WorldWideScience

Sample records for salt affected soils

  1. The chemistry of salt-affected soils and waters

    Science.gov (United States)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  2. Crop production in salt affected soils: A biological approach

    Energy Technology Data Exchange (ETDEWEB)

    Malik, K A [National Inst. for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan)

    1995-01-01

    Plant are susceptible to various stresses, affecting growth productivity. Among the abiotic stresses, soil salinity is most significant and prevalent in both developed and developing countries. As a result, good productive lands are being desertified at a very high pace. To combat this problem various approaches involving soil management and drainage are underway but with little success. It seems that a durable solution of the salinity and water-logging problems may take a long time and we may have to learn to live with salinity and to find other ways to utilize the affected lands fruitfully. A possible approach could be to tailor plants to suit the deleterious environment. The saline-sodic soils have excess of sodium, are impermeable, have little or no organic matter and are biologically almost dead. Introduction of a salt tolerant crop will provide a green cover and will improve the environment for biological activity, increase organic matter and will improve the soil fertility. The plant growth will result in higher carbon dioxide levels, and would thus create acidic conditions in the soil which would dissolve the insoluble calcium carbonate and will help exchange sodium with calcium ions on the soil complex. The biomass produced could be used directly as fodder or by the use of biotechnological and other procedures it could be converted into other value added products. However, in order to tailor plants to suit these deleterious environments, acquisition of better understanding of the biochemical and genetic aspects of salt tolerance at the cellular/molecular level is essential. For this purpose model systems have been carefully selected to carry out fundamental basic research that elucidates and identifies the major factors that confer salt tolerance in a living system. With the development of modern biotechnological methods it is now possible to introduce any foreign genetic material known to confer salt tolerance into crop plants. (Abstract Truncated)

  3. Effect of subsurface drainage on salt movement and distribution in salt-affected soils

    International Nuclear Information System (INIS)

    Moustafa, A.T.A.; Seliem, M.H.; Bakhati, H.K.

    1983-01-01

    This study was carried out to evaluate different subsurface drainage treatments (combinations of depth and spacing) on salt movement and distribution. The soil is clay and the drainage was designed according to the steady-state condition (Hooghoudt's equation). Three spacings and two depths resulted in six drainage treatments. Soil samples represented the initial state of every treatment and after 14 months they (cotton followed by wheat) were analysed. The data show that drain depth has its effective role in salt leaching, while drain spacing has its effect on salt distribution in the soil profile. The leaching rate of each specific ion is also affected by the different drainage treatments. In general, the salt movement and distribution should be taken into consideration when evaluating the design of drainage systems. (author)

  4. Trifolium isthmocarpum Brot, a salt-tolerant wild leguminous forage crop in salt-affected soils

    Directory of Open Access Journals (Sweden)

    Kawtar Bennani

    2013-08-01

    Full Text Available Plant scientists are investigating the potential of previously unexploited legume species where environmental and biological stresses constrain the use of more conventional forage crops or where these species are better suited to the needs of sustainable agriculture. Trifolium isthmocarpum Brot., Moroccan clover, occurs as a weed in different habitats in Morocco. It grows in moderately saline areas, where traditional forage legumes cannot be cultivated; however, it has not been widely studied despite its good palatability. The salt tolerance was studied between natural field conditions and glasshouse. The extensive field studies have recorded the species in many different habitats ranging from healthy agricultural lands to abandoned saline areas. The plants maintained high nodulation capacity (ranging between 60% and 97% and nitrogenase activities (average 2.04 µmol C2H4 plant-1 h-1 in different habitats. Shoot systems of plants collected from salt-affected soils exhibited higher concentrations of Na+ and Cl- than those collected from healthy soils. Greenhouse experiments showed that germination percentage and vigor value of the studied species was not significantly (P > 0.05 affected at 160 mM NaCl, and that 25% of the germination ability was maintained when growing on substrats containing 240 mM NaCl. The growth rate of seedlings was not signicantly affected by 160 mM NaCl but was reduced by 38% under 240 mM NaCl. Leaf succulence and indices of leaf water status did not differ among the salt treatments, whereas relative water content was reduced by only 8% and water content at saturation increased by about 12% at high salt concentrations in the growing medium. This study suggest recommending the cultivation of T. isthmocarpum in salt-affected soils, which are widespread and pose a problem for the farmers of Morocco and other countries in the world’s arid belt.

  5. Enhancing productivity of salt affected soils through crops and cropping system

    International Nuclear Information System (INIS)

    Singh, S.S.; Khan, A.R.

    2002-05-01

    The reclamation of salt affected soils needs the addition of soil amendment and enough water to leach down the soluble salts. The operations may also include other simple agronomic techniques to reclaim soils and to know the crops and varieties that may be grown and other management practices which may be followed on such soils (Khan, 2001). The choice of crops to be grown during reclamation of salt affected soils is very important to obtain acceptable yields. This also decides cropping systems as well as favorable diversification for early reclamation, desirable yield and to meet the other requirements of farm families. In any salt affected soils, the following three measures are adopted for reclamation and sustaining the higher productivity of reclaimed soils. 1. Suitable choice of crops, forestry and tree species; 2. Suitable choice of cropping and agroforestry system; 3. Other measures to sustain the productivity of reclaimed soils. (author)

  6. Biochar application for the remediation of salt-affected soils: Challenges and opportunities.

    Science.gov (United States)

    Saifullah; Dahlawi, Saad; Naeem, Asif; Rengel, Zed; Naidu, Ravi

    2018-06-01

    Soil salinization and sodification are two commonly occurring major threats to soil productivity in arable croplands. Salt-affected soils are found in >100 countries, and their distribution is extensive and widespread in arid and semi-arid regions of the world. In order to meet the challenges of global food security, it is imperative to bring barren salt-affected soils under cultivation. Various inorganic and organic amendments are used to reclaim the salt-affected lands. The selection of a sustainable ameliorant is largely determined by the site-specific geographical and soil physicochemical parameters. Recently, biochar (solid carbonaceous residue, produced under oxygen-free or oxygen-limited conditions at temperatures ranging from 300 to 1000°C) has attracted considerable attention as a soil amendment. An emerging pool of knowledge shows that biochar addition is effective in improving physical, chemical and biological properties of salt-affected soils. However, some studies have also found an increase in soil salinity and sodicity with biochar application at high rates. Further, the high cost associated with production of biochar and high application rates remains a significant challenge to its widespread use in areas affected by salinity and sodicity. Moreover, there is relatively limited information on the long-term behavior of salt-affected soils subjected to biochar applications. The main objective of the present paper was to review, analyze and discuss the recent studies investigating a role of biochar in improving soil properties and plant growth in salt-affected soils. This review emphasizes that using biochar as an organic amendment for sustainable and profitable use of salt-affected soils would not be practicable as long as low-cost methods for the production of biochar are not devised. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of biosolid waste compost on soil respiration in salt-affected soils

    Science.gov (United States)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  8. Remote sensing and geographic information system for appraisal of salt-affected soils in India.

    Science.gov (United States)

    Singh, Gurbachan; Bundela, D S; Sethi, Madhurama; Lal, Khajanchi; Kamra, S K

    2010-01-01

    Quantification of the nature, extent, and spatial distribution of salt-affected soils (SAS) for India and the world is essential for planning and implementing reclamation programs in a timely and cost-effective manner for sustained crop production. The national extent of SAS for India over the last four decades was assessed by conventional and remote sensing approaches using diverse methodologies and class definitions and ranged from 6.0 to 26.1 million hectares (Mha) and 1.2 to 10.1 Mha, respectively. In 1966, an area of 6 Mha under SAS was first reported using the former approach. Three national estimates, obtained using remote sensing, were reconciled using a geographic information system, resulting in an acceptable extent of 6.73 Mha. Moderately and severely salt-encrusted lands having large contiguous area have been correctly mapped, but slightly salt-encrusted land having smaller affected areas within croplands has not been accurately mapped. Recent satellite sensors (e.g., Resourcesat-1, Cartosat-2, IKONOS-II, and RISAT-2), along with improved image processing techniques integrated with terrain and other spatial data using a geographic information system, are enabling mapping at large scale. Significant variations in salt encrustation at the surface caused by soil moisture, waterlogging conditions, salt-tolerant crops, and dynamics of subsurface salts present constraints in appraisal, delineation, and mapping efforts. The article provides an overview of development, identification, characterization, and delineation of SAS, past and current national scenarios of SAS using conventional and remote sensing approaches, reconciliation of national estimates, issues of SAS mapping, and future scope.

  9. Identification of vulnerable sites in salts affected agricultural soils from South-Eastern Spain

    Science.gov (United States)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    little adsorption to soil colloidal particles. However, other ions such as sulfate, calcium, magnesium, and sodium also displayed significant increases in concentration in July. This can be explained by the movements of soluble salt to the surface due to evaporation and capillary rise and subsequent precipitation of the salts during high temperatures and low rainfall. Rainfall or irrigation events enhance the leaching of salts to deeper soil horizons. The most affected area is located in the west of the study area, at the lowest altitude within the study area. Depressions favour accumulation of salts, due to both runoffs from higher areas during rainfall periods and poor quality irrigation water. It is recommended to use a better quality of water, at least before the summer, in order to reduce the amount of salts in the surface layer, likely to cause stress to crops growing on the soil in question. In conclusion, the spatial distribution of anions in the soil solution is very useful for predicting where higher increases in salinity will be produced. This will allow for identification of vulnerable areas and subsequent implementation of the necessary measures to decrease the risk for sensitive crops. Acknowledgements: to "Fundación Séneca" of "Comunidad Autónoma de Murcia" for its financial support.

  10. Physico-Chemical Properties of Three Salt-Affected Soils in the ...

    African Journals Online (AJOL)

    komla

    but the B-horizon is between low to high. ... Excess sodium on the soil exchange complex and/or soluble salts in the soil profile has rendered an estimated ...... dispersion causes soil pore blockage resulting in the reduction of soil permeability.

  11. Management strategies to utilize salt affected soils. Isotopic and conventional research methods. Results of a co-ordinated research programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document summarizes the results of a co-ordinated research programme on ``The Use of Nuclear Techniques for Improvement of Crop Production in Salt-affected Soils``. It aims at providing scientists experimental evidence of demonstrating technical feasibility of biological amelioration of salt affected soils as an alternative option of using expensive chemical amendments in soil reclamation complementing engineering structures of farm drainage systems or option of leaving the saline areas as barren lands in spite of the fact that arable agricultural lands have exhausted. 68 refs, 26 figs, 32 tabs.

  12. Management strategies to utilize salt affected soils. Isotopic and conventional research methods. Results of a co-ordinated research programme

    International Nuclear Information System (INIS)

    1995-07-01

    This document summarizes the results of a co-ordinated research programme on ''The Use of Nuclear Techniques for Improvement of Crop Production in Salt-affected Soils''. It aims at providing scientists experimental evidence of demonstrating technical feasibility of biological amelioration of salt affected soils as an alternative option of using expensive chemical amendments in soil reclamation complementing engineering structures of farm drainage systems or option of leaving the saline areas as barren lands in spite of the fact that arable agricultural lands have exhausted. 68 refs, 26 figs, 32 tabs

  13. Forage production and N2 fixation in mixed cropping of saltbush and shrubby medic grown on a salt affected soil

    International Nuclear Information System (INIS)

    Kurdali, F.

    2008-11-01

    Two experiments were conducted to evaluate dry matter, nitrogen yield, N 2 fixation (Ndfa) and soil N uptake in saltbush (Atriplex halimus) and shrubby medic (Medicago arborea) grown either solely or in mixture on a salt affected soil, using 15 N tracer techniques. In a pot experiment, the combined dry matter yield of both species was considerably higher than that of solely grown shrubs. The inclusion of saltbush in the mixed cropping system decreased soil N uptake by shrubby medic and enhanced %Ndfa without affecting amounts of N 2 fixed. Under field conditions, estimated values of %Ndfa via δ 15 N natural abundance were relatively similar to those of the pot experiment using 15 N enrichment method. It can be concluded that the use of mixed cropping system of shrubby medic and saltbush could be a promising bio-saline agricultural approach to utilize salt affected soils in terms of forage yield and N 2 -fixation. (Author)

  14. Seasonal dynamics of trace elements in tidal salt marsh soils as affected by the flow-sediment regulation regime.

    Directory of Open Access Journals (Sweden)

    Junhong Bai

    Full Text Available Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa in the Yellow River Delta (YRD of China during three seasons (summer and fall of 2007 and the following spring of 2008 after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering.

  15. PHYSIOLOGICAL RESPONSES OF DWARF COCONUT PLANTS UNDER WATER DEFICIT IN SALT - AFFECTED SOILS

    Directory of Open Access Journals (Sweden)

    ALEXANDRE REUBER ALMEIDA DA SILVA

    2017-01-01

    Full Text Available The objective of this study was to characterize the physiological acclimation responses of young plants of the dwarf coconut cultivar ̳Jiqui Green‘ associated with tolerance to conditions of multiple abiotic stresses (drought and soil salinity, acting either independently or in combination. The study was conducted under controlled conditions and evaluated the following parameters: leaf gas exchange, quantum yield of chlorophyll a fluorescence, and relative contents of total chlorophyll (SPAD index. The experiment was conducted under a randomized block experimental design, in a split plot arrangement. In the plots, plants were exposed to different levels of water stress, by imposing potential crop evapotranspiration replacement levels equivalent to 100%, 80%, 60%, 40%, and 20%, whereas in subplots, plants were exposed to different levels of soil salinity (1.72, 6.25, 25.80, and 40.70 dS m - 1 . Physiological mechanisms were effectively limited when water deficit and salinity acted separately and/or together. Compared with soil salinity, water stress was more effective in reducing the measured physiological parameters. The magnitudes of the responses of plants to water supply and salinity depended on the intensity of stress and evaluation period. The physiological acclimation responses of plants were mainly related to stomatal regulation. The coconut tree has a number of physiological adjustment mechanisms that give the species partial tolerance to drought stress and/or salt, thereby enabling it to revegetate salinated areas, provided that its water requirements are at least partially met.

  16. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat(Triticum aestivum L. ) plants grown in a salt-affected soil

    International Nuclear Information System (INIS)

    Ashraf, M.; Hasnain, S.; Berge, O.

    2006-01-01

    Effect of soil salinity on physico-chemical and biological properties renders the salt-affected soils unsuitable for soil microbial processes and growth of the crop plants. Soil aggregation around roots of the plants is a function of the bacterial exo-polysaccharides, however, such a role of the EPS-producing bacteria in the saline environments has rarely been investigated. Pot experiments were conducted to observe the effects of inoculating six strains of exo-polysaccharides-producing bacteria on growth of primary (seminal) roots and its relationship with saccharides, cations (Ca 2+, Na +, K +) contents and mass of rhizosheath soils of roots of the wheat plants grown in a salt-affected soil. A strong positive relationship of RS with different root growth parameters indicated that an integrated influence of various biotic and abiotic RS factors would have controlled and promoted growth of roots of the inoculated wheat plants. The increase in root growth in turn could help inoculated wheat plants to withstand the negative effects of soil salinity through an enhanced soil water uptake, a restricted Na +i nflux in the plants and the accelerated soil microbial process involved in cycling and availability of the soil nutrients to the plants. It was concluded that inoculation of the exo- polysaccharides producing would be a valuable tool for amelioration and increasing crop productivity of the salt-affected soils

  17. Natural radioactivity levels in soil samples around the flood affected salt field area, Kelambakkam, Chennai, Tamilnadu, India using gamma ray spectrometry

    International Nuclear Information System (INIS)

    Rajalakshmi, A.; Chandrasekaran, A.; Thangam, V.; Jananee, B.

    2018-01-01

    Humans are exposed to natural radiation from external sources, which include radionuclides in the earth and cosmic radiation. Gamma Ray spectroscopic technique was used to assess the natural radioactivity in soils around the flood affected salt field area, Kelambakkam Chennai, Tamilnadu, India. The activity concentration of 238 U, 232 Th, 40 K and absorbed dose rate of soil samples were calculated to assess the radiation hazards in the study area

  18. Performance of neutron scattering relative to Diviner2000 for estimating soil water content in salt affected soils

    International Nuclear Information System (INIS)

    Al-Ain, F.; Attar, J.; Hussein, F.

    2007-05-01

    A field experiment was conducted on sandy clay and clayey soils at Deir Ezzor to compare the performance of Neutron Scattering (NS) relative to a capacitance probe (CP), Diviner2000, in our local conditions under saline soils. The effect of soil electrical conductivity (ECe) and bulk density (?b) on the precession, accuracy and sensitivity of the tested equipment s were evaluated. Also, the ability to improve the calibration equation for these equipment s, by including ECe and ?b as independent variables in the equation formula, was studied. The study showed that, Diviner2000 was very sensitive to soil bulk density and electrical conductivity of the soil (i.e. soil salinity) compared to the NS. Multiple non-linear regressions improved the fitting when both parameters (?b and ECe) were included in the equation, even though the correlation coefficient (R2) remained low in the case of Diviner2000.(author)

  19. Rice and wheat yield improvement by the application of boron in salt affected soils

    International Nuclear Information System (INIS)

    Mehdi, S.M.; Sarfraz, M.; Hassan, N.M.; Hassan, W.

    2007-01-01

    In recent past studies on wheat, rice and fruit plant showed that fairly large percentage of soils and crops are deficient in boron. Several times a question rose to study the boron responses in a cropping system to see the residual effect of boron. With the objective in mind, a field experiment was conducted at two sites in saline sodic soils to see the rice and wheat crops response to boron. Boron was applied to rice at the rate of 0.25, 0.50, 1.0, 1.5, and 2.0 Kg ha/sub -1/ as sodium tetra borate. The results showed that both paddy and straw yields increased with the increasing rates of boron and highest yield was obtained from 2 Kg ha/sub -l/. After harvesting of rice crop wheat was sown in the same layout. The treatments were divided into two equal portions. Boron was applied to one portion at the same rates as to rice while remaining half remained as such to study the residual effect of B on wheat. The results showed that grain anti straw yields increased with increasing rates of boron. In case of untreated plots to see the residual effect grain and straw yield increased with increasing rates of boron applied to rice. It was concluded that B applied to rice did show residual effect to the following wheat crop. Therefore, there is no need to apply B to following crop when B is applied to the previous crop. (author)

  20. Screening of diverse local germplasm of guar (cyamposis tetragonoloba (l.) taub.) for salt tolerance: A possible approach to utilize salt - affected soils

    International Nuclear Information System (INIS)

    Rasheed, M. J. Z.; Ahmad, K.; Qurainy, F. A.; Khan, S.; Athar, H. U. R.

    2015-01-01

    Lack of good quality water and soil salinity reduces crop productivity world-over. The development of salt stress tolerant cultivars/lines by screening and selection is of considerable value to enhance crop growth and yield. Though a number of breeding programs are underway to develop salt tolerant cultivars in wheat, barley, maize, and even grasses, a low amount of work done for improving salt tolerance in a potential leguminous forage crop guar widely grown in subcontinent due to rapid increase in its demand for its commercial use. Thus, the present study was focused on efforts to develop salt tolerant cultivars of guar. The growth responses of 31 accessions/lines/cultivars of a potential leguminous crop (Cyamopsis tetragonoloba) to salt stress were assessed at the vegetative growth stage. A considerable variation in salinity tolerance was found in a set of lines/cultivars of guar using agronomic traits. Under saline conditions, Khanewal Local2, Chiniot White, 27340, 24323, BWP-5589 produced the lowest shoot fresh and dry biomass in relative terms, while genotypes/lines 5597, 24288, Br 99, Khushab white, Sillanwali white and Mardan white had greater fresh and dry biomass. Klorkot white and 24323 had maximum plant height under non-saline conditions, whereas genotypes/line 5597 and 24288 was maximal in plant height under salt stress conditions. Moreover, genotypes/lines Khanewal Local2 followed by Chiniot White and 27340 were the lowest in plant height. Growth attributes and relative salt tolerance of guar genotypes were used to group genotypes/lines as salt tolerant, moderately tolerant and salt sensitive using Hierarchical Cluster method following squared Euclidean distance. It was found that genotypes/lines 41671, Khaushab White, 5597, 24320, 24288, Sillanwali White, 24321, Mardan White were the most salt tolerant, while Chiniot White, BWP-5589, Kalorkot White, Khanewal Local 2, 24323 were the most salt sensitive. The availability of considerable amount of

  1. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    Science.gov (United States)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    Soils preserve and sustain life. Their health and functioning are crucial for crop production and for the maintenance of major ecosystem services. Human induced salinity is one of the main soil threats that reduces soil fertility and affect crop yields. In recent times, great attention has been paid to the general shortage of arable land and to the increasing demand for ecological restoration of areas affected by salinization processes. Despite the diffuse interest on the effects of salinization on plants' growth, and all the derived socioeconomic issues, very few studies analyzed the ecology of the microbial species in naturally saline soils and the resilience of biological fertility in these extreme habitats. Microorganisms inhabiting such environments may share a strategy, may have developed multiple adaptations for maintaining their populations, and cope eventually to extreme conditions by altruistic or cooperative behaviors for maintaining their metabolism active. The understanding and the knowledge of the composition and distribution of microbial communities in natural hypersaline soils can be interesting for ecological reasons but also to develop new restoration strategy where soil fertility was compromised by natural accidents or human mismanagement. The aim of this research was to provide specific information on saline soils in Italy, stressing mainly their distribution, the socioeconomic issues and the understanding of the characterizing ecological processes. Moreover, natural saline soils were used as a model for understanding to what extent the concentration of salt can affect some basic microbial processes. In the present study, physical, chemical and microbiological soil properties were investigated in the shallower horizons of natural salt affected soils in Sicily (Italy), where some ecological contrasting variables acted as strong drivers in fungal and bacterial spatial distribution. Furthermore, the interface between biological and geochemical

  2. Management of Atriplex nummularia Lindl. in a salt affected soil in a semi arid region of Brazil.

    Science.gov (United States)

    de Souza, Edivan Rodrigues; Freire, Maria Betânia Galvão dos Santos; de Melo, Diego Vandeval Maranhão; Montenegro, Abelardo de Antônio Assunção

    2014-01-01

    This study aims to investigate the behavior of Atriplex nummularia under field conditions, including its growth, periodic cuttings, salt extraction, and soil chemical properties monitored for 16 months. Three treatments were evaluated: soil cultivated with Atriplex pruned at 6 and 12 months after transplanting (MAT); soil cultivated with plants that were harvested only at the end of the experiment (16 MAT); and a control (uncultivated soil) with four replications. Soil samplings were taken at 0, 6, 12, and 16 MAT. The samples were taken at depths of 0-20, 20-40, 40-60, and 60-80 cm. Biometric variables for growth were monitored monthly. The shoot was divided into leaves, thin stems ( 3 mm diameter) to determine its content of Ca, Mg, Na, K, and Cl. We concluded that pruning regime for Atriplex was efficient mainly because it stimulated regrowth of less lignified material (leaves and stems plant tissue can be quantified accurately, making them valuable indicators of the efficiency of the recovery process. The use of the Atriplex is recommended because the the possibility of revegetating areas inhospitable to most species used in conventional farming.

  3. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng; Shin, Hosung; Santamarina, Carlos

    2015-01-01

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  4. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng

    2015-12-14

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  5. performance of sorghum grown on a salt affected soil manured with dhaincha plant residues using a 15N isotopic dilution technique

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Ain, F.; Razok, A.; Al-Shamma, M.

    2008-01-01

    A field experiment was conducted on a salt-affected soil to determine the effect of application of three types of Dhaincha (Sesbania aculeata pers.) residues (R, roots; L, shoots; L+R, shoots plus roots) of on the performance of sorghum (Sorghum bicolor L.) using the indirect 15 N isotopic dilution technique. Results indicated that Sesbania residues (L and L+R), used as green manures significantly increased grain yield, dry matter production, N uptake, and water use efficiency of sorghum. Percentages of N derived from residues (%Ndfr) in sorghum ranged from 6.4 to 28%. The N recoveries in sorghum were 52, 19. and 19.7% of the total amount contained in Sesbania roots, shoots and roots plus shoots, respectively. The beneficial effects of Sesbania residues are attributed not only to the additional N availability to the plants, but also to effects on the enhancement of soil N uptake, particularly in the L+R treatment. The findings suggest that the use of Sesbania aculeata residues, as a green manure, can provide a substantial portion of total N in sorghum. In addition, the use of Sesbania green manure in salt-affected soils, as a bio-reclaiming material, can be a promising approach for enhancing plant growth on a sustainable basis. (author)

  6. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    Science.gov (United States)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  7. Biomass production in agroforestry and forestry systems on salt-affected soils in South Asia: exploration of the GHG balance and economic performance of three case studies.

    Science.gov (United States)

    Wicke, Birka; Smeets, Edward M W; Akanda, Razzaque; Stille, Leon; Singh, Ranjay K; Awan, Abdul Rasul; Mahmood, Khalid; Faaij, Andre P C

    2013-09-30

    This study explores the greenhouse gas balance and the economic performance (i.e. net present value (NPV) and production costs) of agroforestry and forestry systems on salt-affected soils (biosaline (agro)forestry) based on three case studies in South Asia. The economic impact of trading carbon credits generated by biosaline (agro)forestry is also assessed as a potential additional source of income. The greenhouse gas balance shows carbon sequestration over the plantation lifetime of 24 Mg CO2-eq. ha(-1) in a rice-Eucalyptus camaldulensis agroforestry system on moderately saline soils in coastal Bangladesh (case study 1), 6 Mg CO2-eq. ha(-1) in the rice-wheat- Eucalyptus tereticornis agroforestry system on sodic/saline-sodic soils in Haryana state, India (case study 2), and 96 Mg CO2-eq. ha(-1) in the compact tree (Acacia nilotica) plantation on saline-sodic soils in Punjab province of Pakistan. The NPV at a discount rate of 10% is 1.1 k€ ha(-1) for case study 1, 4.8 k€ ha(-1) for case study 2, and 2.8 k€ ha(-1) for case study 3. Carbon sequestration translates into economic values that increase the NPV by 1-12% in case study 1, 0.1-1% in case study 2, and 2-24% in case study 3 depending on the carbon credit price (1-15 € Mg(-1) CO2-eq.). The analysis of the three cases indicates that the economic performance strongly depends on the type and severity of salt-affectedness (which affect the type and setup of the agroforestry system, the tree species and the biomass yield), markets for wood products, possibility of trading carbon credits, and discount rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands.

    Science.gov (United States)

    Nosetto, Marcelo D; Jobbágy, Esteban G; Tóth, Tibor; Di Bella, Carlos M

    2007-07-01

    Plants, by influencing water fluxes across the ecosystem-vadose zone-aquifer continuum, can leave an imprint on salt accumulation and distribution patterns. We explored how the conversion of native grasslands to oak plantations affected the abundance and distribution of salts on soils and groundwater through changes in the water balance in naturally salt-affected landscapes of Hortobagy (Hungary), a region where artificial drainage performed approximately 150 years ago lowered the water table (from -2 to -5 m) decoupling it from the surface ecosystem. Paired soil sampling and detailed soil conductivity transects revealed consistently different salt distribution patterns between grasslands and plantations, with shallow salinity losses and deep salinity gains accompanying tree establishment. Salts accumulated in the upper soil layers during pre-drainage times have remained in drained grasslands but have been flushed away under tree plantations (65 and 83% loss of chloride and sodium, respectively, in the 0 to -0.5 m depth range) as a result of a five- to 25-fold increase in infiltration rates detected under plantations. At greater depth, closer to the current water table level, the salt balance was reversed, with tree plantations gaining 2.5 kg sodium chloride m(-2) down to 6 m depth, resulting from groundwater uptake and salt exclusion by tree roots in the capillary fringe. Diurnal water table fluctuations, detected in a plantation stand but not in the neighbouring grasslands, together with salt mass balances suggest that trees consumed approximately 380 mm groundwater per year, re-establishing the discharge regime and leading to higher salt accumulation rates than those interrupted by regional drainage practices more than a century ago. The strong influences of vegetation changes on water dynamics can have cascading consequences on salt accumulation and distribution, and a broad ecohydrological perspective that explicitly considers vegetation-groundwater links is

  9. Effect of peanut shells amendment on soil properties and growth of seedlings of Senegalia senegal (L.) Britton, Vachellia seyal (Delile) P. Hurter, and Prosopis juliflora (Swartz) DC in salt-affected soils

    OpenAIRE

    Fall, D.; Bakhoum, N.; Fall, F.; Diouf, F.; Ndiaye, C.; Faye, M. N.; Hocher, Valérie; Diouf, D.

    2018-01-01

    Key message The soil amendment with peanut shells (4, 6 or 8 t ha(-1)) improves soil properties and growth of Senegalia senegal (L.) Britton, Vachellia seyal (Delile) P. Hurter and Prosopis juliflora (Swartz) DC seedlings on salty soils (86, 171, 257 mM NaCl). Context Salinization causes the degradation of biological, chemical, and physical properties of soils. Salty soils reclamation can be achieved with organic amendments and afforestation with salt tolerant species.Aims The aim of the stud...

  10. Restoration of Degraded Salt Affected Lands to Productive Forest Ecosystem

    Science.gov (United States)

    Singh, Yash; Singh, Gurbachan; Singh, Bajrang; Cerdà, Artemi

    2017-04-01

    Soil system determines the fluxes of energy and matter in the Earth and is the source of goods, services and resources to the humankind (Keesstra et al., 2012; Brevik et al., 2015; Keesstra et al., 2016). To restore and rehabilitate the soil system is a key strategy to recover the services the soils offers (Celentano et al., 2016; Galati et al., 2016; Parras-Alcantara et al., 2016). Transformation of degraded sodic lands in biodiversity rich productive forest ecosystem is a challenging task before the researchers all over the world. The soils of the degraded sites remain almost unfavorable for the normal growth, development and multiplication of organisms; all our attempts tend to alleviate the soil constraints. Land degradation due to presence of salts in the soil is an alarming threat to agricultural productivity and sustainability, particularly in arid and semiarid regions of the world (Tanji, 1990; Qadir et al., 2006). According to the FAO Land and Nutrition Management Service (2008), over 6% of the world's lands are affected by salinity, which accounts for more than 800 million ha in 100 countries. This is due to natural causes, extensive utilization of land (Egamberdieva et al., 2008), poor drainage systems and limited availability of irrigation water which causes salinization in many irrigated soils (Town et al., 2008).In India, about 6.73 million ha are salt affected which spread in 194 districts out of 584 districts in India and represents 2.1% of the geographical area of the country (Mandal et al., 2009).Out of these, 2.8 million ha are sodic in nature and primarily occurring in the Indo-Gangetic alluvial plains. These lands are degraded in structural, chemical, nutritional, hydrological and microbiological characteristics. The reclamation of salt affected soils with chemical amendments like gypsum and phospho-gypsum are in practice for the cultivation field crops under agricultural production. Forest development on such lands although takes considerable

  11. Electrochemical energy: the green face of the salt-affected lands

    International Nuclear Information System (INIS)

    Ashraf, M.; Mahmood, K.; Waheed, A.

    2013-01-01

    A high soluble salt content make the salt-stressed terrestrial and the aquatic habitats electrically more active than the normal ecosystems. The salt-tolerant plants and the microbial populations adapted to the salt-stressed environments have developed special mechanisms to resist the ionic and the osmotic stresses. The study evaluated the bioelectricity or electrochemical energy potential of soil and bio-resources of a salt-affected land. The electrical conductivity and the charge resistance ability exhibited the various categories of salt-tolerant plants suitable for a range of salt-stressed conditions and the root activities including extrusion of proton (H+) in the rooting media. The microbial biofilms formed with plant roots, soil particles and the solid surface by exo-polysaccharides producing biofilm bacteria could regulate and monitor ion flux across the bio-membranes and the electrode surfaces. The ionic gradients thus created by plants and the microbial processes could be a continuous and uninterrupted valuable source of bio-energy of the salt-stressed and contaminated soil and water habitats. The bio-energy can be harnessed and utilized by especially designed microbial biofuel cells (MBFC). The biofilms developed on anode or cathode of MBFC could act as half cells for source and sink of the electrons released during oxidation reduction processes carried by microbial consortia while the exo-polysaccharides, the microbial biopolymer could support transfer of charge to the electrodes. The salt-affected soil and the soil organic matter constituents, microbial biopolymers and the brackish water, as a mediators and the cathode passivation inhibitors, thus could help enhance and increase the output intensity of the electrochemical energy and efficiency of the biofuel cells. The study suggested an enormous potential of the salt-affected lands for non-conventional renewable bio-energy source useful in the remote areas and for the small power requiring electrical

  12. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review.

    Science.gov (United States)

    Ali, Shafaqat; Rizwan, Muhammad; Qayyum, Muhammad Farooq; Ok, Yong Sik; Ibrahim, Muhammad; Riaz, Muhammad; Arif, Muhammad Saleem; Hafeez, Farhan; Al-Wabel, Mohammad I; Shahzad, Ahmad Naeem

    2017-05-01

    Drought and salt stress negatively affect soil fertility and plant growth. Application of biochar, carbon-rich material developed from combustion of biomass under no or limited oxygen supply, ameliorates the negative effects of drought and salt stress on plants. The biochar application increased the plant growth, biomass, and yield under either drought and/or salt stress and also increased photosynthesis, nutrient uptake, and modified gas exchange characteristics in drought and salt-stressed plants. Under drought stress, biochar increased the water holding capacity of soil and improved the physical and biological properties of soils. Under salt stress, biochar decreased Na + uptake, while increased K + uptake by plants. Biochar-mediated increase in salt tolerance of plants is primarily associated with improvement in soil properties, thus increasing plant water status, reduction of Na + uptake, increasing uptake of minerals, and regulation of stomatal conductance and phytohormones. This review highlights both the potential of biochar in alleviating drought and salt stress in plants and future prospect of the role of biochar under drought and salt stress in plants.

  13. Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions

    Science.gov (United States)

    Turkoz, Emre; Perazzo, Antonio; Arnold, Craig B.; Stone, Howard A.

    2018-05-01

    The addition of small amounts of xanthan gum to water yields viscoelastic solutions. In this letter, we show that the viscoelasticity of aqueous xanthan gum solutions can be tuned by different types of salts. In particular, we find that the decrease in viscoelasticity not only depends, as is known, on the salt concentration, but also is affected by the counterion ionic radius and the valence of the salt.

  14. Irrigation management in Mediterranean salt affected agriculture: how leaching operates

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2012-03-01

    Full Text Available In the frame of a crop rotation currently applied in a farm of the Apulian Tavoliere (Southern Italy, this paper reports the effect of brackish water irrigation on soil, outlines the corresponding salinity balance, formulates quantitative relations to model salt outflow below the soil root-layer and defines operational criteria to optimize irrigation management at farm level in order to control soil salinity through leaching. The general aim is to contribute to a sustainable use of the available water resources and a proper soil fertility conservation. A three-year trial (2007-2010 was carried out on a farm located close to the coast of the Manfredonia gulf (Mediterranean - Adriatic sea, where irrigation with brackish water is frequently practiced due to seawater intrusion into the groundwater. An especially designed experimental field-unit was set-up: the bottom of three hydraulically insulated plots was covered with a plastic sheet to intercept the percolating water and collect it into tanks by means of drain tubes. Each year a double crop cycle was applied to the soil; a spring-summer crop (tomato, zucchini and pepper, respectively was followed by a fall-winter crop (spinach, broccoli and wheat. Short “fallow” periods (completely bare soil were inserted between two crop cycles. Irrigation or rain completely restored crop water consumptions (with the exception of wheat, considered a rainfed crop and leaching was performed both unintentionally (by rainfalls or intentionally (supplying higher irrigation volumes whenever the soil electrical conductivity exceeded a fixed threshold. The soil electrical conductivity was periodically measured together with volume and electrical conductivity of irrigation and drainage water. All these measures allowed to draw-up the salt-balance of the soil, respectively at the beginning and the end of each crop cycle. Absolute and relative variations in soil salt content were interpreted with respect to absolute

  15. Designing viable cropping options for salt-affected lands

    Science.gov (United States)

    Shabala, Sergey; Meinke, Holger

    2017-04-01

    Salinity cost agricultural sector over 27Bln pa in lost opportunities and is an issue that crosses all spatial and temporal scales - from individual fields, farms, catchments, landscapes to national and global levels. Salinity manifests itself in many forms and often leads to further soil degradation such as erosion, nutrient and soil organic matter depletion, and a loss of (soil) biodiversity. Salinity may also cause major disturbance to ecosystems due to its impact on resources (e.g. pollution of aquifers). In extreme cases it can turn previously highly productive areas into wastelands. An increasing global population and unprecedented urban sprawls are now putting additional pressures on our soil and water resources, particularly in regions where urbanisation directly competes with agriculture for access to land and water. And although everyone agrees that avoiding soil salinity in the first instance would be the most effective way of combating it, reality is that the amount of saline land and water resources is rapidly increasing, and will continue to increase, especially in developing countries. Purposefully designing our cropping systems that can cope with various levels of salinity could be one answer to this increasing problem. In this work we review some of the key cropping options that can be deployed to either avoid, reduce or remediate salt-affected lands. We argue that for these measures to be most effective an ongoing science - policy - society dialogue is required to ensure that policy frameworks that govern land and water management are conducive to reducing salinity or even assist in restoring affected areas. We first consider several case studies highlighting the extent of the problem using ongoing salinity hotspots around the globe. We then look at halophytes as a possible biological tools to remediate already saline sols, and discuss prospects of mixed (halophytes and glycophytes) cropping solutions for various agricultural systems at different

  16. Effects of de-icing salt on soil enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Guentner, M; Wilke, B M

    1983-01-01

    Effects of de-icing salt on dehydrogenase, urease, alkalinephosphatase and arylsulfatase activity of O/sub L/- and A/sub h/-horizons of a moder and a mull soil were investigated using a field experiment. Additions of 2.5 kg m/sup -2/ and 5.0 kg m/sup -2/ of de-icing salt reduced activities of most enzymes within four weeks. Eleven months after salt addition there was nearly no reduction of enzyme activity to be measured on salt treated soils. The percentage of reduced enzyme activity was generally higher in the moder soil. It was concluded that reductions of enzyme activity were due to decreases of microbial activity and not to inactivation of enzymes.

  17. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  18. Water potential in soil and Atriplex nummularia (phytoremediator halophyte) under drought and salt stresses.

    Science.gov (United States)

    de Melo, Hidelblandi Farias; de Souza, Edivan Rodrigues; de Almeida, Brivaldo Gomes; Mulas, Maurizio

    2018-02-23

    Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl 2 and CaCl 2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m -1 . After 100 days, total water (Ψ w, plant ) and osmotic (Ψ o, plant ) potentials at predawn and midday and Ψ o, soil , matric potential (Ψ m, soil ) and Ψ w, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψ o component was the largest contributor to Ψ w, soil . Atriplex is surviving ECs close to 40 dS m -1 due to the decrease in the Ψ w . The plants reached a Ψ w of approximately -8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.

  19. Raingarden Soil Bacteria Community Response to Lab Simulated Salt-Enriched Artificial Stormwater

    Science.gov (United States)

    Endreny, T. A.

    2014-12-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO3, PO4, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO3 and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO4 concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure.

  20. Salt Attack on Rocks and Expansion of Soils on Mars

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.

    2004-12-01

    Salt-rich sediments observed by the MER rover Opportunity at Meridiani Planum show that brines have been present on Mars in the past, but a role for groundwater in widespread rock weathering and soil formation is uncertain. Experiments by several groups suggest instead the action of acid fog over long time spans, with episodic input of volcanic gases, as a more significant agent of Mars weathering. Salt minerals formed in these acid weathering experiments consistently include gypsum and alunogen, with epsomite or hexahydrite forming where olivine provides a source of Mg. Analogous to the martian acid fog scenario are terrestrial acid rain or acid fog attacks on building and monument stone by chemical action and mechanical wedging through growth of gypsum, anhydrite, epsomite, hexahydrite, kieserite, and other sulfate minerals. Physical effects can be aggressive, operating by both primary salt growth and hydration of anhydrous or less-hydrous primary salts. In contrast, soils evolve to states where chemical attack is lessened and salt mineral growth leads to expansion with cementation; in this situation the process becomes constructive rather than destructive. We have made synthetic salt-cemented soils (duricrusts) from clays, zeolites, palagonites and other media mixed with ultrapure Mg-sulfate solutions. Although near-neutral in pH, these solutions still exchange or leach Ca from the solids to form cements containing gypsum as well as hexahydrite. At low total P (1 torr) and low RH (duricrust expands by formation of a complex mixture of Mg-sulfate phases with various hydration states. The expanded form is retained even if the duricrust is again dehydrated, suggesting that soil porosity thus formed is difficult to destroy. These processes can be considered in the context of Viking, Pathfinder, and MER evidence for differing salt components in the weathered surfaces of rocks versus duricrust-like materials in soils. The divergent chemical trends indicate that soil

  1. Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion

    Science.gov (United States)

    Wang, Heng; van der Wal, Daphne; Li, Xiangyu; van Belzen, Jim; Herman, Peter M. J.; Hu, Zhan; Ge, Zhenming; Zhang, Liquan; Bouma, Tjeerd J.

    2017-07-01

    Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and vegetation properties) affecting the erosion of salt marsh edges. In this study, we quantified rates of cliff lateral retreat (i.e., the eroding edge of a salt marsh plateau) using a time series of aerial photographs taken over four salt marsh sites in the Westerschelde estuary, the Netherlands. In addition, we experimentally quantified the erodibility of sediment cores collected from the marsh edge of these four marshes using wave tanks. Our results revealed the following: (i) at the large scale, wind exposure and the presence of pioneer vegetation in front of the cliff were the key factors governing cliff retreat rates; (ii) at the intermediate scale, foreshore morphology was partially related to cliff retreat; (iii) at the local scale, the erodibility of the sediment itself at the marsh edge played a large role in determining the cliff retreat rate; and (iv) at the mesocosm scale, cliff erodibility was determined by soil properties and belowground root biomass. Thus, both extrinsic and intrinsic factors determined the fate of the salt marsh but at different scales. Our study highlights the importance of understanding the scale dependence of the factors driving the evolution of salt marsh landscapes.

  2. Salts in soil and water within the arid climate zone. Effects on engineering geology, exemplified from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Jergman, K.

    1981-01-01

    In the arid climate zone, where the potential evaporation is much higher than the precipitation, soil and water generally are enriched by salts. In this research project it has been pointed out how salts affect engineering geology in different ways. The extensive study of the Al Khafji area in Saudi Arabia has shown that salts have affected soil and water so that - the crust hardness has increased due to a development of duricrust. The strength of the upper part of the crust is similar to weak rock. - the coastal terrace area moves vertically - groundwater affects the salinization of the soil profile A general description of the effect of salts on engineering geology can be summarized as below: The precipitated salts affect the profile so that 1.Stability changes. 2.Swelling alternatively contraction can occur due to variations of the water content. 3.Vegetation growth becomes difficult or impossible. 4.Excavation work is difficult. 5.Aggregate sources are affected. 6.Concrete corrosion is caused. 7.There is demand for proper field and laboratory tests and for special design criteria.The occurance of salts in the water causes due special conditions that 1.The soil profile is enriched by salts 2. The plants are damaged. 3.Concrete corrosion is developed. 4.The water is not suitable for drinking or irrigation purposes. 5. The density increases to such an extent that it effects the direction of the groundwater flow.

  3. Engineered soil covers for management of salt impacted sites

    International Nuclear Information System (INIS)

    Sweeney, D.A.; Tratch, D.J.

    2005-01-01

    The use of engineered soil cover systems to mitigate environmental impacts from tailings and waste rock piles is becoming an accepted practice. This paper presented design concepts for soil covers related to reclamation practices in the mining industry as an effective risk management practice at salt impacted sites. Research and field programs have demonstrated that a layered engineered soil cover can reduce or eliminate infiltration. Key components of the system included re-establishing surface vegetation to balance precipitation fluxes with evapotranspiration potential, and design of a capillary break below the rooting zone to minimize deeper seated infiltration. It was anticipated that the incorporation of a vegetation cover and a capillary break would minimize infiltration into the waste rock or tailing pile and reduce the generation of acid rock drainage (ARD). Design of a layered soil cover requires the incorporation of meteorological data, moisture retention characteristics of the impacted soils, and proposed engineered cover materials. Performance of the soil cover was predicted using a finite element model combined with meteorological data from the site area, unsaturated soil properties of the parent sub-surface soils and potential covered materials. The soil cover design consisted of re-vegetation and a loose clay cover overlying a compacted till layer. The design was conducted for an off site release of salt impacted pasture land adjacent to a former highway maintenance yard. The model predicted minimal infiltration during high precipitation events and no infiltration during low precipitation events. Results indicated that the proposed soil cover would enable re-establishment of a productive agricultural ground cover, as well as minimizing the potential for additional salt migration. It was concluded that further research and development is needed to ensure that the cover system is an acceptable method for long-term risk management. 17 refs., 5 figs

  4. Salt and N leaching and soil accumulation due to cover cropping practices

    Science.gov (United States)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth

  5. Effects of Salt Accumulation in Soil by Evaporation on Unsaturated Soil Hydraulic Properties

    Science.gov (United States)

    Liu, Y.; Liu, Q.

    2017-12-01

    Soil salinization is one type of soil degradation caused by saline groundwater evaporation. Salt accumulation in the soil will change the pore structure of soil, which should change the unsaturated soil hydraulic properties including the soil water characteristic curve (SWCC). To investigate the effect of salt accumulation on the SWCC and find the best suitable SWCC model to characterize the relationship of soil moisture and soil matrix potential, we have conducted laboratory SWCC experiments with the soil columns saturated by NaCl solution with different concentration (deionized water, 3 g/L, 15 g/L, 50 g/L, 100 g/L and 200 g/L). As the concentration of initial solution increases, the matrix potential corresponding to the same moisture increases. As the water was evaporated, the salt would precipitate in soil continuously, which would decrease the porosity of soils and increase the negative pressure of soils. With higher initial concentration, the more salt accumulation caused the more residual water content in the soils. For van Genuchten-Mualem model, the residual water contents θr were 0.0159, 0.0181, 0.0182, 0.0328, 0.0312, 0.0723, 0.0864 in the columns initially saturated by deionized water, 3 g/L, 15 g/L, 50 g/L, 100 g/L and 200 g/L, respectively. The van Genuchten-Mualem model, Fredlund-Xing model, Gardern model, Mckee-Bumb model and Brooks-Corey model were fitted by MATLAB with the experiments data, and the fitted coefficients were compared. The Fredlund-Xing model has the best fitting coefficients and the calculated value was consistent with the observed data.

  6. Trend Analysis of Soil Salinity in Different Land Cover Types Using Landsat Time Series Data (case Study Bakhtegan Salt Lake)

    Science.gov (United States)

    Taghadosi, M. M.; Hasanlou, M.

    2017-09-01

    Soil salinity is one of the main causes of desertification and land degradation which has negative impacts on soil fertility and crop productivity. Monitoring salt affected areas and assessing land cover changes, which caused by salinization, can be an effective approach to rehabilitate saline soils and prevent further salinization of agricultural fields. Using potential of satellite imagery taken over time along with remote sensing techniques, makes it possible to determine salinity changes at regional scales. This study deals with monitoring salinity changes and trend of the expansion in different land cover types of Bakhtegan Salt Lake district during the last two decades using multi-temporal Landsat images. For this purpose, per-pixel trend analysis of soil salinity during years 2000 to 2016 was performed and slope index maps of the best salinity indicators were generated for each pixel in the scene. The results of this study revealed that vegetation indices (GDVI and EVI) and also salinity indices (SI-1 and SI-3) have great potential to assess soil salinity trends in vegetation and bare soil lands respectively due to more sensitivity to salt features over years of study. In addition, images of May had the best performance to highlight changes in pixels among different months of the year. A comparative analysis of different slope index maps shows that more than 76% of vegetated areas have experienced negative trends during 17 years, of which about 34% are moderately and highly saline. This percent is increased to 92% for bare soil lands and 29% of salt affected soils had severe salinization. It can be concluded that the areas, which are close to the lake, are more affected by salinity and salts from the lake were brought into the soil which will lead to loss of soil productivity ultimately.

  7. Jerusalem artichoke decreased salt content and increased diversity of bacterial communities in the rhizosphere soil in the coastal saline zone

    Science.gov (United States)

    Shao, Tianyun; Li, Niu; Cheng, Yongwen; Long, Xiaohua; Shao, Hongbo; Zed, Rengel

    2017-04-01

    Soil salinity is one of the main environmental constraints that restrict plant growth and agricultural productivity; however, utilization of salt-affected land can bring substantial benefits. This study used an in-situ remediation method by planting Jerusalem artichoke in naturally occurring saline alkali soils with different salinity (high salinity (H, >4.0 g•salt kg-1 soil), moderate salinity (M, 2.0-4.0 g•salt kg-1 soil) and low salinity (L, 1.0-2.0 g•salt kg-1 soil) in the coastal saline zone in southeast China in comparison with the respective controls without Jerusalem artichoke planting (undisturbed soil). Soil pH and salinity increased sequentially from the rhizosphere to the bulk soil and the unplanted controls. The activity of neutral phosphatase and invertase decreased in the order L > M > H, whereas that of catalase was reverse. The minimum content of calcite, muscovite and quartz, and maximum content of chlorite and albite, were found in the control soils. Planting of Jerusalem artichoke enhanced bacterial microflora in saline alkali soil. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. The number of Operational Taxonomic Units (OTU) in the rhizosphere soil was, respectively, 1.27, 1.02 and 1.25 times higher compared with the bulk soil, suggesting that Jerusalem artichoke played a significant role in increasing abundance and diversity of soil microbial populations. The study showed that Jerusalem artichoke could be used to improve saline alkali soil by enriching bacterial communities, enhancing the activity of phosphatase and invertase, and decreasing soil salinity.

  8. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    Science.gov (United States)

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  9. Actividad biológica y enzimática en suelos afectados por sales del Alto Valle de Río Negro y Neuquén Biological and enzymatic activities in salts affected soils from Alto Valle de Río Negro and Neuquén

    Directory of Open Access Journals (Sweden)

    P. Gili

    2004-12-01

    Full Text Available En el presente trabajo se estudiaron los cambios que provocó el lavado de cinco suelos afectados por sales sobre la actividad biológica (número de bacterias g-1y producción de CO2 y enzimática (catalasa, deshidrogenasa, ureasa y fosfotriesterasa de los mismos. El lavado disminuyó la conductividad eléctrica (CE y modificó el tipo de sales dominantes en los suelos. La producción de CO2 y la actividad de la fosfotriesterasa fue significativamente mayor (pChanges in the biological activity (number of bacteria g-1and CO2 production and in the enzymatic activity (catalase, deshidrogenase, urease and phosphotriesterase caused by the leaching of five soils affected by salts have been studied. The leaching decreased the electric conductivity (CE and modified the type of dominant salts in the soils. Production of CO2and the activity of the phosphotriesterase was significantly higher (p<0,05 in a leached soil (Torrifluventes Typical Centennial; the increment were 88% and 71%, respectively. The results showed that the decrease of the salinity by leaching did not produce significantly different results in most of the biotic parameters analised.

  10. Uso de imagens TM/Landsat-5 e termometria na identificação e mapeamento de solos afetados por sais na região de Sousa, PB TM/Landsat-5 images and thermometry in the identification and mapping of salt affected soils in the region of Sousa, Brazil

    Directory of Open Access Journals (Sweden)

    Cícero O. Lima

    2001-05-01

    Full Text Available A região de São Gonçalo/Baixada de Sousa é um dos principais centros agrícolas do Estado da Paraíba. O manejo inadequado das terras e da irrigação tem sido responsável pela redução do rendimento das culturas e pela degradação dos solos, por salinização. Na mitigação das vulnerabilidades agrícolas, o geoprocessamento está consolidado como ferramenta poderosa no estudo e monitoramento do meio ambiente, visando ao desenvolvimento sustentável, com diminuição dos riscos a desastres. O objetivo deste trabalho foi o uso de imagens TM/Landsat-5 (análise visual e processamento digital, de medidas superficiais de temperatura e de um SIG na identificação e mapeamento de solos afetados por sais. Os resultados mostraram que, ao longo dos últimos anos, houve incremento da área de solos degradados pela salinização e, hoje, aproximadamente 39,48% da área estudada apresentam ocorrência de solos afetados por sais.The São Gonçalo/Baixada de Sousa region is one of the main agricultural centers of the State of Paraíba. The inadequate management of the lands and irrigation has been responsible for the reduction of the agriculture income and for the soil degradation by salt. In the mitigation of the agricultural vulnerabilities, geoprocessing is consolidated as a powerful tool in the study and monitoring of the environment, aiming at sustainable development with risk reduction of disasters. The objective of this work was the use of TM/Landsat-5 images (visual analysis and digital processing, superficial measures of temperatures and a GIS in the identification and mapping of salt affected soils. The results showed that along the last years the area of soil degradation by salt had increased and today approximately 39.48% of the studied area presents salt affected soils.

  11. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  12. Radioactivity levels in soil of salt field area Kelambakkam, Tamil Nadu, India

    International Nuclear Information System (INIS)

    Ravisankar, R.; Rajalakshmi, A.; Manikandan, E.; Gajendiran, V.; Meenakshisundaram, V.

    2006-01-01

    Mother nature has gifted mankind with lot of precious gifts. Common salt is one of them. In the globe, Tamilnadu is one of the ideal locations for producing salt. Kelambakkam salt field area is one of the leading producers of salt in global market. The climate, soil and availability of brine are a great asset for producing quality salts. In the present work, the primordial radionuclides concentration in soil samples collected in and around the salt field area, Kelambakkam, Tamilnadu was measured using gamma ray spectrometer

  13. IMPACTS OF ROAD DE-ICING SALTS ON MANGANESE TRANSPORT TO GROUNDWATER IN ROADSIDE SOILS

    OpenAIRE

    Wen, Yingrong

    2012-01-01

    Manganese (Mn) is an important element in soil, it occur natural in minerals and precipitated as Mn-oxides. Several factors could decide the solubility and mobility of Mn in soil water. In this study, the impact of road de-icing salts (NaCl) on manganese mobilization and transport to groundwater in roadside soils has been investigated by leaching tests. Generally, in the salt solution leachates, the water-soluble concentrations of Mn tended to increase with elevated salt concentrations, sugge...

  14. Enhancement of surfactant efficacy during the cleanup of engine oil contaminated soil using salt and multi-walled carbon nanotubes.

    Science.gov (United States)

    Bonal, Niteesh Singh; Paramkusam, Bala Ramudu; Basudhar, Prabir Kumar

    2018-06-05

    The study aims to enhance the efficacy of surfactants using salt and multi-walled carbon nanotubes (MWCNT) for washing used engine oil (UEO) contaminated soil and compare the geotechnical properties of contaminated soil before and after washing (batch washing and soil washing). From batch washing of the contaminated soil the efficacy of the cleaning process is established. Contamination of soil with hydrocarbons present in UEO significantly affects its' engineering properties manifesting in no plasticity and low specific gravity; the corresponding optimum moisture content value is 6.42% while maximum dry density is 1.770 g/cc, which are considerably lower than those of the uncontaminated soil. The result also showed decrease in the values of cohesion intercept and increase in the friction angle values. The adopted soil washing technique resulted increase in specific gravity from 1.85 to 2.13 and cohesion from 0.443 to 1.04 kg/cm 2 and substantial decrease in the friction angle from 31.16° to 17.14° when washed with most efficient combination of SDS surfactant along with sodium meta-silicate (salt) and MWCNT. Effectiveness of the washing of contaminated soil by batch processing and soil washing techniques has been established qualitatively. The efficiency of surfactant treatment has been observed to be increased significantly by the addition of salt and MWCNT. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Carbon stocks in mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA: Vegetative and soil characteristics.

    Science.gov (United States)

    Moyer, R. P.; Radabaugh, K.; Chappel, A. R.; Powell, C.; Bociu, I.; Smoak, J. M.

    2017-12-01

    When compared to other terrestrial environments, coastal "blue carbon" habitats such as salt marshes and mangrove forests sequester disproportionately large amounts of carbon as standing plant biomass and sedimentary peat deposits. This study quantified total carbon stocks in vegetation and soil of 17 salt marshes, salt barrens, and mangrove forests in Tampa Bay, Florida, USA. The sites included natural, restored, and created wetlands of varying ages and degrees of anthropogenic impacts. The average vegetative carbon stock in mangrove forests was 60.1 ± 2.7 Mg ha-1. Mangrove forests frequently consisted of a few large Avicennia germinans trees with smaller, abundant Rhizophora mangle and/or Laguncularia racemosa trees. The average vegetative carbon stock was 11.8 ± 3.7 Mg ha-1 for salt marshes and 2.0 ± 1.2 Mg ha-1 for salt barrens. Vegetative carbon did not significantly differ between natural and newly created salt marsh habitats, indicating that mature restored wetlands can be included with natural wetlands for the calculation of vegetative carbon in coastal blue carbon assessments. Peat deposits were generally less than 50 cm thick and organic content rapidly decreased with depth in all habitats. Soil in this study was analyzed in 1 cm intervals; the accuracy of subsampling or binning soil into depth intervals of 2-5 cm was also assessed. In most cases, carbon stock values obtained from these larger sampling intervals were not statistically different from values obtained from sampling at 1 cm intervals. In the first 15 cm, soil in mangrove forests contained an average of 15.1% organic carbon by weight, salt marshes contained 6.5%, and salt barrens contained 0.8%. Total carbon stock in mangroves was 187.1±17.3 Mg ha-1, with 68% of that carbon stored in soil. Salt marshes contained an average of 65.2±25.3 Mg ha-1 (82% soil carbon) and salt barrens had carbon stocks of 21.4±7.4 Mg ha-1 (89% soil carbon). These values were much lower than global averages for

  16. Salivary Proteome Patterns Affecting Human Salt Taste Sensitivity.

    Science.gov (United States)

    Stolle, Theresa; Grondinger, Freya; Dunkel, Andreas; Meng, Chen; Médard, Guillaume; Kuster, Bernhard; Hofmann, Thomas

    2017-10-25

    To investigate the role of perireceptor events in inter-individual variability in salt taste sensitivity, 31 volunteers were monitored in their detection functions for sodium chloride (NaCl) and classified into sensitive (0.6-1.7 mmol/L), medium-sensitive (1.8-6.9 mmol/L), and nonsensitive (7.0-11.2 mmol/L) subjects. Chemosensory intervention of NaCl-sensitive (S + ) and nonsensitive (S - ) panellists with potassium chloride, ammonium chloride, and sodium gluconate showed the salt taste sensitivity to be specific for NaCl. As no significant differences were found between S + and S - subjects in salivary sodium and protein content, salivary proteome differences and their stimulus-induced dynamic changes were analyzed by tryptic digestion, iTRAQ labeling, and liquid chromatography-tandem mass spectrometry analysis. Differences in the salivary proteome between S + and S - subjects were found primarily in resting saliva and were largely independent of the dynamic alterations observed upon salt stimulation. Gene ontology enrichment analysis of key proteins, i.e., immunoglobulin heavy constant y1, myeloblastin, cathepsin G, and kallikrein, revealed significantly increased serine-type endopeptidase activity for the S + group, while the S - group exhibited augmented cysteine-type endopeptidase inhibitor activity by increased abundances in lipocalin-1 and cystatin-D, -S, and -SN, respectively. As proteases have been suggested to facilitate transepithelial sodium transport by cleaving the y-subunit of the epithelial sodium channel (ENaC) and protease inhibitors have been shown to reduce ENaC-mediated sodium transport, the differentially modulated proteolytic activity patterns observed in vivo for S + and S - subjects show evidence of them playing a crucial role in affecting human NaCl sensitivity.

  17. Food quantity affects the sensitivity of Daphnia to road salt.

    Science.gov (United States)

    Brown, Arran H; Yan, Norman D

    2015-04-07

    Road deicing operations have raised chloride (Cl) levels in many temperate lakes in Europe and North America. These lakes vary widely in trophic status, but to date, no one has quantified the interaction between food quantity and road salt toxicity. We examined the effects of food quantity (particulate algal C concentration (C)) on the chronic toxicity of Cl to Daphnia in soft-water bioassays. There was a strong positive linear relationship (r(2) = 0.92 for NaCl and r(2) = 0.96 for CaCl2) between food quantity and Cl LC50. As food quantity increased from 0.2 to 1.0 mg C/L (levels characteristic of oligotrophic to eutrophic lakes, respectively), the chronic Cl LC50 increased from 55.7 to 284.8 mg Cl/L. Salt type (NaCl or CaCl2) did not affect the Cl LC50, Daphnia life history parameters, or the intrinsic rate of population increase (r). The life history parameter most sensitive to Cl was neonate production. Cl did not inhibit egg production, nor was the maternal lipid investment in eggs changed, but egg viability and the subsequent release of live neonates decreased as Cl levels increased and food decreased. Our results suggest the trophic status of lakes should be considered when assessing ecological threat from Cl.

  18. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress

    Directory of Open Access Journals (Sweden)

    Aisha Waheed Qurashi

    2012-09-01

    Full Text Available To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98 growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.

  19. Field manual for reclamation of salt contaminated soils

    International Nuclear Information System (INIS)

    Burley, M.J.; Lesky, M.; Warren, R.J.

    1988-01-01

    Saltwater is often produced with crude oil and must be separated from it at a processing facility prior to deep-well injection. Increasing volumes of saltwater have led to pipeline corrosion and an increasing frequency of saltwater spills. A field manual for treating saltwater-contaminated soil was prepared by the Production Research Department of Esso Resources Canada Limited and Husky Oil Operations Limited. The purpose of the manual is to provide field and plant operations with a practical guide for reclaiming brine spills on mineral (agricultural) soil. The manual covers background scientific theory about how saltwater affects the soil, initial steps for treating new spills, site assessment, and reclamation program design, implementation and monitoring. A sample spill site assessment form is included. 8 refs

  20. Recuperação de solos afetados por sais pela aplicação de gesso de jazida e calcário no Nordeste do Brasil Reclamation of salt-affected soils in Northeast Brazil with application of mined gypsum and limestone

    Directory of Open Access Journals (Sweden)

    Maria de F. C. Barros

    2004-04-01

    Full Text Available Objetivando-se avaliar o efeito da aplicação de corretivos químicos sobre as propriedades físicas e químicas, bem como na recuperação de solos afetados por sais do Perímetro Irrigado de Custódia, no Estado de Pernambuco, Brasil, realizou-se um experimento em colunas de solo, instaladas no Laboratório de Salinidade do Solo da Universidade Federal Rural de Pernambuco. Os tratamentos foram dispostos em um delineamento em blocos casualizados, com arranjamento fatorial de quatro solos, dois métodos de aplicação de gesso e gesso + calcário (aplicados na superfície e incorporados nos primeiros 5 cm da coluna de solo, duas combinações dos corretivos (100% de gesso + 0% de calcário e 80% de gesso + 20% de calcário, calculados com base na necessidade de gesso dos solos, e quatro faixas de granulometria de gesso (2,0 - 1,0, 1,0 -0,5, 0,5 - 0,3 e With the objective of evaluating the effect of the application of chemical amendments on the physical and chemical properties as well as on reclamation of the salt-affected soils in the "Perímetro Irrigado de Custódia", in Pernambuco state, Brazil, an experiment was carried out in soil columns installed at the Soil Salinity Laboratory of the Universidade Federal Rural de Pernambuco. The treatments were arranged in a randomized block design in a factorial scheme consisting of four soils, two methods of applications of gypsum and gypsum + limestone (applied on the surface and incorporated into the first 5 cm of the soil column, two combinations of the chemical amendments (100% gypsum and 80% gypsum + 20% limestone, calculated on the basis of gypsum requirement of soils and four granulometry gypsum fractions (2.0 - 1.0; 1.0 - 0.5; 0.5 - 0.3 and < 0.3 mm with three replications. In the saturation extract the electrical conductivity and the soluble cations were determined. The application of gypsum and the mixture of gypsum + limestone showed to be efficient for correction of soil sodicity, which

  1. Soil Resources Area Affects Herbivore Health

    Directory of Open Access Journals (Sweden)

    Chad M. Dacus

    2011-06-01

    Full Text Available Soil productivity effects nutritive quality of food plants, growth of humans and animals, and reproductive health of domestic animals. Game-range surveys sometimes poorly explained variations in wildlife populations, but classification of survey data by major soil types improved effectiveness. Our study evaluates possible health effects of lower condition and reproductive rates for wild populations of Odocoileus virginianus Zimmerman (white-tailed deer in some physiographic regions of Mississippi. We analyzed condition and reproductive data for 2400 female deer from the Mississippi Department of Wildlife, Fisheries, and Parks herd health evaluations from 1991–1998. We evaluated age, body mass (Mass, kidney mass, kidney fat mass, number of corpora lutea (CL and fetuses, as well as fetal ages. Region affected kidney fat index (KFI, which is a body condition index, and numbers of fetuses of adults (P ≤ 0.001. Region affected numbers of CL of adults (P ≤ 0.002. Mass and conception date (CD were affected (P ≤ 0.001 by region which interacted significantly with age for Mass (P ≤ 0.001 and CD (P < 0.04. Soil region appears to be a major factor influencing physical characteristics of female deer.

  2. Tillage system affects microbiological properties of soil

    Science.gov (United States)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  3. Studying of the combined salts effect on the engineering properties of clayey soil

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Anwar

    2018-01-01

    Full Text Available In recent years, a number of studies had been performed to investigate the effect of pore water chemistry on the strength and compressibility characteristics of soil. Although the effect of chloride and sulfates salts separately in pore fluids on the geotechnical properties of soil seems to be well understood, but the influence of combined effect of sulfates and chlorides in pore water on the behavior of soil is still unclear mostly due to the limited numbers of studies as well as the complexity of processes that may occur in soil (with the presence of salts in pore water-soil interaction. Southern regions of Iraq, especially Basra suffers from low water levels in the summer season in addition to the lack of rain water, which causes a significant increase of salt in the Shatt al Arab. Water salinity continues to increase with time. To investigate the combined impacts of water salinity on the behavior of clayey soils, the basic characteristics of the soil brought from Al-Nahrawan site was studied. Chemical methods were done with three types of water (distilled, water of highly saline as Shatt Al-Arab water and water of Tarmiya as moderate saline water. The effect of water salinity on the geotechnical properties of fine grain soil was investigated. Different laboratory tests such as Atterberg limits, standard compaction, consolidation and shear strength of soil .Results showed that the presence of perceptible amounts of dissolved salts in water can lead to changes in the engineering properties of the soil.

  4. A Study on the Coupled Model of Hydrothermal-Salt for Saturated Freezing Salinized Soil

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    2017-01-01

    Full Text Available Water and heat interact in the process of freezing for the saturated soil. And for the salinized soil, water, heat, and salt interact in the freezing process, because salinized soil has soluble salt. In this paper, a one-dimensional mathematical coupled model of hydraulic-thermal-salt is established. In the model, Darcy’s law, law of conservation of energy, and law of conservation of mass are applied to derive the equations. Consider that a saturated salinized soil column is subjected to the condition of freezing to model the moisture migration and salt transport. Both experiment and numerical simulation under the same condition are developed in the soil column. Then the moisture content and salt content between simulation and experiment are compared. The result indicates that simulation matches well with the experiment data, and after 96 hours, the temperature distribution becomes stable, freezing front reaches a stable position, and a lot of unfrozen water has time to migrate. Besides, the excess salt precipitates when the concentration is greater than the solubility, and the precipitation is distributed discontinuously. These results can provide reference for engineering geology and environmental engineering in cold region and saline soil area.

  5. Rethinking infiltration in wildfire-affected soils

    Science.gov (United States)

    Ebel, Brian A.; Moody, John A.

    2013-01-01

    Wildfires frequently result in natural hazards such as flash floods (Yates et al., 2001) and debris flows (Cannon et al., 2001a,b; Gabet and Sternberg, 2008). One of the principal causes of the increased risk of post-wildfire hydrologically driven hazards is reduced in filtration rates (e.g. Scott and van Wyk, 1990; Cerdà, 1998; Robichaud, 2000; Martin and Moody, 2001). Beyond the reduction in peak infiltration rate, there is mounting evidence that the fundamental physics of infiltration in wild fire-affected soils is different from unburned soils (e.g. Imeson et al., 1992; Moody et al., 2009; Moody and Ebel, 2012).Understanding post-wildfire hydrology is critical given the increasing wildfire incidence in the western USA (Westerling et al., 2006) and elsewhere in the world (Kasischke and Turetsky, 2006; Holz and Veblen, 2011; Pausas and Fernández-Muñoz, 2012). Wildfire is a disturbance event with global distribution (Bowman et al., 2009; Krawchuk et al., 2009; Pechony and Shindell, 2010; Moritz et al., 2012), and with increasing populations moving into fire-prone areas, understanding post-wildfire infiltration is of increasing importance for predicting post-wildfire consequences. Runoff is generally controlled by the infiltration-excess mechanism in fire-affected soils (e.g. Mayor et al., 2007; Onda et al., 2008; Kinner and Moody, 2010). It is essential that the fire community have conceptual models, physical equations and tools (i.e. numerical models) to predict infiltration and thus excess rainfall (after Horton, 1933), which can provide estimates of peak discharge, start of runoff, time to peak and total runoff for hydroclimatic scenarios after wildfires. Reductions in saturated hydraulic conductivity Ksat [LT-1] are common for fire-affected soils, and the relatively low values observed explain the elevated flash flood hazards (e.g. Ksat of 1–100 mm h-1 , Robichaud, 2000; Yates et al., 2000; Martin and Moody, 2001; Robichaud et al

  6. Ectomycorrhizal activity as affected by soil liming

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Solbritt

    1996-05-01

    Acidification of the forest soils in southern Sweden due to atmospheric deposition has become evident during recent decades. To counteract further acidification, liming of forests in the most affected areas has been proposed. Most forest trees in the temperate and boreal forest ecosystems live in symbiosis with ectomycorrhizal fungi, and their uptake of mineral nutrients from the soil is greatly influenced by the symbiosis. In this thesis effects of liming on ectomycorrhiza have been studied in relation to effects on root colonization, fungal growth and nitrogen uptake. In field experiments the effects of liming on ectomycorrhizal colonization of root tips were variable, possibly due to different soil types and climatic variations. However, a changed mycorrhizal community structure could be detected. Laboratory studies also showed that the substrate may influence the outcome of lime applications; the nutrient status of the substrate had a marked effect on how mycelial growth was affected by liming. Under the experimental conditions used in the studies presented in this thesis, liming reduced the uptake of nitrogen and phosphorus by both mycorrhizal and non-mycorrhizal plants. The amount of extractable nitrogen and phosphorus in the peat was also reduced by liming. The latter could be due to either microbial or chemical immobilization. The lime induced decrease in nitrogen uptake was stronger in non-mycorrhizal plants than in mycorrhizal plants. Thus, the mycorrhizal plants had a higher ability to deal with the negative effects of liming on nitrogen availability. This was not the case for phosphorus. The lime induced decrease in phosphorus uptake was stronger for mycorrhizal plants, and in the highest lime treatment there was no significant difference between the mycorrhizal and the non-mycorrhizal spruce plants. 76 refs, 2 figs, 1 tab

  7. Seasonal variation in apparent conductivity and soil salinity at two Narragansett Bay salt marshes

    Science.gov (United States)

    Measurement of the apparent conductivity of salt marsh sediments using electromagnetic induction (EMI) is a rapid alternative to traditional methods of salinity determination that can be used to map soil salinity across a marsh surface. Soil salinity measures can provide informat...

  8. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  9. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Directory of Open Access Journals (Sweden)

    Jiangbao Xia

    Full Text Available Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL, soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC declined significantly, whereas the salt content (SC and absolute soil solution concentration (CS decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m and shallow water levels (0.6 m respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m.The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  10. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  11. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  12. Short-term salt stress strongly affects dynamic photosynthesis, but not steady-state photosynthesis, in tomato (Solanum lycopersicum)

    NARCIS (Netherlands)

    Zhang, Yuqi; Kaiser, Elias; Zhang, Yating; Yang, Qichang; Li, Tao

    2018-01-01

    Salt stress occurs worldwide due to widespread soil salinization. Also, plants are often subjected to rapidly alternating periods of sun and shade (sunflecks). Despite this combined occurrence of salt stress and sunflecks, dynamic photosynthetic responses to sunflecks under salt stress remain

  13. De-icing salt contamination reduces urban tree performance in structural soil cells.

    Science.gov (United States)

    Ordóñez-Barona, Camilo; Sabetski, Vadim; Millward, Andrew A; Steenberg, James

    2018-03-01

    Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. First results on enzymatic activities in two salt marsh soils under different hydromorphic level and vegetation

    Directory of Open Access Journals (Sweden)

    Carmen Trasar-Cepeda

    2015-12-01

    Full Text Available Salt-marsh soils are soils characterized by non-permanent hydric saturation that, depending on factors like duration of submersion periods, are dominated by different salt-tolerant plant species. The composition of microbial communities is an essential component in trophic dynamics and biogeochemical processes in salt marshes, and determines the level of enzymatic activities, which catalyze the conversion of complex molecules into simpler ones. Despite of this, the enzymatic activities in marsh-soils has not yet been investigated. The aim of this study was to analyze the enzymatic activities in two soil profiles of marsh-soils under different water saturation level and dominated by different plant species [Juncus maritimus Lam and Spartina maritima (Curtis Fernald (Sp]. In both soils, the enzymatic activities were much lower than the levels typically found in terrestrial ecosystems. The enzymatic activities were measured both in air-dried and in re-moistened and incubated soil samples. In air-dried samples, the enzymatic activities were higher in Juncus than in Spartina soil and tended to decrease with depth, being sharper the decrease in Juncus than in Spartina soil. Re-moistened and pre-incubated soils showed a general increase in all the enzymatic activities and throughout the whole soil profile, especially in Spartina soils. Hydrolase activities showed a strong and positive relationship with organic matter content both in air-dried and in re-moistened soil samples, higher in these latter. In general, oxidoreductase activities only showed this relationship in re-moistened soil samples. More studies, preferably using freshly collected soil samples, are needed to understand the relationship between enzymatic activities and these environmental conditions.

  15. Microbial community composition affects soil fungistasis

    NARCIS (Netherlands)

    De Boer, W.; Verheggen, P.; Klein Gunnewiek, P.J.A.; Kowalchuk, G.A.; Van Veen, J.A.

    2003-01-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis)

  16. Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China

    Directory of Open Access Journals (Sweden)

    Huijie Li

    2015-05-01

    Full Text Available In the Heihe River basin, China, increased salinity and water shortages present serious threats to the sustainability of arid wetlands. It is critical to understand the interactions between soil water and salts (from saline shallow groundwater and the river and their effects on plant growth under the influence of shallow groundwater and irrigation. In this study, the Hydrus-1D model was used in an arid wetland of the Middle Heihe River to investigate the effects of the dynamics of soil water, soil salinization, and depth to water table (DWT as well as groundwater salinity on Chinese tamarisk root water uptake. The modeled soil water and electrical conductivity of soil solution (ECsw are in good agreement with the observations, as indicated by RMSE values (0.031 and 0.046 cm3·cm−3 for soil water content, 0.037 and 0.035 dS·m−1 for ECsw, during the model calibration and validation periods, respectively. The calibrated model was used in scenario analyses considering different DWTs, salinity levels and the introduction of preseason irrigation. The results showed that (I Chinese tamarisk root distribution was greatly affected by soil water and salt distribution in the soil profile, with about 73.8% of the roots being distributed in the 20–60 cm layer; (II root water uptake accounted for 91.0% of the potential maximal value when water stress was considered, and for 41.6% when both water and salt stress were considered; (III root water uptake was very sensitive to fluctuations of the water table, and was greatly reduced when the DWT was either dropped or raised 60% of the 2012 reference depth; (IV arid wetland vegetation exhibited a high level of groundwater dependence even though shallow groundwater resulted in increased soil salinization and (V preseason irrigation could effectively increase root water uptake by leaching salts from the root zone. We concluded that a suitable water table and groundwater salinity coupled with proper irrigation

  17. [Effects of the grain size and thickness of dust deposits on soil water and salt movement in the hinterland of the Taklimakan Desert].

    Science.gov (United States)

    Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying

    2009-08-01

    By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.

  18. Soil invertebrate fauna affect N2O emissions from soil

    NARCIS (Netherlands)

    Kuiper, I.; Deyn, de G.B.; Thakur, M.P.; Groenigen, van J.W.

    2013-01-01

    Nitrous oxide (N2O) emissions from soils contribute significantly to global warming. Mitigation of N2O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses – a possible role for soil fauna

  19. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  20. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices.

    Science.gov (United States)

    Singh, Y P; Mishra, V K; Singh, Sudhanshu; Sharma, D K; Singh, D; Singh, U S; Singh, R K; Haefele, S M; Ismail, A M

    2016-04-01

    Regaining the agricultural potential of sodic soils in the Indo-Gangetic plains necessitates the development of suitable salt tolerant rice varieties to provide an entry for other affordable agronomic and soil manipulation measures. Thus selection of high yielding rice varieties across a range of sodic soils is central. Evaluation of breeding lines through on-station and on-farm farmers' participatory varietal selection (FPVS) resulted in the identification of a short duration (110-115 days), high yielding and disease resistant salt-tolerant rice genotype 'CSR-89IR-8', which was later released as 'CSR43' in 2011. Several agronomic traits coupled with good grain quality and market value contributed to commercialization and quick adoption of this variety in the sodic areas of the Indo-Gangetic plains of eastern India. Management practices required for rice production in salt affected soils are evidently different from those in normal soils and practices for a short duration salt tolerant variety differ from those for medium to long duration varieties. Experiments were conducted at the Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station, Lucknow, Uttar Pradesh, India during 2011 and 2013 wet seasons, to test the hypothesis that combining matching management practices (Mmp) with an improved genotype would enhance productivity and profitability of rice in sodic soils. Mmp were developed on-station by optimizing existing best management practices (Bmp) recommended for the region to match the requirements of CSR43. The results revealed that transplanting 4 seedlings hill -1 at a spacing of 15 × 20 cm produced significantly higher yield over other treatments. The highest additional net gain was US$ 3.3 at 90 kg ha -1  N, and the lowest was US$ 0.4 at 150 kg ha -1  N. Above 150 kg ha -1 , the additional net gain became negative, indicating decreasing returns from additional N. Hence, 150

  1. Experimental Study of Factors Affecting Soil Erodibility

    Science.gov (United States)

    Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovolskaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Litvin, L. F.; Maksimova, I. A.; Sudnitsyn, I. I.

    2018-03-01

    The effect of different factors and preparation conditions of monofraction samples from the arable horizon of leached chernozem on soil erodibility and its relationship with soil tensile strength (STS) has been studied. The exposure of samples at 38°C reduces their erodibility by two orders of magnitude. The drying of samples, on the contrary, increases their erodibility. It has been shown that erodibility decreases during the experiment. It has been found that the inoculation of soil with yeast cultures ( Naganishia albida, Lipomyces tetrasporus) reliably increases the STS value in 1.5-1.9 times. The sterile soil is eroded more intensively than the unsterile soil: at 4.9 and 0.3 g/(m2 s), respectively. The drying of soil followed by wetting to the initial water content (30%) has no significant effect on the STS value in almost all experimental treatments.

  2. Response of Soil Fungi Community Structure to Salt Vegetation Succession in the Yellow River Delta.

    Science.gov (United States)

    Wang, Yan-Yun; Guo, Du-Fa

    2016-10-01

    High-throughput sequencing technology was used to reveal the composition and distribution of fungal community structure in the Yellow River Delta under bare land and four kinds of halophyte vegetation (saline seepweed, Angiospermae, Imperata and Apocynum venetum [A. venetum]). The results showed that the soil quality continuously improved with the succession of salt vegetation types. The soil fungi richness of mild-salt communities (Imperata and A. venetum) was relatively higher, with Shannon index values of 5.21 and 5.84, respectively. The soil fungi richness of severe-salt-tolerant communities (saline seepweed, Angiospermae) was relatively lower, with Shannon index values of 4.64 and 4.66, respectively. The UniFrac metric values ranged from 0.48 to 0.67 when the vegetation was in different succession stages. A total of 60,174 valid sequences were obtained for the five vegetation types, and they were classified into Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Mucoromycotina. Ascomycota had the greatest advantage among plant communities of Imperata and A. venetum, as indicated by relative abundances of 2.69 and 69.97 %, respectively. Basidiomycota had the greatest advantage among mild-salt communities of saline seepweed and Angiospermae, with relative abundances of 9.43 and 6.64 %, respectively. Soil physical and chemical properties were correlated with the distribution of the fungi, and Mucor was significantly correlated with soil moisture (r = 0.985; P Soil quality, salt vegetation and soil fungi were influenced by each other.

  3. Chloride concentration affects soil microbial community

    Czech Academy of Sciences Publication Activity Database

    Gryndler, Milan; Rohlenová, Jana; Kopecký, Jan; Matucha, Miroslav

    2008-01-01

    Roč. 71, č. 7 (2008), s. 1401-1408 ISSN 0045-6535 R&D Projects: GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50380511 Keywords : soil chloride * terminal restriction fragments * soil microorganisms Subject RIV: EE - Microbiology, Virology Impact factor: 3.054, year: 2008

  4. Soil invertebrate fauna affect N2 O emissions from soil.

    Science.gov (United States)

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. © 2013 John Wiley & Sons Ltd.

  5. Determination of soil mechanics of salt rock as a potential backfilling material in an underground repository

    International Nuclear Information System (INIS)

    Kappei, G.

    1987-09-01

    Within the framework of the research and development project 'Backfilling and sealing of boreholes, chambers and roadways in a final dump', the Institute for Underground Dumping chose - from the broad range of possible stowing materials - the material 'salt spoil' and investigated its soil-mechanical properties in detail. Besides the implementation of soil-mechanical standard analyses (determination of the grain size distribution, bulk density, limits of storage density, proctor density, permeabilities, and shear strength) of two selected salt spoils (heap salt and rock salt spoil), the studies concentrated on the determination of the compression behaviour of salt spoil. In order to obtain data on the compaction behaviour of this material in the case of increasing stress, compression tests with obstructed lateral expansion were carried out on a series of spoil samples differing mainly in the composition of grain sizes. In addition to this, for a small number of samples of rock salt spoil, the creep behaviour at constant stress was determined after the compaction phase. (orig./RB) [de

  6. Transport of mecoprop from agricultural soils to an adjacent salt marsh

    International Nuclear Information System (INIS)

    Fletcher, Caroline A.; Scrimshaw, Mark D.; Lester, John N.

    2004-01-01

    Salt marshes are important ecological areas and play a significant role in coastal flood defence schemes. In many areas of the UK they are adjacent to agricultural areas utilised for the growth of cereal crops, for which mecoprop is used as a selective herbicide in the control of broad-leafed weeds. This study measured concentrations of mecoprop in soils, drainage ditch waters and sediments and salt marsh sediments over a period of 138 days following spring application. Soil concentrations of up to 1827 μg/g were recorded after application, which demonstrated a half life for mecoprop of from 9 to 12 days, with first order kinetics. However, a major rainfall event 9 days after application resulted in significant transport of herbicide to the salt marsh via subsurface field drains, drainage ditches and discharge sluice. Mecoprop concentrations of up to 386 μg/l observed in water samples were above UK guidelines

  7. Hydrogeology of salt karst under different cap soils and climates (Persian Gulf and Zagros Mts., Iran)

    Czech Academy of Sciences Publication Activity Database

    Bruthans, J.; Kamas, J.; Filippi, Michal; Zare, M.; Mayo, A. L.

    2017-01-01

    Roč. 46, č. 2 (2017), s. 303-320 ISSN 0392-6672 R&D Projects: GA AV ČR KJB315040801 Institutional support: RVO:67985831 Keywords : diapir * salt karst * soil * arid * chemistry * isotope Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 1.439, year: 2016

  8. Microbial community composition affects soil fungistasis.

    Science.gov (United States)

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J A; Kowalchuk, George A; van Veen, Johannes A

    2003-02-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.

  9. Effect of byproducts of flue gas desulfurization on the soluble salts composition and chemical properties of sodic soils.

    Directory of Open Access Journals (Sweden)

    Jinman Wang

    Full Text Available The byproducts of flue gas desulfurization (BFGD are a useful external source of Ca(2+ for the reclamation of sodic soils because they are comparatively cheap, generally available and have high gypsum content. The ion solution composition of sodic soils also plays an important role in the reclamation process. The effect of BFGD on the soluble salts composition and chemical properties of sodic soils were studied in a soil column experiment. The experiment consisted of four treatments using two different sodic soils (sodic soil I and sodic soil II and two BFGD rates. After the application of BFGD and leaching, the soil soluble salts were transformed from sodic salts containing Na2CO3 and NaHCO3 to neutral salts containing NaCl and Na2SO4. The sodium adsorption ratio (SAR, pH and electrical conductivity (EC decreased at all soil depths, and more significantly in the top soil depth. At a depth of 0-40 cm in both sodic soil I and sodic soil II, the SAR, EC and pH were less than 13, 4 dS m(-1 and 8.5, respectively. The changes in the chemical properties of the sodic soils reflected the changes in the ion composition of soluble salts. Leaching played a key role in the reclamation process and the reclamation effect was positively associated with the amount of leaching. The soil salts did not accumulate in the top soil layer, but there was a slight increase in the middle and bottom soil depths. The results demonstrate that the reclamation of sodic soils using BFGD is promising.

  10. Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco

    Directory of Open Access Journals (Sweden)

    Udupa Sripada M

    2010-01-01

    . meliloti and S. medicae populations from marginal soils affected by salt and drought, in arid and semi-arid regions of Morocco. Some of the tolerant strains have a potential for exploitation in salt and drought affected areas for biological nitrogen fixation in alfalfa.

  11. An Investigation into the Effects of Temperature Gradient on the Soil Water–Salt Transfer with Evaporation

    Directory of Open Access Journals (Sweden)

    Rong Ren

    2017-06-01

    Full Text Available Temperature gradients exist in the field under brackish water irrigation conditions, especially in northern semi–arid areas of China. Although there are many investigators dedicated to studying the mechanism of brackish water irrigation and the effect of brackish water irrigation on crops, there are fewer investigations of the effects of temperature gradient on the water–salt transport. Based on the combination of a physical experiment and a mathematical model, this study was conducted to: (a build a physical model and observe the redistribution of soil water–heat–salt transfer; (b develop a mathematical model focused on the influence of a temperature gradient on soil water and salt redistribution based on the physical model and validate the proposed model using the measured data; and (c analyze the effects of the temperature gradient on the soil water–salt transport by comparing the proposed model with the traditional water–salt model in which the effects of temperature gradient on the soil water–salt transfer are neglected. Results show that the soil temperature gradient has a definite influence on the soil water–salt migration. Moreover, the effect of temperature gradient on salt migration was greater than that of water movement.

  12. Soil salinity study in Northern Great Plains sodium affected soil

    Science.gov (United States)

    Kharel, Tulsi P.

    Climate and land-use changes when combined with the marine sediments that underlay portions of the Northern Great Plains have increased the salinization and sodification risks. The objectives of this dissertation were to compare three chemical amendments (calcium chloride, sulfuric acid and gypsum) remediation strategies on water permeability and sodium (Na) transport in undisturbed soil columns and to develop a remote sensing technique to characterize salinization in South Dakota soils. Forty-eight undisturbed soil columns (30 cm x 15 cm) collected from White Lake, Redfield, and Pierpont were used to assess the chemical remediation strategies. In this study the experimental design was a completely randomized design and each treatment was replicated four times. Following the application of chemical remediation strategies, 45.2 cm of water was leached through these columns. The leachate was separated into 120- ml increments and analyzed for Na and electrical conductivity (EC). Sulfuric acid increased Na leaching, whereas gypsum and CaCl2 increased water permeability. Our results further indicate that to maintain effective water permeability, ratio between soil EC and sodium absorption ratio (SAR) should be considered. In the second study, soil samples from 0-15 cm depth in 62 x 62 m grid spacing were taken from the South Dakota Pierpont (65 ha) and Redfield (17 ha) sites. Saturated paste EC was measured on each soil sample. At each sampling points reflectance and derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were extracted. Regression models based on multiple linear regression, classification and regression tree, cubist, and random forest techniques were developed and their ability to predict soil EC were compared. Results showed that: 1) Random forest method was found to be the most effective method because of its ability to capture spatially correlated variation, 2) the short wave infrared (1.5 -2.29 mum) and near infrared (0

  13. Experimental datasets on engineering properties of expansive soil treated with common salt

    Directory of Open Access Journals (Sweden)

    Taiwo O. Durotoye

    2018-06-01

    Full Text Available Construction of highway pavements or high rise structures over the expansive soils are always problematic due to failures of volume change or swelling characteristic experienced in the water permeability of the soil. The data in this article represented summary of (Durotoye et al., 2016; Durotoye, 2016 [1,2]. The data explored different percentages of sodium chloride as additive in stabilizing the engineering properties of expansive soil compared with other available stabilizer previously worked on. Experimental procedures carried out on expansive soil include: (Liquid limit, Plastic limit, Plasticity index, Shrinkage limit, Specific gravity Free swell index and Optimum water content to determine the swelling parameters and (maximum dry density, California bearing ratio and unconfined compressive strength to determine the strength parameters. The results of the experiment were presented in pie charts. Keywords: Common salt, Expansive soil, Experimental procedure, Strength parameters, Swelling parameters

  14. Characterizations of Soil Collapsibility: Effect of Salts Dilution

    Directory of Open Access Journals (Sweden)

    omar H Al Hattamleh

    2015-03-01

    It has been shown that brine additive has pronounced effect on the Atterberg’s limits; it is clearly shown that as the amount of brine increases both liquid limit and plastic limit decrease.  Compaction curve characteristics of soil were altered by the presence of brine, the maximum dry density, obtained using Harvard miniature device, increased as brine percentage increased, however, the optimum moisture content showed substantial decrease with increasing the amount of brine.

  15. The structure of salt marsh soil mesofauna food webs - The prevalence of disturbance.

    Science.gov (United States)

    Haynert, Kristin; Kiggen, Mirijam; Klarner, Bernhard; Maraun, Mark; Scheu, Stefan

    2017-01-01

    Mesofauna taxa fill key trophic positions in soil food webs, even in terrestrial-marine boundary habitats characterized by frequent natural disturbances. Salt marshes represent such boundary habitats, characterized by frequent inundations increasing from the terrestrial upper to the marine pioneer zone. Despite the high abundance of soil mesofauna in salt marshes and their important function by facilitating energy and carbon flows, the structure, trophic ecology and habitat-related diet shifts of mesofauna species in natural salt marsh habitats is virtually unknown. Therefore, we investigated the effects of natural disturbance (inundation frequency) on community structure, food web complexity and resource use of soil mesofauna using stable isotope analysis (15N, 13C) in three salt marsh zones. In this intertidal habitat, the pioneer zone is exposed to inundations twice a day, but lower and upper salt marshes are less frequently inundated based on shore height. The mesofauna comprised 86 species / taxa dominated by Collembola, Oribatida and Mesostigmata. Shifts in environmental disturbances influenced the structure of food webs, diversity and density declined strongly from the land to the sea pointing to the importance of increasing levels of inundation frequency. Accordingly, the reduced diversity and density was associated by a simplification of the food web in the pioneer zone as compared to the less inundated lower and upper salt marsh with a higher number of trophic levels. Strong variations in δ15N signatures demonstrated that mesofauna species are feeding at multiple trophic levels. Primary decomposers were low and most mesofauna species functioned as secondary decomposers or predators including second order predators or scavengers. The results document that major decomposer taxa, such as Collembola and Oribatida, are more diverse than previously assumed and predominantly dwell on autochthonous resources of the respective salt marsh zone. The results further

  16. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    Full Text Available To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt, quality, irrigation water use efficiency (IWUE and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1, 320 mm (W2 and 360 mm (W3, and the salinity levels were 1.0 dS/m (F, 3.0 dS/m (S1 and 5.0 dS/m (S2. Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym. After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual, and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  17. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Science.gov (United States)

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  18. Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils

    International Nuclear Information System (INIS)

    Green, Sophie M.; Machin, Robert; Cresser, Malcolm S.

    2008-01-01

    Of several impacts of road salting on roadside soils, the potential disruption of the nitrogen cycle has been largely ignored. Therefore the fates of low-level ammonium-N and nitrate-N inputs to roadside soils impacted by salting over an extended period (decades) in the field have been studied. The use of road salts disrupts the proportional contributions of nitrate-N and ammonium-N to the mineral inorganic fraction of roadside soils. It is highly probable that the degree of salt exposure of the soil, in the longer term, controls the rates of key microbial N transformation processes, primarily by increasing soil pH. Additional influxes of ammonium-N to salt-impacted soils are rapidly nitrified therefore and, thereafter, increased leaching of nitrate-N to the local waterways occurs, which has particular relevance to the Water Framework Directive. The results reported are important when assessing the fate of inputs of ammonia to soils from atmospheric pollution. - Road salting effects ammonification and nitrification in roadside soils

  19. Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils

    Energy Technology Data Exchange (ETDEWEB)

    Green, Sophie M. [Environment Department, University of York, Heslington, York Y010 5DD (United Kingdom)], E-mail: sg507@york.ac.uk; Machin, Robert; Cresser, Malcolm S. [Environment Department, University of York, Heslington, York Y010 5DD (United Kingdom)

    2008-03-15

    Of several impacts of road salting on roadside soils, the potential disruption of the nitrogen cycle has been largely ignored. Therefore the fates of low-level ammonium-N and nitrate-N inputs to roadside soils impacted by salting over an extended period (decades) in the field have been studied. The use of road salts disrupts the proportional contributions of nitrate-N and ammonium-N to the mineral inorganic fraction of roadside soils. It is highly probable that the degree of salt exposure of the soil, in the longer term, controls the rates of key microbial N transformation processes, primarily by increasing soil pH. Additional influxes of ammonium-N to salt-impacted soils are rapidly nitrified therefore and, thereafter, increased leaching of nitrate-N to the local waterways occurs, which has particular relevance to the Water Framework Directive. The results reported are important when assessing the fate of inputs of ammonia to soils from atmospheric pollution. - Road salting effects ammonification and nitrification in roadside soils.

  20. Assimilation and Translocation of Dry Matter and Phosphorus in Rice Genotypes Affected by Salt-Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Zhijie Tian

    2016-06-01

    Full Text Available Salt-alkaline stress generally leads to soil compaction and fertility decline. It also restricts rice growth and phosphorus acquisition. In this pot experiment, two relatively salt-alkaline tolerant (Dongdao-4 and Changbai-9 and sensitive (Changbai-25 and Tongyu-315 rice genotypes were planted in sandy (control and salt-alkaline soil to evaluate the characteristics of dry matter and phosphorus assimilation and translocation in rice. The results showed that dry matter and phosphorus assimilation in rice greatly decreased under salt-alkaline stress as the plants grew. The translocation and contribution of dry matter and phosphorus to the grains also increased markedly; different performances were observed between genotypes under salt-alkaline stress. D4 and C9 showed higher dry matter translocation, translocation efficiency and contribution of dry matter assimilation to panicles than those of C25 and T315. These changes in D4 and C9 indexes occurred at low levels of salt-alkaline treatment. Higher phosphorus acquisition efficiency of D4 and C9 were also found under salt-alkaline conditions. Additionally, the phosphorus translocation significantly decreased in C25 and T315 in the stress treatment. In conclusion, the results indicated that salt-alkaline-tolerant rice genotypes may have stronger abilities to assimilate and transfer biomass and phosphorus than sensitive genotypes, especially in salt-alkaline conditions.

  1. The nature and classification of Australian soils affected by sodium

    Science.gov (United States)

    Murphy, Brian; Greene, Richard; Harms, Ben

    2017-04-01

    Large areas of Australia are affected by the processes of salinity and sodicity and they are important processes to understand as they can result in the degradation of agricultural lands used for both intensive cropping and extensive grazing practices. Sodic soils are defined as those having ESP of at least 6% in Australia. Northcote and Skene (1972) estimated that of Australia's total area of 770 M ha, 39 M ha was affected by salinity and 193-257 M ha by sodicity. However, in a more recent publication, Rengasamy (2006), quoted the areas of saline and sodic soils as 66 M ha and 340 M ha respectively. The soils affected by sodium in Australia include a large group of contrasting soils (Northcote and Skene 1972). Based on the Australian soil classification, included are: • Alkaline strongly sodic to sodic clay soils with uniform texture profiles - largely Vertosols 666 400 km2 • Alkaline strongly sodic to sodic coarse and medium textured soils with uniform and gradational texture profiles - largely Calcarosols 600 700 km2 • Alkaline strongly sodic to sodic texture contrast soils - largely Sodosols 454 400 km2 • Non-alkaline sodic and strongly sodic neutral texture contrast soils - largely Sodosols 134 700 km2 • Non-alkaline sodic acid texture contrast soils - Sodosols and Kurosols 140 700 km2 Many Australian sodic soils have not developed by the traditional solonetz process of leaching of a solonchak, but rather have developed by the accumulation of sodium on the cation exchange complex in preference to the other exchangeable cations without any recognisable intermediate saline phase occurring. This is especially the case for the sodic, non-alkaline texture contrast soils or Sodosols. The major sodic soil group in WRB is the Solonetz soils. These require the presence of a Natric horizon which has to contain illuviated clay and at least 15% ESP. However, there is provision for Sodic qualifiers with at least 6% ESP for many other reference Soil Groups

  2. Potential factors affecting accumulation of unsupported 210Pb in soil

    International Nuclear Information System (INIS)

    Mihailović, Aleksandra; Vučinić Vasić, Milica; Todorović, Nataša; Hansman, Jan; Vasin, Jovica; Krmar, Miodrag

    2014-01-01

    Airborne 210 Pb, daughter of 222 Rn, is frequently used as a tracer in different studies concerning atmospheric transport, sedimentation, soil erosion, dating, etc. Concentration of 210 Pb was measured in 40 soil samples collected in urban and industrial areas in order to get evidence of possible influence of some factors on accumulation of airborne 210 Pb in soil. Different soil properties such as the content of organic matter, free CaCO 3 , and available phosphorus (P 2 O 5 ) were measured to explore their possible correlation with the amount of 210 Pb. Special attention was given to the correlation between 210 Pb and stable lead accumulated in the soil. Several samples were taken near a battery manufacturer to check if extremely high concentrations of lead can affect the uptake of the airborne 210 Pb in soil. Soil samples were also taken at different depths to investigate the penetration of lead through the soil. - Highlights: • 210 Pb and 137 Cs were measured in samples of urban soil. • Organic matter, free CaCO 3 content, available phosphorus, and lead were measured in soil samples. • There is no statistically significant correlation between 210 Pb and lead, CaCO 3 and phosphorus. • A strong positive correlation between 210 Pb and organic matter was observed

  3. Ash salts and bodily affects: Witoto environmental knowledge as sexual education

    International Nuclear Information System (INIS)

    Alvaro Echeverri, Juan; Enokakuiodo Román-Jitdutjaaño, Oscar

    2013-01-01

    This letter addresses the indigenous discourse on a set of plant species used by the Witoto Indians of Northwest Amazonia to extract ash or vegetable salt, obtained from the combustion of the tissues of vegetable species, filtering of the ashes, and desiccation of the resulting brine. It aims to demonstrate how the study of the human condition is carried out through a reading of natural entities. The method employed is the indexical analysis of a discourse uttered by the elder Enokakuiodo in the Witoto language from 1995 to 1998, in a verbal genre called rafue, one of several genres of the ‘language of the yard of coca’. The species used to extract ash salt are conceived of as coming from the body of the Creator and as an image of the human body. The rafue of salt performs, in words and gestures, a narrative of human affects and capacities by reading ecological, biological, cultural and linguistic indices from a set of plant species. This discourse on plant species is a discourse on the control and management of bodily affects and capacities, represented as ash salts, that are lessons about sexual development which the Creator left for humanity as a guide—a ‘sexual education’. (letter)

  4. Ash salts and bodily affects: Witoto environmental knowledge as sexual education

    Science.gov (United States)

    Alvaro Echeverri, Juan; Enokakuiodo Román-Jitdutjaaño, Oscar

    2013-03-01

    This letter addresses the indigenous discourse on a set of plant species used by the Witoto Indians of Northwest Amazonia to extract ash or vegetable salt, obtained from the combustion of the tissues of vegetable species, filtering of the ashes, and desiccation of the resulting brine. It aims to demonstrate how the study of the human condition is carried out through a reading of natural entities. The method employed is the indexical analysis of a discourse uttered by the elder Enokakuiodo in the Witoto language from 1995 to 1998, in a verbal genre called rafue, one of several genres of the ‘language of the yard of coca’. The species used to extract ash salt are conceived of as coming from the body of the Creator and as an image of the human body. The rafue of salt performs, in words and gestures, a narrative of human affects and capacities by reading ecological, biological, cultural and linguistic indices from a set of plant species. This discourse on plant species is a discourse on the control and management of bodily affects and capacities, represented as ash salts, that are lessons about sexual development which the Creator left for humanity as a guide—a ‘sexual education’.

  5. Physical properties of magnesium affected soils in Colombia

    International Nuclear Information System (INIS)

    Garcia-Ocampo, A.

    2004-01-01

    Magnesium has some capacity to develop higher exchangeable sodium levels in clays and soil materials. The Mg +2 accumulation on the exchange complex of soils to a very high saturation levels affect their physical, chemical and biological properties. Colombia has a large area of these soils, located mainly in the main rivers valleys and in the Caribbean Region. In the Cauca River Valley there are about 117,000 hectares affected. There is a lack of information about the soil forming processes, the Mg +2 effects on soils, the type and source of compounds responsible for the magnesium enrichment, their relationship with the landscape and the way this accumulation occurs. To identify and quantify soil Mg +2 enriched areas over 2500 soil profiles from different landscape positions of the Cauca River Valley were studied. The information was processed to generate Mg-saturation maps, to identify the different soil profile types and to estimate the affected area. A topographic sequence from the alluvial inundation plain to the hills was used to explore the presence of diagnostic horizons and to determine the main soil characteristics and genetic, mineralogical or chemical evidences of soil forming processes. Two 180 kilometer transects parallel to the river were used to: a) study the type and source of Mg-compounds responsible for the Mg-enrichment and the way this accumulation occurs. b) the soil hydraulic properties like infiltration, saturated hydraulic conductivity and matrix potential at different depths were also measured. Samples of nine profiles were collected and the porosity and soil volume changes at different water content were examined. The program RETC was used for prediction of the hydraulic properties of non saturated soils. These properties involved the retention curve, the function of hydraulic conductivity and the diffusivity of the water in the soil. By grouping together the soil profiles, five main type of Mg-affected soils were identified as being

  6. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes.

    Science.gov (United States)

    Wilde, Petra; Manal, Astrid; Stodden, Marc; Sieverding, Ewald; Hildebrandt, Ulrich; Bothe, Hermann

    2009-06-01

    The occurrence of arbuscular mycorrhizal fungi (AMF) was assessed by both morphological and molecular criteria in two salt marshes: (i) a NaCl site of the island Terschelling, Atlantic Coast, the Netherlands and (ii) a K(2)CO(3) marsh at Schreyahn, Northern Germany. The overall biodiversity of AMF, based on sequence analysis, was comparably low in roots at both sites. However, the morphological spore analyses from soil samples of both sites exhibited a higher AMF biodiversity. Glomus geosporum was the only fungus of the Glomerales that was detected both as spores in soil samples and in roots of the AMF-colonized salt plants Aster tripolium and Puccinellia sp. at both saline sites and on all sampling dates (one exception). In roots, sequences of Glomus intraradices prevailed, but this fungus could not be identified unambiguously from DNA of soil spores. Likewise, Glomus sp. uncultured, only deposited as sequence in the database, was widely detected by DNA sequencing in root samples. All attempts to obtain the corresponding sequences from spores isolated from soil samples failed consistently. A small sized Archaeospora sp. was detected, either/or by morphological and molecular analyses, in roots or soil spores, in dead AMF spores or orobatid mites. The study noted inconsistencies between morphological characterization and identification by DNA sequencing of the 5.8S rDNA-ITS2 region or part of the 18S rDNA gene. The distribution of AMF unlikely followed the salt gradient at both sites, in contrast to the zone formation of plant species. Zygotes of the alga Vaucheria erythrospora (Xanthophyceae) were retrieved and should not be misidentified with AMF spores.

  7. Effects of lead mineralogy on soil washing enhanced by ferric salts as extracting and oxidizing agents.

    Science.gov (United States)

    Yoo, Jong-Chan; Park, Sang-Min; Yoon, Geun-Seok; Tsang, Daniel C W; Baek, Kitae

    2017-10-01

    In this study, we evaluated the feasibility of using ferric salts including FeCl 3 and Fe(NO 3 ) 3 as extracting and oxidizing agents for a soil washing process to remediate Pb-contaminated soils. We treated various Pb minerals including PbO, PbCO 3 , Pb 3 (CO 3 ) 2 (OH) 2 , PbSO 4 , PbS, and Pb 5 (PO 4 ) 3 (OH) using ferric salts, and compared our results with those obtained using common washing agents of HCl, HNO 3 , disodium-ethylenediaminetetra-acetic acid (Na 2 -EDTA), and citric acid. The use of 50 mM Fe(NO 3 ) 3 extracted significantly more Pb (above 96% extraction) from Pb minerals except PbSO 4 (below 55% extraction) compared to the other washing agents. In contrast, washing processes using FeCl 3 and HCl were not effective for extraction from Pb minerals because of PbCl 2 precipitation. Yet, the newly formed PbCl 2 could be dissolved by subsequent wash with distilled water under acidic conditions. When applying our washing method to remediate field-contaminated soil from a shooting range that had high concentrations of Pb 3 (CO 3 ) 2 (OH) 2 and PbCO 3 , we extracted more Pb (approximately 99% extraction) from the soil using 100 mM Fe(NO 3 ) 3 than other washing agents at the same process conditions. Our results show that ferric salts can be alternative washing agents for Pb-contaminated soils in view of their extracting and oxidizing abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Climate change affects carbon allocation to the soil in shrublands

    DEFF Research Database (Denmark)

    Gorissen, A.; Tietema, A.; Joosten, N.N.

    2004-01-01

    , resulting from imposed manipulations, on carbon dynamics in shrubland ecosystems was examined. We performed a C-14-labeling experiment to probe changes in net carbon uptake and allocation to the roots and soil compartments as affected by a higher temperature during, the year and a drought period...... than or equal to 0.10. Drought clearly reduced carbon flow from the roots to the soil compartments. The fraction of the C-14 fixed by the plants and allocated into the soluble carbon fraction in the soil and to soil microbial biomass in Denmark and the UK decreased by more than 60%. The effects......Climate change may affect ecosystem functioning through increased temperatures or changes in precipitation patterns. Temperature and water availability are important drivers for ecosystem processes such as photosynthesis, carbon translocation, and organic matter decomposition. These climate changes...

  9. Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt affected field conditions

    International Nuclear Information System (INIS)

    Shahzad, S.; Zahir, Z. A.; Asghar, H. N.; Chaudhry, U. K.

    2017-01-01

    Salinity is one of the most crucial problems for sustainable agriculture which is severely affecting crop growth and decreasing the food production. On another hand, burgeoning population in the world demands to produce more food. So, there is a need of hours to increase agricultural production particularly cereals from salt affected soils by adopting cost effective and environment friendly approaches. Use of bio-inoculants with salt tolerant plant growth promoting rhizobacteria (PGPR) could be a promising option to enhance the production of cereals in salt affected soils. Therefore, a field experiment was conducted to evaluate different carriers compost, peat, biogas slurry and press mud along with PGPR to enhance wheat production under salinity stress. Consortium containing equal proportion of three PGPR strains (Bacillus cereus strain Y5, Bacillus sp. Y14 and Bacillus subtilis strain Y16) was used with different carriers for seed coating. Finely ground and sterilized carriers were mixed in broth and coated on the surface of wheat seeds with different carriers. Coated seeds were sown in saline field with salinity range of 10-13 dS m/sup -1/. Results revealed that multi-strain bacterial inoculation improved the gas exchange, ionic, biochemical, growth and yield attributes of wheat crop under salinity stress. However, use of different carriers further improved the efficacy of multi-strain inoculation and significantly increased growth, yield and physiological parameters of wheat. The results of compost, peat and biogas slurry as carrier for bio-inoculants were statistically similar. (author)

  10. Study on Erosion Factors Affecting Kuroboku Soil Loss I. Water Permeability of Stratified Soil and Slope Gradient

    OpenAIRE

    田熊, 勝利; 猪迫, 耕二; 中原 恒,

    2005-01-01

    The authors examined the factors of bed soil affecting the loss of surface soil and the effects of these factors on the extent of the soil loss. They conducted a multivariate analysis using actual measurement value at a laboratory erosion experiment. They also conducted a simulation of erosion in soil loss using the bed soil factors. Soil loss quantity is dependent on the coefficient of permeability of bed soil; the steeper the latter is, the more the former increases. Lateral soil scattering...

  11. Thermal and loading effects on soil parameters during consolidation - Vacherie salt dome

    International Nuclear Information System (INIS)

    Baysal, D.F.; Tumay, M.T.

    1983-07-01

    Tiltmeters were installed at Vacherie dome to record possible domal movement. Tests were conducted to determine the effects of four factors on the soil consolidation process: temperature, preconsolidation stress, stress increment ratio, and soil type. These, and related experiments, also provided data useful for any future finite element analyses of near-surface effects over Vacherie dome. The four soil factors were tested in a pattern pre-determined by the Graeco-Latin Square Model of data collection and analysis. Results of the statistical analyses showed that soil type was the most important factor in the consolidation process. Soil temperatures affected the duration of consolidation, but not the amount of consolidation. Preconsolidation and stress increment ratio had the opposite effect, the latter being the least important factor in the soil consolidation process. Results of this study imply that the soils around the tiltmeter sites genrally respond to effects that can be associated with natural phenomenon, e.g., rainfall

  12. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils

    Science.gov (United States)

    Ebel, Brian A.; Moody, John A.

    2017-01-01

    We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the

  13. The toxicity of different lead salts to Enchytraeus crypticus in relation to bioavailability in soil.

    Science.gov (United States)

    Zhang, Lulu; Van Gestel, Cornelis A M

    2017-08-01

    The present study aimed to assess the bioavailability and toxicity of lead nitrate and lead chloride to Enchytraeus crypticus in a natural standard soil. Worms were exposed to Pb-spiked soil for 21 d, and survival and reproduction were related to total, 0.01 M CaCl 2 -extractable, and porewater Pb concentrations in the soil and internal concentrations in the surviving animals. The Pb availability for Pb(NO 3 ) 2 and PbCl 2 was similar, as confirmed by Langmuir and Freundlich isotherms. The Pb concentrations in surviving worms increased with increasing Pb concentrations in the soil and did not differ for the 2 Pb salts. Lead was toxic to E. crypticus at median lethal concentrations (LC50s) of 543 and 779 mg Pb/kg dry soil and median effect concentrations (EC50s) of 189 and 134 mg Pb/kg dry soil, for Pb(NO 3 ) 2 and PbCl 2 , respectively. Mortality of E. crypticus was related to internal Pb concentrations in the worms rather than to total or available Pb concentrations in the soil, whereas reproduction toxicity was better explained from Pb concentrations in 0.01 M CaCl 2 extracts or porewater of the test soil than from total Pb concentrations in the soil or Pb concentrations in the worms. Overall, the bioavailability and toxicity of Pb(NO 3 ) 2 and PbCl 2 to E. crypticus in LUFA 2.2 soil did not differ. Environ Toxicol Chem 2017;36:2083-2091. © 2017 SETAC. © 2017 SETAC.

  14. Atrazine and its metabolites degradation in mineral salts medium and soil using an enrichment culture.

    Science.gov (United States)

    Kumar, Anup; Singh, Neera

    2016-03-01

    An atrazine-degrading enrichment culture was used to study degradation of atrazine metabolites viz. hydroxyatrazine, deethylatrazine, and deisopropylatrazine in mineral salts medium. Results suggested that the enrichment culture was able to degrade only hydroxyatrazine, and it was used as the sole source of carbon and nitrogen. Hydroxyatrazine degradation slowed down when sucrose and/or ammonium hydrogen phosphate were supplemented as the additional sources of carbon and nitrogen, respectively. The enrichment culture could degrade high concentrations of atrazine (up to 110 μg/mL) in mineral salts medium, and neutral pH was optimum for atrazine degradation. Further, except in an acidic soil, enrichment culture was able to degrade atrazine in three soil types having different physico-chemical properties. Raising the pH of acidic soil to neutral or alkaline enabled the enrichment culture to degrade atrazine suggesting that acidic pH inhibited atrazine-degrading ability. The study suggested that the enrichment culture can be successfully utilized to achieve complete degradation of atrazine and its persistent metabolite hydroxyatrazine in the contaminated soil and water.

  15. Risk characterization and remedial management of TPH-affected soils

    International Nuclear Information System (INIS)

    Smith, J.; Von Burg, R.; Preslo, L.; Lakin, M.

    1994-01-01

    A risk-based remedial program for petroleum hydrocarbon affected soils has been implemented at a large land parcel in California. The site is the former location of a manufacturing facility that had been in operation since the 1940s. As a result of various activities related to parts manufacturing, several large areas of soil were found to contain various petroleum products. The primary sources of petroleum hydrocarbons included cutting oils, lubricating oils, fuels, and hydraulic oils associated with the site operations. Concentrations of total petroleum hydrocarbons (TPH) as high as 100,000 mg/kg were identified in soil. These high concentrations of TPH were identified at depths up to 60 feet below ground surface (bgs), with the vadose zone extending to depths of more than 150 feet bgs. Within California, traditional cleanup levels for TPH-affected soils typically range from 100 to 1,000 mg/kg. Because of the client's desire to sell the property for rapid development, the remedial alternative of excavation and off-haul was deemed too time consuming and costly. The estimated costs associated with this remediation which potentially involved soil removal to 100--120 feet exceeded $20 million and could take up to one year to complete. To meet the schedule requirements for site remediations as well as significantly reduce the overall project cost, the authors undertook a risk-based approach to assess if remediation of the TPH-affected soils was required

  16. High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system.

    Science.gov (United States)

    Mao, Caiping; Liu, Rong; Bo, Le; Chen, Ningjing; Li, Shigang; Xia, Shuixiu; Chen, Jie; Li, Dawei; Zhang, Lubo; Xu, Zhice

    2013-07-01

    Intrauterine environments are related to fetal renal development and postnatal health. Influence of salty diets during pregnancy on renal functions and renin-angiotensin system (RAS) was determined in the ovine fetuses and offspring. Pregnant ewes were fed high-salt diet (HSD) or normal-salt diet (NSD) for 2 months during middle-to-late gestation. Fetal renal functions, plasma hormones, and mRNA and protein expressions of the key elements of renal RAS were measured in the fetuses and offspring. Fetal renal excretion of sodium was increased while urine volume decreased in the HSD group. Fetal blood urea nitrogen was increased, while kidney weight:body weight ratio decreased in the HSD group. The altered ratio was also observed in the offspring aged 15 and 90 days. Maternal and fetal plasma antidiuretic hormone was elevated without changes in plasma renin activity and Ang I levels, while plasma Ang II was decreased. The key elements of local renal RAS, including angiotensinogen, angiotensin converting enzyme (ACE), ACE2, AT1, and AT2 receptor expression in both mRNA and protein, except renin, were altered following maternal high salt intake. The results suggest that high intake of salt during pregnancy affected fetal renal development associated with an altered expression of the renal key elements of RAS, some alterations of fetal origins remained after birth as possible risks in developing renal or cardiovascular diseases.

  17. Integrated use of plant growth promoting rhizobacteria, biogas slurry and chemical nitrogen for sustainable production of maize under salt-affected conditions

    International Nuclear Information System (INIS)

    Ahmad, M.; Jamil, M.; Akhtar, F.U.Z.

    2014-01-01

    Salinity is one of the most critical constraints hampering agricultural production throughout the world, including Pakistan. Some plant growth promoting rhizobacteria (PGPR) have the ability to reduce the deleterious effect of salinity on plants due to the presence of ACC-deaminase enzyme along with some other mechanisms. The integrated use of organic, chemical and biofertilizers can reduce dependence on expensive chemical inputs. To sustain high crop yields without deterioration of soil fertility, it is important to work out optimal combination of chemical and biofertilizers, and manures in the cropping system. A pot trial was conducted to study the effect of integrated use of PGPR, chemical nitrogen, and biogas slurry for sustainable production of maize under salt-stressed conditions and for good soil health. Results showed that sole application of PGPR, chemical nitrogen and biogas slurry enhanced maize growth but their combined application was more effective. Maximum improvement in maize growth, yield, ionic concentration in leaves and nutrient concentration in grains was observed in the treatment where PGPR and biogas slurry was used in the presence of 100% recommended nitrogen as chemical fertilizer. It also improved the soil pH, ECe, and available N, P and K contents. It is concluded that integrated use of PGPR, biogas slurry and chemical nitrogen not only enhanced maize growth, yield and quality but also improved soil health. So, it may be evaluated under field conditions to get sustained yield of maize from salt-affected soils. (author)

  18. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    Science.gov (United States)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  19. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties

    NARCIS (Netherlands)

    Fischer, C.; Tischer, J.; Roscher, C.; Eisenhauer, N.; Ravenek, J.; Gleixner, G.; Attinger, S.; Jensen, B.; Kroon, de H.; Mommer, L.; Scheu, S.; Hildebrandt, A.

    2015-01-01

    Background and aims Soil hydraulic properties drive water distribution and availability in soil. There exists limited knowledge of how plant species diversity might influence soil hydraulic properties. Methods We quantified the change in infiltration capacity affected by soil structural variables

  20. Parameters Affecting 137Cs Migration within Soil Profile

    International Nuclear Information System (INIS)

    Sefien, S.M.; Ibrahim, A.S.; Abdelmalik, W.E.Y.

    2013-01-01

    Some studies have been carried out on the adsorption, distribution and migration of 137 Cs within soils of the area in the vicinity of the Nuclear Research Centre, Egypt, and Ismailia Canal. The soil physicochemical and mineralogical characteristics were carried out and indicated that the soil samples consisted mainly of sand fraction (quartz) and silt fractions (semctite minerals). The kinetics of caesium adsorption and its adsorption isotherms for the tested soils were also studied. The sorption of 137 Cs on soil minerals markedly affects its migration rate. The natural background of both locations of study indicated that the amounts of 137 Cs present in the reactor site were found to be originated from the fallout and from the external contamination which affected the background level. The 137 Cs activity at the canal site was found to be 20.01 Bq/m 2 .cm, while that around the reactor site were found to be 231.15 Bq/m2.cm which may be originating from the fallout and from external contamination which affect the background level at that location. The activity in the canal soil which amounted to 20.01 Bq/m2/cm (0.87 Bq/kg) is about that of background.Based on the distribution data, the vertical distribution of 137 Cs has been studied for soil in both locations (the vicinity of the Nuclear Research Centre (NRC) and Ismailia canal). The vertical migration rates of 137 Cs were calculated for soil samples selected from different locations. These rates were found to be 0.056 and 0.031 cm/year for the reactor and canal site respectively.

  1. "Sweating meteorites"—Water-soluble salts and temperature variation in ordinary chondrites and soil from the hot desert of Oman

    Science.gov (United States)

    Zurfluh, Florian J.; Hofmann, Beda A.; Gnos, Edwin; Eggenberger, Urs

    2013-10-01

    The common appearance of hygroscopic brine ("sweating") on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42-, HCO3-, Na+, and Cl-, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl- (from soil), SO42- (from meteoritic troilite and soil), and iron (meteoritic). "Sweating meteorites" mainly contain Mg2+ and Cl-. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 μg g-1 (median 2500 μg g-1) as compared to 187-14140 μg g-1 in soils (median 1148 μg g-1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.

  2. Pesticide interactions with soils affected by olive oil mill wastewater

    Science.gov (United States)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  3. Actual and potential salt-related soil degradation in an irrigated rice scheme in the Sahelian zone of Mauritania

    NARCIS (Netherlands)

    Asten, van P.J.A.; Barbi'ro, L.; Wopereis, M.C.S.; Maeght, J.L.; Zee, van der S.E.A.T.M.

    2003-01-01

    Salt-related soil degradation due to irrigation activities is considered a major threat to the sustainability of rice cropping under semi-arid conditions in West Africa. Rice productivity problems related to soil salinity, alkalinity and topographic position were observed in an irrigated rice scheme

  4. Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Shaw, P.; Anderson, B.

    1993-07-01

    INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program

  5. Does overhead irrigation with salt affect growth, yield, and phenolic content of lentil plants?

    Directory of Open Access Journals (Sweden)

    Giannakoula Anastasia

    2012-01-01

    Full Text Available Overhead irrigation of lentil plants with salt (100 mM NaCl did not have any significant impact on plant growth, while chlorophyll content and chlorophyll fluorescence parameter Fv/Fm were affected. Under such poor irrigation water quality, the malondialdehyde content in leaves was increased due to the lipid peroxidation of membranes. In seeds, the total phenolic content (TPC was correlated to their total antioxidant capacity (TAC. High performance liquid chromatography-mass spectrometry (HPLC-MS detection showed that flavonoids (catechin, epicatechin, rutin, p-coumaric acid, quercetin, kaempferol, gallic acid and resveratrol appear to be the compounds with the greatest influence on the TAC values. Catechin is the most abundant phenolic compound in lentil seeds. Overhead irrigation with salt reduced the concentration of almost all phenolic compounds analyzed from lentil seed extracts.

  6. Evaluation of salt tolerance in almond [Prunus dulcis (L.) Batsch ...

    African Journals Online (AJOL)

    user

    2012-07-12

    Jul 12, 2012 ... 2Department of Soil Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. 3Agriculture ... Sodium chloride is the dominant salt in saline soils but ..... which affect salt tolerance of plants. (Aliasgarzad et al., 2005; Tabatabaei, 2006). Using soil instead of perlite or other inert substrates and irrigation ...

  7. An experimental study on the bio-surfactant-assisted remediation of crude oil and salt contaminated soils.

    Science.gov (United States)

    Zhang, Wen; Li, Jianbing; Huang, Guohe; Song, Weikun; Huang, Yuefei

    2011-01-01

    The effect of bio-surfactant (rhamnolipid) on the remediation of crude oil and salt contaminated soil was investigated in this study. The experimental results indicated that there was a distinct decline of total petroleum hydrocarbon (TPH) concentration within the soil when using rhamnolipid during a remediation period of 30 days, with maximum TPH reduction of 86.97%. The most effective remediation that was observed was with rhamnolipid at a concentration of 2 CMC in soil solution, and a first-order TPH degradation rate constant of 0.0866 d(-1). The results also illustrated that salts in soil had a negative impact on TPH reduction, and the degradation rate was negatively correlated with NaCl concentration in soil solution. The analysis of soil TPH fractions indicated that there was a significant reduction of C13-C30 during the remediation process when using bio-surfactant.

  8. Effect of Fertilization on Yield and Quality of Oil Sunflower in Salted Soil of Ningxia, China

    Directory of Open Access Journals (Sweden)

    QIAN Yin

    2015-12-01

    Full Text Available Combining field trial with test analysis, a nitrogen(N, phosphorus(P2O5 and potassium(K2O fertilizer experiment of oil sunflowers was set to explore the influence of different ratio of N, P, K fertilizer on dry matter accumulation of oil sunflowers, nutrient absorption and accumulation, the yield and quality, etc in salted soil of the northern Ningxia, in order to provide scientific evidence for regulating and controlling of fertilization in the salted soil and enhancing the yields and quality of oil sunflowers. The results showed that: in the salted soil, the plant which had been disposed by N, P, K fertilizer had more advantages, the 1 000-grain weight, fruit quantity of each oil sunflower and yield per plant and hectare all increased significantly. Treatment of adding the organic fertilizer on the basis of N, P, K fertilizer could also increase the amount of N, P, K absorption significantly. At the same time, the application of N, P, K fertilizer would increase the fat content and reduce the protein, increase the oleic acid and stearic acid, reduce the content of linoleic acid and palmitic acid. The needs of nitrogen (N, phosphorus(P2O5 and potassium(K2O absorption of oil sunflower seeds were averagely 6.1~9.6, 3.2~3.8 kg and 12.3~13.7 kg, about 1:0.40~0.55:1.43~2.09 in ratio, 1:0.49:1.79 averagely in ratio.

  9. Characteristis of Soil Water and Salt Spatial Variations in the Spring Season in Typical Yellow River Delta Areas of Kenli County, China

    Directory of Open Access Journals (Sweden)

    WANG Zhuo-ran

    2015-04-01

    Full Text Available The Yellow River Delta as an important area of reserved land resources, is faced with the problem of soil salinization. Grasping the status of soil water and salt as well as their spatial variation rules is an important foundation of prevention, control and use of soil salinization. This study selected Kenli County of the Yellow River Delta, obtained soil water and salt content data through field survey and lab experiments, and analyzed the status of soil water and salt as well as their spatial variation rules using statistics, GIS interpolation and buffer analysis methods. The results showed that the general salt content in the study area was mainly moderate. Salt content increased from soil surfacelayer to underlayer and salt content in each layer was significantly correlated. The areas with high saltness in surfacelayer, middlelayer and underlayer soil mainly distributed in the east near the Bohai Sea in Kenli County, while the areas with lower saltness mainly distributed in the southwest. Soil salt contents showed the trends of decrease, and soil water contents showed the trends of decrease first and then increase with the increase in distance to Bohai Sea. Stretching from the Yellow River, soil salt content showed increase tendency with the increase in distance to the Yellow River, and water content decreased first and then increased. The order from high saltness to low of different vegetation types was naked land>suaeda glauca>tamarix>vervain>reed>couch grass>paddy>cotton>winter wheat>maize, the order of different geomorphic types was depression>slightly sloping ground>slow hillock>beach heights. This study preliminary delineates soil water and salt status as well as their spatial variation rules in the spring season of the study area, and provides scientific basis for soil resource sustainable utilization in the Yellow River Delta.

  10. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces.

    Science.gov (United States)

    Yando, E S; Osland, M J; Hester, M W

    2018-05-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh-mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant-soil dynamics across the salt marsh-mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  11. Microspatial ecotone dynamics at a shifting range limit: plant–soil variation across salt marsh–mangrove interfaces

    Science.gov (United States)

    Yando, Erik S.; Osland, Michael J.; Hester, Mark H.

    2018-01-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh–mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant–soil dynamics across the salt marsh–mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  12. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    Science.gov (United States)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  13. Green roof soil system affected by soil structural changes: A project initiation

    Science.gov (United States)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  14. Microbiological investigation of soil samples of the caprock above the Gorleben salt dome

    International Nuclear Information System (INIS)

    Kutzner, H.J.; Sonnen, H.; Bachmann, F.

    1993-01-01

    Microorganisms constitute an essential part of the soil structure. Through their activities a large number of processes in the soil are caused: decomposition (mineralization) and conversion (humate formation) of organic substances; formation of biomass (reproduction); oxidation and reduction of various elements or compounds, and thus generation of a geomicrobiological cycle of nitrogen, sulphur, iron, manganese and other elements; and, at the same time, by means of oxidation/reduction processes they cause modifications of the solubility of metals (precipitation or mobility increase). Therefore, an influence exerted by microorganisms, as an integral part of the caprock, on radionuclide migration cannot be excluded. The investigations performed served to look into the question to which extent microorganisms occur in the profile of the caprock above the Gorleben salt dome; which geomicrobiological activities are to be expected there due to their physiological properties, and whether their influence on radionuclide migration seems to be realistic. (orig./DG) [de

  15. Salt accumulation and distribution in a greenhouse soil as affected by salinity of irrigation water and leaching management Acúmulo e distribuição de sais no solo em um ambiente protegido em função da salinidade da água de irrigação e manejo da lixiviação

    Directory of Open Access Journals (Sweden)

    Flávio F. Blanco

    2002-12-01

    Full Text Available The effects of irrigation water salinity, leaching fraction and its frequency of application on soil salinization were studied. Three water salinities (S1=1.54, S2=3.10 and S3=5.20 dS m-1 and two irrigation water depths associated with their application frequencies (W1=1.00 ETc; W2F1=1.25 ETc in all irrigations and W2F2=1.25 ETc when the irrigation water depth of W1 reached 100 mm where ETc is the crop evapotranspiration, were applied during the growing period of a grafted-cucumber crop in a greenhouse. The experimental design consisted of randomized blocks of 3 x 3 factorial scheme with 3 replications. Soil salinity at 0.1, 0.3 and 0.5 m depths increased linearly with salinity levels of water and the leaching fraction did not have any effect regardless of its management. Salt concentration was higher near the soil surface and between the adjacent drippers.Estudaram-se os efeitos da salinidade da água de irrigação, fração de lixiviação e sua freqüência de aplicação na salinização de um solo. Durante um ciclo de pepino enxertado em ambiente protegido, foram aplicadas águas de diferentes salinidades (S1=1,54, S2=3,10 e S3=5,20 dS m-1 e duas lâminas de irrigação associadas às suas freqüências de aplicação (W1=1,00 ETc; W2F1=1,25 ETc em todas as irrigações e W2F2=1,25 ETc quando a lâmina de irrigação acumulada em W1 alcançou 100 mm em que ETc é a evapotranspiração da cultura. O delineamento experimental foi o de blocos casualizados em esquema fatorial 3x3 com 3 repetições. A salinidade do solo nas profundidades de 0,1, 0,3 e 0,5 m aumentou linearmente com a salinidade e a fração de lixiviação não teve efeito independente do seu manejo. A concentração de sais foi maior próximo à superfície do solo e na região compreendida entre dois gotejadores.

  16. Infiltration and runoff generation processes in fire-affected soils

    Science.gov (United States)

    Moody, John A.; Ebel, Brian A.

    2014-01-01

    Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall),  tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of  tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that  tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.

  17. Successful full-scale deployments of advanced PGPR enhanced phytoremediation systems (PEPS) for decontamination of petroleum and salt impacted soils

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, B.; Huang, X.D.; Gerhardt, K.; Yu, X.M.; Liddycoat, S.; Lu, X.; Nykamp, J.; McCallum, B.; MacNeill, G.; Mosley, P.; Gurska, J.; Knezevich, N.; Zhong, H.; Gerwing, P. [Waterloo Univ., ON (Canada)

    2010-07-01

    This PowerPoint presentation described a phytoremediation system designed to remediate salt and petroleum contaminated sites. Phytoremediation techniques are cheaper than traditional methods of remediating soils. The phytoremediation process is comprised of volatilization, phytodegradation, and chelation processes. Plants uptake contaminants via a rhizodegradation process. The plants provide biomass for rapid remediation with a restoration time frame of between 2 to 3 years. PGPR enhanced phytoremediation systems (PEPS) have been studied over a 10 year period and successfully applied at polycyclic hydrocarbon (PHC) contaminated sites, gas stations, and salt-contaminated sites throughout Canada. Soils are tilled in order to expose contaminants to sunlight. hydrocarbon-degrading bacteria are then applied, followed by the application of a plant growth promoting rhizobacteria (PGPR) phytoremediation system that is typically applied to grass species prior to planting. Case studies of full-scale sites used to prove the concept for both salt and hydrocarbon contaminated soils were presented. tabs., figs.

  18. Environmental assessment of water-salt regime of irrigated soils in the Central-Chernozem Region of Russia

    Science.gov (United States)

    Alaeva, Liliia; Negrobova, Elena; Jablonskikh, Lidiia; Rumyantseva, Irina

    2016-04-01

    A large part of Central Chernozem Region is located in the zone of risky agriculture. This led to intensive use of soil in the irrigation system. Therefore, a detailed analysis of water-salt regime of irrigated soils required for ecological state assessment of soils for irrigation. In the investigated area the fone component of the soil cover on the levelled plateau are chernozems. On the slopes formed a meadow-chernozem soils. Parent material is a cover loess-like calcareous non-saline clay. In these soils, our studies found component-quantitative composition of the aqueous extract, the chemism of salinity, which allowed us to make conclusions about the direction of the salinisation process in soils when used in the system of irrigated agriculture. By quantity water extract chernozems are non-saline, the ratio of anions and cations are chloride-sulphate magnesium-calcium salinization. In the composition of easily soluble salts dominated by Ca(HCO3)2. On sum of toxic salts in the soils are non-saline. This type and chemism of salinity deep brackish groundwater (more than 5 m) can be actively used in the system of rational irrigation. The meadow-chernozem soils formed under conditions of increased surface and soil moisture in the shallow brackish water at a depth of 3-5 m. These soils by quantity water extract are non-saline, anionic-cationic ratio - chloride-sulphate magnesium-calcium salinization. Permanent components of salt associations are Ca(HCO3)2, MgCl2, Na2SO4. On sum of toxic salts in the soil is not saline throughout the profile. The chemism of salinity and the proximity of groundwater at irregular watering can lead to the rise of groundwater level, the development of gleyed and sodium alkalinization. Thus, the introduction of intensive irrigated agriculture on chernozems and hydromorphic analogues may lead to the development in them of negative consequences. The most dynamic indicator is the water-salt regime, the systematic monitoring and control which

  19. How internal drainage affects evaporation dynamics from soil surfaces ?

    Science.gov (United States)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  20. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    Science.gov (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  1. Cadmium accumulation by muskmelon under salt stress in contaminated organic soil

    Energy Technology Data Exchange (ETDEWEB)

    Gabrijel, Ondrasek [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia)], E-mail: gondrasek@agr.hr; Davor, Romic [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia); Zed, Rengel [Soil Science and Plant Nutrition, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley WA 6009 (Australia); Marija, Romic; Monika, Zovko [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia)

    2009-03-15

    Human-induced salinization and trace element contamination are widespread and increasing rapidly, but their interactions and environmental consequences are poorly understood. Phytoaccumulation, as the crucial entry pathway for biotoxic Cd into the human foodstuffs, correlates positively with rhizosphere salinity. Hypothesising that organic matter decreases the bioavailable Cd{sup 2+} pool and therefore restricts its phytoextraction, we assessed the effects of four salinity levels (0, 20, 40 and 60 mM NaCl) and three Cd levels (0.3, 5.5 and 10.4 mg kg{sup -1}) in peat soil on mineral accumulation/distribution as well as vegetative growth and fruit yield parameters of muskmelon (Cucumis melo L.) in a greenhouse. Salt stress reduced shoot biomass and fruit production, accompanied by increased Na and Cl and decreased K concentration in above-ground tissues. A 25- and 50-day exposure to salinity increased Cd accumulation in leaves up to 87% and 46%, respectively. Accumulation of Cd in the fruits was up to 43 times lower than in leaves and remained unaltered by salinity. Soil contamination by Cd enhanced its accumulation in muskmelon tissues by an order of magnitude compared with non-contaminated control. In the drainage solution, concentrations of Na and Cl slightly exceeded those in the irrigation solution, whereas Cd concentration in drainage solution was lower by 2-3 orders of magnitude than the total amount added. Chemical speciation and distribution modelling (NICA-Donnan) using Visual MINTEQ showed predominance of dissolved organic ligands in Cd chemisorption and complexation in all treatments; however, an increase in salt addition caused a decrease in organic Cd complexes from 99 to 71%, with free Cd{sup 2+} increasing up to 6% and Cd-chlorocomplexes up to 23%. This work highlights the importance of soil organic reactive surfaces in reducing trace element bioavailability and phytoaccumulation. Chloride salinity increased Cd accumulation in leaves but not in fruit

  2. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley

    Science.gov (United States)

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.

    2012-01-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt

  3. The speciation of iodine in the salt impacted Black Butte soil series along the Virgin river, Nevada, USA

    International Nuclear Information System (INIS)

    Steinberg, Spencer M.; Buck, Brenda; Morton, Janice; Dorman, James

    2008-01-01

    Salt-impacted soils occur in floodplains, wetlands and backswamps in arid climates. These soils become sinks or temporary storage sites for soluble salts and contaminants including agricultural chemicals, industrial pollutants and radionuclides such as 129 I. The vertical distribution of I in the Black Butte soil series along the Virgin river was assessed and the distribution of I between I - , IO 3 - and organically bound I was determined. The speciation of I was compared to the organic C content, specific components of the organic C, and clay content. This study indicates that organic I was the most abundant form of I in these soil samples and that the content of organic I generally correlated to total organic matter and lignin (as measured by chemolysis) of the samples

  4. The speciation of iodine in the salt impacted Black Butte soil series along the Virgin river, Nevada, USA

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Spencer M. [Department of Chemistry, University of Nevada Las Vegas, Las Vegas, NV 80154 (United States)], E-mail: spencer.steinberg@unlv.edu; Buck, Brenda; Morton, Janice [Department of Geoscience, University of Nevada Las Vegas, Las Vegas, NV 80154 (United States); Dorman, James [Department of Chemistry, University of Nevada Las Vegas, Las Vegas, NV 80154 (United States)

    2008-12-15

    Salt-impacted soils occur in floodplains, wetlands and backswamps in arid climates. These soils become sinks or temporary storage sites for soluble salts and contaminants including agricultural chemicals, industrial pollutants and radionuclides such as {sup 129}I. The vertical distribution of I in the Black Butte soil series along the Virgin river was assessed and the distribution of I between I{sup -}, IO{sub 3}{sup -} and organically bound I was determined. The speciation of I was compared to the organic C content, specific components of the organic C, and clay content. This study indicates that organic I was the most abundant form of I in these soil samples and that the content of organic I generally correlated to total organic matter and lignin (as measured by chemolysis) of the samples.

  5. Water management can reinforce plant competition in salt-affected semi-arid wetlands

    Science.gov (United States)

    Coletti, Janaine Z.; Vogwill, Ryan; Hipsey, Matthew R.

    2017-09-01

    The diversity of vegetation in semi-arid, ephemeral wetlands is determined by niche availability and species competition, both of which are influenced by changes in water availability and salinity. Here, we hypothesise that ignoring physiological differences and competition between species when managing wetland hydrologic regimes can lead to a decrease in vegetation diversity, even when the overall wetland carrying capacity is improved. Using an ecohydrological model capable of resolving water-vegetation-salt feedbacks, we investigate why water surface and groundwater management interventions to combat vegetation decline have been more beneficial to Casuarina obesa than to Melaleuca strobophylla, the co-dominant tree species in Lake Toolibin, a salt-affected wetland in Western Australia. The simulations reveal that in trying to reduce the negative effect of salinity, the management interventions have created an environment favouring C. obesa by intensifying the climate-induced trend that the wetland has been experiencing of lower water availability and higher root-zone salinity. By testing alternative scenarios, we show that interventions that improve M. strobophylla biomass are possible by promoting hydrologic conditions that are less specific to the niche requirements of C. obesa. Modelling uncertainties were explored via a Markov Chain Monte Carlo (MCMC) algorithm. Overall, the study demonstrates the importance of including species differentiation and competition in ecohydrological models that form the basis for wetland management.

  6. Conductivity gradients as inferred by electromagnetic-induction meter (EM38) readings within a salt-affected wetland in Saskatchewan, Canada

    Science.gov (United States)

    Mirck, Jaconette; Schroeder, William

    2018-01-01

    The change from deep-rooted grass and shrub vegetation to annual-cropping dryland farming has contributed to serious soil salinization challenges on the semi-arid North American Great Plains. In some cases, cultivation of the Great Plains has increased the availability of water, causing dominant sulfate salts to travel from the uphill areas to depressions where it will surface when water evaporates at the soil surface. A potential solution could include the replanting of the native deep-rooted vegetation, which requires knowledge of the spatial distribution of soil salinity. This study tested the soil factors influencing electromagnetic-induction meter (EM38) readings of soil salinity distribution around wetlands. The objectives were to: (1) predict growth and survival of Salix dasyclados Wimm. (cv. `India') along a salinity gradient in a small wetland, and (2) investigate whether newly established willows affected water-table fluctuations, which would indicate their phreatophytic nature or their ability to obtain their water supply from the zone of saturation. Results indicated significantly lower salinity values for sampling points with EM38 readings above 175 and 250 mS m-1 for height and survival, respectively. In addition, diurnal fluxes of the water table in areas of good willow growth and lower salinity indicated that cultivar `India' was phreatophytic in these areas and therefore has great potential for being used to combat saline seeps.

  7. Compositions, Protease Inhibitor and Gelling Property of Duck Egg Albumen as Affected by Salting

    Science.gov (United States)

    2018-01-01

    Chemical compositions, trypsin inhibitory activity, and gelling properties of albumen from duck egg during salting of 30 days were studied. As the salting time increased, moisture content decreased, the salt content and surface hydrophobicity increased (psalting time of 30 days (psalting of 30 days. Based on texture profile analysis, hardness, springiness, gumminess, chewiness, and resilience of albumen gel decreased with increasing salting time. Conversely, salted albumen gels exhibited higher cohesiveness and adhesiveness, compared to those of fresh albumen. Scanning electron microscopic study revealed that gel of salted albumen showed the larger voids and less compactness. In general, salting lowered trypsin inhibitory activity and gelling property of albumen from duck egg to some extent. Nevertheless, the salted albumen with the remaining inhibitor could be an alternative additive for surimi or other meat products to prevent proteolysis. PMID:29725221

  8. Aerosol Particles from Dried Salt-Lakes and Saline Soils Carried on Dust Storms over Beijing

    Directory of Open Access Journals (Sweden)

    Xingying Zhang

    2009-01-01

    Full Text Available Characteristics of individual particles from a super dust storm (DS on 20 March 2002, and those of non dust storm aero sols for Beijing (NDS and Duolun (DL (a desert area are determined using a variety of methods. In China, typically the source of aero sols in dust storms is thought to be deserts with alumino silicates being the main constituent particles; how ever, this does not reflect a complete analysis with our evidence indicating potential alternate dust sources along the storm's trans port path. Individual particle anal y sis of aero sols collected from a super dust storm on 20 March 2002 in Beijing shows that among all the 14 elements measured, only S and Cl have re mark able positive correlation. 82.5% of all particles measured contained both S and Cl, and the relative mass per cent age of S and Cl in these particles is much higher than the average of all particles. 62.0% of all particles contained S, Cl, and Na, in which the concentration of Na is 1.4 times higher than average. PMF (Positive Matrix Factorization anal y sis indicates that NaCl and Na2SO4 are major components of these particles with S and Cl showing significant positive correlation. More over, SO4 2- and Cl- also show significant positive correlation in bulk aero sol analysis. XPS (X-ray Pho to electron Spectros copy analysis of the surface of aero sols demonstrates that concentrations of Na and S on particles from the dust storm are higher than those from non-dust storm particles in Beijing and also for particles from. It is very likely that particles enriched with S, Cl, and Na is from the surface soils of dried salt-lakes and saline soils enriched with chloride and sulfate. This evidence demonstrates that be sides deserts, surface soils from dry salt-lakes and saline soils of arid and semi-arid areas are also sources of particulates in dust storms over Beijing.

  9. Large-scale downy brome treatments alter plant-soil relationships and promote perennial grasses in salt desert shrublands

    Science.gov (United States)

    The interrelationship between invasive annual grass abundance and soil resource availability varies spatially and temporally within ecosystems and may be altered by land treatments. We evaluated these relationships in two salt desert landscapes where the local abundance of Bromus tectorum L. (downy...

  10. Pyrolysis-gas chromatography/mass spectrometry of soil organic matter extracted from a Brazilian mangrove and Spanish salt marshes

    NARCIS (Netherlands)

    Perobelli Ferreira, F.; Buurman, P.; Macias, F.; Otero, X.L.; Boluda, R.

    2009-01-01

    The soil organic matter (SOM) extracted under different vegetation types from a Brazilian mangrove (Pai Matos Island, São Paulo State) and from three Spanish salt marshes (Betanzos Ría and Corrubedo Natural Parks, Galícia, and the Albufera Natural Park, Valencia) was investigated by pyrolysis-gas

  11. How grazing affects soil quality of soils formed in the glaciated northeastern United States.

    Science.gov (United States)

    Cox, Alissa H; Amador, José A

    2018-02-21

    Historically, much of the New England landscape was converted to pasture for grazing animals and harvesting hay. Both consumer demand for local sustainably produced food, and the number of small farms is increasing in RI, highlighting the importance of characterizing the effects livestock have on the quality of pasture soils. To assess how livestock affect pasture on Charlton and Canton soils series in RI, we examined soil quality in farms raising beef cattle (Bos taurus), sheep (Ovis aries), and horses (Equus ferus caballus), using hayed pastures as a control. We sampled three pastures per livestock type and three control hayed pastures in May, August, and October 2012. Hay fields and pastures grazed by sheep had statistically significant (P soil quality than pastures grazed by beef cattle or horses. This was driven by parameters including penetration resistance, bulk density, aggregate stability, and infiltration rate. Hayfields also showed higher soil quality measures than grazed pastures for organic matter content and active C. In addition, significant differences in nitrate and phosphate concentrations were observed among livestock types. Respiration and infiltration rates, pH, and ammonium concentrations, on the other hand, did not differ significantly among pasture types. When all soil quality indicators in this study were weighed equally, soil quality scores followed the order: hay > sheep > beef cattle > horses. The results of our study provide baseline data on the effect different types of livestock have on pasture soil quality in RI, which may be useful in making sound land use and agricultural management decisions.

  12. Formation of Microbial Mats and Salt in Radioactive Paddy Soils in Fukushima, Japan

    Directory of Open Access Journals (Sweden)

    Kazue Tazaki

    2015-12-01

    Full Text Available Coastal areas in Minami-soma City, Fukushima, Japan, were seriously damaged by radioactive contamination from the Fukushima Daiichi Nuclear Power Plant (FDNPP accident that caused multiple pollution by tsunami and radionuclide exposure, after the Great East Japan Earthquake, on 11 March 2011. Some areas will remain no-go zones because radiation levels remain high. In Minami-soma, only 26 percent of decontamination work had been finished by the end of July in 2015. Here, we report the characterization of microbial mats and salt found on flooded paddy fields at Karasuzaki, Minami-soma City, Fukushima Prefecture, Japan which have been heavily contaminated by radionuclides, especially by Cs (134Cs, 137Cs, 40K, Sr (89Sr, 90Sr, and 91 or 95Zr even though it is more than 30 km north of the FDNPP. We document the mineralogy, the chemistry, and the micro-morphology, using a combination of micro techniques. The microbial mats were found to consist of diatoms with mineralized halite and gypsum by using X-ray diffraction (XRD. Particular elements concentrated in microbial mats were detected using scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS and X-ray fluorescence (XRF. The objective of this contribution is to illustrate the ability of various diatoms associated with minerals and microorganisms which are capable of absorbing both radionuclides and stable isotopes from polluted paddy soils in extreme conditions. Ge semiconductor analysis of the microbial mats detected 134Cs, 137Cs, and 40K without 131I in 2012 and in 2013. Quantitative analysis associated with the elemental content maps by SEM-EDS indicated the possibility of absorption of radionuclide and stable isotope elements from polluted paddy soils in Fukushima Prefecture. In addition, radionuclides were detected in solar salts made of contaminated sea water collected from the Karasuzaki ocean bath, Minami-soma, Fukushima in 2015, showing high Zr content associated

  13. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Corina Dörfer

    Full Text Available The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA and continuous permafrost (site Wudaoliang, WUD. Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (1.6 g cm(-3 of mineral associated organic matter (MOM. The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1. Higher SOC contents (320 g kg(-1 were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1. Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA and 22% (WUD to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth account for 10.4 kg m(-2, compared to 3.4 kg m(-2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  14. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    Science.gov (United States)

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO 2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO 2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied 13 C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R 2  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties. © 2016 Her Majesty

  15. Factors Affecting Soil Quality Maintenance In Northern Katsina State

    African Journals Online (AJOL)

    programs or scientifically based soil management strategies. Soil quality ... envelopment analysis techniques in the reconciliation of two ..... integrated plant production and environmental quality. In ..... Handbook of Soil Science. (Ed). Sumner ...

  16. Effects of soil abiotic factors on the plant morphology in an intertidal salt marsh, Yellow River Delta, China

    Science.gov (United States)

    Li, Shanze; Cui, Baoshan; Bai, Junhong; Xie, Tian; Yan, Jiaguo; Wang, Qing; Zhang, Shuyan

    2018-02-01

    Plant morphology plays important role in studying biogeography in many ecosystems. Suadea salsa, as a native plant community of northern China and an important habitat for diversity of waterbirds and macrobenthos, has often been overlooked. Nowadays, S. salsa community is facing great loss due to coastal reclamation activities and natural disturbances. To maintain and restore S. salsa community, it's important to address the plant morphology across marsh zones, as well as its relationships with local soil abiotic conditions. In our studied intertidal salt marsh, we found that less flood disturbance frequency, softer soil conditions, rich soil organic matter, total carbon and total nitrogen, lower water depth and water content, less species competition will benefit S. salsa plant in the morphology of high coverage, above-ground biomass, shoot height and leaf length. Lower soil porewater salinity will benefit the below-ground biomass of S. salsa. Thus, we recommend managers help alleviate soil abiotic stresses in the intertidal salt marshes, making the soil conditions more suitable for S. salsa growth and succession.

  17. Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia).

    Science.gov (United States)

    Martignon, Stefania; Opazo-Gutiérrez, Mario Omar; Velásquez-Riaño, Möritz; Orjuela-Osorio, Iván Rodrigo; Avila, Viviana; Martinez-Mier, Esperanza Angeles; González-Carrera, María Clara; Ruiz-Carrizosa, Jaime Alberto; Silva-Hermida, Blanca Cecilia

    2017-06-01

    Fluoride is an element that affects teeth and bone formation in animals and humans. Though the use of systemic fluoride is an evidence-based caries preventive measure, excessive ingestion can impair tooth development, mainly the mineralization of tooth enamel, leading to a condition known as enamel fluorosis. In this study, we investigated the geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples in four endemic enamel fluorosis sentinel municipalities of the department of Huila, Colombia (Pitalito, Altamira, El Agrado and Rivera), and its possible relationship with the prevalence of enamel fluorosis in children. The concentration of fluoride in drinking water, table salt, active sediment, rock, and soil was evaluated by means of an ion selective electrode and the geochemical analyses were performed using X-ray fluorescence. Geochemical analysis revealed fluoride concentrations under 15 mg/kg in active sediment, rock and soil samples, not indicative of a significant delivery to the watersheds studied. The concentration of fluoride in table salt was found to be under the inferior limit (less than 180 μg/g) established by the Colombian regulations. Likewise, exposure doses for fluoride water intake did not exceed the recommended total dose for all ages from 6 months. Although the evidence does not point out at rocks, soils, fluoride-bearing minerals, fluoridated salt and water, the hypothesis of these elements as responsible of the current prevalence of enamel fluorosis cannot be discarded since, aqueducts might have undergone significant changes overtime.

  18. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  19. Dynamics of Physical and Physicochemical Properties of Urban Soils under the Effect of Ice-Melting Salts

    Science.gov (United States)

    Azovtseva, N. A.; Smagin, A. V.

    2018-01-01

    Physical (water content, density, and air and water regimes) and physicochemical (electrical conductivity, pH, and SAR) properties of urban soils were investigated on test plots of Moscow to evaluate their dynamics under anthropogenic impact. The wilting point and the dependence of the capillary-sorption and total water potentials of the soil water content were determined in laboratory experiments with natural and artificially saline soil samples to evaluate the effect of salt antifreeze substances on water availability for plants under conditions of active application of deicing reagents. Seasonal dynamics of these parameters were investigated. It was found that electrolytes display a steady tendency for the accumulation and redistribution in the root zone rather than for their deep leaching despite humid climatic conditions in Moscow megalopolis. In summer, regular droughts result in drying of the root zone to critical values and to the concentration of electrolytes up to the values that make the total water potential of soil unsuitable for water uptake by roots. The key factor of soil degradation under the impact of electrolytes is the soil dispersity: the finer the texture, the higher the soil salinization and solonetzicity and the stronger irreversible changes in the soil water retention capacity and physical properties.

  20. Successful field and laboratory tests of advanced phytoremediation systems for decontamination of petroleum and salt impacted soils

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, B.; Huang, X.D.; Gerhardt, K.; Gurska, J.; Yu, X.M.; MacNeill, G.; Lu, X.; Nykamp, J.; Glick, B.; Wang, W.; Wang, H.; Wu, S.; Knezevich, N.; Gerwing, P. [Waterloo Univ., ON (Canada)]|[Earthmaster Environmental Strategies Inc., Calgary, AB (Canada)]|[Waterloo Environmental Biotechnology Inc., Waterloo, ON (Canada)

    2008-07-01

    This presentation discussed the advantages of phytoremediation and provided an overview of a phytoremediation tests results for petroleum and salt remediation. Several examples of remediation methods were discussed, including the dig and dump method; soil incineration; chemical extraction; electrokinetic separation and land farming/natural attenuation. The advantages of phytoremediation include improved natural structure and texture of soil; suitability to most regions and climates because it is driven by solar energy; cost effectiveness and technically feasible; reasonable time frame for restoration; promotion of high rhizosphere activity by plants; and effective use at remote sites. The development and proof of plant growth promoting rhizobacteria (PGPR) enhanced phytoremediation systems (PEPS) was then addressed. A description of the PEPS was provided. This presentation also reviewed the interaction of a PGPR containing ACC deaminase with a plant seed or root; research and development of the PEPS for PHC remediation; the use of petroleum remediation on an Imperial Oil Sarnia land farm; proof of concept of the application of the PEPS for PHC remediation in Hinton, Alberta; and development of the PEPS for salt impacted sites. Field work and the characteristics of soils were also examined. It was concluded that the PEPS has great potential for efficient remediation of organic, salt and metal contaminated sites and that PGPR alleviates stress and promotes growth resulting in low ethylene and high auxin content. tabs., figs.

  1. Organic Residues Affect Soil P Availability, Cowpea Yield And ...

    African Journals Online (AJOL)

    SH

    control treatment, and 3.37 mg kg soil-1 for maize stover, which rather immobilized P throughout the ... potentially involves lower production costs ... controlling reduction of soil P-sorption capacity .... thick polyethylene film (to allow gas but not.

  2. Inherent Soil Fertility as Affected by Rhizobium Inoculation and ...

    African Journals Online (AJOL)

    else

    biomass yield at Babillae, Fedis, Haramaya and Hirna sites was 3648.1 kg ha-1 ... from the soil and the high sensitivity of common bean-rhizobia symbiosis to soil ...... Pakistan. Biol. Fertil. Soils 12:107-111. Buttery BR, SJ Park and WI Findlay.

  3. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    Science.gov (United States)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  4. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature.

    Science.gov (United States)

    Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei

    2018-03-01

    Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The ash in forest fire affected soils control the soil losses. Part 1. The pioneer research

    Science.gov (United States)

    Cerdà, Artemi; Pereira, Paulo

    2013-04-01

    composition (Pereira and Úbeda, 2010) and Pereira et al., 2012). Some of the new research challenges related to ash impact in the fire affected soils are related to the ash redistribution after the fire, the impact of ash in soil and water chemistry, the temporal changes of soil erosion, the control ash exert on vegetation recovery and the role to be played by ash in the best management of fire affected land. Those topics needs new ideas and new scientists such as Paulo Pereira show in the Part II of this abstract. Acknowledgements, Lithuanian Research Council. Project LITFIRE, Fire effects on Lithuanian soils and ecosystems (MIP-48/2011) and the research projects GL2008-02879/BTE and LEDDRA 243857. References Bodí, M., Mataix-Solera, J., Doerr, S., and Cerdà, A. 2011b. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 160, 599-607. Cerdà, A. 1998a. Postfire dynamics of erosional processes under mediterranean climatic conditions. Z. Geomorphol., 42 (3) 373-398. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A., and Doerr, S. H.2010. The effect of ant mounds on overland flow and soil erodibility following a wildfire in eastern Spain. Ecohydrology, 3, 392-401. Cerdà, A., and Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256-263. Pereira, P., and Úbeda, X. 2010. Spatial distribution of heavy metals released from ashes after a wildfire, Journal of Environment Engineering and Landscape Management, 18, 13-22. Pereira, P., Ubeda, X., Martin, D.A. 2012. Fire severity effects on ash chemical composition and extractable elements. Geoderma, 191, 105 - 114. Pérez-Cabello, F., Cerdà, A., de la Riva, J., Echeverría, M.T., García-Martín, A., Ibarra, P., Lasanta, T., Montorio

  6. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

    Science.gov (United States)

    Lutts, Stanley; Lefèvre, Isabelle

    2015-01-01

    Background Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. Scope Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. Conclusions Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments. PMID:25672360

  7. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa

    OpenAIRE

    Ouédraogo, E.; Brussaard, L.; Stroosnijder, L.

    2007-01-01

    A field experiment was conducted at Kaibo in southern Burkina Faso on an Eutric Cambisol during the 2000 rainy season to assess the interaction of organic amendment quality and soil fauna, affecting soil organic carbon and sorghum ( Sorghum bicolor L. Moench) performance. Plots were treated with the pesticides Dursban and Endosulfan to exclude soil fauna or left untreated. Sub-treatments consisted of surface-placed maize straw ( C/N ratio= 58), Andropogon straw ( C/N ratio= 153), cattle dung ...

  8. Soil macrofauna affect crop nitrogen and water use efficiencies in semi-arid West Africa.

    NARCIS (Netherlands)

    Ouédraogo, E.; Mando, A.; Brussaard, L.

    2006-01-01

    It is increasingly recognised that soil fauna have a significant role in soil processes affecting nutrient availability and crop performance. A field experiment was conducted in southern Burkina Faso (West Africa) to investigate the contribution of soil fauna to nutrient availability and crop

  9. Effects of middle-term land reclamation on nickel soil-water interaction: a case study from reclaimed salt marshes of Po River Delta, Italy.

    Science.gov (United States)

    Di Giuseppe, Dario; Melchiorre, Massimiliano; Faccini, Barbara; Ferretti, Giacomo; Coltorti, Massimo

    2017-09-26

    Reclaimed salt marshes are fragile environments where water salinization and accumulation of heavy metals can easily occur. This type of environment constitutes a large part of the Po River Delta (Italy), where intensive agricultural activities take place. Given the higher Ni background of Po River Delta soils and its water-soluble nature, the main aim of this contribution is to understand if reclamation can influence the Ni behavior over time. In this study, we investigated the geochemical features of 40 soils sampled in two different localities from the Po River Delta with different reclamation ages. Samples of salt marsh soils reclaimed in 1964 were taken from Valle del Mezzano while soils reclaimed in 1872 were taken nearby Codigoro town. Batch solubility tests and consecutive determination of Ni in pore-water were compared to bulk physicochemical compositions of soils. Bulk Ni content of the studied soils is naturally high, since these soils originated from Po River sediments derived from the erosion of ultramafic rocks. Moreover, it seems that Ni concentration increases during soil evolution, being probably related to the degradation of serpentine. Instead, the water-soluble Ni measured in the leaching tests is greater in soils recently reclaimed compared to the oldest soils. Soil properties of two soil profiles from a reclaimed wetland area were examined to determine soil evolution over one century. Following reclamation, pedogenic processes of the superficial horizons resulted in organic matter mineralization, pH buffer, and a decrease of Ni water solubility from recently to evolved reclaimed soil.

  10. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    Science.gov (United States)

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  11. Elucidating key factors affecting radionuclide aging in soils

    Energy Technology Data Exchange (ETDEWEB)

    Roig, M. [Universitat Politecnica Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); Rigola, A.; Vidal, M.; Rauret, G. [Barcelona Univ., Dept. de Quimica Analitica (Spain)

    2004-07-01

    Mechanistic studies allow at present to describe the processes governing the short-term interaction of radiostrontium and radiocaesium in soils. The initial sorption step can be described through the estimation of the soil-soil solution distribution coefficient from soil parameters, as cationic exchange capacity, radiocaesium interception potential and concentration of competing ions in the soil solution. After the initial soil-radionuclide interaction, a fraction of radionuclide is no longer available for exchange with the solution, and it remains fixed in the solid fraction. At present, the initial fixed fraction of a radionuclide in a given soil cannot be predicted from soil properties. Besides, little is known about soil and environmental factors (e.g., temperature; hydric regime) provoking the increase in the fixed fraction with time, the so-called aging process. This process is considered to control the reduction of food contamination with time at contaminated scenarios. Therefore, it is crucial to be able to predict the radionuclide aging in the medium and long term for a better risk assessment, especially when a decision has to be made between relying on natural attenuation versus implementing intervention actions. Here we study radiostrontium and radiocaesium aging in a set of soils, covering a wide range of soil types of contrasting properties (e.g., loamy calcareous; podzol; chernozem, organic). Three factors are separately and simultaneously tested: time elapsed since contamination, temperature and hydric regime. Changes in the radionuclide fixed fraction are estimated with a leaching test based on the use of a mild extractant solution. In addition to this, secondary effects on the radiocaesium interception potential in various soils are also considered. (author)

  12. Soil biological activity as affected by tillage intensity

    Science.gov (United States)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  13. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa

    NARCIS (Netherlands)

    Ouédraogo, E.; Brussaard, L.; Stroosnijder, L.

    2007-01-01

    A field experiment was conducted at Kaibo in southern Burkina Faso on an Eutric Cambisol during the 2000 rainy season to assess the interaction of organic amendment quality and soil fauna, affecting soil organic carbon and sorghum ( Sorghum bicolor L. Moench) performance. Plots were treated with the

  14. Factors affecting the determination of the isotopically exchangeable phosphorus in soils

    International Nuclear Information System (INIS)

    Morales, L.E.M.

    1981-06-01

    In order to evaluate the factors that affect the determination of the isotopically exchangeable phosphorus in soils (L value), various greenhouse experiments were carried out. The following factors were considered: carrier level; plant species; harvest time; nitrogen doses; nitrogen sources; culture conditions and soil type. A radioactive solution with an activity level of approximately 10 μCi 32 p/3 kg soil with different carrier levels was located in layers or mixed completely with the soil depending upon the experiment. (author)

  15. Infiltration of water in disturbed soil columns as affected by clay dispersion and aggregate slaking

    OpenAIRE

    Amezketa, E.; Aragües, R.; Gazol, R.

    2004-01-01

    Soil crusting negatively affects the productivity and sustainability of irrigated agriculture, reducing water infiltration and plant emergence, and enhancing surface runoff and erosion. Clay dispersion and slaking of the aggregates at the soil surface are the main processes responsible for crusting. The infiltration rates (IR) of ten arid-zone soils in disturbed soil columns were measured and their relative susceptibilities to dispersion and slaking were determined. It was also examined wheth...

  16. Surface and ground water quality in a restored urban stream affected by road salts

    Science.gov (United States)

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  17. Microarray analysis of genes affected by salt stress in tomato | Zhou ...

    African Journals Online (AJOL)

    This study has provided a set of candidate genes, especially those in the regulatory machinery that can be further investigated to define salt stress in tomato and other plant species. Keywords: Antioxidants, cellular metabolism, cell wall, chaperonine, ethylene, protein kinase, tomato, transcription regulator, translation ...

  18. Microbial community biomass and structure in saline and non-saline soils associated with salt, boran tolerant poplar clones grown for the phytoremediation of selenium

    Science.gov (United States)

    The effect of naturally-occurring salts, boron (B), and selenium (Se) on soil microbial community composition associated with plants during different growing seasons used in bioremediation strategies is not known. This information is needed for developing sustainable remediation practices as soil mi...

  19. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    Science.gov (United States)

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Factors affecting soil erosion in Beijing mountain forestlands | Zhang ...

    African Journals Online (AJOL)

    The role of regions, vegetation types and forest stand density in controlling soil erosion were investigated in Beijing mountain forest, China. The main objective was to develop some models to estimate soil erosion under different forest conditions including regions, vegetation type, and stand density as influenced by artificial ...

  1. Ecosystem Warming Affects CO2 Flux in an Agricultural Soil

    Science.gov (United States)

    Global warming seems likely based on present-day climate predictions. Our objective was to characterize and quantify the interactive effects of ecosystem warming (i.e., canopy temperature, TS), soil moisture content ('S) and microbial biomass (BM: bacteria, fungi) on the intra-row soil CO2 flux (FS)...

  2. Soil nitrogen mineralization not affected by grass species traits

    Science.gov (United States)

    Maged Ikram Nosshi; Jack Butler; M. J. Trlica

    2007-01-01

    Species N use traits was evaluated as a mechanism whereby Bromus inermis (Bromus), an established invasive, might alter soil N supply in a Northern mixed-grass prairie. We compared soils under stands of Bromus with those from three representative native grasses of different litter C/N: Andropogon...

  3. Plant community development is affected by nutrients and soil biota

    NARCIS (Netherlands)

    De Deyn, G.B.; Raaijmakers, C.E.; Van der Putten, W.H.

    2004-01-01

    1 Plant community development depends to a great extent on the availability of soil nutrients, but recent studies underline the role of symbiotic, herbivorous and pathogenic soil biota. We tested for interactions between these biotic and abiotic factors by studying the effects of additional

  4. Bacteria and protozoa in soil microhabitats as affected by earthworms

    DEFF Research Database (Denmark)

    Winding, Anne; Rønn, Regin; Hendriksen, Niels B.

    1997-01-01

    , were compared. The total, viable, and culturable number of bacteria, the metabolic potentials of bacterial populations, and the number of protozoa and nematodes were determined in soil size fractions. Significant differences between soil fractions were shown by all assays. The highest number......-cyano-2,3-ditolyl tetrazolim chloride (CTC)-reducing bacteria explained a major part of the variation in the number of protozoa. High protozoan activity and predation thus coincided with high bacterial activity. In soil with elm leaves, fungal growth is assumed to inhibit bacterial and protozoan...... activity. In soil with elm leaves and earthworms, earthworm activity led to increased culturability of bacteria, activity of protozoa, number of nematodes, changed metabolic potentials of the bacteria, and decreased differences in metabolic potentials between bacterial populations in the soil fractions...

  5. Repeated application of organic waste affects soil organic matter composition

    DEFF Research Database (Denmark)

    Peltre, Clément; Gregorich, Edward G.; Bruun, Sander

    2017-01-01

    Land application of organic waste is an important alternative to landfilling and incineration because it helps restore soil fertility and has environmental and agronomic benefits. These benefits may be related to the biochemical composition of the waste, which can result in the accumulation...... of different types of carbon compounds in soil. The objective of this study was to identify and characterise changes in soil organic matter (SOM) composition after repeated applications of organic waste. Soil from the CRUCIAL field experiment in Denmark was sampled after 12 years of annual application...... that there was accumulation in soil of different C compounds for the different types of applied organic waste, which appeared to be related to the degree to which microbial activity was stimulated and the type of microbial communities applied with the wastes or associated with the decomposition of applied wastes...

  6. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic.

    Science.gov (United States)

    García-Carmona, M; Romero-Freire, A; Sierra Aragón, M; Martínez Garzón, F J; Martín Peinado, F J

    2017-04-15

    Residual soil pollution from the Aznalcóllar mine spill is still a problem in some parts of the affected area, today converted in the Guadiamar Green Corridor. Dispersed spots of polluted soils, identified by the absence of vegetation, are characterized by soil acid pH and high concentrations of As, Pb, Cu and Zn. Ex situ remediation techniques were performed with unrecovered soil samples. Landfarming, Composting and Biopiles techniques were tested in order to immobilize pollutants, to improve soil properties and to promote vegetation recovery. The effectiveness of these techniques was assessed by toxicity bioassays: Lactuca sativa L. root elongation test, Vibrio fischeri bioluminescence reduction test, soil induced respiration test, and Eisenia andrei survival and metal bioaccumulation tests. Landfarming and Composting were not effective techniques, mainly due to the poor improvement of soil properties which maintained high soluble concentrations of Zn and Cu after treatments. Biopile technique, using adjacent recovered soils in the area, was the most effective action in the reduction of soil toxicity; the improvement of soil properties and the reduction in pollutants solubility were key to improve the response of the tested organisms. Therefore, the mixture of recovered soils with polluted soils in the areas affected by residual contamination is considered a more suitable technique to reduce the residual pollution and to promote the complete soil recovery in the Guadiamar Green Corridor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of some soil physical properties on water holding capacity, neutron probe calibration and salt movement

    International Nuclear Information System (INIS)

    Razzouk, A. K.

    2010-04-01

    This study was conducted in tow areas representing in silty soil in Southern Syria (Draa), loamy and sandy soil in Eastern Syria (Deir Al zour) to compare the soil effect on the calibration of the neutron probe, correlation coefficient, soil characteristics curve, soil solution content of nitrates, potassium and sodium for the estimation of the optimum sampling time of soil solution by porous ceramic cups. Regression analysis results showed that the three soils curves, in which the soil contained the lowest content of clay had a high correlation coefficient and decreased with increasing the clay content. Whereas, the correlation coefficient in sandy soil was 0.96 while decreased to 0.79 in silty soil. The hydraulic head increased with decreasing the water content, which was obvious in the three soils characteristic curves. The NO - 3 content decreased due to the plants roots absorption and leaching to deeper layers, while the NO - 3 content in the surfaces layer significantly decreased in the sandy soil. Results showed that equilibrium between the soil solution and the NO - 3 content in the solution in porous cups occurred within 8 days. (author)

  8. Effect of some soil physical properties on water holding capacity, neutron probe calibration and salt movement

    International Nuclear Information System (INIS)

    Razzouk, A.

    2010-01-01

    This study was conducted in tow areas representing in silty soil in Southern Syria (Dra'a), loamy and sandy soil in Eastern Syria (Deir Al zour) to compare the soil effect on the calibration of the neutron probe, correlation coefficient, soil characteristics curve, soil solution content of nitrates, potassium and sodium for the estimation of the optimum sampling time of soil solution by porous ceramic cups. Regression analysis results showed that the three soils curves, in which the soil contained the lowest content of clay had a high correlation coefficient and decreased with increasing the clay content. Whereas, the correlation coefficient in sandy soil was 0.96 while decreased to 0.79 in silty soil. The hydraulic head increased with decreasing the water content, which was obvious in the three soils characteristic curves. The NO 3 content decreased due to the plants roots absorption and leaching to deeper layers, while the NO 3 content in the surfaces layer significantly decreased in the sandy soil. Results showed that equilibrium between the soil solution and the NO 3 content in the solution in porous cups occurred within 8 days. (author)

  9. Salt impact studies at WIPP effects of surface storage of salt on microbial activity

    International Nuclear Information System (INIS)

    Rodriguez, A.L.

    1988-01-01

    The Waste Isolation Pilot Plant (WIPP) currently under construction in southeastern New Mexico is a research and development facility to demonstrate the safe disposal of transuranic waste in a deep geological formation (bedded salt). The Ecological Monitoring Program at WIPP is designed to detect and measure changes in the local ecosystem which may be the result of WIPP construction activities. The primary factor which may affect the system prior to waste emplacement is windblown salt from discrete stockpiles. Both vegetation and soil microbial processes should reflect changes in soil chemistry due to salt importation. Control and experimental (potentially affected) plots have been established at the site, and several parameters are measured quarterly in each plot as part of the soil microbial sampling subprogram. This subprogram was designed to monitor a portion of the biological community which can be affected by changes in the chemical properties at the soil surface

  10. Land use type significantly affects microbial gene transcription in soil.

    Science.gov (United States)

    Nacke, Heiko; Fischer, Christiane; Thürmer, Andrea; Meinicke, Peter; Daniel, Rolf

    2014-05-01

    Soil microorganisms play an essential role in sustaining biogeochemical processes and cycling of nutrients across different land use types. To gain insights into microbial gene transcription in forest and grassland soil, we isolated mRNA from 32 sampling sites. After sequencing of generated complementary DNA (cDNA), a total of 5,824,229 sequences could be further analyzed. We were able to assign nonribosomal cDNA sequences to all three domains of life. A dominance of bacterial sequences, which were affiliated to 25 different phyla, was found. Bacterial groups capable of aromatic compound degradation such as Phenylobacterium and Burkholderia were detected in significantly higher relative abundance in forest soil than in grassland soil. Accordingly, KEGG pathway categories related to degradation of aromatic ring-containing molecules (e.g., benzoate degradation) were identified in high abundance within forest soil-derived metatranscriptomic datasets. The impact of land use type forest on community composition and activity is evidently to a high degree caused by the presence of wood breakdown products. Correspondingly, bacterial groups known to be involved in lignin degradation and containing ligninolytic genes such as Burkholderia, Bradyrhizobium, and Azospirillum exhibited increased transcriptional activity in forest soil. Higher solar radiation in grassland presumably induced increased transcription of photosynthesis-related genes within this land use type. This is in accordance with high abundance of photosynthetic organisms and plant-infecting viruses in grassland.

  11. Analyses of the soil surface dynamic of South African Kalahari salt pans based on hyperspectral and multitemporal data

    Science.gov (United States)

    Milewski, Robert; Chabrillat, Sabine; Behling, Robert; Mielke, Christian; Schleicher, Anja Maria; Guanter, Luis

    2016-04-01

    The consequences of climate change represent a major threat to sustainable development and growth in Southern Africa. Understanding the impact on the geo- and biosphere is therefore of great importance in this particular region. In this context the Kalahari salt pans (also known as playas or sabkhas) and their peripheral saline and alkaline habitats are an ecosystem of major interest. They are very sensitive to environmental conditions, and as thus hydrological, mineralogical and ecological responses to climatic variations can be analysed. Up to now the soil composition of salt pans in this area have been only assessed mono-temporally and on a coarse regional scale. Furthermore, the dynamic of the salt pans, especially the formation of evaporites, is still uncertain and poorly understood. High spectral resolution remote sensing can estimate evaporite content and mineralogy of soils based on the analyses of the surface reflectance properties within the Visible-Near InfraRed (VNIR 400-1000 nm) and Short-Wave InfraRed (SWIR 1000-2500 nm) regions. In these wavelength regions major chemical components of the soil interact with the electromagnetic radiation and produce characteristic absorption features that can be used to derive the properties of interest. Although such techniques are well established for the laboratory and field scale, the potential of current (Hyperion) and upcoming spaceborne sensors such as EnMAP for quantitative mineralogical and salt spectral mapping is still to be demonstrated. Combined with hyperspectral methods, multitemporal remote sensing techniques allow us to derive the recent dynamic of these salt pans and link the mineralogical analysis of the pan surface to major physical processes in these dryland environments. In this study we focus on the analyses of the Namibian Omongwa salt pans based on satellite hyperspectral imagery and multispectral time-series data. First, a change detection analysis is applied using the Iterative

  12. Detection of salts in soil using transversely excited atmospheric (TEA) carbon dioxide (CO2) laser-induced breakdown spectroscopy (LIBS) by the aid of a metal mesh

    Science.gov (United States)

    Idris, N.; Ramli, M.; Khumaeni, A.; Kurihara, K.

    2018-04-01

    In this work, a nickel metal mesh was used to allow a direct detection of salt in soil sample by LIBS utilizing unique characteristics of a TEA CO2. The metal mesh is placed in the front of the soil sample to prevent the soil sample from blowing off upon focusing the high pulsed laser beam irradiation. LIBS apparatus used in this work is a TEA CO2 laser operated at wavelength of 10.6 μm with pulse energy and duration of 3J and 200 ns, respectively. The laser beam was focused using a ZnSe lens (f = 200 mm) onto soil sample after passing through the metal mesh. The emission spectrum from the induced plasma was detected using an optical multichannel analyzer (OMA) system consisting of a 0.32-m-focal length spectrograph with a grating of 1200 graves/mm and a 1024-channel photodiode detector array with a micro-channel plate intensifier. The soil sample used is a standard soil and ordinary soil containing several salts such as Ca, Mg at high concentration. The LIBS experiment was carried out at high pressure surrounding gas of 1 atmosphere. It was observed that by the aid of the metal mesh, strong breakdown gas plasma can be produced just after TEA CO2 laser irradiation on soil sample without significant sample blowing off. It was found that emission lines from salts, Ca (Ca II 393. 3 nm, Ca II 396.3 nm, Ca I 422.5 nm), and also other salts including Mg and Na can clearly be detected with strong emission intensity and narrow spectral width. This result implies that a TEA CO2 LIBS assisted by the metal mesh (metal mesh method) can be used for direct analysis several salts such as Ca, Mg, and Na in soil sample.

  13. Evaluation of a new battery of toxicity tests for boreal forest soils: assessment of the impact of hydrocarbons and salts.

    Science.gov (United States)

    Princz, Juliska I; Moody, Mary; Fraser, Christopher; Van der Vliet, Leana; Lemieux, Heather; Scroggins, Rick; Siciliano, Steven D

    2012-04-01

    The ability to assess the toxic potential of soil contamination within boreal regions is currently limited to test species representative of arable lands. This study evaluated the use of six boreal plant species (Pinus banksiana, Picea glauca, Picea mariana, Populus tremuloides, Calamagrostis Canadensis, and Solidago canadensis) and four invertebrate species (Dendrodrilus rubidus, Folsomia nivalis, Proisotoma minuta, and Oppia nitens) and compared their performance to a suite of standard agronomic soil test species using site soils impacted by petroleum hydrocarbon (PHC) and salt contamination. To maintain horizon-specific differences, individual soil horizons were collected from impacted sites and relayered within the test vessels. Use of the boreal species was directly applicable to the assessment of the contaminated forest soils and, in the case of the hydrocarbon-impacted soil, demonstrated greater overall sensitivity (25th percentile of estimated species sensitivity distribution [ESSD25] = 5.6% contamination: 10,600 mg/kg fraction 3 [F3; equivalent hydrocarbon range of >C16 to C34] Of/Oh horizon, and 270 mg/kg F3 Ahg horizon) relative to the standard test species (ESSD25 = 23% contamination: 44,000 mg/kg F3 Of/Oh horizon, and 1,100 mg/kg F3 Ahg horizon). For salinity, there was no difference between boreal and standard species with a combined ESSD25 = 2.3%, equating to 0.24 and 0.25 dS/m for the Ah and Ck horizons. The unequal distribution of soil invertebrates within the layered test vessels can confound test results and the interpretation of the toxic potential of a site. The use of test species relevant to boreal eco-zones strengthens the applicability of the data in support of realistic ecological risk assessments applicable to the boreal regions. Copyright © 2012 SETAC.

  14. Do soil organic carbon levels affect potential yields and nitrogen use efficiency?

    DEFF Research Database (Denmark)

    Oelofse, Myles; Markussen, Bo; Knudsen, Leif

    2015-01-01

    Soil organic carbon (SOC) is broadly recognised as an important parameter affecting soil quality, and can therefore contribute to improving a number of soil properties that influence crop yield. Previous research generally indicates that soil organic carbon has positive effects on crop yields......, the yield with no fertiliser N application and the N use efficiency would be positively affected by SOC level. A statistical model was developed to explore relationships between SOC and potential yield, yields at zero N application and N use efficiency (NUE). The model included a variety of variables...

  15. Computed tomography scanning can monitor the effects of soil medium on root system development: An example of salt stress in corn

    Directory of Open Access Journals (Sweden)

    Sowmyalakshmi eSubramanian

    2015-04-01

    Full Text Available Seeds and young seedlings often encounter high soluble salt levels in the upmost soil layers, impeding vigorous growth by affecting root establishment. Computed tomography (CT scanning used at low X-ray doses can help study root development in such conditions non-destructively, because plants are allowed to grow throughout the experiment. Using a high-resolution Toshiba XVision CT scanner, we studied corn (Zea mays L. root growth under optimal and salt-stressed conditions in 3D and on a weekly basis over 3 weeks. Two groups of 3 corn plants were grown in the controlled environment of a growth chamber, in mid-sized plastic pots filled with sieved and autoclaved sand. Seedlings were subjected to first CT scanning one week after seed planting. Our main research objectives concerning root systems were: (i to quantify structural complexity from fractal dimensions estimated on skeletal 3-D images built from CT scanning data; (ii to measure growth from volumes and derived relative rates, after isolating primary and secondary roots from the soil medium in CT scanning data; and (iii to assess differences in complexity and growth per week and over Weeks 1–3 for groups of corn plants. Differences between groups were present from Week 1; starting in Week 2 secondary roots were present and could be isolated, which refined the complexity and growth analyses of root systems. Besides expected Week main effects (P < 0.01 or 0.05, Week x Group interaction (P < 0.05 or 0.10 and Group main effects were observed, which is remarkable given the small sample sizes. Graphical, quantitative and statistical analyses of CT scanning data were thus completed at an unprecedented level, and provided new and important insights regarding root system development. Repeated CT scanning is the key to a better understanding of the establishment in the soil medium of crop plants such as corn and the assessment of salt stress effects on developing root systems, in complexity and

  16. Fractal scaling of particle size distribution and relationships with topsoil properties affected by biological soil crusts.

    Directory of Open Access Journals (Sweden)

    Guang-Lei Gao

    Full Text Available BACKGROUND: Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. METHODOLOGY/PRINCIPAL FINDINGS: To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust, as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05; and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R(2 = 0.494∼0.955, P<0.01. CONCLUSIONS/SIGNIFICANCE: Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions.

  17. Factors affecting the selection of a soil water sensing technology

    International Nuclear Information System (INIS)

    Hignett, C.T.

    2000-01-01

    Reviews of soil moisture measurement technologies are counterproductive in attempting to identify the single approach that has the best overall performance for a range of soil, crop and landscape conditions. Not only does such an approach preclude the addition of new technologies, but it also obscures the fact that we have available today sensors and technologies that cover most field conditions, are well understood in terms of technical capability and are mechanically and electronically reliable. This review defines decision-making processes for assessing the characteristics, good and bad, of technology in relation to project objectives. Two processes are needed. The first links soil texture and scale of variability with the nature of the project, single-plant to catchment scale, to the needs for soil water measurement. The second lists the capabilities of some devices and shows how they can be selected to accommodate necessary criteria. It is concluded that the 'best technology' is a function of the project and soil conditions. (author)

  18. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    Science.gov (United States)

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta

    DEFF Research Database (Denmark)

    Siewert, Matthias Benjamin; Hugelius, Gustaf; Heim, Birgit

    2016-01-01

    To project the future development of the soil organic carbon (SOC) storage in permafrost environments, the spatial and vertical distribution of key soil properties and their landscape controls needs to be understood. This article reports findings from the Arctic Lena River Delta where we sampled 50...... in the permafrost. The major geomorphological units of a subregion of the Lena River Delta were mapped with a land form classification using a data-fusion approach of optical satellite imagery and digital elevation data to upscale SOC storage. Landscape mean SOC storage is estimated to 19.2 ± 2.0 kg C m− 2. Our...... results show that the geomorphological setting explains more soil variability than soil taxonomy classes or vegetation cover. The soils from the oldest, Pleistocene aged, unit of the delta store the highest amount of SOC per m2 followed by the Holocene river terrace. The Pleistocene terrace affected...

  20. Soil Diversity as Affected by Land Use in China: Consequences for Soil Protection

    Directory of Open Access Journals (Sweden)

    Wei Shangguan

    2014-01-01

    Full Text Available Rapid land-use change in recent decades in China and its impact on terrestrial biodiversity have been widely studied, particularly at local and regional scales. However, the effect of land-use change on the diversity of soils that support the terrestrial biological system has rarely been studied. Here, we report the first effort to assess the impact of land-use change on soil diversity for the entire nation of China. Soil diversity and land-use effects were analyzed spatially in grids and provinces. The land-use effects on different soils were uneven. Anthropogenic soils occupied approximately 12% of the total soil area, which had already replaced the original natural soils. About 7.5% of the natural soil classes in China were in danger of substantial loss, due to the disturbance of agriculture and construction. More than 80% of the endangered soils were unprotected due to the overlook of soil diversity. The protection of soil diversity should be integrated into future conservation activities.

  1. Soil Diversity as Affected by Land Use in China: Consequences for Soil Protection

    Science.gov (United States)

    Shangguan, Wei; Gong, Peng; Liang, Lu; Dai, YongJiu; Zhang, Keli

    2014-01-01

    Rapid land-use change in recent decades in China and its impact on terrestrial biodiversity have been widely studied, particularly at local and regional scales. However, the effect of land-use change on the diversity of soils that support the terrestrial biological system has rarely been studied. Here, we report the first effort to assess the impact of land-use change on soil diversity for the entire nation of China. Soil diversity and land-use effects were analyzed spatially in grids and provinces. The land-use effects on different soils were uneven. Anthropogenic soils occupied approximately 12% of the total soil area, which had already replaced the original natural soils. About 7.5% of the natural soil classes in China were in danger of substantial loss, due to the disturbance of agriculture and construction. More than 80% of the endangered soils were unprotected due to the overlook of soil diversity. The protection of soil diversity should be integrated into future conservation activities. PMID:25250394

  2. Do genetic modifications in crops affect soil fungi? a review

    NARCIS (Netherlands)

    Hannula, S.E.; Boer, de W.; Veen, van J.A.

    2014-01-01

    The use of genetically modified (GM) plants in agriculture has been a topic in public debate for over a decade. Despite their potential to increase yields, there may be unintended negative side-effects of GM plants on soil micro-organisms that are essential for functioning of agro-ecosystems. Fungi

  3. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils

    International Nuclear Information System (INIS)

    Clarke, Lorraine Weller; Jenerette, G. Darrel; Bain, Daniel J.

    2015-01-01

    Heavy metals in urban soils can compromise human health, especially in urban gardens, where gardeners may ingest contaminated dust or crops. To identify patterns of urban garden metal contamination, we measured concentrations and bioavailability of Pb, As, and Cd in soils associated with twelve community gardens in Los Angeles County, CA. This included sequential extractions to partition metals among exchangeable, reducible, organic, or residual fractions. Proximity to road increased all metal concentrations, suggesting vehicle emissions sources. Reducible Pb increased with neighborhood age, suggesting leaded paint as a likely pollutant source. Exchangeable Cd and As both increased with road proximity. Only cultivated soils showed an increase in exchangeable As with road proximity, potentially due to reducing humic acid interactions while Cd bioavailability was mitigated by organic matter. Understanding the geochemical phases and metal bioavailability allows incorporation of contamination patterns into urban planning. - Highlights: • Road proximity, legacies, and management affect garden soil metal concentrations. • Soil near old houses had high reducible Pb, likely due to lead paint. • Pb, As, and Cd all increased with proximity to road. • As and Cd reacted with organic matter to become more or less bioavailable to crops. - Road proximity, legacies, and management affect garden soil metal concentrations. Soil near old houses had high reducible Pb due to lead paint, while all metals increased near the road

  4. Chemical characterization of soil organic matter in a Chesapeake Bay salt marsh: analyzing microbial and vegetation inputs to SOM

    Science.gov (United States)

    Bye, E.; Schreiner, K. M.; Abdulla, H. A.; Minor, E. C.; Guntenspergen, G. R.

    2017-12-01

    Coastal wetlands play a critical role in the global carbon cycle. These ecosystems sequester and store carbon, known as "blue carbon," at a rate two or three orders of magnitude larger than other terrestrial ecosystems, such as temperate, tropical, and boreal forests. Anthropogenic changes to the climate are threatening blue carbon stores in coastal wetland ecosystems. To understand and predict how these important carbon stores will be affected by anthropogenic climate changes, it is necessary to understand the formation and preservation of soil organic matter (SOM) in these ecosystems. This study will present organic geochemical data from two sediment cores collected from the Smithsonian Environmental Research Center site on a salt marsh in Maryland along the Chesapeake Bay. One core is from a location that recently transitioned from a C4 to C3 plant regime, currently dominated by the sedge Shoenplectis americanus. The second core is from a C4 plant (Spartina patens) dominated location in the marsh. The organic geochemistry of these 100 cm deep sediment cores was studied through multiple bulk analyses including stable isotopes, elemental ratios, Fourier-transform infrared spectroscopy (FTIR), solid-state magic-angle-spinning Nuclear Magnetic Resonance (NMR), and compound specific lignin-phenol analysis. By using comprehensive chemical characterization techniques, this study aims to discern between vegetation- and microbially-derived inputs to SOM in blue carbon ecosystems. The results show a general increase in the aromatic content with a concomitant decrease of carbohydrates with depth in both cores. However, substantial differences between the two cores, indicates differing inputs and/or stabilization mechanisms within SOM formed from different vegetation regimes. Further compound specific work will help to elucidate the specific source of compounds within each compound class, in surface and deep SOM, and additionally can help provide evidence for different

  5. Soil-restoration rate and initial soil formation trends on example of anthropogenically affected soils of opencast mine in Kursk region, Russian Federation

    Science.gov (United States)

    Pigareva, Tatiana

    2015-04-01

    The mining industry is one of the main factors which anthropogenically change the environment. Mining process results in removing of the rocks and mechanical changes of considerable amounts of ground. One of the main results of mining arising of antropic ecosystems as well as increasing of the new created soils total area is technosols. The main factor controlling the soil formation in postmining environment is the quality of spoiled materials. Initial soil formation has been investigated on spoils of the largest iron ore extraction complex in Russia - Mikhailovsky mining and concentration complex which is situated in Kursk region, Russia. Investigated soils are presented by monogenetic weak developed soils of different age (10-15-20 years). Young soils are formed on the loess parent materials (20 year-old soil), or on a mix of sand and clay overburdens (15 and 10-year-old soils). Anthropogenically affected soils are characterized by well-developed humus horizon which is gradually replaced by weakly changed soil-building rocks (profile type A-C for 10-, 15-years old soils, and A-AC-C for 20 years old soils). Gray-humus soils are characterized by presence of diagnostic humus horizon gradually replaced by soil-building rock. The maximum intensity of humus accumulation has been determined in a semi-hydromorphic 10-year-old soil developed on the mixed heaps which is connected with features of water-air conditions complicating mineralization of plant remnants. 20-year-old soil on loess is characterized by rather high rate of organic substances accumulation between all the automorphous soils. It was shown that one of the most effective restoration ways for anthropogenically affected soils is a biological reclamation. Since overburdens once appeared on a day surface are overgrown badly in the first years, they are subject to influence of water and wind erosion. Our researchers have found out that permanent grasses are able to grow quickly; they accumulate a considerable

  6. Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors.

    Science.gov (United States)

    Srinivasan, Prakash; Sarmah, Ajit K

    2014-05-01

    The dissipation of sulfamethoxazole (SMO) antibiotic in three different soils was investigated through laboratory incubation studies. The experiments were conducted under different incubation conditions such as initial chemical concentration, soil depth, temperature, and with sterilisation. The results indicate that SMO dissipated rapidly in New Zealand pasture soils, and the 50% dissipation times (DT50) in Hamilton, Te Kowhai and Horotiu soils under non-sterile conditions were 9.24, 4.3 and 13.33 days respectively. During the incubation period for each sampling event the soil dehydrogenase activity (DHA) and the variation in microbial community were monitored thorough phospholipid fatty acid extraction analysis (PLFA). The DHA data correlated well with the dissipation rate constants of SMO antibiotic, an increase in the DHA activity resulted in faster antibiotic dissipation. The PLFA analysis was indicative of higher bacterial presence as compared to fungal community, highlighting the type of microbial community responsible for dissipation. The results indicate that with increasing soil depth, SMO dissipation in soil was slower (except for Horotiu) while with increase in temperature the antibiotic loss was faster, and was noticeable in all the soils. Both the degree of biological activity and the temperature of the soil influenced overall SMO dissipation. SMO is not likely to persist more than 5-6 months in all three soils suggesting that natural biodegradation may be sufficient for the removal of these contaminants from the soil. Its dissipation in sterile soils indicated abiotic factors such as strong sorption onto soil components to play a role in the dissipation of SMO. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem.

    Science.gov (United States)

    C.K. Keller; T.M. White; R. O' Brien; J.L. Smith

    2006-01-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground...

  8. Soil temperature and precipitation affect the rooting ability of dormant hardwood cuttings of Populus

    Science.gov (United States)

    R.S., Jr. Zalesny; R.B. Hall; E.O. Bauer; D.E. Riemenschneider

    2005-01-01

    In addition to genetic control, responses to environmental stimuli affect the success of rooting. Our objectives were to: 1) assess the variation in rooting ability among 21 Populus clones grown under varying soil temperatures and amounts of precipitation and 2) identify combinations of soil temperature and precipitation that promote rooting. The...

  9. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin

    between 0.01 to 0.43 pore volumes, with longer times for the most contaminated point, likely related with its higher soil density and lower air permeability. The copper pollution affected colloid and tracer transport in the soil columns. The release of colloids especially in the most contaminated points...

  10. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Science.gov (United States)

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  11. Soil properties and elements other than hydrogen that can affect the ...

    African Journals Online (AJOL)

    A neutron water meter (NWM) operates on the principle that emitted high-energy neutrons are thermalised by elastic collisions with atomic nuclei present in soil, such as that of the hydrogen atom. Thermalised neutrons, however, are affected by other nuclear-matter interactions such as their capture by soil elements and ...

  12. Organometallics and quaternary ammonium salts affect calcium ion desorption from lecithin liposome membranes

    International Nuclear Information System (INIS)

    Kral, T.E.; Kuczera, J.; Przestalski, S.

    2001-01-01

    The objective of the present work was to compare the effects of groups of tin and lead organometallic compounds and their mixtures with amphiphilic quaternary ammonium salts (QAS) on the process of calcium ion desorption from lecithin liposome membranes, as dependent on the properties of the hydrophilic and hydrophobic parts of QAS. In the investigations the method of radioactive labels was applied. Synergism and antagonism in the action of both groups of compounds were found. The effectiveness of the cooperation depended more on chain length of QAS compounds than on the size and polarity of their hydrophobic parts. The most effective of all compounds studied was a the mixture of benzyldimethylammonium chloride in a mixture with tripropyltin. Since the rate of calcium desorption proved to be a good measure of efficacy of biologically active surfactants, it seems that the conclusions reached in this paper may be useful for choosing compounds which are able to decontaminate the environment polluted with heavy metals. (orig.)

  13. Cu accumulation by Lumbricus rubellus as affected by total amount of Cu in soil, soil moisture and soil heterogeneity.

    NARCIS (Netherlands)

    Marinussen, M.P.J.C.; Zee, van der S.E.A.T.M.

    1997-01-01

    To investigate the effect of soil heterogeneity on accumulation of pollutants in a contaminated soil by earthworms, we performed experiments under laboratory conditions with soil from a Cu-contaminated site, followed by experiments under field conditions. The first experiments were set up as a

  14. Salt additions increase soil nitrate leaching: Implications for near-coastal watershed biogeochemistry

    Science.gov (United States)

    Deposition of sea salt aerosols is often elevated along the coast relative to inland areas, yet little is known about the effects of this deposition on terrestrial ecosystem biogeochemistry. Spatial patterns of stream chemistry in the Oregon Coast Range led us to hypothesize tha...

  15. Impact of soil nematodes on salt-marsh plants : a pilot experiment

    NARCIS (Netherlands)

    Dormann, CF; van der Wal, R

    2001-01-01

    We tested whether the removal of nematodes by means of nematicide application changed plant performance or influenced plant competition. The study involved the two common plant species Artemisia maritima and Festuca rubra growing in intact sods collected from a temperate salt marsh. Half of the sods

  16. The toxicity of different lead salts to Enchytraeus crypticus in relation to bioavailability in soil

    NARCIS (Netherlands)

    Zhang, Lulu; Van Gestel, Cornelis A.M.

    2017-01-01

    The present study aimed to assess the bioavailability and toxicity of lead nitrate and lead chloride to Enchytraeus crypticus in a natural standard soil. Worms were exposed to Pb-spiked soil for 21 d, and survival and reproduction were related to total, 0.01 M CaCl2-extractable, and porewater Pb

  17. Dynamics And Remediation Of Fine Textured Soils And Ground Water Contaminated With Salts And Chlorinated Organic Compounds

    Science.gov (United States)

    Murata, Alison; Naeth, M. Anne

    2017-04-01

    Soil and ground water are frequently contaminated by industrial activities, posing a potential risk to human and environmental health and limiting land use. Proper site management and remediation treatments can return contaminated areas to safe and useful states. Most remediation research focuses on single contaminants in coarse and medium textured soils. Contaminant mixtures are common and make remediation efforts complex due to differing chemical properties. Remediation in fine textured soils is difficult since their low hydraulic conductivities hinder addition of amendments into and removal of contaminated media out of the impacted zone. The objective of this research is to assess contaminant dynamics and potential remediation techniques for fine textured soil and ground water impacted by multiple contaminants in Edmonton, Alberta, Canada. The University of Alberta's Ellerslie Waste Management Facility was used to process liquid laboratory waste from 1972 to 2007. A waste water pond leak prior to 1984 resulted in salt and chlorinated organic compound contamination. An extensive annual ground water monitoring data set for the site is available since 1988. Analytical parameters include pH, electrical conductivity, major ions, volatile organic compounds, and metals. Data have been compared to Alberta Tier 1 Soil and Groundwater Remediation Guidelines to identify exceedances. The parameters of greatest concern, based on magnitude and frequency of detection, are electrical conductivity, sodium, chloride, chloroform, and dichloromethane. Spatial analyses of the data show that the contamination is focused in and down gradient of the former waste water pond. Temporal analyses show different trends depending on monitoring well location. Laboratory column experiments were used to assess leaching as a potential treatment for salt contamination in fine textured soils. Saturated hydraulic conductivity was measured for seven soils from two depth intervals with or without

  18. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    Science.gov (United States)

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    Directory of Open Access Journals (Sweden)

    M.I. Choudhary

    1998-06-01

    Full Text Available Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4 soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions.

  20. Electro-chemistry of soil formation. VI. Atmospheric salts in relation to soil and peat formation and plant composition

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, S; Sandberg, G; Terning, P E

    1944-01-01

    The Ca/Mg ratios have been determined in the Ramna bog, in the Unden and Annerstad podzol profile series, and in the Dala brown earth series. A number of plant species from each locality have been included. The more ombrogenic the formation, the lower the Ca/Mg ratios. An application of the Donnan equilibrium leads to the conclusion that the saturation with bases may be considerable in ombrogenic peat, whereas the saturation of excessively leached mineral soils must be very small. The latter must, like all weak or unsaturated soil acidoids in general, contain a relatively high proportion of exchangeable alkali cations.

  1. Soil-borne microorganisms and soil-type affect pyrrolizidine alkaloids in Jacobaea vulgaris

    NARCIS (Netherlands)

    Joosten, L.; Mulder, P.P.J.; Klinkhamer, P.G.L.; Van Veen, J.A.

    2009-01-01

    Secondary metabolites like pyrrolizidine alkaloids (PAs) play a crucial part in plant defense. We studied the effects of soil-borne microorganisms and soil-type on pyrrolizidine alkaloids in roots and shoots of Jacobaea vulgaris. We used clones of two genotypes from a dune area (Meijendel),

  2. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    Science.gov (United States)

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain)

    International Nuclear Information System (INIS)

    Gomez-Gonzalez, M.A.; Garcia-Guinea, J.; Laborda, F.; Garrido, F.

    2015-01-01

    Thallium (Tl) and its compounds are toxic to biota even at low concentrations but little is known about Tl concentration and speciation in soils. An understanding of the source, mobility, and dispersion of Tl is necessary to evaluate the environmental impact of Tl pollution cases. In this paper, we examine the Tl source and dispersion in two areas affected by abandoned mine facilities whose residues remain dumped on-site affecting to soils and sediments of natural water courses near Madrid city (Spain). Total Tl contents and partitioning in soil solid phases as determined by means of a sequential extraction procedure were also examined in soils along the riverbeds of an ephemeral and a permanent streams collecting water runoff and drainage from the mines wastes. Lastly, electronic microscopy and cathodoluminescence probe are used as a suitable technique for Tl elemental detection on thallium-bearing phases. Tl was found mainly bound to quartz and alumino-phyllosilicates in both rocks and examined soils. Besides, Tl was also frequently found associated to organic particles and diatom frustules in all samples from both mine scenarios. These biogenic silicates may regulate the transfer of Tl into the soil-water system. - Highlights: • Abandoned mine residues are Tl sources in soils of Madrid catchment area. • Tl was associated to quartz and aluminosilicates in both rocks and soils. • Tl was frequently found associated to organic particles and diatom frustules. • Cathodoluminescence is a suitable technique for Tl detection on soils and rocks

  4. Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, M.A.; Garcia-Guinea, J. [National Museum of Natural Sciences, CSIC, Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Laborda, F. [Group of Analytical Spectroscopy and Sensors Group, Institute of Environmental Sciences, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Garrido, F., E-mail: fernando.garrido@mncn.csic.es [National Museum of Natural Sciences, CSIC, Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2015-12-01

    Thallium (Tl) and its compounds are toxic to biota even at low concentrations but little is known about Tl concentration and speciation in soils. An understanding of the source, mobility, and dispersion of Tl is necessary to evaluate the environmental impact of Tl pollution cases. In this paper, we examine the Tl source and dispersion in two areas affected by abandoned mine facilities whose residues remain dumped on-site affecting to soils and sediments of natural water courses near Madrid city (Spain). Total Tl contents and partitioning in soil solid phases as determined by means of a sequential extraction procedure were also examined in soils along the riverbeds of an ephemeral and a permanent streams collecting water runoff and drainage from the mines wastes. Lastly, electronic microscopy and cathodoluminescence probe are used as a suitable technique for Tl elemental detection on thallium-bearing phases. Tl was found mainly bound to quartz and alumino-phyllosilicates in both rocks and examined soils. Besides, Tl was also frequently found associated to organic particles and diatom frustules in all samples from both mine scenarios. These biogenic silicates may regulate the transfer of Tl into the soil-water system. - Highlights: • Abandoned mine residues are Tl sources in soils of Madrid catchment area. • Tl was associated to quartz and aluminosilicates in both rocks and soils. • Tl was frequently found associated to organic particles and diatom frustules. • Cathodoluminescence is a suitable technique for Tl detection on soils and rocks.

  5. Climate change affects carbon allocation to the soil in shrublands

    NARCIS (Netherlands)

    Gorissen, A.; Tietema, A.; Joosten, N.N.; Estiarte, M.; Peñuelas, J.; Sowerby, A.; Emmett, B.; Beier, J.C.

    2004-01-01

    Climate change may affect ecosystem functioning through increased temperatures or changes in precipitation patterns. Temperature and water availability are important drivers for ecosystem processes such as photosynthesis, carbon translocation, and organic matter decomposition. These climate changes

  6. BIOCHEMICAL PARAMETERS OF LIPID METABOLISM IN ANIMALS AFFECTED BY HEAVY METAL SALTS AND TREATED WITH CARNITINE CHLORIDE AND SODIUM ALGINATE

    Directory of Open Access Journals (Sweden)

    I. R. Bekus

    2017-02-01

    Full Text Available Background. Lipid metabolism disorders in the organism affected by environmental pollutants, including poisoning with cadmium and lead salts are of topical matter nowadays. Objective. The study was aimed to examine biochemical features of lipid metabolism in rats subjected to toxic damage by lead and cadmium salts and treated with carnitine chloride and Algigel. Methods. Experiments were carried out on white mature outbred male rats weighing 180-200 g. To cause the toxic damage the animals were administered with aqueous solution of cadmium chloride and lead acetate daily for the period of 30 days using intra-gastric lavage. The indices of lipid metabolism were detected by biochemical methods. Results. In animals treated with cadmium chloride and lead acetate the following changes were observed: HDL-cholesterol concentrations significantly decreased, resulting in 87% of the levels in the intact animals on the third day, 84% on the fifth and 80% on the seventh day. Conversely, concentrations of HDL-cholesterol and VLDL-cholesterol significantly increased during the experiment. Respectively, the ratios for HDL-cholesterol are 240%, 352%, and 388%; and for VLDL-cholesterol 108%, 116%, and 132%. Conclusions. Lipids profile of the rats displayed changes in the levels of cholesterol, triglycerides and lipoproteins of low, high and very low density.

  7. Experimental datasets on engineering properties of expansive soil treated with common salt.

    Science.gov (United States)

    Durotoye, Taiwo O; Akinmusuru, Joseph O; Ogundipe, Kunle E

    2018-06-01

    Construction of highway pavements or high rise structures over the expansive soils are always problematic due to failures of volume change or swelling characteristic experienced in the water permeability of the soil. The data in this article represented summary of (Durotoye et al., 2016; Durotoye, 2016) [1], [2]. The data explored different percentages of sodium chloride as additive in stabilizing the engineering properties of expansive soil compared with other available stabilizer previously worked on. Experimental procedures carried out on expansive soil include: (Liquid limit, Plastic limit, Plasticity index, Shrinkage limit, Specific gravity Free swell index and Optimum water content) to determine the swelling parameters and (maximum dry density, California bearing ratio and unconfined compressive strength) to determine the strength parameters. The results of the experiment were presented in pie charts.

  8. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    OpenAIRE

    Aanniz,Tarik; Ouadghiri,Mouna; Melloul,Marouane; Swings,Jean; Elfahime,Elmostafa; Ibijbijen,Jamal; Ismaili,Mohamed; Amar,Mohamed

    2015-01-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. ...

  9. Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation.

    Science.gov (United States)

    González-Domínguez, Beatriz; Studer, Mirjam S; Hagedorn, Frank; Niklaus, Pascal A; Abiven, Samuel

    2017-01-01

    Laboratory soil incubations provide controlled conditions to investigate carbon and nutrient dynamics; however, they are not free of artefacts. As carbon and nitrogen cycles are tightly linked, we aimed at investigating whether the incubation-induced accumulation of mineral nitrogen (Nmin) biases soil organic carbon (SOC) mineralisation. For this, we selected two soils representative of the C:N ratio values found in European temperate forests, and applied two incubation systems: 'closed' beakers and 'open' microlysimeters. The latter allowed leaching the soil samples during the incubation. By the end of the 121-day experiment, the low C:N soil significantly accumulated more Nmin in beakers (5.12 g kg-1 OC) than in microlysimeters (3.00 g kg-1 OC) but there was not a significant difference in SOC mineralisation at any point of the experiment. On the other hand, Nmin did not accumulate in the high C:N soil but, by the end of the experiment, leaching had promoted 33.9% more SOC solubilisation than beakers. Therefore, we did not find evidence that incubation experiments introduce a bias on SOC mineralisation. This outcome strengthens results from soil incubation studies.

  10. Sampling season affects conclusions on soil arthropod community structure responses to metal pollution in Mediterranean urban soils

    NARCIS (Netherlands)

    Santorufo, L.; van Gestel, C.A.M.; Maisto, G.

    2014-01-01

    This study aimed to assess if the period of sampling affected conclusions on the responses of arthropod community structure to metal pollution in urban soils in the Mediterranean area. Higher temperature and lower precipitation were detected in autumn than in spring. In both samplings, the most

  11. Fractionation of Uranium Forms as Affected by Spiked Soil Treatment and Soil Type

    International Nuclear Information System (INIS)

    Lotfy, S.M.; Mostafa, A.Z.; Abdel-Sabour, M.F.

    2012-01-01

    In a fractionation experiment Uranium forms were compared in two soil types (Mostorud and Elgabalelasfar soil). Also, the variation of U forms due to soil treatment (spiking) were studied. In case of Mostorud soil the initial U - fractions were 45.63 % as residual form, 20.69 % organically bound 16.36 % Mn and Fe oxides bound, 9.76% Carbonate form, 7.41 % exchangeable fractions and 0.15% water soluble fractions. These fractions varied significantly when the soil was spiked with 200 mg U/Kg soil to 46.88 %, 23.19 %, 9.97 %, 16.07 %, 3.79% and 0.10% for residual, organically, Mn- Fe oxide, carbonate, exchangeable and water soluble fractions respectively. These result showed significant reduction in U-ex fraction forms and Mn- Fe bound forms with significant increase in U- carbonate form due to U application. In case of Elgabalelasfar soil, the main U - fractions were 57.42% as residual form (relatively higher residual - U form in the clayey soil) 16.10 % organically bound, 13.78% Mn and Fe oxides bound, 7.22 % Carbonate form, 5.23 % exchangeable fractions and 0.25 % water soluble fractions The application of 200 mg U/Kg soil resulted in a significant changes in U - Fractions distribution as follows : 59.26 % , 11.27 % , 19.59 % , 6.84 % , 2.90 % and 0.14 % for residual , organic , Mn- Fe oxides , carbonate, exchangeable and water soluble fractions , respectively.

  12. GIS and RS soil-vegetation correlations for continental salt-lands habitats in NE Romania

    Directory of Open Access Journals (Sweden)

    Dan Laurenţiu Stoica

    2012-07-01

    Full Text Available Continental saltlands have a high degree of peculiarity amongst European primary habitats and a prominent insular character. The present scientific approach establishes the degree of soil-vegetation correlation in continental slatlands patches as a measure of habitat continuity/fragmentation and soil conservation/degradation. The use of hyperspectral imagery, soil types’ distribution and vegetal associations’ conservation status reveal disturbances in relation with human induced modifications in comparison with normal plant-soil interdependence. Supervised classifications of LANDSAT satellite imagery along with detailed soil maps, ground truth data provided by accurate GPS positioning and field based plants evaluation are used to perform landscape metrics analyses. The landscape metrics approach is meant to find the balance between extent and grain in the case of saltlands habitats analyses and the degree of patches and classes inhomogeneity. These also give an insight of habitats connectivity and/or isolation in relation with land use topology and soil multiplexing. The resulting training sets developed for a representative, protected area in the county of Iaşi enhance the creation of a comprehensive mask to be used for the evaluation of larger areas in the silvan-steppes of North-Eastern Romania. The model is statistically tested to depict the degree of correlation and confidence. The final goal resides in more proper measures elaboration for the mitigation of continental saltland preservation and natural resources exploitation via agricultural and the associated activities.

  13. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    KAUST Repository

    Serrano, Oscar

    2016-08-15

    Biotic and abiotic factors influence the accumulation of organic carbon (C-org) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher C-org stocks (averaging 6.3 kg C-org m(-2) at 3- to 4-fold higher rates (12.8 gC(org) m(-2) yr(-1) ) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg C-org m(-2) and 3.6 g C-org m(-2) yr(-1) . In shallower meadows, C-org stocks were mostly derived from seagrass detritus (88% in average) compared to meadows closer to the deep limit of distribution (45% on average). In addition, soil accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr(-1) and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr(-1) and 5 %, respectively). The C-org stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg C-org m(-2) and 1.2 g C-org m(-2) yr(-1)were 3- to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8- and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypothesis that Corg storage in seagrass soils is influenced by interactions of biological (e.g., meadow productivity, cover and density), chemical (e.g., recalcitrance of Corg stocks) and physical (e.g., hydrodynamic energy and soil accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  14. The Endocannabinoid System Affects Myocardial Glucose Metabolism in the DOCA-Salt Model of Hypertension

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2018-03-01

    Full Text Available Background/Aims: Recent interest in the use of cannabinoids as therapeutic agents has revealed the involvement of the endogenous cannabinoid system (ECS in the regulation of the cardiovascular system in hypertension. Abnormalities in glucose metabolism and insulin action are commonly detected in hypertensive animals. Thus, potential antihypertensive drugs should be investigated with respect to modulation of glucose homeostasis. Therefore, the aim of the present study was to evaluate the effects of the ECS activation after chronic fatty acid amide hydrolase inhibitor (URB597 administration on plasma glucose and insulin concentrations as well as parameters of myocardial glucose metabolism in the deoxycorticosterone acetate (DOCA-salt hypertensive rats, an animal model of secondary hypertension. Methods: Hypertension was induced by DOCA (25mg/kg injections and addition of 1% NaCl in the drinking water for six weeks. Chronic activation of the ECS was performed by URB597 (1mg/kg injections for two weeks. We examined fasting plasma levels of insulin (ELISA, glucose and intramyocardial glycogen (colorimetric method. Expressions of glucose transporters (GLUT1, 4 and selected proteins engaged in GLUT translocation as well as glucose metabolism were determined using Western blotting. Results: Hypertension induced hypoinsulinemia with concomitant lack of significant changes in glycemia, reduced intramyocardial glycogen content and increased pyruvate dehydrogenase (PDH expression in the cardiac muscle. Importantly, chronic URB597 administration in the hypertensive rats increased insulin concentration, elevated plasmalemmal GLUT1 and GLUT4 expression and concomitantly improved myocardial glycogen storage. Conclusion: Chronic administration of fatty acid amide hydrolase (FAAH inhibitor has potential protective properties on myocardial glucose metabolism in hypertension.

  15. Thraustochytrids can be grown in low-salt media without affecting PUFA production.

    Science.gov (United States)

    Shabala, Lana; McMeekin, Tom; Shabala, Sergey

    2013-08-01

    Marine microheterotrophs thraustochytrids are emerging as a potential source for commercial production of polyunsaturated fatty acids (PUFA) that have nutritional and pharmacological values. With prospective demand for PUFAs increasing, biotechnological companies are looking for potential increases in those valuable products. However, high levels of NaCl in the culture media required for optimal thraustochytrid growth and PUFA production poses a significant problem to the biotechnological industry due to corrosion of fermenters calling for a need to reduce the amount of NaCl in the culture media, without imposing penalties on growth and yield of cultured organisms. Earlier, as reported by Shabala et al. (Environ Microbiol 11:1835-1843, 2009), we have shown that thraustochytrids use sodium predominantly for osmotic adjustment purposes and, as such, can be grown in low-salt environment without growth penalties, providing the media osmolality is adjusted. In this study, we verify if that conclusion, made for one specific strain and osmolyte only, is applicable to the larger number of strains and organic osmotica, as well as address the issue of yield quality (e.g., PUFA production in low-saline media). Using mannitol and sucrose for osmotic adjustment of the growth media enabled us to reduce NaCl concentration down to 1 mM; this is 15-100-fold lower than any method proposed so far. At the same time, the yield of essential PUFAs was increased by 15 to 20 %. Taken together, these results suggest that the proposed method can be used in industrial fermenters for commercial PUFA production.

  16. Soil water repellency of the artificial soil and natural soil in rocky slopes as affected by the drought stress and polyacrylamide.

    Science.gov (United States)

    Chen, Zhang; Wang, Ruixin; Han, Pengyuan; Sun, Hailong; Sun, Haifeng; Li, Chengjun; Yang, Lixia

    2018-04-01

    Soil water repellency (SWR) causes reduced soil water storage, enhanced runoff and reduced ecosystem productivity. Therefore, characterization of SWR is a prerequisite for effective environmental management. SWR has been reported under different soils, land uses and regions of the world, particularly in forest land and after wildfires; however, the understanding of this variable in the artificial soil of rocky slope eco-engineering is still rather limited. This study presented the characterization of SWR in the artificial soil affected by the polyacrylamide (PAM) and drought stress. There were two molecular weights of PAM, and the CK was without PAM application. Three types of soil were studied: natural soil and two types of artificial soil which have been sprayed for 1y and 5y, respectively. The drought stress experiments had three drought gradients, lasted for three weeks. Water repellency index (WRI) and soil-water contact angle (β) were determined using intrinsic sorptivity method by measuring the water sorptivity (S W ) and ethanol sorptivity (S E ) in all soil samples. The results showed that (1) Polyacrylamide treatments significantly increased S W by 3% to 38%, and reduced S E by 1% to 15%, WRI by 6% to 38%, β by 3% to 23% compared to the control group. Polyacrylamide treatments also increased water-stable aggregates content and total porosity by 22% to 33%, 11% to 20% relative to the control, while PAM with a higher molecular weight performed best. (2) The interaction between PAM and drought stress had a significant effect on WRI and β for all soil types (Pnatural soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Short-term effects of tidal flooding on soil nitrogen mineralization in a Chinese tidal salt marsh

    Science.gov (United States)

    Gao, Haifeng; Bai, Junhong; Deng, Xiaoya; Lu, Qiongqiong; Ye, Xiaofei

    2018-02-01

    Tidal flooding is an important control of nitrogen biogeochemistry in wetland ecosystems of Yellow River Delta, China. Variations in hydrology could change soil redox dynamics and conditions for microorganisms living. A tidal simulation experiment was designed to extract tidal flooding effect on nitrogen mineralization of salt marsh soil. Inorganic nitrogen and relevant enzyme were measured during the 20-day incubation period. Considering the variation of both inorganic N and enzymes, nitrogen mineralization process in tidal salt marsh could be divided into 2 phases of short term response and longtime adaption by around 12th incubation day as the inflection point. Soil ammonium nitrogen (NH4+-N) and volatilized ammonia (NH3) occupied the mineralization process since nitrate nitrogen (NO3--N) was not detected over whole incubation period. NH4+-N varied fluctuant and increased significantly after 12 day's incubation. Released NH3 reached to peak value of 14.24 mg m-2 d-1 at the inflection point and declined thereafter. Inorganic nitrogen released according to net nitrogen mineralization rate (RM) under the tidal flooding condition without plant uptake except first 2 days. However, during the transitional period of 6-12 days, RM decreased notably to almost 0 and increased again after inflection point with the value of 0.182 mg kg-1 d-1. It might be due to the change of microbial composition and function when soil shifted from oxic to anoxic, which were reflected by arylamidase, urease and fluorescein diacetate. Fluorescein diacetate hydrolysis and arylamidase had the similar variation of U style with decreasing activities before 12 days' incubation. All the enzymes measured in this experiment increased after inflection point. Whereas, urease activity kept constant from 2 to 12 days. Alternant oxidation reduction condition would increase N loss through denitrification and ammonia volatilization during the transitional period, while more inorganic nitrogen would be

  18. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... compost had greater effect in improving tomato productivity. A decade-long application of composts on loamy sand improved basic chemical and physical properties which were reflected in increased fruit yield in tomato. Since no negative effect of compost was observed, we suggest that sandy soils may serve...... and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha-1 yr-1 (7.5 ton ha-1 yr-1). The soils were characterized for chemical and physical properties. Tomato was planted...

  19. Herbivore species and density affect vegetation-structure patchiness in salt marshes

    NARCIS (Netherlands)

    Nolte, Stefanie; Esselink, Peter; Smit, Christian; Bakker, Jan P.

    2014-01-01

    The importance of spatial patterns for ecosystem functioning and biodiversity has long been recognized in ecology. Grazing by herbivores is an important mechanism leading to spatial patterns in the vegetation structure. How different herbivore species and their densities affect vegetation-structure

  20. Drainage and reclamation of salt-affected soils in the Bardenas area, Spain

    NARCIS (Netherlands)

    Martinez Beltran, J.

    1978-01-01

    Chapter 1

    The Ebro basin is situated in north-eastern Spain and forms a geographic unit bounded by high mountains. The Bardenas area lies in the Ebro basin and forms part of the Bardenas Alto - Aragón irrigation scheme, which was designed to make use of the surface water resources from the

  1. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    Science.gov (United States)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  2. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    Directory of Open Access Journals (Sweden)

    M. F. Cotrufo

    2011-09-01

    Full Text Available Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR. Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  3. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    Science.gov (United States)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  4. Aging and soil organic matter content affect the fate of silver nanoparticles in soil

    International Nuclear Information System (INIS)

    Coutris, Claire; Joner, Erik Jautris; Oughton, Deborah Helen

    2012-01-01

    Sewage sludge application on soils represents an important potential source of silver nanoparticles (Ag NPs) to terrestrial ecosystems, and it is thus important to understand the fate of Ag NPs once in contact with soil components. Our aim was to compare the behavior of three different forms of silver, namely silver nitrate, citrate stabilized Ag NPs (5 nm) and uncoated Ag NPs (19 nm), in two soils with contrasting organic matter content, and to follow changes in binding strength over time. Soil samples were spiked with silver and left to age for 2 h, 2 days, 5 weeks or 10 weeks before they were submitted to sequential extraction. The ionic silver solution and the two Ag NP types were radiolabeled so that silver could be quantified by gamma spectrometry by measuring the 110m Ag tracer in the different sequential extraction fractions. Different patterns of partitioning of silver were observed for the three forms of silver. All types of silver were more mobile in the mineral soil than in the soil rich in organic matter, although the fractionation patterns were very different for the three silver forms in both cases. Over 20% of citrate stabilized Ag NPs was extractible with water in both soils the first two days after spiking (compared to 1–3% for AgNO 3 and uncoated Ag NPs), but the fraction decreased to trace levels thereafter. Regarding the 19 nm uncoated Ag NPs, 80% was not extractible at all, but contrary to AgNO 3 and citrate stabilized Ag NPs, the bioaccessible fraction increased over time, and by day 70 was between 8 and 9 times greater than that seen in the other two treatments. This new and unexpected finding demonstrates that some Ag NPs can act as a continuous source of bioaccessible Ag, while AgNO 3 is rapidly immobilized in soil. - Highlights: ► We compared the behavior of AgNO 3 and two types of Ag NPs in soil over time. ► AgNO 3 is rapidly immobilized in soil. ► Larger Ag NPs can act as a continuous source of bioaccessible Ag, which calls for

  5. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Science.gov (United States)

    Xu, Guo-Liang; Kuster, Thomas M; Günthardt-Goerg, Madeleine S; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  6. Laboratory Assessment of Forest Soil Respiration Affected by Wildfires under Various Environments of Russia

    Directory of Open Access Journals (Sweden)

    Evgeny Abakumov

    2017-01-01

    Full Text Available Pyrogenic carbon emission rates were estimated in the soils of three natural zones in Russia: forest-tundra, south-taiga, and forest-steppe. Postfire soils were found to be characterized by essential losses of soil C due to the combustion fire effect. Soils lost 3 or 5 parts of initial carbon content and showed an essential decrease in the C/N ratio during the fire effect. The pH values increased due to soil enrichment by ash during the fire events. CO2 emission rates were highest in natural soil samples, because the amount of organic matter affected by mineralization in those soils was higher than in natural ones. Simultaneously, the total values of mineralized carbon were higher in postfire soils because the SOM quality and composition were altered due to the fire effect. The only exception was in forest-tundra soils, where a high portion of dissolved organic compounds was released during the surface fire. The quality of initial SOM and intensity of the wildfire play the most important roles in the fate of SOM in postfire environments. Further study of CO2 emissions is needed to better characterize postfire SOM dynamics and develop an approach to model this process.

  7. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Directory of Open Access Journals (Sweden)

    Guo-Liang Xu

    Full Text Available Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm increased, but the percentage of large mites (body length >0.40 mm decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  8. Seasonal Exposure to Drought and Air Warming Affects Soil Collembola and Mites

    Science.gov (United States)

    Xu, Guo-Liang; Kuster, Thomas M.; Günthardt-Goerg, Madeleine S.; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4°C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type. PMID:22905210

  9. Assessing Soil Quality in Areas Affected by Sulfide Mining. Application to Soils in the Iberian Pyrite Belt (SW Spain

    Directory of Open Access Journals (Sweden)

    Isabel González

    2011-11-01

    Full Text Available The characterization, evaluation and remediation of polluted soils is one of the present environmental challenges to be addressed in the coming years. The origin of trace elements in soils can be either geogenic or anthropogenic, but only the latter is interesting from a legal point of view. The hazard of the pollutants in the soils not only depends on their total concentration, but particularly on their availability. The mobility of the trace elements depends on their speciation, and it is also affected by several soil parameters. Mining activity is one of the most important anthropogenic causes of soil pollution. As a case study, this work is focused in the Riotinto mining area (Iberian Pyrite Belt, IPB, SW Spain. The IPB is one of the most important metallogenic provinces in the world and it has been exploited for thousands of years. The disposal of mining residues has produced important sources of contamination by trace elements and acidic waters affecting soils and rivers. In addition to these problems, the closure of mines in the Pyrite Belt at the end of the 20th Century has led to a great loss of employment, which has caused the development of an intensive agriculture of citrus fruits as a new source of income. The intensive growing of citrus fruits and the traditional subsistence agriculture have been developed surrounding the mining areas and on floodplains near to mining sites. The level of soil pollution has not been taken into account in these cases, nor has its impact on the health of the inhabitants of these areas. Therefore, it is of great interest to study the current state of the cultivated soils and the sources and types of contaminants derived from mining activity in order to program its decontamination, where appropriate, according to legislation. In order to know the present and future hazard posed by the soils chemical and mineralogical speciation has been carried out, given that the availability of a metal depends on the

  10. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification.

    Science.gov (United States)

    Guo, Fuyu; Ding, Changfeng; Zhou, Zhigao; Huang, Gaoxiang; Wang, Xingxiang

    2018-06-04

    Chemical immobilization is a practical approach to remediate heavy metal contamination in agricultural soils. However, the potential remobilization risks of immobilized metals are a major environmental concern, especially in acid rain zones. In the present study, changes in the immobilization efficiency of several amendments as affected by simulated soil acidification were investigated to evaluate the immobilization remediation stability of several amendments on two cadmium (Cd) contaminated soils. Amendments (hydrated lime, hydroxyapatite and biochar) effectively immobilized Cd, except for organic fertilizer, and their immobilizations were strongly decreased by the simulated soil acidification. The ratio of changes in CaCl 2 -extractable Cd: pH (△CaCl 2 -Cd/△pH) can represent the Cd remobilization risk of different amended soils. Hydroxyapatite and biochar had a stronger durable immobilizing effect than did hydrated lime, particularly in soil with a lower pH buffering capacity, which was further confirmed by the Cd concentration and accumulation in lettuce. These results can be attributed to that hydroxyapatite and biochar transformed greater proportions of exchangeable Cd to other more stable fractions than lime. After 48 weeks of incubation, in soil with a lower pH buffering capacity, the immobilization efficiencies of lime, hydroxyapatite, biochar and organic fertilizer in the deionized water group (pH 6.5) were 71.7%, 52.7%, 38.6% and 23.9%, respectively, and changed to 19.1%, 33.6%, 26.5% and 5.0%, respectively, in the simulated acid rain group (pH 2.5). The present study provides a simple method to preliminarily estimate the immobilization efficiency of amendments and predict their stability in acid rain regions before large-scale field application. In addition, hydrated lime is recommended to be combined with other acid-stable amendments (such as hydroxyapatite or biochar) to remediate heavy metal-contaminated agricultural soils in acid precipitation

  11. Geographic distribution of soluble salts, exchangeable sodium and calcium carbonate in the Caribbean Region of Colombia

    International Nuclear Information System (INIS)

    Pulido, Carlos E

    2000-01-01

    A research was carried out to establish the distribution of soluble salts, exchangeable sodium and calcium carbonate in the soils of the Caribbean Region. The results show that 28,3% (3.506.033 ha) of the soils have problems related to salinity. The soils of the arid and semiarid zones and those belonging to the sea plain are affected severely by soluble salts, exchangeable sodium and calcium carbonate

  12. Grain Yield, Dry Weight and Phosphorus Accumulation and Translocation in Two Rice (Oryza sativa L. Varieties as Affected by Salt-Alkali and Phosphorus

    Directory of Open Access Journals (Sweden)

    Zhijie Tian

    2017-08-01

    Full Text Available Salt-alkali is the main threat to global crop production. The functioning of phosphorus (P in alleviating damage to crops from saline-alkaline stress may be dependent on the variety of crop but there is little published research on the topic. This pot experiment was conducted to study if P has any effect on rice (Oryza sativa L. yield, dry matter and P accumulation and translocation in salt-alkaline soils. Plant dry weight and P content at heading and harvest stages of two contrasting saline-alkaline tolerant (Dongdao-4 and sensitive (Tongyu-315 rice varieties were examined under two saline-alkaline (light versus severe soils and five P supplements (P0, P50, P100, P150 and P200 kg ha−1. The results were: in light saline-alkaline soil, the optimal P levels were found for P150 for Dongdao-4 and for P100 for Tongyu-315 with the greatest grain dry weight and P content. Two rice varieties obtained relatively higher dry weight and P accumulation and translocation in P0. In severe saline-alkaline soil, however, dry weight and P accumulation and translocation, 1000-grain weight, seed-setting rate and grain yield significantly decreased, but effectively increased with P application for Dongdao-4. Tongyu-315 showed lower sensitivity to P nutrition. Thus, a more tolerant variety could have a stronger capacity to absorb and translocate P for grain filling, especially in severe salt-alkaline soils. This should be helpful for consideration in rice breeding and deciding a reasonable P application in saline-alkaline soil.

  13. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Junhong, E-mail: junhongbai@163.com; Huang, Laibin, E-mail: seahuanglaibin@gmail.com; Gao, Zhaoqin; Lu, Qiongqiong; Wang, Junjing; Zhao, Qingqing

    2014-09-15

    Highlights: • A higher germination rate of soil seed bank was observed in the indoor experiment. • The outdoor experiment showed larger number and destiny of germinated seedlings. • Urbanization had greater impacts on soil seed banks than wetland reclamation. • Soil seed banks for wetland restoration were more suitable in the reclaimed region. • Suitable salt or Cd levels could activate seedling emergence in the soil seed bank. - Abstract: Indoor and outdoor seedling emergence experiments were conducted to thoroughly investigate germination patterns as affected by reclamation and urbanization, the ecological characteristics of soil seed banks, and their relationships with environmental factors in both urbanized and reclaimed regions of the Pearl River Delta in coastal wetlands. The germination rate of the soil seed bank was higher in the indoor experiment compared with that in the outdoor experiment, whereas the number and destiny of the germinated seedlings were greater in the outdoor experiment. The species diversity and number, as well as the richness and evenness indices, were higher in the urbanized region compared with the reclaimed region. However, the dominance and Sørensen similarity indices were greater in the reclaimed region compared with those indices in the urbanized region. Higher salinity and Cadmium (Cd) levels could inhibit seed germination; however, their suitable ranges (i.e. [0–2000 mg kg{sup −1}] for salinity and [0–4.0 mg kg{sup −1}] for available Cd) can activate seedling emergence, and more seedlings germinated under the intersectional levels at 0.34 mg kg{sup −1} available Cd and 778.6 mg kg{sup −1} salinity. Seawater intrusion caused by the sea level rise will possibly result in the salt-tolerant community in this area due to increasing salinity.

  14. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments

    International Nuclear Information System (INIS)

    Bai, Junhong; Huang, Laibin; Gao, Zhaoqin; Lu, Qiongqiong; Wang, Junjing; Zhao, Qingqing

    2014-01-01

    Highlights: • A higher germination rate of soil seed bank was observed in the indoor experiment. • The outdoor experiment showed larger number and destiny of germinated seedlings. • Urbanization had greater impacts on soil seed banks than wetland reclamation. • Soil seed banks for wetland restoration were more suitable in the reclaimed region. • Suitable salt or Cd levels could activate seedling emergence in the soil seed bank. - Abstract: Indoor and outdoor seedling emergence experiments were conducted to thoroughly investigate germination patterns as affected by reclamation and urbanization, the ecological characteristics of soil seed banks, and their relationships with environmental factors in both urbanized and reclaimed regions of the Pearl River Delta in coastal wetlands. The germination rate of the soil seed bank was higher in the indoor experiment compared with that in the outdoor experiment, whereas the number and destiny of the germinated seedlings were greater in the outdoor experiment. The species diversity and number, as well as the richness and evenness indices, were higher in the urbanized region compared with the reclaimed region. However, the dominance and Sørensen similarity indices were greater in the reclaimed region compared with those indices in the urbanized region. Higher salinity and Cadmium (Cd) levels could inhibit seed germination; however, their suitable ranges (i.e. [0–2000 mg kg −1 ] for salinity and [0–4.0 mg kg −1 ] for available Cd) can activate seedling emergence, and more seedlings germinated under the intersectional levels at 0.34 mg kg −1 available Cd and 778.6 mg kg −1 salinity. Seawater intrusion caused by the sea level rise will possibly result in the salt-tolerant community in this area due to increasing salinity

  15. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    Science.gov (United States)

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Soil Type Affects Pinus ponderosa var. scopulorum (Pinaceae Seedling Growth in Simulated Drought Experiments

    Directory of Open Access Journals (Sweden)

    Alexander J. Lindsey

    2013-07-01

    Full Text Available Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite, a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies.

  17. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments.

    Science.gov (United States)

    Lindsey, Alexander J; Kilgore, Jason S

    2013-08-01

    Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies.

  18. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments1

    Science.gov (United States)

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    • Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies. PMID:25202578

  19. Bacterial diversity in Greenlandic soils as affected by potato cropping and inorganic versus organic fertilization

    DEFF Research Database (Denmark)

    Michelsen, Charlotte Frydenlund; Pedas, Pai Rosager; Glaring, Mikkel Andreas

    2014-01-01

    research has been performed on the effects of these treatments on bacterial communities in Arctic and Subarctic agricultural soils. The major objective of this study was to investigate the short-term impact of conventional (NPK) and organic (sheep manure supplemented with nitrogen) fertilizer treatments...... with only limited pest management, despite the presence of plant pathogenic fungi. The microbial community composition in agricultural soils, which plays an important role for soil and plant health and for crop yield, may be affected by the use of different fertilizer treatments. Currently, only limited...... on bacterial diversity, nutrient composition and crop yield in two Greenlandic agricultural soils. An effect of fertilizer was found on soil and plant nutrient levels and on crop yields. Pyrosequencing of 16S rRNA gene sequences did not reveal any major changes in the overall bacterial community composition...

  20. Soil fauna and leaf species, but not species diversity, affect initial soil erosion in a subtropical forest plantation

    Science.gov (United States)

    Seitz, Steffen; Goebes, Philipp; Assmann, Thorsten; Schuldt, Andreas; Scholten, Thomas

    2017-04-01

    In subtropical parts of China, high rainfall intensities cause continuous soil losses and thereby provoke severe harms to ecosystems. In woodlands, it is not the tree canopy, but mostly an intact forest floor that provides protection from soil erosion. Although the protective role of leaf litter covers against soil losses is known for a long time, little research has been conducted on the processes involved. For instance, the role of different leaf species and leaf species diversity has been widely disregarded. Furthermore, the impact of soil meso- and macrofauna within the litter layer on soil losses remains unclear. To investigate how leaf litter species and diversity as well as soil meso- and macrofauna affect sediment discharge in a subtropical forest ecosystem, a field experiment was carried out in Xingangshan, Jiangxi Province, PR China (BEF China). A full-factorial random design with 96 micro-scale runoff plots and seven domestic leaf species in three diversity levels and a bare ground feature were established. Erosion was initiated with a rainfall simulator. This study confirms that leaf litter cover generally protects forest soils from water erosion (-82 % sediment discharge on leaf covered plots compared to bare plots) and this protection is gradually removed as the litter layer decomposes. Different leaf species showed variable impacts on sediment discharge and thus erosion control. This effect can be related to different leaf habitus, leaf decomposition rates and food preferences of litter decomposing meso- and macrofauna. In our experiment, runoff plots with leaf litter from Machilus thunbergii in monoculture showed the highest sediment discharge (68.0 g m-2), whereas plots with Cyclobalanopsis glauca in monoculture showed the smallest rates (7.9 g m-2). At the same time, neither leaf species diversity, nor functional diversity showed any significant influence, only a negative trend could be observed. Nevertheless, the protective effect of the leaf

  1. Polder effects on sediment-to-soil conversion: water table, residual available water capacity, and salt stress interdependence.

    Science.gov (United States)

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  2. Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity, and Salt Stress Interdependence

    Directory of Open Access Journals (Sweden)

    Raymond Tojo Radimy

    2013-01-01

    Full Text Available The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  3. Mercury affects the distribution of culturable species of Pseudomonas in soil

    DEFF Research Database (Denmark)

    Holtze, Maria Sommer; Nielsen, Preben; Ekelund, Flemming

    2006-01-01

    Pseudomonas bacteria isolated during 52 days on Gould's S1 agar from soil spiked with 0, 3.5 and 15 mg Hg(II) kg soil(-1) were characterised to reveal whether mercury affected them differently. Isolates from the treatments with 0 and 15 mg Hg kg(-1) were characterised using FT-IR characterisation...... was almost exclusively restricted to P. frederiksbergensis and P. migulae groups. We conclude that Hg caused a shift in the dominating species of culturable Pseudomonas....

  4. Soil composition and nutritional status of apple as affected by long-term application of gypsum

    Directory of Open Access Journals (Sweden)

    Gilberto Nava

    2012-02-01

    Full Text Available Gypsum does not affect the soil negative charges and maintains sulfate in the soil solution, making it one of the cheapest products to increase Ca activity in soil solution, especially in the deeper soil layers. Higher Ca levels in the soil solution can increase the uptake of this nutrient by apple trees, reducing the risk of physiological disorders caused by Ca deficiency. This study assessed the effect of long-term gypsum application on some soil properties and on the chemical composition of leaves and fruits of an apple cultivar susceptible to fruit disorders associated with low Ca. The experiment was conducted in São Joaquim, in the South of Brazil, from 2001 to 2009. Gypsum rates of 0, 1.0, 2.0 and 3.0 t ha-1 were annually broadcast over the soil surface, without incorporation, in an apple orchard with cultivar ´Catarina´, planted in 1997. Gypsum application over eight consecutive years had no effect on soil exchangeable K and Al to a depth of 80 cm, but increased exchangeable Ca in the sampled layers (0-10, 10-20, 40-60 and 60-80 cm, while exchangeable Mg decreased only in the surface layer (0-20 cm. Gypsum did not affect the concentration of any nutrient in the fruits, including Ca. The same was verified in the leaves, except for Mg which decreased with increased gypsum rate. Despite increasing the availability of Ca in the soil profile to a depth of 80 cm, gypsum was not effective to increase the Ca content in leaves and fruits of an apple cultivar susceptible to Ca deficiency grown in an appropriately limed soil.

  5. What's in our soil?: how soil pollution affects earthworm movement patterns

    Science.gov (United States)

    Whitmore, T.

    2017-12-01

    Earthworms are an important member of many ecosystems because they contribute to soil quality and are a major food source for many organisms. In this project, we assessed the impacts soil pollution has on the burrowing patterns of earthworms. In each experiment, we introduced 10 earthworms to a unique pollutant and let them equilibrate for up to a week. The results indicated that earthworms migrate towards the introduced liquid regardless of its impact on them. The liquid pollutants introduced seemed to attract the earthworms. This can have harmful consequences, especially in the case of the motor oil, which killed multiple worms.

  6. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    Science.gov (United States)

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  7. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil

    Science.gov (United States)

    Bernard, Laetitia; Chapuis-Lardy, Lydie; Razafimbelo, Tantely; Razafindrakoto, Malalatiana; Pablo, Anne-Laure; Legname, Elvire; Poulain, Julie; Brüls, Thomas; O'Donohue, Michael; Brauman, Alain; Chotte, Jean-Luc; Blanchart, Eric

    2012-01-01

    Priming effect (PE) is defined as a stimulation of the mineralization of soil organic matter (SOM) following a supply of fresh organic matter. This process can have important consequences on the fate of SOM and on the management of residues in agricultural soils, especially in tropical regions where soil fertility is essentially based on the management of organic matter. Earthworms are ecosystem engineers known to affect the dynamics of SOM. Endogeic earthworms ingest large amounts of soil and assimilate a part of organic matter it contains. During gut transit, microorganisms are transported to new substrates and their activity is stimulated by (i) the production of readily assimilable organic matter (mucus) and (ii) the possible presence of fresh organic residues in the ingested soil. The objective of our study was to see (i) whether earthworms impact the PE intensity when a fresh residue is added to a tropical soil and (ii) whether this impact is linked to a stimulation/inhibition of bacterial taxa, and which taxa are affected. A tropical soil from Madagascar was incubated in the laboratory, with a 13C wheat straw residue, in the presence or absence of a peregrine endogeic tropical earthworm, Pontoscolex corethrurus. Emissions of 12CO2 and 13CO2 were followed during 16 days. The coupling between DNA-SIP (stable isotope probing) and pyrosequencing showed that stimulation of both the mineralization of wheat residues and the PE can be linked to the stimulation of several groups especially belonging to the Bacteroidetes phylum. PMID:21753801

  8. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress.

    Science.gov (United States)

    Torabian, Shahram; Farhangi-Abriz, Salar; Rathjen, Judith

    2018-05-31

    This research was conducted to evaluate effects of biochar (50 and 100 g kg -1 soil) and lignite (50 and 100 g kg -1 soil) treatments on H + -ATPase and H + -PPase activity of root tonoplast, nutrient content, and performance of mung bean under salt stress. High saline conditions increased H + -ATPase and H + -PPase activities in root tonoplast, sodium (Na) content, reactive oxygen species (H 2 O 2 and O 2 - ) generation, relative electrolyte leakage (REL) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) activity in root and leaf, but decreased relative water content (RWC), chlorophyll content index, leaf area, potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn) and iron (Fe) content of plant tissues, root and shoot dry weight of mung bean. Lignite and biochar treatments decreased the H + -ATPase and H + -PPase activities of root tonoplast under salt stress. Moreover, these treatments increased the cation exchange capacity of soil and nutrient values in plant tissues. Biochar and lignite diminished the generation of reactive oxygen species and DPPH activity in root and leaf cells, and these superior effects improved chlorophyll content index, leaf area and growth of mung bean under both conditions. In general, the results of this study demonstrated that biochar and lignite decreased the entry of Na ion into the cells, enriched plant cells with nutrients, and consequently improved mung bean performance under salt toxicity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    Science.gov (United States)

    Moody, John A.; Kinner, David A.; Úbeda, Xavier

    2009-12-01

    SummaryHeat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, K f and (2) sorptivity, S( θ i), as a function of initial soil moisture content, θ i, ranging from extremely dry conditions ( θ i ash, reference soils, soils unaffected by fire, and fire-affected soils. Each has a different degrees of water repellency that influences K f and S( θ i). Values of K f ranged from 4.5 × 10 -3 to 53 × 10 -3 cm s -1 for ash; from 0.93 × 10 -3 to 130 × 10 -3 cm s -1 for reference soils; and from 0.86 × 10 -3 to 3.0 × 10 -3 cm s -1, for soil unaffected by fire, which had the lowest values of K f. Measurements indicated that S( θ i) could be represented by an empirical non-linear function of θ i with a sorptivity maximum of 0.18-0.20 cm s -0.5, between 0.03 and 0.08 cm 3 cm -3. This functional form differs from the monotonically decreasing non-linear functions often used to represent S( θ i) for rainfall-runoff modeling. The sorptivity maximum may represent the combined effects of gravity, capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of K f and S( θ i) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly, they indicate how existing rainfall-runoff models can be modified to accommodate a possible two-layer system in extremely dry conditions. These

  10. Soil hydraulic properties of topsoil along two elevation transects affected by soil erosion

    Czech Academy of Sciences Publication Activity Database

    Nikodem, A.; Kodešová, R.; Jakšík, O.; Jirků, V.; Fér, M.; Klement, A.; Žigová, Anna

    2013-01-01

    Roč. 15, - (2013) ISSN 1607-7962. [EGU General Assembly /10./. 07.04.2013-12.04.2013, Vienna] Institutional support: RVO:67985831 Keywords : topsoil * hydraulic properties * erosion processes Subject RIV: DF - Soil Science http://meetingorganizer.copernicus.org/EGU2013/EGU2013-7924.pdf

  11. Soil amendment affects Cd uptake by wheat — are we underestimating the risks from chloride inputs?

    International Nuclear Information System (INIS)

    Dahlin, A. Sigrun; Eriksson, Jan; Campbell, Colin D.; Öborn, Ingrid

    2016-01-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl − inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. Modified from Wivstad et al. (2009) - Highlights: • High-Cl by-products used as soil amendments mobilize soil Cd. • Wheat grain Cd levels were found that could result in exceeding dietary intake limits. • Quality and risk assessment of by-products should include Cl effects.

  12. Soil amendment affects Cd uptake by wheat — are we underestimating the risks from chloride inputs?

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, A. Sigrun, E-mail: Sigrun.Dahlin@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala (Sweden); Eriksson, Jan, E-mail: Jan.O.Eriksson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala (Sweden); Campbell, Colin D., E-mail: Colin.Campbell@hutton.ac.uk [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala (Sweden); The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland (United Kingdom); Öborn, Ingrid, E-mail: Ingrid.Oborn@slu.se [Department of Crop Production Ecology, Swedish University of Agricultural Sciences, P.O. Box 7043, SE-750 07 Uppsala (Sweden); World Agroforestry Centre (ICRAF), UN Avenue, P.O. Box 30677-00100, Nairobi (Kenya)

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl{sup −} inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. Modified from Wivstad et al. (2009) - Highlights: • High-Cl by-products used as soil amendments mobilize soil Cd. • Wheat grain Cd levels were found that could result in exceeding dietary intake limits. • Quality and risk assessment of by-products should include Cl effects.

  13. Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils

    International Nuclear Information System (INIS)

    Srinivasan, Prakash; Sarmah, Ajit K.; Manley-Harris, Merilyn

    2013-01-01

    We investigated the effect of soil pH, organic carbon, ionic strength and steroid hormones on the sorption of sulfamethoxazole (SMO) and sulfachloropyridazine (SCP) in three pastoral soils of New Zealand. A model linking sorbate speciation with species-specific sorption coefficients describing the pH dependence of the apparent sorption coefficients was used to derive the fraction of each species of SMO. All soils displayed a decrease in sorption when pH was increased, with SMO exhibiting the highest sorption at pH 2. The cationic form of SMO appeared to sorb more close to pH ≥ pK a1 and, when pH ≥ pK a2 (6.5, 7.5 and 8.5) the anionic species seems to dominate, however, its sorption affinity to all soils was low. SMO sorption was affected by ionic strengths and organic carbon content, while the presence of hormones showed only a subtle decrease in SCP sorption in a selected model pasture soil. -- Highlights: •The effect of OC content on sulfamethoxazole sorption is nullified by the pH effect. •Steroid hormone has a subtle influence on the sulfachloropyridazine sorption in pastoral soil. •Increased hormone concentrations decrease sulfachloropyridazine sorption in soils. -- Sorption affinity of SMO and SCP are strongly governed by multitude of factors, and variations in these factors can be significant when manure and fertilisers are added to soil

  14. Metagenomic Profiling of Soil Microbes to Mine Salt Stress Tolerance Genes

    Directory of Open Access Journals (Sweden)

    Vasim Ahmed

    2018-02-01

    Full Text Available Osmotolerance is one of the critical factors for successful survival and colonization of microbes in saline environments. Nonetheless, information about these osmotolerance mechanisms is still inadequate. Exploration of the saline soil microbiome for its community structure and novel genetic elements is likely to provide information on the mechanisms involved in osmoadaptation. The present study explores the saline soil microbiome for its native structure and novel genetic elements involved in osmoadaptation. 16S rRNA gene sequence analysis has indicated the dominance of halophilic/halotolerant phylotypes affiliated to Proteobacteria, Actinobacteria, Gemmatimonadetes, Bacteroidetes, Firmicutes, and Acidobacteria. A functional metagenomics approach led to the identification of osmotolerant clones SSR1, SSR4, SSR6, SSR2 harboring BCAA_ABCtp, GSDH, STK_Pknb, and duf3445 genes. Furthermore, transposon mutagenesis, genetic, physiological and functional studies in close association has confirmed the role of these genes in osmotolerance. Enhancement in host osmotolerance possibly though the cytosolic accumulation of amino acids, reducing equivalents and osmolytes involving BCAA-ABCtp, GSDH, and STKc_PknB. Decoding of the genetic elements prevalent within these microbes can be exploited either as such for ameliorating soils or their genetically modified forms can assist crops to resist and survive in saline environment.

  15. On the structural factors of soil humic matter related to soil water repellence in fire-affected soils

    Science.gov (United States)

    Almendros, G.; González-Vila, F. J.; González-Pérez, J. A.; Knicker, H.; De la Rosa, J. M.; Dettweiler, C.; Hernández, Z.

    2012-04-01

    In order to elucidate the impact of forest fires on physical and chemical properties of the soils as well as on the chemical composition of the soil organic matter, samples from two Mediterranean soils with contrasted characteristics and vegetation (O horizon, Lithic Leptosols under Quercus ilex and Pinus pinaster) and one agricultural soil (Ap horizon, Luvisol) were heated at 350 °C in laboratory conditions for three successive steps up to 600 s. The C- and N-depletion in the course of the heating showed small changes up to an oxidation time of 300 s. On the other side, and after 600 s, considerable C-losses (between 21% in the Luvisol and 50% in the Leptosols) were observed. The relatively low N-depletion ca. 4% (Luvisol) and 21% (Leptosol under pine) suggested preferential loss of C and the subsequent relative enrichment of nitrogen. Paralleling the progressive depletion of organic matter, the Leptosols showed a significant increase of both pH and electrical conductivity. The former change paralleled the rapid loss of carboxyl groups, whereas the latter point to the relative enrichment of ash with a bearing on the concentration of inorganic ions, which could be considered a positive effect for the post-fire vegetation. The quantitative and qualitative analyses by solid-state 13C NMR spectra of the humic fractions in the samples subjected to successive heating times indicate significant concentration of aromatic structures newly-formed in the course of the dehydration and cyclization of carbohydrates (accumulation of black carbon-type polycyclic aromatic structures), and probably lipids and peptides. The early decarboxylation, in addition to the depletion of O-alkyl hydrophilic constituents and further accumulation of secondary aromatic structures resulted in the dramatic increase in the soil water drop penetration time. It was confirmed that this enhancement of the soil hydrophobicity is not related to an increased concentration of soil free lipid, but is

  16. Adsorption of lambda-cyhalothrin and cypermethrin on two typical Chinese soils as affected by copper.

    Science.gov (United States)

    Liu, Jun; Lü, Xiaomeng; Xie, Jimin; Chu, Yafei; Sun, Cheng; Wang, Qian

    2009-06-01

    by the difference between the initial and equilibrium concentrations in solution corrected by the blank adsorption measurement. Without the addition of Cu, the adsorption of lambda-CHT and CPM on Black soil is greater than that on Red soil, while the adsorption of lambda-CHT on both soils is significantly stronger than that of CPM. As the soil Cu concentration increased from 19 (or 18; background) to 1,600 mg.kg(-1), the adsorption coefficient (K (d)) of lambda-CHT decreased from 12.2 to 5.9 L.kg(-1) for Red soil, and from 26.1 to 16.8 L.kg(-1) for Black soil, whereas the CPM adsorption coefficient in both soils decreased nearly by 100% (K (d) decreased from 9.4 to 0.2 L.kg(-1) for Red soil and from 16.2 to 0.5 L.kg(-1) for Black soil). Pys adsorption is a surface phenomenon which depends on the surface area and the organic matter content. Thus, the Black soil, having higher organic matter and greater surface area than that of the Red soil, show greater adsorption affinity to lambda-CHT and CPM. In our study, the different adsorption affinity of the two Pys was obtained, which was probably attributed to differences with respect to their physical-chemical properties. Further comparison upon the two Pys was conducted. The point charges of halogen atoms in the lambda-CHT and CPM were calculated, the differences of which probably lead to the fact that lambda-CHT has a stronger binding capacity to soils than CPM. Also, FTIR spectra show that competitive adsorption occurs between CPM and Cu for the same adsorption sites, which is responsible for the obtained suppression of CPM adsorption affected by Cu. Lambda-cyhalothrin shows a significantly stronger adsorption than cypermethrin on both soils. This phenomenon may be due to several reasons: (1) lambda-CHT has lower solubility and a higher octanol-water partition coefficient value than CPM; (2) lambda-CHT consists of specific isomers, whereas CPM is mixtures of eight different isomers; (3) the chlorine and fluorine atoms

  17. [Effects of thinning on Calligonum arborescens growth and soil water-salt distribution in Tarim Desert Highway shelterbelt, Xinjiang of Northwest China].

    Science.gov (United States)

    Zhang, Jian-Guo; Li, Ying-Gang; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu

    2012-09-01

    In order to understand the effects of thinning on the growth of Calligonum arborescens and the soil water-salt distribution in Tarim Desert Highway shelterbelt, a thinning experiment was conducted on an aged and declined C. arborescens woodland in a demonstration section of the shelterbelt, with the growth of C. arborescens and the soil water-salt distribution monitored. Thinning had no effects on the phenophase of C. arborescens, but after thinning, the growth of the current year plant height, crown width, ground diameter, and new branch length of reserved trees was larger than that of the control, and the increment was in the order of planting space 2 mx 1 m > 1 m x 1 m > the control, with significant differences among the treatments. The assimilation branch surface area in treatments 2 mx 1 m and 1 m x 1 m were 5.97 m2 and 5.22 m2 per plant, respectively, being significantly larger than the control (3.1 m2 per plant). The soil moisture content in 0-160 cm layer was significantly higher in treatments 2 m x 1 m and 1 mx 1 m than in the control, and increased obviously with thinning intensity. The soil salt content was in the order of control > planting space 1 m x 1 m > 2 m x 1 m, and the differences among the treatments were significant. It was suggested that the best reserved plant density after thinning was planting space 2 m x 1 m.

  18. Monitoring of soil chemical characteristics with time as affected by irrigation with saline water

    International Nuclear Information System (INIS)

    Mostafa, A. Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    A lysimeter study was conducted to investigate the effect of irrigation with saline water on soil chemical characteristics at two depth (0-20) and (20-40 cm).Both fertilized (60, 120 KgN/ha) and unfertilized (0) soil were simulated in a total of 84 lysimeter. Data indicated that the electric conductivity (EC) values tended to increase with time intervals also EC-values as affected by soil depth after 105 days were high in 20 cm depth as compared to 40 cm depth. Chloride concentration did not reflect great variations as affected by time of nitrogen application where the values were nearly closed to each other. At the end of the experiment, much of Cl - content was occurred in the second layer of soil depth (20-40) as compared to depth of 0-20 cm. This was the case under all salinity levels. The irrigation with fresh water did not reflect any significant different in EC values between 120 KgN/ha , 60 KgN/ha or soil depth, however, it tend to increase with increasing water salinity levels. There were no much differences between the nitrogen application time (T1, T2 and T3). In contrast with Cl - , sodium was remained in the upper layer of 0-20 cm soil depth but still increase with increasing water salinity levels.

  19. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    Science.gov (United States)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  20. Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain).

    Science.gov (United States)

    Gomez-Gonzalez, M A; Garcia-Guinea, J; Laborda, F; Garrido, F

    2015-12-01

    Thallium (Tl) and its compounds are toxic to biota even at low concentrations but little is known about Tl concentration and speciation in soils. An understanding of the source, mobility, and dispersion of Tl is necessary to evaluate the environmental impact of Tl pollution cases. In this paper, we examine the Tl source and dispersion in two areas affected by abandoned mine facilities whose residues remain dumped on-site affecting to soils and sediments of natural water courses near Madrid city (Spain). Total Tl contents and partitioning in soil solid phases as determined by means of a sequential extraction procedure were also examined in soils along the riverbeds of an ephemeral and a permanent streams collecting water runoff and drainage from the mines wastes. Lastly, electronic microscopy and cathodoluminescence probe are used as a suitable technique for Tl elemental detection on thallium-bearing phases. Tl was found mainly bound to quartz and alumino-phyllosilicates in both rocks and examined soils. Besides, Tl was also frequently found associated to organic particles and diatom frustules in all samples from both mine scenarios. These biogenic silicates may regulate the transfer of Tl into the soil-water system. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. [Characteristics of 'salt island' and 'fertile island' for Tamarix chinensis and soil carbon, nitrogen and phosphorus ecological stoichiometry in saline-alkali land].

    Science.gov (United States)

    Zhang, Li-hua; Chen, Xiao-bing

    2015-03-01

    To clarify the nutrient characteristics of 'salt island' and 'fertile island' effects in saline-alkali soil, the native Tamarix chinensis of the Yellow River Delta (YRD) was selected to measure its soil pH, electrical conductivity (EC), organic carbon (SOC), total nitrogen (N), total phosphorus (P) and their stoichiometry characteristics at different soil depths. The results showed that soil pH and EC increased with the increasing soil depth. Soil EC and P in the 0-20 cm layer decreased and increased from canopied area to interspace, respectively. SOC, N, N/P and C/P in the 20-40 cm soil layer decreased, and C/N increased from the shrub center to interspace. SOC and N contents between island and interspace both decreased but P content decreased firstly and then increased with the increasing soil depth. Soil pH correlated positively with EC. In addition, pH and EC correlated negatively with C, N, P contents and their ecological stoichiometry.

  2. Genotype, soil type, and locale effects on reciprocal transplant vigor, endophyte growth, and microbial functional diversity of a narrow sagebrush hybrid zone in Salt Creek Canyon, Utah

    Science.gov (United States)

    Miglia, K.J.; McArthur, E.D.; Redman, R.S.; Rodriguez, R.J.; Zak, J.C.; Freeman, D.C.

    2007-01-01

    When addressing the nature of ecological adaptation and environmental factors limiting population ranges and contributing to speciation, it is important to consider not only the plant's genotype and its response to the environment, but also any close interactions that it has with other organisms, specifically, symbiotic microorganisms. To investigate this, soils and seedlings were reciprocally transplanted into common gardens of the big sagebrush hybrid zone in Salt Creek Canyon, Utah, to determine location and edaphic effects on the fitness of parental and hybrid plants. Endophytic symbionts and functional microbial diversity of indigenous and transplanted soils and sagebrush plants were also examined. Strong selection occurred against the parental genotypes in the middle hybrid zone garden in middle hybrid zone soil; F1 hybrids had the highest fitness under these conditions. Neither of the parental genotypes had superior fitness in their indigenous soils and habitats; rather F1 hybrids with the nonindigenous maternal parent were superiorly fit. Significant garden-by-soil type interactions indicate adaptation of both plant and soil microorganisms to their indigenous soils and habitats, most notably in the middle hybrid zone garden in middle hybrid zone soil. Contrasting performances of F1 hybrids suggest asymmetrical gene flow with mountain, rather than basin, big sagebrush acting as the maternal parent. We showed that the microbial community impacted the performance of parental and hybrid plants in different soils, likely limiting the ranges of the different genotypes.

  3. Assessment of radionuclides in the drone affected soils of North Waziristan Agency and Orakzai Agency (abstract)

    International Nuclear Information System (INIS)

    Tabinda, A.B.; Shafi, A.

    2011-01-01

    When the drone affected soils of North Waziristan and Orakzai Agency were exposed to high resolution gamma ray spectrometry technique to determine the activity concentration levels the results were quite alarming. The results revealed that the mean concentration for the activity of the natural radionuclides including /sup 226/Ra, /sup 232/Th, and /sup 40/K were 42.37 +- 1.85, 47.18 +- 3.45 and 471.28 +- 23.77 Bq kg/sup -1/ respectively. On the other hand the anthropogenic activities were adding radioactive Cs 137 to soils of drone affected areas of North Waziristan and Orakzai Agency with the mean activity concentration of 5.95 +- 0.25 Bq kg/sup -1/. The maximum activity concentration of /sup 137/Cs was in North Waziristan affected soil with the value of 15.15 +- 0.39. /sup 137/Cs is an anthropogenic radionuclide produced as a fission product. However the presence of /sup 137/Cs in all the soil samples reveals the anthropogenic changes in the soils. The exact source of the introduction of /sup 137/Cs is assumed to be drone bombardment. /sup 137/Cs has radioactive half life of 30.17 years and it decays by emitting gamma and beta radiations. These gamma radiations can create havoc in our environment. (author)

  4. Radioactive influence of some phosphogypsum piles located at the SW Spain in their surrounding soils and salt-marshes

    Science.gov (United States)

    Bolivar, J. P.; Mosqueda, F.; Vaca, F.; Garcia-Tenorio, R.; Martinez-Sanchez, M. J.; Perez-Sirvent, C.; Martinez-Lopez, S.

    2012-04-01

    In the SW of Spain, just in the confluence of the mouths of the Tinto and Odiel River and in the vicinity of Huelva town, there is a big industrial complex which includes between others an industry devoted during more than 40 years to the production of phosphoric acid, by treating sedimentary phosphate rock by the so-called "wet acid method". As a by-product of the mentioned process it have been produced historically huge amounts of a compound called phosphogypsum, which composition is mostly di-hydrate calcium sulphate containing some of the impurities of heavy metals and natural radionuclides originally present in the raw material. Due to the lack of market for this by-product, it has been mostly piled over some salt-marshes located in the vicinity of the industry, on the bank of the Tinto River. About 100 million tons of phosphogypsum have been piled in an area covering more than 1000 hectares, constituting a clear environmental and radiological anomaly in the zone. The phosphogypsum piles set do not conform obviously a close system. They are interacting with the nearby environment mostly by leaching waters releases from the waters accumulated in them either for its previous use in transporting in suspension the PG from the factory or by rainfall. These waters leaks contain in solution enhanced amounts of heavy metals and radionuclides that can provoke the chemical and radioactive contamination in surroundings soil and salt-marshes areas. In this communication the radioactive influence by the phosphogypsum piles in the surrounding terrestrial environment is evaluated. This contamination is mostly due to radionuclides belonging to the uranium series, which are present originally in the raw material treated in the industry, and afterwards in the generated phosphogypsum, in enhanced amounts in relation to typical soils. In addition, the different dynamics and behavior of different radionuclides will be discussed and analyzed. The gained information in this study

  5. To Identify the Important Soil Properties Affecting Dinoseb Adsorption with Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Yiqing Guan

    2013-01-01

    Full Text Available Investigating the influences of soil characteristic factors on dinoseb adsorption parameter with different statistical methods would be valuable to explicitly figure out the extent of these influences. The correlation coefficients and the direct, indirect effects of soil characteristic factors on dinoseb adsorption parameter were analyzed through bivariate correlation analysis, and path analysis. With stepwise regression analysis the factors which had little influence on the adsorption parameter were excluded. Results indicate that pH and CEC had moderate relationship and lower direct effect on dinoseb adsorption parameter due to the multicollinearity with other soil factors, and organic carbon and clay contents were found to be the most significant soil factors which affect the dinoseb adsorption process. A regression is thereby set up to explore the relationship between the dinoseb adsorption parameter and the two soil factors: the soil organic carbon and clay contents. A 92% of the variation of dinoseb sorption coefficient could be attributed to the variation of the soil organic carbon and clay contents.

  6. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina?

    Science.gov (United States)

    Araujo, Patricia I; Yahdjian, Laura; Austin, Amy T

    2012-01-01

    Surface litter decomposition in arid and semiarid ecosystems is often faster than predicted by climatic parameters such as annual precipitation or evapotranspiration, or based on standard indices of litter quality such as lignin or nitrogen concentrations. Abiotic photodegradation has been demonstrated to be an important factor controlling aboveground litter decomposition in aridland ecosystems, but soil fauna, particularly macrofauna such as termites and ants, have also been identified as key players affecting litter mass loss in warm deserts. Our objective was to quantify the importance of soil organisms on surface litter decomposition in the Patagonian steppe in the absence of photodegradative effects, to establish the relative importance of soil organisms on rates of mass loss and nitrogen release. We estimated the relative contribution of soil fauna and microbes to litter decomposition of a dominant grass using litterboxes with variable mesh sizes that excluded groups of soil fauna based on size class (10, 2, and 0.01 mm), which were placed beneath shrub canopies. We also employed chemical repellents (naphthalene and fungicide). The exclusion of macro- and mesofauna had no effect on litter mass loss over 3 years (P = 0.36), as litter decomposition was similar in all soil fauna exclusions and naphthalene-treated litter. In contrast, reduction of fungal activity significantly inhibited litter decomposition (P soil fauna have been mentioned as a key control of litter decomposition in warm deserts, biogeographic legacies and temperature limitation may constrain the importance of these organisms in temperate aridlands, particularly in the southern hemisphere.

  7. Forest Structure Affects Soil Mercury Losses in the Presence and Absence of Wildfire.

    Science.gov (United States)

    Homann, Peter S; Darbyshire, Robyn L; Bormann, Bernard T; Morrissette, Brett A

    2015-11-03

    Soil is an important, dynamic component of regional and global mercury (Hg) cycles. This study evaluated how changes in forest soil Hg masses caused by atmospheric deposition and wildfire are affected by forest structure. Pre and postfire soil Hg measurements were made over two decades on replicate experimental units of three prefire forest structures (mature unthinned, mature thinned, clear-cut) in Douglas-fir dominated forest of southwestern Oregon. In the absence of wildfire, O-horizon Hg decreased by 60% during the 14 years after clearcutting, possibly the result of decreased atmospheric deposition due to the smaller-stature vegetative canopy; in contrast, no change was observed in mature unthinned and thinned forest. Wildfire decreased O-horizon Hg by >88% across all forest structures and decreased mineral-soil (0 to 66 mm depth) Hg by 50% in thinned forest and clear-cut. The wildfire-associated soil Hg loss was positively related to the amount of surface fine wood that burned during the fire, the proportion of area that burned at >700 °C, fire severity as indicated by tree mortality, and soil C loss. Loss of soil Hg due to the 200,000 ha wildfire was more than four times the annual atmospheric Hg emissions from human activities in Oregon.

  8. Carbon fractions and soil fertility affected by tillage and sugarcane residue management an Xanthic Udult

    Directory of Open Access Journals (Sweden)

    Iara Maria Lopes

    2017-10-01

    Full Text Available The gradual change in management practices in sugarcane (Saccharum spp. production from burning straw to a green harvesting system, as well as the use of minimum soil tillage during field renovation, may affect soil fertility and soil organic matter (SOM contents. The objectives of this work were to investigate the influence of sugar cane production systems on: (1 soil fertility parameters; (2 on physical carbon fractions; (3 and on humic substance fractions, in a long-term experiment, comparing two soil tillage and two residue management systems an Xanthic Udult, in the coastal tableland region of Espírito Santo State, Brazil. The treatments consisted of plots (conventional tillage (CT or minimum tillage (MT and subplots (residue burned or unburned at harvesting, with five replicates The highest values of Ca2+ + Mg2+ and total organic carbon (TOC were observed in the MT system in all soil layers, while high values of K+ were observed in the 0.1-0.2 m layer. The CT associated with the burned residue management negatively influenced the TOC values, especially in the 0.1-0.2 and 0.2-0.4 m layers. The carbon in the humin fraction and organic matter associated with minerals were significantly different among the tillage systems; the MT showed higher values than the CT. However, there were no significant differences between the sugarcane residue management treatments. Overall, fractioning the SOM allowed for a better understanding of tillage and residue management systems effects on the soil properties.

  9. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    Science.gov (United States)

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  10. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    Directory of Open Access Journals (Sweden)

    Tarik Aanniz

    2015-06-01

    Full Text Available The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240 thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5% represented by B. licheniformis (119, B. aerius (44, B. sonorensis (33, B. subtilis (subsp. spizizenii (2 and subsp. inaquosurum (6, B. amyloliquefaciens (subsp. amyloliquefaciens (4 and subsp. plantarum (4, B. tequilensis (3, B. pumilus (3 and Bacillus sp. (19. Only six isolates (2.5% belonged to the genus Aeribacillus represented by A. pallidus (4 and Aeribacillus sp. (2. In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  11. Vegetation change in a man-made salt marsh affected by a reduction in both grazing and drainage

    NARCIS (Netherlands)

    Esselink, Peter; Fresco, LFM; Dijkema, KS

    In order to restore natural salt marsh in a 460-ha nature reserve established in man-made salt marsh in the Dollard estuary, The Netherlands, the artificial drainage system was neglected and cattle grazing reduced. Vegetation changes were traced through two vegetation surveys and monitoring of

  12. Methane transport and emissions from soil as affected by water table and vascular plants

    OpenAIRE

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-01-01

    Background: The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here...

  13. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  14. Determining the Most Important Soil Properties Affecting the Yield of Saffron in the Ghayenat Area

    Directory of Open Access Journals (Sweden)

    amir ranjbar

    2016-02-01

    Full Text Available Introduction: Saffron is one of the most important economic plants in the Khorasan province. Awareness of soil quality in agricultural lands is essential for the best management of lands and for obtaining maximum economic benefit. In general, plant growth is a function of environmental factors especially chemical and physical properties of soil (20. It has been demonstrated that there was a positive and high correlation between soil organic matter and saffron yield. Increasing the yield of saffron due to organic matter is probably due to soil nutrient, especially phosphorous and nitrogen and also improvement of soil physical quality (6, 28, 29. The yield of saffron in soils with high nitrogen as a result of vegetative growth is high (8. Shahandeh (6 found that most of the variation of saffron yield depends on soil properties. Due to the economic importance of saffron and the role of soil properties on saffron yield, this research was conducted to find the relationship between saffron yield and some soil physical and chemical properties, and to determine the contribution of soil properties that have the greatest impact on saffron yield in the Ghayenat area. Materials and Methods: This research was performed in 30 saffron fields (30 soil samples of the Ghayenat area (longitude 59° 10΄ 10.37˝ - 59° 11΄ 38.41˝ and latitude 33° 43΄ 35.08˝ - 33΄ 44΄ 02.78˝, which is located in the Khrasan province of Iran. In this research, 21 soil properties were regarded as the total data set (TDS. Then the principal component analysis (PCA was used to determine the most important soil properties affecting saffron yield as a minimum data set (MDS and the stepwise regression to estimate saffron yield. To estimate the yield of saffron in stepwise regression method, saffron yield was considered as a dependent variable and soil physical and chemical properties were considered to be independent variables. Results and Discussion: According to the PCA method

  15. Soil and surface layer type affect non-rainfall water inputs

    Science.gov (United States)

    Agam, Nurit; Berliner, Pedro; Jiang, Anxia

    2017-04-01

    Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted

  16. Land-use systems affect Archaeal community structure and functional diversity in western Amazon soils

    Directory of Open Access Journals (Sweden)

    Acácio Aparecido Navarrete

    2011-10-01

    Full Text Available The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure and ammonia-oxidizing Archaea (richness and community composition were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009 from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old, agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA of Archaea (306 sequences, the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366, followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715, crops (H' = 1.4613; D = 0.3309 and secondary forest (H' = 0.8633; D = 0.5405. All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 % previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.

  17. Neutron Gauge Calibration Curve as Affected by Chloride Concentration and Bulk Density of Loam Soil

    International Nuclear Information System (INIS)

    AL-Hasani, A.A.; Fahad, A.A.; Shihab, R.M.

    2010-01-01

    chloride concentration and bulk density are considered among important factors affecting calibration curve of neutron gauge in the soil.The aim of this study was to investigate the effect of chloride concentration and bulk density of a loam soil on neutron gauge calibration curve.Sufficient amount of loam soil was air dried screened through a 2 mm sieve,and divided into three equal portions.Sodium chloride of 2.5 and 6.6g kg'-1 soil was added to the first and second portions,respectively.The third portion was left as a control.The soil then moistened and mixed well to make volumetric water content within the range of 0.01 to 0.24 cm 3 cm - 3. The moist soil was packed into an iron drum 0.80 m diameter and 1.00 m height to obtain bulk densities of 1.10 and 1.30 to 1.60 Mg m - 3 for uncompacted soil,respectively.Access tube 0.05 m inner diameter was installed in the center of the drum.Three readings from CPN 503 neutron gauge were taken at each 0.15,0.30, 0.45,and 0.75 m depth.Results indicated that the count (counts/standard count) for an aqueous solution decreased with the increase in chloride concentration.Similarly, the slope of the linear calibration curves of the investigated soil decreased with the increase in chloride concentration.Shifting of the curves was 9 to 10%for the uncompacted soil, whereas it was 12 to 14 % for the compacted of low and high concentration of chloride, respectively . Results of changing bulk density always reduced the slope value as compared with the uncorrected count ratio.

  18. Biogeochemical weathering of serpentinites: An examination of incipient dissolution affecting serpentine soil formation

    International Nuclear Information System (INIS)

    Baumeister, Julie L.; Hausrath, Elisabeth M.; Olsen, Amanda A.; Tschauner, Oliver; Adcock, Christopher T.; Metcalf, Rodney V.

    2015-01-01

    Highlights: • Dissolution of primary minerals is important to porosity generation in serpentinites. • Mineral weathering extent in serpentinites follows the order Fe > Mg > Al rich minerals. • Fe-oxidizing bacteria may mediate Fe-rich primary and serpentine mineral alteration. • Serpentinite weathering is strongly impacted by degree of serpentinization. - Abstract: Serpentinite rocks, high in Mg and trace elements including Ni, Cr, Cd, Co, Cu, and Mn and low in nutrients such as Ca, K, and P, form serpentine soils with similar chemical properties resulting in chemically extreme environments for the biota that grow upon them. The impact of parent material on soil characteristics is most important in young soils, and therefore the incipient weathering of serpentinite rock likely has a strong effect on the development of serpentine soils and ecosystems. Additionally, porosity generation is a crucial process in converting rock into a soil that can support vegetation. Here, the important factors affecting the incipient weathering of serpentinite rock are examined at two sites in the Klamath Mountains, California. Serpentinite-derived soils and serpentinite rock cores were collected in depth profiles from each sampling location. Mineral dissolution in weathered serpentinite samples, determined by scanning electron microscopy, energy dispersive spectrometry, electron microprobe analyses, and synchrotron microXRD, is consistent with the order, from most weathered to least weathered: Fe-rich pyroxene > antigorite > Mg-rich lizardite > Al-rich lizardite. These results suggest that the initial porosity formation within serpentinite rock, impacting the formation of serpentine soil on which vegetation can exist, is strongly affected both by the presence of non-serpentine primary minerals as well as the composition of the serpentine minerals. In particular, the presence of ferrous Fe appears to contribute to greater dissolution, whereas the presence of Al within the

  19. Factors affecting cadmium absorbed by pistachio kernel in calcareous soils, southeast of Iran.

    Science.gov (United States)

    Shirani, H; Hosseinifard, S J; Hashemipour, H

    2018-03-01

    Cadmium (Cd) which does not have a biological role is one of the most toxic heavy metals for organisms. This metal enters environment through industrial processes and fertilizers. The main objective of this study was to determine the relationships between absorbed Cd by pistachio kernel and some of soil physical and chemical characteristics using modeling by stepwise regression and Artificial Neural Network (ANN), in calcareous soils in Rafsanjan region, southeast of Iran. For these purposes, 220 pistachio orchards were selected, and soil samples were taken from two depths of 0-40 and 40-80cm. Besides, fruit and leaf samples from branches with and without fruit were taken in each sampling point. The results showed that affecting factors on absorbed Cd by pistachio kernel which were obtained by regression method (pH and clay percent) were not interpretable, and considering unsuitable vales of determinant coefficient (R 2 ) and Root Mean Squares Error (RMSE), the model did not have sufficient validity. However, ANN modeling was highly accurate and reliable. Based on its results, soil available P and Zn and soil salinity were the most important factors affecting the concentration of Cd in pistachio kernel in pistachio growing areas of Rafsanjan. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Factors Affecting the Presence of Adequately Iodized Salt at Home in Wolaita, Southern Ethiopia: Community Based Study.

    Science.gov (United States)

    Kumma, Wondimagegn Paulos; Haji, Yusuf; Abdurahmen, Junayde; Mehretie Adinew, Yohannes

    2018-01-01

    Universal use of iodized salt is a simple and inexpensive method to prevent and eliminate iodine deficiency disorders like mental retardation. However, little is known about the level of adequately iodized salt consumption in the study area. Therefore, the study was aimed at assessing the proportion of households having adequately iodized salt and associated factors in Wolaita Sodo town and its peripheries, Southern Ethiopia. A cross-sectional study was conducted from May 10 to 20, 2016, in 441 households in Sodo town and its peripheries. Samples were selected using the systematic sampling technique. An iodometric titration method (AOAC, 2000) was used to analyze the iodine content of the salt samples. Data entry and analysis were done using Epi Info version 3.5.1 and SPSS version 16, respectively. The female to male ratio of the respondents was 219. The mean age of the respondents was 30.2 (±7.3 SD). The proportion of households having adequately iodized salt was 37.7%, with 95% CI of 33.2% to 42.2%. Not exposing salt to sunlight with [OR: 3.75; 95% CI: 2.14, 6.57], higher monthly income [OR: 3.71; 95% CI: 1.97-7.01], and formal education of respondents with [OR: 1.75; 95% CI: 1.14, 2.70] were found associated with the presence of adequately iodized salt at home. This study revealed low levels of households having adequately iodized salt in Wolaita Sodo town and its peripheries. The evidence here shows that there is a need to increase the supply of adequately iodized salt to meet the goal for monitoring progress towards sustainable elimination of IDD.

  1. Factors Affecting the Presence of Adequately Iodized Salt at Home in Wolaita, Southern Ethiopia: Community Based Study

    Directory of Open Access Journals (Sweden)

    Wondimagegn Paulos Kumma

    2018-01-01

    Full Text Available Background. Universal use of iodized salt is a simple and inexpensive method to prevent and eliminate iodine deficiency disorders like mental retardation. However, little is known about the level of adequately iodized salt consumption in the study area. Therefore, the study was aimed at assessing the proportion of households having adequately iodized salt and associated factors in Wolaita Sodo town and its peripheries, Southern Ethiopia. Methods. A cross-sectional study was conducted from May 10 to 20, 2016, in 441 households in Sodo town and its peripheries. Samples were selected using the systematic sampling technique. An iodometric titration method (AOAC, 2000 was used to analyze the iodine content of the salt samples. Data entry and analysis were done using Epi Info version 3.5.1 and SPSS version 16, respectively. Result. The female to male ratio of the respondents was 219. The mean age of the respondents was 30.2 (±7.3 SD. The proportion of households having adequately iodized salt was 37.7%, with 95% CI of 33.2% to 42.2%. Not exposing salt to sunlight with [OR: 3.75; 95% CI: 2.14, 6.57], higher monthly income [OR: 3.71; 95% CI: 1.97–7.01], and formal education of respondents with [OR: 1.75; 95% CI: 1.14, 2.70] were found associated with the presence of adequately iodized salt at home. Conclusion. This study revealed low levels of households having adequately iodized salt in Wolaita Sodo town and its peripheries. The evidence here shows that there is a need to increase the supply of adequately iodized salt to meet the goal for monitoring progress towards sustainable elimination of IDD.

  2. Soil Fertility and Electrical Conductivity Affected by Organic Waste Rates and Nutrient Inputs

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT The composition of organic waste (OW and its effect on soil processes may change soil fertility and electrical conductivity (EC. The side effects of waste use in crop fertilization are poorly understood for Brazilian soils. This study examined the effect of the addition of 15 different organic wastes to Oxisols and a Neosol on pH, base saturation, EC, cation exchange capacity (CEC at pH 7, and the availability of Al, macro (P, K, Ca2+, Mg2+ and S and micronutrients (B, Fe2+, Mn2+, Cu2+ and Zn2+. Soil samples (150 g were treated with chicken, pig, horse, cattle, and quail manures, sewage sludge 1 and 2, eucalyptus sawdust, plant substrate, coconut fiber, pine bark, coffee husk, peat, limed compost, and biochar. Wastes were added considering a fixed amount of C (2 g kg-1, which resulted in waste rates ranging from 2.5 to 25.6 Mg ha-1. The soil-waste mixtures were incubated for 330 days in laboratory conditions. The waste liming or acidification values were soil-dependent. The use of some manures and compost increased the pH to levels above of those considered adequate for plant growth. The soil EC was slightly increased in the Neosol and in the medium textured Oxisol, but it was sharply changed (from 195 to 394 µS cm-1 by the addition of organic wastes in the clayey Oxisol, although the EC values were below the range considered safe for plant growth. Changes in the soil availability of P, K+, Ca2+ and Zn2+ were highly related to the inputs of these nutrients by the wastes, and other factors in soil changed due to waste use. Organic waste use simultaneously affects different soil fertility attributes; thus, in addition to the target nutrient added to the soil, the soil acidity buffering capacity and the waste liming and agronomic value must be taken into account in the waste rate definition.

  3. Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs?

    Science.gov (United States)

    Dahlin, A Sigrun; Eriksson, Jan; Campbell, Colin D; Öborn, Ingrid

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl(-) inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Do soil fertilization and forest canopy foliage affect the growth and photosynthesis of Amazonian saplings?

    Directory of Open Access Journals (Sweden)

    Nilvanda dos Santos Magalhães

    2014-02-01

    Full Text Available Most Amazonian soils are highly weathered and poor in nutrients. Therefore, photosynthesis and plant growth should positively respond to the addition of mineral nutrients. Surprisingly, no study has been carried out in situ in the central Amazon to address this issue for juvenile trees. The objective of this study was to determine how photosynthetic rates and growth of tree saplings respond to the addition of mineral nutrients, to the variation in leaf area index of the forest canopy, and to changes in soil water content associated with rainfall seasonality. We assessed the effect of adding a slow-release fertilizer. We determined plant growth from 2010 to 2012 and gas exchange in the wet and dry season of 2012. Rainfall seasonality led to variations in soil water content, but it did not affect sapling growth or leaf gas exchange parameters. Although soil amendment increased phosphorus content by 60 %, neither plant growth nor the photosynthetic parameters were influenced by the addition of mineral nutrients. However, photosynthetic rates and growth of saplings decreased as the forest canopy became denser. Even when Amazonian soils are poor in nutrients, photosynthesis and sapling growth are more responsive to slight variations in light availability in the forest understory than to the availability of nutrients. Therefore, the response of saplings to future increases in atmospheric [CO2] will not be limited by the availability of mineral nutrients in the soil.

  5. Soil water balance as affected by throughfall in gorse ( Ulex europaeus, L.) shrubland after burning

    Science.gov (United States)

    Soto, Benedicto; Diaz-Fierros, Francisco

    1997-08-01

    The role of fire in the hydrological behaviour of gorse shrub is studied from the point of view of its effects on vegetation cover and throughfall. In the first year after fire, throughfall represents about 88% of gross rainfall, whereas in unburnt areas it is 58%. Four years after fire, the throughfall coefficients are similar in burnt and unburnt plots (about 6096). The throughfall is not linearly related to vegetation cover because an increase in cover does not involve a proportional reduction in throughfall. The throughfall predicted by the two-parameter exponential model of Calder (1986, J. Hydrol., 88: 201-211) provides a good fit with the observed throughfall and the y value of the model reflects the evolution of throughfall rate. The soil moisture distribution is modified by fire owing to the increase of evaporation in the surface soil and the decrease of transpiration from deep soil layers. Nevertheless, the use of the old root system by sprouting vegetation leads to a soil water profile in which 20 months after the fire the soil water is similar in burnt and unburnt areas. Overall, soil moisture is higher in burnt plots than in unburnt plots. Surface runoff increases after a fire but does not entirely account for the increase in throughfall. Therefore the removal of vegetation cover in gorse scrub by fire mainly affects the subsurface water flows.

  6. Isotopic Tracing of Thallium Contamination in Soils Affected by Emissions from Coal-Fired Power Plants.

    Science.gov (United States)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Trubač, Jakub; Ettler, Vojtěch; Teper, Leslaw; Cabala, Jerzy; Rohovec, Jan; Zádorová, Tereza; Penížek, Vít; Pavlů, Lenka; Holubík, Ondřej; Němeček, Karel; Houška, Jakub; Drábek, Ondřej; Ash, Christopher

    2016-09-20

    Here, for the first time, we report the thallium (Tl) isotope record in moderately contaminated soils with contrasting land management (forest and meadow soils), which have been affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ε(205)Tl ∼ -1) naturally occurs. The results show a positive linear relationship (R(2) = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ε(205)Tl ∼ 0), followed by fly ash (ε(205)Tl between -2.5 and -2.8) and volatile Tl fractions (ε(205)Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistributions, we demonstrate that Tl contamination can be traced in soils and propose that the isotope data represent a possible tool to aid our understanding of postdepositional Tl dynamics in surface environments for the future.

  7. Salt reduction in vegetable soup does not affect saltiness intensity and liking in the elderly and children

    Directory of Open Access Journals (Sweden)

    Carla Gonçalves

    2014-10-01

    Full Text Available Study background: Reduction of added salt levels in soups is recommended. We evaluated the impact of a 30% reduction of usual added salt in vegetable soups on elderly and children's saltiness and liking evaluation. Methods: Subjects were elderly and recruited from two public nursing homes (29 older adults, 79.7±8.9 years, and preschool children recruited from a public preschool (49 children, 4.5±1.3 years. This study took place in institutional lunchrooms. Through randomization and crossover, the subjects participated in two sensory evaluation sessions, on consecutive days, to assess perceived saltiness intensity (elderly sample and liking (elderly and children samples of a vegetable soup with baseline salt content and with a 30% salt reduction. Elderly rated perceived liking through a 10 cm visual analogue scale [‘like extremely’ (1 to ‘dislike extremely’ (10] and children through a five-point facial scale [‘dislike very much’ (1 to ‘like very much’ (5]. Results: After 30% added salt reduction in vegetable soup, there were no significant differences in saltiness noted by the elderly (p=0.150, and in perceived liking by children (p=0.160 and elderly (p=0.860. Conclusions: A 30% salt reduction in vegetable soup may be achieved without compromising perceived saltiness and liking in children and the elderly.

  8. Salt reduction in vegetable soup does not affect saltiness intensity and liking in the elderly and children.

    Science.gov (United States)

    Gonçalves, Carla; Monteiro, Sérgio; Padrão, Patrícia; Rocha, Ada; Abreu, Sandra; Pinho, Olívia; Moreira, Pedro

    2014-01-01

    Reduction of added salt levels in soups is recommended. We evaluated the impact of a 30% reduction of usual added salt in vegetable soups on elderly and children's saltiness and liking evaluation. Subjects were elderly and recruited from two public nursing homes (29 older adults, 79.7±8.9 years), and preschool children recruited from a public preschool (49 children, 4.5±1.3 years). This study took place in institutional lunchrooms. Through randomization and crossover, the subjects participated in two sensory evaluation sessions, on consecutive days, to assess perceived saltiness intensity (elderly sample) and liking (elderly and children samples) of a vegetable soup with baseline salt content and with a 30% salt reduction. Elderly rated perceived liking through a 10 cm visual analogue scale ['like extremely' (1) to 'dislike extremely' (10)] and children through a five-point facial scale ['dislike very much' (1) to 'like very much' (5)]. After 30% added salt reduction in vegetable soup, there were no significant differences in saltiness noted by the elderly (p=0.150), and in perceived liking by children (p=0.160) and elderly (p=0.860). A 30% salt reduction in vegetable soup may be achieved without compromising perceived saltiness and liking in children and the elderly.

  9. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    Science.gov (United States)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  10. Geochemical composition of permafrost-affected soils around the town Tiksi, Northern Yakutia, Russia

    Science.gov (United States)

    Antcibor, Iuliia; Eschenbach, Annette; Pfeiffer, Eva-Maria

    2014-05-01

    Northeastern Siberia represents an area remote from evident anthropogenic trace metal sources. However, a risk of airborne pollution by trace metals from anthropogenic sources connected to the settlements exists. The largest of these are the settlements Tiksi (71° 42' 55.6" N, 128° 48' 46.3" E) and Kyusyur (70° 45' 41.7" N, 127° 23' 04.7" E). The area of Tiksi is located between the Lena River and the Kharaulach River mouths. It covers parts of Primorsky Ridge and Kharaulach Mountains which are a part of the Verkhoyansk Range. The objective of this study was to investigate features of the spatial element distribution in representative landscape-geochemical units of the Tiksi area and to identify whether local pollution from the settlement takes place. The physical and chemical properties of soils were accessed at three sites located radially in the immediate vicinity to the town Tiksi and one control site remote 10 km south from the settlement. The elements measured were As, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn in soils. Differences in the element content were found for various relief forms (depressions, slopes, and elevations). The coefficient of soil buffer capacity (Bf) for the surface soil horizons in depressions was the highest (Bf > 40 %) for the majority of elements indicating their intensive accumulation there. In the surface soil horizons of elevated landscape forms the coefficient, by contrast showed low to very low soil buffer capacity to accumulate metals (0 % acid-base barriers. No significant difference in metal distribution among studied sites was revealed, except for the western site which was characterized by the highest median Ni concentration. The data suggest that ecological impacts at the studied sites were low except for one site north to Tiksi where signs of local pollution probably as a result of local emissions of fuel and mining operations were detected. Keywords: Trace metals; Russian Arctic; Northeastern Siberia; Permafrost-affected

  11. Serpentine soils affect heavy metal tolerance but not genetic diversity in a common Mediterranean ant.

    Science.gov (United States)

    Frizzi, Filippo; Masoni, Alberto; Çelikkol, Mine; Palchetti, Enrico; Ciofi, Claudio; Chelazzi, Guido; Santini, Giacomo

    2017-08-01

    Natural habitats with serpentine soils are rich in heavy metal ions, which may significantly affect ecological communities. Exposure to metal pollutants results, for instance, in a reduction of population genetic diversity and a diffused higher tolerance towards heavy metals. In this study, we investigated whether chronic exposure to metals in serpentine soils affect accumulation patterns, tolerance towards metal pollutants, and genetic diversity in ants. In particular, we studied colonies of the common Mediterranean ant, Crematogaster scutellaris, along a contamination gradient consisting of two differently contaminated forests and a reference soil with no geogenic contamination. We first evaluated the metal content in both soil and ants' body. Then, we tested for tolerance towards metal pollutants by evaluating the mortality of ants fed with nickel (Ni) solutions of increasing concentrations. Finally, differences in genetic diversity among ants from different areas were assessed using eight microsatellite loci. Interestingly, a higher tolerance to nickel solutions was found in ants sampled in sites with intermediate levels of heavy metals. This may occur, because ants inhabiting strongly contaminated areas tend to accumulate higher amounts of contaminants. Additional ingestion of toxicants beyond the saturation threshold would lead to death. There was no difference in the genetic diversity among ant colonies sampled in different sites. This was probably the result of queen mediated gene flow during nuptial flights across uncontaminated and contaminated areas of limited geographical extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Bogdan, Katja; Schenk, Manfred K.

    2009-01-01

    Paddy rice may contribute considerably to the human intake of As. The knowledge of soil characteristics affecting the As content of the rice plant enables the development of agricultural measures for controlling As uptake. During field surveys in 2004 and 2006, plant samples from 68 fields (Italy, Po-area) revealed markedly differing As concentration in polished rice. The soil factors total As (aquaregia) , pH, grain size fractions, total C, plant available P (CAL) , poorly crystalline Fe (oxal.) and plant available Si (Na-acetate) content that potentially affect As content of rice were determined. A multiple linear regression analysis showed a significant positive influence of the total As (aquaregia) and plant available P (CAL) content and a negative influence of the poorly crystalline Fe (oxal.) content of the soil on the As content in polished rice and rice straw. Si concentration in rice straw varied widely and was negatively related to As content in straw and polished rice. - Field selection for total As, poorly crystalline Fe and plant available P in soil might contribute to control As content of paddy rice.

  13. Realistic diversity loss and variation in soil depth independently affect community-level plant nitrogen use.

    Science.gov (United States)

    Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A

    2014-01-01

    Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading.

  14. Assessing soil and plant parameters affecting uranium availability and plant uptake

    International Nuclear Information System (INIS)

    Vandenhove, H.

    2009-01-01

    In the assessment of the potential impact of contaminants in soils and the requirement for the implementation of corrective actions, it is important to determine the contaminant's mobility and bioavailability and to identify the processes and parameters ruling it. Mobility and bioavailability of contaminants are among others affected by the physicochemical characteristics of the environment itself and plant properties. This is also the case for uranium (U), reported to be the most frequent radionuclide contaminant in ground and surface water and soils. The actual failure of the available transfer factor (TF) data and their broad relation to soil type to be an appropriate measure for food chain transfer in assessment models, calls for a more mechanistic understanding of the individual processes affecting bioavailability. The objectives of this study were (1) to test if Diffusive Gradient in Thin film (DGT) measured concentrations adequately assess U bioavailability and (2) to evaluate if differences in U uptake by plants can be explained by variation in root-mediated changes in selected soil properties and assess the role of organic acids in this process

  15. Land use change affects biogenic silica pool distribution in a subtropical soil toposequence

    Science.gov (United States)

    Unzué-Belmonte, Dácil; Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Cornelis, Jean-Thomas; Barão, Lúcia; Minella, Jean; Meire, Patrick; Struyf, Eric

    2017-07-01

    Land use change (deforestation) has several negative consequences for the soil system. It is known to increase erosion rates, which affect the distribution of elements in soils. In this context, the crucial nutrient Si has received little attention, especially in a tropical context. Therefore, we studied the effect of land conversion and erosion intensity on the biogenic silica pools in a subtropical soil in the south of Brazil. Biogenic silica (BSi) was determined using a novel alkaline continuous extraction where Si / Al ratios of the fractions extracted are used to distinguish BSi and other soluble fractions: Si / Al > 5 for the biogenic AlkExSi (alkaline-extractable Si) and Si / Al soils depending on the slope of the study site (10-53 %), with faster depletion in steeper sites. We show that higher erosion in steeper sites implies increased accumulation of biogenic Si in deposition zones near the bottom of the slope, where rapid burial can cause removal of BSi from biologically active zones. Our study highlights the interaction of erosion strength and land use for BSi redistribution and depletion in a soil toposequence, with implications for basin-scale Si cycling.

  16. The Electrochemical Properties of Biochars and How They Affect Soil Redox Properties and Processes

    Directory of Open Access Journals (Sweden)

    Stephen Joseph

    2015-07-01

    Full Text Available Biochars are complex heterogeneous materials that consist of mineral phases, amorphous C, graphitic C, and labile organic molecules, many of which can be either electron donors or acceptors when placed in soil. Biochar is a reductant, but its electrical and electrochemical properties are a function of both the temperature of production and the concentration and composition of the various redox active mineral and organic phases present. When biochars are added to soils, they interact with plant roots and root hairs, micro-organisms, soil organic matter, proteins and the nutrient-rich water to form complex organo-mineral-biochar complexes Redox reactions can play an important role in the development of these complexes, and can also result in significant changes in the original C matrix. This paper reviews the redox processes that take place in soil and how they may be affected by the addition of biochar. It reviews the available literature on the redox properties of different biochars. It also reviews how biochar redox properties have been measured and presents new methods and data for determining redox properties of fresh biochars and for biochar/soil systems.

  17. Roots affect the response of heterotrophic soil respiration to temperature in tussock grass microcosms.

    Science.gov (United States)

    Graham, Scott L; Millard, Peter; Hunt, John E; Rogers, Graeme N D; Whitehead, David

    2012-07-01

    While the temperature response of soil respiration (R(S)) has been well studied, the partitioning of heterotrophic respiration (R(H)) by soil microbes from autotrophic respiration (R(A)) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting R(H), the rhizosphere priming effect. In this study the short-term temperature responses of R(A) and R(H) in relation to rhizosphere priming are investigated. Temperature responses of R(A), R(H) and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ(13)C discrimination approach. The temperature response of R(S) was found to be regulated primarily by R(A), which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature. The results emphasize the importance of roots in regulating the temperature response of R(S), and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover.

  18. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation.

    Science.gov (United States)

    Alkorta, Itziar; Epelde, Lur; Garbisu, Carlos

    2017-10-16

    Bioremediation, based on the use of microorganisms to break down pollutants, can be very effective at reducing soil pollution. But the climate change we are now experiencing is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc. Many climate-induced effects on soil microorganisms occur indirectly through changes in plant growth and physiology derived from increased atmospheric CO2 concentrations and temperatures, the alteration of precipitation patterns, etc., with a concomitant effect on rhizoremediation performance (i.e. the plant-assisted microbial degradation of pollutants in the rhizosphere). But these effects are extremely complex and mediated by processes such as acclimation and adaptation. Besides, soil microorganisms form complex networks of interactions with a myriad of organisms from many taxonomic groups that will also be affected by climate change, further complicating data interpretation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Patterns of woody plant species diversity in Lebanon as affected by climatic and soil properties

    International Nuclear Information System (INIS)

    Zahreddine, H.; Barker, D.; Struve, D.; Martin, F.; Quigley, M.; Sleem, K.

    2007-01-01

    Lebanese biodiversity is threatened by tourist and urban development, political instability, over-collection of medicinal and aromatic plants, lack of compliance to the regulations prohibiting over-exploitation from the wild, over-grazing and forest fires. A large number of the native species have unexplored economic potential for either medicinal or ornamental use. One way to preserve these species is by propagation and reintroduction into appropriate habitats. However, this requires an understanding of the species biology and environment. The relationship of nine species to the soil and climatic conditions in eight sites along an altitudinal gradient was studied. Individual species were counted and identified within transects at each site. Climatic data were collected and soil samples were taken and analyzed for soil texture, soil pH, EC, CaCO3, organic matter content and the following nutrients: Ca, Mn, Na, Fe, P, K, Cu, Mg, and Zn. Each ecosystem had a unique environment that could be described using the first two factors (70.3 % of variation) in a Factor Analysis of the six most important variables. Some species densities were affected by soil conditions (the first factor) while climatic conditions (the second factor) explained the densities of other species. Recommendations are made for the in-situ and ex-situ preservations of the nine species and their ecosystems.(author)

  20. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    Science.gov (United States)

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Physicochemical studies on Uburu Salt Lake Ebonyi State-Nigeria.

    Science.gov (United States)

    Akubugwo, I E; Ofoegbu, C J; Ukwuoma, C U

    2007-09-15

    Physicochemical properties of soil (sediment) and water from Uburu salt lake were evaluated and compared with control soil and surface water from the same community. Results showed significant (p copper, lead and zinc in the lake water relative to the control. The values of these metals in the lake soil (sediments) however, were significantly (p potassium, nitrate, carbonate, sulphate and phosphate levels compared to the control. Significant (p < 0.05) changes were also noted in the lake soil's pH, exchangeable acidity, nitrogen, organic carbon, calcium and magnesium levels. Also the soil texture was affected relative to the control. In a number of cases, the values of the studied parameters were higher than the permissible WHO standards. In view of these findings, cautious use of the salt lake soil and water is advocated.

  3. Physicochemical Properties, Micromorphology and Clay Mineralogy of Soils Affected by Geological Formations, Geomorphology and Climate

    Directory of Open Access Journals (Sweden)

    A. Bayat

    2017-01-01

    Full Text Available Introduction: Soil genesis and development in arid and semi-arid areas are strongly affected by geological formations and geomorphic surfaces. Various morphological, physical, and geochemical soil properties at different geomorphic positions are usually attributed to different soil forming factors including parent material and climate. Due to variations in climate, geological formations (Quaternary, Neogene and Cretaceous and geomorphology, the aim of the present research was the study of genesis, development, clay mineralogy, and micromorphology of soils affected by climate, geology and geomorphology in Bardsir area, Kerman Province. Materials and Methods: The study area, 25000 ha, starts from Bardsir and extends to Khanesorkh elevations close to Sirjan city. The climate of the area is warm and semi-arid with mean annual temperature and precipitation of 14.9 °C and 199 mm, respectively. Soil moisture and temperature regimes of the area are aridic and mesic due to 1:2500000 map, provided by Soil and Water Research Institute. Moving to west and southwest, soil moisture regime of the area changes to xeric with increasing elevation. Using topography and geology maps (1:100000 together with Google Earth images, geomorphic surfaces and geologic formations of the area were investigated. Mantled pediment (pedons 1, 3, 7, and 8, rock pediment (pedon 2, semi-stable alluvial plain (pedon 6, unstable alluvial plain (pedon 5, piedmont plain (pedons 9 and 11, intermediate surface of alluvial plain and pediment (pedon 4, and old river terrace (pedon 10 are among geomorphic surfaces investigated in the area. Mantled pediment is composed of young Quaternary sediments and Cretaceous marls. Rock pediments are mainly formed by Cretaceous marls. Quaternary formations are dominant in alluvial plains. Alluvial terraces and intermediate surface of alluvial plain and pediment are dominated by Neogene conglomerates. Siltstone, sandstone, and Neogene marls together with

  4. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    Science.gov (United States)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly

  5. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota; Julkowska, Magdalena; Montero Sommerfeld, Hector; Horst, Anneliek ter; Haring, Michel A; Testerink, Christa

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  6. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  7. MT and WY Tamarix soil properties influence germination and early growth of three native grass species

    Science.gov (United States)

    As a riparian invader, Tamarix spp. often leads to native species (e.g., plains cottonwood and willows, grasses) decline and lower habitat quality. Since Tamarix excretes excess salt and has high salt tolerance, negative soil feedback via high soil salinity may negatively affect native plants. Howev...

  8. CHEMICAL SOIL ATTRIBUTES AS AFFECTED BY LIME AND GYPSUM SURFACE APPLICATION

    Directory of Open Access Journals (Sweden)

    A. Mantovani

    2017-10-01

    Full Text Available The gypsum is a soil condition end it has to function contribute to the elimination or reduction of aluminum in the soil in depth. Still, it can contribute to the distribution of nutrients in the soil profile more uniformly and thus increasing the productivity of crops. This study aimed to evaluate the influence of gypsum application, with and without lime, on soil chemical properties and soybean yield, in a no-till system. The experiment was carried in Campos Novos, Santa Catarina State, Brazil, with a randomized block design and split plot design with four replications, the main portion was distributed gypsum doses (1000, 2000, 4000 and 6000 kg ha-1 without incorporation, and the split plot (with and without lime and the liming was 2,000 kg ha-1. We evaluated the performance of components and productivity of soybeans. It was also analyzed the soil pH and Ca, Mg, S and Al at 0-20 and 20-40 cm. The application of gypsum at the rates tested surface with and without lime did not affect the yield components and soybean productivity. At 0-20 cm soil depth lime application increased soil pH by 0.3 units on the average rates of gypsum, but in the 20-40 cm layer was not found effect of lime and gypsum in pH ground due to the short time between application and evaluation. In areas with and without lime contents of Ca and S in the two layers evaluated increased with increasing rates of gypsum, since Mg has difference with the lime application on a 0-20 cm to dose 4000 kg ha-1 and the lime in the gypsum rates and Al decreased with increasing dose gypsum average in the 20-40 cm layer depth. The application of gypsum and limestone softened the negative effects of soil acidity and the increase mainly of calcium and sulfur at 0-20 cm, with less efficient effects in the 20-40 cm layer due to the soil is clayey and the period between the implementation and evaluation be 120 days.

  9. A new soil water and bulk eletrical conductivity sensor technology for irrigation and salinity management

    Science.gov (United States)

    Many soil water sensors, especially those based on electromagnetic (EM) properties of soils, have been shown to be unsuitable in salt-affected or clayey soils. Most available soil water content sensors are of this EM type, particularly the so-called capacitance sensors. They often over estimate and ...

  10. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests

    Directory of Open Access Journals (Sweden)

    Maren M. Grüning

    2017-06-01

    Full Text Available Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L. forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L. or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  11. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests.

    Science.gov (United States)

    Grüning, Maren M; Simon, Judy; Rennenberg, Heinz; L-M-Arnold, Anne

    2017-01-01

    Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15 N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine ( Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth ( Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  12. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  13. An overview of soil water sensors for salinity & irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  14. How clear-cutting affects fire severity and soil properties in a Mediterranean ecosystem.

    Science.gov (United States)

    Francos, Marcos; Pereira, Paulo; Mataix-Solera, Jorge; Arcenegui, Victoria; Alcañiz, Meritxell; Úbeda, Xavier

    2018-01-15

    Forest management practices in Mediterranean ecosystems are frequently employed to reduce both the risk and severity of wildfires. However, these pre-fire treatments may influence the effects of wildfire events on soil properties. The aim of this study is to examine the short-term effects of a wildfire that broke out in 2015 on the soil properties of three sites: two exposed to management practices in different years - 2005 (site M05B) and 2015 (site M15B) - and one that did not undergo any management (NMB) and to compare their properties with those recorded in a plot (Control) unaffected by the 2015 wildfire. We analyzed aggregate stability (AS), soil organic matter (SOM) content, total nitrogen (TN), carbon/nitrogen ratio (C/N), inorganic carbon (IC), pH, electrical conductivity (EC), extractable calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), microbial biomass carbon (C mic ) and basal soil respiration (BSR). In the managed plots, a clear-cutting operation was conducted, whereby part of the vegetation was cut and left covering the soil surface. The AS values recorded at the Control site were significantly higher than those recorded at M05B, whereas the TN and SOM values at NMB were significantly higher than those recorded at M05B. IC was significantly higher at M05B than at the other plots. There were no significant differences in C/N ratio between the analyzed sites. Soil pH at M05B was significantly higher than the value recorded at the Control plot. Extractable Ca was significantly higher at NMB than at both M05B and the Control, while extractable Mg was significantly lower at M05B than at NMB. Extractable K was significantly lower at the Control than at the three fire-affected plots. C mic was significantly higher at NMB than at the Control. BSR, BSR/C and BSR/C mic values at the fire-affected sites were significantly lower than those recorded at the Control. No significant differences were identified in C mic /C. Overall, a comparison of the

  15. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    Science.gov (United States)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  16. Phosphate buffer and salt medium concentrations affect the inactivation of T4 phage by platinum(II) complexes

    DEFF Research Database (Denmark)

    Pedersen, Henrik B.; Josephsen, Jens; Kerszman, Gustaw

    1985-01-01

    -Tris) buffer and HEPES buffer. The phosphate abolishes the antiphage activity of the platinum complexes probably by some sort of complex formation. This together with dimerization reactions qualitatively explains the tailing off of the phage inactivation rate. High concentrations of NaNO3 as the salt medium...

  17. Analysis of ground water and soil samples from severely arsenic affected blocks of Murshidabad district

    Directory of Open Access Journals (Sweden)

    Manali Biswas

    2017-10-01

    Full Text Available Contamination of groundwater and soil by arsenic is a serious threat to existence of mankind on the globe. Arsenic contaminates soil and groundwater by natural biogeochemical cycles. However, due to anthropogenic activities like indiscriminant use of arsenic in disinfectants, weedicides, medicines and fertilizers, arsenic toxicity is a severe environmental issue, both at national and global level. U.S. Environmental Protection Agency and World Health Organization prescribed the permissible limit of arsenic in drinking water to be 10 µg/l. Exposure to arsenic at higher levels over a considerable period of time leads to skin lesions and cancer, disorders of cardiovascular, respiratory, gastrointestinal, hepatic and renal systems. Murshidabad is one of the severely arsenic affected districts of West Bengal. We have analyzed soil and groundwater samples from some of the highly arsenic affected blocks of Murshidabad district. Both the soil and groundwater samples have an alkaline pH, a characteristic of the presence of arsenic in the tested samples. Unfortunately, the socio-economic conditions of these villages force the residents to use groundwater as the source of drinking water. Presence of considerably high amount of total dissolved solids in water samples make them further unfit for consumption. High amount of phosphate and iron present in some of the water samples takes a toll on the detoxification and excretory system of the body, if those water samples are consumed on a regular manner. Contamination of soil by the aforesaid contaminants results in biomagnification of these pollutants in the food chain. We could also isolate certain potentially arsenic resistant bacteria from the contaminated soil and water samples. At the next level we have surveyed an arsenic affected village to analyze the clinical manifestation of arsenic poisoning. In this village subjects developed rampant skin lesions throughout the body due to exposure to arsenic

  18. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities.

    Science.gov (United States)

    Lumini, Erica; Vallino, Marta; Alguacil, Maria M; Romani, Marco; Bianciotto, Valeria

    2011-07-01

    Arbuscular mycorrhizal fungi (AMF) comprise one of the main components of soil microbiota in most agroecosystems. These obligate mutualistic symbionts colonize the roots of most plants, including crop plants. Many papers have indicated that different crop management practices could affect AMF communities and their root colonization. However, there is little knowledge available on the influence of conventional and low-input agriculture on root colonization and AMF molecular diversity in rice fields. Two different agroecosystems (continuous conventional high-input rice monocropping and organic farming with a five-year crop rotation) and two different water management regimes have been considered in this study. Both morphological and molecular analyses were performed. The soil mycorrhizal potential, estimated using clover trap cultures, was high and similar in the two agroecosystems. The diversity of the AMF community in the soil, calculated by means of PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) and 18S rDNA sequencing on clover trap cultures roots, was higher for the organic cultivation. The rice roots cultivated in the conventional agrosystem or under permanent flooding showed no AMF colonization, while the rice plants grown under the organic agriculture system showed typical mycorrhization patterns. Considered together, our data suggest that a high-input cropping system and conventional flooding depress AMF colonization in rice roots and that organic managements could help maintain a higher diversity of AMF communities in soil.

  19. Higher molecular weight dissolved organic nitrogen turnover as affected by soil management history

    DEFF Research Database (Denmark)

    Lønne Enggrob, Kirsten

    of different management histories on the turnover of high Mw DON. Further, we distinguished between several classes of high Mw DON, i.e., 1-10 kDa and >10 kDa. 3. Materials and methods With the use of micro-lysimeters, the turnover of triple-labeled (15N, 14C and 13C) high Mw DON was studied in a sandy soil......High molecular weight dissolved organic nitrogen turnover as affected by soil management history *Kirsten Lønne Enggrob,1 Lars Elsgaard,1 and Jim Rasmussen1 1Aarhus University, Dept. of Agroecology, Foulum, Denmark 1. Introduction Dissolved organic nitrogen (DON) play an important role in soil N...... are presented for 14CO2 evolution during 14 days of incubation. 4. Results and conclusion Results showed that the turnover rate of high Mw DON was dependent on both the Mw size of DON and on the soil liming history. Evidence showing where in the DON Mw sizes the bottleneck lies will be presented....

  20. Heavy metals, salts and organic residues in solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their discharge areas: determinants for restoring their impact

    International Nuclear Information System (INIS)

    Hernandez, A. J.; Pastor, J.

    2009-01-01

    This report describes a continuous assessment of the impact of solid urban waste (SUW) landfills in the central Iberian Peninsula that were sealed with a layer of soil 20 years ago. cover soils and soils from discharge areas have been periodically analysed. Soil concentrations of salts and heavy metals affect the biotic components of these ecosystems. (Author)

  1. Affecting factors analysis of soil moisture for arid mining area based on TM images

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Zheng-fu; Lei, Shao-gang; Chang, Lu-qun; Zhang, Ri-chen [Jiangsu Key Laboratory of Resources and Environmental Informatics Engineering, Xuzhou (China)

    2009-04-15

    The model for calculating soil moisture (SM) in terms of thermal inertia using thematic mapper (TM) image and MODIS image was developed. There was a remarkable difference between two sets of average SM calculated by limited field sampling points taken from two different sampling sites, mined site and unmined site, and there were not a distinct difference between two sets of average SM calculated by the model using TM image. Domain factors affecting the SM were analyzed. The SM is in inverse proportion to the elevation and in direct proportion to the vegetation index. Coal mining resulted in a change of soil infiltration capacity. The vertical filtration index increased at the mined site, thereafter, the condition to supply ground water changed,the soil surface transpiration increased and SM changed. A drop of ground water level caused by mining can affect plant growth. When the plant root is extends downwards to reach the zone of capillary zone, ground water will be available for plant growth. 18 refs., 2 figs., 5 tabs.

  2. Quantifying the timescales over which exogenous and endogenous conditions affect soil respiration.

    Science.gov (United States)

    Barron-Gafford, Greg A; Cable, Jessica M; Bentley, Lisa Patrick; Scott, Russell L; Huxman, Travis E; Jenerette, G Darrel; Ogle, Kiona

    2014-04-01

    Understanding how exogenous and endogenous factors and above-ground-below-ground linkages modulate carbon dynamics is difficult because of the influences of antecedent conditions. For example, there are variable lags between above-ground assimilation and below-ground efflux, and the duration of antecedent periods are often arbitrarily assigned. Nonetheless, developing models linking above- and below-ground processes is crucial for estimating current and future carbon dynamics. We collected data on leaf-level photosynthesis (Asat ) and soil respiration (Rsoil ) in different microhabitats (under shrubs vs under bunchgrasses) in the Sonoran Desert. We evaluated timescales over which endogenous and exogenous factors control Rsoil by analyzing data in the context of a semimechanistic temperature-response model of Rsoil that incorporated effects of antecedent exogenous (soil water) and endogenous (Asat ) conditions. For both microhabitats, antecedent soil water and Asat significantly affected Rsoil , but Rsoil under shrubs was more sensitive to Asat than that under bunchgrasses. Photosynthetic rates 1 and 3 d before the Rsoil measurement were most important in determining current-day Rsoil under bunchgrasses and shrubs, respectively, indicating a significant lag effect. Endogenous and exogenous controls are critical drivers of Rsoil , but the relative importance and the timescale over which each factor affects Rsoil depends on above-ground vegetation and ecosystem structure characteristics. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Zhao, Xiuyang; Wang, Bing; Liu, Erlong; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  4. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenyu, E-mail: wzy72609@163.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhao, Xiuyang, E-mail: xiuzh@psb.vib-ugent.be [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Wang, Bing, E-mail: wangbing@ibcas.ac.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Liu, Erlong, E-mail: liuel14@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Chen, Ni, E-mail: 63710156@qq.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhang, Wei, E-mail: wzhang1216@yahoo.com [Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444 (China); Liu, Heng, E-mail: hengliu@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China)

    2016-04-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  5. Variation in soil aggregate-size distribution affects the dissipation of polycyclic aromatic hydrocarbons in long-term field-contaminated soils.

    Science.gov (United States)

    Wei, Ran; Ni, Jinzhi; Chen, Weifeng; Yang, Yusheng

    2017-10-01

    Soil organic matter (SOM) is the main adsorbent for polycyclic aromatic hydrocarbons (PAHs) and the principal aggregating agent for soil aggregation that can affect PAH bioavailability and bioaccessibility in soils. The objective of this study was to analyze the relationship between PAH dissipation and variation in soil aggregate-size distribution in two field-contaminated soils with different soil organic C (SOC) content (Anthrosols, 1.41% SOC; Phaeozems, 8.51% SOC) in phytoremediation with alfalfa. The results showed that there were significant reductions of 10.2 and 15.4% of the total PAHs in unplanted and planted treatments, respectively, for Anthrosols. However, there was no significant reduction of total PAHs in either unplanted or planted treatment for Phaeozems. For Anthrosols, mass percentages of coarse sand and fine sand were significantly reduced while coarse silt and fine silt were significantly increased for the planted soil compared to the initial soil (p soil was slightly reduced. The main reason for the dissipation of PAHs in Anthrosols could be that macroaggregates were broken into microaggregates, which made some trapped PAHs become bioaccessible to soil microorganisms.

  6. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jincai [Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); USDA-ARS U. S. Salinity Laboratory, Riverside, CA 92507 (United States); Ibekwe, A. Mark, E-mail: Mark.Ibekwe@ars.usda.gov [USDA-ARS U. S. Salinity Laboratory, Riverside, CA 92507 (United States); Yang, Ching-Hong [Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211 (United States); Crowley, David E. [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)

    2016-09-01

    Microbial diversity of agricultural soils has been well documented, but information on leafy green producing soils is limited. In this study, we investigated microbial diversity and community structures in 32 (16 organic, 16 conventionally managed soils) from California (CA) and Arizona (AZ) using pyrosequencing, and identified factors affecting bacterial composition. Results of detrended correspondence analysis (DCA) and dissimilarity analysis showed that bacterial community structures of conventionally managed soils were similar to that of organically managed soils; while the bacterial community structures in soils from Salinas, California were different (P < 0.05) from those in soils from Yuma, Arizona and Imperial Valley, California. Canonical correspondence analysis (CCA) and artificial neural network (ANN) analysis of bacterial community structures and soil variables showed that electrical conductivity (EC), clay content, water-holding capacity (WHC), pH, total nitrogen (TN), and organic carbon (OC) significantly (P < 0.05) correlated with microbial communities. CCA based variation partitioning analysis (VPA) showed that soil physical properties (clay, EC, and WHC), soil chemical variables (pH, TN, and OC) and sampling location explained 16.3%, 12.5%, and 50.9%, respectively, of total variations in bacterial community structure, leaving 13% of the total variation unexplained. Our current study showed that bacterial community composition and diversity in major fresh produce growing soils from California and Arizona is a function of soil physiochemical characteristics and geographic distances of sampling sites. - Highlights: • Geographic distance was the most significant factor affecting microbial composition. • Physical and chemical properties significantly impacted microbial communities. • Higher numbers of OTUs were observed in organic soils than in convention soils.

  7. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations

    International Nuclear Information System (INIS)

    Ma, Jincai; Ibekwe, A. Mark; Yang, Ching-Hong; Crowley, David E.

    2016-01-01

    Microbial diversity of agricultural soils has been well documented, but information on leafy green producing soils is limited. In this study, we investigated microbial diversity and community structures in 32 (16 organic, 16 conventionally managed soils) from California (CA) and Arizona (AZ) using pyrosequencing, and identified factors affecting bacterial composition. Results of detrended correspondence analysis (DCA) and dissimilarity analysis showed that bacterial community structures of conventionally managed soils were similar to that of organically managed soils; while the bacterial community structures in soils from Salinas, California were different (P < 0.05) from those in soils from Yuma, Arizona and Imperial Valley, California. Canonical correspondence analysis (CCA) and artificial neural network (ANN) analysis of bacterial community structures and soil variables showed that electrical conductivity (EC), clay content, water-holding capacity (WHC), pH, total nitrogen (TN), and organic carbon (OC) significantly (P < 0.05) correlated with microbial communities. CCA based variation partitioning analysis (VPA) showed that soil physical properties (clay, EC, and WHC), soil chemical variables (pH, TN, and OC) and sampling location explained 16.3%, 12.5%, and 50.9%, respectively, of total variations in bacterial community structure, leaving 13% of the total variation unexplained. Our current study showed that bacterial community composition and diversity in major fresh produce growing soils from California and Arizona is a function of soil physiochemical characteristics and geographic distances of sampling sites. - Highlights: • Geographic distance was the most significant factor affecting microbial composition. • Physical and chemical properties significantly impacted microbial communities. • Higher numbers of OTUs were observed in organic soils than in convention soils

  8. Factors affecting emission of AITC and subsequent disease control efficacy of Brassica juncea seed meal soil amendment

    Science.gov (United States)

    Soil physical conditions demonstrably affected allyl isothiocyanate (AITC) emitted from Brassica juncea cv Pacific Gold seed meal (SM) amended soil. The AITC concentration detected increased with an increase in temperature from 10 oC to 30 oC. AITC concentration also increased with an increase in so...

  9. Elevated Atmospheric CO2 and Drought Affect Soil Microbial Community and Functional Diversity Associated with Glycine max

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2017-12-01

    Full Text Available Abstract Under the background of climate change, the increase of atmospheric CO2 and drought frequency have been considered as significant influencers on the soil microbial communities and the yield and quality of crop. In this study, impacts of increased ambient CO2 and drought on soil microbial structure and functional diversity of a Stagnic Anthrosol were investigated in phytotron growth chambers, by testing two representative CO2 levels, three soil moisture levels, and two soil cover types (with or without Glycine max. The 16S rDNA and 18S rDNA fragments were amplified to analyze the functional diversity of fungi and bacteria. Results showed that rhizosphere microbial biomass and community structure were significantly affected by drought, but effects differed between fungi and bacteria. Drought adaptation of fungi was found to be easier than that of bacteria. The diversity of fungi was less affected by drought than that of bacteria, evidenced by their higher diversity. Severe drought reduced soil microbial functional diversity and restrained the metabolic activity. Elevated CO2 alone, in the absence of crops (bare soil, did not enhance the metabolic activity of soil microorganisms. Generally, due to the co-functioning of plant and soil microorganisms in water and nutrient use, plants have major impacts on the soil microbial community, leading to atmospheric CO2 enrichment, but cannot significantly reduce the impacts of drought on soil microorganisms.

  10. Worth its salt?

    Science.gov (United States)

    The idea that all underground salt deposits can serve as storage sites for toxic and nuclear waste does not always hold water—literally. According to Daniel Ronen and Brian Berkowitz of Israel's Weizmann Institute of Science and Yoseph Yechieli of the Geological Survey of Israel, some buried salt layers are in fact highly conductive of liquids, suggesting that wastes buried in their confines could easily leech into groundwater and nearby soil.When drilling three wells into a 10,000-year-old salt layer near the Dead Sea, the researchers found that groundwater had seeped into the layer and had absorbed some of its salt.

  11. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available The mitochondrial phosphate transporter (MPT plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.

  12. Element interactions and soil properties affecting the soil-to-plant transfer of six elements relevant to radioactive waste in boreal forest

    International Nuclear Information System (INIS)

    Roivainen, Paeivi; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka

    2012-01-01

    Cobalt (Co), lead (Pb), molybdenum (Mo), nickel (Ni), uranium (U), and zinc (Zn) are among the elements that have radioactive isotopes in radioactive waste. Soil-to-plant transfer is a key process for possible adverse effects if these radionuclides are accidentally released into the environment. The present study aimed at investigating factors affecting such transfer in boreal forest. The plant species studied were blueberry (Vaccinium myrtillus), May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana), rowan (Sorbus aucuparia) and Norway spruce (Picea abies). Regression analyses were carried out to investigate the effects of the chemical composition and physical properties of soil on the soil-to-leaf/needle concentration ratios of Co, Mo, Ni, Pb, U and Zn. Soil potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P) and sulphur (S) concentrations were the most important factors affecting the soil-to-plant transfer of the elements studied. Soil clay and organic matter contents were found to significantly affect plant uptake of Mo, Pb and U. Knowledge of the effects of these factors is helpful for interpretation of the predictions of radioecological models describing soil-to-plant transfer and for improving such models. (orig.)

  13. Element interactions and soil properties affecting the soil-to-plant transfer of six elements relevant to radioactive waste in boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Roivainen, Paeivi; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka [University of Eastern Finland, Department of Environmental Science, Kuopio (Finland)

    2012-03-15

    Cobalt (Co), lead (Pb), molybdenum (Mo), nickel (Ni), uranium (U), and zinc (Zn) are among the elements that have radioactive isotopes in radioactive waste. Soil-to-plant transfer is a key process for possible adverse effects if these radionuclides are accidentally released into the environment. The present study aimed at investigating factors affecting such transfer in boreal forest. The plant species studied were blueberry (Vaccinium myrtillus), May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana), rowan (Sorbus aucuparia) and Norway spruce (Picea abies). Regression analyses were carried out to investigate the effects of the chemical composition and physical properties of soil on the soil-to-leaf/needle concentration ratios of Co, Mo, Ni, Pb, U and Zn. Soil potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P) and sulphur (S) concentrations were the most important factors affecting the soil-to-plant transfer of the elements studied. Soil clay and organic matter contents were found to significantly affect plant uptake of Mo, Pb and U. Knowledge of the effects of these factors is helpful for interpretation of the predictions of radioecological models describing soil-to-plant transfer and for improving such models. (orig.)

  14. Soils Newsletter. V. 10, no. 1

    International Nuclear Information System (INIS)

    1987-07-01

    This Newsletter contains reports of the Advisory Group Meeting on the use of Nuclear and related techniques in studying the roles of trees in restoring and maintaining soil fertility (November 1986, Vienna) and the first Research Co-ordination Meeting on nuclear techniques to improve production in salt-affected soils (December 1986, IAEA, Vienna)

  15. Arabidopsis thaliana VDAC2 involvement in salt stress response ...

    African Journals Online (AJOL)

    Soil salinity seriously affects plants distribution and yield, while salt stress induces SOS genes, and voltage-dependent anion channels (VDAC) and a mitochondrial porin, are induced too. In this paper, phenotypes of AtVDAC2 transgenic lines and wild type (RLD) were analyzed. It was found that AtVDAC2 over-expressing ...

  16. Molecular markers associated with salt tolerance in Egyptian wheats

    African Journals Online (AJOL)

    use

    Salinity affects plant growth by the osmotic stress of the salt around the roots, as well as by toxicity caused by excessive .... tenth of the MS solution and the soil water tension was maintained .... The Excel file containing the binary data was imported into NT Edit ... as DICE coefficient using SIMQUAL subroutine in SIMILARITY.

  17. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh.

    Science.gov (United States)

    Bhuiyan, Mohammad A H; Parvez, Lutfar; Islam, M A; Dampare, Samuel B; Suzuki, Shigeyuki

    2010-01-15

    Total concentrations of heavy metals in the soils of mine drainage and surrounding agricultural fields in the northern part of Bangladesh were determined to evaluate the level of contamination. The average concentrations of Ti, Mn, Zn, Pb, As, Fe, Rb, Sr, Nb and Zr exceeded the world normal averages and, in some cases, Mn, Zn, As and Pb exceeded the toxic limit of the respective metals. Soil pollution assessment was carried out using enrichment factor (EF), geoaccumulation index (I(geo)) and pollution load index (PLI). The soils show significant enrichment with Ti, Mn, Zn, Pb, As, Fe, Sr and Nb, indicating inputs from mining activities. The I(geo) values have revealed that Mn (1.24+/-0.38), Zn (1.49+/-0.58) and Pb (1.63+/-0.38) are significantly accumulated in the study area. The PLIs derived from contamination factors indicate that the distal part of the coal mine-affected area is the most polluted (PLI of 4.02). Multivariate statistical analyses, principal component and cluster analyses, suggest that Mn, Zn, Pb and Ti are derived from anthropogenic sources, particularly coal mining activities, and the extreme proximal and distal parts are heavily contaminated with maximum heavy metals.

  18. How the sorption of benzene in soils contaminated with aromatic hydrocarbons is affected by the presence of biofuels

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-04-01

    Full Text Available The increasing use of biofuels as additives to gasoline may have potential indirect effects on the efficiency of soil remediation technologies used to remediate fuel spills. This problem has not yet been studied. Sorption is one of the controlling processes in soil remediation. The effect of biofuels on sorption and phase distribution of contaminants by different natural soils has not been reported on the literature. The present work examines how two different biofuels, n-butanol and soybean biodiesel, affect benzene sorption in two naturally occurring subsoils (granite and limestone. Sorption isotherms were made with soils deliberately contaminated with benzene, benzene and n-butanol and benzene plus biodiesel, using lab-scale reactors operated at constant temperature, each one loaded with 700 grams of wet sterilized soil. For each type of soil, five isotherms were determined corresponding to different contamination profiles. It was concluded that sorption was strongly affected by the nature of the soil. The partition of benzene into the different phases of the soil was significantly affected by the presence of biofuels. The experimental data was fitted to conventional sorption models, Freundlich, Langmuir and a second order polynomial. Model parameters were determined using a non-linear least squares (NLLS optimization algorithm and showed a good agreement between experimental and fitted data.

  19. Does the increased air humidity affect soil respiration and carbon stocks?

    Science.gov (United States)

    Kukumägi, Mai; Celi, Luisella; Said-Pullicino, Daniel; Kupper, Priit; Sõber, Jaak; Lõhmus, Krista; Kutti, Sander; Ostonen, Ivika

    2013-04-01

    contents of the more stable MOM. These results strongly suggest that, apart from the predicted increase in temperature and atmospheric carbon and nitrogen concentrations, an increase in free air humidity as a result of climate change may significantly influence the complex belowground carbon cycling by affecting biomass production, soil respiration and organic matter turnover.

  20. Methane transport and emissions from soil as affected by water table and vascular plants.

    Science.gov (United States)

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  1. Pesticide interactions with soil affected by olive mill wastewater (OMW): how strong and long-lasting is the OMW effect?

    Science.gov (United States)

    Keren, Yonatan; Borisover, Mikhail; Schaumann, Gabriele E.; Diehl, Dörte; Tamimi, Nisreen; Bukhanovsky, Nadezhda

    2017-04-01

    Sorption interactions with soils are well known to control the environmental fate of multiple organic compounds including pesticides. Pesticide-soil interactions may be affected by organic amendments or organic matter (OM)-containing wastewater brought to the field. Specifically, land spreading of olive mill wastewater (OMW), occurring intentionally or not, may also influence pesticide-soil interactions. The effects of the OMW disposed in the field on soil properties, including their ability to interact with pesticides, become of great interest due to the increasing demand for olive oil and a constant growth of world oil production. This paper summarizes some recent findings related to the effect of prior OMW land application on the ability of soils to interact with the organic compounds including pesticides, diuron and simazine. The major findings are as following: (1) bringing OMW to the field increases the potential of soils to sorb non-ionized pesticides; (2) this sorption increase may not be related solely to the increase in soil organic carbon content but it can reflect also the changes in the soil sorption mechanisms; (3) increased pesticide interactions with OMW-affected soils may become irreversible, due, assumedly, to the swelling of some components of the OMW-treated soil; (4) enhanced pesticide-soil interactions mitigate with the time passed after the OMW application, however, in the case of diuron, the remaining effect could be envisioned at least 600 days after the normal OMW application; (5) the enhancement effect of OMW application on soil sorption may increase with soil depth, in the 0-10 cm interval; (6) at higher pesticide (diuron) concentrations, larger extents of sorption enhancement, following the prior OMW-soil interactions, may be expected; (7) disposal of OMW in the field may be seasonal-dependent, and, in the case studied, it led to more distinct impacts on sorption when carried out in spring and winter, as compared with summer. It appears

  2. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  3. Rehabilitation of saline ecosystems through cultivation of salt tolerant plants

    International Nuclear Information System (INIS)

    Abdul, R.; Mahmood, K.

    2012-01-01

    In Pakistan, salt-affected regions have been drastically disturbed by unchecked activities of local populations. Removal of deep-rooted perennials and overgrazing destroy the native vegetation leading to rapid desertification. Shallow-rooted agricultural crops are grown on marginal soils on limited area that is not enough with respect to the spread of salinity problem. Sustainable restoration of these ecosystems requires a large scale integration of perennial plants (trees, shrubs and herbs) back in to farming systems. However, selenization processes continue because the available options for cultivation of perennial plants prove less profitable than agricultural crops. This study relates to resort the salt-affected lands for plant production and develop a technology for sustainable saline ecosystem. Plants, having salt tolerance potential, have been identified and introduced on salt-affected wastelands to develop a sustainable ecosystem with increased productivity. The biomass so produced can be used directly as forage, fuel, and even as food or feed. In addition, fish aquaculture, and some value-added products make this ecosystem more sustainable. This technology is practically demonstrated at Biosaline Research Station of Nuclear Institute for Agriculture and Biology (NIAB), Pakka Anna, Faisalabad, Pakistan. The marginally saline soils and wastelands ameliorated as a result of growing salt tolerant perennials can also be used for growing salt tolerant cultivars of conventional crops like wheat, barley and mustard. So, through proper management the saline ecosystem can become economical and profitable. (author)

  4. Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions

    International Nuclear Information System (INIS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya; Nagai, Haruyasu

    2012-01-01

    The Fukushima Dai-ichi nuclear power plant accident in Japan, triggered by a big earthquake and the resulting tsunami on 11 March 2011, caused a substantial release of radiocesium ( 137 Cs and 134 Cs) and a subsequent contamination of soils in a range of terrestrial ecosystems. Identifying factors and processes affecting radiocesium retention in these soils is essential to predict how the deposited radiocesium will migrate through the soil profile and to other biological components. We investigated vertical distributions of radiocesium and physicochemical properties in soils (to 20 cm depth) at 15 locations under different land-use types (croplands, grasslands, and forests) within a 2 km × 2 km mesh area in Fukushima city. The total 137 Cs inventory deposited onto and into soil was similar (58.4 ± 9.6 kBq m −2 ) between the three different land-use types. However, aboveground litter layer at the forest sites and herbaceous vegetation at the non-forested sites contributed differently to the total 137 Cs inventory. At the forest sites, 50–91% of the total inventory was observed in the litter layer. The aboveground vegetation contribution was in contrast smaller ( 137 Cs in mineral soil layers; 137 Cs penetrated deeper in the forest soil profiles than in the non-forested soil profiles. We quantified 137 Cs retention at surface soil layers, and showed that higher 137 Cs retention can be explained in part by larger amounts of silt- and clay-sized particles in the layers. More importantly, the 137 Cs retention highly and negatively correlated with soil organic carbon content divided by clay content across all land-use types. The results suggest that organic matter inhibits strong adsorption of 137 Cs on clay minerals in surface soil layers, and as a result affects the vertical distribution and thus the mobility of 137 Cs in soil, particularly in the forest ecosystems. - Highlights: ► Vertical distribution of radiocesium was investigated for 15 soils. ► Forest

  5. Radiocesium distribution in aggregate-size fractions of cropland and forest soils affected by the Fukushima nuclear accident.

    Science.gov (United States)

    Koarashi, Jun; Nishimura, Syusaku; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya

    2018-08-01

    The Fukushima Daiichi nuclear power plant accident caused serious radiocesium ( 137 Cs) contamination in soils in a range of terrestrial ecosystems. It is well documented that the interaction of 137 Cs with soil constituents, particularly clay minerals, in surface soil layers exerts strong control on the behavior of this radionuclide in the environment; however, there is little understanding of how soil aggregation-the binding of soil particles together into aggregates-can affect the mobility and bioavailability of 137 Cs in soils. To explore this, soil samples were collected at seven sites under different land-use conditions in Fukushima and were separated into four aggregate-size fractions: clay-sized (fractions were then analyzed for 137 Cs content and extractability and mineral composition. In forest soils, aggregate formation was significant, and 69%-83% of 137 Cs was associated with macroaggregates and sand-sized aggregates. In contrast, there was less aggregation in agricultural field soils, and approximately 80% of 137 Cs was in the clay- and silt-sized fractions. Across all sites, the 137 Cs extractability was higher in the sand-sized aggregate fractions than in the clay-sized fractions. Mineralogical analysis showed that, in most soils, clay minerals (vermiculite and kaolinite) were present even in the larger-sized aggregate fractions. These results demonstrate that larger-sized aggregates are a significant reservoir of potentially mobile and bioavailable 137 Cs in organic-rich (forest and orchard) soils. Our study suggests that soil aggregation reduces the mobility of particle-associated 137 Cs through erosion and resuspension and also enhances the bioavailability of 137 Cs in soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Do Soils affect Brown Hare (Lepus europaeus abundance in agricultural habitats?

    Directory of Open Access Journals (Sweden)

    Francesco Santilli

    2008-07-01

    Full Text Available Abstract In recent years, much research on brown hare (Lepus europaeus, Pallas 1778 ecology has been conducted in Europe to identify habitat-species relationships and the reasons for the decline in hare populations that have occurred since the 1960s. However, very few studies have considered the influence of soil texture on the abundance of this species in agricultural habitats. In this paper we examine the relationship between winter brown hare density in protected areas (game refuges in four provinces of the Tuscany region (central Italy and soil texture. Results show that hares reach higher densities in areas characterized by "loam" soils compared to areas where soils are richer in clay. Although this relationship is probably complex, soil texture may indirectly affect brown hare populations by influencing the temperature and moisture of the ground and influencing the timing of farming operations (tillage. Riassunto Il suolo influenza l’abbondanza della lepre Lepus europaeus negli ambienti agricoli? Negli ultimi anni sono state effettuate numerose ricerche sull’ecologia della lepre europea Lepus europaeus, al fine di evidenziare le relazioni fra questa specie ed il tipo di habitat e di comprendere i motivi del declino avvenuto a partire dagli anni ’60. Ciononostante pochi studi hanno preso in considerazione l’influenza del tipo di suolo sulla consistenza di questo lagomorfo negli ambienti agricoli. Nel presente lavoro viene esaminata la relazione fra la densità invernale della lepre all’interno delle zone di ripopolamento e cattura di quattro province toscane e la tessitura del suolo di queste aree. E’ stato riscontrato che le lepri raggiungono densità più elevate in aree dove predominano i suoli franchi rispetto ad aree dove risultano più argillosi. Sebbene questa relazione sia probabilmente complessa, la tessitura del suolo potrebbe influenzare

  7. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees.

    Science.gov (United States)

    Oshone, Rediet; Ngom, Mariama; Chu, Feixia; Mansour, Samira; Sy, Mame Ourèye; Champion, Antony; Tisa, Louis S

    2017-08-18

    Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the

  8. Soil Aggregation, Organic Carbon Concentration, and Soil Bulk Density As Affected by Cover Crop Species in a No-Tillage System

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    2015-06-01

    Full Text Available Soil aggregation and the distribution of total organic carbon (TOC may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS and conventional tillage system (CTS, one plowing and two disking. This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum. An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 % than fallow plus CTS (ranging from 74.62 to 85.94 %. Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.

  9. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    Science.gov (United States)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  10. Soil Respiration and Belowground Carbon Stores Among Salt Marshes Subjected to Increasing Watershed Nitrogen Loadings in Southern New England

    Science.gov (United States)

    Coastal salt marshes are ecosystems located between the uplands and sea, and because of their location are subject to increasing watershed nutrient loadings and rising sea levels. Residential development along the coast is intense, and there is a significant relationship between...

  11. Examination of Below-Ground Structure and Soil Respiration Rates of Stable and Deteriorating Salt Marshes in Jamaica Bay (NY)

    Science.gov (United States)

    CAT scan imaging is currently being used to examine below-ground peat and root structure in cores collected from salt marshes of Jamaica Bay, part of the Gateway National Recreation Area (NY). CAT scans or Computer-Aided Tomography scans use X-ray equipment to produce multiple i...

  12. Effects, tolerance mechanisms and management of salt stress in grain legumes.

    Science.gov (United States)

    Farooq, Muhammad; Gogoi, Nirmali; Hussain, Mubshar; Barthakur, Sharmistha; Paul, Sreyashi; Bharadwaj, Nandita; Migdadi, Hussein M; Alghamdi, Salem S; Siddique, Kadambot H M

    2017-09-01

    transgenics and crop management strategies may enhance salt tolerance and yield in grain legumes on salt-affected soils. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments.

    Science.gov (United States)

    Bai, Junhong; Huang, Laibin; Gao, Zhaoqin; Lu, Qiongqiong; Wang, Junjing; Zhao, Qingqing

    2014-09-15

    Indoor and outdoor seedling emergence experiments were conducted to thoroughly investigate germination patterns as affected by reclamation and urbanization, the ecological characteristics of soil seed banks, and their relationships with environmental factors in both urbanized and reclaimed regions of the Pearl River Delta in coastal wetlands. The germination rate of the soil seed bank was higher in the indoor experiment compared with that in the outdoor experiment, whereas the number and destiny of the germinated seedlings were greater in the outdoor experiment. The species diversity and number, as well as the richness and evenness indices, were higher in the urbanized region compared with the reclaimed region. However, the dominance and Sørensen similarity indices were greater in the reclaimed region compared with those indices in the urbanized region. Higher salinity and Cadmium (Cd) levels could inhibit seed germination; however, their suitable ranges (i.e. [0-2,000 mg kg(-1)] for salinity and [0-4.0 mg kg(-1)] for available Cd) can activate seedling emergence, and more seedlings germinated under the intersectional levels at 0.34 mg kg(-1) available Cd and 778.6 mg kg(-1) salinity. Seawater intrusion caused by the sea level rise will possibly result in the salt-tolerant community in this area due to increasing salinity. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Marine ecoregion and Deepwater Horizon oil spill affect recruitment and population structure of a salt marsh snail

    Science.gov (United States)

    Pennings, Steven C.; Zengel, Scott; Oehrig, Jacob; Alber, Merryl; Bishop, T. Dale; Deis, Donald R.; Devlin, Donna; Hughes, A. Randall; Hutchens, John J.; Kiehn, Whitney M.; McFarlin, Caroline R.; Montague, Clay L.; Powers, Sean P.; Proffitt, C. Edward; Rutherford, Nicolle; Stagg, Camille L.; Walters, Keith

    2016-01-01

    Marine species with planktonic larvae often have high spatial and temporal variation in recruitment that leads to subsequent variation in the ecology of benthic adults. Using a combination of published and unpublished data, we compared the population structure of the salt marsh snail, Littoraria irrorata, between the South Atlantic Bight and the Gulf Coast of the United States to infer geographic differences in recruitment and to test the hypothesis that the Deepwater Horizon oil spill led to widespread recruitment failure of L. irrorata in Louisiana in 2010. Size-frequency distributions in both ecoregions were bimodal, with troughs in the distributions consistent with a transition from sub-adults to adults at ~13 mm in shell length as reported in the literature; however, adult snails reached larger sizes in the Gulf Coast. The ratio of sub-adults to adults was 1.5–2 times greater in the South Atlantic Bight than the Gulf Coast, consistent with higher recruitment rates in the South Atlantic Bight. Higher recruitment rates in the South Atlantic Bight could contribute to higher snail densities and reduced adult growth in this region. The ratio of sub-adults to adults in Louisiana was lower in 2011 than in previous years, and began to recover in 2012–2014, consistent with widespread recruitment failure in 2010, when large expanses of spilled oil were present in coastal waters. Our results reveal an important difference in the ecology of a key salt marsh invertebrate between the two ecoregions, and also suggest that the Deepwater Horizon oil spill may have caused widespread recruitment failure in this species and perhaps others with similar planktonic larval stages.

  15. Root adaptation and ion selectivity affects the nutritional value of salt-stressed hydroponically grown baby-leaf Nasturtium officinale and Lactuca sativa

    Directory of Open Access Journals (Sweden)

    Juan A. Fernández

    2016-12-01

    Full Text Available The response of watercress (Nasturtium officinale L. to salinity has been scarcely addressed in literature despite its growing importance in the baby-leaf market and its wide cultivation in salt-affected agricultural regions. This work evaluates the effect of salinity (2.5, 5 and 10 dS m-1 on productive and quality features of watercress compared with another crop widely cultivated for the baby-leaf sector (lettuce, Lactuca sativa. In watercress, a linear relationship (R2=0.75 was observed between yield decrease and Cl– accumulation in leaves, whereas yield was not affected by salinity in lettuce. NaCl application increased Na+ accumulation at the expense of Ca2+ uptake in the leaf tissues of both crops, but also of K+ in watercress. Health-related features were improved by salinity (e.g. increased phenolics and reduced nitrates, especially in watercress, with limited sensorial quality evaluation effects.

  16. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts

    International Nuclear Information System (INIS)

    Black, Amanda; McLaren, Ronald G.; Reichman, Suzanne M.; Speir, Thomas W.; Condron, Leo M.

    2011-01-01

    Few studies have quantified the accuracy of soil metal bioavailability assays using large datasets. A meta-analysis from experiments spanning 6 months to 13 years on 12 soil types, compared bioavailability estimate efficiencies for wheat and ryegrass. Treatments included biosolids ± metals, comparing total metal, Ca(NO 3 ) 2 , EDTA, soil solution, DGT and free ion activity. The best correlations between soil metal bioavailability and shoot concentrations were for Ni using Ca(NO 3 ) 2 (r 2 = 0.72) which also provided the best estimate of Zn bioavailability (r 2 = 0.64). DGT provided the best estimate of Cd bioavailability, accounting for 49% of shoot Cd concentrations. There was no reliable descriptor of Cu bioavailability, with less than 35% of shoot Cu concentrations defined. Thus interpretation of data obtained from many soil metal bioavailability assays is unreliable and probably flawed, and there is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn, and DGT for Cd. - Highlights: → A meta-analysis evaluated the efficacy of soil metal bioavailability assays. → DGT could explain 49% of shoot Cd concentration. → There is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn. - A meta-analysis of soil metal bioavailability estimates for 12 soil types concluded that there is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn, and DGT for Cd.

  17. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Black, Amanda, E-mail: amanda.black@lincoln.ac.nz [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand); McLaren, Ronald G. [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand); Reichman, Suzanne M. [School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne 3001 (Australia); Speir, Thomas W. [Institute of Environmental Science and Research Ltd (ESR), PO Box 50348, Porirua 5240 (New Zealand); Condron, Leo M. [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand)

    2011-06-15

    Few studies have quantified the accuracy of soil metal bioavailability assays using large datasets. A meta-analysis from experiments spanning 6 months to 13 years on 12 soil types, compared bioavailability estimate efficiencies for wheat and ryegrass. Treatments included biosolids {+-} metals, comparing total metal, Ca(NO{sub 3}){sub 2}, EDTA, soil solution, DGT and free ion activity. The best correlations between soil metal bioavailability and shoot concentrations were for Ni using Ca(NO{sub 3}){sub 2} (r{sup 2} = 0.72) which also provided the best estimate of Zn bioavailability (r{sup 2} = 0.64). DGT provided the best estimate of Cd bioavailability, accounting for 49% of shoot Cd concentrations. There was no reliable descriptor of Cu bioavailability, with less than 35% of shoot Cu concentrations defined. Thus interpretation of data obtained from many soil metal bioavailability assays is unreliable and probably flawed, and there is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn, and DGT for Cd. - Highlights: > A meta-analysis evaluated the efficacy of soil metal bioavailability assays. > DGT could explain 49% of shoot Cd concentration. > There is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn. - A meta-analysis of soil metal bioavailability estimates for 12 soil types concluded that there is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn, and DGT for Cd.

  18. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  19. Effect of agricultural activity in the salt content in soils of Murcia: comparison with other land uses; Efecto de la actividad agricola en los contenidos de sales en suelos de Murcia: comparacion con otros usos de suelo

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Aviles, J. A.; Faz Cano, A.; Martinez-Martinez, S.

    2009-07-01

    Salinization is one of the main problems of soil degradation in arid and semiarid areas, causing a reduction of soil quality, declining yield and productivity, and even land abandonment. the aim of this study was to evaluate the effect of different land uses, particularly agricultural use in the salt content in soil. The study area is located in the surroundings of Murcia city (SE Spain), with an surface of 100 km{sup 2}, with high agricultural productivity. In order to determine salt content in soil, E. C. was measured in the 1:5 ratio. The results showed that the study area is saline, being the salinity higher when anthropogenic activity is more severe. Agricultural lands present the widest range of data, probably due to the application of poor quality irrigation water, fertilizers and livestock waste. (Author) 9 refs.

  20. Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling

    Directory of Open Access Journals (Sweden)

    Kristof Brenzinger

    2017-10-01

    Full Text Available Continuously rising atmospheric CO2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO2 (eCO2 concentrations (20% higher compared to current atmospheric concentrations at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE sites resulted in a more than 2-fold increase of long-term N2O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO2 (aCO2. We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected eCO2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term eCO2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing. Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot, which were fumigated with eCO2 and aCO2, respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under eCO2 differed only slightly from soil under aCO2. Wherever differences in microbial community abundance and composition were detected, they were not linked to CO2 level but rather determined by differences in soil parameters (e.g., soil moisture content due to the localization of the GiFACE sets in the experimental field. We concluded that +20% eCO2 had little to no effect on the overall microbial community involved in N-cycling in the

  1. Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling.

    Science.gov (United States)

    Brenzinger, Kristof; Kujala, Katharina; Horn, Marcus A; Moser, Gerald; Guillet, Cécile; Kammann, Claudia; Müller, Christoph; Braker, Gesche

    2017-01-01

    Continuously rising atmospheric CO 2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO 2 ( e CO 2 ) concentrations (20% higher compared to current atmospheric concentrations) at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE) sites resulted in a more than 2-fold increase of long-term N 2 O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO 2 ( a CO 2 ). We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected e CO 2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term e CO 2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing). Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot), which were fumigated with e CO 2 and a CO 2 , respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under e CO 2 differed only slightly from soil under a CO 2 . Wherever differences in microbial community abundance and composition were detected, they were not linked to CO 2 level but rather determined by differences in soil parameters (e.g., soil moisture content) due to the localization of the GiFACE sets in the experimental field. We concluded that +20% e CO 2 had little to no effect on the overall microbial community involved in N

  2. Sonoran Desert winter annuals affected by density of red brome and soil nitrogen

    Science.gov (United States)

    Salo, L.F.; McPherson, G.R.; Williams, D.G.

    2005-01-01

    Red brome [Bromus madritensis subsp. rubens (L.) Husn.] is a Mediterranean winter annual grass that has invaded Southwestern USA deserts. This study evaluated interactions among 13 Sonoran Desert annual species at four densities of red brome from 0 to the equivalent of 1200 plants ma??2. We examined these interactions at low (3 I?g) and high (537 I?g NO3a?? g soila??1) nitrogen (N) to evaluate the relative effects of soil N level on survival and growth of native annuals and red brome. Red brome did not affect emergence or survival of native annuals, but significantly reduced growth of natives, raising concerns about effects of this exotic grass on the fecundity of these species. Differences in growth of red brome and of the three dominant non nitrogen-fixing native annuals at the two levels of soil N were similar. Total species biomass of red brome was reduced by 83% at low, compared to high, N levels, whereas that of the three native species was reduced by from 42 to 95%. Mean individual biomass of red brome was reduced by 87% at low, compared to high, N levels, whereas that of the three native species was reduced by from 72 to 89%.

  3. Seasonal dynamics of CO2 efflux in soils amended with composted and thermally-dried sludge as affected by soil tillage systems in a semi-arid agroecosystem

    Science.gov (United States)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro; López-de-Sa, Esther G.; Polo, Alfredo

    2014-05-01

    In semi-arid agricultural soils, seasonal dynamic of soil CO2 efflux (SCE) is highly variable. Based on soil respiration measurements the effects of different management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) was investigated in a long-term field experiment (28 years) conducted on a sandy-loam soil at the experimental station 'La Higueruela' (40o 03'N, 4o 24'W). Both organic amendments were applied at a rate of 30 Mg ha-1 prior to tillage practices. Unamended soils were used as control for each tillage system. SCE was moderate in late spring (2.2-11.8 μmol CO2 m-2 s-1) when amendments were applied and tillage was performed, markedly decreased in summer (0.4-3.2 μmol CO2 m-2 s-1), following a moderate increase in autumn (3.4-14.1 μmol CO2 m-2 s-1), rising sharply in October (5.6-39.8 μmol CO2 m-2 s-1 ). In winter, SCE was low (0.6-6.5 μmol CO2 m-2 s-1). In general, SCE was greater in chisel and moldboard tilled soils, and in CS and particularly TSS-amended soils, due to the addition of labile C with these amendments, meanwhile no-tillage soils exhibited smaller increases in C efflux throughout the seasons. Soil temperature controlled the seasonal variations of SCE. In summer, when drought occurs, a general decrease of SCE was observed due to a deficit in soil water content. After drought period SCE jumped to high values in response to rain events ('Birch effect') that changed soil moisture conditions. Soil drying in summer and rewetting in autumn may promotes some changes on the structure of soil microbial community, affecting associated metabolic processes, and enhancing a rapid mineralization of water-soluble organic C compounds and/or dead microbial biomass that acts as an energy source for soil microorganisms. To assess the effects of tillage and amendments on SCE, Q10 values were calculated. Data were grouped into three groups according to soil moisture (0

  4. Models for the field-based toxicity of copper and zinc salts to wheat in 11 Australian soils and comparison to laboratory-based models

    International Nuclear Information System (INIS)

    Warne, Michael St.J.; Heemsbergen, Diane; McLaughlin, Mike; Bell, Mike; Broos, Kris; Whatmuff, Mark; Barry, Glenn; Nash, David; Pritchard, Deb; Penney, Nancy

    2008-01-01

    Laboratory-based relationships that model the phytotoxicity of metals using soil properties have been developed. This paper presents the first field-based phytotoxicity relationships. Wheat (Triticum aestivum L.) was grown at 11 Australian field sites at which soil was spiked with copper (Cu) and zinc (Zn) salts. Toxicity was measured as inhibition of plant growth at 8 weeks and grain yield at harvest. The added Cu and Zn EC10 values for both endpoints ranged from approximately 3 to 4760 mg/kg. There were no relationships between field-based 8-week biomass and grain yield toxicity values for either metal. Cu toxicity was best modelled using pH and organic carbon content while Zn toxicity was best modelled using pH and the cation exchange capacity. The best relationships estimated toxicity within a factor of two of measured values. Laboratory-based phytotoxicity relationships could not accurately predict field-based phytotoxicity responses. - Field-based toxicity of Cu and Zn to wheat can be modelled using soil properties. Laboratory-based models should not be used to estimate toxicity in the field

  5. NON-COHESIVE SOIL DIRECT SHEAR STRENGTH AFFECTED WITH HYDROSTATIC PRESSURE

    Directory of Open Access Journals (Sweden)

    Tadas Tamošiūnas

    2017-12-01

    Full Text Available This paper presents first results of non­cohesive soil direct shear tests with hydrostatic pressure. To reach this aim, it was chosen the Baltic Sea Klaipėda sand, due to granulometry composition and particles shape. According to this, investigated Baltic Sea sand can be called Lithuanian standard sand for scientific testing. Analysis of results revealed, that when it is increased hydrostatic pressure, the shearing strength is also increasing. Comparing air­ dry sand results with fully saturated sand and affected with 100 kPa of hydrostatic pressure, the angle of internal friction increased for 21,24%. Meanwhile, the cohesion was not changing so dramatically according to hydrostatic pressure change. Obtained results allows to proceed this research work more detailed with different loading types, testing procedures and hydrostatic pressures.

  6. Using 137Cs to quantify the redistribution of soil organic carbon and total N affected by intensive soil erosion in the headwaters of the Yangtze River, China

    International Nuclear Information System (INIS)

    Wei Guoxiao; Wang Yibo; Wang Yanlin

    2008-01-01

    Characteristics of soil organic carbon (SOC) and total nitrogen (total N) are important for determining the overall quality of soils. Studies on spatial and temporal variation in SOC and total N are of great importance because of global environmental concerns. Soil erosion is one of the major processes affecting the redistribution of SOC and total N in the test fields. To characterize the distribution and dynamics of SOC and N in the intensively eroded soil of the headwaters of the Yangtze River, China, we measured profiles of soil organic C, total N stocks, and 137 Cs in a control plot and a treatment plot. The amounts of SOC, 137 Cs of sampling soil profiles increased in the following order, lower>middle>upper portions on the control plot, and the amounts of total N of sampling soil profile increase in the following order: upper>middle>lower on the control plot. Intensive soil erosion resulted in a significant decrease of SOC amounts by 34.9%, 28.3% and 52.6% for 0-30 cm soil layer at upper, middle and lower portions and 137 Cs inventory decreased by 68%, 11% and 85% at upper, middle and lower portions, respectively. On the treatment plot total N decreased by 50.2% and 14.6% at the upper and middle portions and increased by 48.9% at the lower portion. Coefficients of variation (CVs) of SOC decreased by 31%, 37% and 30% in the upper, middle and lower slope portions, respectively. Similar to the variational trend of SOC, CVs of 137 Cs decreased by 19.2%, 0.5% and 36.5%; and total N decreased by 45.7%, 65.1% and 19% in the upper, middle and lower slope portions, respectively. The results showed that 137 Cs, SOC and total N moved on the sloping land almost in the same physical mechanism during the soil erosion procedure, indicating that fallout of 137 Cs could be used directly for quantifying dynamic SOC and total N redistribution as the soil was affected by intensive soil erosion

  7. Using (137)Cs to quantify the redistribution of soil organic carbon and total N affected by intensive soil erosion in the headwaters of the Yangtze River, China.

    Science.gov (United States)

    Guoxiao, Wei; Yibo, Wang; Yan Lin, Wang

    2008-12-01

    Characteristics of soil organic carbon (SOC) and total nitrogen (total N) are important for determining the overall quality of soils. Studies on spatial and temporal variation in SOC and total N are of great importance because of global environmental concerns. Soil erosion is one of the major processes affecting the redistribution of SOC and total N in the test fields. To characterize the distribution and dynamics of SOC and N in the intensively eroded soil of the headwaters of the Yangtze River, China, we measured profiles of soil organic C, total N stocks, and (137)Cs in a control plot and a treatment plot. The amounts of SOC, (137)Cs of sampling soil profiles increased in the following order, lower>middle>upper portions on the control plot, and the amounts of total N of sampling soil profile increase in the following order: upper>middle>lower on the control plot. Intensive soil erosion resulted in a significant decrease of SOC amounts by 34.9%, 28.3% and 52.6% for 0-30cm soil layer at upper, middle and lower portions and (137)Cs inventory decreased by 68%, 11% and 85% at upper, middle and lower portions, respectively. On the treatment plot total N decreased by 50.2% and 14.6% at the upper and middle portions and increased by 48.9% at the lower portion. Coefficients of variation (CVs) of SOC decreased by 31%, 37% and 30% in the upper, middle and lower slope portions, respectively. Similar to the variational trend of SOC, CVs of (137)Cs decreased by 19.2%, 0.5% and 36.5%; and total N decreased by 45.7%, 65.1% and 19% in the upper, middle and lower slope portions, respectively. The results showed that (137)Cs, SOC and total N moved on the sloping land almost in the same physical mechanism during the soil erosion procedure, indicating that fallout of (137)Cs could be used directly for quantifying dynamic SOC and total N redistribution as the soil was affected by intensive soil erosion.

  8. Substrate Composition and Depth Affect Soil Moisture Behavior and Plant-Soil Relationship on Mediterranean Extensive Green Roofs

    Directory of Open Access Journals (Sweden)

    Julie Chenot

    2017-10-01

    Full Text Available The Mediterranean basin is extremely vulnerable to climate change, and one of the areas most impacted by human water demand. Yet the green roofs increasingly created both for aesthetic reasons and to limit pollution and urban runoff are themselves very water-demanding. Successful green roof installation depends on the establishment of the vegetation, and the substrate is the key element: it conserves water, and provides the nutrients and physical support indispensable for plant growth. Since typical Mediterranean plant communities require no maintenance, this study seeks to develop techniques for creating maintenance- and watering-free horizontal green roofs for public or private buildings in a Mediterranean context. The innovative aspect of this study lies in creating two soil mixes, fine elements (clay and silt and coarse elements (pebbles of all sizes, in two different thicknesses, to assess vegetation development. Monitoring of substrate moisture was carried out and coupled with local rainfall measurements during summer and autumn. As expected, substrate moisture is mainly influenced by substrate depth (the deeper, the moister and composition (the finer the particles (clays and silts, the higher the moisture content. Vegetation cover impacts moisture to a lesser extent but is itself affected by the composition and depth of the substrates. These results are subsequently discussed with relation to the issue of sustainable green roofs in Mediterranean climates. Considering applications of our results, for an optimal colonization of a Mediterranean vegetation, a substrate thickness of 15 cm composed mainly of fine elements (75% clay-silt and 25% pebble-sand would be recommended in green roofs.

  9. Ozone risk assessment in three oak species as affected by soil water availability.

    Science.gov (United States)

    Hoshika, Yasutomo; Moura, Barbara; Paoletti, Elena

    2018-03-01

    To derive ozone (O 3 ) dose-response relationships for three European oak species (Quercus ilex, Quercus pubescens, and Quercus robur) under a range of soil water availability, an experiment was carried out with 2-year-old potted seedlings exposed to three levels of water availability in the soil and three levels of O 3 pollution for one growing season in an ozone free-air controlled exposure (FACE) facility. Total biomass losses were estimated relative to a hypothetical clean air at the pre-industrial age, i.e., at 10 ppb as daily average (M24). A stomatal conductance model was parameterized with inputs from the three species for calculating the stomatal O 3 flux. Exposure-based (M24, W126, and AOT40) and flux-based (phytotoxic O 3 dose (POD) 0-3 ) dose-response relationships were estimated and critical levels (CL) were calculated for a 5% decline of total biomass. Results show that water availability can significantly affect O 3 risk assessment. In fact, dose-response relationships calculated per individual species at each water availability level resulted in very different CLs and best metrics. In a simplified approach where species were aggregated on the basis of their O 3 sensitivity, the best metric was POD 0.5 , with a CL of 6.8 mmol m -2 for the less O 3 -sensitive species Q. ilex and Q. pubescens and of 3.5 mmol m -2 for the more O 3 -sensitive species Q. robur. The performance of POD 0 , however, was very similar to that of POD 0.5 , and thus a CL of 6.9 mmol m -2 POD 0 and 3.6 mmol m -2 POD 0 for the less and more O 3 -sensitive oak species may be also recommended. These CLs can be applied to oak ecosystems at variable water availability in the soil. We conclude that POD y is able to reconcile the effects of O 3 and soil water availability on species-specific oak productivity.

  10. Uric acid does not affect the acetylcholine-induced relaxation of aorta from normotensive and deoxycorticosterone acetate-salt hypertensive rats.

    Science.gov (United States)

    Szasz, Theodora; Watts, Stephanie W

    2010-06-01

    Uric acid (UA) results from xanthine oxidase (XO) catabolism of xanthine and is the final product of purine catabolism in humans. In this species, hyperuricemia is associated with gout, nephropathy, and increased cardiovascular disease risk. Although the effects of hyperuricemia in vascular biology are overall controversial, UA has been described as an antioxidant and as potentially improving endothelial function. Hypertension is associated with endothelial dysfunction. We hypothesized that UA improves the endothelial function of aorta from deoxycorticosterone acetate (DOCA)-salt hypertensive rats. UA (100 microM) in the presence of the uricase inhibitor oxonic acid (10 microM) did not modify relaxation to acetylcholine (ACh) (1 nM-10 microM) in the aorta from nontreated, sham normotensive, and DOCA-salt hypertensive rats [response to 10 microM ACh for UA versus vehicle, respectively: nontreated = 37 +/- 7 versus 48 +/- 7%, sham = 53 +/- 15 versus 57 +/- 20%, DOCA = 81 +/- 4 versus 85 +/- 2% from 20 microM prostaglandin 2alpha (PGF(2alpha))-induced contraction]. Allopurinol (100 microM), a XO inhibitor, did not significantly alter the ACh-induced relaxation of sham and DOCA aortic rings (response to 10 microM ACh for allopurinol versus vehicle, respectively: sham = 61 +/- 5 versus 68 +/- 9%, DOCA = 87 +/- 6 versus 88 +/- 3% from 20 microM PGF(2alpha)-induced contraction). Uricemia, ranging from unmeasurable to 547 microM in sham and to 506 microM in DOCA rats, was not significantly different between these two groups. The expression and activity of XO, as well as the expression of uricase, were not different between sham and DOCA rat aorta. We conclude that, at least in vitro, UA does not affect the ACh-induced relaxation of normotensive and DOCA-salt hypertensive rats.

  11. Modeling and assessing the function and sustainability of natural patches in salt-affected agro-ecosystems: Application to tamarisk (Tamarix chinensis Lour.) in Hetao, upper Yellow River basin

    Science.gov (United States)

    Ren, Dongyang; Xu, Xu; Ramos, Tiago B.; Huang, Quanzhong; Huo, Zailin; Huang, Guanhua

    2017-09-01

    Relatively low-lying zones of natural vegetation within irrigated areas are not only carriers of biodiversity but also dry drainage areas of excess water and salts applied to nearby croplands. It is thus useful to have a correct understanding of the soil water-salt dynamics and plant water use for keeping the sustainability of those natural areas. The HYDRUS-dualKc model that couples the HYDRUS-1D model with the FAO-56 dualKc approach was extended to simulate the eco-hydrological processes in natural patches of Hetao Irrigation District (Hetao), upper Yellow River basin. Field experiments were conducted in a tamarisk (Tamarix chinensis Lour.) dominated area during the growing seasons of 2012 and 2013. The model was calibrated and validated using the two-year experimental data, and applied to analyze the water and salt dynamics and the tamarisk water consumption for the present situation. Then, various groundwater depth (i.e. the depth from groundwater surface to water table, GWD) scenarios were simulated while considering the fluctuating and constant regimes of GWD changes, as well as variations of the rooting depth. Results indicated that this natural land functioned efficiently as a drainage area for subsurface flow and excess salt from surrounding croplands. However, the present GWDs were too shallow leading to high soil evaporation and severe salt stress. The soil evaporation accounted for 50% of the total evapotranspiration (ETa) while root zone salt storage increased about 50% during growing seasons. On the basis of scenario analysis, an optimum groundwater depth of 140-200 cm with smaller fluctuation was suggested for the growing seasons of natural patches. In addition, tamarisk growth could be largely improved if the roots can grow deeper with water table decline in the future. We demonstrated that monitoring and modeling could be used to support the development of water management strategies in Hetao aimed at conserving water while sustaining local

  12. Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concretes

    International Nuclear Information System (INIS)

    Cwirzen, Andrzej; Penttala, Vesa

    2005-01-01

    The influence of the cement paste-aggregate interfacial transition zone (ITZ) on the frost durability of high-performance silica fume concrete (HPSFC) has been studied. Investigation was carried out on eight non-air-entrained concretes having water-to-binder (W/B) ratios of 0.3, 0.35 and 0.42 and different additions of condensed silica fume. Studies on the microstructure and composition of the cement paste have been made by means of environmental scanning electron microscope (ESEM)-BSE, ESEM-EDX and mercury intrusion porosimetry (MIP) analysis. The results showed that the transition zone initiates and accelerates damaging mechanisms by enhancing movement of the pore solution within the concrete during freezing and thawing cycles. Cracks filled with ettringite were primarily formed in the ITZ. The test concretes having good frost-deicing salt durability featured a narrow transition zone and a decreased Ca/Si atomic ratio in the transition zone compared to the bulk cement paste. Moderate additions of silica fume seemed to densify the microstructure of the ITZ

  13. Soil respiration as affected by long-term broiler litter application to a udult in the ozark highlands.

    Science.gov (United States)

    McMullen, Richard L; Brye, Kristofor R; Gbur, Edward E

    2015-01-01

    The United States produced 8.4 billion broiler chickens () and an estimated 10.1 to 14.3 million Mg of broiler litter (BL) in 2012. Arkansas' production of 1 billion broilers in 2012 produced an estimated 1.2 to 1.7 million Mg of BL, most of which was concentrated in the Ozark Highlands region of northwest Arkansas. Increased CO release from soils associated with agricultural practices has generated concerns regarding the contribution of certain agricultural management practices to global warming. The objectives of this study were to evaluate the effects of long-term (>6 yr) BL application to a Udult on soil respiration and annual C emissions and to determine the predictability of soil respiration based on soil temperature and moisture in the Ozark Highlands region of northwest Arkansas. Soil respiration was measured routinely between May 2009 and May 2012 in response to annual BL application rates of 0, 5.6, and 11.2 Mg dry litter ha that began in 2003. Soil respiration varied ( 0.05) by BL application rate but differed ( < 0.01) among study years. Multiple regression indicated that soil respiration could be reasonably predicted using 2-cm-depth soil temperature (T) and the product of T and VWC as predictors ( = 0.52; < 0.01). Results indicate that organic amendments, such as BL, can stimulate release of CO from the soil to the atmosphere, potentially negatively affecting atmospheric greenhouse gas concentrations; thus, there may be application rates above which the benefits of organic amendments may be diminished by adverse environmental effects. Improved BL management strategies are needed to lessen the loss of CO from BL-amended soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Nitrogen enrichment in runoff sediments as affected by soil texture in Beijing mountain area.

    Science.gov (United States)

    Yang, Yang; Ye, Zhihan; Liu, Baoyuan; Zeng, Xianqin; Fu, Suhua; Lu, Bingjun

    2014-02-01

    Enrichment ratio (ER) is widely used in nonpoint source pollution models to estimate the nutrient loss associated with soil erosion. The objective of this study was to determine the ER of total nitrogen (ERN) in the sediments eroded from the typical soils with varying soil textures in Beijing mountain area. Each of the four soils was packed into a 40 by 30 by 15 cm soil pan and received 40-min simulated rainfalls at the intensity of 90 mm h(-1) on five slopes. ERN for most sediments were above unity, indicating the common occurrence of nitrogen enrichment accompanied with soil erosion in Beijing mountain area. Soil texture was not the only factor that influenced N enrichment in this experiment since the ERN for the two fine-textured soils were not always lower. Soil properties such as soil structure might exert a more important influence in some circumstances. The selective erosion of clay particles was the main reason for N enrichment, as implied by the significant positive correlation between the ER of total nitrogen and clay fraction in eroded sediments. Significant regression equations between ERN and sediment yield were obtained for two pairs of soils, which were artificially categorized by soil texture. The one for fine-textured soils had greater intercept and more negative slope. Thus, the initially higher ERN would be lower than that for the other two soils with coarser texture once the sediment yield exceeded 629 kg ha(-1).

  15. The street children of Manila are affected by early-in-life periodontal infection: description of a treatment modality: sea salt.

    Science.gov (United States)

    Michel, J F; Michel, M G; Nadan, J; Nowzari, H

    2013-01-01

    Thousands of street children of Manila are affected by early-in-life oral infection. The aim of the present investigation was to evaluate the effectiveness of a sea-salt mouthrinse solution in street children of Manila affected by mild to severe forms of periodontal disease. These children were all in need of special protection: abandoned, abused, exploited, neglected, orphaned, poor. During 3 oral-health missions in 2003, 2004 and 2005, 617 abandoned children (5 to 13 year-old), received oral examination at a non-sectarian child-caring institution in Metro Manila (Virlanie Foundation) by calibrated examiners. A treatment based on what could be done was proposed: 1. Teaching of a precise tooth brushing technique with sea-salt, controlled and reinforced every two days for one week by calibrated health educators, 2. The application of sea-salt water mouthrinse (2.5 gram in 20 ml). Periodontal measurements were repeated at the end of each mission. All children returned to child-caring institution for the followup examinations. In 2003, 10 male and 11 female (n=21) were diagnosed with aggressive periodontitis. In 2009 and 2010, none was affected by aggressive periodontitis. For all patients, the gingival index decreased from 1.08 at the first mission to 1.04 at the end of the second mission and 0.98 at the end of the third mission. The periodontal index decreased from 1.33 at the first mission to 0.98 at the second mission and 0.92 at the last mission. The present investigation confirms that prevention and early diagnosis can result in success with minimum cost. The provided oral health program empowered street children in the most desperate circumstances to be educated and become self-reliant, independent, and responsible. We propose here an antimicrobial approach which has a high degree of efficacy and tolerability, and can be implemented in virtually all parts of the world using low-cost resources.

  16. Naphthalene Acetic Acid Potassium Salt (NAA-K+) Affects Conidial Germination, Sporulation, Mycelial Growth, Cell Surface Morphology, and Viability of Fusarium oxysporum f. sp. radici-lycopersici and F. oxysporum f. sp. cubense in Vitro.

    Science.gov (United States)

    Manzo-Valencia, María Karina; Valdés-Santiago, Laura; Sánchez-Segura, Lino; Guzmán-de-Peña, Dora Linda

    2016-11-09

    The response to exogenous addition of naphthalene acetic acid potassium salt (NAA-K + ) to Fusarium oxysporum f. sp radici-lycopersici ATCC 60095 and F. oxysporum f. sp. cubense isolated from Michoacan Mexico soil is reported. The in vitro study showed that NAA-K + might be effective in the control of Fusarium oxysporum. Exogenous application of NAA-K + affected both spores and mycelium stages of the fungi. Viability testing using acridine orange and propidium iodide showed that NAA-K + possesses fungal killing properties, doing it effectively in the destruction of conidia of this phytopathogenic fungi. Analysis of treated spores by scanning electron microscopy showed changes in the shape factor and fractal dimension. Moreover, NAA-K + repressed the expression of brlA and fluG genes. The results disclosed here give evidence of the use of this synthetic growth factor as a substance of biocontrol that presents advantages, and the methods of application in situ should be explored.

  17. Does S-metolachlor affect the performance of Pseudomonas sp. strain ADP as bioaugmentation bacterium for atrazine-contaminated soils?

    Directory of Open Access Journals (Sweden)

    Cristina A Viegas

    Full Text Available Atrazine (ATZ and S-metolachlor (S-MET are two herbicides widely used, often as mixtures. The present work examined whether the presence of S-MET affects the ATZ-biodegradation activity of the bioaugmentation bacterium Pseudomonas sp. strain ADP in a crop soil. S-MET concentrations were selected for their relevance in worst-case scenarios of soil contamination by a commercial formulation containing both herbicides. At concentrations representative of application of high doses of the formulation (up to 50 µg g(-1 of soil, corresponding to a dose approximately 50× higher than the recommended field dose (RD, the presence of pure S-MET significantly affected neither bacteria survival (~10(7 initial viable cells g(-1 of soil nor its ATZ-mineralization activity. Consistently, biodegradation experiments, in larger soil microcosms spiked with 20× or 50 × RD of the double formulation and inoculated with the bacterium, revealed ATZ to be rapidly (in up to 5 days and extensively (>96% removed from the soil. During the 5 days, concentration of S-MET decreased moderately to about 60% of the initial, both in inoculated and non-inoculated microcosms. Concomitantly, an accumulation of the two metabolites S-MET ethanesulfonic acid and S-MET oxanilic acid was found. Despite the dissipation of almost all the ATZ from the treated soils, the respective eluates were still highly toxic to an aquatic microalgae species, being as toxic as those from the untreated soil. We suggest that this high toxicity may be due to the S-MET and/or its metabolites remaining in the soil.

  18. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils.

    Science.gov (United States)

    Franz, Eelco; Semenov, Alexander V; Termorshuizen, Aad J; de Vos, O J; Bokhorst, Jan G; van Bruggen, Ariena H C

    2008-02-01

    The recent increase in foodborne disease associated with the consumption of fresh vegetables stresses the importance of the development of intervention strategies that minimize the risk of preharvest contamination. To identify risk factors for Escherichia coli O157:H7 persistence in soil, we studied the survival of a Shiga-toxin-deficient mutant in a set of 36 Dutch arable manure-amended soils (organic/conventional, sand/loam) and measured an array of biotic and abiotic manure-amended soil characteristics. The Weibull model, which is the cumulative form of the underlying distribution of individual inactivation kinetics, proved to be a suitable model for describing the decline of E. coli O157:H7. The survival curves generally showed a concave curvature, indicating changes in biological stress over time. The calculated time to reach the detection limit ttd ranged from 54 to 105 days, and the variability followed a logistic distribution. Due to large variation among soils of each management type, no differences were observed between organic and conventional soils. Although the initial decline was faster in sandy soils, no significant differences were observed in ttd between both sandy and loamy soils. With sandy, loamy and conventional soils, the variation in ttd was best explained by the level of dissolved organic carbon per unit biomass carbon DOC/biomC, with prolonged survival at increasing DOC/biomC. With organic soils, the variation in ttd was best explained by the level of dissolved organic nitrogen (positive relation) and the microbial species diversity as determined by denaturing gradient gel electrophoresis (negative relation). Survival increased with a field history of low-quality manure (artificial fertilizer and slurry) compared with high-quality manure application (farmyard manure and compost). We conclude that E. coli O157:H7 populations decline faster under more oligotrophic soil conditions, which can be achieved by the use of organic fertilizer with a

  19. Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand

    Science.gov (United States)

    Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.

    2014-12-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when

  20. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    Science.gov (United States)

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Soil sterilization affects aging-related sequestration and bioavailability of p,p'-DDE and anthracene to earthworms

    International Nuclear Information System (INIS)

    Slizovskiy, Ilya B.; Kelsey, Jason W.

    2010-01-01

    Laboratory experiments investigated the effects of soil sterilization and compound aging on the bioaccumulation of spiked p,p'-DDE and anthracene by Eisenia fetida and Lumbricus terrestris. Declines in bioavailability occurred as pollutant residence time in both sterile and non-sterile soils increased from 3 to 203 d. Accumulation was generally higher in sterile soils during initial periods of aging (from 3-103 d). By 203 d, however, bioavailability of the compounds was unaffected by sterilization. Gamma irradiation and autoclaving may have altered bioavailability by inducing changes in the chemistry of soil organic matter (SOM). The results support a dual-mode partitioning sorption model in which the SOM components associated with short-term sorption (the 'soft' or 'rubbery' phases) are more affected than are the components associated with long-term sorption (the 'glassy' or microcrystalline phases). Risk assessments based on data from experiments in which sterile soil was used could overestimate exposure and bioaccumulation of pollutants. - Soil sterilization affects aging-related sequestration of organic contaminants.

  2. Spatial distribution of diuron sorption affinity as affected by soil, terrain and management practices in an intensively managed apple orchard.

    Science.gov (United States)

    Umali, Beng P; Oliver, Danielle P; Ostendorf, Bertram; Forrester, Sean; Chittleborough, David J; Hutson, John L; Kookana, Rai S

    2012-05-30

    We investigated how the sorption affinity of diuron (3'-(3,4-dichlorophenyl)-1,1-dimenthyl-urea), a moderately hydrophobic herbicide, is affected by soil properties, topography and management practices in an intensively managed orchard system. Soil-landscape analysis was carried out in an apple orchard which had a strong texture contrast soil and a landform with relief difference of 50 m. Diuron sorption (K(d)) affinity was successfully predicted (R(2)=0.79; pdiuron K(d) with TOC, pH(w), slope and WI as key variables. Mean diuron K(d) values were also significantly different (pdiuron than soil in the alleys. Younger stands, which were found to have lower TOC than in the older stands, also had lower diuron K(d) values. In intensively managed orchards, sorption affinity of pesticides to soils was not only affected by soil properties and terrain attributes but also by management regime. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils

    Science.gov (United States)

    Iturri, Laura Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel Eduardo

    2017-10-01

    There is little information about the mineral and organic composition of sediments eroded by wind at different heights. Because of that, wind tunnel simulations were performed on four agricultural loess soils of different granulometry and their saltating materials collected at different heights. The particulate matter with an aerodynamic diameter mainly smaller than 10 μm (PM10) of these soils was obtained separately by a laboratory method. Results indicated that the granulometric composition of sediments collected at different heights was more homogeneous in fine- than in sandy-textured soils, which were more affected by sorting effects during wind erosion. This agrees with the preferential transport of quartz at low heights and of clay minerals at greater heights. SOC contents increased with height, but the composition of the organic materials was different: stable carboxylic acids, aldehydes, amides and aromatics were preferentially transported close to the ground because their were found in larger aggregates, while plant debris and polysaccharides, carbohydrates and derivatives of microbial origin from organic matter dominated at greater heights for all soil types. The amount of SOC in the PM10 fraction was higher when it was emitted from sandy than from fine textured soils. Because of the sorting process produced by wind erosion, the stable organic matter compounds will be transported at low heights and local scales, modifying soil fertility due to nutrient exportation, while less stable organic compounds will be part of the suspension losses, which are known to affect some processes at regional- or global scale.

  4. Soil sterilization affects aging-related sequestration and bioavailability of p,p'-DDE and anthracene to earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Slizovskiy, Ilya B. [Program in Environmental Science and Department of Chemistry, Muhlenberg College, Allentown, PA 18104 (United States); Kelsey, Jason W., E-mail: Kelsey@muhlenberg.ed [Program in Environmental Science and Department of Chemistry, Muhlenberg College, Allentown, PA 18104 (United States)

    2010-10-15

    Laboratory experiments investigated the effects of soil sterilization and compound aging on the bioaccumulation of spiked p,p'-DDE and anthracene by Eisenia fetida and Lumbricus terrestris. Declines in bioavailability occurred as pollutant residence time in both sterile and non-sterile soils increased from 3 to 203 d. Accumulation was generally higher in sterile soils during initial periods of aging (from 3-103 d). By 203 d, however, bioavailability of the compounds was unaffected by sterilization. Gamma irradiation and autoclaving may have altered bioavailability by inducing changes in the chemistry of soil organic matter (SOM). The results support a dual-mode partitioning sorption model in which the SOM components associated with short-term sorption (the 'soft' or 'rubbery' phases) are more affected than are the components associated with long-term sorption (the 'glassy' or microcrystalline phases). Risk assessments based on data from experiments in which sterile soil was used could overestimate exposure and bioaccumulation of pollutants. - Soil sterilization affects aging-related sequestration of organic contaminants.

  5. Soil organic matter in fire-affected pastures and in an Araucaria forest in South-Brazilian Leptosols

    Directory of Open Access Journals (Sweden)

    Mariana da Luz Potes

    2012-05-01

    Full Text Available The objective of this work was to evaluate the distribution pattern and composition of soil organic matter (SOM and its physical pools of Leptosols periodically affected by fire over the last 100 years in South Brazil. Soil samples at 0-5, 5-10, and 10-15 cm depths were collected from the following environments: native pasture without burning in the last year and grazed with 0.5 livestock per hectare per year (1NB; native pasture without burning in the last 23 years and grazed with 2.0 livestock per hectare per year (23NB; and an Araucaria forest (AF. Physical fractionation was performed with the 0-5 and 5-10 cm soil layers. Soil C and N stocks were determined in the three depths and in the physical pools, and organic matter was characterized by infrared spectroscopy and thermogravimetry. The largest C stocks in all depths and physical pools were found under the AF. The 23NB environment showed the lowest soil C and N stocks at the 5-15 cm depth, which was related to the end of burning and to the higher grazing intensity. The SOM of the occluded light fraction showed a greater chemical recalcitrance in 1NB than in 23NB. Annual pasture burning does not affect soil C stocks up to 15 cm of depth.

  6. Enhancement of natural radioactivity in soils and salt-marshes surrounding a non-nuclear industrial complex

    International Nuclear Information System (INIS)

    Bologon, J.P.; Garca-Tenorio, R.; Garca-Leon, M.

    1995-01-01

    The existence of a very high extension (about 1000 ha) of phosphogypsum piles, sited in the estuary formed by the mouths of the Tinto and Odiel rivers (SW Spain), produce a quite local, but unambiguous radioactive impact in the surrounding salt-marshes. In these piles the main by-product formed in the manufacture of phosphoric acid is stored. The radioactive impact is generated by the deposition and accumulation of radionuclides from the uranium series that previously had been mainly leached or dissolved from the piles by waters that temporally can cover or cross them. Other means of impact, especially through the atmosphere, have been evaluated as negligible or not detectable

  7. Sterilization affects soil organic matter chemistry and bioaccumulation of spiked p,p'-DDE and anthracene by earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Jason W., E-mail: kelsey@muhlenberg.ed [Program in Environmental Science and Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104 (United States); Slizovskiy, Ilya B.; Peters, Richard D.; Melnick, Adam M. [Program in Environmental Science and Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104 (United States)

    2010-06-15

    Laboratory experiments were conducted to assess the effects of soil sterilization on the bioavailability of spiked p,p'-DDE and anthracene to the earthworms Eisenia fetida and Lumbricus terrestris. Physical and chemical changes to soil organic matter (SOM) induced by sterilization were also studied. Uptake of both compounds added after soil was autoclaved or gamma irradiated increased for E. fetida. Sterilization had no effect on bioaccumulation of p,p'-DDE by L. terrestris, and anthracene uptake increased only in gamma-irradiated soils. Analyses by FT-IR and DSC indicate sterilization alters SOM chemistry and may reduce pollutant sorption. Chemical changes to SOM were tentatively linked to changes in bioaccumulation, although the effects were compound and species specific. Artifacts produced by sterilization could lead to inaccurate risk assessments of contaminated sites if assumptions derived from studies carried out in sterilized soil are used. Ultimately, knowledge of SOM chemistry could aid predictions of bioaccumulation of organic pollutants. - Soil sterilization affects soil organic matter chemistry and pollutant bioaccumulation.

  8. Salvage logging effect on soil properties in a fire-affected Mediterranean forest: a two years monitoring research

    Science.gov (United States)

    Mataix-Solera, Jorge; Moltó, Jorge; Arcenegui, Vicky; García-Orenes, Fuensanta; Chrenkovà, Katerina; Torres, Pilar; Jara-Navarro, Ana B.; Díaz, Gisela; Izquierdo, Ezequiel

    2015-04-01

    In the Mediterranean countries, forest fires are common and must be considered as an ecological factor, but changes in land use, especially in the last five decades have provoked a modification in their natural regime. Moreover, post-fire management can have an additional impact on the ecosystem; in some cases, even more severe than the fire. Salvage logging is a traditional management in most fire-affected areas. In some cases, the way of doing it, using heavy machinery, and the vulnerability of soils to erosion and degradation make this management potentially very agresive to soil, and therefore to the ecosystem. Very little research has been done to study how this treatment could affect soil health. In this research we show 2 years of monitoring of some soil properties in an area affected by a forest fire, where some months later this treatment was applied. The study area is located in 'Sierra de Mariola Natural Park' in Alcoi, Alicante (E Spain). A big forest fire (>500 has) occurred in July 2012. The forest is composed mainly of Pinus halepensis trees with an understory of typical Mediterranean shrubs species such as Quercus coccifera, Rosmarinus officinalis, Thymus vulgaris, Brachypodium retusum, etc. Soil is classified as a Typic Xerorthent (Soil Survey Staff, 2014) developed over marls. In February 2013, salvage logging (SL) treatment consisting in a complete extraction of the burned wood using heavy machinery was applied in a part of the affected forest. Plots for monitoring this effect were installed in this area and in a similar nearby area where no treatment was done, and then used as control (C) for comparison. Soil samplings were done immediately after treatment and every 6 months. Some soil properties were analysed, including soil organic matter (SOM) content, basal soil respiration (BSR), microbial biomass carbon (MBC), bulk density (BD), soil water repellency (SWR), aggregate stability (AS), field capacity, nitrogen, etc. After two years of

  9. The ash in forest fire affected soils control the soil losses. Part 2. Current and future research challenges

    Science.gov (United States)

    Pereira, Paulo; Cerdà, Artemi

    2013-04-01

    Ash distribution on soil surface and impacts on soil properties received a great attention in recently (Pereira et al., 2010; Pereira et al., 2013). Ash it is a highly mobile material that can be easily transported wind, especially in severe wildland fires, where organic matter is reduced to dust, due the high temperatures of combustion. In the immediate period after the fire, ash cover rules soil erosion as previous researchers observed (Cerdà, 1998a; 1998b) and have strong influence on soil hydrological properties, such as water retention (Stoof et al. 2011 ) and wettability (Bodi et al., 2011). Ash it is also a valuable source of nutrients important for plant recuperation (Pereira et al., 2011; Pereira et al., 2012), but can act also as a source contamination, since are also rich in heavy metals (Pereira and Ubeda, 2010). Ash has different physical and chemical properties according the temperature of combustion, burned specie and time of exposition (Pereira et al., 2010). Thus this different properties will have different implications on soil properties including erosion that can increase due soil sealing (Onda et al. 2008) or decrease as consequence of raindrop impact reduction (Cerdà and Doerr, 2008). The current knowledge shows that ash has different impacts on soil properties and this depends not only from the type of ash produced, but of the soil properties (Woods and Balfour, 2010). After fire wind and water strong redistribute ash on soil surface, increasing the vulnerability of soil erosion in some areas, and reducing in others. Understand this mobility is fundamental have a better comprehension about the spatial and temporal effects of ash in soil erosion. Have a better knowledge about this mobility is a priority to future research. Other important aspects to have to be assessed in the future are how ash particulates percolate on soil and how ash chemical composition is important to induce soil aggregation and dispersion. How soil micro topography

  10. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils.

    Science.gov (United States)

    Clarke, Lorraine Weller; Jenerette, G Darrel; Bain, Daniel J

    2015-02-01

    Heavy metals in urban soils can compromise human health, especially in urban gardens, where gardeners may ingest contaminated dust or crops. To identify patterns of urban garden metal contamination, we measured concentrations and bioavailability of Pb, As, and Cd in soils associated with twelve community gardens in Los Angeles County, CA. This included sequential extractions to partition metals among exchangeable, reducible, organic, or residual fractions. Proximity to road increased all metal concentrations, suggesting vehicle emissions sources. Reducible Pb increased with neighborhood age, suggesting leaded paint as a likely pollutant source. Exchangeable Cd and As both increased with road proximity. Only cultivated soils showed an increase in exchangeable As with road proximity, potentially due to reducing humic acid interactions while Cd bioavailability was mitigated by organic matter. Understanding the geochemical phases and metal bioavailability allows incorporation of contamination patterns into urban planning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Nutrient and salt relations of Pterocarpus officinalis L. in coastal wetlands of the Caribbean: assessment through leaf and soil analyses.

    Science.gov (United States)

    Ernesto Medina; Elvira Cuevas; Ariel Lugo

    2007-01-01

    Pterocarpus officinalis L. is a dominant tree of freshwater coastal wetlands in the Caribbean and the Guiana regions. It is frequently associated with mangroves in areas with high rainfall and/or surface run-off. We hypothesized that P. officinalis is a freshwater swamp species that when occurring in association with mangroves occupies low-salinity soil microsites, or...

  12. Disturbance-diversity relationships for soil fauna are explained by faunal community biomass in a salt marsh

    NARCIS (Netherlands)

    Thakur, M.P.; Berg, M.P.; Eisenhauer, N.; van Langevelde, Frank

    2014-01-01

    Disturbance-diversity relationships have long been studied in ecology with a unimodal relationship as the key prediction. Although this relationship has been widely contested, it is rarely tested for soil invertebrate fauna, an important component of terrestrial biodiversity. We tested

  13. Disturbance–diversity relationships for soil fauna are explained by faunal community biomass in a salt marsh

    NARCIS (Netherlands)

    Thakur, M.P.; Berg, M.P.; Eisenhauer, N.; Langevelde, van F.

    2014-01-01

    Disturbance–diversity relationships have long been studied in ecology with a unimodal relationship as the key prediction. Although this relationship has been widely contested, it is rarely tested for soil invertebrate fauna, an important component of terrestrial biodiversity. We tested

  14. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  15. Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem.

    Science.gov (United States)

    Hamilton, Jordan G; Farrell, Richard E; Chen, Ning; Feng, Renfei; Reid, Joel; Peak, Derek

    2016-03-01

    HudBay Minerals, Inc., has mined and/or processed Zn and Cu ore in Flin Flon, MB, Canada, since the 1930s. The boreal forest ecosystem and soil surrounding these facilities have been severely impacted by mixed metal contamination and HSO deposition. Zinc is one of the most prevalent smelter-derived contaminants and has been identified as a key factor that may be limiting revegetation. Metal toxicity is related to both total concentrations and speciation; therefore, X-ray absorption spectroscopy and X-ray fluorescence mapping were used to characterize Zn speciation in soils throughout the most heavily contaminated areas of the landscape. Zinc speciation was linked to two distinct soil types. Group I soils consist of exposed soils in weathered positions of bedrock outcrops with Zn present primarily as franklinite, a (ZnFeO) spinel mineral. Group II soils are stabilized by an invasive metal-tolerant grass species, with Zn found as a mixture of octahedral (Fe oxides) and tetrahedral Mn oxides) adsorption complexes with a franklinite component. Soil erosion influences Zn speciation through the redistribution of Zn and soil particulates from Group I landscape positions to Group II soils. Despite Group II soils having the highest concentrations of CaCl-extractable Zn, they support metal-tolerant plant growth. The metal-tolerant plants are probably preferentially colonizing these areas due to better soil and nutrient conditions as a result of soil deposition from upslope Group I areas. Zinc concentration and speciation appears to not influence the colonization by metal-tolerant grasses, but the overall soil properties and erosion effects prevent the revegetation by native boreal forest species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Test speed and other factors affecting the measurements of tree root properties used in soil reinforcement models

    NARCIS (Netherlands)

    Cofie, P.; Koolen, A.J.

    2001-01-01

    Measured values of the mechanical properties of tree roots are found to be affected by a number of factors. Shear properties of tree roots are found to be partly influenced by size of the testing equipment, level of soil compaction, deformation of the root material and estimated width of the shear

  17. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China.

    Science.gov (United States)

    Du, Yan; Hu, Xue-Feng; Wu, Xiao-Hong; Shu, Ying; Jiang, Ying; Yan, Xiao-Juan

    2013-12-01

    Located in Central South China, Hunan province is rich in mineral resources. To study the influence of mining on Cd pollution to local agricultural eco-system, the paddy soils and rice grain of Y county in northern Hunan province were intensively monitored. The results were as follows: (1) Total Cd (T-Cd) content in the soils of the county ranges from 0.13 to 6.02 mg kg(-1), with a mean of 0.64 mg kg(-1), of which 57.5% exceed the allowable limit specified by the China Soil Environmental Quality Standards. T-Cd in the soils varies largely, with the coefficient of variation reaching 146.4%. The spatial distribution of T-Cd in the soils quite matches with that of mining and industries. The content of HCl-extractable Cd (HCl-Cd) in the soils ranges from 0.02 to 2.17 mg kg(-1), with a mean of 0.24 mg kg(-1). A significant positive correlation exists between T-Cd and HCl-Cd in the soils (r = 0.770, ρ soils (r = 0.091, ρ > 0.05), which suggests that the amount of Cd accumulating in the rice is more affected by its availability in the soils, rather than the total content. (4) The dietary intake of Cd via rice consumption in Y county is estimated to be 179.9 μg day(-1) person(-1) on average, which is far beyond the allowable limit specified by FAO/WHO and the target hazard quotients of Cd much higher than 1, suggesting the high risk on human health from Cd exposure.

  18. Manure-amended soil characteristics affecting the survival of E. coli O157:h7 in 36 Dutch soils

    NARCIS (Netherlands)

    Franz, E.; Semenov, A.V.; Termorshuizen, A.J.; Vos, de O.J.; Bokhorst, J.G.; Bruggen, van A.H.C.

    2008-01-01

    The recent increase in foodborne disease associated with the consumption of fresh vegetables stresses the importance of the development of intervention strategies that minimize the risk of preharvest contamination. To identify risk factors for Escherichia coli O157:H7 persistence in soil, we studied

  19. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.

    Directory of Open Access Journals (Sweden)

    Xiaofei Tian

    Full Text Available Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0-100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0-15.8%, 9.3-13.9%, and 9.2-21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N, and available K content of the 0-20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching.

  20. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield

    Science.gov (United States)

    Tian, Xiaofei; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0–100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0–15.8%, 9.3–13.9%, and 9.2–21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0–20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching. PMID:29324750

  1. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.

    Science.gov (United States)

    Tian, Xiaofei; Li, Chengliang; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0-100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0-15.8%, 9.3-13.9%, and 9.2-21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0-20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching.

  2. Transport of copper as affected by titania nanoparticles in soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Fang Jing [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Shan Xiaoquan, E-mail: xiaoquan@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wen Bei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Lin Jinming [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Owens, Gary [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhou Shuairen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2011-05-15

    The effects of TiO{sub 2} nanoparticles on the transport of Cu through four different soil columns were studied. For two soils (HB and DX), TiO{sub 2} nanoparticles acted as a Cu carrier and facilitated the transport of Cu. For a third soil (BJ) TiO{sub 2} nanoparticles also facilitated Cu transport but to a much lesser degree, but for a fourth soil (HLJ) TiO{sub 2} nanoparticles retarded the transport of Cu. Linear correlation analysis indicated that soil properties rather than sorption capacities for Cu primary governed whether TiO{sub 2} nanoparticles-facilitated Cu transport. The TiO{sub 2}-associated Cu of outflow in the Cu-contaminated soil columns was significantly positively correlated with soil pH and negatively correlated with CEC and DOC. During passage through the soil columns 46.6-99.9% of Cu initially adsorbed onto TiO{sub 2} could be 'stripped' from nanoparticles depending on soil, where Cu desorption from TiO{sub 2} nanoparticles increased with decreasing flow velocity and soil pH. - Highlights: > TiO{sub 2} nanoparticles could facilitate or retard the transport of Cu in soils. > Soil properties primarily governed TiO{sub 2}-facilitated Cu transport. > Cu initially adsorbed onto TiO{sub 2} could be 'stripped' duing transport. - TiO{sub 2} nanoparticles play an important role in mediating and transporting Cu in soil columns.

  3. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    Science.gov (United States)

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change.

  4. Do Tillage Methods Affect Germination and Species Similarity of Soil Weed Seeds Bank?

    Directory of Open Access Journals (Sweden)

    Shahgholi Hassan

    2015-12-01

    Full Text Available Cultural practices such as tillage used for crop production influence the composition of the weed seed bank in the soil. In order to investigate the effects of different tillage methods on seed bank properties, species diversity and similarity, two laboratory and greenhouse experiments were carried out as randomized complete block design with four replications in 2011. Treatments included: once tillage per year (T1, twice tillage per year (T2, more than twice tillage (T3 and no tillage (T4. Laboratory results showed that the T3 and T4 treatments had the highest and the lowest observed seeds numbers, respectively. Between the laboratory observed weed seeds, the maximum weed seed numbers were Echinochloa crus-galli and Amaranthus retroflexus in the T3 treatment, while Chenopodium album, Polygonum aviculare and Cuscuta campestris had the highest seed numbers in the T2 treatment. At the greenhouse study, Chenopodium album, Amaranthus retroflexus and Hordeum morinum in the T2 treatment were dominant species. The highest diversity was observed in the T2 treatment, and Chenopodium album and Echinochloa crus-galli were dominant species in the T2 and T3 treatments. Maximum species similarity index was achieved from the T1 and T3 treatments. Thereby this study concluded that increasing of tillage number could affect the similarity index of weed seeds and subsequently alters the weed community composition.

  5. Influence of gypsum amendment on methane emission from paddy rice soil affected by saline irrigation water

    Directory of Open Access Journals (Sweden)

    Ei Ei eTheint

    2016-01-01

    Full Text Available To investigate the influence of gypsum application on methane (CH4 emission from paddy rice soil affected by saline irrigation water, two pot experiments with the rice cultivation were conducted. In pot experiment (I, salinity levels 30 mMNaCl (S30 and 90 mMNaCl (S90, that showed maximum and minimum CH4 production in an incubation experiment, respectively, were selected and studied without and with application of 1 Mg gypsum ha-1(G1. In pot experiment (II, CH4 emission was investigated under different rates of gypsum application: 1 (G1, 2.5 (G2.5 and 5 (G5 Mg gypsum ha-1 under a non-saline and saline condition of 25 mMNaCl (S25. In experiment (I, the smallest CH4 emission was observed in S90. Methane emission in S30 was not significantly different with the non-saline control. The addition of gypsum showed significant lower CH4 emission in saline and non-saline treatments compared with non-saline control. In experiment (II, the CH4 emissions in the saline treatments were not significantly different to the non-saline treatments except S25-G5. However, our work has shown that gypsum can lower CH4 emissions under saline and non-saline conditions. Thus, gypsum can be used as a CH4 mitigation option in non-saline as well as in saline conditions.

  6. 137Cs and 90Sr mobility in soils and transfer in soil-plant systems in the Novozybkov district affected by the Chernobyl accident

    International Nuclear Information System (INIS)

    Korobova, E.; Ermakov, A.; Linnik, V.

    1998-01-01

    The Chernobyl radionuclides distribution and mobility in soils and uptake by plants have been studied in seminatural and agricultural moraine and in fluvioglacial landscapes typical for the areas of the Bryansk region affected by the accident.The major part of the Chernobyl 137 Cs accumulated in the topsoil is insoluble in water, 40 to 93% of this radionuclide is strongly fixed by soil, while 70 to 90% of the 90 Sr is present in water soluble, exchangeable and weak-acid soluble forms. Radionuclide vertical migration is most pronounced in local depressions with organic and gley soils in which both radionuclides are detected to the depth of 30-40 cm.In woodlands, most of the 137 grasses. Transfer to grasses in local depressions is usually higher compared with the dry levees. Observed exclusions are assumed to be due to comparatively low mobility of 137 Cs and relatively high K content in soil. 137 Cs accumulation in potato tubers grown on sandy soddy podzolic watershed soils mainly corresponds to its total amount in soils; uptake of 90 Sr depends upon the percentage of its most mobile fraction.Pronounced relief is proved to cause different patterns in distribution and migration of radionuclides in soils and local food chains. The study showed it to be true for private farms situated in different landscape positions within the same settlement.The forest litter, topsoil and products, and flood plain pastures, especially localities in depressions are critical materials for the long-term radioecological monitoring of the contaminated landscapes of the study area and those of similar conditions. Population of the areas within the zone of contamination exceeding 15Ci/km 2 (555kBq/m 2 ) should be recommended to exclude local forest products from their diets and to avoid cattle grazing on wet flood plain meadows without remediation. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Net Fluxes of CO2, but not N20 or CH4, are Affected Following Agronomic-Scale Additions of Urea to Prairie and Arable Soils

    Science.gov (United States)

    Microbial production of carbon dioxide (CO2) increased with nitrogen (N) application rate for both arable and prairie soils incubated at 21 °C. Rate of N applied as urea (0, 11, 56, 112 kg N ha-1) did not affect soil methane consumption and nitrous oxide production for soil collected from either ec...

  8. EDGA amendment of slightly heavy metal loaded soil affects heavy metal solubility, crop growth and microbivorous nematodes but not bacteria and herbivorous nematodes

    NARCIS (Netherlands)

    Bouwman, L.A.; Bloem, J.; Römkens, P.F.A.M.; Japenga, J.

    2005-01-01

    Phytoextraction of heavy metals is a promising technology to remediate slightly and moderately contaminated soils. To enhance crops' uptake of heavy metals, chelates such as EDGA are being tested as soil additives. Heavy metal loaded EDGA can affect soil organisms such as bacteria and nematodes in

  9. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Can quinoa, a salt-tolerant Andean crop species, be used for phytoremediation of chromium-polluted soil?

    Science.gov (United States)

    Ruiz, Karina B.; Cicatelli, Angela; Guarino, Francesco; Jacobsen, Sven-Erik; Biondi, Stefania; Castiglione, Stefano

    2017-04-01

    Quinoa (Chenopodium quinoa Willd), an ancient Andean halophytic seed crop, exhibits exceptional resistance to salinity, drought, and cold. Consistent with the notion that such a resilient plant is likely to tolerate toxic levels of heavy metals as well and could, therefore, be employed for the clean-up of polluted soil (via phytoextraction or phytostabilization), the species' ability to take up, translocate, and tolerate chromium (CrIII) was investigated in a greenhouse pot experiment. A cultivar adapted to European conditions (cv. Titicaca) was grown on soil spiked with 500 mg kg-1 DW of Cr(NO3)3•9H2O, combined (or not) with 150 mM NaCl, or on soil grown with 150 mM NaCl alone. Plants were grown up to maturity (four months after sowing), and then plant biomass and concentrations of Na, Cr, and other elements (e.g., Fe and P) were evaluated in the plant organs. Soil Cr content (total and available fractions) was analysed at the start of the experiment, one week after the last addition of Cr and/or NaCl, and at the end of the trial. No visible toxic effects were observed under the different culture conditions. Results revealed that Cr was mainly accumulated in roots, while Na+ was translocated to the aerial parts. In order to compare plant stress responses under the different treatments (Cr, NaCl, Cr+NaCl), expression levels of several stress-related genes, together with those of a potential Cr transporter, were determined by quantitative real-time RT-PCR.

  11. 'Fingerprints' of four crop models as affected by soil input data aggregation

    DEFF Research Database (Denmark)

    Angulo, Carlos; Gaiser, Thomas; Rötter, Reimund P

    2014-01-01

    for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil...... properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation....... In this study we used four crop models (SIMPLACE, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo...

  12. Amending greenroof soil with biochar to affect runoff water quantity and quality.

    Science.gov (United States)

    Beck, Deborah A; Johnson, Gwynn R; Spolek, Graig A

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    DEFF Research Database (Denmark)

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid......-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse...... and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha(-1). We used culture-based enumerations of general bacteria, Pseudomonas...

  14. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition.

    Science.gov (United States)

    Kumar, Anjani; Nayak, A K; Shukla, Arvind K; Panda, B B; Raja, R; Shahid, Mohammad; Tripathi, Rahul; Mohanty, Sangita; Rath, P C

    2012-04-01

    A laboratory study was conducted with four pesticides, viz. a fungicide (carbendazim), two insecticides (chlorpyrifos and cartap hydrochloride) and an herbicide (pretilachlor) applied to a sandy clay loam soil at a field rate to determine their effect on microbial biomass carbon (MBC) and carbon mineralization (C(min)). The MBC content of soil increased with time up to 30 days in cartap hydrochloride as well as chlorpyrifos treated soil. Thereafter, it decreased and reached close to the initial level by 90th day. However, in carbendazim treated soil, the MBC showed a decreasing trend up to 45 days and subsequently increased up to 90 days. In pretilachlor treated soil, MBC increased through the first 15 days, and thereafter decreased to the initial level. Application of carbendazim, chlorpyrifos and cartap hydrochloride decreased C(min) for the first 30 days and then increased afterwards, while pretilachlor treated soil showed an increasing trend.

  15. Effects of magnetized water application on soil and maize growth indices under different amounts of salt in the water

    Directory of Open Access Journals (Sweden)

    Meysam Abedinpour

    2017-09-01

    Full Text Available Application of low quality water for irrigation is compulsive in facing water scarcity. Use of a magnetic field is an approach to overcome this challenge. This study examined the impact of magnetic field technology on improving germination under water of different salinity levels. An experiment was conducted to determine the effects of saline water levels, i.e. (S1:0.5, (S2:2, (S3:4 and (S4:6 dS/m combined with magnetized technology (with or without on maize growth. Thus, magnetic treatment was applied by passing the irrigation water through a 1,500 mT magnetic field at 3 litres per minute (lpm flow rate. Some emergence indices, such as emergence index, emergence rate index (ERI and mean emergence time, were used to evaluate the germination of maize seed. As for soil properties after plant harvest, the use of magnetically treated irrigation water reduced soil pH but increased soil electrical conductivity and available N and P. ERI increased from 7.6 to 10.2, 9.1 to 11.1, 10.3 to 13.3, and 11.8 to 13.3 when applying the magnetized field for S1, S2, S3 and S4, respectively. Overall, the growth parameters of maize were improved by using magnetic technology with saline water, while the opposite trend was shown for increasing salinity without magnetic treatment.

  16. Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil.

    Science.gov (United States)

    Ramzani, Pia Muhammad Adnan; Khalid, Muhammad; Naveed, Muhammad; Ahmad, Rashid; Shahid, Muhammad

    2016-07-01

    Incidence of iron (Fe) deficiency in human populations is an emerging global challenge. This study was conducted to evaluate the potential of iron sulphate combined with biochar and poultry manure for Fe biofortification of wheat grains in pH affected calcareous soil. In first two incubation studies, rates of sulfur (S) and Fe combined with various organic amendments for lowering pH and Fe availability in calcareous soil were optimized. In pot experiment, best rate of Fe along with biochar (BC) and poultry manure (PM) was evaluated for Fe biofortification of wheat in normal and S treated low pH calcareous soil. Fe applied with BC provided fair increase in root-shoot biomass and photosynthesis up to 79, 53 and 67%, respectively in S treated low pH soil than control. Grain Fe and ferritin concentration was increased up to 1.4 and 1.2 fold, respectively while phytate and polyphenol was decreased 35 and 44%, respectively than control in treatment where Fe was applied with BC and S. In conclusion, combined use of Fe and BC could be an effective approach to improve growth and grain Fe biofortification of wheat in pH affected calcareous soil. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments 1

    OpenAIRE

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less sh...

  18. Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity

    OpenAIRE

    Pulleman, M M; Six, J; van Breemen, N; Jongmans, A G

    2005-01-01

    Stable microaggregates can physically protect occluded soil organic matter (SOM) against decomposition. We studied the effects of agricultural management on the amount and characteristics of microaggregates and on SOM distribution in a marine loam soil in the Netherlands. Three long-term farming systems were compared: a permanent pasture, a conventional-arable system and an organic-arable system. Whole soil samples were separated into microaggregates (53-250 mu m), 20-53 mu m and 20 mu m) ve...

  19. Carbon stock and humification index of organic matter affected by sugarcane straw and soil management

    Directory of Open Access Journals (Sweden)

    Aline Segnini

    2013-10-01

    Full Text Available The maintenance of sugarcane (Saccharum spp. straw on a soil surface increases the soil carbon (C stocks, but at lower rates than expected. This fact is probably associated with the soil management adopted during sugarcane replanting. This study aimed to assess the impact on soil C stocks and the humification index of soil organic matter (SOM of adopting no-tillage (NT and conventional tillage (CT for sugarcane replanting. A greater C content and stock was observed in the NT area, but only in the 0-5 cm soil layer (p < 0.05. Greater soil C stock (0-60 cm was found in soil under NT, when compared to CT and the baseline. While C stock of 116 Mg ha-1 was found in the baseline area, in areas under CT and NT systems the values ranged from 120 to 127 Mg ha-1. Carbon retention rates of 0.67 and 1.63 Mg C ha-1 year-1 were obtained in areas under CT and NT, respectively. Laser-Induced Fluorescence Spectroscopy showed that CT makes the soil surface (0-20 cm more homogeneous than the NT system due to the effect of soil disturbance, and that the SOM humification index (H LIF is larger in CT compared to NT conditions. In contrast, NT had a gradient of increasing H LIF, showing that the entry of labile organic material such as straw is also responsible for the accumulation of C in this system. The maintenance of straw on the soil surface and the adoption of NT during sugarcane planting are strategies that can increase soil C sequestration in the Brazilian sugarcane sector.

  20. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    Directory of Open Access Journals (Sweden)

    Rongyan Bu

    Full Text Available Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N mineralization. The quantity and quality of particulate organic matter (POM and potentially mineralizable-N (PMN contents were measured in soils from 16 paired rice-rapeseed (RR/cotton-rapeseed (CR rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile, intermediate (25th and 75th percentiles, and high (90th percentile levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C and N (POM-N contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively than CR rotations (45.6% and 19.5%, respectively. Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  1. Amending greenroof soil with biochar to affect runoff water quantity and quality

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Deborah A.; Johnson, Gwynn R. [Portland State University, Mechanical and Materials Engineering, POB 751, Portland, OR 97207 (United States); Spolek, Graig A., E-mail: graig@cecs.pdx.edu [Portland State University, Mechanical and Materials Engineering, POB 751, Portland, OR 97207 (United States)

    2011-08-15

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4 cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. - Highlights: > Biochar in green roof soil reduces nitrogen and phosphorus in the runoff. > Addition of biochar reduces turbidity of runoff. > Addition of biochar reduces total organic carbon content in runoff by 67-72%. > Biochar improves water retention of saturated soil. - In this controlled laboratory experiment, greenroof soil was amended by the addition of biochar, which reduced the water runoff concentration of nitrogen, phosphorus, and organic carbon.

  2. Amending greenroof soil with biochar to affect runoff water quantity and quality

    International Nuclear Information System (INIS)

    Beck, Deborah A.; Johnson, Gwynn R.; Spolek, Graig A.

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4 cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. - Highlights: → Biochar in green roof soil reduces nitrogen and phosphorus in the runoff. → Addition of biochar reduces turbidity of runoff. → Addition of biochar reduces total organic carbon content in runoff by 67-72%. → Biochar improves water retention of saturated soil. - In this controlled laboratory experiment, greenroof soil was amended by the addition of biochar, which reduced the water runoff concentration of nitrogen, phosphorus, and organic carbon.

  3. Congo grass grown in rotation with soybean affects phosphorus bound to soil carbon

    Directory of Open Access Journals (Sweden)

    Alexandre Merlin

    2014-06-01

    Full Text Available The phosphorus supply to crops in tropical soils is deficient due to its somewhat insoluble nature in soil, and addition of P fertilizers has been necessary to achieve high yields. The objective of this study was to examine the mechanisms through which a cover crop (Congo grass - Brachiaria ruziziensis in rotation with soybean can enhance soil and fertilizer P availability using long-term field trials and laboratory chemical fractionation approaches. The experimental field had been cropped to soybean in rotation with several species under no-till for six years. An application rate of no P or 240 kg ha-1 of P2O5 had been applied as triple superphosphate or as Arad rock phosphate. In April 2009, once more 0.0 or 80.0 kg ha-1 of P2O5 was applied to the same plots when Congo grass was planted. In November 2009, after Congo grass desiccation, soil samples were taken from the 0-5 and 5-10 cm depth layer and soil P was fractionated. Soil-available P increased to the depth of 10 cm through growing Congo grass when P fertilizers were applied. The C:P ratio was also increased by the cover crop. Congo grass cultivation increased P content in the soil humic fraction to the depth of 10 cm. Congo grass increases soil P availability by preventing fertilizer from being adsorbed and by increasing soil organic P.

  4. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    Science.gov (United States)

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  5. Modeling salt movement and halophytic crop growth on marginal lands with the APEX model

    Science.gov (United States)

    Goehring, N.; Saito, L.; Verburg, P.; Jeong, J.; Garrett, A.

    2016-12-01

    Saline soils negatively impact crop productivity in nearly 20% of irrigated agricultural lands worldwide. At these saline sites, cultivation of highly salt-tolerant plants, known as halophytes, may increase productivity compared to conventional salt-sensitive crops (i.e., glycophytes), thereby increasing the economic potential of marginal lands. Through a variety of mechanisms, halophytes are more effective than glycophytes at excluding, accumulating, and secreting salts from their tissues. Each mechanism can have a different impact on the salt balance in the plant-soil-water system. To date, little information is available to understand the long-term impacts of halophyte cultivation on environmental quality. This project utilizes the Agricultural Policy/Environmental Extender (APEX) model, developed by the US Department of Agriculture, to model the growth and production of two halophytic crops. The crops being modeled include quinoa (Chenopodium quinoa), which has utilities for human consumption and forage, and AC Saltlander green wheatgrass (Elymus hoffmannii), which has forage utility. APEX simulates salt movement between soil layers and accounts for the salt balance in the plant-soil-water system, including salinity in irrigation water and crop-specific salt uptake. Key crop growth parameters in APEX are derived from experimental growth data obtained under non-stressed conditions. Data from greenhouse and field experiments in which quinoa and AC Saltlander were grown under various soil salinity and irrigation salinity treatments are being used to parameterize, calibrate, and test the model. This presentation will discuss progress on crop parameterization and completed model runs under different salt-affected soil and irrigation conditions.

  6. How Fencing Affects the Soil Quality and Plant Biomass in the Grassland of the Loess Plateau.

    Science.gov (United States)

    Zeng, Quanchao; Liu, Yang; Xiao, Li; Huang, Yimei

    2017-09-25