operation of liquid salt separation and vacuum distillation in one distillation tower since the operation procedures are simplified and no extra operation of cooling and reheating is necessary.

  8. Effects of Gamma Irradiation on Quality in the Processing of Low Salted and Fermented Shrimp

    International Nuclear Information System (INIS)

    Shin Myung-Gon; Lee Cherl-Ho

    2000-01-01

    Irradiation technology was applied to develop low salted and fermented shrimp that has better sensory quality and a longer shelf-life without any food additives. Different levels of salt (10, 15, and 20%, w/w) were added to the salted and fermented shrimp and the samples were irradiated at 0, 2.5, 5.0, 7.5, and 10.0 kGy with a gamma source (Co-60). Proximate composition, salinity, water activity (a), pH, total bacterial count, and general acceptance were analyzed during fermentation at 15 degrees after irradiation. The proximate analysis, salinity, and a were not affected by gamma irradiation during fermentation. However, pH and total bacteria, as well as sensory evaluation, were changed variously with processing conditions such as sodium chloride concentration and irradiation dose. The combinations of 15% salt concentration with 10 kGy irradiation dose and 20% with 5 kGy or above were effective for shelf-life enhancement of the salted and fermented shrimp by adequate suppression of microorganisms during fermentation at 15 degrees. The results showed that the sensory quality of the sample was maintained up to 10 weeks after fermentation. Therefore, it was considered that gamma irradiation was effective in processing low salted and fermented shrimp and extending their shelf-life without adding any food additives

  9. Synthesis and Characterization of Processable Polyaniline Salts

    International Nuclear Information System (INIS)

    Gul, Salma; Bilal, Salma; Shah, Anwar-ul-Haq Ali

    2013-01-01

    Polyaniline (PANI) is one of the most promising candidates for possible technological applications. PANI has potential applications in batteries, anion exchanger, tissue engineering, inhibition of steel corrosion, fuel cell, sensors and so on. However, its insolubility in common organic solvents limits its range of applications. In the present study an attempt has been made to synthesize soluble polyaniline salt via inverse polymerization pathway using benzoyl peroxide as oxidant and dodecylbenzenesulfonic acid (DBSA) as dopant as well as a surfactant. A mixture of chloroform and 2-butanol was used as dispersion medium for the first time. The influence of synthesis parameters such as concentration of aniline, benzoyl peroxide and DBSA on the yield and other properties of the resulting PANI salt was studied. The synthesized PANI salt was found to be completely soluble in DMSO, DMF, chloroform and in a mixture of toluene and 2-propanol. The synthesized polymer salt was also characterized with cyclic voltam-metry, SEM, XRD, UV-Vis spectroscopy and viscosity measurements. TGA was used to analyze the thermal properties of synthesized polymer. The extent of doping of the PANI salt was determined from UV-Vis spectra and TGA analysis. The activation energy for the degradation of the polymer was calculated with the help of TGA.

  10. Search and studying of salt resisting bacteria -destructors of organochlorine pesticides with help of tritium labeled PCBs

    International Nuclear Information System (INIS)

    Kim, A.A.; Djuraeva, G.T.; Dadakhanov, J.A.; Djumaniyazova, G.I.; Yadgarov, Kh.T.; Zinovev, P.V.; Norbaeva, Kh.

    2006-01-01

    Full text: Salinization of soils is one of serious problems of agriculture of Uzbekistan. The problem is also aggravated as the salted soils are strongly contaminated with pesticides. We isolated aboriginal active strains of bacteria- destructors of organochlorine compounds from soils contaminated by pesticides (HCCH, DDT, PCBs). We investigated their cultural-morphological and physiological -biochemical properties and determined their taxonomic position. In laboratory experiments the effect of various concentrations of NaCl - 3%-5-7-10-20-30-40-50 % and reproduction of the active strains-destructors was investigated. It was found that the culture number 20 stands the NaCl concentration - up to 3 %, culture number 505 - up to 7 % salt in medium that specifies ability of this culture to survive in the middle salinated soils, cultures number 28 and 33 stand the NaCl concentration up to 30-40 % that characterize their survival rate in strongly salinated soils; the culture number 26 stood the NaCl concentration up to 50 % that characterizes its ability to survive and propagate in brackish soils. With the help of designed radiochemical methods we had been explored ability of the active salt resisting strains of bacteria to utilize and destroy the tritium labeled PCBs. The precise quantity and quality characteristics of the PCB-destructive activity of each investigated strain were received. The salt resisting strains of bacteria having high PCB-destructive activity were determined. At present, investigation on development of the new biological preparation designed for destruction of persistent organochlorine compounds in salted soils are carried out. (author)

  11. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar.

    Science.gov (United States)

    Pandolfi, Camilla; Bazihizina, Nadia; Giordano, Cristiana; Mancuso, Stefano; Azzarello, Elisa

    2017-03-01

    Saline soils are highly heterogeneous in time and space, and this is a critical factor influencing plant physiology and productivity. Temporal changes in soil salinity can alter plant responses to salinity, and pre-treating plants with low NaCl concentrations has been found to substantially increase salt tolerance in different species in a process called acclimation. However, it still remains unclear whether this process is common to all plants or is only expressed in certain genotypes. We addressed this question by assessing the physiological changes to 100 mM NaCl in two contrasting olive cultivars (the salt-sensitive Leccino and the salt-tolerant Frantoio), following a 1-month acclimation period with 5 or 25 mM NaCl. The acclimation improved salt tolerance in both cultivars, but activated substantially different physiological adjustments in the tolerant and the sensitive cultivars. In the tolerant Frantoio the acclimation with 5 mM NaCl was more effective in increasing plant salt tolerance, with a 47% increase in total plant dry mass compared with non-acclimated saline plants. This enhanced biomass accumulation was associated with a 50% increase in K+ retention ability in roots. On the other hand, in the sensitive Leccino, although the acclimation process did not improve performance in terms of plant growth, pre-treatment with 5 and 25 mM NaCl substantially decreased salt-induced leaf cell ultrastructural changes, with leaf cell relatively similar to those of control plants. Taken together these results suggest that in the tolerant cultivar the acclimation took place primarily in the root tissues, while in the sensitive they occurred mainly at the shoot level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  13. ELECTRODIALYSIS IN THE CONVERSION STEP OF THE CONCENTRATED SALT SOLUTIONS IN THE PROCESS OF BATTERY SCRAP

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2014-01-01

    Full Text Available Summary. The concentrated sodium sulfate solution is formed during the processing of waste battery scrap. A promising way to further treatment of the concentrated salt solution could be the conversion of these salts into acid and bases by electrodialysis, that can be reused in the same technical process cycle. For carrying out the process of conversion of salts into the corresponding acid and base several cells schemes with different combinations of cation, anion and bipolar membranes are used. At this article a comparative analysis of these cells is carried out. In the cells there were used the membranes МC-40, МА-41 and МB-2I. Acid and base solutions with higher concentration may be obtained during the process of electrodialysis in the circulation mode, when a predetermined amount of salt in the closed loop is run through a set of membranes to obtain the desired concentration of the product. The disadvantages of this method are the high cost of buffer tanks and the need to work with small volumes of treated solutions. In industrial applications it is advisable to use continuous electrodialysis with bipolar membranes, since this configuration allows to increase the number of repeating sections, which is necessary to reduce the energy costs. The increase of the removal rate of salts can be achieved by increasing the process steps, and to produce a more concentrated products after the conversion step can be applied electrodialysis-concentrator or evaporator.

  14. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    Energy Technology Data Exchange (ETDEWEB)

    Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

    2005-05-31

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher

  15. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    International Nuclear Information System (INIS)

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H.

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford's Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste

  16. Processes and parameters involved in modeling radionuclide transport from bedded salt repositories. Final report. Technical memorandum

    International Nuclear Information System (INIS)

    Evenson, D.E.; Prickett, T.A.; Showalter, P.A.

    1979-07-01

    The parameters necessary to model radionuclide transport in salt beds are identified and described. A proposed plan for disposal of the radioactive wastes generated by nuclear power plants is to store waste canisters in repository sites contained in stable salt formations approximately 600 meters below the ground surface. Among the principal radioactive wastes contained in these canisters will be radioactive isotopes of neptunium, americium, uranium, and plutonium along with many highly radioactive fission products. A concern with this form of waste disposal is the possibility of ground-water flow occurring in the salt beds and endangering water supplies and the public health. Specifically, the research investigated the processes involved in the movement of radioactive wastes from the repository site by groundwater flow. Since the radioactive waste canisters also generate heat, temperature is an important factor. Among the processes affecting movement of radioactive wastes from a repository site in a salt bed are thermal conduction, groundwater movement, ion exchange, radioactive decay, dissolution and precipitation of salt, dispersion and diffusion, adsorption, and thermomigration. In addition, structural changes in the salt beds as a result of temperature changes are important. Based upon the half-lives of the radioactive wastes, he period of concern is on the order of a million years. As a result, major geologic phenomena that could affect both the salt bed and groundwater flow in the salt beds was considered. These phenomena include items such as volcanism, faulting, erosion, glaciation, and the impact of meteorites. CDM reviewed all of the critical processes involved in regional groundwater movement of radioactive wastes and identified and described the parameters that must be included to mathematically model their behavior. In addition, CDM briefly reviewed available echniques to measure these parameters

  17. The Influence of the Content of Furfuryl Alcohol Monomer on the Process of Moulding Sand's Thermal Destruction

    Directory of Open Access Journals (Sweden)

    Dobosz St. M.

    2014-10-01

    Full Text Available The article discusses the issue of the influence of furfuryl alcohol content in resin binders on properties of moulding sand at elevated temperature. Reducing the share of this component - due to the requirements of the European Union regarding its toxicity - may cause a decrease in temperature of moulding sands’ destruction and, consequently, the thermal deformation of moulds and the creation of many casting defects. The study examined the impact of the furfuryl alcohol content of the thermal destruction processes and on the strength of the moulding sand at an ambient temperature and the tendency to thermal deformation.

  18. Energy consumption, destruction of exergy and boil off during the process of liquefaction, transport and regasification of liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Stradioto, Diogo Angelo; Schneider, Paulo Smith [Dept. of Mechanical Engineering. Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)], e-mail: pss@mecanica.ufrgs.br

    2010-07-01

    A supply chain of Liquefied Natural Gas (LNG) is composed by several processes like extraction, purification, liquefaction, storage, transport, regasification and distribution. In all these stages, processes need of energy. The main objective of this work is to quantify the energy consumption, mass loss and exergy destruction occurred throughout the chain. Results show that the process of liquefaction is the largest consumer of energy. Storage and transport by ship are responsible for the bigger mass losses and regasification is the process of larger destruction of exergy. A case study is performed considering a stream of pure methane at the input of a liquefaction plant, and evaluates energy along the chain, ending up at the distribution of NG after its regasification. (author)

  19. Process Evaluation and Costing of a Multifaceted Population-Wide Intervention to Reduce Salt Consumption in Fiji.

    Science.gov (United States)

    Webster, Jacqui; Pillay, Arti; Suku, Arleen; Gohil, Paayal; Santos, Joseph Alvin; Schultz, Jimaima; Wate, Jillian; Trieu, Kathy; Hope, Silvia; Snowdon, Wendy; Moodie, Marj; Jan, Stephen; Bell, Colin

    2018-01-30

    This paper reports the process evaluation and costing of a national salt reduction intervention in Fiji. The population-wide intervention included engaging food industry to reduce salt in foods, strategic health communication and a hospital program. The evaluation showed a 1.4 g/day drop in salt intake from the 11.7 g/day at baseline; however, this was not statistically significant. To better understand intervention implementation, we collated data to assess intervention fidelity, reach, context and costs. Government and management changes affected intervention implementation, meaning fidelity was relatively low. There was no active mechanism for ensuring food companies adhered to the voluntary salt reduction targets. Communication activities had wide reach but most activities were one-off, meaning the overall dose was low and impact on behavior limited. Intervention costs were moderate (FJD $277,410 or $0.31 per person) but the strategy relied on multi-sector action which was not fully operationalised. The cyclone also delayed monitoring and likely impacted the results. However, 73% of people surveyed had heard about the campaign and salt reduction policies have been mainstreamed into government programs. Longer-term monitoring of salt intake is planned through future surveys and lessons from this process evaluation will be used to inform future strategies in the Pacific Islands and globally.

  20. Vacuum distillation for the separation of LiCl-KCl eutectic salt and cadmium in pyro process

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Woo, M. S.; Kim, K. R.; Kim, J. G.; Ahn, D. H.; Lee, H. S.

    2010-10-01

    Electrorefining is a key step in pyro processing. Electrorefining process is generally composed of two recovery steps- a deposit of uranium onto a solid cathode (electrorefining) and then the recovery of the remaining uranium and Tru (Transuranic) elements simultaneously by a liquid cadmium cathode (electrowinning). In this study, distillation experiments of a LiCl-KCl eutectic salt and cadmium metal were carried out to examine the distillation behaviors for the development of the electrorefining and the electrowinning processes. The experimental set-up was composed of a distillation tower with an evaporator and a condenser, vacuum pump, control unit, and an off gas treatment system. The solid-liquid separation prior to distillation of the LiCl-KCl eutectic salt was proposed and found to be feasible for the reduction of the burden of the distillation process. The LiCl-KCl eutectic salt was successfully distilled after the liquid salt separation. Distillation experiments for cadmium metal were also carried out. The apparent evaporation rates of LiCl-KCl eutectic salt and cadmium increased with an increasing temperature. The evaporation behaviors of cadmium metal and cadmium-cerium alloy were compared. Cadmium in the alloy was successfully distilled and separated from cerium. The evaporation rate of cadmium in the alloy was lower than that of cadmium metal. The low evaporation rate of the alloy was probably caused by the formation of an intermetallic compound and the residual salt during the preparation of the alloy. Therefore, the distillation temperature for the distillation of the liquid cathode should be higher than the distillation of cadmium metal. The measured evaporation rates of the eutectic salt and cadmium were compared with the values calculated by a relation based on the kinetics of gases. The theoretical values of the evaporation rate calculated by the Hertz-Langmuir relation were higher than the experimental values. The deviations were compensated for

  1. Testing of Air Pulse Agitators to Support Design of Savannah River Site Highly Radioactive Processing at the Salt Waste Processing Facility

    International Nuclear Information System (INIS)

    Gallego, R.M.; Stephens, A.B.; Wilkinson, R.H.; Dev, H.; Suggs, P.C.

    2006-01-01

    The Salt Waste Processing Facility (SWPF) is intended to concentrate the highly radioactive constituents from waste salt solutions at the Savannah River Site (SRS). Air Pulse Agitators (APAs) were selected for process mixing in high-radiation locations at the SWPF. This technology has the advantage of no moving parts within the hot cell, eliminating potential failure modes and the need for maintenance within the high-radiation environment. This paper describes the results of APA tests performed to gain operational and performance data for the SWPF design. (authors)

  2. Partitioning of actinides and fission products using molten salt electrorefining process

    International Nuclear Information System (INIS)

    Barbero, Jose A.; Wiesztort, Andres; Azcona, Alejandra; Bollini, Edgardo; Forchetti, Alberto; Orce, Alan

    1999-01-01

    Electrorefining is the key step of pyrometallurgical processing for separating actinides from fission products. In this work, the electrorefining process is carried out in a electrorefining cell that contains molten salts (49% LiCl- 51% KCL) floating on a liquid cadmium. The cell is operated under an inert atmosphere at 500 degree C. In this work we describe in detail the construction of the cell and the way of operation

  3. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  4. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    International Nuclear Information System (INIS)

    CHANG, ROBERT

    2006-01-01

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program

  5. Salt Attack on Rocks and Expansion of Soils on Mars

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.

    2004-12-01

    Salt-rich sediments observed by the MER rover Opportunity at Meridiani Planum show that brines have been present on Mars in the past, but a role for groundwater in widespread rock weathering and soil formation is uncertain. Experiments by several groups suggest instead the action of acid fog over long time spans, with episodic input of volcanic gases, as a more significant agent of Mars weathering. Salt minerals formed in these acid weathering experiments consistently include gypsum and alunogen, with epsomite or hexahydrite forming where olivine provides a source of Mg. Analogous to the martian acid fog scenario are terrestrial acid rain or acid fog attacks on building and monument stone by chemical action and mechanical wedging through growth of gypsum, anhydrite, epsomite, hexahydrite, kieserite, and other sulfate minerals. Physical effects can be aggressive, operating by both primary salt growth and hydration of anhydrous or less-hydrous primary salts. In contrast, soils evolve to states where chemical attack is lessened and salt mineral growth leads to expansion with cementation; in this situation the process becomes constructive rather than destructive. We have made synthetic salt-cemented soils (duricrusts) from clays, zeolites, palagonites and other media mixed with ultrapure Mg-sulfate solutions. Although near-neutral in pH, these solutions still exchange or leach Ca from the solids to form cements containing gypsum as well as hexahydrite. At low total P (1 torr) and low RH (duricrust expands by formation of a complex mixture of Mg-sulfate phases with various hydration states. The expanded form is retained even if the duricrust is again dehydrated, suggesting that soil porosity thus formed is difficult to destroy. These processes can be considered in the context of Viking, Pathfinder, and MER evidence for differing salt components in the weathered surfaces of rocks versus duricrust-like materials in soils. The divergent chemical trends indicate that soil

  6. A comparison of conventional and prototype nondestructive measurements on molten salt extraction residues

    International Nuclear Information System (INIS)

    Longmire, V.L.; Scarborough, A.M.

    1987-01-01

    Impure plutonium metal is routinely processed by molten salt extraction (MSE) to reduce the amount of americium in the metal product. Individuals form four technical groups at the Los Alamos National Laboratory (LANL) participated in a study designed to evaluate the accuracy of various nondestructive assay (NDA) techniques for measuring the plutonium content in MSE residues. This study was performed to improve in-house accountability of these items and to identify assay methods that would be acceptable for determining receiver's values for MSE salts from off-site sources. Recent upgrades have been made in a segmented gamma scan system, in a thermal neutron coincidence counter, and in the software of a gamma isotopic system that supports the calorimeters at LAPF. The authors evaluated the newer systems against the older systems versus destructive qualitative analyses. Fourteen containers of MSE residues were selected to be studied. Seven of these salts originated at LAPF and seven originated at Rockwell International Rocky Flats plant. Measurements have been performed on these items in their original containers, and the items have been repackaged into a different geometry and assayed again

  7. Plutonium and americium recovery from spent molten-salt-extraction salts with aluminum-magnesium alloys

    International Nuclear Information System (INIS)

    Cusick, M.J.; Sherwood, W.G.; Fitzpatrick, R.F.

    1984-01-01

    Development work was performed to determine the feasibility of removing plutonium and americium from spent molten-salt-extraction (MSE) salts using Al-Mg alloys. If the product buttons from this process are compatible with subsequent aqueous processing, the complex chloride-to-nitrate aqueous conversion step which is presently required for these salts may be eliminated. The optimum alloy composition used to treat spent 8 wt % MSE salts in the past yielded poor phase-disengagement characteristics when applied to 30 mol % salts. After a limited investigation of other alloy compositions in the Al-Mg-Pu-Am system, it was determined that the Al-Pu-Am system could yield a compatible alloy. In this system, experiments were performed to investigate the effects of plutonium loading in the alloy, excess magnesium, age of the spent salt on actinide recovery, phase disengagement, and button homogeneity. Experimental results indicate that 95 percent plutonium recoveries can be attained for fresh salts. Further development is required for backlog salts generated prior to 1981. A homogeneous product alloy, as required for aqueous processing, could not be produced

  8. Characterization of the molten salt reactor experiment fuel and flush salts

    International Nuclear Information System (INIS)

    Williams, D.F.; Peretz, F.J.

    1996-01-01

    Wise decisions about the handling and disposition of spent fuel from the Molten Salt Reactor Experiment (MSRE) must be based upon an understanding of the physical, chemical, and radiological properties of the frozen fuel and flush salts. These open-quotes staticclose quotes properties can be inferred from the extensive documentation of process history maintained during reactor operation and the knowledge gained in laboratory development studies. Just as important as the description of the salt itself is an understanding of the dynamic processes which continue to transform the salt composition and govern its present and potential physicochemical behavior. A complete characterization must include a phenomenological characterization in addition to the typical summary of properties. This paper reports on the current state of characterization of the fuel and flush salts needed to support waste management decisions

  9. The results of cutting disks testing for rock destruction

    Directory of Open Access Journals (Sweden)

    Khoreshok Aleksey

    2017-01-01

    Full Text Available To determine the rational order of disk tools placement on the working body is necessary to know the maximum amount of rock, destroyed by the disk tool in benching cutting mode depending on the tool geometry parameters, physical and mechanical parameters of rocks. The article contains the definition of rational parameters of cutting disk tools as well as power and energy parameters of the destruction process by cutting disks and by executive body of the coal cutter. The rational geometric parameters of cutting discs are specified. It was found that each step of cutting with a minimum depth of penetration has its own maximum height of bench outcrop. The dependence of the volumes of large items destroyed by the disk tool on the cutting step height was determined. The existence of the cyclic alternation of destruction phases, regardless the fracture parameters, the height of the ledge outcrop, and tools like free cutting geometry were found. In contrast to the free cutting in benching mode of destruction two large fragments of rocks in one cycle were observed. Consequently, the cyclical nature of the destruction process in the benching mode will be characterized by two chips and crushing, and this cycling repeats throughout the destruction process with the same parameters of destruction.

  10. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    Science.gov (United States)

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  11. Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors.

    Science.gov (United States)

    Hu, Yuanyuan; Rengert, Zachary D; McDowell, Caitlin; Ford, Michael J; Wang, Ming; Karki, Akchheta; Lill, Alexander T; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2018-04-24

    Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated. In addition, systematic electrical and structural characterizations reveal how the doping enhances the performance of OFETs. Furthermore, it is shown that this organic salt doping method is feasible for both p- and n-doping by using different organic salts and, thus, can be utilized to achieve high-performance OFETs and organic complementary circuits.

  12. Non-destructive controls

    International Nuclear Information System (INIS)

    Nouvet, A.

    1978-01-01

    The non-destructive controls permit, while respecting their integrity, the direct and individual examination of parts or complete objects as they are manufactured, as well as to follow the evolution of their eventual defects while in operation. The choice of control methods depends on the manufacturing process and shapes of parts, on the physical properties of their components as well as the nature, position and size of the defects which are likely to be detected. Whether it is a question of controls by means of ionizing radiation, flux of neutrons, ultrasons, acoustic source, sweating, magnetoscopy. Foucault currents, thermography, detection of leaks or non-destructive metallography, each has a limited field of application such that they are less competitive than complementary [fr

  13. Engineering development studies for molten-salt breeder reactor processing No. 22

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1976-06-01

    Processing methods are being developed for use in a close-coupled facility for removing fission products, corrosion products, and fissile materials from the MSBR fuel. This report discusses the autoresistance heating for the continuous fluorinator, the metal transfer experiment, experiments for the salt-metal contactor, and fuel reconstitution. 10 fig

  14. Salt stripping: a pyrochemical approach to the recovery of plutonium electrorefining salt residues

    International Nuclear Information System (INIS)

    Christensen, D.C.; Mullins, L.J.

    1982-10-01

    A pyrochemical process has been developed to take the salt residue from the plutonium electrorefining process and strip the plutonium from it. The process, called salt stripping, uses calcium as a reducing/coalescing agent. In a one-day operation, greater than 95% of the plutonium can be recovered as a metallic button. As much as 88% of the residue is either reused as metal or discarded as a clean salt. A thin layer of black salts, which makes up the bulk of the unrecovered Pu, is a by-product of the initial reductions. A number of black salts can be collected together and re-reduced in a second step. Greater than 88% of this plutonium can be successfully recovered in this second stage with the resulting residues being discardable. The processing time, number of processor hours, and the volume of secondary residues are greatly reduced over the classical aqueous recovery methods. In addition, the product metal is of sufficient quality to be fed directly to the electrorefining process for purification. 8 figures, 7 tables

  15. Process Evaluation and Costing of a Multifaceted Population-Wide Intervention to Reduce Salt Consumption in Fiji

    Directory of Open Access Journals (Sweden)

    Jacqui Webster

    2018-01-01

    Full Text Available This paper reports the process evaluation and costing of a national salt reduction intervention in Fiji. The population-wide intervention included engaging food industry to reduce salt in foods, strategic health communication and a hospital program. The evaluation showed a 1.4 g/day drop in salt intake from the 11.7 g/day at baseline; however, this was not statistically significant. To better understand intervention implementation, we collated data to assess intervention fidelity, reach, context and costs. Government and management changes affected intervention implementation, meaning fidelity was relatively low. There was no active mechanism for ensuring food companies adhered to the voluntary salt reduction targets. Communication activities had wide reach but most activities were one-off, meaning the overall dose was low and impact on behavior limited. Intervention costs were moderate (FJD $277,410 or $0.31 per person but the strategy relied on multi-sector action which was not fully operationalised. The cyclone also delayed monitoring and likely impacted the results. However, 73% of people surveyed had heard about the campaign and salt reduction policies have been mainstreamed into government programs. Longer-term monitoring of salt intake is planned through future surveys and lessons from this process evaluation will be used to inform future strategies in the Pacific Islands and globally.

  16. UHPLC-MS/MS Quantification Combined with Chemometrics for Comparative Analysis of Different Batches of Raw, Wine-Processed, and Salt-Processed Radix Achyranthis Bidentatae

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2018-03-01

    Full Text Available An accurate and reliable method using ultra-high performance liquid chromatography combined with triple quadrupole tandem mass spectrometry (UHPLC–MS/MS was established for simultaneous quantification of five major bioactive analytes in raw, wine-processed, and salt-processed Radix Achyranthis bidentatae (RAB. The results showed that this method exhibited desirable sensitivity, precision, stability, and repeatability. The overall intra-day and inter-day variations (RSD were in the range of 1.57–2.46 and 1.51–3.00%, respectively. The overall recoveries were 98.58–101.48% with a relative standard deviation (RSD of 0.01–1.86%. In addition, the developed approach was applied to 21 batches of raw, wine-processed, and salt-processed samples of RAB. Hierarchical clustering analysis (HCA, principal component analysis (PCA, heat map, and boxplot analysis were performed to evaluate the quality of raw, wine-processed, and salt-processed RAB collected from different regions. The chemometrics combined with the quantitative analysis based on UHPLC–MS/MS results indicated that the content of five analytes increased significantly in processed RAB compared to raw RAB.

  17. The Role of E27-K31 and E56-K10 Salt-Bridge Pairs in the Unfolding Mechanism of the B1 Domain of Protein G

    Directory of Open Access Journals (Sweden)

    Tony Ibnu Sumaryada

    2018-02-01

    Full Text Available Molecular dynamics simulations of the B1 fragment of protein G (56 residues have been performed at 325, 350, 375, 400, 450 and 500 K for 10 ns. An analysis of its structural and energetic parameters has indicated that the unfolding process of the GB1 protein begins at 900 ps of a 500-K simulation. The unfolding process is initiated when hydrogen bonds in the hydrophobic core region are broken; it continues with the α-helix transformation into coils and turns and ends with the destruction of the β-hairpins. These unfolding events are consistent with the hybrid model of the protein folding/unfolding mechanism, which is a compromise between the hydrophobic core collapse model and the zipper model. Salt-bridge pairs were found to play an important role in the unfolding process by maintaining the integrity of the tertiary structure of the protein. The breaking (or disappearance of the salt-bridge pairs E27–K31 (in the α-helix and E56–K10 (connecting β4 and β1 has resulted in the destruction of secondary structures and indicates the beginning of the unfolding process. Our results also suggest that the unfolding process in this simulation was not a complete denaturation of the protein because some β-hairpins remained

  18. Preliminary conceptual design for the destruction of organic/ferrocyanide constituents in the Hanford tank waste with low-temperature hydrothermal processing

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Jones, E.O.; Orth, R.J.; Cox, J.L.; Elmore, M.E.; Neuenschwander, G.G.; Hart, T.R.; Meng, C.D.

    1993-05-01

    Hydrothermal processing (HTP) is a thermal-chemical processing method that can be employed to destroy organic and ferrocyanide constituents in Hanford tank waste by using the abundant existing oxidants in the tank waste such as nitrite and nitrate. Use-temperature HTP effectively destroys organics at temperatures from 250 degree C to 400 degree C to eliminate safety hazards and improve further processing. This proposal describes a conceptual design of a low-temperature HTP system (including a preliminary flow diagram and plot plan, equipment descriptions and sizes, utility requirements, and costs); the experimental work supporting this effort at Pacific Northwest Laboratory (PNL); the reaction chemistry and kinetics; the technical maturity of the process; and a preliminary assessment of maintenance, operation, and safety of a system. Nitrate destruction using organic reductants is also described. The low-temperature hydrothermal program at PNL was initiated in January 1993. It is part of an overall program to develop organic destruction technologies, which was originally funded by Hanford's Tank Waste Remediation System program and then was transferred to the Initial Pretreatment (IPM) project. As described in the document, low-temperature HTP (1) meets or exceeds system requirements in organic, ferrocyanide, and nitrate destruction, and processing rate; (2) is technically mature with little additional technology development required; (3) is a simple process with good operational reliability; (4) is flexible and can be easily integrated in the system; (5) has reasonable costs and utility requirements; and (6) is safe and environmentally-benign

  19. Process-based management approaches for salt desert shrublands dominated by downy brome

    Science.gov (United States)

    Downy brome grass (Bromus tectorum L.) invasion has severely altered key ecological processes such as disturbance regimes, soil nutrient cycling, community assembly, and successional pathways in semi-arid Great Basin salt desert shrublands. Restoring the structure and function of these severly alte...

  20. Study of optimal transformation of liquid effluents resulting from the destruction of radioactive sodium by water into ultimate solid wastes

    International Nuclear Information System (INIS)

    Rodriguez, G.; Camaro, S.; Fiquet, O.; Bernard, A.; Le Bescop, P.

    1997-01-01

    In the framework of sodium waste processing, it has been proposed to retain only processes that treat the sodium using water, thus generating the same by-products: hydrogen and sodium hydroxide. As the objective is to minimise radioactive liquid releases and as, moreover, the authorizations with respect to sodium salt releases are highly restrictive, several solutions have been envisaged for transforming the active sodium hydroxide coming from sodium destruction processes into ultimate solid wastes that can be stored on the surface in a storage site approved by the ANDRA (National Radioactive Waste Management Agency): the Aube Storage Site (CSA). Two processes have been considered and compared: immobilisation in concrete (cementation) and immobilisation in ceramic (ceramisation). These two processes are evaluated according to several criteria: the state of advancement of the process, the quantity of sodium hydroxide (and therefore of sodium) that can be treated per package. (author)

  1. Salt Stability - The Effect of pHmax on Salt to Free Base Conversion.

    Science.gov (United States)

    Hsieh, Yi-Ling; Merritt, Jeremy M; Yu, Weili; Taylor, Lynne S

    2015-09-01

    The aim of this study was to investigate how the disproportionation process can be impacted by the properties of the salt, specifically pHmax. Five miconazole salts and four sertraline salts were selected for this study. The extent of conversion was quantified using Raman spectroscopy. A mathematical model was utilized to estimate the theoretical amount of conversion. A trend was observed that for a given series of salts of a particular basic compound (both sertraline and miconazole are bases), the extent of disproportionation increases as pHmax decreases. Miconazole phosphate monohydrate and sertraline mesylate, although exhibiting significantly different pHmax values (more than 2 units apart), underwent a similar extent of disproportionation, which may be attributed to the lower buffering capacity of sertraline salts. This work shows that the disproportionation tendency can be influenced by pHmax and buffering capacity and thus highlights the importance of selecting the appropriate salt form during the screening process in order to avoid salt-to-free form conversion.

  2. A comparison between destructive and non-destructive techniques in determining coating thickness

    Science.gov (United States)

    Haider, F. I.; Suryanto; Ani, M. H.; Mahmood, M. H.

    2018-01-01

    Measuring coating thickness is an important part in research works related to coating applications. In general, techniques for measuring coating thickness may be divided into destructive and non-destructive methods which are commonly used depending on the applications. The objective of this study is to compare two methods measuring the coating thickness of electroplating copper coating on the austenitic stainless-steel substrate. The electroplating was carried out in a solution containing 200 g/L CuSO4, 100 g/L H2SO4 at room temperature and current of 40mA/cm2 during 20, 40, 60, 80 and 100 mins as coating periods. And the coating thickness was measured by two methods, cross sectional analysis as a destructive technique and weight gain as a non-destructive technique. The results show that at 20 mins coating time interval, the thickness measured by cross sectional method was 16.67 μm and by weight gain method was 17.37 μm, with difference of 0.7 μm and percentage error of 4.11%. This error increased to 5.27% at 100mins time interval, where the values of the thickness measured by cross sectional and weight gain were 86.33 μm and 81.9 μm respectively, and the difference was 4.43 μm. Moreover, though the weight gain method is fast and gives the indication for the termination of a coating process, information regarding the uniformity, porosity and the presence of cracks cannot be obtained. On the other hand, determining the coating thickness using destructive method will damage the sample.

  3. Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process

    International Nuclear Information System (INIS)

    Lavric, E.D.; Weyten, H.; Ruyck, J. de; Plesu, V.; Lavric, V.

    2005-01-01

    Supercritical water oxidation (SCWO) is a recent development aiming at the destruction of organic pollutants present with low concentrations in waste waters. The present paper focuses on the process simulation of SCWO with emphasis on the proper modelling of supercritical thermodynamic conditions and on the possibility to make the SCWO process self-sufficient from the energetic viewpoint. Self-sufficiency may be of interest to encourage more delocalization of waste water treatment. The process of SCWO for dilute waste water (no more than 5 wt.%) is modelled through the ASPEN Plus copyright process simulator. Studies were made to search for energetic self-sufficiency conditions using various technologies for power production from the heat of reaction, like supercritical water expansion in a turbine, use of a closed Brayton cycle (CBC) and use of an organic Rankine cycle (ORC). The results obtained showed that the process is energetically self-sufficient using either a small supercritical turbine, or an ORC. In less restrictive conditions regarding the component efficiencies, the CBC, in theory, also leads to self-sufficiency, but from the analysis, it appears that this solution is less realistic

  4. Non-destructive Engineering

    International Nuclear Information System (INIS)

    Ko, Jin Hyeon; Ryu, Taek In; Ko, Jun Bin; Hwang, Yong Hwa

    2006-08-01

    This book gives descriptions of non-destructive engineering on outline of non-destructive test, weld defects, radiographic inspection radiography, ultrasonic inspection, magnetic particle testing, liquid penetrant testing, eddy current inspection method, strain measurement, acoustic emission inspection method, other non-destructive testing like leakage inspection method, and non-destructive mechanics for fault analysis such as Griffiths creaking theory, and stress analysis of creaking.

  5. Salt Separation from Uranium Deposits in Integrated Crucible

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Chang, J. H.; Kim, J. G.; Park, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non-volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation.

  6. Water uptake by salts during the electrolyte processing for thermal batteries

    Science.gov (United States)

    Masset, Patrick; Poinso, Jean-Yves; Poignet, Jean-Claude

    Water uptake of single salts and electrolytes were measured in industrial conditions (dry-room). The water uptake rate ϑ (g h -1 cm -2) was expressed with respect to the apparent area of contact of the salt with atmosphere of the dry room. The water uptake by potassium-based salts was very low. LiF and LiCl salts were found to behave similarly. For LiBr- and LiI-based salts and mixtures, we pointed out a linear relationship between the water uptake and the elapsed time. Water uptake by magnesium oxide reached a limit after 200 h. This work provides a set of data concerning the rate of water uptake by single salts, salt mixtures and magnesia used in thermal battery electrolytes.

  7. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    International Nuclear Information System (INIS)

    Ramsey, K.B.; Acosta, S.V.; Wernly, K.D.

    1998-01-01

    This paper presents an overview of potential technologies for stabilization of 238 Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from 238 Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented

  8. Improving molten fluoride salt and Xe135 barrier property of nuclear graphite by phenolic resin impregnation process

    Science.gov (United States)

    He, Zhao; Lian, Pengfei; Song, Yan; Liu, Zhanjun; Song, Jinliang; Zhang, Junpeng; Feng, Jing; Yan, Xi; Guo, Quangui

    2018-02-01

    A densification process has been conducted on isostatic graphite (IG-110, TOYO TANSO CO., Ltd., Japan) by impregnating phenolic resin to get the densified isostatic graphite (D-IG-110) with pore diameter of nearly 11 nm specifically for molten salt reactor application. The microstructure, mechanical, thermophysical and other properties of graphite were systematically investigated and compared before and after the densification process. The molten fluoride salt and Xe135 penetration in the graphite were evaluated in a high-pressure reactor and a vacuum device, respectively. Results indicated that D-IG-110 exhibited improved properties including infiltration resistance to molten fluoride salt and Xe135 as compared to IG-110 due to its low porosity of 2.8%, the average pore diameter of 11 nm and even smaller open pores on the surface of the graphite. The fluoride salt infiltration amount of IG-110 was 13.5 wt% under 1.5 atm and tended to be saturated under 3 atm with the fluoride salt occupation of 14.8 wt%. As to the D-IG-110, no salts could be detected even up to 10 atm attempted loading. The helium diffusion coefficient of D-IG-110 was 6.92 × 10-8 cm2/s, significantly less than 1.21 × 10-2 cm2/s of IG-110. If these as-produced properties for impregnated D-IG-110 could be retained during MSR operation, the material could prove effective at inhibiting molten fluoride salt and Xe135 inventories in the graphite.

  9. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1992-03-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing an electrochemical process, based upon mediated electrochemical oxidation (MEO), that converts toxic organic components of mixed waste to water, carbon dioxide, and chloride or chloride precipitates. Aggressive oxidizer ions such as Ag 2+ , Co 3+ , or Fe 3+ are produced at an anode. These can attack organic molecules directly, and may also produce hydroxyl free radicals that promote destruction. Solid and liquid radioactive waste streams containing only inorganic radionuclide forms may be treated with existing technology and prepared for final disposal. The coulombic efficiency of the process has been determined, as well as the destruction efficiency for ethylene glycol, a surrogate waste. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient- temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag(II) has been used as a mediator in this process. Fe(III) and Co(III) are attractive alternatives to Ag(II) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is toxic heavy metal. Quantitative data have been obtained for the complete oxidation of ethylene glycol by Fe(III) and Co(III). Though ethylene glycol is a nonhalogenated organic, these data have enabled us to make direct comparisons of activities of Fe(III) and Co(III) with Ag(II). Very good quantitative data for the oxidation of ethylene glycol by Ag(II) had already been collected

  10. Processed foods as an integral part of universal salt iodization programs: a review of global experience and analyses of Bangladesh and Pakistan.

    Science.gov (United States)

    Spohrer, Rebecca; Garrett, Greg S; Timmer, Arnold; Sankar, Rajan; Kar, Basanta; Rasool, Faiz; Locatelli-Rossi, Lorenzo

    2012-12-01

    Despite the reference to salt for food processing in the original definition of universal salt iodization (USI), national USI programs often do not explicitly address food industry salt. This may affect program impact and sustainability, given the increasing consumption of processed foods in developing countries. To review experience of the use of iodized salt in the food industry globally, and analyze the market context in Bangladesh and Pakistan to test whether this experience may be applicable to inform improved national USI programming in developing countries. A review of relevant international experience was undertaken. In Bangladesh and Pakistan, local rural market surveys were carried out. In Bangladesh, structured face-to-face interviews with bakers and indepth interviews with processed food wholesalers and retailers were conducted. In Pakistan, face-to-face structured interviews were conducted with food retailers and food labels were checked. Experience from industrialized countries reveals impact resulting from the use of iodized salt in the food industry. In Bangladesh and Pakistan, bread, biscuits, and snacks containing salt are increasingly available in rural areas. In Bangladesh, the majority of bakers surveyed claimed to use iodized salt. In Pakistan, 6 of 362 unique product labels listed iodized salt. Successful experience from developed countries needs to be adapted to the developing country context. The increasing availability of processed foods in rural Bangladesh and Pakistan provides an opportunity to increase iodine intake. However, the impact of this intervention remains to be quantified. To develop better national USI programs, further data are required on processed food consumption across population groups, iodine contents of food products, and the contribution of processed foods to iodine nutrition.

  11. Non-destructive Inspection of Multi-layered Composite Using Ultrasonic Signal Processing

    International Nuclear Information System (INIS)

    Ng, S C; Ismail, N; Ali, Aidy; Sahari, Barkawi; Yusof, J M; Chu, B W

    2011-01-01

    Composites exhibit higher strength and stiffness, better design practice and greater corrosion resistance compare to metal material. However, composites are susceptible to impact damage and the typical damage behaviour in the laminated composites is fibre-breakage and delamination. Detection of failure in laminated composites is complicated compared with ordinary non-destructive testing for metal materials as they are sensitive to echoes drown in noise due to the properties of the constituent materials and the multi-layered structure of the composites. In the current study, the detection of failure in multi-layered composite materials is investigated. To obtain a high probability of defect detection in composite materials, signal processing algorithms were used to resolve echoes associated with defects in glass fibre-reinforced plastics (GRP) detected by using ultrasonic testing. Pulse-echo method with single transducer was used to transmit and receive ultrasound. The obtained signals were processed to reduce noise and to extract suitable features. Results were validated on GRP with and without defects in order to demonstrate the feasibility of the method on defect detection in composites.

  12. EXAMINE AND EVALUATE A PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LIQUEFIED NATURAL GAS

    Energy Technology Data Exchange (ETDEWEB)

    Michael M. McCall; William M. Bishop; D. Braxton Scherz

    2003-04-24

    The goal of the U.S. Department of Energy cooperative research project is to define, describe, and validate, a process to utilize salt caverns to receive and store the cargoes of LNG ships. The project defines the process as receiving LNG from a ship, pumping the LNG up to cavern injection pressures, warming it to cavern compatible temperatures, injecting the warmed vapor directly into salt caverns for storage, and distribution to the pipeline network. The performance of work under this agreement is based on U.S. Patent 5,511,905, and other U.S. and Foreign pending patent applications. The cost sharing participants in the research are The National Energy Technology Laboratory (U.S. Department of Energy), BP America Production Company, Bluewater Offshore Production Systems (U.S.A.), Inc., and HNG Storage, L.P. Initial results indicate that a salt cavern based receiving terminal could be built at about half the capital cost, less than half the operating costs and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. There is a significant body of knowledge and practice concerning natural gas storage in salt caverns, and there is a considerable body of knowledge and practice in handling LNG, but there has never been any attempt to develop a process whereby the two technologies can be combined. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or terrorist acts, and much more acceptable to the community. The project team developed conceptual designs of two salt cavern based LNG terminals, one with caverns located in Calcasieu Parish Louisiana, and the second in Vermilion block 179 about 50 miles offshore Louisiana. These conceptual designs were compared to conventional tank based LNG terminals and demonstrate superior security, economy and capacity. The potential for the development of LNG receiving terminals

  13. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, K.B.; Acosta, S.V. [Los Alamos National Lab., NM (United States); Wernly, K.D. [Molten Salt Oxidation Corp., Bensalem, PA (United States)

    1998-12-31

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented.

  14. Use of sodium salt electrolysis in the process of continuous ...

    Indian Academy of Sciences (India)

    This paper presents test results concerning the selection of sodium salt for the technology of continuous modification of the EN AC-AlSi12 alloy, which is based on electrolysis of sodium salts, occurring directly in a crucible with liquid alloy. Sodium ions formed as a result of the sodium salt dissociation and the electrolysis are ...

  15. Investigation and development of a non-destructive system to evaluate critical properties of asphalt pavements during the compaction process.

    Science.gov (United States)

    2013-10-01

    The purpose of this report is to present findings from a two-stage investigation to develop a non-destructive system to : evaluate critical properties and characteristics of asphalt pavements during the compaction process. The first stage aligned : c...

  16. Destruction as a Step in Heidegger's Phenomenology

    Directory of Open Access Journals (Sweden)

    M.J Safian

    2014-08-01

    Full Text Available One of the most controversial issues in Heidegger’s philosophy is his claim that western philosophy tradition has overlooked the issue of Being. Heidegger’s attempt is to reveal the origins of this negligence by means of destruction. However, it seems that through such claim Heidegger aims to destroy and disvalue this tradition. In addition to defining and explaining destruction, our purpose in this article is to show that Heidegger’s goal is not to destroy the tradition of philosophy but the term destruction refers to a process which is a step in Heidegger’s phenomenology by means of which one can conceive and perceive Being better because only through such destruction ontology can fully assure itself in a phenomenological way of the genuine character of its concepts. The necessity of doing destruction in Heidegger’s thought has also been discussed and his persistence on it has been shown in two of his works, one belongs to early and another to later Heidegger.

  17. Les innovations financières s’inscrivent-elles dans un processus schumpeterien de destruction créatrice ? Do financial innovations fit into the scheme of the Schumpeterian creative destruction process?

    Directory of Open Access Journals (Sweden)

    Faruk Ülgen

    2012-11-01

    Full Text Available Le présent article pose la question de savoir si les innovations financières peuvent être pensées dans le cadre du processus de destruction créatrice. Dans cet objectif, la dynamique schumpeterienne de l’économie capitaliste est interprétée en termes d’une économie monétaire dans laquelle les innovations bancaires et financières affectent structurellement les activités entrepreneuriales et jouent un rôle crucial sur la stabilité macroéconomique. À l’opposé des effets, souvent jugés positifs, des innovations des entrepreneurs schumpeteriens sur la croissance, les marchés financiers libéralisés génèrent des déséquilibres cumulés à travers le développement d’une financiarisation spéculative qui peut être étudiée en termes de la deuxième vague des cycles schumpeteriens. Le processus de destruction créatrice des innovations peut se transformer en une création destructrice. Par conséquent, la redéfinition des mécanismes de régulation dans une optique minskienne s’avère nécessaire pour faire face aux déséquilibres macroéconomiques.This paper asks the question to know if financial innovations can be thought within the framework of a creative destruction process. In this aim, the Schumpeterian dynamics of the capitalist economy is studied in terms of a monetary economy where banking and financial innovations affect structurally entrepreneurs’ activities and play a crucial role on the macroeconomic stability. Contrary to the effects, usually assumed to be positive, of innovations of the Schumpeterian entrepreneurs on the growth, liberalized financial markets generate accumulated imbalances through the development of a speculative financialization which can be studied in terms of the second wave of Schumpeterian business cycles. The process of creative destruction of innovations may turn to be a destructive creation. Then, redefining of regulatory mechanisms in a Minskian perspective seems to be

  18. Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Shaw, P.; Anderson, B.

    1993-07-01

    INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program

  19. Hydrothermal processing of fermentation residues in a continuous multistage rig – Operational challenges for liquefaction, salt separation, and catalytic gasification

    International Nuclear Information System (INIS)

    Zöhrer, H.; De Boni, E.; Vogel, F.

    2014-01-01

    Fermentation residues are a waste stream of biomethane production containing substantial amounts of organic matter, and thus representing a primary energy source which is mostly unused. For the first time this feedstock was tested for catalytic gasification in supercritical water (T ≥ 374 °C, p ≥ 22 MPa) for methane production. The processing steps include hydrothermal liquefaction, salt separation, as well as catalytic gasification over a ruthenium catalyst in supercritical water. In continuous experiments at a feed rate of 1 kg h −1 a partial liquefaction and carbonization of some of the solids was observed. Significant amounts of heavy tars were formed. Around 50% of the feed carbon remained in the rig. Furthermore, a homogeneous coke was formed, presumably originating from condensed tars. The mineralization of sulfur and its separation in the salt separator was insufficient, because most of the sulfur was still organically bound after liquefaction. Desalination was observed at a salt separator set point temperature of 450 °C and 28 MPa; however, some of the salts could not be withdrawn as a concentrated brine. At 430 °C no salt separation took place. Higher temperatures in the salt separator were found to promote tar and coke formation, resulting in conflicting process requirements for efficient biomass liquefaction and desalination. In the salt separator effluent, solid crystals identified as struvite (magnesium ammonium phosphate) were found. This is the first report of struvite formation from a supercritical water biomass conversion process and represents an important finding for producing a fertilizer from the separated salt brine. - Highlights: • Continuous processing of fermentation residues in sub- and supercritical water. • Continuous separation of salt brines at supercritical water conditions. • Struvite crystals (magnesium ammonium phosphate) were recovered from the effluent. • Separation of sulfur from the biomass could

  20. Physical basis of destruction of concrete and other building materials

    Science.gov (United States)

    Suleymanova, L. A.; Pogorelova, I. A.; Kirilenko, S. V.; Suleymanov, K. A.

    2018-03-01

    In the article the scientifically-grounded views of authors on the physical essence of destruction process of concrete and other materials are stated; it is shown that the mechanism of destruction of materials is similar in its essence during the mechanical, thermal, physical-chemical and combined influences, and that in its basis Newton's third law lays. In all cases destruction consists in decompaction of structures, loosening of the internal bonds in materials, in the further integrity damage and their division into separate loosely-bound (full destruction) and unbound with each other (incomplete destruction) elements, which depends on the kind of external influence and perfection of materials structure.

  1. Mixing of zeolite powders and molten salt

    International Nuclear Information System (INIS)

    Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product

  2. Use of imitation mathematical model of phosphorus system for analysis of rates of production-destruction processes in reservoir of the Zagorsk pumped-storage plant

    International Nuclear Information System (INIS)

    Leonov, A.V.; Margolina, G.L.; Sokolov, A.G.

    1993-01-01

    The rates of production-destruction processes in water media are traditionally measured for investigation of the conditions of operation of water-ecology systems and to study the role of microorganisms in the transformation of substances of different origins. One possibility for investigation of the production-destruction process is the use of numerical analytic methods and, in particular, of imitation mathematical modeling. The task of this investigation consisted of evaluation, from observations carried out in 1989, of the rates of production-destruction processes in the water of the reservoir of the Zagorsk pumped-storage plant by means of an imitation mathematical model of a phosphorus system. The model was based on a study of the characteristics of transformation of phosphorus in the water media, as well as by comparison of evaluations of the rates of the above-mentioned processes by two methods -- an experimental one (a modification of the oxygen flask method) and an analytical one (an imitation model of a phosphorus system). 7 refs., 6 figs., 4 tabs

  3. Animal Spirits Meets Creative Destruction

    NARCIS (Netherlands)

    Francois, P.; Lloyd-Ellis, H.

    2001-01-01

    We show how a Schumpeterian process of creative destruction can induce coordination in the timing of entrepreneurial activities across diverse sectors of the economy.Consequently, a multi-sector economy, in which sector-specific, productivity improvements are made by independent, profit-seeking

  4. Salts of alkali metal anions and process of preparing same

    Science.gov (United States)

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  5. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  6. Destruction kinetic of PCDDs/Fs in MSWI fly ash using microwave peroxide oxidation.

    Science.gov (United States)

    Chang, Yu-Min; Fang, Wen-Bin; Tsai, Kuo-Sheng; Kao, Jimmy C M; Lin, Kae-Long; Chen, Ching-Ho

    2015-01-01

    Microwave peroxide oxidation is a less greenhouse gas emission and energy-efficient technology to destroy toxic organic compounds in hazardous waste. The research novelty is to adopt the innovative microwave peroxide oxidation in H2SO4/HNO3 solution to efficiently destroy the polychlorinated dibenzo-p-dioxins (PCDDs)/Fs in municipal solid waste incineration fly ash. The major objective of this paper is to study dynamic destruction of PCDDs/Fs using the microwave peroxide oxidation. Almost all PCDDs/Fs in the raw fly ash can be destructed in 120 min at a temperature of 423 K using the microwave peroxide oxidation treatment. It was found that the microwave peroxide oxidation provides the potential to destruct the PCDDs/Fs content in municipal solid waste incinerator (MSWI) fly ash to a low level as a function of treatment time. A useful kinetic correlation between destruction efficiency and treatment conditions is proposed on the basis of the experimental data obtained in this study. The significance of this work in terms of practical engineering applications is that the necessary minimum treatment time can be solved using a proposed graphic illustration method, by which the minimum treatment time is obtained if the desired destruction efficiency and treatment temperature are known. Because of inorganic salt dissolution, the temperature would be a critical factor facilitating the parts of fly ash dissolution. Material loss problem caused by the microwave peroxide oxidation and the effects of treatment time and temperature are also discussed in this paper.

  7. Destruction as a Step in Heidegger\\'s Phenomenology

    Directory of Open Access Journals (Sweden)

    M.J Safian

    2014-09-01

    Full Text Available One of the most controversial issues in Heidegger’s philosophy is his claim that western philosophy tradition has overlooked the issue of Being. Heidegger’s attempt is to reveal the origins of this negligence by means of destruction. However, it seems that through such claim Heidegger aims to destroy and disvalue this tradition. In addition to defining and explaining destruction, our purpose in this article is to show that Heidegger’s goal is not to destroy the tradition of philosophy but the term destruction refers to a process which is a step in Heidegger’s phenomenology by means of which one can conceive and perceive Being better because only through such destruction ontology can fully assure itself in a phenomenological way of the genuine character of its concepts. The necessity of doing destruction in Heidegger’s thought has also been discussed and his persistence on it has been shown in two of his works, one belongs to early and another to later Heidegger.

  8. Molten-salt converter reactors

    International Nuclear Information System (INIS)

    Perry, A.M.

    1975-01-01

    Molten-salt reactors appear to have substantial promise as advanced converters. Conversion ratios of 0.85 to 0.9 should be attainable with favourable fuel cycle costs, with 235 U valued at $12/g. An increase in 235 U value by a factor of two or three ($10 to $30/lb. U 3 O 8 , $75/SWU) would be expected to increase the optimum conversion ratio, but this has not been analyzed in detail. The processing necessary to recover uranium from the fuel salt has been partially demonstrated in the MSRE. The equipment for doing this would be located at the reactor, and there would be no reliance on an established recycle industry. Processing costs are expected to be quite low, and fuel cycle optimization depends primarily on inventory and burnup or replacement costs for the fuel and for the carrier salt. Significant development problems remain to be resolved for molten-salt reactors, notably the control of tritium and the elimination of intergranular cracking of Hastelloy-N in contact with tellurium. However, these problems appear to be amenable to solution. It is appropriate to consider separating the development schedule for molten-salt reactors from that for the processing technology required for breeding. The Molten-Salt Converter Reactor should be a useful reactor in its own right and would be an advance towards the achievement of true breeding in thermal reactors. (author)

  9. Electrolytic destruction of oxalate ions in plutonium oxalate supernatant

    International Nuclear Information System (INIS)

    Michael, K.M.; Talnikar, S.G.; Jambunathan, U.; Kapoor, S.C.; Ramanujam, A.; Venkataraman, N.

    1996-01-01

    A simple and efficient electrolytic method is described for the destruction of the oxalate ions present in plutonium oxalate supernatant. Using platinum electrode and very little KMnO 4 , in situ generation of Mn 3+ ions is achieved which in turn destroys the oxalate. The use of lower current density helps in achieving maximum current efficiency. The end point is easily detectable by the pink colour of permanganate. By reversing the current, this slight excess of permanganate can be destroyed, thus avoiding the use of hydrogen peroxide. By this simple electrolytic method, the corrosive oxalate ion is completely destroyed and the salt content of the waste solution is considerably reduced. (author). 4 refs., 1 fig., 6 tabs

  10. Distillation of LiCl from the LiCl-Li2O molten salt of the electrolytic reduction process

    International Nuclear Information System (INIS)

    Kim, I.S.; Oh, S.C.; Im, H.S.; Hur, J.M.; Lee, H.S.

    2013-01-01

    Electrolytic reduction of the uranium oxide in LiCl-Li 2 O molten salt for the treatment of spent nuclear fuel requires the separation of the residual salt from the reduced metal product, which contains about 20 wt% salt. In order to separate the residual salt and reuse it in the electrolytic reduction, a vacuum distillation process was developed. Lab-scale distillation equipment was designed and installed in an argon atmosphere glove box. The equipment consisted of an evaporator in which the reduced metal product was contained and exposed to a high temperature and reduced pressure; a receiver; and a vertically oriented condenser that operated at a temperature below the melting point of lithium chloride. We performed experiments with LiCl-Li 2 O salt to evaluate the evaporation rate of LiCl salt and varied the operating temperature to discern its effect on the behavior of salt evaporation. Complete removal of the LiCl salt from the evaporator was accomplished by reducing the internal pressure to <100 mTorr and heating to 900 deg C. We achieved evaporation efficiency as high as 100 %. (author)

  11. Development of pyrometallurgical partitioning technology of long-lived nuclides. Recovery of volatile chlorides for chlorination process using molten salt trap. 1

    International Nuclear Information System (INIS)

    Hijikata, Takatoshi; Nakamura, Kyosei; Kurata, Masateru; Konagaya, Hideaki

    1997-01-01

    The dry process for partitioning of long-lived nuclides from high level radioactive waste has been developed. One of the subjects for development of this process is the recovering of the volatilization of chlorides for the chlorination process. We proposed that the volatile chlorides were recovered by the molten salt trap. We researched the behavior of volatile chlorides (ferric chloride, zirconium tetra-chloride and molybdenum pent-chloride) in LiCl-KCl eutectic salt. In this result, the volatile rate of these chlorides was slower than the volatile rate of undissolved chlorides in LiCl-KCl eutectic salt. Also, we make a prototype of molten salt trap for recovering the volatile chlorides and tested the performance of this experimental apparatus and recovering ratio of volatile chlorides. This trap has a good performance of recovering volatile chlorides. (author)

  12. Salt Removal from the Uranium Deposits of Electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Cho, C. H.; Choi, S. Y.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. In the liquid cathode, cadmium metal should be removed to recover actinide product. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the solid-liquid separation was proposed prior to distillation of salt and a feasibility of the separation of the liquid salt by a metallic wire mesh (sieve) was tested for the reduction of the burden of the following vacuum distillation process

  13. Salt Removal from the Uranium Deposits of Electrorefiner

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Cho, C. H.; Choi, S. Y.; Lee, H. S.; Kim, J. G.

    2010-01-01

    Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. In the liquid cathode, cadmium metal should be removed to recover actinide product. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the solid-liquid separation was proposed prior to distillation of salt and a feasibility of the separation of the liquid salt by a metallic wire mesh (sieve) was tested for the reduction of the burden of the following vacuum distillation process

  14. The Evolution of Dust in the Multiphase ISM: Grain Destruction Processes

    Science.gov (United States)

    Wolfire, Mark

    1999-01-01

    This proposal covered year one of a long term project in which we acquired the necessary hardware and softwaxe needed to calculate grain destruction processes in the interstellar medium (ISM). The long term goal of this research is to develop a model for the dust evolution in the ISM capable of explaining observations of elemental depletions, the grain size distribution, and the emission characteristics of the ISM from the X-ray through the FIR. We purchased a SUN Ultra 10 workstation and peripheral devices including an Exabyte Tape drive, HP Laser Printer, and Seagate External Hard Disk. The PI installed the hardware and Solaris operating system on the workstation and integrated the hardware into the network. Software was also purchased to enable connections to the workstation from a PC (Hummingbird Exceed). Additional freeware required to carry out the proposed program was installed on the system including compilers (g77, gcc, g++), editors (emacs), a markup language (LaTeX), and display programs (WIP, XV, SAOtng). We have also successfully modified the required plot files to work with our system which display the results of grain processing.

  15. OPERATIONS REVIEW OF THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS - 11327

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Poirier, M.; Fondeur, F.; Fink, S.; Brown, S.; Geeting, M.

    2011-02-07

    The Savannah River Site (SRS) is removing liquid radioactive waste from its Tank Farm. To treat waste streams that are low in Cs-137, Sr-90, and actinides, SRS developed the Actinide Removal Process and implemented the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The Actinide Removal Process contacts salt solution with monosodium titanate to sorb strontium and select actinides. After monosodium titanate contact, the resulting slurry is filtered to remove the monosodium titanate (and sorbed strontium and actinides) and entrained sludge. The filtrate is transferred to the MCU for further treatment to remove cesium. The solid particulates removed by the filter are concentrated to {approx} 5 wt %, washed to reduce the sodium concentration, and transferred to the Defense Waste Processing Facility for vitrification. The CSSX process extracts the cesium from the radioactive waste using a customized solvent to produce a Decontaminated Salt Solution (DSS), and strips and concentrates the cesium from the solvent with dilute nitric acid. The DSS is incorporated in grout while the strip acid solution is transferred to the Defense Waste Processing Facility for vitrification. The facilities began radiological processing in April 2008 and started processing of the third campaign ('MarcoBatch 3') of waste in June 2010. Campaigns to date have processed {approx}1.2 million gallons of dissolved saltcake. Savannah River National Laboratory (SRNL) personnel performed tests using actual radioactive samples for each waste batch prior to processing. Testing included monosodium titanate sorption of strontium and actinides followed by CSSX batch contact tests to verify expected cesium mass transfer. This paper describes the tests conducted and compares results from facility operations. The results include strontium, plutonium, and cesium removal, cesium concentration, and organic entrainment and recovery data. Additionally, the poster describes lessons learned during

  16. Conditioning matrices from high level waste resulting from pyrochemical processing in fluorine salt

    International Nuclear Information System (INIS)

    Grandjean, Agnes; Advocat, Thierry; Bousquet, Nicolas; Jegou, Christophe

    2007-01-01

    Separating the actinides from the fission products through reductive extraction by aluminium in a LiF/AlF 3 medium is a process investigated for pyrometallurgical reprocessing of spent fuel. The process involves separation by reductive salt-metal extraction. After dissolving the fuel or the transmutation target in a salt bath, the noble metal fission products are first extracted by contacting them with a slightly reducing metal. After extracting the metal fission products, then the actinides are selectively separated from the remaining fission products. In this hypothesis, all the unrecoverable fission products would be conditioned as fluorides. Therefore, this process will generate first a metallic waste containing the 'reducible' fission products (Pd, Mo, Ru, Rh, Tc, etc.) and a fluorine waste containing alkali-metal, alkaline-earth and rare earth fission products. Immobilization of these wastes in classical borosilicate glasses is not feasible due to the very low solubility of noble metals, and of fluoride in these hosts. Alternative candidates have therefore been developed including silicate glass/ceramic system for fluoride fission products and metallic ones for noble metal fission products. These waste-forms were evaluated for their confinement properties like homogeneity, waste loading, volatility during the elaboration process, chemical durability, etc. using appropriate techniques. (authors)

  17. Development of an integrated crucible for the salt separation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Pyroprocessing has been developed for the recovery of actinide elements from spent fuel due to its advantages. Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode process sing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the integrated salt separation system was developed to increase the throughput of the salt removal process by the separation of the liquid salt prior to the distillation of the LiCl-KCl eutectic salt from the uranium deposits

  18. Significant Modules and Biological Processes between Active Components of Salvia miltiorrhiza Depside Salt and Aspirin

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-01-01

    Full Text Available The aim of this study is to examine and compare the similarities and differences between active components of S. miltiorrhiza depside salt and aspirin using perspective of pharmacological molecular networks. Active components of S. miltiorrhiza depside salt and aspirin’s related genes were identified via the STITCH4.0 and GeneCards Database. A text search engine (Agilent Literature Search 2.71 and MCODE software were applied to construct network and divide modules, respectively. Finally, 32, 2, and 28 overlapping genes, modules, and pathways were identified between active components of S. miltiorrhiza depside salt and aspirin. A multidimensional framework of drug network showed that two networks reflected commonly in human aortic endothelial cells and atherosclerosis process. Aspirin plays a more important role in metabolism, such as the well-known AA metabolism pathway and other lipid or carbohydrate metabolism pathways. S. miltiorrhiza depside salt still plays a regulatory role in type II diabetes mellitus, insulin resistance, and adipocytokine signaling pathway. Therefore, this study suggests that aspirin combined with S. miltiorrhiza depside salt may be more efficient in treatment of CHD patients, especially those with diabetes mellitus or hyperlipidemia. Further clinical trials to confirm this hypothesis are still needed.

  19. Evaluation of destructive methods for managing decontamination wastes

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Adams, J.W.

    1986-01-01

    Results are discussed of a laboratory evaluation of destructive methods for processing chemical decontamination wastes. Incineration, acid digestion and wet-air oxidation are capable of degrading decontamination reagents and organic ion-exchange resins. The extent of destruction as a function of operating parameters was waste specific. The reagents used in the testing were: EDTA, oxalic acid, citric acid, picolinic acid and LND-101A

  20. Corrosion processes of alloyed steels in salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Institut fuer Nukleare Entsorgung

    2018-02-15

    A summary is given of the corrosion experiments with alloyed Cr-Ni steels in salt solutions performed at Research Centre Karlsruhe (today KIT), Institute for Nuclear Waste Disposal (INE) in the period between 1980 and 2004. Alloyed steels show significantly lower general corrosion in comparison to carbon steels. However, especially in salt brines the protective Cr oxide layers on the surfaces of these steels are disturbed and localized corrosion takes place. Data on general corrosion rates, and findings of pitting, crevice and stress corrosion cracking are presented.

  1. Exergy destruction and losses on four North Sea offshore platforms: A comparative study of the oil and gas processing plants

    DEFF Research Database (Denmark)

    Voldsund, Mari; Nguyen, Tuong-Van; Elmegaard, Brian

    2014-01-01

    The oil and gas processing plants of four North Sea offshore platforms are analysed and compared, based on the exergy analysis method. Sources of exergy destruction and losses are identified and the findings for the different platforms are compared. Different platforms have different working...... conditions, which implies that some platforms need less heat and power than others. Reservoir properties and composition vary over the lifetime of an oil field, and therefore maintaining a high efficiency of the processing plant is challenging. The results of the analysis show that 27%-57% of the exergy...... destruction take place in the gas treatment sections, 13%-29% take place in the gas recompression sections and 10%-24% occur in the production manifolds. The exergy losses with flared gas are significant for two of the platforms. The exact potential for energy savings and for enhancing system performances...

  2. Alternatives for definse waste-salt disposal

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McDonell, W.R.

    1983-01-01

    Alternatives for disposal of decontaminated high-level waste salt at Savannah River were reviewed to estimate costs and potential environmental impact for several processes. In this review, the reference process utilizing intermediate-depth burial of salt-concrete (saltcrete) monoliths was compared with alternatives including land application of the decontaminated salt as fertilizer for SRP pine stands, ocean disposal with and without containment, and terminal storage as saltcake in existing SRP waste tanks. Discounted total costs for the reference process and its modifications were in the same range as those for most of the alternative processes; uncontained ocean disposal with truck transport to Savannah River barges and storage as saltcake in SRP tanks had lower costs, but presented other difficulties. Environmental impacts could generally be maintained within acceptable limits for all processes except retention of saltcake in waste tanks, which could result in chemical contamination of surrounding areas on tank collapse. Land application would require additional salt decontamination to meet radioactive waste disposal standards, and ocean disposal without containment is not permitted in existing US practice. The reference process was judged to be the only salt disposal option studied which would meet all current requirements at an acceptable cost

  3. Processes of Fatigue Destruction in Nanopolymer-Hydrophobised Ceramic Bricks

    Directory of Open Access Journals (Sweden)

    Stanisław Fic

    2017-01-01

    Full Text Available The article presents a proposal of a model of fatigue destruction of hydrophobised ceramic brick, i.e., a basic masonry material. The brick surface was hydrophobised with two inorganic polymers: a nanopolymer preparation based on dialkyl siloxanes (series 1–5 and an aqueous silicon solution (series 6–10. Nanosilica was added to the polymers to enhance the stability of the film formed on the brick surface. To achieve an appropriate blend of the polymer liquid phase and the nano silica solid phase, the mixture was disintegrated by sonication. The effect of the addition of nano silica and sonication on changes in the rheological parameters, i.e., viscosity and surface tension, was determined. Material fatigue was induced by cyclic immersion of the samples in water and drying at a temperature of 100 °C, which caused rapid and relatively dynamic movement of water. The moisture and temperature effect was determined by measurement of changes in surface hardness performed with the Vickers method and assessment of sample absorbability. The results provided an approximate picture of fatigue destruction of brick and hydrophobic coatings in relation to changes in their temporal stability. Additionally, SEM images of hydrophobic coatings in are shown.

  4. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  5. Importance of regional species pools and functional traits in colonization processes: predicting re-colonization after large-scale destruction of ecosystems

    NARCIS (Netherlands)

    Kirmer, A.; Tischew, S.; Ozinga, W.A.; Lampe, von M.; Baasch, A.; Groenendael, van J.M.

    2008-01-01

    Large-scale destruction of ecosystems caused by surface mining provides an opportunity for the study of colonization processes starting with primary succession. Surprisingly, over several decades and without any restoration measures, most of these sites spontaneously developed into valuable biotope

  6. Effects of an Advocacy Trial on Food Industry Salt Reduction Efforts-An Interim Process Evaluation.

    Science.gov (United States)

    Trevena, Helen; Petersen, Kristina; Thow, Anne Marie; Dunford, Elizabeth K; Wu, Jason H Y; Neal, Bruce

    2017-10-17

    The decisions made by food companies are a potent factor shaping the nutritional quality of the food supply. A number of non-governmental organizations (NGOs) advocate for corporate action to reduce salt levels in foods, but few data define the effectiveness of advocacy. This present report describes the process evaluation of an advocacy intervention delivered by one Australian NGO directly to food companies to reduce the salt content of processed foods. Food companies were randomly assigned to intervention ( n = 22) or control ( n = 23) groups. Intervention group companies were exposed to pre-planned and opportunistic communications, and control companies to background activities. Seven pre-defined interim outcome measures provided an indication of the effect of the intervention and were assessed using intention-to-treat analysis. These were supplemented by qualitative data from nine semi-structured interviews. The mean number of public communications supporting healthy food made by intervention companies was 1.5 versus 1.8 for control companies ( p = 0.63). Other outcomes, including the mean number of news articles, comments and reports (1.2 vs. 1.4; p = 0.72), a published nutrition policy (23% vs. 44%; p = 0.21), public commitment to the Australian government's Food and Health Dialogue (FHD) (41% vs. 61%; p = 0.24), evidence of a salt reduction plan (23% vs. 30%; p = 0.56), and mean number of communications with the NGO (15 vs. 11; p = 0.28) were also not significantly different. Qualitative data indicated the advocacy trial had little effect. The absence of detectable effects of the advocacy intervention on the interim markers indicates there may be no impact of the NGO advocacy trial on the primary outcome of salt reduction in processed foods.

  7. Geochemical processes in marine salt deposits: Their significance and their implications in connection with disposal of radioactive waste within salt domes

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, A G [Goettingen Univ. (Germany, F.R.). Geochemisches Inst.

    1980-01-01

    Attempts to effect permanent disposal of radioactive wastes in marine evaporites should do nothing to disturb, either in the short or the long term, the present relative stability of such bodies of rock. It is necessary to take account of all of the geochemical and physico-chemical reactions known to have been involved in the processes which formed the evaporites before proceeding to an acceptable strategy for disposal of radionucleides. These processes can be represented as three kinds of metamorphism: 1. solution metamorphism, 2. thermal metamorphism, 3. dynamic metamorphism. In all of the evaporite occurrences in Germany such processes have been influential in altering, on occasion significantly, the primary mineralogical composition and have also promoted a considerable degree of transposition of material. Given similar geochemical and physico-chemical premises, these metamorphic processes could become effective now or in the future. It is therefore necessary to discuss the following criteria when examining salt domes as permanent repositories of highly radioactive substances: (1) Temperatures <= 90/sup 0/ +- 10/sup 0/C at the contact between waste containers and rock salt; (2) Temperatures <= 75/sup 0/C within zones of carnallite rocks; (3) Immobilisation of high-level waste in crystalline forms whenever possible; (4) Systems of additional safety barriers around the waste containers or the unreprocessed spent fuel elements. The geochemical and physical effectiveness of the barriers within an evaporite environment must be guaranteed. For example: Ni-Ti-alloys, corundum, ceramic, anhydrite.

  8. Nonconventional concrete hollow blocks evaluation by destructive and non-destructive testing

    Directory of Open Access Journals (Sweden)

    M.S. Rodrigues

    Full Text Available The aim of this study was to evaluate cementitious matrices properties by partial replacement of Portland cement by silica fume (SF or by rice husk ash (RHA, and their application in nonbearing hollow blocks, tested by destructive and non-destructive methods. The following mixtures were produced: reference (100% of Portland cement and Portland cement replacement (10% by mass with SF or RHA. The non-destructive testing showed that the highest values of UPV were obtained for SF-based blocks and RHA-based blocks. The destructive test showed better results for SF-based blocks, but there was no statistical difference between the RHA-based and control ones.

  9. Fundamental study on the salt distillation from the mixtures of rare earth precipitates and LiCl-KCl eutectic salt

    International Nuclear Information System (INIS)

    Yang, H. C.; Eun, H. C.; Cho, Y. Z.; Lee, H. S.; Kim, I. T.

    2008-01-01

    An electrorefining process of spent nuclear fuel generates waste salt containing some radioactive metal chlorides. The most effective method to reduce salt waste volume is to separate radioactive metals from non-radioactive salts. A promising approach is to change radioactive metal chlorides into salt-insoluble oxides by an oxygen sparging. Following this, salt distillation process is available to effectively separate the precipitated particulate metal oxides from salt. This study investigated the distillation rates of LiCl-KCl eutectic salt under different vacuums at elevated temperatures. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. In the second part, we tested the removal of eutectic salt from the RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature of mixture, the degree of vacuum and the time

  10. Extraction, scrub, and strip test results for the solvent transfer to salt waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The Savannah River National Laboratory (SRNL) prepared approximately 240 gallons of Caustic-Side Solvent Extraction (CSSX) solvent for use at the Salt Waste Processing Facility (SWPF). An Extraction, Scrub, and Strip (ESS) test was performed on a sample of the prepared solvent using a salt solution prepared by Parsons to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams. This data will be used by Parsons to help qualify the solvent for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 15.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.

  11. Exergy destruction in ammonia scrubbers

    NARCIS (Netherlands)

    Zisopoulos, Filippos K.; Goot, van der Atze Jan; Boom, Remko M.

    2018-01-01

    A theoretical ammonia scrubbing process by sulfuric acid solution is assessed with the concept of exergy. The exergy destruction of chemical neutralization is mainly (75–94%) due to changes in the chemical exergy of streams and thermal effects from the reaction while mixing effects have a limited

  12. Investigation of salt distribution in porous stone material using paper pulp poultices under laboratory condititions and on site

    Science.gov (United States)

    Egartner, Isabel; Sass, Oliver

    2016-04-01

    The presented investigation is part of a longer-term project which deals with the influence of salt and moisture on weathering of historic stonework. The main investigation object in the field is a part of the 300 hundred year old boundary wall of the Worchester College in Oxford, UK. A range of non-destructive techniques were applied in course of field campaigns, e.g. mapping of weathering phenomena; handheld moisture sensors; and salt sampling by paper pulp poultices. In a second step we investigated the behaviour and distribution of water and salt solution in a porous material, similar to the limestone of the College wall, under laboratory condititions. Limestone cube samples (5x5x5 cm) were soaked first with ultrapure H2O and second with different concentration of saline solutions of NaCl and Na2SO4. During the dehydration process of the stone cubes a multi-method approach including sampling by drilling, paper pulp poultices, handheld moisture sensor, conductivity sensor and Ion Chromatography (IC) were applied to investigate the moisture and salt content and distribution within the samples. The laboratory analyses were carried out at the department of applied geoscience of the Technical University of Graz, Austria. The main aim was to investigate the effectivity of the paper pulp poultices in soaking up salts from the stone samples and to use the results of the laboratory analysis to interpret and calibrate the field work results from the College wall in Oxford. Keywords: Salt weathering, paper pulp poultices, cultural heritage, field work and laboratory investigation

  13. Assessment by X-ray diffraction the process of bentonite organophilization using a different quaternary ammonium salts

    International Nuclear Information System (INIS)

    Silva, L.A. da; Rosario, J.A. do; Lima, R.B.; Milioli, C.C.; Gusatti, M.; Linhares, R.H.; Kuhnen, N.C.; Riella, H.G.

    2010-01-01

    The process was conducted in an organophilization Bentonite originated from the Company of Industrial Minerals of Mozambique Ltd. (Mimoc). The transformation of bentonite organophilic clay were performed in laboratory procedures that aim to mechanochemical exchange of Na + and Ca 2+ from the interlayer space of clay minerals by cations of quaternary ammonium salts. In this study we used two types of salts, which are: the cetyl trimethyl ammonium chloride and alkyl dimethyl benzyl ammonium chloride at different concentrations (30, 50, 80, 100 meq/100 g clay). The natural bentonite and organophilic clay samples were characterized by X-ray diffraction (XRD) to obtain the mineralogical constituents and analysis phases of the increase in interlayer distance confirming the incorporation of quaternary ammonium salts in the structure of clays. (author)

  14. Potential effect of salt reduction in processed foods on health

    NARCIS (Netherlands)

    Hendriksen, M.A.H.; Hoogenveen, R.T.; Hoekstra, J.; Geleijnse, J.M.; Boshuizen, H.C.; Raaij, van J.M.A.

    2014-01-01

    Background: Excessive salt intake has been associated with hypertension and increased cardiovascular disease morbidity and mortality. Reducing salt intake is considered an important public health strategy in the Netherlands. Objective: The objective was to evaluate the health benefits of

  15. Process for improving the energy density of feedstocks using formate salts

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  16. Numerical analysis of impurity separation from waste salt by investigating the change of concentration at the interface during zone refining process

    Science.gov (United States)

    Choi, Ho-Gil; Shim, Moonsoo; Lee, Jong-Hyeon; Yi, Kyung-Woo

    2017-09-01

    The waste salt treatment process is required for the reuse of purified salts, and for the disposal of the fission products contained in waste salt during pyroprocessing. As an alternative to existing fission product separation methods, the horizontal zone refining process is used in this study for the purification of waste salt. In order to evaluate the purification ability of the process, three-dimensional simulation is conducted, considering heat transfer, melt flow, and mass transfer. Impurity distributions and decontamination factors are calculated as a function of the heater traverse rate, by applying a subroutine and the equilibrium segregation coefficient derived from the effective segregation coefficients. For multipass cases, 1d solutions and the effective segregation coefficient obtained from three-dimensional simulation are used. In the present study, the topic is not dealing with crystal growth, but the numerical technique used is nearly the same since the zone refining technique was just introduced in the treatment of waste salt from nuclear power industry because of its merit of simplicity and refining ability. So this study can show a new application of single crystal growth techniques to other fields, by taking advantage of the zone refining multipass possibility. The final goal is to achieve the same high degree of decontamination in the waste salt as in zone freezing (or reverse Bridgman) method.

  17. Influence of the Chemical Interactions on the Removal Rate of Different Salts in Electrokinetic Desalination Processes

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2011-01-01

    Electrokinetic desalination techniques have been successfully applied for the prevention of salt-induced deterioration problems of masonry and other construction materials. A mathematical model for electrochemical desalination treatments is described, based on the Poisson-Nernst-Planck system...... of equations and accounting for the chemical interactions between the species in the pore solution and the solid matrix. Due to their high abundance in the natural environment, chlorides, nitrates and sulfates are considered the main ions responsible to the salt decay processes in buildings materials...

  18. Enhancing and accelarating flavour formation by salt-tolerant yeasts in Japanese soy-sauce processes

    NARCIS (Netherlands)

    Sluis, van der C.; Tramper, J.; Wijffels, R.H.

    2001-01-01

    In soy-sauce processes salt-tolerant yeasts are very important for the flavour formation. This flavour formation is, however, slow and poorly understood. In the last decades, a concerted research effort has increased the understanding and resulted in the derivation of mutants with an enhanced

  19. Use of non-standardised micro-destructive techniques in the characterization of traditional construction materials

    Science.gov (United States)

    Ioannou, Ioannis; Theodoridou, Magdalini; Modestou, Sevasti; Fournari, Revecca; Dagrain, Fabrice

    2013-04-01

    therefore follows that both micro-destructive techniques may prove useful in the physico-mechanical characterization of materials which demand in-situ measurements or allow very limited sampling. Moreover, both techniques have been used, for the first time, to map the distribution of salts in building stone in the laboratory; micro-drilling was also applied in the same context in-situ. The results of the laboratory tests performed on limestone impregnated with sodium and magnesium sulfate confirm that both the scratch tool and the DRMS may successfully detect the location of the salt front, as they respond to pore clogging by salt crystals by providing increased scratching/drilling resistance values. Drilling and scratching of duplicate samples treated with a hydrophobic product show the sensitivity of both techniques as they clearly detect changes to the salt front location (i.e. cryptoflorescence) caused by surface treatments. Both techniques were also successful in highlighting the difference in the crystallisation location and pattern of magnesium sulphate and sodium chloride. In-situ application of the micro-drilling test demonstrated its potential for use in the assessment of masonry salt weathering; the results suggest that this technique may, in fact, be useful as a preventive measure against salt damage. Last but not least, both aforementioned novel micro-destructive techniques have been used to assess the effectiveness of commercially available consolidants. The results of the scratch tool have also been utilised to develop a tomography image of the samples under test. Scratching tomography may potentially be combined with in-situ micro-drilling tests to evaluate the effectiveness of consolidation treatments applied on monuments and historic buildings.

  20. Low temperature destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    1938-07-05

    A process is given and apparatus is described for the destructive distillation at low temperature of coal, oil shale, and the like by subjection to the action of a stream of hot gases or superhearted steam, flowing in a closed circuit. Subsequent treatment of the distillation residues with a gas stream containing oxygen results in combustion of the carbon-containing material therein brings to a high temperature the solid residue, in which the process comprises subsequently contacting the hot solid residue with the fluid stream effecting the distillation.

  1. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Eun, H.C., E-mail: ehc2004@kaeri.re.kr; Choi, J.H.; Kim, N.Y.; Lee, T.K.; Han, S.Y.; Lee, K.R.; Park, H.S.; Ahn, D.H.

    2016-11-15

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl{sub 3}). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K{sub 2}CO{sub 3}) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd{sub 2}O{sub 3}, CeO{sub 2}, La{sub 2}O{sub 3}, Pr{sub 2}O{sub 3}) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  2. Salt tectonics in Santos Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, David G.; Nielsen, Malene; Raven, Madeleine [Maersk Oil and Gas, Copenhagen (Denmark); Menezes, Paulo [Maersk Oil and Gas, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    From Albian to end Cretaceous times, the inboard part of the Santos Basin in Brazil was affected by extension as salt flowed basinwards under the effect of gravity. Salt rollers, flip-flop salt diapirs and the famous Albian Gap were all formed by this process. Outboard of these extensional structures, contraction was taken up in a wide zone of thickened salt where salt collected. The overburden was carried on top of the salt as it flowed down-dip, with up to 40 km of translation recorded in Albian strata. (author)

  3. 27 CFR 19.315 - Removal or destruction of distilling material.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Removal or destruction of distilling material. 19.315 Section 19.315 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND...) spirits, (2) alcoholic beverages, or (3) vinegar by the vaporizing process; or (c) for destruction. The...

  4. Chemistry and technology of Molten Salt Reactors - history and perspectives

    International Nuclear Information System (INIS)

    Uhlir, Jan

    2007-01-01

    Molten Salt Reactors represent one of promising future nuclear reactor concept included also in the Generation IV reactors family. This reactor type is distinguished by an extraordinarily close connection between the reactor physics and chemical technology, which is given by the specific features of the chemical form of fuel, representing by molten fluoride salt and circulating through the reactor core and also by the requirements of continuous 'on-line' reprocessing of the spent fuel. The history of Molten Salt Reactors reaches the period of fifties and sixties, when the first experimental Molten Salt Reactors were constructed and tested in ORNL (US). Several molten salt techniques dedicated to fresh molten salt fuel processing and spent fuel reprocessing were studied and developed in those days. Today, after nearly thirty years of discontinuance, a renewed interest in the Molten Salt Reactor technology is observed. Current experimental R and D activities in the area of Molten Salt Reactor technology are realized by a relatively small number of research institutions mainly in the EU, Russia and USA. The main effort is directed primarily to the development of separation processes suitable for the molten salt fuel processing and reprocessing technology. The techniques under development are molten salt/liquid metal extraction processes, electrochemical separation processes from the molten salt media, fused salt volatilization techniques and gas extraction from the molten salt medium

  5. Process and apparatus for extraction of gases produced during operation of a fused-salt nuclear reactor

    International Nuclear Information System (INIS)

    Blum, J.; Marie, J.

    1976-01-01

    The present invention relates to the field of fused-salt nuclear reactors and its object is the extraction of the gases produced in the course of operation of these reactors. The process according to the invention consists in placing into position a piece of material permeable for gases and impermeable for the used fused salts, for instance, a piece of graphite, in such a way that part of the surface of this piece is in contact with the circuit of the radioactive salts and another part connected to a gas suction device. The piece could also be scavenged in its mass by a flow of inert gas. Application is contemplated in reactors using a mixture of lithium fluoride, beryllium fluoride, and uranium and/or thorium fluoride. 10 claims, 2 drawing figures

  6. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  7. Molten salt oxidation of ion-exchange resins doped with toxic metals and radioactive metal surrogates

    International Nuclear Information System (INIS)

    Yang, Hee-Chul; Cho, Yong-Jun; Yoo, Jae-Hyung; Kim, Joon-Hyung; Eun, Hee-Chul

    2005-01-01

    Ion-exchange resins doped with toxic metals and radioactive metal surrogates were test-burned in a bench-scale molten salt oxidation (MSO) reactor system. The purposes of this study are to confirm the destruction performance of the two-stage MSO reactor system for the organic ion-exchange resin and to obtain an understanding of the behavior of the fixed toxic metals and the sulfur in the cationic exchange resins. The destruction of the organics is very efficient in the primary reactor. The primarily destroyed products such as carbon monoxide are completely oxidized in the secondary MSO reactor. The overall collection of the sulfur and metals in the two-stage MSO reactor system appeared to be very efficient. Over 99.5% of all the fixed toxic metals (lead and cadmium) and radioactive metal surrogates (cesium, cobalt, strontium) remained in the MSO reactor bottom. Thermodynamic equilibrium calculations and the XRD patterns of the spent salt samples revealed that the collected metals existed in the form of each of their carbonates or oxides, which are non-volatile species at the MSO system operating conditions. (author)

  8. The source term and waste optimization of molten salt reactors with processing

    International Nuclear Information System (INIS)

    Gat, U.; Dodds, H.L.

    1993-01-01

    The source term of a molten salt reactor (MSR) with fuel processing is reduced by the ratio of processing time to refueling time as compared to solid fuel reactors. The reduction, which can be one to two orders of magnitude, is due to removal of the long-lived fission products. The waste from MSRs can be optimized with respect to its chemical composition, concentration, mixture, shape, and size. The actinides and long-lived isotopes can be separated out and returned to the reactor for transmutation. These features make MSRs more acceptable and simpler in operation and handling

  9. Early MRI findings of rapidly destructive coxarthrosis

    International Nuclear Information System (INIS)

    Watanabe, Wataru; Itoi, Eiji; Yamada, Shin

    2002-01-01

    Rapidly destructive coxarthrosis (RDC) is known to affect elderly women, but its etiology is unknown. This is the first report to our knowledge, based on a search of the English literature, that reveals the entire process of hip destruction from the onset to the terminal stage of RDC, in an 80-year-old woman. Radiographic evaluation showed subchondral insufficiency fracture of the femoral head at an early stage of this disease. An MRI examination within a month of the onset of hip pain showed the entire femoral head with low intensity on T1-weighted images and high intensity on T2-weighted images, and a small low-intensity band at the subchondral area of the lateral weight-bearing portion of the head. These findings are consistent with subchondral insufficiency fracture and associated bone marrow edema. The lesion developed into a deep and large erosion at the superolateral portion of the femoral head, the process being observed on both roentgenograms and MRI. These findings were confirmed during total hip arthroplasty. This case suggests that subchondral insufficiency fracture of the femoral head may be a preceding sign of destruction of the femoral head. (orig.)

  10. Residual Salt Separation from the Metal Products Reduced in a LiCl-Li2O Molten Salt

    International Nuclear Information System (INIS)

    Hur, Jin Mok; Hong, Sun Seok; Kang, Dae Seung; Jeong, Meong Soo; Seo, Chung Seok

    2006-02-01

    The electrochemical reduction of spent nuclear fuel in a LiCl-Li 2 O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for the active tests. Fresh uranium metal prepared from the electrochemical reduction of U 3 O 8 powder was used as the surrogates of the spent nuclear fuel components which might be metallized by the electrochemical reduction process. LiCl, Li 2 O, Y 2 O 3 and SrCl 2 were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li 2 O and LiCl-SrCl 2 led to a melting point which was lower than that of a LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li 2 O and LiCl-SrCl 2 was achieved below temperatures which could make the uranium metal oxidation by Li 2 O possible. The salt vaporization rates at 950 .deg. C were measured as follows: LiCl-8 wt% Li 2 O > LiCl > LiCl-8 wt% SrCl 2 > SrCl 2

  11. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    International Nuclear Information System (INIS)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio

    2008-01-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h -1 ) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  12. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio [Australian Nuclear Science and Technology Organisation (ANSTO), Institute of Materials Engineering, New Illawarra Road, Lucas Heights, New South Wales, 2234 (Australia)

    2008-07-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h{sup -1}) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  13. Residual salts separation from metal reduced electrolytically in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Hur, Jin Mok; Oh, Seung Chul; Hong, Sun Seok; Seo, Chung Seok; Park, Seong Won

    2005-01-01

    The PWR spent oxide fuel can be reduced electrolytically in a hot molten salt for the conditioning and the preparation of a metallic fuel. Then the metal product is smelted into an ingot to be treated in the post process. Incidentally, the residual salt which originated from the molten salt and spent fuel elements should be separated from the metal product during the smelting. In this work, we constructed a surrogate material system to simulate the salt separation from the reduced spent fuel and studied the vaporization behaviors of the salts

  14. Production of carboxylic acid and salt co-products

    Science.gov (United States)

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  15. Fracture and Healing of Rock Salt Related to Salt Caverns

    International Nuclear Information System (INIS)

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-01-01

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in

  16. High-Energy Corona for destruction of volatile organic contaminants in process off-gases

    International Nuclear Information System (INIS)

    Virden, J.W.; Heath, W.O.; Goheen, S.C.; Miller, M.C.; Mong, G.M.; Richardson, R.L.

    1992-08-01

    A small (2 scfm) High-Energy Corona (HEC) reactor was developed to produce a non-equilibrium plasma in a concentric-cylinder geometry. A volume-filling plasma was produced in a packed bed, and initial tests have demonstrated the ability to destroy up to 1500 ppM trichloroethylene at a flow rate of 1.4 scfm, with greater than 99% destruction observed. Destruction efficiency is examined as a function of inlet TCE concentration, bed height (residence time) and applied voltage. Hydrochloric acid appears to be the primary chlorinated byproduct, and can be removed by conventional wet or dry scrubbing

  17. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Michael F. Simpson

    2013-01-01

    Full Text Available Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separating fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.

  18. Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.

    Science.gov (United States)

    Merk, B; Litskevich, D; Gregg, R; Mount, A R

    2018-01-01

    The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.

  19. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    Science.gov (United States)

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  20. 9 CFR 51.6 - Destruction of animals; time limit for destruction of animals.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Destruction of animals; time limit for destruction of animals. 51.6 Section 51.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... ANIMALS DESTROYED BECAUSE OF BRUCELLOSIS Indemnity for Cattle, Bison, and Swine § 51.6 Destruction of...

  1. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Harry D.

    2000-05-15

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  2. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Harry D.

    2000-11-30

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  3. Individual aerosol particles in and below clouds along a Mt. Fuji slope: Modification of sea-salt-containing particles by in-cloud processing

    Science.gov (United States)

    Ueda, S.; Hirose, Y.; Miura, K.; Okochi, H.

    2014-02-01

    Sizes and compositions of atmospheric aerosol particles can be altered by in-cloud processing by absorption/adsorption of gaseous and particulate materials and drying of aerosol particles that were formerly activated as cloud condensation nuclei. To elucidate differences of aerosol particles before and after in-cloud processing, aerosols were observed along a slope of Mt. Fuji, Japan (3776 m a.s.l.) during the summer in 2011 and 2012 using a portable laser particle counter (LPC) and an aerosol sampler. Aerosol samples for analyses of elemental compositions were obtained using a cascade impactor at top-of-cloud, in-cloud, and below-cloud altitudes. To investigate composition changes via in-cloud processing, individual particles (0.5-2 μm diameter) of samples from five cases (days) collected at different altitudes under similar backward air mass trajectory conditions were analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. For most cases (four cases), most particles at all altitudes mainly comprised sea salts: mainly Na with some S and/or Cl. Of those, in two cases, sea-salt-containing particles with Cl were found in below-cloud samples, although sea-salt-containing particles in top-of-cloud samples did not contain Cl. This result suggests that Cl in the sea salt was displaced by other cloud components. In the other two cases, sea-salt-containing particles on samples at all altitudes were without Cl. However, molar ratios of S to Na (S/Na) of the sea-salt-containing particles of top-of-cloud samples were higher than those of below-cloud samples, suggesting that sulfuric acid or sulfate was added to sea-salt-containing particles after complete displacement of Cl by absorption of SO2 or coagulation with sulfate. The additional volume of sulfuric acid in clouds for the two cases was estimated using the observed S/Na values of sea-salt-containing particles. The estimation revealed that size changes by in

  4. Nurses' perceptions of conflict as constructive or destructive.

    Science.gov (United States)

    Kim, Wonsun Sunny; Nicotera, Anne M; McNulty, Julie

    2015-09-01

    The aim of this study was to examine nurses' perceptions of constructive and destructive conflicts and their management among nurses. Conflict among nurses is common and has been associated with lack of collaboration, lack of communication and disruptive behaviour, with the potential to have negative impact teamwork. However, unlike the broader social science literature, positive views of conflict are scarce in the nursing literature. Given the various functions of conflict and the high stakes of ineffective conflict management in nursing, it is necessary to examine how nurses understand both sides of conflict: constructive and destructive. A qualitative descriptive design. Data were collected from 34 full time nurses as part of a conflict skills training course offered over 6 months beginning in October 2009. Each participant was asked to write a weekly journal about conflicts in his/her work place. Data yielded 163 entries (82 classified as constructive and 81 as destructive). Results showed that quality patient care and cooperative communication contributed to the perception that conflict is constructive in nature. The central underlying themes in nurses' perceptions of destructive conflict were time constraints, role conflict and power differences that are not managed through communication. This article helps to identify nursing perceptions of constructive and destructive conflict and to understand complexities nurses face during their interactions with other nurses, physicians and patients. The insight that constructive views are related to constructive processes provides an excellent opportunity for an educational intervention, so that we can educate nurses to analyse problems and learn how to manage conflict with effective collaborative processes. © 2015 John Wiley & Sons Ltd.

  5. Experimental results on salt concrete for barrier elements made of salt concrete in a repository for radioactive waste in a salt mine

    International Nuclear Information System (INIS)

    Gutsch, Alex-W.; Preuss, Juergen; Mauke, Ralf

    2012-01-01

    The Bartensleben rock salt mine in Germany was used as a repository for low and intermediate level radioactive waste from 1971 to 1991 and from 1994 to 1998. The repository with an overall volume of about 6 million m 3 has to be closed. Salt concrete is used for the refill of the voids of the repository. The concrete mixtures contain crushed salt instead of natural aggregates as the void filling material should be as similar to the salt rock as possible. Very high requirements regarding low heat development and little or even no cracking during concrete hardening had to be fulfilled even for the barrier elements made from salt concrete which separate the radioactive waste from the environment. Requirements for the salt concrete were set up with regard to the fluidity of the fresh concrete during the hardening process and its durability. In the view of a comprehensive numerical calculations of the temperature development and thermal stresses in the massive salt concrete elements of the backfill of the voids, experimental results for material properties of the salt concrete are presented: mixture of the salt concrete, thermodynamic properties (adiabatic heat release, thermal dilatation, thermal conductivity and heat capacity), mechanical short term properties, creep (under tension, under compression), autogenous shrinkage

  6. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    Science.gov (United States)

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  7. “Use salt and foods high in salt sparingly”: A food-based dietary ...

    African Journals Online (AJOL)

    Legislating the levels of salt in processed food is only one part of this national strategy. All health professionals and educators should also provide appropriate nutritional recommendations that will educate, motivate and enable consumers to change their nutritional behaviour to reduce salt intake to less than 5 g per day, ...

  8. PRODUCTION OF INDUSTRY SALT WITH SEDIMENTATION – MICROFILTRATION PROCESS: OPTIMAZATION OF TEMPERATURE AND CONCENTRATION BY USING SURFACE RESPONSE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2012-02-01

    Full Text Available The salt of sodium chloride commonly used consumption in house , so as a raw material in industry. Thequality of salt depends on sodium chloride concentration. The objective of this research is obtained ofoptimum condition in production of salt industry by using sedimentation and microfiltration process. Theoptimization used surface response methodology and analysis by Statistica 6 software. The responseperceived is NaCl concentration in product. The experiments do by mixing stearic acid with NaOH solutionto product stearic sodium. Then, the solution mixed with sea water, so the white solid will be emerge, thereare stearic calcium and stearic magnesium. And so filtrate evaporated until to obtain salt. TheMathematical model for reduction of Ca2+ and Mg2+ are1 222 221 1 Y = 93,3185 + 1,0967 X + 0,1909 X +1,0682 X - 0,2333 X - 0,3376 X X , with maximum conversion is94,46% at temperature 82,42oC and stearic sodium concentration 14,16%(v/v. The maximum of NaClconcentration is 96,19% at temperature 81,54oC and stearic sodium concetration 13,11 %(v/v. Themathematical model for NaCl production is1 222 221 1 Y = 92,7596 − 0,3443 X − 3,3706 X + 2,9553 X - 0,9562 X - 1,9272 X X . The results of NaCl not yetfulfilled with SNI industry salt. The NaCl concetration in SNI is 98,5%. So, this process is nt aplicable forproductiob salt industry in Indonesia.

  9. Modelling of destructive ability of water-ice-jet while machine processing of machine elements

    Directory of Open Access Journals (Sweden)

    Burnashov Mikhail

    2017-01-01

    Full Text Available This paper represents the classification of the most common contaminants, appearing on the surfaces of machine elements after a long-term service.The existing well-known surface cleaning methods are described and analyzed in the framework of this paper. The article is intended to provide the reader with an understanding of the process of cleaning and removing contamination from machine elements surface by means of water-ice-jet with preprepared beforehand particles, as well as the process of water-ice-jet formation. The paper deals with the description of such advantages of this method as low costs, wastelessness, high quality of the surface, undergoing processing, minimization of harmful impact upon environment and eco-friendliness, which makes it differ radically from formerly known methods. The scheme of interection between the surface and ice particle is represented. A thermo-physical model of destruction of contaminants by means of a water-ice-jet cleaning technology was developed on its basis. The thermo-physical model allows us to make setting of processing mode and the parameters of water-ice-jet scientifically substantiated and well-grounded.

  10. Destructive hydrogenation; dehydrogenation and dehydrogenation processes; purifying oils; polynuclear organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    1934-02-08

    Unitary organic compounds containing four or more nuclei are recovered from the high boiling fractions of destructive hydrogenation products of bituminous, resinous, or ligneous materials. Cooling, precipitation, crystallization, selective dissolution and distillation are some of the techniques discussed. These techniques may also be applied to the recovery of polynuclear compounds.

  11. Salt ingestion caves.

    Directory of Open Access Journals (Sweden)

    Lundquist Charles A.

    2006-01-01

    Full Text Available Large vertebrate herbivores, when they find a salt-bearing layer of rock, say in a cliff face, can produce sizable voids where, overgenerations, they have removed and consumed salty rock. The cavities formed by this natural animal process constitute a uniqueclass of caves that can be called salt ingestion caves. Several examples of such caves are described in various publications. Anexample in Mississippi U.S.A., Rock House Cave, was visited by the authors in 2000. It seems to have been formed by deer orbison. Perhaps the most spectacular example is Kitum Cave in Kenya. This cave has been excavated to a length over 100 metersby elephants. An ancient example is La Cueva del Milodon in Chile, which is reported to have been excavated by the now extinctmilodon, a giant ground sloth. Still other possible examples can be cited. This class of caves deserves a careful definition. First, thecavity in rock should meet the size and other conventions of the locally accepted definition of a cave. Of course this requirement differsin detail from country to country, particularly in the matter of size. The intent is to respect the local conventions. The characteristicthat human entry is possible is judged to be a crucial property of any recognized cave definition. Second, the cavity should besignificantly the result of vertebrate animal consumption of salt-bearing rock. The defining process is that rock removed to form thecave is carried away in the digestive track of an animal. While sodium salts are expected to be the norm, other salts for which thereis animal hunger are acceptable. Also some other speleogenesis process, such as solution, should not be excluded as long as it issecondary in formation of a cave in question.

  12. Separation of adhered salt from uranium deposits generated in electro-refiner

    International Nuclear Information System (INIS)

    Kwon, S.W.; Park, K.M.; Lee, H.S.; Kim, J.G.; Ahn, H.G.

    2011-01-01

    It is important to increase a throughput of the salt removal process from uranium deposits which is generated on the solid cathode of electro-refiner in pyroprocess. In this study, it was proposed to increase the throughput of the salt removal process by the separation of the liquid salt prior to the distillation of the LiCl-KCl eutectic salt from the uranium deposits. The feasibility of liquid salt separation was examined by salt separation experiments on a stainless steel sieve. It was found that the amount of salt to be distilled could be reduced by the liquid salt separation prior to the salt distillation. The residual salt remained in the deposits after the liquid salt separation was successfully removed further by the vacuum distillation. It was concluded that the combination of a liquid salt separation and a vacuum distillation is an effective route for the achievement of a high throughput performance in the salt separation process. (author)

  13. Completion report for the UMTRA project Vitro processing site, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1996-08-01

    This completion report provides evidence that the final Salt Lake City, Utah, processing site property conditions are in accordance with the approval design and that all U.S. Environmental Protection Agency (EPA) standards have been satisfied. Included as appendixes to support the stated conclusions are the record drawings; a summary of grid test results; contract specifications and construction drawing and the EPA standards; the audit, inspection, and surveillance summary; the permit information; and project photographs. The principal objectives of remedial action at Salt Lake City were to remove the tailings from the former processing site, render the site free of contamination to EPA standards, and restore the site to the final design grade elevations. The final remedial action plan, which is approved by the U.S. Department of Energy and concurred upon by the U.S. Nuclear Regulator Commission and the state of Utah, contains the conceptual design used to develop the final approved design. During remedial action construction operations, conditions were encountered that required design features that differed form the conceptual design. These conditions and the associated design changes are noted in the record drawings. All remedial action activities were completed in conformance with the specifications and drawings. In the opinion of the state of Utah, the record drawings accurately reflect existing property conditions at the processing site

  14. Prostaglandin PGE2: a possible mechanism for bone destruction in calcinosis circumscripta.

    Science.gov (United States)

    Caniggia, A; Gennari, C; Vattimo, A; Runci, F; Bombardieri, S

    1978-02-28

    A patient showed evident osteolysis in phalanges and heavy periarticular calcium deposits of the fingers, wrists and toes which avidly took up 47Ca. The dense, white, tooth-paste like fluid contained in the periarticular calcium deposits has been studied by two different X-ray diffraction methods, by Ubatuba's bioassay for prostaglandin, by thin layer chromatography and by mass spectrometry. The calcium deposits were hydroxyapatite and prostaglandin PGE2 was detected in them. The bone resorption stimulating activity of PGE2 would be expected to result in increased bone destruction with release of calcium salts and this could be a working hypothesis of the pathogenesis of calcinosis circumscripta.

  15. Electrochemical organic destruction in support of Hanford tank waste pretreatment

    International Nuclear Information System (INIS)

    Lawrence, W.E.; Surma, J.E.; Gervais, K.L.; Buehler, M.F.; Pillay, G.; Schmidt, A.J.

    1994-10-01

    The US Department of Energy's Hanford Site in Richland, Washington, has 177 underground storage tanks that contain approximately 61 million gallons of radioactive waste. The current cleanup strategy is to retrieve the waste and separate components into high-level and low-level waste. However, many of the tanks contain organic compounds that create concerns associated with tank safety and efficiency of anticipated separation processes. Therefore, a need exists for technologies that can safely and efficiently destroy organic compounds. Laboratory-scale studies conducted during FY 93 have shown proof-of-principle for electrochemical destruction of organics. Electrochemical oxidation is an inherently safe technology and shows promise for treating Hanford complexant concentrate aqueous/ slurry waste. Therefore, in support of Hanford tank waste pretreatment needs, the development of electrochemical organic destruction (ECOD) technology has been undertaken. The primary objective of this work is to develop an electrochemical treatment process for destroying organic compounds, including tank waste complexants. Electroanalytical analyses and bench-scale flow cell testing will be conducted to evaluate the effect of anode material and process operating conditions on the rate of organic destruction. Cyclic voltammetry will be used to identify oxygen overpotentials for the anode materials and provide insight into reaction steps for the electrochemical oxidation of complexants. In addition, a bench-scale flow cell evaluation will be conducted to evaluate the influence of process operating conditions and anode materials on the rate and efficiency of organic destruction using the nonradioactive a Hanford tank waste simulant

  16. Destructive distillation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    1932-09-08

    A process of destructive distillation of distillable carbonaceous material under pressure is described, consisting of regulating the temperature by introducing the carbonaceous materials to a point where the reaction of hydrogenation has begun but has not stopped, by placing it in indirect heat-exchange with a cooling agent at a critical temperature below the reaction temperature, the agent being under pressure and introduced in the liquid state. Water is used as the cooling agent.

  17. Destructiveness in Political Discourse

    Directory of Open Access Journals (Sweden)

    Яна Александровна Волкова

    2016-12-01

    Full Text Available Destructiveness is among the fundamental discourse categories that play a significant role in the organization of communicative interaction and define the pragmatics of discourse; its study helps to understand some mechanisms and principles of communication, identify strategies and tactics used by a destructive communicative personality. The relevance of this study is determined by the increasing aggressiveness in various types of discourse, and, accordingly, by the need to extend the knowledge of destructive behavior of a communicative personality. The study is based on the theory of discourse-analysis and theory of destructiveness (Z. Harris, T. van Dijk, A. Buss, E. Fromm, D. Ponton, K. Hacker, R. Wodak. N. Arutyunova, V. Karasik, M. Makarov, E. Sheigal et al. Developing the theory of destructiveness and relying on Erich Fromm’s research (1973, we specify the concept of “destructiveness” in relation to the political discourse and compare it with the related concept of aggressiveness. The paper analyses the category of destructiveness in modern US political discourse, using excerpts from the speeches of the candidates for presidency of 2016. Particular attention is paid to the dominant destructive intention - to harm the reputation of the opponent and reduce his political chances, as well as to the functions of verbal aggression: on the one hand - to discredit the opponent, bring accusations, on the other hand - to poison the audience mind against him/her and arouse the feeling of danger posed by a political opponent. The analysis of verbal and nonverbal means of destructiveness in the US political discourse is carried out. The article concludes that abusive remarks of politicians do not result from spontaneous emotional outburst, but from an elaborated destructive strategy where the agonistic nature of political discourse stipulates the use of instrumental aggression (Buss, 1971 for the sake of the conquest of power, lowering the

  18. Destruction of metallic foils under laser radiation

    International Nuclear Information System (INIS)

    Khokhlov, N.P.; Lisitsyn, Yu.V.; Mineev, V.N.; Ivanov, A.G.

    1975-01-01

    Experimental results are presented which illustrate the process of destruction of aluminium, lead and tantalum foils under irradiation of a neodymium laser, working in free generation regime with a power density varying from 5.10 5 - 5.10 6 wt/sq.cm. Calorimeters and photocells sensitive to the radiation with lambda=1.06 have been used for measuring the energy and recording the shape of the radiation pulse incident onto the target and passing through the disintegration products. The weight of the target has been determined prior to and after the experiment to find out the weight of Δm material expelled from the target. Rates of product scattering and a target destruction period, an amount of the material expelled and parameters of the radiation passing through the disintegration products have been determined as a function of the power density and an angle of the radiation incidence on the surface of the specimens. Average densities and absorption coefficients of the disintegration products of the foils under study have been assessed. A comparison of the characteristics of the metal foil (t 1 j) destruction in Pb-Ta-Al series with the metal thermal properties in this series shows that the destruction characteristics periodically vary as heat capacity, thermal conduction, evaporation heat and melting heat alter. A period of the target destruction becomes longer and the expelled mass smaller as the aforesaid thermal properties of the metals in Pb-Ta-Al series intensity [ru

  19. A non-destructive synchrotron X-ray study of the metallurgy and manufacturing processes of Eastern and Western astrolabes in the Adler Planetarium collection

    Science.gov (United States)

    Newbury, Brian Dale

    The astrolabe collection of the Adler Planetarium and History of Astronomy Museum, Chicago, IL, was examined using non-destructive synchrotron based high-energy X-ray techniques including diffraction, fluorescence, and radiography to determine the metallurgy, microstructure, and metal forming processes used in astrolabe construction. All high-energy X-ray measurements were performed at the Advanced Photon Source (APS) synchrotron of Argonne National Laboratory, Argonne, IL. Astrolabes from the collection were selected to represent all major astrolabe production centers possible and time periods. It was found that all European astrolabes were manufactured of traditional cementation brass by hand worked metal forming processes consistent with technology in the literature. Of the Islamic astrolabes examined, all seven from Lahore in current-day Pakistan exhibited advanced brass alloys not typical of alloys discussed in the literature. It was found that these alloys were selected for their specific hot working properties, allowing the Lahore metalworkers to more efficiently make brass sheet from which to make astrolabe components. In addition, the alloy required a fundamental change in the brass foundry process, indicating advanced Zn metal production techniques. It was found that analysis by high energy X-rays from the APS was essential to produce data on the chemistry and microstructure from the interior of the astrolabe components in a non-destructive manner. Many astrolabe components had undergone surface dezincification due to heavy annealing during manufacturing, causing the Zn composition measured by the surface sensitive fluorescence technique to be lower than the true bulk alloy Zn composition. This would have been impossible to quantify non-destructively without the high-energy diffraction capability of the APS. The results of this study have proven the effectiveness of the synchrotron as a viable non-destructive analysis technique for examining cultural

  20. Recent Canadian experience in chemical warfare agent destruction: An overview. Suffield report No. 626

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.M.

    1995-12-31

    This paper reviews a project in which stockpiles of aged mustard (bis-2-chloroethyl sulfide), lewisite (2-chlorovinyl-dichloro arsine), nerve agents, and contaminated scrap metal were incinerated or chemically neutralized in a safe, environmentally responsible manner. Sections of the paper describe the public consultation program conducted prior to destruction operations, the environmental assessment of the destruction projects, the environmental protection plan implemented to eliminate or mitigate risks with respect to the installation and operation of the destruction equipment, the environmental monitoring procedures, the agent destruction operations, and the destruction process performance, including incinerator emissions.

  1. Salt fog corrosion behavior in a powder-processed icosahedral-phase-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Watson, T.J.; Gordillo, M.A.; Ernst, A.T.; Bedard, B.A.; Aindow, M.

    2017-01-01

    Highlights: • Pitting corrosion resistance has been evaluated for an Al-Cr-Mn-Co-Zr alloy. • Pit densities and depths are far lower than for other high-strength Al alloys. • Corrosion proceeds by selective oxidation of the Al matrix around the other phases. - Abstract: The pitting corrosion resistance has been evaluated for a powder-processed Al-Cr-Mn-Co-Zr alloy which contains ≈35% by volume of an icosahedral quasi-crystalline phase and a little Al 9 Co 2 in an Al matrix. ASTM standard salt fog exposure tests show that the alloy exhibits far lower corrosion pit densities and depths than commercial high-strength aerospace Al alloys under the same conditions. Electron microscopy data show that the salt fog exposure leads to the selective oxidation of the face-centered cubic Al matrix around the other phases, and to the development of a porous outer oxide scale.

  2. Improved process control, lowered costs and reduced risks through the use of non-destructive mobility and sheet carrier density measurements on GaAs and GaN wafers

    Science.gov (United States)

    Nguyen, D.; Hogan, K.; Blew, A.; Cordes, M.

    2004-12-01

    Improved process control, lowered costs and reduced risks can be realized through the use of non-destructive mobility and sheet charge density measurements during the fabrication of GaAs and GaN wafers. The results from this microwave-based technique are shown to agree with destructive van der Pauw Hall testing results to within ±5%. In addition, it has the ability to map wafer uniformity and provide separated 2DEG data for thick cap or multi-layered structures. As a result, this technique provides an efficient and cost-effective alternative to current process control metrology methods, while providing the user with important process control data.

  3. The Results of HLW Processing Using Zirconium Salt of Dibutyl phosphoric Acid in Hot Cell

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Yu.S.; Zilberman, B.Ya.; Shmidt, O.V. [Khlopin Radium Institute, 2nd Murinsky Ave., 28, Saint-Petersburg, 194021 (Russian Federation)

    2008-07-01

    Zirconium salt of dibutyl phosphoric acid (ZS HDBP), is an effective solvent for liquid HLW and ILW (high and intermediate level wastes) processing with radionuclide partitioning into different groups for further immobilization according to radiotoxicity. The rig trials in mixer-settles in hot cells were carried out using 30 L of real HLW containing transplutonium (TPE), rare earths (RE), Sr and Cs in 2 mol/L HNO{sub 3}, characterized by total specific activity 520 MBk/L. The recovery factor for TPE and RE was as high as 10{sup 4}, but only 10 for Sr. Purification factor of TPE and RE from Cs and Sr was 10{sup 4}, and that of Sr from TPE and Cs was 10{sup 3}. Almost all Cs was localized in the second cycle raffinate. So Zr salt of HDBP can be used in HLW processing with radionuclide partitioning with respect to the categories of radiotoxicity. (authors)

  4. DESTRUCTION OF THE LITHOSPHERE: FAULTBLOCK DIVISIBILITY AND ITS TECTONOPHYSICAL REGULARITIES

    Directory of Open Access Journals (Sweden)

    Semen I. Sherman

    2012-01-01

    Full Text Available A new concept is proposed concerning the origin and inception of ‘initial’ faults and formation of large blocks as a result of cooling of the Archaean lithosphere, during which Benard cells had formed (Fig. 5. At locations where cooling convection currents went down, partial crystallization took place, stresses were localized, and initial fault occurred there. The systems of such fault developed mainly in two directions and gradually formed an initial block pattern of the lithosphere. This pattern is now represented by the largest Archaean faults acting as boundaries of the lithospheric plates and large intraplate blocks (Fig. 6. This group of faults represents the first scaletime level of destruction of the lithosphere. Large blocks of the first (and may be the second order, which are located on the viscous foundation, interacted with each other under the influence of the sublithospheric movements or endogenous sources and thus facilitated the occurrence of high stresses inside the blocks. When the limits of strength characteristics of the block medium were exceeded, the intrablock stresses were released and caused formation of fractures/faults and blocks of various ranks (Fig. 14. This large group, including faultblock structures of various ranks and ages, comprises the second level of the scaletime destruction of the lithosphere.The intense evolution of ensembles of faults and blocks of the second scaletime level is facilitated by shortterm activation of faultblock structures of the lithosphere under the influence of strain waves. Periods of intensive shortterm activation are reliably detected by seismic monitoring over the past fifty years. Investigations of periodical processes specified in the geological records over the post-Proterozoic periods [Khain, Khalilov, 2009] suggest that in so far uninvestigated historical and more ancient times, the top of the lithosphere was subject to wave processes that

  5. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  6. Development of High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2011-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes which is composed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyrometallurgical processing, the development of high-temperature molten salt transport technologies is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature transport technology for molten salt, and the performance test of the apparatus was performed. And also, predissolution test of the salt was carried out using the reactor with furnace in experimental apparatus

  7. Residual Salt Separation from the Metal Products Reduced in a LiCl-Li{sub 2}O Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jin Mok; Hong, Sun Seok; Kang, Dae Seung; Jeong, Meong Soo; Seo, Chung Seok

    2006-02-15

    The electrochemical reduction of spent nuclear fuel in a LiCl-Li{sub 2}O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for the active tests. Fresh uranium metal prepared from the electrochemical reduction of U{sub 3}O{sub 8} powder was used as the surrogates of the spent nuclear fuel components which might be metallized by the electrochemical reduction process. LiCl, Li{sub 2}O, Y{sub 2}O{sub 3} and SrCl{sub 2} were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li{sub 2}O and LiCl-SrCl{sub 2} led to a melting point which was lower than that of a LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li{sub 2}O and LiCl-SrCl{sub 2} was achieved below temperatures which could make the uranium metal oxidation by Li{sub 2}O possible. The salt vaporization rates at 950 .deg. C were measured as follows: LiCl-8 wt% Li{sub 2}O > LiCl > LiCl-8 wt% SrCl{sub 2} > SrCl{sub 2}.

  8. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  9. Disposal of high-level waste from nuclear power plants in Denmark. Salt dome investigations. v.5

    International Nuclear Information System (INIS)

    1981-01-01

    The present report deals with safety evaluation as part of the investigations regarding a repository for high-level waste in a salt dome. It is volume 5 of five volumes that together constitute the final report on the Danish utilities' salt dome investigations. Two characteristics of the waste are of special importance for the safety evaluation: the encasing of the waste in steel casks with 15 cm thick walls affording protection against corrosion, protecting the surroundings against radiation, and protecting the glass cylinders from mechanical damage resulting from the pressure at the bottom of the disposal hole, and the modest generation of heat in the waste at the time of disposal resulting in a maximum temperature increase in the salt close to the waste of approx. 40 deg. C. These characteristics proved to considerably improve the safety margin with respect to unforeseen circumstances. The character of the salt dome and of the salt in the proposed disposal area offers in itself good protection against contact with the ground water outside the dome. The relatively large depth of 1200 and 2500 m of the salt surface also means that neither dome nor disposal facility will be appreciably influenced by glaciations or earthquakes. The chalk above the proposed disposal area is very tight and to retain radioactive matter effectively even in the precence of high concentrations of NaCL. The safety investigations included a number of natural processes and probable events such as the segregation of crystal water from overlooked salt minerals, faulty sealings of disposal holes, permeable fault zones in the chalk overlying the dome, the risk in connection with human penetration into the dome. These conditions will neither lead to the destruction of the waste casks or to the release of waste from the dome. Leaching of a cavern is the only situation which proved to result in a release of radioactive material to the biosphere, but the resulting doses was found to be small

  10. Salt briquette: the form of salt monopoly in madura, 1883-1911

    Science.gov (United States)

    Wisnu; Alrianingrum, S.; Artono; Liana, C.

    2018-01-01

    This study describes the history of the salt monopoly in Indonesia because it is associated with the issue of salt crisis lately, widely reported in various media. This study tried to find answers to the relationship between monopoly and crisis events through the study of history. Monopoly policy by the government of the colonial period is actually an industrial modernization effort, but it turned out another impact. Although the colonial government wanted to issue a policy that ends strengthens the position of the government in the industry, but ultimately backfire and disasters in the salt industry at the time. This article discusses only the focus of the salt monopoly in Madura as a selection of events, arguing the island as a center of salt in Indonesia. The method used in this study using a review of history. Therefore, their explanations using historical sources. Methodologically through the process of collecting historical sources, criticize these sources, synthesize and interpret the analysis in an array of historical writing. In conclusion, although the salt monopoly policy gives a great advantage to the colonial government, but the overall population of Madura remains in a poor state. It is evident that the Madurese to migrate Madurese to various areas outside the island of Madura, to fix the economy.

  11. Non-destructive testing and evaluation for structural integrity

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Rao, B.P.C.

    1995-01-01

    In this paper, a brief description of the physical concepts of non-destructive evaluation (NDE) methods and the physical/derived parameters that are used for assessing defects, stresses and microstructures are given. A few case studies highlighting the importance of non-destructive testing and evaluation for structural integrity assessment are also discussed based on the investigations carried out. Emerging concepts like intelligent processing of materials, expert systems, neural networks, use of multisensors with fusion of data and exploitation of signal analysis and imaging approaches are also addressed in this paper. (author). 92 refs., 1 tab

  12. THEORETICAL AND EXPERIMENTAL ASPECTS OF PLASTIC DEFORMATION AND DESTRUCTION OF ROCKS

    OpenAIRE

    A. V. Zhabko

    2018-01-01

    The urgency of the problem. The main process in mining is the process of destruction of rocks, so the establishment of laws and criteria for plastic deformation and destruction of rocks is the most important and fundamental object. Purpose of the work. The work is devoted to the establishment of laws of plastic deformation of rocks (solids). Methods of research. Analytical and experimental research methods are widely used in this work. Results. On the basis of the earlier studies, wh...

  13. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  14. Experiments and Modeling in Support of Generic Salt Repository Science

    International Nuclear Information System (INIS)

    Bourret, Suzanne Michelle; Stauffer, Philip H.; Weaver, Douglas James; Caporuscio, Florie Andre; Otto, Shawn; Boukhalfa, Hakim; Jordan, Amy B.; Chu, Shaoping; Zyvoloski, George Anthony; Johnson, Peter Jacob

    2017-01-01

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  15. Experiments and Modeling in Support of Generic Salt Repository Science

    Energy Technology Data Exchange (ETDEWEB)

    Bourret, Suzanne Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Otto, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Peter Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-19

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  16. Improved Design and Fabrication of Hydrated-Salt Pills

    Science.gov (United States)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  17. Dose concept of oncological hyperthermia: Heat-equation considering the cell destruction

    Directory of Open Access Journals (Sweden)

    Szasz A

    2006-01-01

    Full Text Available We shall assume, of course, that the objective of hyperthermia is to destroy the malignant cells. Destruction definitely needs energy. Description and quality assurance of hyperthermia use the Pennes heat equation to describe the processes. However the energy balance of the Pennes-equation does not contain the hyperthermic cell-destruction energy, which is a mandatory factor of the process. We propose a generalization of the Pennes-equation, inducing the entire energy balance. The new paradigm could be a theoretical basis of the till now empirical dose-construction for oncological hyperthermia. The cell destruction is a non-equilibrium thermodynamical process, described by the equations of chemical reactions. The dynamic behavior (time dependence has to be considered in this approach. We are going to define also a dose concept that can be objectively compared with other oncological methods. We show how such empirical dose as CEM43oC could be based theoretically as well.

  18. Extraction, scrub, and strip test results for the salt waste processing facility caustic side solvent extraction solvent example

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-01

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 12.9, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.

  19. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G.

    2013-01-01

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles

  20. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles.

  1. Effect of salt on color and warmed over flavor in charqui meat processing

    Directory of Open Access Journals (Sweden)

    Youssef Elza Y.

    2003-01-01

    Full Text Available A combination of salt (NaCl high concentration and curing salt was investigated for their role in warmed-over flavor (WOF and color changes during charqui meats processing. WOF was measured by TBARS method in uncured charqui meat (CH and in cured charqui known in Brazil as Jerked beef (JB. WOF occurred substantially in CH and sodium nitrite was able to inhibit 40-45% (p<0.05 in JB samples stored for 30 days. Color parameters also changed as evaluated by CIELAB system. The a*/b* ratio showed that CH samples presented brown color indicating the formation of metmyoglobin (Fe3+ whilst JB samples presented deep red color an indication of nitrosylmyoglobin (Fe2+ formation. Under cooking, a*/b* ratio indicated the presence of denatured metmyoglobin (Fe3+ in CH and formation of nitrosylmyochromogen (Fe2+ in JB samples. The actual iron state influenced the color of charqui meat and apparently nitrite was able to chelate Fe ions, thus inhibiting development of WOF.

  2. Thermophysical properties of reconsolidating crushed salt.

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urquhart, Alexander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300°C, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  3. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  4. Comment and response document for the UMTRA Project vitro processing site completion report Salt Lake City, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-03-01

    This Comment and Response Document is a series of UMTRA document review forms regarding the UMTRA Project Vitro Processing Site Completion Report for Salt Lake City, Utah in March, 1995. The completion report provides evidence that the final Salt Lake City, Utah, processing site property conditions are in accordance with the approved design and that all U.S. Environmental Protection Agency (EPA) standards have been satisfied. Included as appendices to support the stated conclusions are the record drawings; a summary of grid test results; contract specifications and construction drawings, the EPA standards (40 CFR Part 192); the audit, inspection, and surveillance summary; the permit information; and project photographs. The principal objective of the remedial action at Salt Lake City is to remove the tailings from the processing site, render the site free of contamination to EPA standards, and restore the site to the final design grade elevations. Each section is evaluated in detail to check all aspects of above report, especially the inclusion of adequate verification data. Each review form contains a section entitled State of Utah Response and Action, which is an explanation or correction of DOE criticisms of the report

  5. Destruction of nitrates, organics, and ferrocyanides by hydrothermal processing

    International Nuclear Information System (INIS)

    Robinson, J.M.; Foy, B.R.; Dell'Orco, P.C.; Anderson, G.; Archuleta, F.; Atencio, J.; Breshears, D.; Brewer, R.; Eaton, H.; McFarland, R.; McInroy, R.; Reynolds, T.; Sedillo, M.; Wilmanns, E.; Buelow, S.J.

    1993-01-01

    This work targets the remediation of the aqueous mixed wastes stored in the underground tanks at the Department of Energy site in Hanford, Washington via hydrothermal processing. The feasibility of destroying the nitrate, organic, and ferrocyanide components of the wastes under supercritical and near critical conditions (623 degree K to 873 degree K, 22.1 MPa to 103.4 MPa) is addressed. A novel method was developed for determining the solubility of nitrate salts in supercritical water solutions at pressures ranging from 24.8 MPa to 30.3 MPa (3600 psi to 4400 psi) and temperatures from 723 degree K to 798 degree K. Sodium nitrate solubilities ranged from 293 mg/kg at 24.8 MPa and 798 degree K to 1963 mg/kg at 30.3 MPa and 723 degree K. Solubility was found to vary directly with pressure, and inversely with temperature. An empirical relationship was developed for the estimation of sodium nitrate solubility at water densities between 0.08 and 0.16 kg/L and temperatures between 723 degree K and 798 degree K. A small volume batch reactor equipped with optical diagnostics was used to monitor the phase behavior of a diluted variant of a tank 101-SY simulant. Preliminary results suggest that a single phase is formed at 83 MPa at 773 degree K

  6. Salt splitting with ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.

    1996-01-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures

  7. Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES)

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo; Mitachi, Koshi

    2013-01-01

    The authors have been promoting nuclear energy technology based on thorium molten salt as Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES). This system is a combination of fission power reactor of Molten Salt Reactor (MSR), and Accelerator Molten Salt Breeder (AMSB) for production of fissile 233 U with connecting chemical processing facility. In this paper, concept of THORIMS-NES, advantages of thorium and molten salt recent MSR design results such as FUJI-U3 using 233 U fuel, FUJI-Pu, large sized super-FUJI, pilot plant miniFUJI, AMSB, and chemical processing facility are described. (author)

  8. Integrated membrane distillation-crystallization: process design and cost estimations for seawater treatment and fluxes of single salt solutions

    NARCIS (Netherlands)

    Creusen, R.J.M.; Medevoort, J. van; Roelands, C.P.M.; Renesse van Duivenbode, J.A.D. van; Hanemaaijer, J.H.; Leerdam, R.C. van

    2013-01-01

    The goal of this research is to design an integrated membrane distillation-crystallization (MDC) process for desalination of seawater with pure water and dry salts as the only products. The process is based on a combination of membrane distillation (MD) and osmotic distillation (OD) steps with

  9. Residual salt separation from simulated spent nuclear fuel reduced in a LiCl-Li2O salt

    International Nuclear Information System (INIS)

    Hur, Jin-Mok; Hong, Sun-Seok; Seo, Chung-Seok

    2006-01-01

    The electrochemical reduction of spent nuclear fuel in LiCl-Li 2 O molten salt for the conditioning of spent nuclear fuel requires the separation of the residual salts from a reduced metal product after the reduction process. Considering the behavior of spent nuclear fuel during the electrochemical reduction process, a surrogate material matrix was constructed and inactive tests on a salt separation were carried out to produce the data required for active tests. Fresh uranium metal prepared from the electrochemical reduction of U 3 O 8 powder was used as the surrogates of the spent nuclear fuel Atomic Energy Society of Japan, Tokyo, Japan, All rights reservedopyriprocess. LiCl, Li 2 O, Y 2 O 3 and SrCl 2 were selected as the components of the residual salts. Interactions between the salts and their influence on the separation of the residual salts were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Eutectic melting of LiCl-Li 2 O and LiCl-SrCl 2 led to a melting point which was lower than that of the LiCl molten salt was observed. Residual salts were separated by a vaporization method. Co-vaporization of LiCl-Li 2 O and LiCl-SrCl 2 was achieved below the temperatures which could make the uranium metal oxidation by Li 2 O possible. The salt vaporization rates at 950degC were measured as follows: LiCl-8 wt% Li 2 O>LiCl>LiCl-8 wt% SrCl 2 >SrCl 2 . (author)

  10. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Science.gov (United States)

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  11. Indirect Self-Destructiveness and Emotional Intelligence.

    Science.gov (United States)

    Tsirigotis, Konstantinos

    2016-06-01

    While emotional intelligence may have a favourable influence on the life and psychological and social functioning of the individual, indirect self-destructiveness exerts a rather negative influence. The aim of this study has been to explore possible relations between indirect self-destructiveness and emotional intelligence. A population of 260 individuals (130 females and 130 males) aged 20-30 (mean age of 24.5) was studied by using the Polish version of the chronic self-destructiveness scale and INTE, i.e., the Polish version of the assessing emotions scale. Indirect self-destructiveness has significant correlations with all variables of INTE (overall score, factor I, factor II), and these correlations are negative. The intensity of indirect self-destructiveness differentiates significantly the height of the emotional intelligence and vice versa: the height of the emotional intelligence differentiates significantly the intensity of indirect self-destructiveness. Indirect self-destructiveness has negative correlations with emotional intelligence as well as its components: the ability to recognize emotions and the ability to utilize emotions. The height of emotional intelligence differentiates the intensity of indirect self-destructiveness, and vice versa: the intensity of indirect self-destructiveness differentiates the height of emotional intelligence. It seems advisable to use emotional intelligence in the prophylactic and therapeutic work with persons with various types of disorders, especially with the syndrome of indirect self-destructiveness.

  12. The effect of salt replacers and flavor enhancer on the processing characteristics and consumer acceptance of turkey sausages.

    Science.gov (United States)

    Pietrasik, Zeb; Gaudette, Nicole J

    2015-07-01

    Producing high-quality processed meats that contain reduced amounts of sodium chloride is a major challenge facing industry owing to the importance of sodium chloride toward the functional, microbial stability and sensory properties of these products. In order to create reduced sodium alternatives, a number of commercial salt replacers and flavor enhancers have entered the market; however, their ability to be applied in processed meats requires investigation. In this study, two salt replacers (Ocean's Flavor - OF45, OF60) and one flavor enhancer (Fonterra™ Savoury Powder - SP) were evaluated for their ability to effectively reduce sodium while maintaining the functional and sensory properties of turkey sausages. Functionality via instrumental measures (yield, purge loss, pH, expressible moisture, proximate composition, sodium content, color, texture), safety (microbiological assessment) and consumer acceptability were obtained on all samples. All non-control treatments resulted in products with sodium chloride contents below Canada's Health Check™ Program target for processed meats. There was no detrimental effect on water binding and texture in treatments when NaCl was substituted with OF60 sea salt replacers. Sodium reduction had no negative effect on the shelf life of the turkey sausages with up to 60 days of refrigerated storage. Consumer acceptability for all attributes did not differ significantly, except for aftertaste, which scored lowest for OF45 compared with the control (regular NaCl content). This work demonstrated that salt replacers could potentially substitute for NaCl in smoked turkey sausages; however, further flavor optimization may be required to suppress undesirable levels of bitterness elicited by some of these ingredients. © 2014 Society of Chemical Industry.

  13. Influence of ferrocyanide inhibitors on the transport and crystrallization processes of sodium chloride in porous building materials

    NARCIS (Netherlands)

    Gupta, S.; Terheiden, K.H; Pel, L.; Sawdy - Heritage, A.M.

    2012-01-01

    Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building materials. In order to reduce the impact of this, effective treatment methods are required. The use of crystallization inhibitors to mitigate salt damage has been proposed in the past; however, to

  14. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    International Nuclear Information System (INIS)

    Hsu, P.C.

    1997-01-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment

  15. Preliminary results on Macroalgae distribution in destructive processes

    Directory of Open Access Journals (Sweden)

    O.I. OSKOLSKAYA

    2001-06-01

    Full Text Available It has been shown, that the destruction of the coastal strip in region of action of Mikhailovsky landslide results in change of species structure and dominant species photophilous Cystoseira barbara on sciophylous Gracilaria verrucosa. In accordance with increasing sediments amount in sea water biomass and the morpho-functional parameters of the photophilous species are reducing, and at the sciophylous are growing. Progressing phenomenon of epiphytism is observed in algal populations in the southern part of researched region which is possible to consider as response reaction, leads to increase a synthesizing surface. Decreasing physiological activity is compensated by growth of the total surface of macrophytes. The increase of a sea water sediments leads to lowering ratio of long and shortwave pigments level of ATP-ase activity and raising concentration of the total sum of pigments in thalli.

  16. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes

    International Nuclear Information System (INIS)

    Chen, Desheng; Zhao, Longsheng; Liu, Yahui; Qi, Tao; Wang, Jianchong; Wang, Lina

    2013-01-01

    Highlights: ► The conversion of titanium is 96.6% in the rich titanium–vanadium slag. ► MgTi 2 O 5 and M 3 O 5 (M = Ti, Mg, Fe) were converted to Na 2 TiO 3 and NaMO 2 , respectively. ► Na 2 TiO 3 is converted to undefined structure of H 2 TiO 3 . ► NaMO 2 is converted to α-NaFeO 2 -type structure of HMO 2 . ► 87.3% of sodium, 42.3% of silicon, 43.2% of aluminum, 22.8% of manganese and 96.6% of vanadium were leached out. -- Abstract: A novel process for recovering iron, titanium, and vanadium from titanomagnetite concentrates has been developed. In the present paper, the treatment of rich titanium–vanadium slag by NaOH molten salt roasting and water leaching processes is investigated. In the NaOH molten salt roasting process, the metallic iron is oxidized into ferriferous oxide, MgTi 2 O 5 is converted to NaCl-type structure of Na 2 TiO 3 , and M 3 O 5 (M = Ti, Mg, Fe) is converted to α-NaFeO 2 -type structure of NaMO 2 , respectively. Roasting temperature and NaOH–slag mass ratio played a considerable role in the conversion of titanium in the rich titanium–vanadium slag during the NaOH molten salt roasting process. Roasting at 500 °C for 60 min and a 1:1 NaOH–slag mass ratio produces 96.3% titanium conversion. In the water leaching process, the Na + was exchanged with H + , Na 2 TiO 3 is converted to undefined structure of H 2 TiO 3 , and NaMO 2 is converted to α-NaFeO 2 -type structure of HMO 2 . Under the optimal conditions, 87.3% of the sodium, 42.3% of the silicon, 43.2% of the aluminum, 22.8% of the manganese, and 96.6% of the vanadium are leached out

  17. R and D activities on the management of waste chloride salts in KAERI

    International Nuclear Information System (INIS)

    In-Tae, Kim; Hwan-Seo, Park; Jeong-Gook, Kim; Hee-Chul, Yang; Yong-Joon, Cho; Eung-Ho Kim

    2007-01-01

    Full text of publication follows. Electrochemical treatment of spent oxide fuels has been intensively studied in KAERI to reduce the volume, heat load and radiotoxicity of high-level wastes. It consists of an electrolytic reduction process to convert the oxide fuel into a metallic form and an electro-refining process to separate TRU elements from the electro-reduced metal ingot. Two types of waste salts are expected to generate from the electrochemical pyro-processes, that is, LiCl salt from the reduction process and LiCl+KCl eutectic salt form the refining process. The R and D strategy of the waste salt management in KAERI can be categorized into two parts: 1) enhancement of safety by the stabilisation/solidification of waste salt that is to be finally disposed of and 2) reduction of the waste generation by the regeneration/recycle of the spent salt after removal of radionuclides in it. A sol-gel technique and a zeolite occlusion technique are under development to stabilize the waste salt. The LiCl salt is stabilised by a low-temperature sol-gel process and then the gel product is solidified into a ceramic-like waste form with an addition of glass frit. Another method uses Zeolite-4A to occlude the LiCl salt into its cage and adsorption site to immobilize the radionuclides. The product, salt-occluded zeolite, is fabricated into another type of a ceramic waste form. For the regeneration and recycle of the spent salt, the radionuclides in the salt are removed by a zeolite process for the LiCl salt and by an oxidation/distillation process for the eutectic salt. The target nuclides to be removed in each process are Cs/Sr and rare earth (RE) elements, respectively. In the oxidation/ distillation process, the rare earth chloride nuclides are oxidised by an oxygen sparging method, and the products are precipitated in the form of oxide or oxychloride REs. After separation of the RE elements from the precipitates by distillation, the refined spent salt with a low content

  18. Preparation and characterization of hydrated salts/silica composite as shape-stabilized phase change material via sol–gel process

    International Nuclear Information System (INIS)

    Wu, Yuping; Wang, Tao

    2014-01-01

    Highlights: • A mixture of hydrated salts were adopted as phase change materials. • Phase segregation of the hydrated salts was inhibited. • Subcooling was slightly mitigated. • Thermal cycling performance was greatly improved after PVP coating. - Abstract: A novel shape-stabilized phase change material composite was prepared by impregnating the mixture of hydrated salts (Na 2 SO 4 ·10H 2 O–Na 2 HPO 4 ·12H 2 O) into porous silica matrix obtained by sol–gel process and further coated with polyvinylpyrrolidone (PVP) to improve the thermal cycling performance. The chemical compatibility, morphology and phase change properties were investigated by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), hot-stage polarizing optical microscope (HS-POM) and differential scanning calorimetry (DSC). Confined in the silica matrix, phase segregation of the hydrated salts was inhibited and subcooling was slightly mitigated. No leakage was observed during the solid–liquid phase transition even when the mass ratio of hydrated salts to silica was as high as 70:30. Results showed that the melting enthalpy of the composite can reach 106.2 kJ/kg with the melting temperature at 30.13 °C and there was no significant enthalpy loss after 30 thermal cycles

  19. Evaluation and standardisation of fast analytical techniques for destructive radwaste control

    International Nuclear Information System (INIS)

    De Simone, A.; Troiani, F.

    2001-01-01

    The document describes the work programme carried out by the Laboratorio Nazionale per la 'Caratterizzazione dei Refit Radioattivi', in the frame of the European research project Destructive Radwaste Control. The main tasks of the research work were the evaluation of fast sample pre-treatment procedures and the development of chromatographic methods coupled to fast nuclide detection by Liquid Scintillation Counting. In order to test the High Performance Ion Chromatograph (HPIC) coupled to the Liquid Scintillation Counter (LSC) on high salt content solutions, synthetic cement solutions have been prepared and spiked with several β-emitters hard to be measured with non-destructive analyses, along with other radionuclides important for the determination of the radiological inventory in radwastes. As the validation tests for the new analytical methods involved the manipulation of radioactive solutions, a remote area for HPIC-LSC apparatus has been designed and performed, in order to operate in safe conditions. According to the research programme, fast analytical methods for the chemical separation and radionuclide detection of the radioactive elements of interest, have been developed and qualified. From the results of the work, some protocols of analysis have been defined: they contain all information about operative conditions for HPIC-LSC apparatus, field of applicability, chemical and radioactive detection limits [it

  20. SEPARATION OF METAL SALTS BY ADSORPTION

    Science.gov (United States)

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  1. Mechanical stratification of autochthonous salt: Implications from basin-scale numerical models of rifted margin salt tectonics

    Science.gov (United States)

    Ings, Steven; Albertz, Markus

    2014-05-01

    Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in

  2. Advances in molten salt electrochemistry towards future energy systems

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    2005-01-01

    This review article describes some selected novel molten salt electrochemical processes which have been created/developed by the author and his coworkers, with emphasis on the applications towards future energy systems. After showing a perspective of the applications of molten salt electrochemistry from the viewpoints of energy and environment, several selected topics are described in detail, which include nitride fuel cycle in a nuclear field, hydrogen energy system coupled with ammonia economy, thermally regenerative fuel cell systems, novel Si production process for solar cell and novel molten salt electrochemical processes for various energy and environment related functional materials including nitrides, rare earth-transition metal alloys, fine particles obtained by plasma-induced electrolysis, and carbon film. And finally, the author stresses again, the importance and potential of molten salt electrochemistry, and encourages young students, scientists and researchers to march in a procession hand in hand towards a bright future of molten salts. (author)

  3. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-01-01

    biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar

  4. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1991-08-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag 2+ or Ce +4 are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs

  5. Past explosive outbursts of entrapped carbon dioxide in salt mines provide a new perspective on the hazards of carbon dioxide

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2013-01-01

    This paper reports on a source of past carbon dioxide accidents which so far has only been sporadically mentioned in the literature. Violent and highly destructive outbursts of hundreds of tons of CO2 occurred regularly, if not routinely, in the now closed salt mines of the former DDR. The Menzen...

  6. Creative destruction and export patterns

    DEFF Research Database (Denmark)

    Hansen, Jørgen Drud; Kvedaras, Virmantas; Nielsen, Jørgen Ulff-Møller

    2014-01-01

    varieties obsolete. For a given technology (variety) production costs decrease after an infant period due to learning. While all firms are assumed to be symmetric in a life-cycle perspective, at a given point in time firms of different ages differ in productivity, firm size, product quality, and export...... behavior. The model highlights a process of creative destruction, which allows firms to produce in a finite span of periods determined by the intensity of product and process innovations. The model predicts a wide range of export behavior of the individual firm during its life cycle depending...

  7. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency.

    Directory of Open Access Journals (Sweden)

    Rie Nishiyama

    Full Text Available Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which

  8. Integration of membrane distillation into traditional salt farming method: Process development and modelling

    Science.gov (United States)

    Hizam, S.; Bilad, M. R.; Putra, Z. A.

    2017-10-01

    Farmers still practice the traditional salt farming in many regions, particularly in Indonesia. This archaic method not only produces low yield and poor salt quality, it is also laborious. Furthermore, the farming locations typically have poor access to fresh water and are far away from electricity grid, which restrict upgrade to a more advanced technology for salt production. This paper proposes a new concept of salt harvesting method that improves the salt yield and at the same time facilitates recovery of fresh water from seawater. The new concept integrates solar powered membrane distillation (MD) and photovoltaic cells to drive the pumping. We performed basic solar still experiments to quantify the heat flux received by a pond. The data were used as insight for designing the proposed concept, particularly on operational strategy and the most effective way to integrate MD. After the conceptual design had been developed, we formulated mass and energy balance to estimate the performance of the proposed concept. Based on our data and design, it is expected that the system would improve the yield and quality of the salt production, maximizing fresh water harvesting, and eventually provides economical gain for salt farmers hence improving their quality of life. The key performance can only be measured via experiment using gain output ratio as performance indicator, which will be done in a future study.

  9. Salt geologic evaluation of the impact of cryogenic fissures and halokinetic deformation processes on the integrity of the geological barrier of the salt dome Gorleben

    International Nuclear Information System (INIS)

    Hammer, Joerg; Fleig, Stephanie; Mingerzahn, Gerhard

    2012-07-01

    In several salt domes of the area close to Hannover fissures were observed that might be caused by thermally induced fissure formation due to cold periods (cryogenic fissures). Comprehensive substantial-structural analyses are performed as an example for the salt dome Bokeloh with respect to genesis and transferability to the salt dome Gorleben. Based on recent structure-geological, mineralogical-geochemical and micro-paleontological studies and thermo-mechanical modeling a solely thermally induced fissure formation due to cold periods is unlikely for the salt dome Bokeloh. There is a direct relation between the genesis of the salt dome Bokeloh, its regional tectonic site and the fissure formation. Due to the completely different genesis and another regional-tectonic situation the existence of cryogenic fissures is excluded for the salt dome Gorleben. The salt-geologic and experimental studies on the deformation of anhydrite layers in salt domes are summarized and evaluated with respect to the long-term consequences for a potential final repository for high-level heat-generating radioactive waste in the salt dome Gorleben. The studies confirm the older BGR studies that anhydrite layers do not represent hydraulic potential ling-distance liquid paths.

  10. LIFE Materails: Molten-Salt Fuels Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  11. LIFE Materails: Molten-Salt Fuels Volume 8

    International Nuclear Information System (INIS)

    Moir, R.; Brown, N.; Caro, A.; Farmer, J.; Halsey, W.; Kaufman, L.; Kramer, K.; Latkowski, J.; Powers, J.; Shaw, H.; Turchi, P.

    2008-01-01

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  12. Evaluation of nitrate destruction methods

    International Nuclear Information System (INIS)

    Taylor, P.A.; Kurath, D.E.; Guenther, R.

    1993-01-01

    A wide variety of high nitrate-concentration aqueous mixed [radioactive and Resource Conservation and Recovery Act (RCRA) hazardous] wastes are stored at various US Department of Energy (DOE) facilities. These wastes will ultimately be solidified for final disposal, although the waste acceptance criteria for the final waste form is still being determined. Because the nitrates in the wastes will normally increase the volume or reduce the integrity of all of the waste forms under consideration for final disposal, nitrate destruction before solidification of the waste will generally be beneficial. This report describes and evaluates various technologies that could be used to destroy the nitrates in the stored wastes. This work was funded by the Department of Energy's Office of Technology Development, through the Chemical/Physical Technology Support Group of the Mixed Waste Integrated Program. All the nitrate destruction technologies will require further development work before a facility could be designed and built to treat the majority of the stored wastes. Several of the technologies have particularly attractive features: the nitrate to ammonia and ceramic (NAC) process produces an insoluble waste form with a significant volume reduction, electrochemical reduction destroys nitrates without any chemical addition, and the hydrothermal process can simultaneously treat nitrates and organics in both acidic and alkaline wastes. These three technologies have been tested using lab-scale equipment and surrogate solutions. At their current state of development, it is not possible to predict which process will be the most beneficial for a particular waste stream

  13. Balance of constructive and destructive carbonate processes on mesophotic coral reefs

    Science.gov (United States)

    Weinstein, D. K.; Klaus, J. S.; Smith, T. B.; Helmle, K. P.; Marshall, D.

    2013-12-01

    Net carbonate accumulation of coral reefs is the product of both constructive and destructive processes that can ultimately influence overall reef geomorphology. Differences in these processes with depth may in part explain why the coral growth-light intensity association does no result in the traditionally theorized reef accretion decrease with depth. Until recently, physical sampling limitations had prevented the acquisition of sedimentary data needed to assess in situ carbonate accumulation in mesophotic reefs (30-150 m). Coral framework production, secondary carbonate production (calcareous encrusters), and bioerosion, the three most critical components of net carbonate accumulation, were analyzed in mesophotic reefs more than 10 km south of St. Thomas, U.S. Virgin Islands along a very gradual slope that limits sediment transport and sedimentation. Recently dead samples of the massive coral, Orbicella annularis collected from three structurally different upper mesophotic coral reef habitats (30-45 m) were cut parallel to the primary growth axis to identify density banding through standard x-radiographic techniques. Assuming annual banding, mesophotic linear extension rates were calculated on the order of 0.7-1.5 mm/yr. Weight change of experimental coral substrates exposed for 3 years indicate differing rates (1.1-17.2 g/yr) of bioerosion and secondary accretion between mesophotic sites. When correcting bioerosion rates for high mesophotic skeletal density, carbonate accumulation rates were found to vary significantly between neighboring mesophotic reefs with distinctive structures. Results imply variable rates of mesophotic reef net carbonate accretion with the potential to influence overall reef/platform morphology, including localized mesophotic reef structure.

  14. Non-destructive inservice inspections

    International Nuclear Information System (INIS)

    Kauppinen, P.; Sarkimo, M.; Lahdenperae, K.

    1998-01-01

    In order to assess the possible damages occurring in the components and structures of operating nuclear power plants during service the main components and structures are periodically inspected by non-destructive testing techniques. The reliability of non-destructive testing techniques applied in these inservice inspections is of major importance because the decisions concerning the needs for repair of components are mainly based on the results of inspections. One of the targets of this research program has been to improve the reliability of non-destructive testing. This has been addressed in the sub-projects which are briefly summarised here. (author)

  15. The Strip: Las Vegas and the Symbolic Destruction of Spectacle

    OpenAIRE

    Al, Stefan Johannes

    2010-01-01

    Over the past 70 years, various actors have dramatically reconfigured the Las Vegas Strip in many forms. I claim that behind the Strip's "reinventions" lies a process of symbolic destruction. Since resorts distinguish themselves symbolically, each new round of capital accumulation relies on the destruction of symbolic capital of existing resorts. A new resort either ups the language within a paradigm, or causes a paradigm shift, which devalues the previous resorts even further. This is why, i...

  16. Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7.

    Science.gov (United States)

    Harris, Shaun M; Yue, Wan-Fu; Olsen, Sarena A; Hu, Jia; Means, Warrie J; McCormick, Richard J; Du, Min; Zhu, Mei-Jun

    2012-10-15

    Escherichia coli (E. coli) O157:H7 remains a major food safety concern associated with meat, especially beef products. Shiga toxins (Stx) are key virulence factors produced by E. coli O157:H7 that are responsible for hemorrhagic colitis and Hemolytic Uremic Syndrome. Stx are heat stable and can be absorbed after oral ingestion. Despite the extensive study of E. coli O157:H7 survival during meat processing, little attention is paid to the production of Stx during meat processing. The objective of this study was to elucidate the effect of salt, an essential additive to processed meat, at concentrations relevant to meat processing (0%, 1%, 2%, 3%, W/V) on Stx2 production and Stx2 prophage induction by E. coli O157:H7 strains. For both E. coli O157:H7 86-24 and EDL933 strains, including 2% salt in LB broth decreased (Pmeat processing enhances Stx production, a process linked to bacterial stress response and lambdoid prophage induction. Published by Elsevier B.V.

  17. Continuous extraction of molten chloride salts with liquid cadmium alloys

    International Nuclear Information System (INIS)

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1993-01-01

    A pyrochemical method is being developed at Argonne National Laboratory (ANL) to provide contnuous multistage extractions between molten chloride salts and liquid cadmium alloys at 500 degrees C. The extraction method will be used to recover transuranic (TRU) elements from the process salt in the electroretiner used in the pyrochemical reprocessing of spent fuel from the Integral Fast Reactor (IFR). The IFR is one of the Department of Energy's advanced power reactor concepts. The recovered TRU elements are returned to the electrorefiner. The extracted salt undergoes further processing to remove rare earths and other fission products so that most of the purified salt can also be returned to the electrorefiner, thereby extending the useful life of the process salt many times

  18. A systematic technique for the sequential restoration of salt structures

    Science.gov (United States)

    Rowan, Mark G.

    1993-12-01

    A method is described for the sequential restoration of cross sections in areas of salt tectonics where deformation is confined to the salt and higher layers. The subsurface geometry evolves with time through the interaction of various processes: sedimentation, compaction, isostatic adjustment, thermal subsidence (if present), faulting, and salt withdrawal/ diapirism. The technique systematically calculates and removes the effects of each of these processes during specified time intervals defined by the interpreted horizons. It makes no assumptions about salt kinematics and generally results in the area of the salt layer changing through time. The method is described for restoration of extensional terranes, but it is also suitable for areas of contractional salt tectonics with only minor modifications. After converting an interpreted seismic profile to depth, the top layer is stripped off and the underlying section is decompacted according to standard porosity-depth functions. A deep baseline, unaffected by compaction or deformation, is used to restore any isostatic compensation or thermal subsidence. Isostasy is calculated according to the Airy model, and differential sedimentary loading across a section is shown to be approximately balanced by changes in salt thickness so that the load is evenly distributed. After these processes have been reversed, the resulting geometry and the seismic data are used to create the sea-floor template for structural restoration. Fault offsets are removed and the layers down to the top salt are restored to this template, while the base salt remains fixed. The resulting space between the restored top salt and the fixed base salt defines the restored salt geometry. In addition, the difference between the sea-floor template and a fixed sea level provides a measure of the change in water depth (ignoring eustatic changes in sea level). The technique is applied to an interpreted seismic profile from the eastern Green Canyon/Ewing Bank

  19. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt, accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external, moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  20. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  1. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  2. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  3. NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.

    2011-02-01

    This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves

  4. Selection of non-destructive assay methods: Neutron counting or calorimetric assay?

    International Nuclear Information System (INIS)

    Cremers, T.L.; Wachter, J.R.

    1994-01-01

    The transition of DOE facilities from production to D ampersand D has lead to more measurements of product, waste, scrap, and other less attractive materials. Some of these materials are difficult to analyze by either neutron counting or calorimetric assay. To determine the most efficacious analysis method, variety of materials, impure salts and hydrofluorination residues have been assayed by both calorimetric assay and neutron counting. New data will be presented together with a review of published data. The precision and accuracy of these measurements are compared to chemistry values and are reported. The contribution of the gamma ray isotopic determination measurement to the overall error of the calorimetric assay or neutron assay is examined and discussed. Other factors affecting selection of the most appropriate non-destructive assay method are listed and considered

  5. Immobilization of LiCl-Li 2 O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  6. Immobilization of LiCl-Li2O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Science.gov (United States)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  7. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  8. Electrochemical destruction of organics and nitrates in simulated and actual radioactive Hanford tank waste

    International Nuclear Information System (INIS)

    Elmore, M.R.; Lawrence, W.E.

    1996-09-01

    Pacific Northwest National Laboratory has conducted an evaluation of electrochemical processing for use in radioactive tank waste cleanup activities. An electrochemical organic destruction (ECOD) process was evaluated, with the main focus being the destruction of organic compounds (especially organic complexants of radionuclides) in simulated and actual radioactive Hanford tank wastes. A primary reason for destroying the organic species in the complexant concentrate tank waste is to decomplex/defunctionalize species that chelate radionuclides. the separations processes required to remove the radionuclides are much less efficient when chelators are present. A second objective, the destruction of nitrates and nitrites in the wastes, was also assessed. Organic compounds, nitrates, and nitrites may affect waste management and safety considerations, not only at Hanford but at other US Department of Energy sites that maintain high- level waste storage tanks

  9. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    International Nuclear Information System (INIS)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin

    2014-01-01

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  10. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  11. An application of LOTEM around salt dome near Houston, Texas

    Science.gov (United States)

    Paembonan, Andri Yadi; Arjwech, Rungroj; Davydycheva, Sofia; Smirnov, Maxim; Strack, Kurt M.

    2017-07-01

    A salt dome is an important large geologic structure for hydrocarbon exploration. It may seal a porous reservoir of rocks that form petroleum reservoirs. Several techniques such as seismic, gravity, and electromagnetic including magnetotelluric have successfully yielded salt dome interpretation. Seismic has difficulties seeing through the salt because the seismic energy gets trapped by the salt due to its high velocity. Gravity and electromagnetics are more ideal methods. Long Offset Transient Electromagnetic (LOTEM) and Focused Source Electromagnetic (FSEM) were tested over a salt dome near Houston, Texas. LOTEM data were recorded at several stations with varying offset, and the FSEM tests were also made at some receiver locations near a suspected salt overhang. The data were processed using KMS's processing software: First, for assurance, including calibration and header checking; then transmitter and receiver data are merged and microseismic data is separated; Finally, data analysis and processing follows. LOTEM processing leads to inversion or in the FSEM case 3D modeling. Various 3D models verify the sensitivity under the salt dome. In addition, the processing was conducted pre-stack, stack, and post-stack. After pre-stacking, the noise was reduced, but showed the ringing effect due to a low-pass filter. Stacking and post-stacking with applying recursive average could reduce the Gibbs effect and produce smooth data.

  12. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  13. Vacuum distillation of plutonium pyrochemical salts

    International Nuclear Information System (INIS)

    Bourges, Gilles; Faure, S.; Fiers, B.; Saintignon, S.; Lemoine, O.; Cardona-Barrau, D.; Devillard, D.

    2012-01-01

    A pyrochemical process is developed to upgrade the safety of plutonium spent salts interim storage. The feed material, consisting of alkali or alkali-earth chlorides containing various Pu and Am species, is first oxidized to convert the actinides into oxides. Then the chlorides are removed by vacuum distillation which requires temperature from 750 degrees C to 1100 degrees C. After a comprehensive R and D program, full-scale equipment was built to test the distillation of active salts. Tests with NaCl/KCl oxidized spent salt give decontamination factor of chlorides higher than 20000. The distilled salt meets the radiologic requirements to be discarded as low level waste. (authors)

  14. A life cycle assessment of destruction of ammunition

    International Nuclear Information System (INIS)

    Alverbro, K.; Bjoerklund, A.; Finnveden, G.; Hochschorner, E.; Haegvall, J.

    2009-01-01

    The Swedish Armed Forces have large stocks of ammunition that were produced at a time when decommissioning was not considered. This ammunition will eventually become obsolete and must be destroyed, preferably with minimal impact on the environment and in a safe way for personnel. The aim of this paper is to make a comparison of the environmental impacts in a life cycle perspective of three different methods of decommissioning/destruction of ammunition, and to identify the environmental advantages and disadvantages of each of these destruction methods: open detonation; static kiln incineration with air pollution control combined with metal recycling, and a combination of incineration with air pollution control, open burning, recovery of some energetic material and metal recycling. Data used are for the specific processes and from established LCA databases. Recycling the materials in the ammunition and minimising the spread of airborne pollutants during incineration were found to be the most important factors affecting the life cycle environmental performance of the compared destruction methods. Open detonation with or without metal recycling proved to be the overall worst alternative from a life cycle perspective. The results for the static kiln and combination treatment indicate that the kind of ammunition and location of the destruction plant might determine the choice of method, since the environmental impacts from these methods are of little difference in the case of this specific grenade. Different methods for destruction of ammunition have previously been discussed from a risk and safety perspective. This is however to our knowledge the first study looking specifically on environmentally aspect in a life cycle perspective.

  15. Thermodynamic analysis of salt corrosion of titanium alloys

    International Nuclear Information System (INIS)

    Travkin, V.V.; Pshirkov, V.F.; Kolachev, B.A.

    1979-01-01

    About 200 possible chemical reactions of metals, salts and oxides (in a solid state) with water (in a vapour state), and with gases (O 2 , Cl 2 , HCl) were studied by the thermodynamic analysis to elucidate a chemical nature of processes taking place at salt corrosion of titanium alloys (VT22, VT6 and VT16). Temperature dependences of isobaric-isothermic potential were considered to reveal a possibility of spontaneous course and direction of reactions as well as to obtain a comparative estimate of the probability of their pro-cedure. Thermodynamically possible schemes of the chemism of titanium alloy salt corrosion are proposed. Complex che-mical reactions take place in the presence of salt, moisture and oxygen of air on the surface of the alloys. The reactions proceed with the formation of titanium and alloying component chlorides, free chlorine and hydrogen. The free chlorine or HCl are released during pyrohydrolysis and oxidation of chlo-rides. The former ones interact with the alloy with the formation of salts, and hydrogen may be absorbed by the metal and cause embrittlement. Chlorides on the metal surface accelerate the chlorination process. NaCl acts as a cata-lyst. The determination of salt corrosion products has confirmed the process mechanism proposed

  16. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    Science.gov (United States)

    Maroni, V.A.; von Winbush, S.

    1987-05-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  17. Engineering development studies for molten-salt breeder reactor processing No. 18

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1975-03-01

    A water--mercury system was used to study the effect of geometric variations on mass transfer rates in rectangular contractors similar to those proposed for the molten-salt breeder reactor (MSBR) fuel reprocessing scheme. Since mass transfer rates were not accurately predicted by the Lewis correlation, other correlations were investigated. A correlation which was found to fit the experimental results is given. Mass transfer rates are being measured in a fluoride salt--bismuth contactor. Experimental results indicate that the mass transfer rates in the salt--bismuth system fall between the Lewis correlation and the modified correlation given above. Autoresistance heating tests were continued in the fluorinator mock-up using LiF--BeF 2 --ThF 4 (72-16-12 mole percent) salt. The equipment was returned to operating condition, and five experiments were run. Although correct steady-state operation was not achieved, the results were encouraging. A two-dimensional electrical analog was constructed to study current flow through the electrode sidearm and other critical areas of the test vessel. These studies indicate that no regions of abnormally high current density existed in the first nine runs with the present autoresistance heating equipment. Localized heating had previously been the suspected cause for the failure to achieve proper operation of this equipment. (U.S.)

  18. Nanoscopic characterization of the water vapor-salt interfacial layer reveals a unique biphasic adsorption process

    Science.gov (United States)

    Yang, Liu; He, Jianfeng; Shen, Yi; Li, Xiaowei; Sun, Jielin; Czajkowsky, Daniel M.; Shao, Zhifeng

    2016-08-01

    Our quantitative understanding of water adsorption onto salt surfaces under ambient conditions is presently quite poor owing to the difficulties in directly characterizing this interfacial layer under these conditions. Here we determine the thickness of the interfacial layer on NaCl at different relative humidities (RH) based on a novel application of atomic force spectroscopy and capillary condensation theory. In particular, we take advantage of the microsecond-timescale of the capillary condensation process to directly resolve the magnitude of its contribution in the tip-sample interaction, from which the interfacial water thickness is determined. Further, to correlate this thickness with salt dissolution, we also measure surface conductance under similar conditions. We find that below 30% RH, there is essentially only the deposition of water molecules onto this surface, typical of conventional adsorption onto solid surfaces. However, above 30% RH, adsorption is simultaneous with the dissolution of ions, unlike conventional adsorption, leading to a rapid increase of surface conductance. Thus, water adsorption on NaCl is an unconventional biphasic process in which the interfacial layer not only exhibits quantitative differences in thickness but also qualitative differences in composition.

  19. Preliminary Study on the High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes is compos- ed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyroprocessing technology, the development of high-temperature transport technologies for molten salt is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt

  20. Materials processing issues for non-destructive laser gas sampling (NDLGS)

    Energy Technology Data Exchange (ETDEWEB)

    Lienert, Thomas J [Los Alamos National Laboratory

    2010-12-09

    The Non-Destructive Laser Gas Sampling (NDLGS) process essentially involves three steps: (1) laser drilling through the top of a crimped tube made of 304L stainles steel (Hammar and Svennson Cr{sub eq}/Ni{sub eq} = 1.55, produced in 1985); (2) gas sampling; and (3) laser re-welding of the crimp. All three steps are performed in a sealed chamber with a fused silica window under controlled vacuum conditions. Quality requirements for successful processing call for a hermetic re-weld with no cracks or other defects in the fusion zone or HAZ. It has been well established that austenitic stainless steels ({gamma}-SS), such as 304L, can suffer from solidification cracking if their Cr{sub eq}/Ni{sub eq} is below a critical value that causes solidification to occur as austenite (fcc structure) and their combined impurity level (%P+%S) is above {approx}0.02%. Conversely, for Cr{sub eq}/Ni{sub eq} values above the critical level, solidification occurs as ferrite (bcc structure), and cracking propensity is greatly reduced at all combined impurity levels. The consensus of results from studies of several researchers starting in the late 1970's indicates that the critical Cr{sub eq}/Ni{sub eq} value is {approx}1.5 for arc welds. However, more recent studies by the author and others show that the critical Cr{sub eq}/Ni{sub eq} value increases to {approx}1 .6 for weld processes with very rapid thermal cycles, such as the pulsed Nd:YAG laser beam welding (LBW) process used here. Initial attempts at NDLGS using pulsed LBW resulted in considerable solidification cracking, consistent with the results of work discussed above. After a brief introduction to the welding metallurgy of {gamma}-SS, this presentation will review the results of a study aimed at developing a production-ready process that eliminates cracking. The solution to the cracking issue, developed at LANL, involved locally augmenting the Cr content by applying either Cr or a Cr-rich stainless steel (ER 312) to the top

  1. Mechanism of Process-Induced Salt-to-Free Base Transformation of Pharmaceutical Products

    DEFF Research Database (Denmark)

    Bruun Hansen, Thomas; Qu, Haiyan

    2014-01-01

    pH-solubility profiles of a model drug in salt form was established and the mechanism of salt-to-free base form transformation was investigated by increasing pH of the system. Wet massing experiments along with suspension experiments were used to investigate the effects of excipients on the stabi...

  2. Salt-induced root protein profile changes in seedlings of maize inbred lines with differing salt tolerances

    Directory of Open Access Journals (Sweden)

    Yujing Cheng

    2014-12-01

    Full Text Available Salt stress is one of the severest growth limited-factors to agriculture production. To gain in-depth knowledge of salt-stress response mechanisms, the proteomics analysis from two maize (Zea mays L. inbred lines was carried out using two-dimensional gel electrophoresis (2-DGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS. There were 57 salt-regulated proteins identified, 21 and 36 proteins were differentially regulated in inbred lines 'Nongda 1145' (salt-resistant and 'D340' (salt-sensitive, respectively. The identified proteins were distributed in 11 biological processes and seven molecular functions. Under salt stress, proteins related to antioxidation and lignin synthesis were increased in both inbred lines. The relative abundance of proteins involved in translation initiation, elongation, and protein proteolysis increased in 'Nongda 1145' and decreased in 'D340'. In addition, the abundance of proteins involved in carbohydrate metabolism, protein refolding, ATP synthase and transcription differed between the two inbred lines. Our results suggest that the enhanced ability of salt-tolerant inbred line 'Nongda 1145' to combat salt stress occurs via regulation of transcription factors promoting increased antioxidation and lignin biosynthesis, enhanced energy production, and acceleration of protein translation and protein proteolysis.

  3. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  4. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    Science.gov (United States)

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Sea Salt vs. Table Salt: What's the Difference?

    Science.gov (United States)

    ... and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, texture ...

  6. Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor

    International Nuclear Information System (INIS)

    Yu Liang; Tu Xin; Li Xiaodong; Wang Yu; Chi Yong; Yan Jianhua

    2010-01-01

    In this study, four kinds of PAHs (polycyclic aromatic hydrocarbons) i.e. acenaphthene, fluorene, anthracene and pyrene are used as targets for investigation of PAHs treatment process assisted by dc gliding arc discharge. The effects of carrier gas and external resistance on the PAHs decomposition process are discussed. The results indicate that the destruction rate can be achieved to the highest with the carrier gas of oxygen and the external resistance of 50 kΩ independent of type of PAHs. Furthermore, experimental results suggest that destruction energy efficiency of gliding arc plasma would be improved by treating higher concentration pollutants. Based on the analysis of experimental results, possible destruction mechanisms in different gas discharge are discussed.

  7. Mathematical model of salt cavern leaching for gas storage in high-insoluble salt formations.

    Science.gov (United States)

    Li, Jinlong; Shi, Xilin; Yang, Chunhe; Li, Yinping; Wang, Tongtao; Ma, Hongling

    2018-01-10

    A mathematical model is established to predict the salt cavern development during leaching in high-insoluble salt formations. The salt-brine mass transfer rate is introduced, and the effects of the insoluble sediments on the development of the cavern are included. Considering the salt mass conservation in the cavern, the couple equations of the cavern shape, brine concentration and brine velocity are derived. According to the falling and accumulating rules of the insoluble particles, the governing equations of the insoluble sediments are deduced. A computer program using VC++ language is developed to obtain the numerical solution of these equations. To verify the proposed model, the leaching processes of two salt caverns of Jintan underground gas storage are simulated by the program, using the actual geological and technological parameters. The same simulation is performed by the current mainstream leaching software in China. The simulation results of the two programs are compared with the available field data. It shows that the proposed software is more accurate on the shape prediction of the cavern bottom and roof, which demonstrates the reliability and applicability of the model.

  8. Molten salt oxidation as a technique for decommissioning: selection of low melting point salt mixtures

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Garcia, Vitor F.; Benvegnu, Guilherme

    2013-01-01

    During the 70 and 80 years, IPEN built several facilities in pilot scale, destined to the technological domain of the Nuclear Fuel Cycle. In the nineties, radical changes in the Brazilian nuclear policy determined the interruption of the activities and the shut-down of pilot plants. Nowadays, IPEN has been facing the problem of the dismantling and decommissioning of its Nuclear Fuel Cycle old facilities. The facility CELESTE-I of the IPEN is a laboratory where reprocessing studies were accomplished during the decade of 80 and in the beginning of the 90s. The last operations occurred in 92-93. The research activities generated radioactive wastes in the form of organic and aqueous solutions of different compositions and concentrations. For the treatment of these liquid wastes it was proposed a study of waste thermal decomposition based on the molten salt oxidation process.Decomposition tests of different organic wastes have been performed in laboratory equipment developed at IPEN, in the range of temperatures of 900 to 1020 deg C, demonstrating the complete oxidation of the compounds. The reduction of the process temperatures would be of crucial importance. Besides this, the selection of lower melting point salt mixtures would have an important impact in the reduction of equipment costs. Several experiments were performed to determine the most suitable salt mixtures, optimizing costs and melting temperatures as low as possible. This paper describes the main characteristics of the molten salt oxidation process, besides the selection of salt mixtures of binary and ternary compositions, respectively Na 2 CO 3 - NaOH and Na 2 CO 3 - K 2 CO 3 -Li 2 CO 3 . (author)

  9. Complementary experimental-simulational study of surfactant micellar phase in the extraction process of metallic ions: Effects of temperature and salt concentration

    Science.gov (United States)

    Soto-Ángeles, Alan Gustavo; Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis

    2018-02-01

    The thermoresponsive micellar phase behaviour that exhibits the Triton-X-100 micelles by temperature effect and addition of salt in the extraction process of metallic ions was explored from mesoscopic and experimental points. In the theoretical study, we analyse the formation of Triton-X-100 micelles, load and stabilization of dithizone molecules and metallic ions extraction inside the micellar core at room temperature; finally, a thermal analysis is presented. In the experimental study, the spectrophotometric outcomes confirm the solubility of the copper-dithizone complex in the micellar core, as well as the extraction of metallic ions of aqueous environment via a cloud-point at 332.2 K. The micellar solutions with salt present a low absorbance value compared with the micellar solutions without salt. The decrease in the absorbance value is attributed to a change in the size of hydrophobic region of colloidal micelles. All transitory stages of extraction process are discussed and analysed in this document.

  10. DNA Binding in High Salt: Analysing the Salt Dependence of Replication Protein A3 from the Halophile Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Jody A. Winter

    2012-01-01

    Full Text Available Halophilic archaea maintain intracellular salt concentrations close to saturation to survive in high-salt environments and their cellular processes have adapted to function under these conditions. Little is known regarding halophilic adaptation of the DNA processing machinery, particularly intriguing since protein-DNA interactions are classically salt sensitive. To investigate such adaptation, we characterised the DNA-binding capabilities of recombinant RPA3 from Haloferax volcanii (HvRPA3. Under physiological salt conditions (3 M KCl, HvRPA3 is monomeric, binding 18 nucleotide ssDNA with nanomolar affinity, demonstrating that RPAs containing the single OB-fold/zinc finger architecture bind with broadly comparable affinity to two OB-fold/zinc finger RPAs. Reducing the salt concentration to 1 M KCl induces dimerisation of the protein, which retains its ability to bind DNA. On circular ssDNA, two concentration-dependent binding modes are observed. Conventionally, increased salt concentration adversely affects DNA binding but HvRPA3 does not bind DNA in 0.2 M KCl, although multimerisation may occlude the binding site. The single N-terminal OB-fold is competent to bind DNA in the absence of the C-terminal zinc finger, albeit with reduced affinity. This study represents the first quantitative characterisation of DNA binding in a halophilic protein in extreme salt concentrations.

  11. Ultrasonic testing of a sealing construction made of salt concrete in an underground disposal facility for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Martin; Effner, Ute Antonie; Milmann, Boris; Voelker, Christoph; Wiggenhauser, Herbert [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany); Mauke, Ralf [The Federal Office for Radiation Protection, Salzgitter (Germany)

    2015-07-01

    For the closure of radioactive waste disposal facilities engineered barriers- so called ''drift seals'' are used. The purpose of these barriers is to constrain the possible infiltration of brine and to prevent the migration of radionuclides into the biosphere. In a rock salt mine a large scale in-situ experiment of a sealing construction made of salt concrete was set up to prove the technical feasibility and operability of such barriers. In order to investigate the integrity of this structure, non-destructive ultrasonic measurements were carried out. Therefore two different methods were applied at the front side of the test-barrier: 1 Reflection measurements from boreholes 2 Ultrasonic imaging by means of scanning ultrasonic echo methods This extended abstract is a short version of an article to be published in a special edition of ASCE Journal that will briefly describe the sealing construction, the application of the non-destructive ultrasonic measurement methods and their adaptation to the onsite conditions -as well as parts of the obtained results. From this a concept for the systematic investigation of possible contribution of ultrasonic methods for quality assurance of sealing structures may be deduced.

  12. Nonintrusive tools to detect salts contamination in masonry: case study of Fontaine-Chaalis church

    Science.gov (United States)

    Giovannacci, David; Brissaud, Didier; Mertz, Jean-Didier; Mouhoubi, Kamel; Bodnar, Jean-Luc

    2017-07-01

    Such developments come from conservation experts in the community of cultural heritage - encompassing artworks, museum artifacts or historical monuments - for less intrusive and non-destructive tools to gain information about the subject. Increasingly the demand is for information regarding internal structures and indications of life histories and behaviors of an object. As it is well known, the deterioration due to the capillary rise of water through the walls is a very widespread problem. In this paper, a study of Stimulated Infrared thermography and Evanescent-Field Dielectrometry was applied to a non-destructive mapping, in situ, and in a semi-quantitative way the distribution of water, salt and the structural deterioration induced in a wall of the 13th century of the abbey's church of Chaalis. Complementarity of the both techniques will be underlined. The Stimulated Infra-Red Thermography (SIRT) is a contact free technique and allows the detection of plaster layers delamination of masonry. Evanescent-Field Dielectrometry (EFD) is a recent diagnostic method based on dielectric spectroscopy at microwave frequency. The measuring instrument is a portable resonant microwave device for mapping the water content and salinity on flat surface up to a depth of 2-3 cm in real time, in a non-destructive way. The method detects the water content and salt concentration in frescoes and walls by estimating the dielectric properties of tested porous materials that is viewed as a "binary" dielectric mixture consisting of bulk material and water, by the contrast between the dielectric constant of a dry material and water. According to the resolution of the optics, the SIRT has a less lateral resolution and more limited in depth, but it is easy to implement and can be used on-site, like in scaffolding conditions. Moreover, this technique gives an overview at a larger scale (metric) than EFD (centimetric).

  13. Efficiency of inductively torch plasma operating at atmospheric pressure on destruction of chlorinated liquid wastes- A path to the treatment of radioactive organic halogen liquid wastes

    Science.gov (United States)

    Kamgang-Youbi, G.; Poizot, K.; Lemont, F.

    2012-12-01

    The performance of a plasma reactor for the degradation of chlorinated hydrocarbon waste is reported. Chloroform was used as a target for a recently patented destruction process based using an inductive plasma torch. Liquid waste was directly injected axially into the argon plasma with a supplied power of ~4 kW in the presence of oxygen as oxidant and carrier gas. Decomposition was performed at CHCl3 feed rates up to 400 g·h-1 with different oxygen/waste molar ratios, chloroform destruction was obtained with at least 99% efficiency and the energy efficiency reached 100 g·kWh-1. The conversion end products were identified and assayed by online FTIR spectroscopy (CO2, HCl and H2O) and redox titration (Cl2). Considering phosgene as representative of toxic compounds, only very small quantities of toxics were released (rates. The experimental results were very close to the equilibrium composition predicted by thermodynamic calculations. At the bottom of the reactor, the chlorinated acids were successfully trapped in a scrubber and transformed into mineral salts, hence, only CO2 and H2O have been found in the final off-gases composition.

  14. 4D modeling of salt-sediment interactions during diapir evolution

    Energy Technology Data Exchange (ETDEWEB)

    Callot, J.P.; Rondon, D.; Letouzey, J. [IFP, Rueil Malmaison (France); Krajewski, P. [Gaz de France-PEG, Lingen (Germany); Rigollet, C. [Gaz de France, St. Denis la Plaine (France)

    2007-09-13

    We performed sand/silicon models imaged with X-ray tomography and reconstructed by 3D geomodelling for the study of (1) the interaction between host rock and salt diapir during diapir growth, and (2) the evolution of intra salt brittle rocks during diapir ascent. X-ray tomography is a non destructive imaging technique which allows us to follow the 4D evolution of the analogue model. Salt is modelled by Newtonian silicone putty and the internal rock layer, as well as the sedimentary host rock, by a granular Mohr-Coulomb material, generally coryndon. The analogue models are then compared to natural examples, the evolution of which is obtained through 3D restoration of the structures. (1) A 4D evolutionary scenario for a salt diapir development was originally proposed by Trusheim (1960) and discussed later on by Vendeville (1999) among others (Ge et al., 1997; Zirngast et al., 1996). This scenario is reproduced through analogue models to test the relative importance of (1) extensional tectonics, (2) sediment progradations, and (3) source layer depletion and rim-syncline touchdown, in the evolution of a diapir. The comparison of our results with the restored natural analogue shows that the main parameter remains (1) the rim-syncline touchdown and (2) the unloading of the diapir due to erosion. The latter accounts for a drop in strength necessary to allow for the flank rotation and down building of the diapir. Extensional stresses and sediment progradations will also amplify the halokinesis. (2) Salt diapirs from the Middle East or in Southern Permian Basin petroleum province show exotic blocks at outcrop and in salt mines, known as 'stringers' in subsurface data, usually composed of anhydrite, dolomite, marls or carbonates. These stringers, which constitute major structures inside the salt diapir, can reach a few km in size and originate from pre-existing brittle rock layers embedded in the salt layer. Stringers of the Ara carbonate within the Precambrian

  15. Pyro-oxidation of plutonium spent salts with sodium carbonate

    International Nuclear Information System (INIS)

    Bourges, G.; Godot, A.; Valot, C.; Devillard, D.

    2001-01-01

    The purification of plutonium generates spent salts, which are temporarily stored in a nuclear building. A development programme for pyrochemical treatment is in progress to stabilize and concentrate these salts in order to reduce the quantities for long-term disposal. The treatment, inspired by work previously done by LANL, consists of a pyro-oxidation of the salt with sodium carbonate to convert the actinides into oxides, then of a vacuum distillation to separate the oxides from the volatile salt matrix. Pyro-oxidation of NaCl/KCl base spent salts first produces a 'black salt' which contains more than 97% of the initial actinides. XRD analyses indicate PuO 2 as major plutonium species and sodium plutonates or plutonium sub-oxides PuO 2-x can also be identified. Next appears a 'white salt' containing less than 500 ppm of plutonium, which meets the operational criterion for LLW discard. For these salts, the pyro-oxidation process in and of itself is expected to reduce the quantities to be stored on-site by more than one-third. The pyro-oxidation of CaCl 2 /NaCl base americium extraction salts leads to oxides PuO 2 and probably AmO 2 , but the yield of concentration in the black salt is lower and the white salt cannot be discarded as LLW. During vacuum distillation, excess carbonate can dissociate and damage the efficiency of the process. Appropriate chlorine sparging at the end of the oxidation can eliminate this carbonate. (authors)

  16. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake.

    Science.gov (United States)

    Temme, Elisabeth H M; Hendriksen, Marieke A H; Milder, Ivon E J; Toxopeus, Ido B; Westenbrink, Susanne; Brants, Henny A M; van der A, Daphne L

    2017-07-22

    , potato crisps, and processed legumes and vegetables have been reduced over the period 2011-2016. However, median salt intake in 2006 and 2015 remained well above the recommended intake of 6 g.

  17. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake

    Directory of Open Access Journals (Sweden)

    Elisabeth H. M. Temme

    2017-07-01

    . Conclusion. In the Netherlands, the salt content of bread, certain sauces, soups, potato crisps, and processed legumes and vegetables have been reduced over the period 2011–2016. However, median salt intake in 2006 and 2015 remained well above the recommended intake of 6 g.

  18. High-temperature vacuum distillation separation of plutonium waste salts

    International Nuclear Information System (INIS)

    Garcia, E.

    1996-01-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen

  19. Comparative study of destructive and non-destructive methods in the activation analysis of rocks

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.

    1978-01-01

    A comparative study between non-destructive thermal neutron activation analysis and activation analysis with radiochemical group separation is made Both methods are applied to the determination of trace elements minor and major elements in rocks. The treatment of the rocks, with special reference to the problems related to grinding and contamination by foreign elements is described. The choice of standards for multielement trace activation analysis is discussed. Two types of computer programs for the evalution of data obtained through Ge-li detector counting are used. All the phases of the destructive and non destructive analysis are described. In the destructive analysis, an adaptation of the group separation scheme developed by Morrison et al for the activation analysis of geological samples is made. The changes introduced make the radiochemical separation simpler and more rapid. Both destructive and non destructive methods are tested by means of the analysis of the United States Geological Survey standard rock AGV-1, which has been analysed by many authors. The same procedure is then applied to some alcaline rocks taken from the apatite mine of Jacupiranga, in the State of Sao Paulo, Brazil. The knowledge of the trace element concentration in these rocks is important for geochemical studies. A detailed study of the possible interferences encountered in the neutron activation analysis of these rocks is made, considering the interferences due to major activities, and to the proximity of the several gamma ray energies of the radioisotopes produced. Finally, the comparative study between the two methods is presented, using statistical tests for the quantitative evalution of results. (Author) [pt

  20. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

    2010-03-01

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  1. Extraction, Scrub, and Strip Test Results for the Salt Waste Processing Facility Caustic Side Solvent Extraction Solvent Sample

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 12.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges. This revision was created to correct an error. The previous revision used an incorrect set of temperature correction coefficients which resulted in slight deviations from the correct D(Cs) results.

  2. Evaluation of dried salted pork ham and neck quality

    OpenAIRE

    Simona Kunová; Juraj Čuboň; Ondřej Bučko; Miroslava Kačániová; Jana Tkáčová; Lukáš Hleba; Peter Haščík; Ľubomír Lopašovský

    2015-01-01

    The aim of the present study was analysed chemical and physical parameters of dried salted pork ham and neck. Dry-cured meat is a traditional dry-cured product obtained after 12 - 24 months of ripening under controlled environmental conditions.  Ham and neck was salted by nitrite salt mixture during 1 week. Salted meat products were dried at 4 °C and relative humidity 85% 1 week after salting. The quality of dry-cured meat is influenced by the processing technology, f...

  3. A radioactive tracer dilution method to determine the mass of molten salt

    International Nuclear Information System (INIS)

    Lei Cao; Jarrell, Josh; Hardtmayer, D.E.; White, Susan; Herminghuysen, Kevin; Kauffman, Andrew; Sanders, Jeff; Li, Shelly

    2017-01-01

    A new technique for molten salt mass determination, termed radioactive tracer dilution, that uses 22 Na as a tracer was validated at bench scale. It has been a challenging problem to determine the mass of molten salt in irregularly shaped containers, where a highly radioactive, high-temperature molten salt was used to process nuclear spent/used fuel during electrochemical recycling (pyro-processing) or for coolant/fuel salt from molten salt reactors. A radioactive source with known activity is dissolved into the salt. After a complete mixture, a small amount of the salt is sampled and measured in terms of its mass and radioactivity. By finding the ratio of the mass to radioactivity, the unknown salt mass in the original container can be precisely determined. (author)

  4. ALTERNATIVE METHODS OF TECHNOLOGICAL PROCESSING TO REDUCE SALT IN MEAT PRODUCTS

    OpenAIRE

    E. K. Tunieva; N. A. Gorbunova

    2017-01-01

    The world trends in table salt reduction in meat products contemplate the use of different methods for preservation of taste and consistency in finished products as well as shelf life prolongation. There are several approaches to a sodium chloride reduction in meat products. The paper presents a review of the foreign studies that give evidence of the possibility to maintain quality of traditional meat products produced with the reduced salt content. The studies in the field of salty taste percep...

  5. Evolution of nitrate and nitrite during the processing of dry-cured ham with partial replacement of NaCl by other chloride salts.

    Science.gov (United States)

    Armenteros, Mónica; Aristoy, María-Concepción; Toldrá, Fidel

    2012-07-01

    Nitrate and nitrite are commonly added to dry-cured ham to provide protection against pathogen microorganisms, especially Clostridium botulinum. Both nitrate and nitrite were monitored with ion chromatography in dry-cured hams salted with different NaCl formulations (NaCl partially replaced by KCl and/or CaCl(2), and MgCl(2)). Nitrate, that is more stable than nitrite, diffuses into the ham and acts as a reservoir for nitrite generation. A correct nitrate and nitrite penetration was detected from the surface to the inner zones of the hams throughout its processing, independently of the salt formulation. Nitrate and nitrite achieved similar concentrations, around 37 and 2.2 ppm, respectively in the inner zones of the ham for the three assayed salt formulations at the end of the process, which are in compliance with European regulations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Salt decontamination demonstration test results

    International Nuclear Information System (INIS)

    Snell, E.B.; Heng, C.J.

    1983-06-01

    The Salt Decontamination Demonstration confirmed that the precipitation process could be used for large-scale decontamination of radioactive waste sale solution. Although a number of refinements are necessary to safely process the long-term requirement of 5 million gallons of waste salt solution per year, there were no observations to suggest that any fundamentals of the process require re-evaluation. Major accomplishments were: (1) 518,000 gallons of decontaminated filtrate were produced from 427,000 gallons of waste salt solution from tank 24H. The demonstration goal was to produce a minimum of 200,000 gallons of decontaminated salt solution; (2) cesium activity in the filtrate was reduced by a factor of 43,000 below the cesium activity in the tank 24 solution. This decontamination factor (DF) exceeded the demonstration goal of a DF greater than 10,000; (3) average strontium-90 activity in the filtrate was reduced by a factor of 26 to less than 10 3 d/m/ml versus a goal of less than 10 4 d/m/ml; and (4) the concentrated precipitate was washed to a final sodium ion concentration of 0.15 M, well below the 0.225 M upper limit for DWPF feed. These accomplishments were achieved on schedule and without incident. Total radiation exposure to personnel was less than 350 mrem and resulted primarily from sampling precipitate slurry inside tank 48. 3 references, 6 figures, 2 tables

  7. Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor.

    Science.gov (United States)

    Yu, Liang; Tu, Xin; Li, Xiaodong; Wang, Yu; Chi, Yong; Yan, Jianhua

    2010-08-15

    In this study, four kinds of PAHs (polycyclic aromatic hydrocarbons) i.e. acenaphthene, fluorene, anthracene and pyrene are used as targets for investigation of PAHs treatment process assisted by dc gliding arc discharge. The effects of carrier gas and external resistance on the PAHs decomposition process are discussed. The results indicate that the destruction rate can be achieved to the highest with the carrier gas of oxygen and the external resistance of 50 kOmega independent of type of PAHs. Furthermore, experimental results suggest that destruction energy efficiency of gliding arc plasma would be improved by treating higher concentration pollutants. Based on the analysis of experimental results, possible destruction mechanisms in different gas discharge are discussed. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Inductively coupled plasma torch efficiency at atmospheric pressure for organo-chlorine liquid waste removal: Chloroform destruction in oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kamgang-Youbi, Georges, E-mail: kamyougeo@yahoo.fr [French Atomic Commission-CEA, Marcoule-DTCD/SCDV/LPIC, BP 17171, 30207 Bagnols-Sur-Cèze Cedex (France); Department of Inorganic Chemistry, The University of Yaounde I, P.O Box, 812 Yaounde (Cameroon); Poizot, Karine; Lemont, Florent [French Atomic Commission-CEA, Marcoule-DTCD/SCDV/LPIC, BP 17171, 30207 Bagnols-Sur-Cèze Cedex (France)

    2013-01-15

    Highlights: ► Inductively plasma torch is used for the decomposition of organochlorine molecule. ► We examine the impact of liquid water substitution by oxygen gas as oxidant. ► Complete and safe decomposition is achieved with the presence of oxygen. ► The energy efficiency and capabilities of process are better with O{sub 2} than H{sub 2}O. -- Abstract: The performance of a plasma reactor for the degradation of chlorinated hydrocarbon waste is reported. Chloroform was used as a target for a recently patented destruction process based using an inductive plasma torch. Liquid waste was directly injected axially into the argon plasma with a supplied power of ∼4 kW in the presence of oxygen as oxidant and carrier gas. Decomposition was performed at CHCl{sub 3} feed rates up to 400 g h{sup −1} with different oxygen/waste molar ratios, chloroform destruction was obtained with at least 99% efficiency and the energy efficiency reached 100 g kWh{sup −1}. The conversion end products were identified and assayed by online FTIR spectroscopy (CO{sub 2}, HCl and H{sub 2}O) and redox titration (Cl{sub 2}). Considering phosgene as representative of toxic compounds, only very small quantities of toxics were released (<1 g h{sup −1}) even with high waste feed rates. The experimental results were very close to the equilibrium composition predicted by thermodynamic calculations. At the bottom of the reactor, the chlorinated acids were successfully trapped in a scrubber and transformed into mineral salts, hence, only CO{sub 2} and H{sub 2}O have been found in the final off-gases composition.

  9. Target salt 2025: a global overview of national programs to encourage the food industry to reduce salt in foods.

    Science.gov (United States)

    Webster, Jacqui; Trieu, Kathy; Dunford, Elizabeth; Hawkes, Corinna

    2014-08-21

    Reducing population salt intake has been identified as a priority intervention to reduce non-communicable diseases. Member States of the World Health Organization have agreed to a global target of a 30% reduction in salt intake by 2025. In countries where most salt consumed is from processed foods, programs to engage the food industry to reduce salt in products are being developed. This paper provides a comprehensive overview of national initiatives to encourage the food industry to reduce salt. A systematic review of the literature was supplemented by key informant questionnaires to inform categorization of the initiatives. Fifty nine food industry salt reduction programs were identified. Thirty eight countries had targets for salt levels in foods and nine countries had introduced legislation for some products. South Africa and Argentina have both introduced legislation limiting salt levels across a broad range of foods. Seventeen countries reported reductions in salt levels in foods-the majority in bread. While these trends represent progress, many countries have yet to initiate work in this area, others are at early stages of implementation and further monitoring is required to assess progress towards achieving the global target.

  10. Mass transport in bedded salt and salt interbeds

    International Nuclear Information System (INIS)

    Hwang, Y.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-08-01

    Salt is the proposed host rock for geologic repositories of nuclear waste in several nations because it is nearly dry and probably impermeable. Although experiments and experience at potential salt sites indicate that salt may contain brine, the low porosity, creep, and permeability of salt make it still a good choice for geologic isolation. In this paper we summarize several mass-transfer and transport analyses of salt repositories. The mathematical details are given in our technical reports

  11. Technology for Salt Production in the Mixteca Alta

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio León Hernández

    2015-01-01

    Full Text Available Salt production in the Mixteca Alta is a traditional means of production from prehispanic period, which, despite the economic transformation processes in the colonial period, remained significant features of the traditional process, based on the documented similar models from other productive regions in Mexico. The salt in the novohispanic period was considered a major consumption economic asset due to its use in production processes for the production of new economic products that supported the economy of preindustrial societies (Terán, 2011, p. 71; Williams, 2008. Technology refers to the knowledges for solving human needs arising lifestyle of the cultural groups that develop them. The resources of the natural environment underpin the means of labor that man requires to perform its activities, including economic. The means of production and production processes are technological developments, which involve elements of tangible and intangible order. The study of work processes for salt extraction, are significantly related to the processes of technological evolution that man has developed for the use of natural resources. The economic activities of the primary sector are examples of how humans culturally and economically were inserted in the natural environment (Malpica, 2008, p. 59. This analysis presents a historiographical approach to the study of the processes and the technology required for the extraction of salt in the Mixteca Alta.

  12. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  13. Creative Destruction in Libraries: Designing our Future

    Directory of Open Access Journals (Sweden)

    Caro Pinto

    2013-11-01

    Full Text Available In Brief: Joseph Schumpeter defines creative destruction as a “process of industrial mutation that incessantly revolutionizes the economic structure from within, incessantly destroying the old one, incessantly creating a new one.” As libraries struggle with how to position themselves to thrive in the digital age, how can we balance the traditional elements of librarianship like […

  14. Utilization of radiation in non destructive tests

    International Nuclear Information System (INIS)

    Lopes, R.T.; Jesus, E.F.O. de; Junqueira, M.M.; Matos, J.A. de; Castello Branco, L.M.; Barros Junior, J.D.; Borges, J.C.

    1987-01-01

    The Nuclear Instrumentation Laboratory from COPPE/UFRJ has been developed techniques for using nuclear radiations to obtain images for non-destructive materials testing and medicine. With this objective, some prototypes of transmission computerized tomography systems using parallel beans and fan beans, with computer automation, including the mathematical process of image reprocessing and presentation in videos or printers are constructed [pt

  15. Origin of salt giants in abyssal serpentinite systems

    Science.gov (United States)

    Scribano, Vittorio; Carbone, Serafina; Manuella, Fabio C.; Hovland, Martin; Rueslåtten, Håkon; Johnsen, Hans-K.

    2017-10-01

    Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding `country' rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.

  16. Community solar salt production in Goa, India.

    Science.gov (United States)

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  17. The effect of salt composition on reductive extraction of some typical elements from molten LiF-BeF2 salt into liquid bismuth

    International Nuclear Information System (INIS)

    Hirotake, M.; Jun, O.; Kimikazu, M.; Kunimitsu, Y.; Yasunobu, T.

    1983-01-01

    The distribution coefficients of thorium and radium between molten LiF-BeF 2 and liquid bismuth solutions were measured at 600 0 C in support of the processing of the molten-salt breeder reactor (MSBR) fuel. The increasing mole fraction of LiF in the salt phase from 40 to 70 mol% resulted in the rapid decrease of the distribution coefficient of thorium and in the slow decrease of that of radium. A comprehensive correlation of distribution behavior with salt composition is given by taking into account the formation of complex ions. The equilibrium distribution data affirm that thorium and radium exist mainly as Li 2 ThF 6 and RaF 2 , respectively, in the salt phase. It is suggested that the lower mole fraction of LiF in the fuel salt is effective in the MSBR fuel processing

  18. Non-destructive measurement methods for large scale gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Mayer, R.L.; Hagenauer, R.C.; McGinnis, B.R.

    1994-01-01

    Two measurement methods have been developed to measure non-destructively uranium hold-up in gaseous diffusion plants. These methods include passive neutron and passive γ ray measurements. An additional method, high resolution γ ray spectroscopy, provides supplementary information about additional γ ray emitting isotopes, γ ray correction factors, 235 U/ 234 U ratios and 235 U enrichment. Many of these methods can be used as a general purpose measurement technique for large containers of uranium. Measurement applications for these methods include uranium hold-up, waste measurements, criticality safety and nuclear accountability

  19. Hydrological methods preferentially recover cesium from nuclear waste salt cake

    International Nuclear Information System (INIS)

    Brooke, J.N.; Hamm, L.L.

    1997-01-01

    The Savannah River Site is treating high level radioactive waste in the form of insoluble solids (sludge), crystallized salt (salt cake), and salt solutions. High costs and operational concerns have prompted DOE to look for ways to improve the salt cake treatment process. A numerical model was developed to evaluate the feasibility of pump and treat technology for extracting cesium from salt cake. A modified version of the VAM3DCG code was used to first establish a steady-state flow field, then to simulate 30 days of operation. Simulation results suggest that efficient cesium extraction can be obtained with low displacement volumes. The actual extraction process will probably be less impressive because of nonuniform properties. 2 refs., 2 figs

  20. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  1. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    International Nuclear Information System (INIS)

    King, W.

    2007-01-01

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  2. Non-Destructive Techniques Based on Eddy Current Testing

    Science.gov (United States)

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  3. Advanced CSiC composites for high-temperature nuclear heat transport with helium, molten salts, and sulphur-iodine thermochemical hydrogen process fluids

    International Nuclear Information System (INIS)

    Peterson, P.F.; Forsberg, Ch.W.; Pickard, P.S.

    2004-01-01

    This paper discusses the use of liquid-silicon-impregnated (LSI) carbon-carbon composites for the development of compact and inexpensive heat exchangers, piping, vessels and pumps capable of operating in the temperature range of 800 to 1 100 deg C with high-pressure helium, molten fluoride salts, and process fluids for sulfur-iodine thermochemical hydrogen production. LSI composites have several potentially attractive features, including ability to maintain nearly full mechanical strength to temperatures approaching 1 400 deg C, inexpensive and commercially available fabrication materials, and the capability for simple forming, machining and joining of carbon-carbon performs, which permits the fabrication of highly complex component geometries. In the near term, these materials may prove to be attractive for use with a molten-salt intermediate loop for the demonstration of hydrogen production with a gas-cooled high temperature reactor. In the longer term, these materials could be attractive for use with the molten-salt cooled advanced high temperature reactor, molten salt reactors, and fusion power plants. (author)

  4. Pseudomacrocyclic effect in extraction processes of metal salts by polyethers from nitric acid solutions

    International Nuclear Information System (INIS)

    Yakshin, V.V.; Vilkova, O.M.; Kotlyar, S.A.; Kamalov, G.L.

    1997-01-01

    Comparison of macrocyclic (ME) and pseudmacrocyclic effects (PME), originating by conduct of the metal salt extraction processes (Cs, Sr, In, Zr, Cd, etc) from nitric acid solutions through linear and cyclic polyethers, containing 5 or 6 atoms of ether oxygen and having close molecular masses (290-360), is carried out. It is shown that ordinary ethers practically do not extract the studied metals from nitric acid solutions. By transfer from linear polyethers to their macrocyclic analogs the ME impact is expressed clearly enough: the separation coefficient value grows by tens and hundred times. At the some time the PME role in the extraction processes of metal nitrates through crown-ethers with alkyl and groups is expressed less clearly

  5. Method for making a Pellet-type LiCl-KCl-UCl3 SALT

    International Nuclear Information System (INIS)

    Woo, M. S.; JIN, H. J.; Lee, H. S.; Kim, J. G.

    2012-01-01

    A pyrometallurgical partitioning technology to recover uranium from a uranium-TRU mixture which is the product material of electroreduction system is being developed at KAERI since 1997. In the process, the reactor of an electrorefiner consists of the electrodes and the molten chloride salt which is LiCl-KCl-UCl 3 . The role of uranium chloride salt (UCl 3 ) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 The apparatus for producing UCl 3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of a pelletizer by a transfer system to make a pellet type salt

  6. Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process : Linking Microbial Activity with Microbial Community Structure

    NARCIS (Netherlands)

    Bassin, J.P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; Van Loosdrecht, M.C.M.

    2011-01-01

    The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products

  7. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Nakahara, Yasuaki; Kato, Yoshio; Ohno, Hideo; Mitachi, Kohshi.

    1990-01-01

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233 U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  8. Making a Pellet-type LiCl-KCl-UCl3 salt for Electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Woo, M. S.; Jin, H. J.; Kim, I. T.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The role of uranium chloride salt (UCl3) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl2 occurring in a Cd layer, followed by a process to produce UCl3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl2 The apparatus for producing UCl3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to make pellet type salt. Making pellet type LiCl-KCl-UCl3 salt for electrorefining was carried out using the chlorinator, Cd distiller, and pelletizer. Salt transfer carried out by salt transfer equipment heated 500 .deg. C. The Cd concentration of final salt products distillated at 60 torr, 2 hrs, 600 .deg. C was 200 ppm from the ICP, XRD analysis. And pellet type salt products were fabricated by using the mould of pelletizer at 90∼130 .deg. C.

  9. Making a Pellet-type LiCl-KCl-UCl3 salt for Electrorefining

    International Nuclear Information System (INIS)

    Woo, M. S.; Jin, H. J.; Kim, I. T.; Kim, J. G.

    2013-01-01

    The role of uranium chloride salt (UCl3) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl2 occurring in a Cd layer, followed by a process to produce UCl3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl2 The apparatus for producing UCl3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to make pellet type salt. Making pellet type LiCl-KCl-UCl3 salt for electrorefining was carried out using the chlorinator, Cd distiller, and pelletizer. Salt transfer carried out by salt transfer equipment heated 500 .deg. C. The Cd concentration of final salt products distillated at 60 torr, 2 hrs, 600 .deg. C was 200 ppm from the ICP, XRD analysis. And pellet type salt products were fabricated by using the mould of pelletizer at 90∼130 .deg. C

  10. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.

    Science.gov (United States)

    Tang, Hailong; Erzat, Aris; Liu, Yangsheng

    2014-01-01

    Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits.

  11. Longitudinal Relations Between Constructive and Destructive Conflict and Couples’ Sleep

    Science.gov (United States)

    El-Sheikh, Mona; Koss, Kalsea J.; Kelly, Ryan J.; Rauer, Amy J.

    2016-01-01

    We examined longitudinal relations between interpartner constructive (negotiation) and destructive (psychological and physical aggression) conflict strategies and couples’ sleep over 1 year. Toward explicating processes of effects, we assessed the intervening role of internalizing symptoms in associations between conflict tactics and couples’ sleep. Participants were 135 cohabiting couples (M age = 37 years for women and 39 years for men). The sample included a large representation of couples exposed to economic adversity. Further, 68% were European American and the remainder were primarily African American. At Time 1 (T1), couples reported on their conflict and their mental health (depression, anxiety). At T1 and Time 2, sleep was examined objectively with actigraphs for 7 nights. Three sleep parameters were derived: efficiency, minutes, and latency. Actor–partner interdependence models indicated that husbands’ use of constructive conflict forecasted increases in their own sleep efficiency as well as their own and their wives’ sleep duration over time. Actor and partner effects emerged, and husbands’ and wives’ use of destructive conflict strategies generally predicted worsening of some sleep parameters over time. Several mediation and intervening effects were observed for destructive conflict strategies. Some of these relations reveal that destructive conflict is associated with internalizing symptoms, which in turn are associated with some sleep parameters longitudinally. These findings build on a small, albeit growing, literature linking sleep with marital functioning, and illustrate that consideration of relationship processes including constructive conflict holds promise for gaining a better understanding of factors that influence the sleep of men and women. PMID:25915089

  12. Longitudinal relations between constructive and destructive conflict and couples' sleep.

    Science.gov (United States)

    El-Sheikh, Mona; Kelly, Ryan J; Koss, Kalsea J; Rauer, Amy J

    2015-06-01

    We examined longitudinal relations between interpartner constructive (negotiation) and destructive (psychological and physical aggression) conflict strategies and couples' sleep over 1 year. Toward explicating processes of effects, we assessed the intervening role of internalizing symptoms in associations between conflict tactics and couples' sleep. Participants were 135 cohabiting couples (M age = 37 years for women and 39 years for men). The sample included a large representation of couples exposed to economic adversity. Further, 68% were European American and the remainder were primarily African American. At Time 1 (T1), couples reported on their conflict and their mental health (depression, anxiety). At T1 and Time 2, sleep was examined objectively with actigraphs for 7 nights. Three sleep parameters were derived: efficiency, minutes, and latency. Actor-partner interdependence models indicated that husbands' use of constructive conflict forecasted increases in their own sleep efficiency as well as their own and their wives' sleep duration over time. Actor and partner effects emerged, and husbands' and wives' use of destructive conflict strategies generally predicted worsening of some sleep parameters over time. Several mediation and intervening effects were observed for destructive conflict strategies. Some of these relations reveal that destructive conflict is associated with internalizing symptoms, which in turn are associated with some sleep parameters longitudinally. These findings build on a small, albeit growing, literature linking sleep with marital functioning, and illustrate that consideration of relationship processes including constructive conflict holds promise for gaining a better understanding of factors that influence the sleep of men and women. (c) 2015 APA, all rights reserved).

  13. Vitrification in the presence of salts

    International Nuclear Information System (INIS)

    Marra, J.C.; Andrews, M.K.; Schumacher, R.F.

    1994-01-01

    Glass is an advantageous material for the immobilization of nuclear wastes because of the simplicity of processing and its unique ability to accept a wide variety of waste elements into its network structure. Unfortunately, some anionic species which are present in the nuclear waste streams have only limited solubility in oxide glasses. This can result in either vitrification concerns or it can affect the integrity, of the final vitrified waste form. The presence of immiscible salts can also corrode metals and refractories in the vitrification unit as well as degrade components in the off-gas system. The presence of a molten salt layer on the melt may alter the batch melting rate and increase operational safety concerns. These safety concerns relate to the interaction of the molten salt and the melter cooling fluids. Some preliminary data from ongoing experimental efforts examining the solubility of molten salts in glasses and the interaction of salts with melter component materials is included

  14. 21 CFR 100.155 - Salt and iodized salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the...

  15. Indian programme on molten salt cooled nuclear reactors

    International Nuclear Information System (INIS)

    DuIera, I.V.; Vijayan, P.K.; Sinha, R.K.

    2013-01-01

    Bhabha Atomic Research Centre (BARC) is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of molten fluoride salts and is capable of supplying process heat at 1000 ℃ to facilitate hydrogen production by splitting water. BARC has also initiated studies for a reactor concept in which salts of molten fluoride fuel and coolant in fluid form, flows through the reactor core of graphite moderator, resulting in nuclear fission within the molten salt. For thorium fuel cycle, this concept is very attractive, since the fuel can be re-processed on-line, enabling it to be an efficient neutron breeder. (author)

  16. Effects of salting processes and time on the chemical composition, textural properties, and microstructure of cooked duck egg.

    Science.gov (United States)

    Kaewmanee, Thammarat; Benjakul, Soottawat; Visessanguan, Wonnop

    2011-03-01

    Chemical composition, textural properties, and microstructure of cooked duck egg salted by 2 methods (coating and immersing) were determined during 4 wk of salting. As the salting time increased, moisture content increased and salt content decreased for both cooked salted egg white and yolk. Oil exudation of cooked yolk and expressible water content of cooked egg white obtained from both salting methods increased as salting proceeded (P cooking, oil exudation accompanied by the solubilized pigments, especially at the outer layer of yolk, was obtained. At week 3 of salting, egg yolk from coating method had the higher egg exudation than that from immersing method. As the salting times increased, the lower hardness, springiness, gumminess, chewiness, and resilience with higher adhesiveness and cohesiveness were generally found in cooked salted egg white (P cooked yolk increased continuously and reached the maximum at week 2 and 2 to 3 for immersing and coating method (P egg after heating, compared with the fresh counterpart. As visualized by scanning electron microscope, gel of cooked salted egg white was coagulum type with larger voids. Salting methods determined oil exudation in egg yolk and texture profile of egg white gel after cooking; however, those attributes were also governed by the salting time. Salted duck egg can be made by 2 methods (coating and immersing) affecting the characteristic of salted egg white and yolk after cooking. Desirable cooked salted egg having the red yolk with hardness and high oil exudation could be obtained when salting was carried out for 3 and 4 wk for immersing and coating method, respectively.

  17. Effect of iron salt counter ion in dose-response curves for inactivation of Fusarium solani in water through solar driven Fenton-like processes

    Science.gov (United States)

    Aurioles-López, Verónica; Polo-López, M. Inmaculada; Fernández-Ibáñez, Pilar; López-Malo, Aurelio; Bandala, Erick R.

    2016-02-01

    The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L-1, [H2O2] ≈ 10 mg L-1 and [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L-1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose-response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.

  18. Treatment of waste salts by oxygen sparging and vacuum distillation

    International Nuclear Information System (INIS)

    Cho, Y.J.; Yang, H.C.; Kim, E.H.; Kin, I.T.; Eun, H.C.

    2007-01-01

    Full text of publication follows. During the electrorefining process of the oxide spent fuel from LWR, amounts of waste salts containing some metal chloride species such as rare earths and actinide chlorides are generated, where the reuse of the waste salts is very important from the standpoint of an economical as well as an environmental aspect. In order to reuse the waste salts, a salt vacuum distillation method can be used. For the best separation by a vacuum distillation, the metal chloride species involved in the waste salts must be converted into their oxide(or oxychloride) forms due to the their low volatility compared to that of LiCl-KCl. In this study, an oxygen sparging process was adopted for the oxidation (or precipitation) of rare earth chlorides. The effects of oxygen flow rate and molten salt temperature on the conversion of rare earth chlorides to the precipitate phase (i.e. oxide or oxychloride) were investigated. In addition, distillation characteristics of LiCl-KCl molten salt with system pressure and temperature were studied. (authors)

  19. Influence of complexing on physicochemical properties of polymer-salt solutions

    International Nuclear Information System (INIS)

    Ostroushko, A.A.; Yushkova, S.M.; Koridze, N.V.; Skobkoreva, N.V.; Zhuravleva, L.I.; Palitskaya, T.A.; Antropova, S.V.; Ostroushko, I.P.; AN SSSR, Moscow

    1993-01-01

    Using the methods of spectrophotometry, viscosimetry, conductometry the influence of salt-polymer complexing processes on physicochemical prperties of aqueous solutions of yttrium, barium, copper nitrates and formates with polyvinyl alcohol was studied. Change of dynamic viscosity, specific electric conductivity of solutions in the process of complexing was shown. Thermal effects of salt-polymer interaction were measured. It is shown that decrease of transition temperature of polymer to plastic state in films, temperature and effective activation energy of salt decomposition is also connected with complexing. Effective values of surface tension on the boundary with air are measured. Coefficients of cation diffusion in polymer-salt solutions are estimated

  20. Quality evaluation of soil-cement-plant residue bricks by the combination of destructive and non-destructive tests

    Directory of Open Access Journals (Sweden)

    Regis de C. Ferreira

    Full Text Available ABSTRACT Residues from agricultural activity can be used to improve the quality of soil-based bricks, constituting an interesting alternative for their destination. The technical quality of soil-cement-plant residue bricks was evaluated by the combination of non-destructive and destructive methods. A predominant clayey soil, Portland cement and residues of husks of both rice and Brachiaria brizantha cv. Marandu (0, 10, 20, 30 and 40%, in mass, in substitution to the 10% cement content were used. The bricks were submitted to destructive (water absorption and compressive strength and nondestructive (ultrasound tests for their physical and mechanical characterization. Results from both destructive and non-destructive tests were combined to determine the quantitative parameter named “anisotropic resistance” in order to evaluate the quality of the bricks. The addition that promoted best technical quality was 10% residue content, regardless of the residue type. The anisotropic resistance proved to be adequate for the technical quality evaluation of the bricks.

  1. Salt intake and dietary sources of salt on weekdays and weekend days in Australian adults.

    Science.gov (United States)

    Nowson, Caryl; Lim, Karen; Land, Mary-Ann; Webster, Jacqui; Shaw, Jonathan E; Chalmers, John; Flood, Victoria; Woodward, Mark; Grimes, Carley

    2018-02-01

    To assess if there is a difference in salt intake (24 h urine collection and dietary recall) and dietary sources of salt (Na) on weekdays and weekend days. A cross-sectional study of adults who provided one 24 h urine collection and one telephone-administered 24 h dietary recall. Community-dwelling adults living in the State of Victoria, Australia. Adults (n 598) who participated in a health survey (53·5 % women; mean age 57·1 (95 % CI 56·2, 58·1) years). Mean (95 % CI) salt intake (dietary recall) was 6·8 (6·6, 7·1) g/d and 24 h urinary salt excretion was 8·1 (7·8, 8·3) g/d. Mean dietary and 24 h urinary salt (age-adjusted) were 0·9 (0·1, 1·6) g/d (P=0·024) and 0·8 (0·3, 1·6) g/d (P=0·0017), respectively, higher at weekends compared with weekdays. There was an indication of a greater energy intake at weekends (+0·6 (0·02, 1·2) MJ/d, P=0·06), but no difference in Na density (weekday: 291 (279, 304) mg/MJ; weekend: 304 (281, 327) mg/MJ; P=0·360). Cereals/cereal products and dishes, meat, poultry, milk products and gravy/sauces accounted for 71 % of dietary Na. Mean salt intake (24 h urine collection) was more than 60 % above the recommended level of 5 g salt/d and 8-14 % more salt was consumed at weekends than on weekdays. Substantial reductions in the Na content of staple foods, processed meat, sauces, mixed dishes (e.g. pasta), convenience and takeaway foods are required to achieve a significant consistent reduction in population salt intake throughout the week.

  2. Fundamental Properties of Salts

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  3. Molten salt: Corrosion problems and electrometallurgy in nuclear applications

    International Nuclear Information System (INIS)

    Santarini, G.

    1981-01-01

    A bibliographic survey is given of corrosion problems and electrometallurgical problems of molten salt in nuclear reactor applications. Due to the high potential to be achieved, their high ionic conductivity and the rapidity of reactions in a molten salt atmosphere, molten salts are interesting solvents for various electrometallurgical processes. Another important field of application is in the separation or electrolytical refining of various metals (Be, U, Pu, Th, Hf, Zr). However, these very characteristics of molten salts may also cause serious corrosion problems. Results obtained for the molten-salt reactor and the different causes of corrosion are reviewed an possible countermeasures analyzed. (orig.)

  4. Destructive, distillation

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, J

    1882-10-23

    The apparatus employed resembles a reverberatory furnace, having a brickwork chamber with pipes or passages leading from the bottom, through which gases and vapors, arising from destructive distillation or heating of the materials with which the chamber is charged to a certain depth, are drawn by suction produced by a fan or blower. The materials are heated from above by firegates admitted from a separate furnace or fireplace. When shale is thus treated, to obtain burning gas, oil, and ammonia, the suction may be so regulated as to give preponderance to whichever product is desired, the depth of material treated being also concerned in the result. The process is applicable also in the treatment of coal pit refuse, sawdust, peat, and other matters, to obtain volatile products; in burning limestone to obtain carbon dioxide; and in roasting ores. Reference is made to a former Specification for coking coal, No. 1947, A. D. 1882.

  5. Weapons of mass destruction - current security threat

    International Nuclear Information System (INIS)

    Durdiak, J.; Gafrik, A.; Pulis, P.; Susko, M.

    2005-01-01

    officially own such weaponry and the states that are reasonably suspected to own such weaponry or try to obtain it. All the data are from open and unclassified sources published in professional periodicals and on the Internet. This chapter describes also the potential threats and consequences of terrorists' obtaining nuclear weapons. The Chemical Weapons remind that this kind of WMD has been in use since ancient history. The chemical weapons development has reached its peak in the twentieth century, along with their first mass use in combat during WW I. The next period brought the development of exceptionally efficient chemical weapons, such as the nerve-paralyzing substances. Use of chemical weapons is documented during WW II, the Vietnam War and in the Iran-Iraq War. Further chapters focus on the detailed description of individual toxic substances - nerve paralyzing, general toxic, blister, choking, physically and psychically disabling and irritating agents - their attributes, the mechanism of their effects, intoxication symptoms and possibilities of protection. Attention is paid to the process of chemical disarmament and chemical terrorism as well, stressing the threat posed by terrorists abusing dangerous industrial chemical substances present in the states' infrastructure. The next part is dedicated to the phenomenon of biological weapons nicknamed, along with chemical weapons, 'the poor man's nuclear weapon'. Given the revolutionary progress and wide availability of bio-technologies it presents the most probable weapon of mass destruction that terrorists could use to achieve their goals. The biological weapons are defined here as 'pathogenic microorganisms, the toxic products of their metabolism, certain live organisms and some synthetic substances inducing mass disease or death of humans or animals or destroying agriculture'. A short description follows of pathogenic microorganisms such as bacteria, rickettsia, viruses, molds, certain toxins that present a cross

  6. Organic destruction to enhance the separation of strontium in radioactive wastes

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Elmore, M.R.; Orth, R.J.; Jones, E.O.; Zacher, A.H.; Hart, T.R.; Neuenschwander, G.G.; Poshusta, J.C.

    1994-01-01

    A low-temperature (300 C to 375 C) hydrothermal organic destruction process is being evaluated to help facilitate the removal of complexed radioactive species from bulk liquid components in hanford tank waste. The work focuses on hydrothermal processing to destroy organic compounds that contribute to waste safety issues and organic complexants that promote the solubility of radioactive constituents such as 90 Sr and 241 Am. For the studies discussed here, testing was conducted using a nonradioactive Hanford tank waste simulant. The relative destruction rates of a variety of organic compounds known to be present in Hanford tank waste were evaluated. In addition, the tendency for these organic compounds to complex strontium and the effect of hydrothermal treatment on strontium removal were investigated

  7. Organic destruction to enhance the separation of strontium in radioactive wastes

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Elmore, M.R.; Orth, R.J.; Jones, E.O.; Zacher, A.H.; Hart, T.R.; Neuenschwander, G.G.; Poshusta, J.C.

    1994-10-01

    A low-temperature (300 C to 375 C) hydrothermal organic destruction process is being evaluated to help facilitate the removal of complexed radioactive species from bulk liquid components in Hanford tank waste. The work focuses on hydrothermal processing to destroy organic compounds that contribute to waste safety issues and organic complexants that promote the solubility of radioactive constituents such as 9O Sr and 241 Am. For the studies discussed here, testing was conducted using a nonradioactive Hanford tank waste simulant. The relative destruction rates of a variety of organic compounds known to be present in Hanford tank waste were evaluated. In addition, the tendency for these organic compounds to complex strontium and the effect of hydrothermal treatment on strontium removal were investigated

  8. Innovation in Non Destructive Testing

    NARCIS (Netherlands)

    Wassink, C.H.P.

    2012-01-01

    In many established companies the pace of innovation is low. The Non-Destructive Testing sector is an example of a sector where the pace of innovation is very slow. Non-Destructive Testing (NDT) refers to the set of non-invasive activities used to determine the condition of objects or installations

  9. Theoretical approach to the destruction or sterilization of drugs in aqueous solution

    International Nuclear Information System (INIS)

    Slegers, Catherine; Tilquin, Bernard

    2005-01-01

    Two novel applications in the radiation processing of aqueous solutions of drugs are the sterilization of injectable drugs and the decontamination of hospital wastewaters by ionizing radiation. The parameters influencing the destruction of the drug in aqueous solutions are studied with a computer simulation program. This theoretical approach has revealed that the dose rate is the most important parameter that can be easily varied in order to optimize the destruction or the protection of the drug

  10. Pluronic®-bile salt mixed micelles.

    Science.gov (United States)

    Patel, Vijay; Ray, Debes; Bahadur, Anita; Ma, Junhe; Aswal, V K; Bahadur, Pratap

    2018-06-01

    The present study was aimed to examine the interaction of two bile salts viz. sodium cholate (NaC) and sodium deoxycholate (NaDC) with three ethylene polyoxide-polypropylene polyoxide (PEO-PPO-PEO) triblock copolymers with similar PPO but varying PEO micelles with a focus on the effect of pH on mixed micelles. Mixed micelles of moderately hydrophobic Pluronic ® P123 were examined in the presence of two bile salts and compared with those from very hydrophobic L121 and very hydrophilic F127. Both the bile salts increase the cloud point (CP) of copolymer solution and decreased apparent micelle hydrodynamic diameter (D h ). SANS study revealed that P123 forms small spherical micelles showing a decrease in size on progressive addition of bile salts. The negatively charged mixed micelles contained fewer P123 molecules but progressively rich in bile salt. NaDC being more hydrophobic displays more pronounced effect than NaC. Interestingly, NaC shows micellar growth in acidic media which has been attributed to the formation of bile acids by protonation of carboxylate ion and subsequent solubilization. In contrast, NaDC showed phase separation at higher concentration. Nuclear Overhauser effect spectroscopy (NOESY) experiments provided information on interaction and location of bile salts in micelles. Results are discussed in terms of hydrophobicity of bile salts and Pluronics ® and the site of bile salt in polymer micelles. Proposed molecular interactions are useful to understand more about bile salts which play important role in physiological processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Salt splitting of sodium-dominated radioactive waste using ceramic membranes

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Carlson, C.D.; Virkar, A.; Joshi, A.

    1994-08-01

    The potential for salt splitting of sodium dominated radioactive wastes by use of a ceramic membrane is reviewed. The technical basis for considering this processing technology is derived from the technology developed for battery and chlor-alkali chemical industry. Specific comparisons are made with the commercial organic membranes which are the standard in nonradioactive salt splitting. Two features of ceramic membranes are expected to be especially attractive: high tolerance to gamma irradiation and high selectivity between sodium and other ions. The objective of the salt splitting process is to separate nonradioactive sodium from contaminated sodium salts prior to other pretreatment processes in order to: (1) concentrate the waste in order to reduce the volume of subsequent additives and capacity of equipment, (2) decrease the pH of the waste in preparation for further processing, and (3) provide sodium with very low radioactivity levels for caustic washing of sludge or low level and mixed waste vitrification

  12. Edward's sword? - A non-destructive study of a medieval king's sword

    Science.gov (United States)

    Segebade, Chr.

    2013-04-01

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  13. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary

  14. Effect of Ni-Co Ternary Molten Salt Catalysts on Coal Catalytic Pyrolysis Process

    Science.gov (United States)

    Cui, Xin; Qi, Cong; Li, Liang; Li, Yimin; Li, Song

    2017-08-01

    In order to facilitate efficient and clean utilization of coal, a series of Ni-Co ternary molten salt crystals are explored and the catalytic pyrolysis mechanism of Datong coal is investigated. The reaction mechanisms of coal are achieved by thermal gravimetric analyzer (TGA), and a reactive kinetic model is constructed. The microcosmic structure and macerals are observed by scanning electron microscope (SEM). The catalytic effects of ternary molten salt crystals at different stages of pyrolysis are analyzed. The experimental results show that Ni-Co ternary molten salt catalysts have the capability to bring down activation energy required by pyrolytic reactions at its initial phase. Also, the catalysts exert a preferable catalytic action on macromolecular structure decomposition and free radical polycondensation reactions. Furthermore, the high-temperature condensation polymerization is driven to decompose further with a faster reaction rate by the additions of Ni-Co ternary molten salt crystal catalysts. According to pyrolysis kinetic research, the addition of catalysts can effectively decrease the activation energy needed in each phase of pyrolysis reaction.

  15. Prayer as therapeutic process toward transforming destructiveness within a spiritual direction relationship.

    Science.gov (United States)

    Kuchan, Karen L

    2011-03-01

    This article will expand previous conceptualizations (Kuchan, Presence Int J Spiritual Dir 12(4):22-34, 2006; J Religion Health 47(2):263-275, 2008; J Pastoral Care Counsel, forthcoming) of what might be occurring during a prayer practice that creates space within a spiritual direction relationship for the creation of inner images that reveal a person's unconscious relational longings and co-created representations of God that seem to facilitate therapeutic process toward aliveness. In previous articles, I suggest one way to understand the prayer experience is through a lens of Winnicottian notions of transitional space, illusion, and co-creation of God images. This article expands on these ideas to include an understanding of God as Objective Other (Lewis, The four loves, 1960) interacting with a part of a person's self (Jung, in: The structure and dynamics of the psyche, collected works 8, 1934; Symington, Narcissism, a new theory, 1993) that has capacity for subjectivity (Benjamin, Like subjects, love objects: Essays on recognition and sexual difference, 1995) and co-creation (Winnicott, Home is where we start from: Essays by a psychoanalyst, 1990), of inner representations of God (Ulanov, Winnicott, god and psychic reality, 2001). I also expand on a notion of God as "Source of aliveness" by integrating an aspect of how Symington (Narcissism, a new theory, 1993) thinks about "the lifegiver," which he understands to be a mental object. After offering this theoretical expansion of the prayer practice/experience, one woman's inner representations of self and God are reflected upon in terms of a therapeutic process toward transforming destructiveness, utilizing ideas from Winnicott, Kohut, and Benjamin.

  16. Study of the pyrochemical treatment-recycling process of the Molten Salt Reactor fuel; Estudio de sistema de un proceso de tratamiento-reciclaje piroquimico del combustible de un reactor de sales fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Boussier, H.; Heuer, D.

    2010-07-01

    The Separation Processes Studies Laboratory (Commissariat a l'energie Atomique) has made a preliminary assessment of the reprocessing system associated with Molten Salt Fast Reactor (MSFR). The scheme studied in this paper is based on the principle of reductive extraction and metal transfer that constituted the core process designed for the Molten Salt Breeder Reactor (MSBR), although the flow diagram has been adapted to the current needs of the Molten Salt Fast Reactor (MSFR).

  17. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions......, In this study we compare results of analogue and numerical models of diapirs with two natural salt diapris (Klodawa and Gorleben diapirs) to explain their salt supply and asymmetric evolution. In a NW-SE section, the Gorleben salt diapir possesses an asymmetric external geometry represented by a large...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...

  18. Hydrometallurgical treatment of plutonium. Bearing salt baths waste

    International Nuclear Information System (INIS)

    Bros, P.; Gozlan, J.P.; Lecomte, M.; Bourges, J.

    1993-01-01

    The salt flux issuing from the electrorefining of plutonium metal alloy in salt baths (KCI + NaCI) poses a difficult problem of the back-end alpha waste management. An alternative to the salt process promoted by Los Alamos Laboratory is to develop a hydrometallurgical treatment. A new process based on the electrochemistry technique in aqueous solution has been defined and tested successfully in the CEA. The diagram of the process exhibits two principal steps: in the head-end, a dissolution in HNO 3 medium accompanied with an electrolytic dechlorination leading to a quantitative elimination of chloride as CI 2 gas followed by its trapping one soda lime cartridge, a complete oxidative dissolution of the refractory Pu residues by electrogenerated Ag(II), in the back-end: the Pu and Am recoveries by chromatographic extractions. (authors). 10 figs., 9 refs

  19. Criticality considerations for salt-cake disolution in DOE waste tanks

    International Nuclear Information System (INIS)

    Trumble, E.F.; Niemer, K.A.

    1995-01-01

    A large amount of high-level waste is being stored in the form of salt cake at the Savannah River site (SRS) in large (1.3 x 106 gal) underground tanks awaiting startup of the Defense Waste Processing Facility (DWPF). This salt cake will be dissolved with water, and the solution will be fed to DWPF for immobilization in borosilicate glass. Some of the waste that was transferred to the tanks contained enriched uranium and plutonium from chemical reprocessing streams. As water is added to these tanks to dissolve the salt cake, the insoluble portion of this fissile material will be left behind in the tank as the salt solution is pumped out. Because the salt acts as a diluent to the fissile material, the process of repeated water addition, salt dissolution, and salt solution removal will act as a concentrating mechanism for the undissolved fissile material that will remain in the tank. It is estimated that tank 41 H at SRS contains 20 to 120 kg of enriched uranium, varying from 10 to 70% 235 U, distributed nonuniformly throughout the tank. This paper discusses the criticality concerns associated with the dissolution of salt cake in this tank. These concerns are also applicable to other salt cake waste tanks that contain significant quantities of enriched uranium and/or plutonium

  20. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  1. Recovery of 238PuO2 by Molten Salt Oxidation Processing of 238PuO2 Contaminated Combustibles (Part II)

    Science.gov (United States)

    Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.; VanPelt, C. E.; Reimus, M. A.; Spengler, D.; Matonic, J.; Garcia, L.; Rios, E.; Sandoval, F.; Herman, D.; Hart, R.; Ewing, B.; Lovato, M.; Romero, J. P.

    2005-02-01

    Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt as the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium.

  2. Recovery of 238PuO2 by Molten Salt Oxidation Processing of 238PuO2 Contaminated Combustibles (Part II)

    International Nuclear Information System (INIS)

    Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.; VanPelt, C. E.; Reimus, M. A.; Spengler, D.; Matonic, J.; Garcia, L.; Rios, E.; Sandoval, F.; Herman, D.; Hart, R.; Ewing, B.; Lovato, M.; Romero, J. P.

    2005-01-01

    Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt as the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium

  3. DESTRUCTIVE EDUCATIONAL PRACTICES AT UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Андрей Владимирович Феоктистов

    2013-05-01

    Full Text Available The article is devoted to problems of origin and development of destructive educational practices at university. The authors focus on complex of interactions that disturb the existing in the academic environment norms and ethical principles. The most vivid evidence of destructive educational practice is the corruption issue. On the basis of the analyzed publications dealing with dynamics of corruption in the Russian higher education and the results of the survey by questionnaire, carried out at the technical university, the complex of recommendations has been prepared and suggested that is directed at minimization of destructive behavior at university.DOI: http://dx.doi.org/10.12731/2218-7405-2013-4-28

  4. Evaluation of dried salted pork ham and neck quality

    Directory of Open Access Journals (Sweden)

    Simona Kunová

    2015-12-01

    Full Text Available The aim of the present study was analysed chemical and physical parameters of dried salted pork ham and neck. Dry-cured meat is a traditional dry-cured product obtained after 12 - 24 months of ripening under controlled environmental conditions.  Ham and neck was salted by nitrite salt mixture during 1 week. Salted meat products were dried at 4 °C and relative humidity 85% 1 week after salting. The quality of dry-cured meat is influenced by the processing technology, for example length of drying and ripening period. The average moisture of dried salted pork ham was 63.77% and dried salted pork neck was 59.26%. The protein content was 24.87% in dried salted pork ham and significantly lower (20.51% in dried salted pork neck. The value of intramuscular fat in dried salted pork ham was 4.97% and 14.40% in dried salted pork neck. The salt content was 5.39% in dried salted pork ham and 4.83% in dried salted pork neck. The cholesterol content was 1.36 g.kg-1 in dried salted pork ham and significant lower in dried salted pork neck (0.60 g.kg-1. The value of lightness was 44.36 CIE L* in dried salted pork ham and significantly lower in dried salted pork neck (40.74 CIE L*. The pH value was 5.84 in dried salted pork ham and 5.80 in dried salted pork neck. The shear work was 9.99 kg.s-1 in dried salted pork ham and 6.34 in dried salted pork neck. The value of water activity (aw was 0.929 in dried salted pork ham and similar 0.921 in dried salted pork neck. 

  5. Money Creation and Destruction

    OpenAIRE

    Faure, Salomon; Gersbach, Hans

    2017-01-01

    We study money creation and destruction in today’s monetary architecture and examine the impact of monetary policy and capital regulation in a general equilibrium setting. There are two types of money created and destructed: bank deposits, when banks grant loans to firms or to other banks and central bank money, when the central bank grants loans to private banks. We show that equilibria yield the first-best level of money creation and lending when prices are flexible, regardless of the monet...

  6. Diclofenac Salts. V. Examples of Polymorphism among Diclofenac Salts with Alkyl-hydroxy Amines Studied by DSC and HSM

    Directory of Open Access Journals (Sweden)

    Adamo Fini

    2010-04-01

    Full Text Available Nine diclofenac salts prepared with alkyl-hydroxy amines were analyzed for their properties to form polymorphs by DSC and HSM techniques. Thermograms of the forms prepared from water or acetone are different in most cases, suggesting frequent examples of polymorphism among these salts. Polymorph transition can be better highlighted when analysis is carried out by thermo-microscopy, which in most cases made it possible to observe the processes of melting of the metastable form and re-crystallization of the stable one. Solubility values were qualitatively related to the crystal structure of the salts and the molecular structure of the cation.

  7. Efficiency of inductively torch plasma operating at atmospheric pressure on destruction of chlorinated liquid wastes- A path to the treatment of radioactive organic halogen liquid wastes

    International Nuclear Information System (INIS)

    Kamgang-Youbi, G; Poizot, K; Lemont, F

    2012-01-01

    The performance of a plasma reactor for the degradation of chlorinated hydrocarbon waste is reported. Chloroform was used as a target for a recently patented destruction process based using an inductive plasma torch. Liquid waste was directly injected axially into the argon plasma with a supplied power of ∼4 kW in the presence of oxygen as oxidant and carrier gas. Decomposition was performed at CHCl 3 feed rates up to 400 g·h −1 with different oxygen/waste molar ratios, chloroform destruction was obtained with at least 99% efficiency and the energy efficiency reached 100 g·kWh −1 . The conversion end products were identified and assayed by online FTIR spectroscopy (CO 2 , HCl and H 2 O) and redox titration (Cl 2 ). Considering phosgene as representative of toxic compounds, only very small quantities of toxics were released ( −1 ) even with high waste feed rates. The experimental results were very close to the equilibrium composition predicted by thermodynamic calculations. At the bottom of the reactor, the chlorinated acids were successfully trapped in a scrubber and transformed into mineral salts, hence, only CO 2 and H 2 O have been found in the final off-gases composition.

  8. Non-destructive testing: significant facts

    International Nuclear Information System (INIS)

    Espejo, Hector; Ruch, Marta C.

    2006-01-01

    In the last fifty years different organisations, both public and private, have been assigned to the mission of introducing into the country the most relevant aspects of the modern technological discipline 'Non Destructive Testing' (NDT) through a manifold of activities, such as training and education, research, development, technical assistance and services, personnel qualification/certification and standardisation. A review is given of the significant facts in this process, in which the Argentine Atomic Energy Commission, CNEA, played a leading part, a balance of the accomplishments is made and a forecast of the future of the activity is sketched. (author) [es

  9. Assessment of recovery and recrystallisation behaviours of cold rolled IF steel through non-destructive electromagnetic characterisation

    Science.gov (United States)

    Roy, Rajat K.; Dutta, Siuli; Panda, Ashis K.; Rajinikanth, V.; Das, Swapan K.; Mitra, Amitava; Strangwood, M.; Davis, Claire L.

    2018-07-01

    The recovery and recrystallisation behaviours of cold rolled IF steel have been investigated by destructive (optical microscopy and hardness) and non-destructive electromagnetic sensor, (which allows direct measurement of strip samples with no surface preparation) techniques. The onset and completion of recrystallisation are clearly monitored through destructive techniques of optical microscopy and hardness measurements. The nucleation of new recrystallised grains is observed in the sample annealed at 600 °C/15 min, while completion of recrystallisation takes place at 700 °C/15 min. The destructive techniques are not very accurate in monitoring recovery, for example, changes in hardness of accounting for ≈60% change in the coercivity value. Therefore, the measurement of magnetic softening through an electromagnetic sensor acts a crucial role for understanding recovery and recrystallisation behaviours of steels during industrial processing. The present investigation is aimed not only for controlling product quality but also saving characterisation time through off line monitoring during steel processing at industry.

  10. Development of fuel cycle technology for molten-salt reactor systems

    International Nuclear Information System (INIS)

    Uhlir, J.

    2006-01-01

    Full text: Full text: The Molten-Salt Reactor (MSR) represents one of promising advanced reactor type assigned to the GEN IV reactor systems. It can be operated either as thorium breeder within the Th -133U fuel cycle or as actinide transmuter incinerating transuranium fuel. Essentially the main advantage of MSR comes out from the prerequisite, that this reactor type should be directly connected with the 'on-line' reprocessing of circulating liquid (molten-salt) fuel. This principle should allow very effective extraction of freshly constituted fissile material (233U). Besides, the on-line fuel salt clean up is necessary within a long run to keep the reactor in operation. As a matter of principle, it permits to clear away typical reactor poisons like xenon, krypton, lanthanides etc. and possibly also other products of burned plutonium and transmuted minor actinides. The fuel salt clean up technology should be linked with the fresh MSR fuel processing to continuously refill the new fuel (thorium or transuranics) into the reactor system. On the other hand, the technologies of fresh transuranium molten-salt fuel processing from the current LWR spent fuel and of the on-line reprocessing of MSR fuel represent two killing points of the whole MSR technology, which have to be successfully solved before MSR deployment in the future. There are three main pyrochemical partitioning techniques proposed for processing and/or reprocessing of MSR fuel: Fluoride volatilization processes, Molten salt / liquid metal extraction processes and Electrochemical separation processes. Two of them - Fluoride Volatility Method and Electrochemical separation process from fluoride media are under development in the Nuclear Research Institute Rez pic. R and D in the field of Fluoride Volatility Method is concentrated to the development and verification of experimental semi-pilot technology for LWR spent fuel reprocessing, which may result in a product the form and composition of which might be

  11. Non-destructive and destructive examination of the retired North Anna 2 Reactor Pressure Vessel Head

    International Nuclear Information System (INIS)

    Ahluwalia, Kawaljit; Barnes, Robert; Rao, Gutti; Cattant, Francois; Peat, Noel

    2006-09-01

    Stress corrosion cracking of Alloy 600 and nickel-based weld materials has been the single biggest challenge facing the PWR industry. A fundamental and thorough knowledge was needed to properly explain this phenomenon and develop appropriate mitigation strategies. Non Destructive Examination (NDE) of the North Anna Unit 2 Reactor Vessel Head (RVH) during the 2002 fall outage identified widespread crack indications in the Alloy 600 CRDM penetrations and associated Alloy 182 and 82 J-groove attachment welds. When the Utility decided to replace the RVH, a rare opportunity was provided to the industry to undertake in-depth studies of representative defective CRDM penetrations from a retired RVH. Accordingly, the Materials Reliability Program, undertook a two-phase program on the retired North Anna 2 Alloy 600 RVH. The first phase involved selection and removal of six penetrations from the RVH and penetration decontamination, replication and laboratory NDE. The second phase consisted of a detailed destructive examination of penetration number 54. This paper provides a summary of work undertaken during this program. Criteria for selection of penetrations for removal and procedures used in removal of the penetrations are described. Extreme care was undertaken in decontamination of the penetrations to facilitate laboratory NDE. Penetration number 54 was then subjected to destructive examination to establish a correlation between NDE findings (from both field and laboratory inspections) and actual flaws. Additional objectives of the destructive examination included mechanistic assessment of defect formation and investigation of the annulus environment and wastage characterization. Data obtained from these studies is invaluable in validating safety assessment statements by developing the correlation between field NDE and actual defects. In addition, information gathered from non-destructive and destructive examinations is used to assess accuracy of the NDE techniques

  12. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    Science.gov (United States)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and

  13. Stress analysis of thermal sprayed coatings using a semi-destructive hole-drilling strain gauge method

    International Nuclear Information System (INIS)

    Dolhof, V.; Musil, J.; Cepera, M.; Zeman, J.

    1995-01-01

    Residual stress is an important parameter in coating technology since it often relates to the maximum coating thickness which can be deposited without spallation, and this applies to coatings produced by different thermal spray and thin film technologies. Indeed, the mechanisms by which residual stress is built up or locked into a coating depends markedly on the deposition process and coating structure (growth structure, phase composition) in the same way too. Methods for determining residual stresses in materials include both destructive and non-destructive methods. This contribution describes semi-destructive hole-drilling strain gauge method modified for measurement of residual stresses in thermal sprayed coatings. This method of stress analysis was used for determination of stress levels in thermal sprayed WC-17% Co coatings onto 13% Cr steel substrates. Results show that deposition conditions and final coating structure influence directly the residual stress level in the coatings. It is proved that semi-destructive hole-tube drilling measurement is effective reproducible method of coating stress analysis and good solution for optimization of deposition process

  14. Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases.

    Science.gov (United States)

    Calderan-Rodrigues, Maria Juliana; Jamet, Elisabeth; Douché, Thibaut; Bonassi, Maria Beatriz Rodrigues; Cataldi, Thaís Regiani; Fonseca, Juliana Guimarães; San Clemente, Hélène; Pont-Lezica, Rafael; Labate, Carlos Alberto

    2016-01-11

    Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel. One possibility is the remodeling of cell walls, by means of genetic improvement or transgenesis, in order to make the bagasse more accessible to hydrolytic enzymes. We aimed at characterizing the cell wall proteome of young sugarcane culms, to identify proteins involved in cell wall biogenesis. Proteins were extracted from the cell walls of 2-month-old culms using two protocols, non-destructive by vacuum infiltration vs destructive. The proteins were identified by mass spectrometry and bioinformatics. A predicted signal peptide was found in 84 different proteins, called cell wall proteins (CWPs). As expected, the non-destructive method showed a lower percentage of proteins predicted to be intracellular than the destructive one (33% vs 44%). About 19% of CWPs were identified with both methods, whilst the infiltration protocol could lead to the identification of 75% more CWPs. In both cases, the most populated protein functional classes were those of proteins related to lipid metabolism and oxido-reductases. Curiously, a single glycoside hydrolase (GH) was identified using the non-destructive method whereas 10 GHs were found with the destructive one. Quantitative data analysis allowed the identification of the most abundant proteins. The results highlighted the importance of using different protocols to extract proteins from cell walls to expand the coverage of the cell wall proteome. Ten GHs were indicated as possible targets for further studies in order to obtain cell walls less recalcitrant to deconstruction. Therefore, this work contributed to two goals: enlarge the coverage of the sugarcane

  15. Process for using a saturated salt hydrate solution as a heat storing material in a latent heat storage device. Anvendelse av en mettet salthydratloesning som varme-lagringsmateriale i et latent varmemagasin

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1984-06-12

    Disclosed is a process for preparing a salt composition having a phase transition heat greater than the heat capacity of water at a corresponding temperature, for charging a latent heat storage device. The process comprises the steps of providing an acid component of the salt hydrate; providing a base component of the salt hydrate, wherein at least one of the acid or base components comprises a liquid; and mixing the acid component and the base component together to cause a neutralization reaction. The acid and base components are mixed in a ratio and in respective concentrations to produce a salt hydrate solution saturated at the desired phase transition point. The claims concern the use of saturated salt hydrate solution with a certain phase transition heat produced in a particular way.

  16. Performance analysis of ventilation systems with desiccant wheel cooling based on exergy destruction

    International Nuclear Information System (INIS)

    Tu, Rang; Liu, Xiao-Hua; Hwang, Yunho; Ma, Fei

    2016-01-01

    Highlights: • Ventilation systems with desiccant wheel were analyzed from exergy destruction. • Main performances influencing factors for ventilation systems are put forward. • Improved ventilation systems with lower exergy destruction are suggested. • Performances of heat pumps driven ventilation systems are greatly increased. - Abstract: This paper investigates the performances of ventilation systems with desiccant wheel cooling from the perspective of exergy destructions. Based on the inherent influencing factors for exergy destructions of heat and mass transfer and heat sources, provide guidelines for efficient system design. First, performances of a basic ventilation system are simulated, which is operated at high regeneration temperature and low coefficient of performance (COP). Then, exergy analysis of the basic ventilation system shows that exergy destructions mainly exist in the heat and mass transfer components and the heat source. The inherent influencing factors for the heat and mass transfer exergy destruction are heat and mass transfer capacities, which are related to over dehumidification of the desiccant wheel, and unmatched coefficients, which represent the uniformity of the temperature or humidity ratio differences fields for heat and mass transfer components. Based on these findings, two improved ventilation systems are suggested. For the first system, over dehumidification is avoided and unmatched coefficients for each component are reduced. With lower heat and mass transfer exergy destructions and lower regeneration temperature, COP and exergy efficiency of the first system are increased compared with the basic ventilation system. For the second system, a heat pump, which recovers heat from the process air to heat the regeneration air, is adopted to replace the electrical heater and cooling devices. The exergy destruction of the heat pump is considerably reduced as compared with heat source exergy destruction of the basic ventilation

  17. Challenges of Non-Destructive Assay Waste Measurement

    International Nuclear Information System (INIS)

    Shull, A.H.

    2003-01-01

    Historically, the Savannah River Site (SRS) routinely produced special nuclear material (SNM), which provided stable measurement conditions for the non-destructive assay (NDA) methods. However, the main mission of SRS has changed from the production of SNM to the processing of waste and material stabilization. Currently, the purpose of processing is to recover the SNM from the waste and stabilization materials, much of which is from other DOE facilities. These missions are usually of a short duration, but require non-destructive assay (NDA) accountability measurements on materials of varying composition and geometric configuration. These missions usually have cost and time constraints, which sometimes require re-application of existing NDA methods to waste measurements. Usually, each new material or re-application of the NDA method to a different SNM campaign requires new standards and timely re-calibration of the method. These constraints provide numerous challenges for the NDA methods, particularly in the area of measurement uncertainty. This paper will discuss the challenges of these situations, mainly from a measurement and statistical point of view and provide some possible solutions to the problems encountered. Specific examples will be discussed for the segmented gamma scanner (SGS), neutron multiplicity counter (NMC) and passive neutron coincidence counter (PNCC), which are some of the most common NDA instruments at SRS

  18. Tolerance of the High Energy X-ray Imaging Technology ASIC to potentially destructive radiation processes in Earth-orbit-equivalent environments

    Science.gov (United States)

    Ryan, D. F.; Baumgartner, W. H.; Wilson, M.; Benmoussa, A.; Campola, M.; Christe, S. D.; Gissot, S.; Jones, L.; Newport, J.; Prydderch, M.; Richards, S.; Seller, P.; Shih, A. Y.; Thomas, S.

    2018-02-01

    The High Energy X-ray Imaging Technology (HEXITEC) ASIC is designed on a 0.35 μm CMOS process to read out CdTe or CZT detectors and hence provide fine-pixellated spectroscopic imaging in the range 2-200 keV. In this paper, we examine the tolerance of HEXITEC to both potentially destructive cumulative and single event radiation effects. Bare ASICs are irradiated with X-rays up to a total ionising dose (TID) of 1 Mrad (SiO2) and bombarded with heavy ions with linear energy transfer (LET) up to 88.3 MeV mg-1 cm-2. HEXITEC is shown to operate reliably below a TID of 150 krad, have immunity to fatal single event latchup (SEL) and have high tolerance to non-fatal SEL up to LETs of at least 88.3 MeV mg-1 cm-2. The results are compared to predictions of TID and SELs for various Earth-orbits and aluminium shielding thicknesses. It is found that HEXITEC's radiation tolerance to both potentially destructive cumulative and single event effects is sufficient to reliably operate in these environments with moderate shielding.

  19. Effects of Spray Drying on Physicochemical Properties of Chitosan Acid Salts

    OpenAIRE

    Cervera, Mirna Fernández; Heinämäki, Jyrki; de la Paz, Nilia; López, Orestes; Maunu, Sirkka Liisa; Virtanen, Tommi; Hatanpää, Timo; Antikainen, Osmo; Nogueira, Antonio; Fundora, Jorge; Yliruusi, Jouko

    2011-01-01

    The effects of spray-drying process and acidic solvent system on physicochemical properties of chitosan salts were investigated. Chitosan used in spray dryings was obtained by deacetylation of chitin from lobster (Panulirus argus) origin. The chitosan acid salts were prepared in a laboratory-scale spray drier, and organic acetic acid, lactic acid, and citric acid were used as solvents in the process. The physicochemical properties of chitosan salts were investigated by means of solid-state CP...

  20. Non-destructive measurement technologies for nuclear safeguards

    International Nuclear Information System (INIS)

    Gavron, A.

    1998-04-01

    There are three aspects that need to be in place in order to maintain a valid safeguards system: (1) Physical protection; guarding the access to nuclear materials using physical protection and surveillance. (2) Accounting systems; computer based accounting systems that provide the current location of nuclear materials, quantities, and the uncertainty in the assayed values. (3) Measurement systems; detectors, data acquisition systems and data analysis methods that provide accurate assays of nuclear material quantities for the accounting system. The authors expand on this third aspect, measurement systems, by discussing nondestructive assay (NDA) techniques. NDA is defined as the quantitative or qualitative determination of the kind and/or amount of nuclear material in an item without alteration or invasion of the item. This is contrasted with destructive analysis which is the process of taking small samples from the item in question, analyzing those samples by chemical analysis, destroying the original nature of the samples in the process (hence the term destructive), and applying the results to the entire item. Over the past 30 years, numerous techniques, using the atomic and nuclear properties of the actinides, have been developed for reliable, rapid, accurate, and tamper-proof NDA of nuclear materials. The authors distinguish between two types of measurements: the first involving the detection of spontaneously emitted radiation, produced by the natural radioactive decay processes; the second involving the detection of induced radiation, produced by irradiating the sample with an external radiation source

  1. Collision-induced destructive quantum interference

    International Nuclear Information System (INIS)

    Yang Xihua; Sun Zhenrong; Zhang Shi'an; Ding Liang'en; Wang Zugeng

    2005-01-01

    We conduct theoretical studies on the collision-induced destructive quantum interference of two-colour two-photon transitions in an open rhomb-type five-level system with a widely separated doublet by the density matrix approach. The effects of the collision-induced decay rates, the ratio of the transition dipole moments and the energy separation of the doublet on the interference are analysed. It is shown that a narrow dip appears in the excitation spectrum due to the collision-induced destructive interference, and that the narrow interference dip still exists even when the collision broadening is comparable to the energy separation of the doublet. The physical origin of the collision-induced destructive quantum interference is analysed in the dressed-atom picture

  2. Corrosion Behavior of Superalloys in Hot Lithium Molten Salt

    International Nuclear Information System (INIS)

    Cho, Soo-Haeng; Hur, Jin-Mok; Seo, Chung-Seok; Park, Seoung-Won

    2006-01-01

    The Li-reduction process involves the chemical reduction of spent fuel oxides by liquid lithium metal in a molten LiCl salt bath at 650 .deg. C followed by a separate electrochemical reduction of lithium oxide (Li 2 O), which builds up in the salt bath. This process requires a high purity inert gas atmosphere inside remote hot cell nuclear facility to prevent unwanted Li oxidation and fires during the handling of chemically active Li metal. In light of the limitations of the Li-reduction process, a direct electrolytic reduction technology is being developed by KAERI to enhance process safety and economic viability. The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Even so, the electrochemical process vessel must be resilient at ∼ 650 .deg. C in the presence of oxygen to enable high processing rates and an extended service life. But, the mechanism and the rate of the corrosion of metals in LiCl-Li 2 O molten salt under oxidation condition are not clear. In the present work, the corrosion behavior and corrosion mechanism of superalloys have been studied in the molten salt of LiCl-Li 2 O under oxidation condition

  3. Where Does Road Salt Go - a Static Salt Model

    Science.gov (United States)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  4. The use of preservatives consist of green tea, piper betel and potassium sorbate on boiled salted fish processing

    Science.gov (United States)

    Ariyani, F.; Hermana, I.; Hidayah, I.

    2018-03-01

    The main problem in boiled salted fish ikan pindang is mucus and mold on the surface of the fish which is produced relatively fast as well as the high level of histamine content especially when scombroid fish species are used as raw material. This study was performed to evaluate the effectiveness of various preservatives to overcome such problems. Three combinations of preservatives P1 (green tea and sorbate), P3 (green tea, piper betel, sorbate), P4 (green tea and piper betel) and P0 (no preservative/control) resulted from the previous study were used in this study. Before being used, the preservatives were tested against deteriorating microorganisms commonly found in boiled salted products, of which the result showed that all microorganisms were inhibited. The preservatives were then applied at three different stages of the process of boiled salted fish, i.e. before boiling, during boiling and after boiling. Sensory attributes and microbial characteristics of the products were then evaluated. The results showed that the performance of all tested preservatives against deteriorating microorganisms was relatively similar. It was also shown that the application before and during boiling performed better.

  5. Temporal dynamics of flooding, evaporation, and desiccation cycles and observations of salt crust area change at the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Bowen, Brenda B.; Kipnis, Evan L.; Raming, Logan W.

    2017-12-01

    The Bonneville Salt Flats (BSF) in Utah is a dynamic saline playa environment responding to natural and anthropogenic forces. Over the last century, the saline groundwater from below BSF has been harvested to produce potash via evaporative mining, mostly used as agricultural fertilizers, while the surface halite crust has provided a significant recreational site for land speed racing. Perceptions of changes in the salt crust through time have spurred debates about land use and management; however, little is known about the timescales of natural change as the salt crust responds to climatic parameters that drive flooding, evaporation, and desiccation (FED) cycles that control surface salt growth and dissolution. Climate data over the last 30 years are examined to identify annual patterns in surface water balance at BSF to identify annual and seasonal climate constraints on FED cycles. Landsat satellite data from 1986 to the present are used to map the areal extent of the surface halite salt crust at BSF at the end of the desiccation season (between August 15 and October 30) annually. Overall, the observed area of the desiccation-stage BSF halite crust has varied from a maximum of 156 km2 in 1993 to a minimum of 72 km2 in 2014 with an overall trend of declining area of halite observed over the 30 years of analysis. Climatic variables that influence FED cycles and seasonal salt dissolution and precipitation have also varied through this time period; however, the relationship between surface water fluxes and salt crust area do not clearly correlate, suggesting that other processes are influencing the extent of the salt. Intra-annual analyses of salt area and weather illustrate the importance of ponded surface water, wind events, and microtopography in shaping a laterally extensive but thin and ephemeral halite crust. Examination of annual to decadal changes in salt crust extent and environmental parameters at BSF provides insights into the processes driving change and

  6. Salt evaporation behaviors of uranium deposits from an electrorefiner

    International Nuclear Information System (INIS)

    Sung Bin Park; Dong Wook Cho; Gyu Hwan Oh; Sung Chan Hwang; Young Ho Kang; Hansoo Lee; Eung Ho Kim; Seong-Won Park; Jong Hyeon Lee

    2010-01-01

    From an electrorefining process, uranium deposits were recovered at the solid cathode of an electrorefining system. The uranium deposits from the electrorefiner contained about 30-40 wt% salts. In order to recover pure uranium and transform it into metal ingots, these salts have to be removed. A salt distiller was adapted for a salt evaporation. A batch operation for the salt removal was carried out by a heating and a vacuum evaporation. The operational conditions were a 700-1,000 deg C hold temperature and less than a 1 Torr under Argon atmosphere, respectively. The behaviors of the salt evaporations were investigated by focusing on the effects of the pressure and the holding temperature for the salt distillation. The removal efficiencies of the salts were obtained with regard to the operational conditions. The experimental results of the salt evaporations were evaluated by using the Hertz-Langmuir relation. The effective evaporation coefficients of this relation were obtained with regards to the vacuum pressures and the hold temperatures. The higher the vacuum pressure and the higher the holding temperature were, the higher the removal efficiencies of the salts were. (author)

  7. Elaboration process, chemical and sensory analyses of fried-salted soybean

    Directory of Open Access Journals (Sweden)

    Gayol, María F.

    2010-09-01

    Full Text Available The purpose of this work was to develop an elaboration process of fried-salted soybean and to determine the chemical composition, consumer acceptance and sensory description of the product. Different fried-salted soybean products were obtained under different temperature and time conditions by maceration in water, roasting and frying. Four of the best products were selected and evaluated by consumers (overall, color and texture acceptances: FSS1, FSS2, FSS3 and FSS4. The product with the highest consumer acceptance (7 = “like moderately” in a hedonic scale of 9 points was the one obtained by maceration at 100°C during 10 min and fried at 170°C for 5 min (FSS3. Proximate and fatty acid composition along with sensory attribute intensity ratings from descriptive analyses were determined on the fried-salted soybean with the highest consumer acceptance (FSS3. Proximate and fatty acid composition were also determined in raw soybeans. FSS3 had lower percentages of moisture and proteins, and higher lipids and carbohydrates than raw soybean. The use of sunflower oil in the frying process improved the fatty acid composition of the soybean product. Sensory attributes from descriptive analyses that were detected in high intensity ratings for the product were roasted, salty, crunchiness, hardness, brown color and gloss. This product is neither commonly consumed nor easily available in markets. It could be promoted to be consumed as a snack because of its high nutritional and sensory quality.

    El propósito de este trabajo fue desarrollar un proceso de elaboración de soja frita salada, determinar la composición química, la aceptabilidad por consumidores y la descripción sensorial del producto. Diferentes productos de soja frita salada fueron obtenidos bajo diferentes condiciones de temperatura y tiempo de: maceración, tostado y fritura. Los consumidores evaluaron y seleccionaron los cuatro mejores productos, los que presentaron mayor aceptaci

  8. Laboratory simulation of salt dissolution during waste removal

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    Laboratory experiments were performed to support the field demonstration of improved techniques for salt dissolution in waste tanks at the Savannah River Site. The tests were designed to investigate three density driven techniques for salt dissolution: (1) Drain-Add-Sit-Remove, (2) Modified Density Gradient, and (3) Continuous Salt Mining. Salt dissolution was observed to be a very rapid process as salt solutions with densities between 1.38-1.4 were frequently removed. Slower addition and removal rates and locating the outlet line at deeper levels below the top of the saltcake provided the best contact between the dissolution water and the saltcake. It was observed that dissolution with 1 M sodium hydroxide solution resulted in salt solutions that were within the current inhibitor requirements for the prevention of stress corrosion cracking. This result was independent of the density driven technique. However, if inhibited water (0.01 M sodium hydroxide and 0.011 M sodium nitrite) was utilized, the salt solutions were frequently outside the inhibitor requirements. Corrosion testing at conditions similar to the environments expected during waste removal was recommended

  9. Method for making a Pellet-type LiCl-KCl-UCl{sub 3} SALT

    Energy Technology Data Exchange (ETDEWEB)

    Woo, M. S.; JIN, H. J.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A pyrometallurgical partitioning technology to recover uranium from a uranium-TRU mixture which is the product material of electroreduction system is being developed at KAERI since 1997. In the process, the reactor of an electrorefiner consists of the electrodes and the molten chloride salt which is LiCl-KCl-UCl{sub 3}. The role of uranium chloride salt (UCl{sub 3}) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form CdCl{sub 2} occurring in a Cd layer, followed by a process to produce UCl{sub 3} by the reaction of U in the LiCl-KCl eutectic salt and CdCl{sub 2} The apparatus for producing UCl{sub 3} consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of a pelletizer by a transfer system to make a pellet type salt

  10. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Allison, C A

    1906-05-22

    The invention relates to an apparatus in which the destructive distillation or coking of coal, peat, shale, etc., is carried out by means of a current of hot gases at a temperature of 700--800/sup 0/F., as described in Specification No. 11,925, A.D. 1906.

  11. Effects of Current Guides Destruction at Ultra-fast Acceleration of Macrobodies

    Science.gov (United States)

    Kataev, V. N.; Boriskin, A. S.; Golosov, S. N.; Demidov, V. A.; Klimashov, M. V.; Korolev, P. V.; Makartsev, G. F.; Pikar, A. S.; Russkov, A. S.; Shapovalov, E. V.; Shibitov, Yu. M.

    2006-08-01

    The paper is devoted to discussion of current guides destruction effects in different accelerators: thermal-electric and electro-magnetic rail accelerator at macrobodies acceleration value of 108-109 m/s2. Experimental results with thermal-electric accelerators powering from megajoule capacitor battery and helical magneto-cumulative generator MCG-100 at currents up to 3.5 MA are analyzed. The process of rails destruction at railgun at pressure magnetic field excess over the limit of metal fluidity is presented. Methods of efficiency coefficient increase of capacitive storage energy transmission to kinetic energy of accelerating body are discussed.

  12. DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS

    International Nuclear Information System (INIS)

    Eibling, R

    2008-01-01

    The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based upon the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by use of aluminate as the Al source) appears to trap additional salts in the simulant in a manner similar to that expected for actual waste samples. (4) Alternative compositions are possible with higher oxalate levels and lower carbonate levels. (5) The maximum oxalate level is limited by the required Na content of the insoluble solids. (6) Periodic mixing may help to limit crystal growth in this type of salt simulant. (7) Long term storage of an insoluble salt simulant is likely to produce a material that can not be easily removed from the storage container. Production of a relatively fresh simulant is best if pumping the simulant is necessary for testing purposes. The insoluble

  13. Chemical and physical parameters of dried salted pork meat

    Directory of Open Access Journals (Sweden)

    Petronela Cviková

    2016-07-01

    Full Text Available The aim of the present study was analysed and evaluated chemical and physical parameters of dried salted pork neck and ham. Dried salted meat is one of the main meat products typically produced with a variety of flavors and textures. Neck (14 samples and ham (14 samples was salted by nitrite salt mixture during 1week. The nitrite salt mixture for salting process (dry salting was used. This salt mixture contains: salt, dextrose, maltodextrin, flavourings, stabilizer E316, taste enhancer E621, nitrite mixture. The meat samples were dried at 4 °C and relative humudity 85% after 1 week salting. The weight of each sample was approximately 1 kg. After salting were vacuum-packed and analysed after 1 week. The traditional dry-cured meat such as dry-cured ham and neck obtained after 12 - 24 months of ripening under controlled conditions. The average protein content was significantly (p <0.001 lower in dried pork neck in comparison with dried salted pork ham. The average intramuscular fat was significantly (p <0.001 lower in dried pork ham in comparison with dried salted pork neck. The average moisture was significantly lower (p ≤0.05 in dried salted ham in comparison with dried pork neck. The average pH value was 5.50 in dried salted pork ham and 5.75 in dried salted pork neck. The content of arginine, phenylalanine, isoleucine, leucine and threonine in dried salted ham was significantly lower (p <0.001 in comparison with dried salted pork neck. The proportion of analysed amino acids from total proteins was 56.31% in pork salted dried ham and 56.50% in pork salted dried neck.  Normal 0 21 false false false EN-GB X-NONE X-NONE Normal 0 21 false false false SK X-NONE X-NONE

  14. Savannah River Site - Salt-stone Disposal Facility Performance Assessment Update

    International Nuclear Information System (INIS)

    Newman, J.L.

    2009-01-01

    The Savannah River Site (SRS) Salt-stone Facility is currently in the midst of a Performance Assessment revision to estimate the effect on human health and the environment of adding new disposal units to the current Salt-stone Disposal Facility (SDF). These disposal units continue the ability to safely process the salt component of the radioactive liquid waste stored in the underground storage tanks at SRS, and is a crucial prerequisite for completion of the overall SRS waste disposition plan. Removal and disposal of low activity salt waste from the SRS liquid waste system is required in order to empty tanks for future tank waste processing and closure operations. The Salt-stone Production Facility (SPF) solidifies a low-activity salt stream into a grout matrix, known as salt-stone, suitable for disposal at the SDF. The ability to dispose of the low-activity salt stream in the SDF required a waste determination pursuant to Section 3116 of the Ronald Reagan National Defense Authorization Act of 2005 and was approved in January 2006. One of the requirements of Section 3116 of the NDAA is to demonstrate compliance with the performance objectives set out in Subpart C of Part 61 of Title 10, Code of Federal Regulations. The PA is the document that is used to ensure ongoing compliance. (authors)

  15. Verification of Chemical Weapons Destruction

    International Nuclear Information System (INIS)

    Lodding, J.

    2010-01-01

    The Chemical Weapons Convention is the only multilateral treaty that bans completely an entire category of weapons of mass destruction under international verification arrangements. Possessor States, i.e. those that have chemical weapons stockpiles at the time of becoming party to the CWC, commit to destroying these. All States undertake never to acquire chemical weapons and not to help other States acquire such weapons. The CWC foresees time-bound chemical disarmament. The deadlines for destruction for early entrants to the CWC are provided in the treaty. For late entrants, the Conference of States Parties intervenes to set destruction deadlines. One of the unique features of the CWC is thus the regime for verifying destruction of chemical weapons. But how can you design a system for verification at military sites, while protecting military restricted information? What degree of assurance is considered sufficient in such circumstances? How do you divide the verification costs? How do you deal with production capability and initial declarations of existing stockpiles? The founders of the CWC had to address these and other challenges in designing the treaty. Further refinement of the verification system has followed since the treaty opened for signature in 1993 and since inspection work was initiated following entry-into-force of the treaty in 1997. Most of this work concerns destruction at the two large possessor States, Russia and the United States. Perhaps some of the lessons learned from the OPCW experience may be instructive in a future verification regime for nuclear weapons. (author)

  16. Overview of ONWI'S Salt site selection program

    International Nuclear Information System (INIS)

    Madia, W.J.

    1983-01-01

    In the past year, activities in the salt site selection program of the Office of Nuclear Waste Isolation (ONWI) have focused on narrowing the number and size of areas under consideration as candidate repository sites. The progressive focusing is illustrated. Bedded salt, in the Permian Basin of West Texas and the Paradox Basin of Utah, and salt domes in the Gulf Coast Salt Dome Region (including parts of East Texas, Louisiana, and Mississippi) have been the subjects of geologic, environmental, and socioeconomic characterization of progressively greater detail as the screening process has proceeded. Detailed, field-oriented research and testing have superceded broad-based studies relying heavily on literature and other existing data. Coinciding with the increased field activities has been the publication of results and recommendations resulting from earlier program efforts

  17. Molten salt fueled reactors with a fast salt draining

    International Nuclear Information System (INIS)

    Ventre, Edmond; Blum, J.M.

    1976-01-01

    This invention relates to a molten salt nuclear reactor which comprises a new arrangement for shutting it down in complete safety. This nuclear reactor has a molten salt primary circuit comprising, in particular, the core of this reactor. It includes a leak tight vessel the capacity of which is appreciably greater than that of the molten salt volume of the circuit and placed so that the level of the molten salt, when all the molten salt of the circuit is contained in this vessel, is less than that of the base of the core. There are facilities for establishing and maintaining an inert gas pressure in the vessel above the molten salt, for releasing the compressed gas and for connecting the vessel to the primary circuit entering this vessel at a lower level than that of the molten salt and enabling molten salt to enter or leave the vessel according to the pressure of the inert gas. The particular advantage of this reactor is that it can be shut down safely since the draining of the primary circuit no longer results from a 'positive action' but from the suppression of an arrangement essential for the operation of the reactor consisting of the build-up of the said inert gas pressure in the said vessel [fr

  18. Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies.

    Science.gov (United States)

    Zhang, Ran; Duan, Xiaozheng; Ding, Mingming; Shi, Tongfei

    2018-06-05

    The diffusion of salt ions and charged probe molecules in polyelectrolyte assemblies is often assumed to follow a theoretical hopping model, in which the diffusing ion is hopping between charged sites of chains based on electroneutrality. However, experimental verification of diffusing pathway at such microscales is difficult, and the corresponding molecular mechanisms remain elusive. In this study, we perform all-atom molecular dynamics (MD) simulations of salt diffusion in polyelectrolyte (PE) assembly of poly (sodium 4-styrenesulfonate) (PSS) and poly (diallyldimethylammonium chloride) (PDAC). Besides the ion hopping mode, the diffusing trajectories are found presenting common features of a jump process, i.e., subjecting to PE relaxation, water pockets in the structure open and close, thus the ion can move from one pocket to another. Anomalous subdiffusion of ions and water is observed due to the trapping scenarios in these water pockets. The jump events are much rarer compared with ion hopping but significantly increases salt diffusion with increasing temperature. Our result strongly indicates that salt diffusion in hydrated PDAC/PSS is a combined process of ion hopping and jump motion. This provides new molecular explanation for the coupling of salt motion with chain motion and the nonlinear increase of salt diffusion at glass transition temperature.

  19. Process for treating the dialyzed spent liquor from sulphonic acid containing sulfur minerals or tar oils or ammonium salts

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, E A

    1936-08-09

    Process for working up the dialyzate from sulfonic acid, sulfur-containing mineral or tar oils, or their ammonium salts, characterized by the combination of known steps, in the dialyzate being reacted with alkaline-earth oxide, hydroxide, or carbonate, and the resulting slightly soluble sulfate being filtered off and evaporated if necessary.

  20. Salt impact studies at WIPP effects of surface storage of salt on microbial activity

    International Nuclear Information System (INIS)

    Rodriguez, A.L.

    1988-01-01

    The Waste Isolation Pilot Plant (WIPP) currently under construction in southeastern New Mexico is a research and development facility to demonstrate the safe disposal of transuranic waste in a deep geological formation (bedded salt). The Ecological Monitoring Program at WIPP is designed to detect and measure changes in the local ecosystem which may be the result of WIPP construction activities. The primary factor which may affect the system prior to waste emplacement is windblown salt from discrete stockpiles. Both vegetation and soil microbial processes should reflect changes in soil chemistry due to salt importation. Control and experimental (potentially affected) plots have been established at the site, and several parameters are measured quarterly in each plot as part of the soil microbial sampling subprogram. This subprogram was designed to monitor a portion of the biological community which can be affected by changes in the chemical properties at the soil surface

  1. The forms of destructive behavior in the workplace

    Directory of Open Access Journals (Sweden)

    D A Narozhnaia

    2015-12-01

    Full Text Available Personnel have become a key resource of organizations in the contemporary society for the way personnel fulfills its work functions can provide important advantages in the competitive market. However, despite the fact that organizations’ management pays great attention to the development of the constructive forms of work behavior, various forms of destructive behavior in the workplace are quite widespread nowadays. The author uses the concept “destructive labor behavior” to denote such observable actions of employees that hinder achieving organizations’ aims and entail negative consequences. The article analyzes relationships between concepts “destructive labor behavior”, “social behavior” and “organizational behavior”; identifies the most common types of destructive labor behavior, such as absenteeism, theft, sabotage, lowered labor activity, and their key features; considers their negative consequences, such as decreased production, decline in the quality of products or services, conflicts in the team, tensions between workers and employers; analyzes different classifications of the destructive forms of labor behavior. The author concludes that we need a general classification of the destructive forms of labor behavior based on their grouping on three grounds: the essence of the negative consequences of the destructive behavior; the violated legal norms; the causes of the destructive behavior. Moreover, the article identifies three groups of organizational factors that can generate destructive forms of labor behavior - production factors (content, organization and conditions of work, social factors (group relations and psychological (personal characteristics of employees - and provides recommendations to reduce their impact on the organization.

  2. IODINE CONCENTRATION IN SALT AT HOUSEHOLD AND RETAIL ...

    African Journals Online (AJOL)

    hi-tech

    2003-10-10

    Oct 10, 2003 ... of shop salt samples have iodine levels below the minimum standard set by the Quality and. Standard Authority of Ethiopia. ... process towards meeting the goal of IDD elimination. Universal salt iodization (USI) is .... study populations was Oromo accounting for 155(51.8%) and 10(30.3%) in the household ...

  3. Dynamics of prolonged salt movement in the Glückstadt Graben (NW Germany) driven by tectonic and sedimentary processes

    Science.gov (United States)

    Warsitzka, Michael; Kley, Jonas; Jähne-Klingberg, Fabian; Kukowski, Nina

    2017-01-01

    The formation of salt structures exerted a major influence on the evolution of subsidence and sedimentation patterns in the Glückstadt Graben, which is part of the Central European Basin System and comprises a post-Permian sediment thickness of up to 11 km. Driven by regional tectonics and differential loading, large salt diapirs, salt walls and salt pillows developed. The resulting salt flow significantly influenced sediment distribution in the peripheral sinks adjacent to the salt structures and overprinted the regional subsidence patterns. In this study, we investigate the geometric and temporal evolution of salt structures and subsidence patterns in the central Glückstadt Graben. Along a key geological cross section, the post-Permian strata were sequentially decompacted and restored in order to reconstruct the subsidence history of minibasins between the salt structures. The structural restoration reveals that subsidence of peripheral sinks and salt structure growth were initiated in Early to Middle Triassic time. From the Late Triassic to the Middle Jurassic, salt movement and salt structure growth never ceased, but were faster during periods of crustal extension. Following a phase from Late Jurassic to the end of the early Late Cretaceous, in which minor salt flow occurred, salt movement was renewed, particularly in the marginal parts of the Glückstadt Graben. Subsidence rates and tectonic subsidence derived from backstripping of 1D profiles reveal that especially the Early Triassic and Middle Keuper times were periods of regional extension. Three specific types of salt structures and adjacent peripheral sinks could be identified: (1) Graben centre salt walls possessing deep secondary peripheral sinks on the sides facing away from the basin centre, (2) platform salt walls, whose main peripheral sinks switched multiple times from one side of the salt wall to the other, and (3) Graben edge pillows, which show only one peripheral sink facing the basin centre.

  4. Recovery of Residual LiCl-KCl Eutectic Salts in Radioactive Rare Earth Precipitates

    International Nuclear Information System (INIS)

    Eun, Hee Chul; Yang, Hee Chul; Kim, In Tae; Lee, Han Soo; Cho, Yung Zun

    2010-01-01

    For the pyrochemical process of spent nuclear fuels, recovery of LiCl-KCl eutectic salts is needed to reduce radioactive waste volume and to recycle resource materials. This paper is about recovery of residual LiCl-KCl eutectic salts in radioactive rare earth precipitates (rare earth oxychlorides or oxides) by using a vacuum distillation process. In the vacuum distillation test apparatus, the salts in the rare earth precipitates were vaporized and were separated effectively. The separated salts were deposited in three positions of the vacuum distillation test apparatus or were collected in the filter and it is difficult to recover them. To resolve the problem, a vacuum distillation and condensation system, which is subjected to the force of a temperature gradient at a reduced pressure, was developed. In a preliminary test of the vacuum distillation/condensation recovery system, it was confirmed that it was possible to condense the vaporized salts only in the salt collector and to recover the condensed salts from the salt collector easily

  5. A study with high resolution computed tomography of bone destruction in cholesteatoma

    International Nuclear Information System (INIS)

    Kikuchi, Shigeru; Yamaso, Tatsuya; Higo, Ryusaburo; Senba, Tetsuo; Iinuma, Yoshitaka.

    1992-01-01

    The modes and incidences of bone destruction in the middle ear cholesteatoma were evaluated by high resolution computed tomography, comparing with chronic otitis media with central perforation (COM) as control. The head of the malleus, the body and long process of the incus were more markedly destroyed in cholesteatoma than in COM with statistical significance. With the further extension of cholesteatoma into the antrum, the tegmen of the aditus ad antrum, the lateral semicircular canal, the handle of the malleus and the Korner's septum were involved in bone destruction. (author)

  6. Photobleachable Diazonium Salt-Phenolic Resin Two-Layer Resist System

    Science.gov (United States)

    Uchino, Shou-ichi; Iwayanagi, Takao; Hashimoto, Michiaki

    1988-01-01

    This article describes a new negative two-layer photoresist system formed by a simple, successive spin-coating method. An aqueous acetic acid solution of diazonium salt and poly(N-vinylpyrrolidone) is deposited so as to contact a phenolic resin film spin-coated on a silicon wafer. The diazonium salt diffuses into the phenolic resin layer after standing for several minutes. The residual solution on the phenolic resin film doped with diazonium salt is spun to form the diazonium salt-poly(N-vinylpyrrolidone) top layer. This forms a uniform two-layer resist without phase separation or striation. Upon UV exposure, the diazonium salt in the top layer bleaches to act as a CEL dye, while the diazonium salt in the bottom layer decomposes to cause insolubilization. Half μm line-and-space patterns are obtained with an i-line stepper using 4-diazo-N,N-dimethylaniline chloride zinc chloride double salt as the diazonium salt and a cresol novolac resin for the bottom polymer layer. The resist formation processes, insolubilization mechanism, and the resolution capability of the new two-layer resist are discussed.

  7. Emulsifying salt increase stability of cheese emulsions during holding

    DEFF Research Database (Denmark)

    Hougaard, Anni Bygvrå; Sijbrandij, Anna G.; Varming, Camilla

    2015-01-01

    In cheese powder production, cheese is mixed and melted with water and emulsifying salt to form an emulsion (cheese feed) which is required to remain stable at 60°C for 1h and during further processing until spray drying. Addition of emulsifying salts ensures this, but recent demands for reduction...... of sodium and phosphate in foods makes production of cheese powder without or with minimal amounts of emulsifying salts desirable. The present work uses a centrifugation method to characterize stability of model cheese feeds. Stability of cheese feed with emulsifying salt increased with holding time at 60°C......, especially when no stirring was applied. No change in stability during holding was observed in cheese feeds without emulsifying salt. This effect is suggested to be due to continued exerted functionality of the emulsifying salt, possibly through reorganizations of the mineral balance....

  8. Effect of water in salt repositories. Final report

    International Nuclear Information System (INIS)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ΔP rather than sigma ΔP 2 (sigma is the uniaxial stress normal to the interface and ΔP is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model

  9. Effect of water in salt repositories. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  10. 7 CFR 160.9 - Destructively distilled wood turpentine.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Destructively distilled wood turpentine. 160.9 Section... REGULATIONS AND STANDARDS FOR NAVAL STORES General § 160.9 Destructively distilled wood turpentine. The designation “destructively distilled wood turpentine” shall refer to the kind of spirits of turpentine...

  11. Kinetics study of thermal decomposition of calcium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2013-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (calcium acetate, and two types of mixed calcium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for calcium acetate was 556.75 kJ mol −1 , and the activation energies for the two mixed calcium carboxylate salts were 232.87, and 176.55 kJ mol −1 . In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak–Berggren model provides the best universal fit for all three salt types. -- Highlights: •Calcium carboxylate salts from fermentation broth thermally decompose to ketones. •Activation energy varies with conversion for all three salt types. •Sestak–Berggren model provides best fit overall for all three salt types

  12. Kinetics study of thermal decomposition of sodium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2012-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (sodium acetate, and two types of mixed sodium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for sodium acetate was 226.65 kJ/mol, and the activation energies for the two mixed sodium carboxylate salts were 195.61, and 218.18 kJ/mol. In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak-Berggren model fits all three salt types best. -- Highlights: ► Sodium carboxylate salts from fermentation broth thermally decompose to ketones. ► Activation energy varies with conversion for all three salt types. ► Sestak-Berggren model provides best fit for all three salt types.

  13. Development of electrowinner and salt regenerator for PRIDE

    Energy Technology Data Exchange (ETDEWEB)

    Paek, S. W.; Lee, H. S.; Hur, J. M. [KAERI, Daejeon (Korea, Republic of); and others

    2011-11-15

    A scope of this study includes an manufacturing an electrowinning equipment of LCC(Liquid Cadmium Cathode) to recover actinides such as uranium and TRU(Np, Pu, Am, Cm) remained in the molten salt(LiCl-KCl) transferred after an electrorefining process which collects uranium of high purity and an salt regeneration equipment to remove RE(Rare Earth) from the remaining salt after electrowinning process by oxidation and precipitation. The design capacity to recover actinide metals for PRIDE electrowinner was determined to 1 kg/batch and the amount of cadmium and LiCl-KCl eutectic salt were 10 kg and 50 kg, respectively. The equipment was designed based on the operation experiences of lab-scale LCC apparatus but the concepts of remote operation were introduced. PRIDE scale oxidative precipitation precipitation apparatus whose maximum batch size is 20kg-salt/batch was designed and installed. It consists of four parts: oxidation reactor, oxygen sparing unit, flange moving device and crucible unit. To avoid a severe corrosion problem due to a high temperature, oxygen and chloride salt atmosphere, the oxidation reaction is conducted in an 100% Ta crucible. A 3D test was conducted to review the possibility of the remote operation for the equipment and the test results were applied to the design improvement. The mock-up equipment were prepared on the basis of 3D test results and after the test of remote operation, the final equipment for PRIDE were manufactured.

  14. Direct chemical oxidation: a non-thermal technology for the destruction of organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, G.B.; Cooper, J. F.; Lewis, P. R.; Adamson, M. G.

    1998-02-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment and chemical demilitarization and decontamination at LLNL since 1992, and is applicable to the destruction of virtually all solid or liquid organics, including: chlorosolvents, oils and greases, detergents, organic-contaminated soils or sludges, explosives, chemical and biological warfare agents, and PCB's. [1-15] The process normally operates at 80-100 C, a heating requirement which increases the difficulty of surface decontamination of large objects or, for example, treatment of a wide area contaminated soil site. The driver for DCO work in FY98 was thus to investigate the use of catalysts to demonstrate the effectiveness of the technology for organics destruction at temperatures closer to ambient. In addition, DCO is at a sufficiently mature stage of development that technology transfer to a commercial entity was a logical next step, and was thus included in FY98 tasks.

  15. Electrodialysis-ion exchange for the separation of dissolved salts

    Energy Technology Data Exchange (ETDEWEB)

    Baroch, C.J. [Wastren, Inc., Westminster, CO (United States); Grant, P.J. [Wastren, Inc., Hummelstown, PA (United States)

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  16. Method for converting UF5 to UF4 in a molten fluoride salt

    International Nuclear Information System (INIS)

    Bennett, M.R.; Bamberge, C.E.; Kelmers, A.D.

    1980-01-01

    The subject relates to fuel preparation for molten salt breeder reactors, and more particularly to the reconstitution of spent molten fuel salt after fission product removal. During the course of reactor operation, fission products including rare earths and bred-in protactinium build up in the fuel salt and adversely affect the nuclear properties of the fuel. In order to more efficiently operate the reactor, the level of neutron poison fission products must be kept at a minimum. This is accomplished by continuously removing spent fuel from the primary circuit, processing it to remove fission products, and returning the reprocessed molten salt to the primary circuit. It is desirable for safety and economy that the fuel processing plant be a component of the reactor itself and that the salt be kept in the molten state throughout the processing system. (auth)

  17. Electrochemical destruction of nitrosamines

    Energy Technology Data Exchange (ETDEWEB)

    Lejen, T; Volchek, K; Ladanowski, C; Velicogna, D; Whittaker, H [Environment Canada, Ottawa, ON (Canada). Emergencies Engineering Div.

    1996-09-01

    Treatment conditions for the electrolytic destruction of nitrosamines were studied. The joint investigation between Canada and the Ukraine was part of an assessment of hazardous contaminants at former Soviet ICBM missile sites. The electrochemical destruction of N-dimethylnitrosamines (NDMA) on carbon/platinum electrodes was studied under basic and acidic conditions by UV spectroscopy, gas chromatography, mass spectroscopy, and colorimetry. Experiments with a 100 ppm NDMA solution showed that electrolytic-reduction was pH sensitive within a range of pH 0.5 to 4.0. Electrolysis was effective for the reduction of NDMA in strong acidic conditions. 30 refs., 1 tab., 4 figs.

  18. Non-destructive system to evaluate critical properties of asphalt compaction : [research brief].

    Science.gov (United States)

    2013-12-01

    The Wisconsin Highway Research Program sponsored a two-stage investigation to develop a non-destructive system to evaluate critical compaction properties and characteristics of asphalt pavements during the densification process. Stage One activities ...

  19. Optogenetic Inhibition of Ventral Pallidum Neurons Impairs Context-Driven Salt Seeking.

    Science.gov (United States)

    Chang, Stephen E; Smedley, Elizabeth B; Stansfield, Katherine J; Stott, Jeffrey J; Smith, Kyle S

    2017-06-07

    Salt appetite, in which animals can immediately seek out salt when under a novel state of sodium deprivation, is a classic example of how homeostatic systems interface with learned associations to produce an on-the-fly updating of motivated behavior. Neural activity in the ventral pallidum (VP) has been shown to encode changes in the value of salt under such conditions, both the value of salt itself (Tindell et al., 2006) and the motivational value of its predictive cues (Tindell et al., 2009; Robinson and Berridge, 2013). However, it is not known whether the VP is necessary for salt appetite in terms of seeking out salt or consuming salt following sodium depletion. Here, we used a conditioned place-preference procedure to investigate the effects of optogenetically inhibiting the VP on context-driven salt seeking and the consumption of salt following deprivation. Male rats learned to associate one context with sucrose and another context with less-desirable salt. Following sodium depletion, and in the absence of either sucrose or salt, we found that inhibiting the VP selectively reduced the elevation in time spent in the salt-paired context. VP inhibition had minimal effects on the consumption of salt once it was made available. To our knowledge, this is the first evidence that the VP or any brain region is necessary for the ability to use contextual cues to guide salt seeking. These results highlight a dissociation between deficit-driven reward seeking and reward consumption to replenish those deficits, with the former process being particularly sensitive to on-line VP activity. SIGNIFICANCE STATEMENT Salt appetite, in which rats will immediately seek out a once-undesirable concentrated salt solution after being depleted of bodily sodium despite never having tasted salt as a positive reward, is a phenomenon showing how animals can update their motivational goals without any new learning or conditioning. This salt-seeking behavior is also observed when the animal

  20. Distilling tar; distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Brash, P; Young, W

    1866-09-17

    The tarry residue, which separates on treating crude shale oil with sulfuric acid, is redistilled, in the manner described in Specification No. 1278, A.D. 1866, together with shale. Previous to the distillation, the acid is neutralized with lime, or may be separated by blowing steam into the tar and adding salt. The purified tar thus obtained is absorbed by ashes, or is mixed with lime or other alkaline matter, or the shale may be mixed with lime and distilled with the tar, which is allowed to flow over and through the shale during the process. The tar obtained in the purification of natural paraffin may be similarly utilized.

  1. Facing towards or Turning away from Destructive Narcissism

    Science.gov (United States)

    Flynn, Denis; Skogstad, Helga

    2006-01-01

    This paper presents a detailed theoretical discussion of destructive narcissism in relation to Freud and Rosenfeld and later theorists. In destructive narcissism, the destructiveness is itself idealised and overrides "the vital functions which serve the purpose of self-preservation" (Freud, S., 1914, "On narcissism" S.E. 14: 87)--a feature which…

  2. [Reason for dietary salt reduction and potential effect on population health--WHO recommendation].

    Science.gov (United States)

    Kaić-Rak, Antoinette; Pucarin-Cvetković, Jasna; Heim, Inge; Skupnjak, Berislav

    2010-05-01

    It is well known that reduction of salt results in lowering blood pressure and cardiovascular incidents. Daily salt is double the recommended daily quantity and mainly comes from processed food. The assessment of daily salt intake for Croatia is 12 g/day (WHO recommendation is restaurants (77%), natural content of sodium in food (12%), added salt at table (6%) and prepared meals at home (5%). Reduction of salt by 50% would save nearly 180,000 lives per year in Europe. It is necessary to establish better collaboration with food manufacturers in order to reduce the content of salt in processed food and to achieve appropriate salt intake per day in accordance with the WHO recommendation. Further, it is necessary to encourage food manufacturers to produce food and meals with low or reduced salt content (shops, catering, changes in recipes, offer salt substitutions). This kind of collaboration is based on bilateral interests that can result in positive health effects. One of the most important public health tasks is to educate consumers and to give them choice when buying food. This can be achieved by effective campaigns and social marketing, by ensuring a declaration of salt content on the product, or specially designed signs for food products with low or reduced salt content.

  3. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodiesel

    Science.gov (United States)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Oliveira, Ronaldo A.; Cunha, Patrícia C.; Costa, Ernande B.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2011-02-01

    Light-emitting-diode induced chlorophyll fluorescence analysis is employed to investigate the effect of water and salt stress upon the growth process of physicnut(jatropha curcas) grain oil plants for biofuel. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were observed and examined as a function of the stress intensity(salt concentration and water deficit) for a period of time of 30 days. The chlorophyll fluorescence(ChlF) ratio Fr/FFr which is a valuable nondestructive and nonintrusive indicator of the chlorophyll content of leaves was exploited to monitor the level of stress experienced by the jatropha plants. The ChlF technique data indicated that salinity plays a minor role in the chlorophyll concentration of leaves tissues for NaCl concentrations in the 25 to 200 mM range, and results agreed quite well with those obtained using conventional destructive spectrophotometric methods. Nevertheless, for higher NaCl concentrations a noticeable decrease in the Chl content was observed. The Chl fluorescence ratio analysis also permitted detection of damage caused by water deficit in the early stages of the plants growing process. A significant variation of the Fr/FFr ratio was observed sample in the first 10 days of the experiment when one compared control and nonwatered samples. The results suggest that the technique may potentially be applied as an early-warning indicator of stress caused by water deficit.

  4. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation

  5. Reinforcement Learning Based Data Self-Destruction Scheme for Secured Data Management

    Directory of Open Access Journals (Sweden)

    Young Ki Kim

    2018-04-01

    Full Text Available As technologies and services that leverage cloud computing have evolved, the number of businesses and individuals who use them are increasing rapidly. In the course of using cloud services, as users store and use data that include personal information, research on privacy protection models to protect sensitive information in the cloud environment is becoming more important. As a solution to this problem, a self-destructing scheme has been proposed that prevents the decryption of encrypted user data after a certain period of time using a Distributed Hash Table (DHT network. However, the existing self-destructing scheme does not mention how to set the number of key shares and the threshold value considering the environment of the dynamic DHT network. This paper proposes a method to set the parameters to generate the key shares needed for the self-destructing scheme considering the availability and security of data. The proposed method defines state, action, and reward of the reinforcement learning model based on the similarity of the graph, and applies the self-destructing scheme process by updating the parameter based on the reinforcement learning model. Through the proposed technique, key sharing parameters can be set in consideration of data availability and security in dynamic DHT network environments.

  6. Analytical Chemistry and Materials Characterization Results for Debris Recovered from Nitrate Salt Waste Drum S855793

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Patrick Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chamberlin, Rebecca M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schwartz, Daniel S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worley, Christopher Gordon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garduno, Katherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Elmer J. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Borrego, Andres Patricio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Colletti, Lisa Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fulwyler, James Brent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holland, Charlotte S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, Russell C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klundt, Dylan James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martin, Frances Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montoya, Dennis Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porterfield, Donivan R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schake, Ann Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schappert, Michael Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Soderberg, Constance B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spencer, Khalil J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanley, Floyd E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thomas, Mariam R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Townsend, Lisa Ellen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Xu, Ning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    Solid debris was recovered from the previously-emptied nitrate salt waste drum S855793. The bulk sample was nondestructively assayed for radionuclides in its as-received condition. Three monoliths were selected for further characterization. Two of the monoliths, designated Specimen 1 and 3, consisted primarily of sodium nitrate and lead nitrate, with smaller amounts of lead nitrate oxalate and lead oxide by powder x-ray diffraction. The third monolith, Specimen 2, had a complex composition; lead carbonate was identified as the predominant component, and smaller amounts of nitrate, nitrite and carbonate salts of lead, magnesium and sodium were also identified. Microfocused x-ray fluorescence (MXRF) mapping showed that lead was ubiquitous throughout the cross-sections of Specimens 1 and 2, while heteroelements such as potassium, calcium, chromium, iron, and nickel were found in localized deposits. MXRF examination and destructive analysis of fragments of Specimen 3 showed elevated concentrations of iron, which were broadly distributed through the sample. With the exception of its high iron content and low carbon content, the chemical composition of Specimen 3 was within the ranges of values previously observed in four other nitrate salt samples recovered from emptied waste drums.

  7. Can non-destructive inspection be reliable

    International Nuclear Information System (INIS)

    Silk, M.G.; Stoneham, A.M.; Temple, J.A.G.

    1988-01-01

    The paper on inspection is based on the book ''The reliability of non-destructive inspection: assessing the assessment of structures under stress'' by the present authors (published by Adam Hilger 1987). Emphasis is placed on the reliability of inspection and whether cracks in welds or flaws in components can be detected. The need for non-destructive testing and the historical attitudes to non-destructive testing are outlined, along with the case of failure. Factors influencing reliable inspection are discussed, and defect detection trials involving round robin tests are described. The development of reliable inspection techniques and the costs of reliability and unreliability are also examined. (U.K.)

  8. Salt-induced aggregation of stiff polyelectrolytes

    International Nuclear Information System (INIS)

    Fazli, Hossein; Mohammadinejad, Sarah; Golestanian, Ramin

    2009-01-01

    Molecular dynamics simulation techniques are used to study the process of aggregation of highly charged stiff polyelectrolytes due to the presence of multivalent salt. The dominant kinetic mode of aggregation is found to be the case of one end of one polyelectrolyte meeting others at right angles, and the kinetic pathway to bundle formation is found to be similar to that of flocculation dynamics of colloids as described by Smoluchowski. The aggregation process is found to favor the formation of finite bundles of 10-11 filaments at long times. Comparing the distribution of the cluster sizes with the Smoluchowski formula suggests that the energy barrier for the aggregation process is negligible. Also, the formation of long-lived metastable structures with similarities to the raft-like structures of actin filaments is observed within a range of salt concentration.

  9. Experimental investigation of a molten salt thermocline storage tank

    Science.gov (United States)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  10. Attributes identification of nuclear material by non-destructive radiation measurement methods

    International Nuclear Information System (INIS)

    Gan Lin

    2002-01-01

    Full text: The nuclear materials should be controlled under the regulation of National Safeguard System. The non-destructive analysis method, which is simple and quick, provide a effective process in determining the nuclear materials, nuclear scraps and wastes. The method play a very important role in the fields of nuclear material control and physical protection against the illegal removal and smuggling of nuclear material. The application of non-destructive analysis in attributes identification of nuclear material is briefly described in this paper. The attributes determined by radioactive detection technique are useful tolls to identify the characterization of special nuclear material (isotopic composition, enrichment etc.). (author)

  11. Steam injection for the thermal plasma destruction of halons and chlorofluorocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, A.B.; Farmer, A.J.D.; Horrigan, E.C. [CSIRO Telecomunications and Industrial Physics, Lindfield NSW (Australia); Mc Allister, T. [CSIRO Telecomunications and Industrial Physics, Clifton Hill Vic (Australia)

    2001-07-01

    The destruction of ozone-depleting substances, in particular chlorofluorocarbons and halons, in the PLASCON plasma process is investigated. In particular, the use of oxygen and steam as oxidising gases is compared. Measurements of the exhaust gas composition are compared with the results Of calculations performed using a comprehensive chemical kinetic scheme. It is found that significant interconversion of ozone-depleting substances occurs, particularly for chloro-fluorocarbon destruction Steam is found to be a superior oxidising gas to oxygen, with greatly reduced levels of ozone-depleting substances and CF{sub 4} in the exhaust gas, particularly if the steam is input at close to or greater than stoichiometric levels. (authors)

  12. Molten salt oxidation as an alternative to incineration

    International Nuclear Information System (INIS)

    Gray, L.W.; Adamson, M.G.; Cooper, J.F.; Farmer, J.C.; Upadhye, R.S.

    1992-03-01

    Molten Salt Oxidation was originally developed by Rockwell International as part of their coal gasification, and nuclear-and hazardous-waste treatment programs. Single-stage oxidation units employing molten carbonate salt mixtures were found to process up to one ton/day of common solid and liquid wastes (such as paper, rags, plastics, and solvents), and (in larger units) up to one ton/hour of coal. After the oxidation of coal with excess oxygen, coal ash residuals (alumina-silicates) were found adhering to the vessel walls above the liquid level. The phenomenon was not observed with coal gasification-i.e., under oxygen-deficient conditions. Lawrence Livermore National Laboratory (LLNL) is developing a two-stage/two-vessel approach as a possible means of extending the utility of the process to wastes which contain high concentrations of alumina-silicates in the form of soils or clays, or high concentrations of nitrates including low-level and transuranic wastes. The first stage operates under oxygen-deficient (''pyrolysis'') conditions; the second stage completes oxidation of the evolved gases. The process allows complete oxidation of the organic materials without an open flame. In addition, all acidic gases that would be generated in incinerators are directly metathesized via the molten Na 2 CO 3 to form stable salts (NaCl, Na 2 SO 4 etc.). Molten salt oxidation therefore avoids the corrosion problems associated with free HCl in incineration. The process is being developed to use pure O 2 feeds in lieu of air, in order to reduce offgas volume and retain the option of closed system operation. In addition, ash is wetted and retained in the melt of the first vessel which must be replaced (continuously or batch-wise). The LLNL Molten Salt unit is described together with the initial operating data

  13. Molten salt burner fuel behaviour and treatment

    International Nuclear Information System (INIS)

    Ignatiev, V.V.; Zakirov, R.Y.; Grebenkine, K.F.

    2001-01-01

    The objective of this paper is to discuss the feasibility of molten salt reactor technology for treatment of Pu, minor actinides and fission products, when the reactor and fission product clean-up unit are planned as an integral system. This contribution summarises the available R and D which led to selection of the fuel compositions for the molten salt reactor of the TRU burner type (MSB). Special characteristics of behaviour of TRUs and fission products during power operation of MSB concepts are presented. The present paper briefly reviews the processing developments underlying the prior molten salt reactor programmes and relates them to the separation requirements of the MSB concept, including the permissible range of processing cycle times and removal times. Status and development needs in the thermodynamic properties of fluorides, fission product clean-up methods and container materials compatibility with the working fluids for the fission product clean-up unit are discussed. (authors)

  14. Systems costs for disposal of Savannah River high-level waste sludge and salt

    International Nuclear Information System (INIS)

    McDonell, W.R.; Goodlett, C.B.

    1984-01-01

    A systems cost model has been developed to support disposal of defense high-level waste sludge and salt generated at the Savannah River Plant. Waste processing activities covered by the model include decontamination of the salt by a precipitation process in the waste storage tanks, incorporation of the sludge and radionuclides removed from the salt into glass in the Defense Waste Processing Facility (DWPF), and, after interim storage, final disposal of the DWPF glass waste canisters in a federal geologic repository. Total costs for processing of waste generated to the year 2000 are estimated to be about $2.9 billion (1984 dollars); incremental unit costs for DWPF and repository disposal activities range from $120,000 to $170,000 per canister depending on DWPF processing schedules. In a representative evaluation of process alternatives, the model is used to demonstrate cost effectiveness of adjustments in the frit content of the waste glass to reduce impacts of wastes generated by the salt decontamination operations. 13 references, 8 tables

  15. Problems of evaluating isotope analysis of concentrated salt solutions in potash mines

    International Nuclear Information System (INIS)

    Schmiedl, H.D.

    1980-01-01

    Three problems of quantitative evaluation of analytic D and 18 O isotope data of concentrated salt solutions are discussed: (1) Consideration of the influence of admixtures of hydrated salts in determining meteoric or marine water fractions in a concentrated salt solution, (2) analytic accuracy and detection limits in determining meteoric water in salt solutions, and (3) processes of isotopic exchange with reservoir rock and sample matrix

  16. Multiphase CFD modelling of water evaporation and salt precipitation in micro-pores

    NARCIS (Netherlands)

    Twerda, A.; O’Mahoney, T.S.D.; Velthuis, J.F.M.

    2014-01-01

    The precipitation of salt in porous reservoir rocks is an impairment to gas production, particularly in mature fields. Mitigation is typically achieved with regular water washes which dissolve the deposited salt and transport it in the water phase. However, since the process of salt precipitation is

  17. The Destructive/Non-Destructive Identification of Enameled Pottery, Glass Artifacts and Associated Pigments—A Brief Overview

    Directory of Open Access Journals (Sweden)

    Philippe Colomban

    2013-07-01

    Full Text Available The birth of Chemistry can be found in two main practices: (i the Arts du feu (ceramic and glass, metallurgy, i.e., inorganic and solid state chemistry and (ii the preparation of remedies, alcohols and perfumes, dyes, i.e., organic and liquid state chemistry. After a brief survey of the history of (glazed pottery and (enameled glass artifacts, the development of destructive and non-destructive analytical techniques during the last few centuries is reviewed. Emphasis is put on mobile non-destructive Raman microspectroscopy of pigments and their glass/glaze host matrices for chronological/technological expertise. The techniques of white opacification, blue, yellow, green, red, and black coloring, are used as examples to point out the interest of pigments as chronological/technological markers.

  18. Dismantlement and destruction of chemical, nuclear and conventional weapons

    International Nuclear Information System (INIS)

    Schulte, N.T.

    1997-01-01

    The safe destruction and dismantling of chemical, nuclear and conventional weapons is of fundamental importance to the security of all countries represented in this volume. Expertise in the field is not confined to one country or organisation: all can benefit from each other. There is an ever present danger of proliferation of weapons of mass destruction: approximately two dozen countries have ongoing programmes to develop or acquire such weapons, and many are also gaining the capability to build air-surface delivery systems. But much can be done to prevent proliferation by reducing leakage of materials and know-how and by solving the problems of the destruction of surplus weapons systems, which has now come to be a key issue. In 13 sessions of the workshop attention was paid to (1) Dismantlement and Destruction of Chemical, Nuclear and Conventional Weapons; (2) Status of Implementation of Arms Control Treaties and Voluntary Commitments; (3) National Perspectives on Cooperation in Disarmament; (4) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Chemical Weapons; (5) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Nuclear Weapons; (6) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Conventional Weapons. Session; (7) Experience with Currently Employed Chemical Destruction Technologies; (8) Alternative Chemical Destruction Technologies; (9) Deactivation, Dismantlement and Destruction of Delivery Systems and Infrastructure for Nuclear Weapons; (10) Storage, Safeguarding and Disposition of Fissile Materials; (11) Technologies for Conversion and Civil Use of Demilitarized Materials; (12) International Organizations; and (13) Environmental Challenges Posed by Chemical and Nuclear Disarmament

  19. Salt brickwork as long-term sealing in salt formations

    International Nuclear Information System (INIS)

    Walter, F.; Yaramanci, U.

    1993-01-01

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in these potential pathways to prevent radioactive release into the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made from compressed salt-powder are understood to be the first choice long-term sealing material. Seals built of salt bricks will be ductile. Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. This provides for the good adhesive strength of the mortar to the bricks and the high shear-strength of the mortar itself. To test the interaction of rock salt with an emplaced long-term seal, experiments will be carried out in situ, in the Asse salt mine in Germany. Simple borehole sealing experiments will be performed in horizontal holes and a complicated drift sealing experiment is planned, to demonstrate the technology of sealing a standard size drift or shaft inside a disturbed rock mass. Especially, the mechanical stability of the sealing system has to be demonstrated

  20. Electrochemical energy: the green face of the salt-affected lands

    International Nuclear Information System (INIS)

    Ashraf, M.; Mahmood, K.; Waheed, A.

    2013-01-01

    A high soluble salt content make the salt-stressed terrestrial and the aquatic habitats electrically more active than the normal ecosystems. The salt-tolerant plants and the microbial populations adapted to the salt-stressed environments have developed special mechanisms to resist the ionic and the osmotic stresses. The study evaluated the bioelectricity or electrochemical energy potential of soil and bio-resources of a salt-affected land. The electrical conductivity and the charge resistance ability exhibited the various categories of salt-tolerant plants suitable for a range of salt-stressed conditions and the root activities including extrusion of proton (H+) in the rooting media. The microbial biofilms formed with plant roots, soil particles and the solid surface by exo-polysaccharides producing biofilm bacteria could regulate and monitor ion flux across the bio-membranes and the electrode surfaces. The ionic gradients thus created by plants and the microbial processes could be a continuous and uninterrupted valuable source of bio-energy of the salt-stressed and contaminated soil and water habitats. The bio-energy can be harnessed and utilized by especially designed microbial biofuel cells (MBFC). The biofilms developed on anode or cathode of MBFC could act as half cells for source and sink of the electrons released during oxidation reduction processes carried by microbial consortia while the exo-polysaccharides, the microbial biopolymer could support transfer of charge to the electrodes. The salt-affected soil and the soil organic matter constituents, microbial biopolymers and the brackish water, as a mediators and the cathode passivation inhibitors, thus could help enhance and increase the output intensity of the electrochemical energy and efficiency of the biofuel cells. The study suggested an enormous potential of the salt-affected lands for non-conventional renewable bio-energy source useful in the remote areas and for the small power requiring electrical