WorldWideScience

Sample records for salmonella spi-1 effector

  1. Hierarchical effector protein transport by the Salmonella Typhimurium SPI-1 type III secretion system.

    Directory of Open Access Journals (Sweden)

    Brit Winnen

    Full Text Available BACKGROUND: Type III secretion systems (TTSS are employed by numerous pathogenic and symbiotic bacteria to inject a cocktail of different "effector proteins" into host cells. These effectors subvert host cell signaling to establish symbiosis or disease. METHODOLOGY/PRINCIPAL FINDINGS: We have studied the injection of SipA and SptP, two effector proteins of the invasion-associated Salmonella type III secretion system (TTSS-1. SipA and SptP trigger different host cell responses. SipA contributes to triggering actin rearrangements and invasion while SptP reverses the actin rearrangements after the invasion has been completed. Nevertheless, SipA and SptP were both pre-formed and stored in the bacterial cytosol before host cell encounter. By time lapse microscopy, we observed that SipA was injected earlier than SptP. Computer modeling revealed that two assumptions were sufficient to explain this injection hierarchy: a large number of SipA and SptP molecules compete for transport via a limiting number of TTSS; and the TTSS recognize SipA more efficiently than SptP. CONCLUSIONS/SIGNIFICANCE: This novel mechanism of hierarchical effector protein injection may serve to avoid functional interference between SipA and SptP. An injection hierarchy of this type may be of general importance, allowing bacteria to precisely time the host cell manipulation by type III effectors.

  2. The role of coupled positive feedback in the expression of the SPI1 type three secretion system in Salmonella.

    Directory of Open Access Journals (Sweden)

    Supreet Saini

    2010-07-01

    Full Text Available Salmonella enterica serovar Typhimurium is a common food-borne pathogen that induces inflammatory diarrhea and invades intestinal epithelial cells using a type three secretion system (T3SS encoded within Salmonella pathogenicity island 1 (SPI1. The genes encoding the SPI1 T3SS are tightly regulated by a network of interacting transcriptional regulators involving three coupled positive feedback loops. While the core architecture of the SPI1 gene circuit has been determined, the relative roles of these interacting regulators and associated feedback loops are still unknown. To determine the function of this circuit, we measured gene expression dynamics at both population and single-cell resolution in a number of SPI1 regulatory mutants. Using these data, we constructed a mathematical model of the SPI1 gene circuit. Analysis of the model predicted that the circuit serves two functions. The first is to place a threshold on SPI1 activation, ensuring that the genes encoding the T3SS are expressed only in response to the appropriate combination of environmental and cellular cues. The second is to amplify SPI1 gene expression. To experimentally test these predictions, we rewired the SPI1 genetic circuit by changing its regulatory architecture. This enabled us to directly test our predictions regarding the function of the circuit by varying the strength and dynamics of the activating signal. Collectively, our experimental and computational results enable us to deconstruct this complex circuit and determine the role of its individual components in regulating SPI1 gene expression dynamics.

  3. Correction: The role of coupled positive feedback in the expression of the SPI1 type three secretion system in Salmonella.

    Directory of Open Access Journals (Sweden)

    Supreet Saini

    2010-08-01

    Full Text Available Salmonella enterica serovar Typhimurium is a common food-borne pathogen that induces inflammatory diarrhea and invades intestinal epithelial cells using a type three secretion system (T3SS encoded within Salmonella pathogenicity island 1 (SPI1. The genes encoding the SPI1 T3SS are tightly regulated by a network of interacting transcriptional regulators involving three coupled positive feedback loops. While the core architecture of the SPI1 gene circuit has been determined, the relative roles of these interacting regulators and associated feedback loops are still unknown. To determine the function of this circuit, we measured gene expression dynamics at both population and single-cell resolution in a number of SPI1 regulatory mutants. Using these data, we constructed a mathematical model of the SPI1 gene circuit. Analysis of the model predicted that the circuit serves two functions. The first is to place a threshold on SPI1 activation, ensuring that the genes encoding the T3SS are expressed only in response to the appropriate combination of environmental and cellular cues. The second is to amplify SPI1 gene expression. To experimentally test these predictions, we rewired the SPI1 genetic circuit by changing its regulatory architecture. This enabled us to directly test our predictions regarding the function of the circuit by varying the strength and dynamics of the activating signal. Collectively, our experimental and computational results enable us to deconstruct this complex circuit and determine the role of its individual components in regulating SPI1 gene expression dynamics.

  4. RpoE promotes invasion and intracellular survival by regulating SPI-1 and SPI-2 in Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Zhang, Haifang; Jia, Yanwei; Xie, Xiaofang; Wang, Min; Zheng, Yi; Xu, Shungao; Zhang, Wei; Wang, Qiang; Huang, Xinxiang; Du, Hong

    2016-08-01

    To demonstrate the role of RpoE during the later stage of hyperosmotic stress in Salmonella. Expressions of SPI-1 and SPI-2 under hyperosmotic stress for 120 min were investigated by a microarray, and the invasion and intracellular survival of wild-type and ΔrpoE strains were compared. The global differential expression of bacterial proteins between the wild-type and ΔrpoE strains was examined after 120 min of hyperosmotic stress. SPI-1 and SPI-2 were repressed, and the invasion and intracellular survival were defected in the ΔrpoE strain. Thirteen bacterial-associated proteins and 11 secreted proteins differed significantly between the wild-type and ΔrpoE strains. RpoE may promote invasion and intracellular survival by regulating the expression of SPI-1 and SPI-2.

  5. SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression

    Directory of Open Access Journals (Sweden)

    Pavlova Barbora

    2011-01-01

    Full Text Available Abstract Genes localized at Salmonella pathogenicity island-1 (SPI-1 are involved in Salmonella enterica invasion of host non-professional phagocytes. Interestingly, in macrophages, SPI-1-encoded proteins, in addition to invasion, induce cell death via activation of caspase-1 which also cleaves proIL-1β and proIL-18, precursors of 2 proinflammatory cytokines. In this study we were therefore interested in whether SPI-1-encoded type III secretion system (T3SS may influence proinflammatory response of macrophages. To test this hypothesis, we infected primary porcine alveolar macrophages with wild-type S. Typhimurium and S. Enteritidis and their isogenic SPI-1 deletion mutants. ΔSPI1 mutants of both serovars invaded approx. 5 times less efficiently than the wild-type strains and despite this, macrophages responded to the infection with ΔSPI1 mutants by increased expression of proinflammatory cytokines IL-1β, IL-8, TNFα, IL-23α and GM-CSF. Identical macrophage responses to that induced by the ΔSPI1 mutants were also observed to the infection with sipB but not the sipA mutant. The hilA mutant exhibited an intermediate phenotype between the ΔSPI1 mutant and the wild-type S. Enteritidis. Our results showed that the SPI-1-encoded T3SS is required not only for cell invasion but in macrophages also for the suppression of early proinflammatory cytokine expression.

  6. In silico clustering of Salmonella global gene expression data reveals novel genes co-regulated with the SPI-1 virulence genes through HilD.

    Science.gov (United States)

    Martínez-Flores, Irma; Pérez-Morales, Deyanira; Sánchez-Pérez, Mishael; Paredes, Claudia C; Collado-Vides, Julio; Salgado, Heladia; Bustamante, Víctor H

    2016-11-25

    A wide variety of Salmonella enterica serovars cause intestinal and systemic infections to humans and animals. Salmonella Patogenicity Island 1 (SPI-1) is a chromosomal region containing 39 genes that have crucial virulence roles. The AraC-like transcriptional regulator HilD, encoded in SPI-1, positively controls the expression of the SPI-1 genes, as well as of several other virulence genes located outside SPI-1. In this study, we applied a clustering method to the global gene expression data of S. enterica serovar Typhimurium from the COLOMBOS database; thus genes that show an expression pattern similar to that of SPI-1 genes were selected. This analysis revealed nine novel genes that are co-expressed with SPI-1, which are located in different chromosomal regions. Expression analyses and protein-DNA interaction assays showed regulation by HilD for six of these genes: gtgE, phoH, sinR, SL1263 (lpxR) and SL4247 were regulated directly, whereas SL1896 was regulated indirectly. Interestingly, phoH is an ancestral gene conserved in most of bacteria, whereas the other genes show characteristics of genes acquired by Salmonella. A role in virulence has been previously demonstrated for gtgE, lpxR and sinR. Our results further expand the regulon of HilD and thus identify novel possible Salmonella virulence genes.

  7. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Van Parys Alexander

    2012-06-01

    Full Text Available Abstract Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.

  8. SPI1 defective mutants of Salmonella enterica induce cross-protective immunity in chickens against challenge with serovars Typhimurium and Enteritidis.

    Science.gov (United States)

    Matulova, Marta; Havlickova, Hana; Sisak, Frantisek; Babak, Vladimir; Rychlik, Ivan

    2013-06-28

    In this study we were interested in the serovar cross-protection potential of Salmonella Pathogenicity Island 1 (SPI1) attenuated vaccine strains of Salmonella enterica serovars Enteritidis and Typhimurium and immune response of vaccinated and naive chickens to Salmonella infection. The immune response was characterized by real time PCR quantifying transcripts of interleukins IL1β, IL17, IL22, interferon gamma (IFNγ), inducible NO synthase (iNOS), immunoglobulins IgM, IgA, IgY and Ig light chain, and six genes of acute phase response including avidin, serum amyloid A, extracellular fatty acid-binding protein (Ex-FABP), immune responsive gene 1, chemokine AH221 and trappin-6. Vaccination with SPI1 mutants of both serovars protected chickens against Salmonella infection, independent of the serovar used for the challenge and the time post infection. However, expressions of all interleukins, iNOS and Ex-FABP showed that protection against homologous serovars was significantly higher than against heterologous serovars after intravenous challenge at 4 days post infection. The vaccination with a mixture of S. Enteritidis and S. Typhimurium SPI1 mutants induced an intermediate protection against challenge with both serovars, i.e. the mixed vaccine provided an additional protective effect when compared with the chickens vaccinated with a vaccine formed by only a single Salmonella serovar. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. phoP, SPI1, SPI2 and aroA mutants of Salmonella Enteritidis induce a different immune response in chickens

    OpenAIRE

    Elsheimer-Matulova, Marta; Varmuzova, Karolina; Kyrova, Kamila; Havlickova, Hana; Sisak, Frantisek; Rahman, Masudur; Rychlik, Ivan

    2015-01-01

    Poultry is the most frequent reservoir of non-typhoid Salmonella enterica for humans. Understanding the interactions between chickens and S. enterica is therefore important for vaccine design and subsequent decrease in the incidence of human salmonellosis. In this study we therefore characterized the interactions between chickens and phoP, aroA, SPI1 and SPI2 mutants of S. Enteritidis. First we tested the response of HD11 chicken macrophage-like cell line to S. Enteritidis infection monitorin...

  10. phoP, SPI1, SPI2 and aroA mutants of Salmonella Enteritidis induce a different immune response in chickens.

    Science.gov (United States)

    Elsheimer-Matulova, Marta; Varmuzova, Karolina; Kyrova, Kamila; Havlickova, Hana; Sisak, Frantisek; Rahman, Masudur; Rychlik, Ivan

    2015-09-17

    Poultry is the most frequent reservoir of non-typhoid Salmonella enterica for humans. Understanding the interactions between chickens and S. enterica is therefore important for vaccine design and subsequent decrease in the incidence of human salmonellosis. In this study we therefore characterized the interactions between chickens and phoP, aroA, SPI1 and SPI2 mutants of S. Enteritidis. First we tested the response of HD11 chicken macrophage-like cell line to S. Enteritidis infection monitoring the transcription of 36 genes related to immune response. All the mutants and the wild type strain induced inflammatory signaling in the HD11 cell line though the response to SPI1 mutant infection was different from the rest of the mutants. When newly hatched chickens were inoculated, the phoP as well as the SPI1 mutant did not induce an expression of any of the tested genes in the cecum. Despite this, such chickens were protected against challenge with wild-type S. Enteritidis. On the other hand, inoculation of chickens with the aroA or SPI2 mutant induced expression of 27 and 18 genes, respectively, including genes encoding immunoglobulins. Challenge of chickens inoculated with these two mutants resulted in repeated induction of 11 and 13 tested genes, respectively, including the genes encoding immunoglobulins. In conclusion, SPI1 and phoP mutants induced protective immunity without inducing an inflammatory response and antibody production. Inoculation of chickens with the SPI2 and aroA mutants also led to protective immunity but was associated with inflammation and antibody production. The differences in interaction between the mutants and chicken host can be used for a more detailed understanding of the chicken immune system.

  11. Deciphering interplay between Salmonella invasion effectors.

    Directory of Open Access Journals (Sweden)

    Robert J Cain

    2008-04-01

    Full Text Available Bacterial pathogens have evolved a specialized type III secretion system (T3SS to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP can individually manipulate actin dynamics at the plasma membrane, which acts as a 'signaling hub' during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cisbinary entry effector interplay (BENEFIT screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen-host interaction.

  12. Diverse secreted effectors are required for Salmonella persistence in a mouse infection model.

    Directory of Open Access Journals (Sweden)

    Afshan S Kidwai

    Full Text Available Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

  13. Diverse Secreted Effectors Are Required for Salmonella Persistence in a Mouse Infection Model

    Energy Technology Data Exchange (ETDEWEB)

    Kidwai, Afshan S.; Mushamiri, Ivy T.; Niemann, George; Brown, Roslyn N.; Adkins, Joshua N.; Heffron, Fred

    2013-08-12

    Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

  14. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD.

    Science.gov (United States)

    Martínez, Luary C; Yakhnin, Helen; Camacho, Martha I; Georgellis, Dimitris; Babitzke, Paul; Puente, José L; Bustamante, Víctor H

    2011-06-01

    Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) play key roles in the pathogenesis of Salmonella enterica. Previously, we showed that when Salmonella grows in Luria-Bertani medium, HilD, encoded in SPI-1, first induces the expression of hilA, located in SPI-1, and subsequently of the ssrAB operon, located in SPI-2. These genes code for HilA and the SsrA/B two-component system, the positive regulators of the SPI-1 and SPI-2 regulons respectively. In this study, we demonstrate that CsrA, a global regulatory RNA binding protein, post-transcriptionally regulates hilD expression by directly binding near the Shine-Dalgarno and translation initiation codon sequences of the hilD mRNA, preventing its translation and leading to its accelerated turnover. Negative regulation is counteracted by the global SirA/BarA two-component system, which directly activates the expression of CsrB and CsrC, two non-coding regulatory RNAs that sequester CsrA, thereby preventing it from binding to its target mRNAs. Our results illustrate the integration of global and specific regulators into a multifactorial regulatory cascade controlling the expression of virulence genes acquired by horizontal transfer events. © 2011 Blackwell Publishing Ltd.

  15. Identification of cognate host targets and specific ubiquitylation sites on the Salmonella SPI-1 effector SopB/SigD

    DEFF Research Database (Denmark)

    Rogers, Lindsay D; Kristensen, Anders R; Boyle, Erin C

    2008-01-01

    B/SigD. The only host protein found to bind immunoprecipitated SopB was the small G-protein Cdc42. The interaction was confirmed by reciprocal immunoprecipitation, and Cdc42 also bound glutathione S-transferase-fused SopB and SopB delivered through infection by the bacteria, confirming the interaction...

  16. The SPI-1-like Type III secretion system: more roles than you think.

    Directory of Open Access Journals (Sweden)

    Frank eEgan

    2014-02-01

    Full Text Available The type III secretion system (T3SS is a protein delivery system which is involved in a wide spectrum of interactions, from mutualism to pathogenesis, between Gram negative bacteria and various eukaryotes, including plants, fungi, protozoa and mammals. Various phylogenetic families of the T3SS have been described, including the Salmonella Pathogenecity Island 1 family (SPI-1. The SPI-1 T3SS was initially associated with the virulence of enteric pathogens, but is actually found in a diverse array of bacterial species, where it can play roles in processes as different as symbiotic interactions with insects and colonisation of plants. We review the multiple roles of the SPI-1 T3SS and discuss both how these discoveries are changing our perception of the SPI-1 family and what impacts this has on our understanding of the specialisation of the T3SS in general.

  17. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells.

    Science.gov (United States)

    Neumann, Christina; Fraiture, Malou; Hernàndez-Reyes, Casandra; Akum, Fidele N; Virlogeux-Payant, Isabelle; Chen, Ying; Pateyron, Stephanie; Colcombet, Jean; Kogel, Karl-Heinz; Hirt, Heribert; Brunner, Frédéric; Schikora, Adam

    2014-01-01

    Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  18. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    KAUST Repository

    Neumann, Christina

    2014-10-17

    Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  19. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells.

    Science.gov (United States)

    Domingues, Lia; Ismail, Ahmad; Charro, Nuno; Rodríguez-Escudero, Isabel; Holden, David W; Molina, María; Cid, Víctor J; Mota, Luís Jaime

    2016-07-01

    Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4-phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella-containing vacuole (SCV) and to Salmonella-induced tubules; using the PI(4)P-binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N-terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells. © 2015 John Wiley & Sons Ltd.

  20. Assessing the ability of Salmonella enterica to translocate Type III effectors into plant cells

    Science.gov (United States)

    Salmonella enterica, a human enteric pathogen, has the ability to multiply and survive endophytically in plants, and mutations in genes encoding the type III secretion system (T3SS) or its effectors (T3Es) may contribute to this colonization. Two reporter plasmids for T3E translocation into plant ce...

  1. Evaluation of Salmonella enterica Type III Secretion System Effector Proteins as Carriers for Heterologous Vaccine Antigens

    Science.gov (United States)

    Hegazy, Wael Abdel Halim; Xu, Xin; Metelitsa, Leonid

    2012-01-01

    Live attenuated strains of Salmonella enterica have a high potential as carriers of recombinant vaccines. The type III secretion system (T3SS)-dependent translocation of S. enterica can be deployed for delivery of heterologous antigens to antigen-presenting cells. Here we investigated the efficacy of various effector proteins of the Salmonella pathogenicity island (SPI2)-encoded T3SS for the translocation of model antigens and elicitation of immune responses. The SPI2 T3SS effector proteins SifA, SteC, SseL, SseJ, and SseF share an endosomal membrane-associated subcellular localization after translocation. We observed that all effector proteins could be used to translocate fusion proteins with the model antigens ovalbumin and listeriolysin into the cytosol of host cells. Under in vitro conditions, fusion proteins with SseJ and SteC stimulated T-cell responses that were superior to those triggered by fusion proteins with SseF. However, in mice vaccinated with Salmonella carrier strains, only fusion proteins based on SseJ or SifA elicited potent T-cell responses. These data demonstrate that the selection of an optimal SPI2 effector protein for T3SS-mediated translocation is a critical parameter for the rational design of effective Salmonella-based recombinant vaccines. PMID:22252866

  2. Cirtical role for Salmonella effector SopB in regulating inflammasome activation.

    Science.gov (United States)

    Hu, Gui-Qiu; Song, Pei-Xuan; Chen, Wei; Qi, Shuai; Yu, Shui-Xing; Du, Chong-Tao; Deng, Xu-Ming; Ouyang, Hong-Sheng; Yang, Yong-Jun

    2017-10-01

    Salmonella is known to evolve many mechanisms to avoid or delay inflammasome activation which remain largely unknown. In this study, we investigated whether the SopB protein critical to bacteria virulence capacity was an effector that involved in the regulation of inflammasome activation. BMDMs from NLRC4-, NLRP3-, caspase-1/-11-, IFI16- and AIM2-deficient mice were pretreated with LPS, and subsequently stimulated with a series of SopB-related strains of Salmonella, inflammasome induced cell death, IL-1β secretion, cleaved caspase-1 production and ASC speckle formation were detected. We found that SopB could inhibit host IL-1β secretion, caspase-1 activation and inflammasome induced cell death using a series of SopB-related strains of Salmonella; however the reduction of IL-1β secretion was not dependent on sensor that contain PYD domain, such as NLRP3, AIM2 or IFI16, but dependent on NLRC4. Notably, SopB specifically prevented ASC oligomerization and the enzymatic activity of SopB was responsible for the inflammasome inhibition. Furthermore, inhibition of Akt signaling induced enhanced inflammasome activation. These results revealed a novel role in inhibition of NLRC4 inflammasome for Salmonella effector SopB. Copyright © 2017. Published by Elsevier Ltd.

  3. Identification of Novel Host Interactors of Effectors Secreted by Salmonella and Citrobacter

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Nakayasu, Ernesto S.; Brown, Roslyn N.; Niemann, George S.; Sydor, Michael A.; Sanchez, Octavio; Ansong, Charles; Lu, Shao-Yeh; Choi, Hyungwon; Valleau, Dylan; Weitz, Karl K.; Savchenko, Alexei; Cambronne, Eric D.; Adkins, Joshua N.; McFall-Ngai, Margaret J.

    2016-07-12

    Many pathogenic bacteria of the familyEnterobacteriaceaeuse type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from theEnterobacteriaceaeintracellular pathogensSalmonella entericaserovar Typhimurium andCitrobacter rodentium. We identified 54 high-confidence host interactors for theSalmonellaeffectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for theCitrobactereffectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfHSalmonellaprotein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction.

    IMPORTANCEDuring infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets ofSalmonellaandCitrobactereffectors, which will help elucidate their mechanisms of

  4. Dual Expression of the Salmonella Effector SrfJ in Mammalian Cells and Plants

    Directory of Open Access Journals (Sweden)

    Julia Aguilera-Herce

    2017-12-01

    Full Text Available SrfJ is an effector of the Salmonella pathogenicity island 2-encoded type III secretion system. Salmonella enterica serovar Typhimurium expresses srfJ under two disparate sets of conditions: media with low Mg2+ and low pH, imitating intravacuolar conditions, and media with myo-inositol (MI, a carbohydrate that can be used by Salmonella as sole carbon source. We investigated the molecular basis for this dual regulation. Here, we provide evidence for the existence of two distinct promoters that control the expression of srfJ. A proximal promoter, PsrfJ, responds to intravacuolar signals and is positively regulated by SsrB and PhoP and negatively regulated by RcsB. A second distant promoter, PiolE, is negatively regulated by the MI island repressor IolR. We also explored the in vivo activity of these promoters in different hosts. Interestingly, our results indicate that the proximal promoter is specifically active inside mammalian cells whereas the distant one is expressed upon Salmonella colonization of plants. Importantly, we also found that inappropriate expression of srfJ leads to reduced proliferation inside macrophages whereas lack of srfJ expression increases survival and decreases activation of defense responses in plants. These observations suggest that SrfJ is a relevant factor in the interplay between Salmonella and hosts of different kingdoms.

  5. Dual Expression of the Salmonella Effector SrfJ in Mammalian Cells and Plants.

    Science.gov (United States)

    Aguilera-Herce, Julia; Zarkani, Azhar A; Schikora, Adam; Ramos-Morales, Francisco

    2017-01-01

    SrfJ is an effector of the Salmonella pathogenicity island 2-encoded type III secretion system. Salmonella enterica serovar Typhimurium expresses srfJ under two disparate sets of conditions: media with low Mg2+ and low pH, imitating intravacuolar conditions, and media with myo-inositol (MI), a carbohydrate that can be used by Salmonella as sole carbon source. We investigated the molecular basis for this dual regulation. Here, we provide evidence for the existence of two distinct promoters that control the expression of srfJ. A proximal promoter, PsrfJ, responds to intravacuolar signals and is positively regulated by SsrB and PhoP and negatively regulated by RcsB. A second distant promoter, PiolE, is negatively regulated by the MI island repressor IolR. We also explored the in vivo activity of these promoters in different hosts. Interestingly, our results indicate that the proximal promoter is specifically active inside mammalian cells whereas the distant one is expressed upon Salmonella colonization of plants. Importantly, we also found that inappropriate expression of srfJ leads to reduced proliferation inside macrophages whereas lack of srfJ expression increases survival and decreases activation of defense responses in plants. These observations suggest that SrfJ is a relevant factor in the interplay between Salmonella and hosts of different kingdoms.

  6. Global impact of Salmonella type III secretion effector SteA on host cells

    Energy Technology Data Exchange (ETDEWEB)

    Cardenal-Muñoz, Elena, E-mail: e_cardenal@us.es; Gutiérrez, Gabriel, E-mail: ggpozo@us.es; Ramos-Morales, Francisco, E-mail: framos@us.es

    2014-07-11

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.

  7. PhoP-Induced Genes within Salmonella Pathogenicity Island 1

    Science.gov (United States)

    Aguirre, Andrés; Cabeza, María Laura; Spinelli, Silvana V.; McClelland, Michael; García Véscovi, Eleonora; Soncini, Fernando C.

    2006-01-01

    The invasive pathogen Salmonella enterica has evolved a sophisticated device that allows it to enter nonphagocytic host cells. This process requires the expression of Salmonella pathogenicity island 1 (SPI-1), which encodes a specialized type III protein secretion system (TTSS). This TTSS delivers a set of effectors that produce a marked rearrangement of the host cytoskeleton, generating a profuse membrane ruffling at the site of interaction, driving bacterial entry. It has been shown that the PhoP/PhoQ two-component system represses the expression of the SPI-1 machinery by down-regulating the transcription of its master regulator, HilA. In this work, we reveal the presence of a PhoP-activated operon within SPI-1. This operon is composed of the orgB and orgC genes, which encode a protein that interacts with the InvC ATPase and a putative effector protein of the TTSS, respectively. Under PhoP-inducing conditions, expression of this operon is directly activated by the phosphorylated form of the response regulator, which recognizes a PhoP box located at the −35 region relative to the transcription start site. Additionally, under invasion-inducing conditions, orgBC expression is driven both by the prgH promoter, induced by the SPI-1 master regulator HilA, and by the directly controlled PhoP/PhoQ promoter. Together, these results indicate that in contrast to the rest of the genes encompassed in the SPI-1 locus, orgBC is expressed during and after Salmonella entry into its host cell, and they suggest a role for the products of this operon after host cell internalization. PMID:16980492

  8. Long-Term Live Cell Imaging Reveals New Roles For Salmonella Effector Proteins SseG and SteA

    Science.gov (United States)

    McQuate, Sarah E.; Young, Alexandra M.; Silva-Herzog, Eugenia; Bunker, Eric; Hernandez, Mateo; de Chaumont, Fabrice; Liu, Xuedong; Detweiler, Corrella S.; Palmer, Amy E.

    2016-01-01

    Summary Salmonella Typhimurium is an intracellular bacterial pathogen that infects both epithelial cells and macrophages. Salmonella effector proteins, which are translocated into the host cell and manipulate host cell components, control the ability to replicate and/or survive in host cells. Due to the complexity and heterogeneity of Salmonella infections, there is growing recognition of the need for single cell and live-cell imaging approaches to identify and characterize the diversity of cellular phenotypes and how they evolve over time. Here we establish a pipeline for long-term (16 hours) live-cell imaging of infected cells and subsequent image analysis methods. We apply this pipeline to track bacterial replication within the Salmonella-containing vacuole in epithelial cells, quantify vacuolar replication versus survival in macrophages, and investigate the role of individual effector proteins in mediating these parameters. This approach revealed that dispersed bacteria can coalesce at later stages of infection, that the effector protein SseG influences the propensity for cytosolic hyperreplication in epithelial cells, and that while SteA only has a subtle effect on vacuolar replication in epithelial cells, it has a profound impact on infection parameters in immunocompetent macrophages, suggesting differential roles for effector proteins in different infection models. PMID:27376507

  9. COORDINATED VIRULENCE FACTORS OF ZOONOTIC PATHOGEN Salmonella Typhimurium ASSOCIATED WITH SYSTEMIC DISEASE

    Directory of Open Access Journals (Sweden)

    Ermin Schadich

    2013-08-01

    Full Text Available  The pivotal virulence factors of foodborne zoonotic pathogen Salmonella enterica serotype Typhimurium associated with pathogenesis of systemic disease of humans and mice are the effectors of type three secretion systems. They are encoded by genes located on two different gene clusters named Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2 and Salmonella plasmid virulence locus whose expressions are coordinated by regulatory networks in spatial and temporal manners. Secretion of the SPI-1 effectors required for bacterial internalization into specific compartments called Salmonella- containing vacuole (SCV of infected intestinal epithelial cells, is induced by environmental conditions via Hil transcription factors network. Secretion of SPI-2 and plasmid effectors required for bacterial survival inside of the SCVs of these cells and subsequently infected phagocytic cells, systemic spread, immunosuppression and cytotoxicity, is coordinated by broader regulatory network with the two response regulators, SsrB and SlyA, as the terminal regulators that integrate multiple environmental signals. Key words: Salmonella Typhimurium, effectors, virulence, systemic disease

  10. The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression.

    Science.gov (United States)

    Mouslim, Chakib; Hughes, Kelly T

    2014-03-01

    The flagellar regulon controls Salmonella biofilm formation, virulence gene expression and the production of the major surface antigen present on the cell surface: flagellin. At the top of a flagellar regulatory hierarchy is the master operon, flhDC, which encodes the FlhD₄C₂ transcriptional complex required for the expression of flagellar, chemotaxis and Salmonella pathogenicity island 1 (Spi1) genes. Of six potential transcriptional start-sites within the flhDC promoter region, only two, P1(flhDC) and P5(flhDC), were functional in a wild-type background, while P6(flhDC) was functional in the absence of CRP. These promoters are transcribed differentially to control either flagellar or Spi1 virulent gene expression at different stages of cell growth. Transcription from P1(flhDC) initiates flagellar assembly and a negative autoregulatory loop through FlhD₄C₂-dependent transcription of the rflM gene, which encodes a repressor of flhDC transcription. Transcription from P1(flhDC) also initiates transcription of the Spi1 regulatory gene, hilD, whose product, in addition to activating Spi1 genes, also activates transcription of the flhDC P5 promoter later in the cell growth phase. The regulators of flhDC transcription (RcsB, LrhA, RflM, HilD, SlyA and RtsB) also exert their control at different stages of the cell growth phase and are also subjected to cell growth phase control. This dynamic of flhDC transcription separates the roles of FlhD₄C₂ transcriptional activation into an early cell growth phase role for flagellar production from a late cell growth phase role in virulence gene expression.

  11. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members.

    Directory of Open Access Journals (Sweden)

    Jana Kamanova

    2016-04-01

    Full Text Available Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms.

  12. Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Denise A.; Fifield, Bre-Anne; Marceau, Aimee H.; Tripathi, Sarvind; Porter, Lisa A.; Rubin, Seth M. (UCSC); (Windsor)

    2017-06-30

    Cyclin-dependent kinases (Cdks) are principal drivers of cell division and are an important therapeutic target to inhibit aberrant proliferation. Cdk enzymatic activity is tightly controlled through cyclin interactions, posttranslational modifications, and binding of inhibitors such as the p27 tumor suppressor protein. Spy1/RINGO (Spy1) proteins bind and activate Cdk but are resistant to canonical regulatory mechanisms that establish cell-cycle checkpoints. Cancer cells exploit Spy1 to stimulate proliferation through inappropriate activation of Cdks, yet the mechanism is unknown. We have determined crystal structures of the Cdk2-Spy1 and p27-Cdk2-Spy1 complexes that reveal how Spy1 activates Cdk. We find that Spy1 confers structural changes to Cdk2 that obviate the requirement of Cdk activation loop phosphorylation. Spy1 lacks the cyclin-binding site that mediates p27 and substrate affinity, explaining why Cdk-Spy1 is poorly inhibited by p27 and lacks specificity for substrates with cyclin-docking sites. We identify mutations in Spy1 that ablate its ability to activate Cdk2 and to proliferate cells. Our structural description of Spy1 provides important mechanistic insights that may be utilized for targeting upregulated Spy1 in cancer.

  13. Navy Needs to Establish Effective Metrics to Achieve Desired Outcomes for SPY1 Radar Sustainment (Redacted)

    Science.gov (United States)

    2016-08-01

    did not anticipate and include in fleet’s forecasted contract needs. For example, the Navy had a sparing initiative to increase the number of parts ...a series on SPY-1 radar spare parts . The SPY-1 radar is an advanced, automatic detect and track radar system. The SPY-1 radar is one of 13 major...This is the second in a series of audits related to the management of SPY-1 radar spare parts . The first report focused on the SPY-1 radar spare

  14. SseK3 Is a Salmonella Effector That Binds TRIM32 and Modulates the Host's NF-κB Signalling Activity.

    Directory of Open Access Journals (Sweden)

    Zhe Yang

    Full Text Available Salmonella Typhimurium employs an array of type III secretion system effectors that facilitate intracellular survival and replication during infection. The Salmonella effector SseK3 was originally identified due to amino acid sequence similarity with NleB; an effector secreted by EPEC/EHEC that possesses N-acetylglucoasmine (GlcNAc transferase activity and modifies death domain containing proteins to block extrinsic apoptosis. In this study, immunoprecipitation of SseK3 defined a novel molecular interaction between SseK3 and the host protein, TRIM32, an E3 ubiquitin ligase. The conserved DxD motif within SseK3, which is essential for the GlcNAc transferase activity of NleB, was required for TRIM32 binding and for the capacity of SseK3 to suppress TNF-stimulated activation of NF-κB pathway. However, we did not detect GlcNAc modification of TRIM32 by SseK3, nor did the SseK3-TRIM32 interaction impact on TRIM32 ubiquitination that is associated with its activation. In addition, lack of sseK3 in Salmonella had no effect on production of the NF-κB dependent cytokine, IL-8, in HeLa cells even though TRIM32 knockdown suppressed TNF-induced NF-κB activity. Ectopically expressed SseK3 partially co-localises with TRIM32 at the trans-Golgi network, but SseK3 is not recruited to Salmonella induced vacuoles or Salmonella induced filaments during Salmonella infection. Our study has identified a novel effector-host protein interaction and suggests that SseK3 may influence NF-κB activity. However, the lack of GlcNAc modification of TRIM32 suggests that SseK3 has further, as yet unidentified, host targets.

  15. Discovery of Novel Secreted Virulence Factors from Salmonella enterica Serovar Typhimurium by Proteomic Analysis of Culture Supernatants

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, George; Brown, Roslyn N.; Gustin, Jean K.; Stufkens, Afke; Shaikh-Kidwai, Afshan S.; Li, Jie; McDermott, Jason E.; Brewer, Heather M.; Schepmoes, Athena A.; Smith, Richard D.; Adkins, Joshua N.; Heffron, Fred

    2011-01-01

    The intracellular pathogen Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis in the world. This pathogen has two type-III secretion systems (TTSS) necessary for virulence that are encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) and are expressed during extracellular or intracellular infectious states, respectively, to deliver virulence factors (effectors) to the host cell cytoplasm. While many have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this mass spectrometry-based proteomics study, we identified effector proteins secreted under minimal acidic medium growth conditions that induced the SPI-2 TTSS and its effectors, and compared the secretome from the parent strain to the secretome from strains missing either essential (SsaK) or regulatory components (SsaL) of the SPI-2 secretion apparatus. We identified 75% of the known TTSS effector repertoire. Excluding translocon components, 95% of the known effectors were biased for identification in the ssaL mutant background, which demonstrated that SsaL regulates SPI-2 type III secretion. To confirm secretion to animal cells, we made translational fusions of several of the best candidates to the calmodulin-dependent adenylate cyclase of Bordetella pertussis and assayed cAMP levels of infected J774 macrophage-like cells. From these infected cells we identified six new TTSS effectors and two others that are secreted independent of TTSS. Our results substantiate reports of additional secretion systems encoded by Salmonella other than TTSS.

  16. Interferon induces up-regulation of Spi-1/PU.1 in human leukemia K562 cells.

    Science.gov (United States)

    Gutiérrez, P; Delgado, M D; Richard, C; Moreau-Gachelin, F; León, J

    1997-11-26

    The human K562 cell line is derived from a chronic myelogenous leukemia in blastic crisis. Treatment of K562 cells with interferons alpha, beta or gamma resulted in inhibition of cell proliferation. Spi-1/PU.1 is a transcription factor of the Ets family which is required for normal hematopoyesis. We have found that spi-1 mRNA and protein as well as Spi-1-DNA binding activity increase after exposure of K562 cells to interferons. The increase in spi-1 expression ranged from 4- to 8-fold with the different interferons. K562 cells can be differentiated in vitro towards erythroid cells or monocyte-macrophage cells. Interestingly, the regulation of spi-1 by interferon-alpha depended on the differentiated phenotype of K562 cells: interferon-alpha failed to induce spi-1 in erythroid differentiated cells, whereas it induced spi-1 in monocyte-macrophage differentiated cells. The results suggest a role for Spi-1 in the cytostatic response to interferons.

  17. Live cell imaging reveals novel functions of Salmonella enterica SPI2-T3SS effector proteins in remodeling of the host cell endosomal system.

    Directory of Open Access Journals (Sweden)

    Roopa Rajashekar

    Full Text Available Intracellular Salmonella enterica induce a massive remodeling of the endosomal system in infected host cells. One dramatic consequence of this interference is the induction of various extensive tubular aggregations of membrane vesicles, and tubules positive for late endosomal/lysosomal markers are referred to as Salmonella-induced filaments or SIF. SIF are highly dynamic in nature with extension and collapse velocities of 0.4-0.5 µm x sec-1. The induction of SIF depends on the function of the Salmonella Pathogenicity Island 2 (SPI2 encoded type III secretion system (T3SS and a subset of effector proteins. In this study, we applied live cell imaging and electron microscopy to analyze the role of individual effector proteins in SIF morphology and dynamic properties of SIF. SIF in cells infected with sifB, sseJ, sseK1, sseK2, sseI, sseL, sspH1, sspH2, slrP, steC, gogB or pipB mutant strains showed a morphology and dynamics comparable to SIF induced by WT Salmonella. SIF were absent in cells infected with the sifA-deficient strain and live cell analyses allowed tracking of the loss of the SCV membrane of intracellular sifA Salmonella. In contrast to analyses in fixed cells, in living host cells SIF induced by sseF- or sseG-deficient strains were not discontinuous, but rather continuous and thinner in diameter. A very dramatic phenotype was observed for the pipB2-deficient strain that induced very bulky, non-dynamic aggregations of membrane vesicles. Our study underlines the requirement of the study of Salmonella-host interaction in living systems and reveals new phenotypes due to the intracellular activities of Salmonella.

  18. Influence of Salmonella enterica serovar Pullorum pathogenicity island 2 on type III secretion system effector gene expression in chicken macrophage HD11 cells.

    Science.gov (United States)

    Yin, Junlei; Chen, Yun; Xie, Xiaolei; Xia, Jie; Li, Qiuchun; Geng, Shizhong; Jiao, Xinan

    2017-04-01

    Salmonella pathogenicity island 2 (SPI2) can encode type III secretion system 2 (T3SS2) which plays an important role in systemic disease development through delivering different effector proteins into host cells. Here, the influence of Salmonella Pullorum pathogenicity island 2 on T3SS2 effector gene expression was studied using qRT-PCR in chicken macrophage HD11 cells. Our results showed that all the detected genes (including pseudogenes sifB, sspH2 and steC) can express in HD11 cells of S. Pullorum infection; deletion of SPI2 of S. Pullorum did not significantly affect the expression of genes cigR, gtgA, slrP, sopD, sseK1, steB and steC, but had a significant effect on the expression of genes pipB2, sifB, sopD2, sseJ, sseL, sspH2, steD, sifA, pipB and steA at different degrees. These results suggest that SPI2 can significantly affect the expression of some T3SS2 effector genes. Some effectors may have secretion pathways other than T3SS2 and pseudogenes may play roles in the process of S. Pullorum infection.

  19. The microbiota metabolite indole inhibits Salmonella virulence: Involvement of the PhoPQ two-component system.

    Directory of Open Access Journals (Sweden)

    Nandita Kohli

    Full Text Available The microbial community present in the gastrointestinal tract is an important component of the host defense against pathogen infections. We previously demonstrated that indole, a microbial metabolite of tryptophan, reduces enterohemorrhagic Escherichia coli O157:H7 attachment to intestinal epithelial cells and biofilm formation, suggesting that indole may be an effector/attenuator of colonization for a number of enteric pathogens. Here, we report that indole attenuates Salmonella Typhimurium (Salmonella virulence and invasion as well as increases resistance to colonization in host cells. Indole-exposed Salmonella colonized mice less effectively compared to solvent-treated controls, as evident by competitive index values less than 1 in multiple organs. Indole-exposed Salmonella demonstrated 160-fold less invasion of HeLa epithelial cells and 2-fold less invasion of J774A.1 macrophages compared to solvent-treated controls. However, indole did not affect Salmonella intracellular survival in J774A.1 macrophages suggesting that indole primarily affects Salmonella invasion. The decrease in invasion was corroborated by a decrease in expression of multiple Salmonella Pathogenicity Island-1 (SPI-1 genes. We also identified that the effect of indole was mediated by both PhoPQ-dependent and independent mechanisms. Indole also synergistically enhanced the inhibitory effect of a short chain fatty acid cocktail on SPI-1 gene expression. Lastly, indole-treated HeLa cells were 70% more resistant to Salmonella invasion suggesting that indole also increases resistance of epithelial cells to colonization. Our results demonstrate that indole is an important microbiota metabolite that has direct anti-infective effects on Salmonella and host cells, revealing novel mechanisms of pathogen colonization resistance.

  20. A naturally occurring single nucleotide polymorphism in the Salmonella SPI-2 type III effector srfH/sseI controls early extraintestinal dissemination.

    Directory of Open Access Journals (Sweden)

    Joshua M Thornbrough

    Full Text Available CD18 expressing phagocytes associated with the gastro-intestinal (GI epithelium can shuttle Salmonella directly into the bloodstream within a few minutes following microbial ingestion. We have previously demonstrated that Salmonella controls the CD18 pathway to deeper tissue, manipulating the migratory properties of infected cells as an unappreciated component of its pathogenesis. We have observed that one type III effector, SrfH (also called SseI that Salmonella secretes into infected phagocytes manipulates the host protein TRIP6 to stimulate their migration. Paradoxically, SrfH was shown in another study to subvert a different host protein, IQGAP1, in a manner that inhibits the productive motility of such cells, perhaps to avoid interactions with T cells. Here, we resolve the discrepancy. We report that one naturally occurring allele of srfH promotes the migration of infected phagocytes into the bloodstream, while another naturally occurring allele that differs by only a single nucleotide polymorphism (SNP does not. This SNP determines if the protein contains an aspartic acid or a glycine residue at position 103 and may determine if SrfH binds TRIP6. SrfH Gly103 is a rare allele, but is present in the highly invasive strain Salmonella enterica serovar Typhimurium UK-1 (stands for universal killer. It is also present in the genome of the only sequenced strain belonging to the emerging pandemic Salmonella enterica serovar 4, [5],12,i:-, which is frequently associated with septicemia. Finally, we present evidence that suggests that Gifsy-2, the bacteriophage upon which srfH resides, is present in a clinical isolate of the human-specific pathogen, Salmonella enterica serovar Typhi. These observations may have interesting implications for our understanding of Salmonella pathogenesis.

  1. Potassium transport of Salmonella is important for type III secretion and pathogenesis

    Science.gov (United States)

    Liu, Yehao; Ho, Katharina Kim; Su, Jing; Gong, Hao; Chang, Alexander C.

    2013-01-01

    Intracellular cations are essential for the physiology of all living organisms including bacteria. Cations such as potassium ion (K+), sodium ion (Na+) and proton (H+) are involved in nearly all aspects of bacterial growth and survival. K+ is the most abundant cation and its homeostasis in Escherichia coli and Salmonella is regulated by three major K+ transporters: high affinity transporter Kdp and low affinity transporters Kup and Trk. Previous studies have demonstrated the roles of cations and cation transport in the physiology of Escherichia coli; their roles in the virulence and physiology of pathogenic bacteria are not well characterized. We have previously reported that the Salmonella K+ transporter Trk is important for the secretion of effector proteins of the type III secretion system (TTSS) of Salmonella pathogenicity island 1 (SPI-1). Here we further explore the role of Salmonella cation transport in virulence in vitro and pathogenesis in animal models. Impairment of K+ transport through deletion of K+ transporters or exposure to the chemical modulators of cation transport, gramicidin and valinomycin, results in a severe defect in the TTSS of SPI-1, and this defect in the TTSS was not due to a failure to regulate intrabacterial pH or ATP. Our results also show that K+ transporters are critical to the pathogenesis of Salmonella in mice and chicks and are involved in multiple growth and virulence characteristics in vitro, including protein secretion, motility and invasion of epithelial cells. These results suggest that cation transport of the pathogenic bacterium Salmonella, especially K+ transport, contributes to its virulence in addition to previously characterized roles in maintaining homeostasis of bacteria. PMID:23728623

  2. A multi-pronged search for a common structural motif in the secretion signal of Salmonella enterica serovar Typhimurium type III effector proteins

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Niemann, George; Baker, Erin Shammel; Belov, Mikhail E.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.; McDermott, Jason E.

    2010-11-08

    Many pathogenic Gram-negative bacteria use a type III secretion system (T3SS) to deliver effector proteins into the host cell where they reprogram host defenses and facilitate pathogenesis. While it has been determined that the first 20 - 30 N-terminal residues usually contain the ‘secretion signal’ that targets effector proteins for translocation, the molecular basis for recognition of this signal is not understood. Recent machine-learning approaches, such as SVM-based Identification and Evaluation of Virulence Effectors (SIEVE), have improved the ability to identify effector proteins from genomics sequence information. While these methods all suggest that the T3SS secretion signal has a characteristic amino acid composition bias, it is still unclear if the amino acid pattern is important and if there are any unifying structural properties that direct recognition. To address these issues a peptide corresponding to the secretion signal for Salmonella enterica serovar Typhimurium effector SseJ was synthesized (residues 1-30, SseJ) along with scrambled peptides of the same amino acid composition that produced high (SseJ-H) and low (SseJ-L) SIEVE scores. The secretion properties of these three peptides were tested using a secretion signal-CyaA fusion assay and their structures systematically probed using circular dichroism, nuclear magnetic resonance, and ion mobility spectrometry-mass spectrometry. The signal-CyaA fusion assay showed that the native and SseJ-H fusion constructs were secreted into J774 macrophage at similar levels via the SPI-2 secretion pathway while secretion of the SseJ-L fusion construct was substantially retarded, suggesting that the SseJ secretion signal was sequence order dependent. The structural studies showed that the SseJ, SseJ-H, and SseJ-L peptides were intrinsically disordered in aqueous solution with only a small predisposition to adopt nascent helical structure in the presence of the powerful structure stabilizing agent, 1

  3. A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors.

    Directory of Open Access Journals (Sweden)

    Hao Gong

    2011-09-01

    Full Text Available Small non-coding RNAs (sRNAs that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA and small interfering RNA (siRNA in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported. In this study, we provide the first direct evidence that a pathogenicity island-encoded sRNA, IsrM, is important for Salmonella invasion of epithelial cells, intracellular replication inside macrophages, and virulence and colonization in mice. IsrM RNA is expressed in vitro under conditions resembling those during infection in the gastrointestinal tract. Furthermore, IsrM is found to be differentially expressed in vivo, with higher expression in the ileum than in the spleen. IsrM targets the mRNAs coding for SopA, a SPI-1 effector, and HilE, a global regulator of the expression of SPI-1 proteins, which are major virulence factors essential for bacterial invasion. Mutations in IsrM result in disregulation of expression of HilE and SopA, as well as other SPI-1 genes whose expression is regulated by HilE. Salmonella with deletion of isrM is defective in bacteria invasion of epithelial cells and intracellular replication/survival in macrophages. Moreover, Salmonella with mutations in isrM is attenuated in killing animals and defective in growth in the ileum and spleen in mice. Our study has shown that IsrM sRNA functions as a pathogenicity island-encoded sRNA directly involved in Salmonella pathogenesis in animals. Our results also suggest that sRNAs may represent a distinct class of virulence factors that are important for bacterial infection in vivo.

  4. The effect of γ radiation on the expression of the virulence genes of Salmonella typhimurium and Vibrio spp.

    Science.gov (United States)

    Lim, Sangyong; Jung, Jinwoo; Kim, Dongho

    2007-11-01

    The principle benefit of food irradiation is the reduction of food-borne bacteria in food products. However, the microbiological safety with respect to increased virulence of surviving pathogens after irradiation remains an important issue with regard to the effectiveness of food irradiation. In this study, the transcriptional changes of virulence genes of Salmonella and Vibrio spp. after γ radiation were investigated by real-time PCR (RT-PCR). Samonella typhimurium is dependent upon the products of a large number of genes located within Salmonella pathogenicity islands (SPI) on the chromosome. The expressions of seven genes including four SPI genes, hilD, ssrB, pipB, and sopD, were measured at 1 h after 1 kGy irradiation. Compared with non-irradiated controls, the expression of hilD encoded within SPI1 and sopD encoding SPI1-related effector proteins was reduced about 4- and 16-fold, respectively. The expressions of Vibrio toxin genes, vvhA, ctxA, and tdh, were also monitored during the course of a growth cycle after re-inoculation of irradiated Vibrio spp. (0.5 and 1.0 kGy). The expressions of Vibrio toxin genes tested did not increase compared with non-irradiated counterparts. Results from this study indicate that γ radiation is much more likely to reduce the virulence gene expression of surviving pathogens.

  5. NleB/SseK effectors from Citrobacter rodentium, Escherichia coli, and Salmonella enterica display distinct differences in host substrate specificity

    DEFF Research Database (Denmark)

    El Qaidi, Samir; Chen, Kangming; Halim, Adnan

    2017-01-01

    proteins with N-acetyl-D-glucosamine to inhibit antibacterial and inflammatory host responses. NleB is conserved among the attaching/effacing pathogens enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium. Moreover, Salmonella enterica strains encode up to three Nle...... of these effectors. SseK1, SseK3, EHEC NleB1, EPEC NleB1, and C. rodentium NleB blocked TNF-mediated NF-κB pathway activation, whereas SseK2 and NleB2 did not. C. rodentium NleB, EHEC NleB1, and SseK1 glycosylated host glyceraldehyde 3-phosphate dehydrogenase (GAPDH). C. rodentium NleB, EHEC NleB1, EPEC NleB1......, and SseK2 glycosylated the Fas-associated death domain protein (FADD). SseK3 and NleB2 were not active against either substrate. We also found that EHEC NleB1 glycosylated two GAPDH arginine residues, R197 and R200 and that these two residues were essential for GAPDH-mediated activation of tumor necrosis...

  6. Intraspecies Competition for Niches in the Distal Gut Dictate Transmission during Persistent Salmonella Infection

    Science.gov (United States)

    Lam, Lilian H.; Monack, Denise M.

    2014-01-01

    In order to be transmitted, a pathogen must first successfully colonize and multiply within a host. Ecological principles can be applied to study host-pathogen interactions to predict transmission dynamics. Little is known about the population biology of Salmonella during persistent infection. To define Salmonella enterica serovar Typhimurium population structure in this context, 129SvJ mice were oral gavaged with a mixture of eight wild-type isogenic tagged Salmonella (WITS) strains. Distinct subpopulations arose within intestinal and systemic tissues after 35 days, and clonal expansion of the cecal and colonic subpopulation was responsible for increases in Salmonella fecal shedding. A co-infection system utilizing differentially marked isogenic strains was developed in which each mouse received one strain orally and the other systemically by intraperitoneal (IP) injection. Co-infections demonstrated that the intestinal subpopulation exerted intraspecies priority effects by excluding systemic S. Typhimurium from colonizing an extracellular niche within the cecum and colon. Importantly, the systemic strain was excluded from these distal gut sites and was not transmitted to naïve hosts. In addition, S. Typhimurium required hydrogenase, an enzyme that mediates acquisition of hydrogen from the gut microbiota, during the first week of infection to exert priority effects in the gut. Thus, early inhibitory priority effects are facilitated by the acquisition of nutrients, which allow S. Typhimurium to successfully compete for a nutritional niche in the distal gut. We also show that intraspecies colonization resistance is maintained by Salmonella Pathogenicity Islands SPI1 and SPI2 during persistent distal gut infection. Thus, important virulence effectors not only modulate interactions with host cells, but are crucial for Salmonella colonization of an extracellular intestinal niche and thereby also shape intraspecies dynamics. We conclude that priority effects and

  7. Genome-wide screen for salmonella genes required for long-term systemic infection of the mouse.

    Directory of Open Access Journals (Sweden)

    2006-02-01

    Full Text Available A microarray-based negative selection screen was performed to identify Salmonella enterica serovar Typhimurium (serovar Typhimurium genes that contribute to long-term systemic infection in 129X1/SvJ (Nramp1(r mice. A high-complexity transposon-mutagenized library was used to infect mice intraperitoneally, and the selective disappearance of mutants was monitored after 7, 14, 21, and 28 d postinfection. One hundred and eighteen genes were identified to contribute to serovar Typhimurium infection of the spleens of mice by 28 d postinfection. The negatively selected mutants represent many known aspects of Salmonella physiology and pathogenesis, although the majority of the identified genes are of putative or unknown function. Approximately 30% of the negatively selected genes correspond to horizontally acquired regions such as those within Salmonella pathogenicity islands (SPI 1-5, prophages (Gifsy-1 and -2 and remnant, and the pSLT virulence plasmid. In addition, mutations in genes responsible for outer membrane structure and remodeling, such as LPS- and PhoP-regulated and fimbrial genes, were also selected against. Competitive index experiments demonstrated that the secreted SPI2 effectors SseK2 and SseJ as well as the SPI4 locus are attenuated relative to wild-type bacteria during systemic infection. Interestingly, several SPI1-encoded type III secretion system effectors/translocases are required by serovar Typhimurium to establish and, unexpectedly, to persist systemically, challenging the present description of Salmonella pathogenesis. Moreover, we observed a progressive selection against serovar Typhimurium mutants based upon the duration of the infection, suggesting that different classes of genes may be required at distinct stages of infection. Overall, these data indicate that Salmonella long-term systemic infection in the mouse requires a diverse repertoire of virulence factors. This diversity of genes presumably reflects the fact that

  8. Subtle distinct regulations of late erythroid molecular events by PI3K/AKT-mediated activation of Spi-1/PU.1 oncogene autoregulation loop.

    Science.gov (United States)

    Breig, O; Théoleyre, O; Douablin, A; Baklouti, F

    2010-05-13

    Spi-1/PU.1 oncogene is downregulated as proerythroblasts undergo terminal differentiation. Insertion of the Friend virus upstream of the Spi-1/PU.1 locus leads to the constitutive upregulation of Spi-1/PU.1, and a subsequent block in the differentiation of the affected erythroblasts. We have shown that sustained overexpression of Spi-1/PU.1 also inhibits the erythroid splicing of protein 4.1R exon 16, irrespective of chemical induction of differentiation. Here, we show a positive feedback loop that couples constitutive phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling to high expression of Spi-1/PU.1 in Friend erythroleukemia cells. Inhibition of PI3K/AKT results in Spi-1/PU.1 downregulation in a stepwise manner and induces cell differentiation. Chromatin immunoprecipitation assays further supported the positive autoregulatory effect of Spi-1/PU.1. Mutational analysis indicated that Ser41, but not Ser148, is necessary for Spi-1/PU.1-mediated repression of hemoglobin expression, whereas both Ser residues are required for Spi-1/PU.1 inhibition of the erythroid splicing event. We further show that inhibition of the erythroid transcriptional and splicing events are strictly dependent on distinct Spi-1/PU.1 phosphorylation modifications rather than Spi-1/PU.1 expression level per se. Our data further support the fact that Spi-1/PU.1 inhibits 4.1R erythroid splicing through two different pathways, and bring new insights into the extracellular signal impact triggered by erythropoietin on late erythroid regulatory program, including pre-mRNA splicing.

  9. Crystallization of a Nonclassical Kazal-type Carcinoscorpius Rotundicauda Serine Protease Inhibitor, CrSPI-1, Complexed with Subtilisin

    Energy Technology Data Exchange (ETDEWEB)

    Tulsidas, S.; Thangamani, S; Ho, B; Sivaraman, J; Ding, J

    2009-01-01

    Serine proteases play a major role in host-pathogen interactions. The innate immune system is known to respond to invading pathogens in a nonspecific manner. The serine protease cascade is an essential component of the innate immune system of the horseshoe crab. The serine protease inhibitor CrSPI isoform 1 (CrSPI-1), a unique nonclassical Kazal-type inhibitor of molecular weight 9.3 kDa, was identified from the hepatopancreas of the horseshoe crab Carcinoscorpius rotundicauda. It potently inhibits subtilisin and constitutes a powerful innate immune defence against invading microbes. Here, the cloning, expression, purification and cocrystallization of CrSPI-1 with subtilisin are reported. The crystals diffracted to 2.6 {angstrom}resolution and belonged to space group P2{sub 1}, with unit-cell parameters a = 73.8, b = 65.0, c = 111.9 {angstrom}, {beta} = 95.4. The Matthews coefficient (VM = 2.64 {angstrom}3 Da-1, corresponding to 53% solvent content) and analysis of the preliminary structure solution indicated the presence of one heterotrimer (1:2 ratio of CrSPI-1:subtilisin) and one free subtilisin molecule in the asymmetric unit.

  10. FAKTOR VIRULENSI Salmonella enterica SEROVAR TYPHI

    Directory of Open Access Journals (Sweden)

    Marvy Khrisna Pranamartha

    2015-09-01

    Full Text Available ABSTRAK Demam tifoid disebabkan oleh bakteri Salmonella typhi, dengan gejala umum berupa demam tinggi dan nyeri perut. Tifoid adalah penyakit infeksi yang disebabkan oleh bakteri Salmonella typhi, yang masuk ke dalam tubuh melalui mulut dan saluran cerna.1 Untuk bisa memahami patogenesis dari demam tifoid sampai ke tingkat selular dan molekular, ada 5 hal penting yang harus digaris bawahi, yaitu: 1.\tTipe 3 Sistem Sekresi (T3SS 2.\tVirulence Genes dari Salmonella yang mengkode 5 SIP (Salmonella Invasion Protein SIP A, B, C, D, dan E. 3.\tToll R2 dan toll R3 yang merupakan lapisan luar dari makrofag. 4.\tSistem imun lumen usus sampai ke organ dalam 5.\tFungsi endotelial sel dalam inflamasi. Infeksi Salmonella dapat berakibat fatal kepada bayi, balita, ibu hamil dan kandungannya serta orang lanjut usia. Hal ini disebabkan karena kekebalan tubuh mereka yang menurun. Virulensi salmonella tidak lepas dari peranan SPI, yang terletak di dalam kromosom dan plasmid bakteri. Dimana SPI 1 dan SPI 2 telah dikaji cukup mendalam karena keterkaitannya dengan T3SS, dan berperan sangat penting pada invasi awal serta siklus hidup intrasel dari bakteri Salmonella. Kontaminasi Salmonella dapat dicegah dengan mencuci tangan dan menjaga kebersihan makanan yang dikonsumsi. Selalu menjaga kebersihan lingkungan hidup kita agar terhindar dari kontaminasi dengan bakteri Salmonella typhi. Agar mewaspadai sejak dini pencegahan dan pengobatan penyakit typhus. Studi mendalam perlu dilakukan agar kita mampu lebih memahami proses kompleks antara patogen dan sel inang. Mengingat dari 15 SPI yang sudah diketahui, hanya SPI 1 dan SPI 2 yang sudah dikaji secara mendalam. Kata Kunci: Salmonella, Salmonella Invasion Protein, Typhi.

  11. Selected lactic acid-producing bacterial isolates with the capacity to reduce Salmonella translocation and virulence gene expression in chickens.

    Science.gov (United States)

    Yang, Xiaojian; Brisbin, Jennifer; Yu, Hai; Wang, Qi; Yin, Fugui; Zhang, Yonggang; Sabour, Parviz; Sharif, Shayan; Gong, Joshua

    2014-01-01

    Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB) isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0) and high bile salt (0.3-1.5%) and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (10(6-7) CFU/chick) or phosphate-buffered saline (PBS) at 1 day of age followed by Salmonella challenge (10(4) CFU/chick) next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1). These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures) were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10) in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in vivo can be one of the strategies for controlling Salmonella infection in chickens.

  12. The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity.

    Directory of Open Access Journals (Sweden)

    Amit P Bhavsar

    Full Text Available To further its pathogenesis, S. Typhimurium delivers effector proteins into host cells, including the novel E3 ubiquitin ligase (NEL effector SspH2. Using model systems in a cross-kingdom approach we gained further insight into the molecular function of this effector. Here, we show that SspH2 modulates innate immunity in both mammalian and plant cells. In mammalian cell culture, SspH2 significantly enhanced Nod1-mediated IL-8 secretion when transiently expressed or bacterially delivered. In addition, SspH2 also enhanced an Rx-dependent hypersensitive response in planta. In both of these nucleotide-binding leucine rich repeat receptor (NLR model systems, SspH2-mediated phenotypes required its catalytic E3 ubiquitin ligase activity and interaction with the conserved host protein SGT1. SGT1 has an essential cell cycle function and an additional function as an NLR co-chaperone in animal and plant cells. Interaction between SspH2 and SGT1 was restricted to SGT1 proteins that have NLR co-chaperone function and accordingly, SspH2 did not affect SGT1 cell cycle functions. Mechanistic studies revealed that SspH2 interacted with, and ubiquitinated Nod1 and could induce Nod1 activity in an agonist-independent manner if catalytically active. Interestingly, SspH2 in vitro ubiquitination activity and protein stability were enhanced by SGT1. Overall, this work adds to our understanding of the sophisticated mechanisms used by bacterial effectors to co-opt host pathways by demonstrating that SspH2 can subvert immune responses by selectively exploiting the functions of a conserved host co-chaperone.

  13. The serodominant secreted effector protein of Salmonella, SseB, is a strong CD4 antigen containing an immunodominant epitope presented by diverse HLA class II alleles.

    Science.gov (United States)

    Reynolds, Catherine J; Jones, Claire; Blohmke, Christoph J; Darton, Thomas C; Goudet, Amelie; Sergeant, Ruhena; Maillere, Bernard; Pollard, Andrew J; Altmann, Daniel M; Boyton, Rosemary J

    2014-11-01

    Detailed characterization of the protective T-cell response in salmonellosis is a pressing unmet need in light of the global burden of human Salmonella infections and the likely contribution of CD4 T cells to immunity against this intracellular infection. In previous studies screening patient sera against antigen arrays, SseB was noteworthy as a serodominant target of adaptive immunity, inducing significantly raised antibody responses in HIV-seronegative compared with seropositive patients. SseB is a secreted protein, part of the Espa superfamily, localized to the bacterial surface and forming part of the translocon of the type III secretion system (T3SS) encoded by Salmonella pathogenicity island 2. We demonstrate here that SseB is also a target of CD4 T-cell immunity, generating a substantial response after experimental infection in human volunteers, with around 0.1% of the peripheral repertoire responding to it. HLA-DR/peptide binding studies indicate that this protein encompasses a number of peptides with ability to bind to several different HLA-DR alleles. Of these, peptide 11 (p11) was shown in priming of both HLA-DR1 and HLA-DR4 transgenic mice to contain an immunodominant CD4 epitope. Analysis of responses in human donors showed immunity focused on p11 and another epitope in peptide 2. The high frequency of SseB-reactive CD4 T cells and the broad applicability to diverse HLA genotypes coupled with previous observations of serodominance and protective vaccination in mouse challenge experiments, make SseB a plausible candidate for next-generation Salmonella vaccines. © 2014 The Authors. Immunology published by John Wiley & Sons Ltd.

  14. Immune reaction and survivability of salmonella typhimurium and salmonella infantis after infection of primary avian macrophages.

    Directory of Open Access Journals (Sweden)

    Maria Braukmann

    Full Text Available Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2 for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S. Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS, interleukin (IL-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages.

  15. Role of yqiC in the pathogenicity of Salmonella and innate immune responses of human intestinal epithelium

    Directory of Open Access Journals (Sweden)

    Ke-Chuan Wang

    2016-10-01

    Full Text Available The yqiC gene of Salmonella enterica serovar Typhimurium (S. Typhimurium regulates bacterial growth at different temperatures and mice survival after infection. However, the role of yqiC in bacterial colonization and host immunity remains unknown. We infected human LS174T, Caco-2, HeLa, and THP-1 cells with S. Typhimurium wild-type SL1344, its yqiC mutant, and its complemented strain. Bacterial colonization and internalization in the four cell lines significantly reduced on yqiC depletion. Postinfection production of interleukin-8 and human β-defensin-3 in LS174T cells significantly reduced because of yqiC deleted in S. Typhimurium. The phenotype of yqiC mutant exhibited few and short flagella, fimbriae on the cell surface, enhanced biofilm formation, upregulated type-1 fimbriae expression, and reduced bacterial motility. Type-1 fimbriae, flagella, SPI-1, and SPI-2 gene expression was quantified using real-time PCR. The data show that deletion of yqiC upregulated fimA and fimZ expression and downregulated flhD, fliZ, invA, and sseB expression. Furthermore, thin-layer chromatography and high-performance liquid chromatography revealed the absence of menaquinone in the yqiC mutant, thus validating the importance of yqiC in the bacterial electron transport chain. Therefore, YqiC can negatively regulate FimZ for type-1 fimbriae expression and manipulate the functions of its downstream virulence factors including flagella, SPI-1, and SPI-2 effectors.

  16. Expression profiles of effector proteins SopB, SopD1, SopE1, and AvrA differ with systemic, enteric, and epidemic strains of Salmonella enterica.

    Science.gov (United States)

    Streckel, Wiebke; Wolff, Anne-Christin; Prager, Rita; Tietze, Erhard; Tschäpe, Helmut

    2004-12-01

    The presence and expression of sopB, sopD1, sopE1, and avrA genes encoding virulence associated effector proteins were studied comparatively in 405 Salmonella enterica strains. They belong to different serovars and clonal types (genotypes, phage types) and originated from different clinical (systemic infection, focal enteritis, enterocolitis) and epidemic sources (epidemics, sporadic cases). The sopB and sopD1 determinants were commonly prevalent, but sopE1 and avrA genes only in 55% and 80%, respectively. A correlation of this pattern of absence and presence of the respective genes to the epidemic and clinical origin could not be detected. In contrast, the expression of the respective genes appeared differently: SopB and SopE1 proteins are well produced, but SopD1 and AvrA proteins only rarely under the applied standard culture conditions. However, using a range of different environmental signals (temperature, pH, cations, etc.) some of the S. enterica nonproducer strains (e. g., S. Agona, S. Bovismorbificans, S. Virchow, etc.) begin to produce AvrA and SopD1. They turned now into an expression profile which was found typically for the epidemic strains of S. Typhimurium and S. Enteritidis. Also S. enterica strains from systemic infections could be characterized by their strong SopB and SopE1 expression while SopD1 and AvrA proteins were missing. Although it is premature to outline generally a correlation of these expression profiles and the clinical and epidemiological potency of Salmonellae, the reported results allow a first understanding how a fine tuning of their virulence will take place.

  17. Genomic and Phenotypic Analyses Reveal the Emergence of an Atypical Salmonella enterica Serovar Senftenberg Variant in China

    KAUST Repository

    Abd El Ghany, Moataz

    2016-05-25

    Human infections with Salmonella enterica subspecies enterica serovar Senftenberg are often associated with exposure to poultry flocks, farm environments, or contaminated food. The recent emergence of multidrug-resistant isolates has raised public health concerns. In this study, comparative genomics and phenotypic analysis were used to characterize 14 Salmonella Senftenberg clinical isolates recovered from multiple outbreaks in Shenzhen and Shanghai, China, between 2002 and 2011. Single-nucleotide polymorphism analyses identified two phylogenetically distinct clades of S. Senftenberg, designated SC1 and SC2, harboring variations in Salmonella pathogenicity island 1 (SPI-1) and SPI-2 and exhibiting distinct biochemical and phenotypic signatures. Although the two variants shared the same serotype, the SC2 isolates of sequence type 14 (ST14) harbored intact SPI-1 and -2 and hence were characterized by possessing efficient invasion capabilities. In contrast, the SC1 isolates had structural deletion patterns in both SPI-1 and -2 that correlated with an impaired capacity to invade cultured human cells and also the year of their isolation. These atypical SC1 isolates also lacked the capacity to produce hydrogen sulfide. These findings highlight the emergence of atypical Salmonella Senftenberg variants in China and provide genetic validation that variants lacking SPI-1 and regions of SPI-2, which leads to impaired invasion capacity, can still cause clinical disease. These data have identified an emerging public health concern and highlight the need to strengthen surveillance to detect the prevalence and transmission of nontyphoidal Salmonella species.

  18. Fructose-asparagine is a primary nutrient during growth of Salmonella in the inflamed intestine.

    Directory of Open Access Journals (Sweden)

    Mohamed M Ali

    2014-06-01

    Full Text Available Salmonella enterica serovar Typhimurium (Salmonella is one of the most significant food-borne pathogens affecting both humans and agriculture. We have determined that Salmonella encodes an uptake and utilization pathway specific for a novel nutrient, fructose-asparagine (F-Asn, which is essential for Salmonella fitness in the inflamed intestine (modeled using germ-free, streptomycin-treated, ex-germ-free with human microbiota, and IL10-/- mice. The locus encoding F-Asn utilization, fra, provides an advantage only if Salmonella can initiate inflammation and use tetrathionate as a terminal electron acceptor for anaerobic respiration (the fra phenotype is lost in Salmonella SPI1- SPI2- or ttrA mutants, respectively. The severe fitness defect of a Salmonella fra mutant suggests that F-Asn is the primary nutrient utilized by Salmonella in the inflamed intestine and that this system provides a valuable target for novel therapies.

  19. Conservation of Salmonella infection mechanisms in plants and animals.

    Science.gov (United States)

    Schikora, Adam; Virlogeux-Payant, Isabelle; Bueso, Eduardo; Garcia, Ana V; Nilau, Theodora; Charrier, Amélie; Pelletier, Sandra; Menanteau, Pierrette; Baccarini, Manuela; Velge, Philippe; Hirt, Heribert

    2011-01-01

    Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs). In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection.

  20. Altered virulence potential of Salmonella Enteritidis cultured in different foods: A cumulative effect of differential gene expression and immunomodulation.

    Science.gov (United States)

    Jaiswal, Sangeeta; Sahoo, Prakash Kumar; Ryan, Daniel; Das, Jugal Kishore; Chakraborty, Eesha; Mohakud, Nirmal Kumar; Suar, Mrutyunjay

    2016-08-02

    Salmonella enterica serovars Enteritidis (S. Enteritidis) is one of the most common causes of food borne illness. Bacterial growth environment plays an important role in regulating gene expression thereby affecting the virulence profile of the bacteria. Different foods present diverse growth conditions which may affect the pathogenic potential of the bacteria. In the present study, the effect of food environments on the pathogenic potential of S. Enteritidis has been evaluated. S. Enteritidis was grown in different foods e.g. egg white, peanut butter and milk, and virulent phenotypes were compared to those grown in Luria Bertani broth. In-vivo experiments in C57BL/6 mice revealed S. Enteritidis grown in egg white did not induce significant (panalysis revealed SPI-1 effectors were downregulated in bacteria grown in egg white. Interestingly, bacteria grown in egg white showed reversal of phenotype upon change in growth media to LB. Additionally, bacteria grown in milk and peanut butter showed different degrees of virulence in mice as compared to those grown in LB media. Thus, the present study demonstrates that, S. Enteritidis grown in egg white colonizes systemic sites without causing colitis in a mouse model, while bacteria grown in milk and peanut butter show different pathogenicity profiles suggesting that food environments significantly affect the pathogenicity of S. Enteritidis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Triad of human cellular proteins, IRF2, FAM111A, and RFC3, restrict replication of orthopoxvirus SPI-1 host-range mutants.

    Science.gov (United States)

    Panda, Debasis; Fernandez, Daniel J; Lal, Madhu; Buehler, Eugen; Moss, Bernard

    2017-04-04

    Viruses and their hosts can reach balanced states of evolution ensuring mutual survival, which makes it difficult to appreciate the underlying dynamics. To uncover hidden interactions, virus mutants that have lost defense genes may be used. Deletion of the gene that encodes serine protease inhibitor 1 (SPI-1) of rabbitpox virus and vaccinia virus, two closely related orthopoxviruses, prevents their efficient replication in human cells, whereas certain other mammalian cells remain fully permissive. Our high-throughput genome-wide siRNA screen identified host factors that prevent reproduction and spread of the mutant viruses in human cells. More than 20,000 genes were interrogated with individual siRNAs and those that prominently increased replication of the SPI-1 deletion mutant were subjected to a secondary screen. The top hits based on the combined data-replication factor C3 (RFC3), FAM111A, and interferon regulatory factor 2 (IRF2)-were confirmed by custom assays. The siRNAs to RFC1, RFC2, RFC4, and RFC5 mRNAs also enhanced spread of the mutant virus, strengthening the biological significance of the RFC complex as a host restriction factor for poxviruses. Whereas association with proliferating cell nuclear antigen and participation in processive genome replication are common features of FAM111A and RFC, IRF2 is a transcriptional regulator. Microarray analysis, quantitative RT-PCR, and immunoblotting revealed that IRF2 regulated the basal level expression of FAM111A, suggesting that the enhancing effect of depleting IRF2 on replication of the SPI-1 mutant was indirect. Thus, the viral SPI-1 protein and the host IRF2, FAM111A, and RFC complex likely form an interaction network that influences the ability of poxviruses to replicate in human cells.

  2. Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion

    Directory of Open Access Journals (Sweden)

    Voigt Christopher A

    2010-10-01

    Full Text Available Abstract Background The type III secretion system (T3SS is a molecular machine in gram negative bacteria that exports proteins through both membranes to the extracellular environment. It has been previously demonstrated that the T3SS encoded in Salmonella Pathogenicity Island 1 (SPI-1 can be harnessed to export recombinant proteins. Here, we demonstrate the secretion of a variety of unfolded spider silk proteins and use these data to quantify the constraints of this system with respect to the export of recombinant protein. Results To test how the timing and level of protein expression affects secretion, we designed a hybrid promoter that combines an IPTG-inducible system with a natural genetic circuit that controls effector expression in Salmonella (psicA. LacO operators are placed in various locations in the psicA promoter and the optimal induction occurs when a single operator is placed at the +5nt (234-fold and a lower basal level of expression is achieved when a second operator is placed at -63nt to take advantage of DNA looping. Using this tool, we find that the secretion efficiency (protein secreted divided by total expressed is constant as a function of total expressed. We also demonstrate that the secretion flux peaks at 8 hours. We then use whole gene DNA synthesis to construct codon optimized spider silk genes for full-length (3129 amino acids Latrodectus hesperus dragline silk, Bombyx mori cocoon silk, and Nephila clavipes flagelliform silk and PCR is used to create eight truncations of these genes. These proteins are all unfolded polypeptides and they encompass a variety of length, charge, and amino acid compositions. We find those proteins fewer than 550 amino acids reliably secrete and the probability declines significantly after ~700 amino acids. There also is a charge optimum at -2.4, and secretion efficiency declines for very positively or negatively charged proteins. There is no significant correlation with hydrophobicity

  3. Selected lactic acid-producing bacterial isolates with the capacity to reduce Salmonella translocation and virulence gene expression in chickens.

    Directory of Open Access Journals (Sweden)

    Xiaojian Yang

    Full Text Available BACKGROUND: Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. METHODOLOGY/PRINCIPAL FINDINGS: In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0 and high bile salt (0.3-1.5% and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (10(6-7 CFU/chick or phosphate-buffered saline (PBS at 1 day of age followed by Salmonella challenge (10(4 CFU/chick next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1. These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10 in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. CONCLUSIONS/SIGNIFICANCE: The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in

  4. Characterization of a novel filarial serine protease inhibitor, Ov-SPI-1, from Onchocerca volvulus, with potential multifunctional roles during development of the parasite.

    Science.gov (United States)

    Ford, Louise; Guiliano, David B; Oksov, Yelena; Debnath, Asim K; Liu, Jing; Williams, Steven A; Blaxter, Mark L; Lustigman, Sara

    2005-12-09

    A novel filarial serine protease inhibitor (SPI) from the human parasitic nematode Onchocerca volvulus, Ov-SPI-1, was identified through the analysis of a molting third-stage larvae expressed sequence tag dataset. Subsequent analysis of the expressed sequence tag datasets of O. volvulus and other filariae identified four other members of this family. These proteins are related to the low molecular weight SPIs originally isolated from Ascaris suum where they are believed to protect the parasite from host intestinal proteases. The two Ov-spi transcripts are up-regulated in the molting larvae and adult stages of the development of the parasite. Recombinant Ov-SPI-1 is an active inhibitor of serine proteases, specifically elastase, chymotrypsin, and cathepsin G. Immunolocalization of the Ov-SPI proteins demonstrates that the endogenous proteins are localized to the basal layer of the cuticle of third-stage, molting third-stage, and fourth-stage larvae, the body channels and multivesicular bodies of third-stage larvae and the processed material found between the two cuticles during molting. In O. volvulus adult worms the Ov-SPI proteins are localized to the sperm and to eggshells surrounding the developing embryos. RNA interference targeting the Ov-spi genes resulted in the specific knockdown of the transcript levels of both Ov-spi-1 and Ov-spi-2, a loss of native proteins, and a significant reduction in both molting and viability of third-stage larvae. We suggest the Ov-SPI proteins play a vital role in nematode molting by controlling the activity of an endogenous serine protease(s). The localization data in adults also indicate that these inhibitors may be involved in other processes such as embryogenesis and spermatogenesis.

  5. Mapping the Regulatory Network for Salmonella enterica Serovar Typhimurium Invasion

    Directory of Open Access Journals (Sweden)

    Carol Smith

    2016-09-01

    Full Text Available Salmonella enterica pathogenicity island 1 (SPI-1 encodes proteins required for invasion of gut epithelial cells. The timing of invasion is tightly controlled by a complex regulatory network. The transcription factor (TF HilD is the master regulator of this process and senses environmental signals associated with invasion. HilD activates transcription of genes within and outside SPI-1, including six other TFs. Thus, the transcriptional program associated with host cell invasion is controlled by at least 7 TFs. However, very few of the regulatory targets are known for these TFs, and the extent of the regulatory network is unclear. In this study, we used complementary genomic approaches to map the direct regulatory targets of all 7 TFs. Our data reveal a highly complex and interconnected network that includes many previously undescribed regulatory targets. Moreover, the network extends well beyond the 7 TFs, due to the inclusion of many additional TFs and noncoding RNAs. By comparing gene expression profiles of regulatory targets for the 7 TFs, we identified many uncharacterized genes that are likely to play direct roles in invasion. We also uncovered cross talk between SPI-1 regulation and other regulatory pathways, which, in turn, identified gene clusters that likely share related functions. Our data are freely available through an intuitive online browser and represent a valuable resource for the bacterial research community.

  6. Obacunone Represses Salmonella Pathogenicity Islands 1 and 2 in an envZ-Dependent Fashion

    Science.gov (United States)

    Vikram, Amit; Jayaprakasha, Guddadarangavvanahally K.; Jesudhasan, Palmy R.

    2012-01-01

    Obacunone belongs to a class of unique triterpenoids called limonoids, present in Citrus species. Previous studies from our laboratory suggested that obacunone possesses antivirulence activity and demonstrates inhibition of cell-cell signaling in Vibrio harveyi and Escherichia coli O157:H7. The present work sought to determine the effect of obacunone on the food-borne pathogen Salmonella enterica serovar Typhimurium LT2 by using a cDNA microarray. Transcriptomic studies indicated that obacunone represses Salmonella pathogenicity island 1 (SPI1), the maltose transporter, and the hydrogenase operon. Furthermore, phenotypic data for the Caco-2 infection assay and maltose utilization were in agreement with microarray data suggesting repression of SPI1 and maltose transport. Further studies demonstrated that repression of SPI1 was plausibly mediated through hilA. Additionally, obacunone seems to repress SPI2 under SPI2-inducing conditions as well as in Caco-2 infection models. Furthermore, obacunone seems to repress hilA in an EnvZ-dependent fashion. Altogether, the results of the study seems to suggest that obacunone exerts an antivirulence effect on S. Typhimurium and may serve as a lead compound for development of antivirulence strategies for S. Typhimurium. PMID:22843534

  7. Global regulation by CsrA in Salmonella typhimurium.

    Science.gov (United States)

    Lawhon, Sara D; Frye, Jonathan G; Suyemoto, Mitsu; Porwollik, Steffen; McClelland, Michael; Altier, Craig

    2003-06-01

    CsrA is a regulator of invasion genes in Salmonella enterica serovar Typhimurium. To investigate the wider role of CsrA in gene regulation, we compared the expression of Salmonella genes in a csrA mutant with those in the wild type using a DNA microarray. As expected, we found that expression of Salmonella pathogenicity island 1 (SPI-1) invasion genes was greatly reduced in the csrA mutant, as were genes outside the island that encode proteins translocated into eukaryotic cells by the SPI-1 type III secretion apparatus. The flagellar synthesis operons, flg and fli, were also poorly expressed, and the csrA mutant was aflagellate and non-motile. The genes of two metabolic pathways likely to be used by Salmonella in the intestinal milieu also showed reduced expression: the pdu operon for utilization of 1,2-propanediol and the eut operon for ethanolamine catabolism. Reduced expression of reporter fusions in these two operons confirmed the microarray data. Moreover, csrA was found to regulate co-ordinately the cob operon for synthesis of vitamin B12, required for the metabolism of either 1,2-propanediol or ethanolamine. Additionally, the csrA mutant poorly expressed the genes of the mal operon, required for transport and use of maltose and maltodextrins, and had reduced amounts of maltoporin, normally a dominant protein of the outer membrane. These results show that csrA controls a number of gene classes in addition to those required for invasion, some of them unique to Salmonella, and suggests a co-ordinated bacterial response to conditions that exist at the site of bacterial invasion, the intestinal tract of a host animal.

  8. A comparison of cecal colonization of Salmonella enterica serotype Typhimurium in white leghorn chicks and Salmonella-resistant mice

    Directory of Open Access Journals (Sweden)

    Bogomolnaya Lydia M

    2008-10-01

    Full Text Available Abstract Background Salmonellosis is one of the most important bacterial food borne illnesses worldwide. A major source of infection for humans is consumption of chicken or egg products that have been contaminated with Salmonella enterica serotype Typhimurium, however our knowledge regarding colonization and persistence factors in the chicken is small. Results We compared intestinal and systemic colonization of 1-week-old White Leghorn chicks and Salmonella-resistant CBA/J mice during infection with Salmonella enterica serotype Typhimurium ATCC14028, one of the most commonly studied isolates. We also studied the distribution of wild type serotype Typhimurium ATCC14028 and an isogenic invA mutant during competitive infection in the cecum of 1-week-old White Leghorn chicks and 8-week-old CBA/J mice. We found that although the systemic levels of serotype Typhimurium in both infected animal models are low, infected mice have significant splenomegaly beginning at 15 days post infection. In the intestinal tract itself, the cecal contents are the major site for recovery of serotype Typhimurium in the cecum of 1-week-old chicks and Salmonella-resistant mice. Additionally we show that only a small minority of Salmonellae are intracellular in the cecal epithelium of both infected animal models, and while SPI-1 is important for successful infection in the murine model, it is important for association with the cecal epithelium of 1-week-old chicks. Finally, we show that in chicks infected with serotype Typhimurium at 1 week of age, the level of fecal shedding of this organism does not reflect the level of cecal colonization as it does in murine models. Conclusion In our study, we highlight important differences in systemic and intestinal colonization levels between chick and murine serotype Typhimurium infections, and provide evidence that suggests that the role of SPI-1 may not be the same during colonization of both animal models.

  9. Salmonella infects B cells by macropinocytosis and formation of spacious phagosomes but does not induce pyroptosis in favor of its survival.

    Science.gov (United States)

    Rosales-Reyes, Roberto; Pérez-López, Araceli; Sánchez-Gómez, Concepción; Hernández-Mote, Rosaura Ruth; Castro-Eguiluz, Denisse; Ortiz-Navarrete, Vianney; Alpuche-Aranda, Celia Mercedes

    2012-06-01

    We have previously reported that Salmonella infects B cells and survives within endosomal-lysosomal compartments. However, the mechanisms used by Salmonella to enter B cells remain unknown. In this study, we have shown that Salmonella induces its own entry by the induction of localized ruffling, macropinocytosis, and spacious phagosome formation. These events were associated with the rearrangement of actin and microtubule networks. The Salmonella pathogenesis island 1 (SPI-1) was necessary to invade B cells. In contrast to macrophages, B cells were highly resistant to cell death induced by Salmonella. These data demonstrate the ability of Salmonella to infect these non-professional phagocytic cells, where the bacterium can find an ideal intracellular niche to support persistence and the possible dissemination of infection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Quantitative assessment of cytosolic Salmonella in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Leigh A Knodler

    Full Text Available Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV. We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1, but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol.

  11. T-2 toxin induced Salmonella Typhimurium intoxication results in decreased Salmonella numbers in the cecum contents of pigs, despite marked effects on Salmonella-host cell interactions

    Science.gov (United States)

    2012-01-01

    The mycotoxin T-2 toxin and Salmonella Typhimurium infections pose a significant threat to human and animal health. Interactions between both agents may result in a different outcome of the infection. Therefore, the aim of the presented study was to investigate the effects of low and relevant concentrations of T-2 toxin on the course of a Salmonella Typhimurium infection in pigs. We showed that the presence of 15 and 83 μg T-2 toxin per kg feed significantly decreased the amount of Salmonella Typhimurium bacteria present in the cecum contents, and a tendency to a reduced colonization of the jejunum, ileum, cecum, colon and colon contents was noticed. In vitro, proteomic analysis of porcine enterocytes revealed that a very low concentration of T-2 toxin (5 ng/mL) affects the protein expression of mitochondrial, endoplasmatic reticulum and cytoskeleton associated proteins, proteins involved in protein synthesis and folding, RNA synthesis, mitogen-activated protein kinase signaling and regulatory processes. Similarly low concentrations (1-100 ng/mL) promoted the susceptibility of porcine macrophages and intestinal epithelial cells to Salmonella Typhimurium invasion, in a SPI-1 independent manner. Furthermore, T-2 toxin (1-5 ng/mL) promoted the translocation of Salmonella Typhimurium over an intestinal porcine epithelial cell monolayer. Although these findings may seem in favour of Salmonella Typhimurium, microarray analysis showed that T-2 toxin (5 ng/mL) causes an intoxication of Salmonella Typhimurium, represented by a reduced motility and a downregulation of metabolic and Salmonella Pathogenicity Island 1 genes. This study demonstrates marked interactions of T-2 toxin with Salmonella Typhimurium pathogenesis, resulting in bacterial intoxication. PMID:22440148

  12. Conservation of Salmonella infection mechanisms in plants and animals.

    Directory of Open Access Journals (Sweden)

    Adam Schikora

    Full Text Available Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs. In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection.

  13. Salmonella Osteomyelitis

    National Research Council Canada - National Science Library

    McAnearney, S; McCall, D

    2015-01-01

    .... Salmonella as an aetiological agent in osteomyelitis is essentially rare and salmonella osteomyelitis in itself is predominantly seen in patients with haemoglobinopathies such as sickle cell disease or thalassemia...

  14. Enteric Helminths Promote Salmonella Coinfection by Altering the Intestinal Metabolome.

    Science.gov (United States)

    Reynolds, Lisa A; Redpath, Stephen A; Yurist-Doutsch, Sophie; Gill, Navkiran; Brown, Eric M; van der Heijden, Joris; Brosschot, Tara P; Han, Jun; Marshall, Natalie C; Woodward, Sarah E; Valdez, Yanet; Borchers, Christoph H; Perona-Wright, Georgia; Finlay, B Brett

    2017-04-15

    Intestinal helminth infections occur predominantly in regions where exposure to enteric bacterial pathogens is also common. Helminth infections inhibit host immunity against microbial pathogens, which has largely been attributed to the induction of regulatory or type 2 (Th2) immune responses. Here we demonstrate an additional 3-way interaction in which helminth infection alters the metabolic environment of the host intestine to enhance bacterial pathogenicity. We show that an ongoing helminth infection increased colonization by Salmonella independently of T regulatory or Th2 cells. Instead, helminth infection altered the metabolic profile of the intestine, which directly enhanced bacterial expression of Salmonella pathogenicity island 1 (SPI-1) genes and increased intracellular invasion. These data reveal a novel mechanism by which a helminth-modified metabolome promotes susceptibility to bacterial coinfection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  15. Increased secretion of exopolysaccharide and virulence potential of a mucoid variant of Salmonella enterica serovar Montevideo under environmental stress.

    Science.gov (United States)

    Jean-Gilles Beaubrun, J; Tall, Ben D; Flamer, M-L; Patel, I; Gopinath, G; Auguste, Winny; Jean, Catherine; George, Melvin; Tartera, Carmen; Ewing, L; Hanes, D E

    2017-02-01

    During an investigation to increase the recovery of Salmonella enterica from Oregano, an increased expression of exopolysaccharide was induced in Salmonella serovar Montevideo. The atypical mucoid (SAL242S) and the non-mucoid (SAL242) strains of Montevideo were compared and characterized using various methods. Serotyping analysis demonstrated that both strains are the same serovar Montevideo. Electron microscopy (EM) of cultured SAL242S cells revealed the production of a prominent EPS-like structure enveloping aggregates of cells that are composed of cellulose. Mucoid cells possessed a higher binding affinity for Calcofluor than that of the non-mucoid strain. Genotypic analysis revealed no major genomic differences between these morphotypes, while expression analyses using a DNA microarray shows that the mucoid variant exhibited heightened expression of genes encoding proteins produced by the SPI-1 type III secretion system. This increased expression of SPI1 genes may play a role in protecting Salmonella from environmental stressors. Based on these observations, Salmonella serovar Montevideo mucoid variant under stressful or low-nutrient environments presented atypical growth patterns and phenotypic changes, as well as an upregulated expression of virulence factors. These findings are significant in the understanding of survival abilities of Salmonella in a various food matrices. Published by Elsevier Ltd.

  16. End-effector microprocessor

    Science.gov (United States)

    Doggett, William R.

    1992-01-01

    The topics are presented in viewgraph form and include: automated structures assembly facility current control hierarchy; automated structures assembly facility purposed control hierarchy; end-effector software state transition diagram; block diagram for ideal install composite; and conclusions.

  17. Salmonella - at home in the host cell.

    Directory of Open Access Journals (Sweden)

    Preeti eMalik Kale

    2011-06-01

    Full Text Available The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic trigger-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on cohorts of effector proteins translocated into host cells by two type III secretion systems (T3SS, although T3SS-independent mechanisms of entry may be important for invasion of certain host cell-types. Recent studies into the intracellular lifestyle of Salmonella have provided new insights into the mechanisms used by this pathogen to modulate its intracellular environment. Here we discuss current knowledge of Salmonella-host interactions including invasion and establishment of an intracellular niche within the host.

  18. Salmonella Infections (For Parents)

    Science.gov (United States)

    ... Needs a Kidney Transplant Vision Facts and Myths Salmonella Infections KidsHealth > For Parents > Salmonella Infections Print A ... Last? Can Salmonella Infections Be Prevented? What Is Salmonella ? Salmonella is a kind of bacteria , with many ...

  19. Salmonella: Salmonellosis

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Hansen, Trine; Maurischat, Sven

    2015-01-01

    Salmonella remains one of the most important zoonotic pathogenic bacteria and is the causative agents of salmonellosis. The aim of this article is to give an overview of Salmonella and salmonellosis, starting by describing the characteristics of the microorganism Salmonella, including biochemical...... properties, physiology, classification, and nomenclature. Thereafter, the epidemiology of the organism is introduced, including the routes of transmission. Finally, the disease salmonellosis, the virulence mechanisms, and the occurrence in different types of food are described....

  20. Curcumin increases the pathogenicity of Salmonella enterica serovar Typhimurium in murine model.

    Directory of Open Access Journals (Sweden)

    Sandhya A Marathe

    Full Text Available Curcumin has gained immense importance for its vast therapeutic and prophylactic applications. Contrary to this, our study reveals that it regulates the defense pathways of Salmonella enterica serovar Typhimurium (S. Typhimurium to enhance its pathogenicity. In a murine model of typhoid fever, we observed higher bacterial load in Peyer's patches, mesenteric lymph node, spleen and liver, when infected with curcumin-treated Salmonella. Curcumin increased the resistance of S. Typhimurium against antimicrobial agents like antimicrobial peptides, reactive oxygen and nitrogen species. This increased tolerance might be attributed to the up-regulation of genes involved in resistance against antimicrobial peptides--pmrD and pmrHFIJKLM and genes with antioxidant function--mntH, sodA and sitA. We implicate that iron chelation property of curcumin have a role in regulating mntH and sitA. Interestingly, we see that the curcumin-mediated modulation of pmr genes is through the PhoPQ regulatory system. Curcumin downregulates SPI1 genes, required for entry into epithelial cells and upregulates SPI2 genes required to intracellular survival. Since it is known that the SPI1 and SPI2 system can be regulated by the PhoPQ system, this common regulator could explain curcumin's mode of action. This data urges us to rethink the indiscriminate use of curcumin especially during Salmonella outbreaks.

  1. Salmonella bongori provides insights into the evolution of the Salmonellae.

    Directory of Open Access Journals (Sweden)

    Maria Fookes

    2011-08-01

    Full Text Available The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2 has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L. All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC. Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.

  2. SALMONELLA SPECIES

    African Journals Online (AJOL)

    DR. AMINU

    e. Biochemical screening and serological tests for Salmonellae. Identification of Salmonella species was done biochemically. Triple sugar Iron (TSI) agar motility, urease and citrate utilization tests were also used to screen the isolates before serologic testing was performed. (Cheesbrough, 2002; Perilla, 2003). Triple sugar ...

  3. Poultry Body Temperature Contributes to Invasion Control through Reduced Expression of Salmonella Pathogenicity Island 1 Genes in Salmonella enterica Serovars Typhimurium and Enteritidis

    Science.gov (United States)

    Petri, Nicholas; Daron, Caitlyn; Pereira, Rafaela; Mendoza, Mary; Hassan, Hosni M.; Koci, Matthew D.

    2015-01-01

    Salmonella enterica serovars Typhimurium (S. Typhimurium) and Enteritidis (S. Enteritidis) are foodborne pathogens, and outbreaks are often associated with poultry products. Chickens are typically asymptomatic when colonized by these serovars; however, the factors contributing to this observation are uncharacterized. Whereas symptomatic mammals have a body temperature between 37°C and 39°C, chickens have a body temperature of 41°C to 42°C. Here, in vivo experiments using chicks demonstrated that numbers of viable S. Typhimurium or S. Enteritidis bacteria within the liver and spleen organ sites were ≥4 orders of magnitude lower than those within the ceca. When similar doses of S. Typhimurium or S. Enteritidis were given to C3H/HeN mice, the ratio of the intestinal concentration to the liver/spleen concentration was 1:1. In the avian host, this suggested poor survival within these tissues or a reduced capacity to traverse the host epithelial layer and reach liver/spleen sites or both. Salmonella pathogenicity island 1 (SPI-1) promotes localization to liver/spleen tissues through invasion of the epithelial cell layer. Following in vitro growth at 42°C, SPI-1 genes sipC, invF, and hilA and the SPI-1 rtsA activator were downregulated compared to expression at 37°C. Overexpression of the hilA activators fur, fliZ, and hilD was capable of inducing hilA-lacZ at 37°C but not at 42°C despite the presence of similar levels of protein at the two temperatures. In contrast, overexpression of either hilC or rtsA was capable of inducing hilA and sipC at 42°C. These data indicate that physiological parameters of the poultry host, such as body temperature, have a role in modulating expression of virulence. PMID:26386070

  4. Salmonella enterica induces and subverts the plant immune system

    KAUST Repository

    García, Ana V.

    2014-04-04

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. 2014 Garca and Hirt.

  5. Swiss Army Pathogen: The Salmonella Entry Toolkit

    Directory of Open Access Journals (Sweden)

    Peter J. Hume

    2017-08-01

    Full Text Available Salmonella causes disease in humans and animals ranging from mild self-limiting gastroenteritis to potentially life-threatening typhoid fever. Salmonellosis remains a considerable cause of morbidity and mortality globally, and hence imposes a huge socio-economic burden worldwide. A key property of all pathogenic Salmonella strains is the ability to invade non-phagocytic host cells. The major determinant of this invasiveness is a Type 3 Secretion System (T3SS, a molecular syringe that injects virulence effector proteins directly into target host cells. These effectors cooperatively manipulate multiple host cell signaling pathways to drive pathogen internalization. Salmonella does not only rely on these injected effectors, but also uses several other T3SS-independent mechanisms to gain entry into host cells. This review summarizes our current understanding of the methods used by Salmonella for cell invasion, with a focus on the host signaling networks that must be coordinately exploited for the pathogen to achieve its goal.

  6. Acetylation regulates protein stability and DNA-binding ability of HilD to modulate Salmonella Typhimurium virulence.

    Science.gov (United States)

    Sang, Yu; Ren, Jie; Qin, Ran; Liu, Shuting; Cui, Zhongli; Cheng, Sen; Liu, Xiaoyun; Lu, Jie; Tao, Jing; Yao, Yu-Feng

    2017-02-24

    HilD, a dominant regulator of Salmonella pathogenicity island 1 (SPI-1), can be acetylated by acetyltransferase Pat in Salmonella Typhimurium, and the acetylation is beneficial to its stability. However, the underlying mechanism of HilD stability regulated by acetylation is not clear. We show here that lysine 297 (K297) located in the helix-turn-helix motif, can be acetylated by Pat. Acetylation of K297 increases HilD stability, but reduces its DNA-binding affinity. In turn, the deacetylated K297 enhances the DNA-binding ability, but decreases HilD stability. Under SPI-1 inducing condition, the acetylation level of K297 is down-regulated. The acetylated K297 (mimicked by glutamine substitution) causes attenuated invasion in HeLa cells as well as impaired virulence in mouse model compared with the deacetylated K297 (mimicked by arginine substitution), suggesting that deacetylation of K297 is essential for Salmonella virulence. These findings demonstrate that the acetylation of K297 can regulate both protein stability and DNA-binding ability. This regulation mediated by acetylation not only degrades redundant HilD to keep a moderate protein level to facilitate S. Typhimurium growth but also maintains an appropriate DNA-binding activity of HilD to ensure bacterial pathogenicity. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. Effector glycosyltransferases in Legionella

    Directory of Open Access Journals (Sweden)

    Yury eBelyi

    2011-04-01

    Full Text Available Legionella causes severe pneumonia in humans. The pathogen produces an array of effectors, which interfere with host cell functions. Among them are the glucosyltransferases Lgt1, Lgt2 and Lgt3 from L. pneumophila. Lgt1 and Lgt2 are produced predominately in the post-exponential phase of bacterial growth, while synthesis of Lgt3 is induced mainly in the lag-phase before intracellular replication of bacteria starts. Lgt glucosyltransferases are structurally similar to clostridial glucosylating toxins. The enzymes use UDP-glucose as a donor substrate and modify eukaryotic elongation factor eEF1A at serine-53. This modification results in inhibition of protein synthesis and death of target cells. In addition to Lgts, Legionella genomes disclose several genes, coding for effector proteins likely to possess glycosyltransferase activities, including SetA, which influences vesicular trafficking in the yeast model system and displays tropism for late endosomal/lysosomal compartments of mammalian cells. This review mainly discusses recent results on the structure-function relationship of Lgt glucosyltransferases.

  8. Virulence Characterization of Salmonella enterica by a New Microarray: Detection and Evaluation of the Cytolethal Distending Toxin Gene Activity in the Unusual Host S. Typhimurium.

    Directory of Open Access Journals (Sweden)

    Rui Figueiredo

    Full Text Available Salmonella enterica is a zoonotic foodborne pathogen that causes acute gastroenteritis in humans. We assessed the virulence potential of one-hundred and six Salmonella strains isolated from food animals and products. A high through-put virulence genes microarray demonstrated Salmonella Pathogenicity Islands (SPI and adherence genes were highly conserved, while prophages and virulence plasmid genes were variably present. Isolates were grouped by serotype, and virulence plasmids separated S. Typhimurium in two clusters. Atypical microarray results lead to whole genome sequencing (WGS of S. Infantis Sal147, which identified deletion of thirty-eight SPI-1 genes. Sal147 was unable to invade HeLa cells and showed reduced mortality in Galleria mellonella infection model, in comparison to a SPI-1 harbouring S. Infantis. Microarray and WGS of S. Typhimurium Sal199, established for the first time in S. Typhimurium presence of cdtB and other Typhi-related genes. Characterization of Sal199 showed cdtB genes were upstream of transposase IS911, and co-expressed with other Typhi-related genes. Cell cycle arrest, cytoplasmic distension, and nuclear enlargement were detected in HeLa cells infected by Sal199, but not with S. Typhimurium LT2. Increased mortality of Galleria was detected on infection with Sal199 compared to LT2. Thus, Salmonella isolates were rapidly characterized using a high through-put microarray; helping to identify unusual virulence features which were corroborated by further characterisation. This work demonstrates that the use of suitable screening methods for Salmonella virulence can help assess the potential risk associated with certain Salmonella to humans. Incorporation of such methodology into surveillance could help reduce the risk of emergence of epidemic Salmonella strains.

  9. Virulence Characterization of Salmonella enterica by a New Microarray: Detection and Evaluation of the Cytolethal Distending Toxin Gene Activity in the Unusual Host S. Typhimurium.

    Science.gov (United States)

    Figueiredo, Rui; Card, Roderick; Nunes, Carla; AbuOun, Manal; Bagnall, Mary C; Nunez, Javier; Mendonça, Nuno; Anjum, Muna F; da Silva, Gabriela Jorge

    2015-01-01

    Salmonella enterica is a zoonotic foodborne pathogen that causes acute gastroenteritis in humans. We assessed the virulence potential of one-hundred and six Salmonella strains isolated from food animals and products. A high through-put virulence genes microarray demonstrated Salmonella Pathogenicity Islands (SPI) and adherence genes were highly conserved, while prophages and virulence plasmid genes were variably present. Isolates were grouped by serotype, and virulence plasmids separated S. Typhimurium in two clusters. Atypical microarray results lead to whole genome sequencing (WGS) of S. Infantis Sal147, which identified deletion of thirty-eight SPI-1 genes. Sal147 was unable to invade HeLa cells and showed reduced mortality in Galleria mellonella infection model, in comparison to a SPI-1 harbouring S. Infantis. Microarray and WGS of S. Typhimurium Sal199, established for the first time in S. Typhimurium presence of cdtB and other Typhi-related genes. Characterization of Sal199 showed cdtB genes were upstream of transposase IS911, and co-expressed with other Typhi-related genes. Cell cycle arrest, cytoplasmic distension, and nuclear enlargement were detected in HeLa cells infected by Sal199, but not with S. Typhimurium LT2. Increased mortality of Galleria was detected on infection with Sal199 compared to LT2. Thus, Salmonella isolates were rapidly characterized using a high through-put microarray; helping to identify unusual virulence features which were corroborated by further characterisation. This work demonstrates that the use of suitable screening methods for Salmonella virulence can help assess the potential risk associated with certain Salmonella to humans. Incorporation of such methodology into surveillance could help reduce the risk of emergence of epidemic Salmonella strains.

  10. Comparison Study on Colonization of hilA Mutant and Parent Strains of Salmonella enteritidis in Vertically Infected Broiler Chickens

    Directory of Open Access Journals (Sweden)

    MohammadSadegh Madadi

    2015-10-01

    Full Text Available Background: Salmonella actively stimulates its own uptake into the epithelial cells by inducing cytoskeleton rearrangements and membrane ruffling triggered by some proteins secreted by Salmonella into the cytosol of the epithelial cells via a type III secretion system (TTSS encoded bygenes of the Salmonella pathogenicity island 1 (SPI-1. hilA is a transcriptional activator encoded on Salmonella Pathogenicity Island 1 (SPI-1 genes.Methods: To assess the importance of hilA in a simulation modeling of vertical infection and shedding of S. enteritidis in broiler chickens a long-term experiment was designed. Two groups of 200 fertile eggs were inoculated with 20 colony forming units (CFU of hilA mutant of S. enteritidis or its parent strain just prior to incubation. Thirty five birds of each group were housed in separate rooms. On days 2, 4, 7, 14, 21, 28 and 35 of age, cloacal swabs from live birds as well as samples from internal organs (intestinal tract, liver and spleen were evaluated by bacteriological or molecular methods.Results: In most of sampling days colonization and invasion of parent strain S. enteritidis in intestine (especially ceaca and internal organs of chickens were higher with compared to its hilA mutant but this mutant strain could still colonize in intestinal tract and even invade liver or spleen.Conclusion: Colonization of hilA mutant of S. enteritidis indicated that hilA gene is only one part of the modulators in Salmonella invasion mechanism. The ability of hilA mutant to multiply and persist in host internal organs including ceaca may promise further research for potential of hilA mutant to prevent the initial colonization of the intestinal tract by a virulent S. enteritidis strain

  11. Structural and enzymatic characterization of a host-specificity determinant from Salmonella

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Amanda C. [Rockefeller University, New York, NY 10065 (United States); Spanò, Stefania; Galán, Jorge E. [Yale University School of Medicine, New Haven, CT 06536 (United States); Stebbins, C. Erec, E-mail: stebbins@rockefeller.edu [Rockefeller University, New York, NY 10065 (United States)

    2014-02-01

    The Salmonella effector protein GtgE functions as a cysteine protease to cleave a subset of the Rab-family GTPases and to prevent delivery of antimicrobial agents to the Salmonella-containing vacuole. GtgE is an effector protein from Salmonella Typhimurium that modulates trafficking of the Salmonella-containing vacuole. It exerts its function by cleaving the Rab-family GTPases Rab29, Rab32 and Rab38, thereby preventing the delivery of antimicrobial factors to the bacteria-containing vacuole. Here, the crystal structure of GtgE at 1.65 Å resolution is presented, and structure-based mutagenesis and in vivo infection assays are used to identify its catalytic triad. A panel of cysteine protease inhibitors were examined and it was determined that N-ethylmaleimide, antipain and chymostatin inhibit GtgE activity in vitro. These findings provide the basis for the development of novel therapeutic strategies to combat Salmonella infections.

  12. PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica

    DEFF Research Database (Denmark)

    Navarre, William Wiley; Zou, S Betty; Roy, Hervé

    2010-01-01

    We report an interaction between poxA, encoding a paralog of lysyl tRNA-synthetase, and the closely linked yjeK gene, encoding a putative 2,3-beta-lysine aminomutase, that is critical for virulence and stress resistance in Salmonella enterica. Salmonella poxA and yjeK mutants share extensive...... phenotypic pleiotropy, including attenuated virulence in mice, an increased ability to respire under nutrient-limiting conditions, hypersusceptibility to a variety of diverse growth inhibitors, and altered expression of multiple proteins, including several encoded on the SPI-1 pathogenicity island. PoxA...... mediates posttranslational modification of bacterial elongation factor P (EF-P), analogous to the modification of the eukaryotic EF-P homolog, eIF5A, with hypusine. The modification of EF-P is a mechanism of regulation whereby PoxA acts as an aminoacyl-tRNA synthetase that attaches an amino acid...

  13. Molecular Characterization of Salmonella from Human and Animal Origins in Uganda

    Directory of Open Access Journals (Sweden)

    Atek Atwiine Kagirita

    2017-01-01

    Full Text Available Sporadic Salmonella outbreaks with varying clinical presentations have been on the rise in various parts of Uganda. The sources of outbreaks and factors underlying the different clinical manifestation are curtailed by paucity of information on Salmonella genotypes and the associated virulence genes. This study reports molecular diversity of Salmonella enterica and their genetic virulence profiles among human and animal isolates. Characterization was done using Kauffman-White classification scheme and virulence genes analysis using multiplex PCR. Overall, 52% of the isolates belonged to serogroup D, 16% to serogroup E, 15% to poly F, H-S, and 12% to serogroup B. Serogroups A, C1, and C2 each consisted of only one isolate representing 5%. Virulence genes located on SPI-1 [spaN and sipB] and on SPI-2 [spiA] in addition to pagC and msgA were equally distributed in isolates obtained from all sources. Plasmid encoded virulence gene spvB was found in <5% of isolates from both human epidemic and animal origins whereas it occurred in 80% of clinical isolates. This study reveals that serogroup D is the predominant Salmonella serogroup in circulation and it is widely shared among animals and humans and calls for joint and coordinated surveillance for one health implementation in Uganda.

  14. Intestinal Long-Chain Fatty Acids Act as a Direct Signal To Modulate Expression of the Salmonella Pathogenicity Island 1 Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Yekaterina A. Golubeva

    2016-02-01

    Full Text Available Salmonella enterica serovar Typhimurium uses the Salmonella pathogenicity island 1 (SPI1 type III secretion system (T3SS to induce inflammatory diarrhea and bacterial uptake into intestinal epithelial cells. The expression of hilA, encoding the transcriptional activator of the T3SS structural genes, is directly controlled by three AraC-like regulators, HilD, HilC, and RtsA, each of which can activate hilD, hilC, rtsA, and hilA genes, forming a complex feed-forward regulatory loop. Expression of the SPI1 genes is tightly controlled by numerous regulatory inputs to ensure proper timing in production of the T3SS apparatus. Loss of FadD, an acyl coenzyme A (acyl-CoA synthetase required for degradation of long-chain fatty acids (LCFAs, was known to decrease hilA expression. We show that free external LCFAs repress expression of hilA independently of FadD and the LCFA degradation pathway. Genetic and biochemical evidence suggests that LCFAs act directly to block primarily HilD activity. Further analyses show that in the absence of FadD, hilA expression is downregulated due to endogenous production of free LCFAs, which are excreted into the culture medium via TolC and then transported back into the bacterial cell via FadL. A fadL mutant is more virulent than the wild-type strain in mouse oral competition assays independently of LCFA degradation, showing that, in the host, dietary LCFAs serve as a signal for proper regulation of SPI1 expression, rather than an energy source.

  15. Uncivil engineers: Chlamydia, Salmonella and Shigella alter cytoskeleton architecture to invade epithelial cells.

    Science.gov (United States)

    Dunn, Joe Dan; Valdivia, Raphael H

    2010-08-01

    The obligate intracellular bacterial pathogen Chlamydia trachomatis is a major cause of blindness and sexually transmitted diseases. Like the enteric pathogens Salmonella and Shigella, Chlamydia injects effector proteins into epithelial cells to initiate extensive remodeling of the actin cytoskeleton at the bacterial attachment site, which culminates in the engulfment of the bacterium by plasma membrane extensions. Numerous Salmonella and Shigella effectors promote this remodeling by activating Rho GTPases and tyrosine kinase signaling cascades and by directly manipulating actin dynamics. Recent studies indicate that similar host-cell alterations occur during Chlamydia invasion, but few effectors are known. The identification of additional Chlamydia effectors and the elucidation of their modes of function are critical steps towards an understanding of how this clinically important pathogen breaches epithelial surfaces and causes infection.

  16. Improving a Gripper End Effector

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, O Dennis; Smith, Christopher M.; Gervais, Kevin L.

    2001-01-31

    This paper discusses the improvement made to an existing four-bar linkage gripping end effector to adapt it for use in a current project. The actuating linkage was modified to yield higher jaw force overall and particularly in the critical range of jaw displacement

  17. RNAi effector diversity in nematodes.

    Directory of Open Access Journals (Sweden)

    Johnathan J Dalzell

    2011-06-01

    Full Text Available While RNA interference (RNAi has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (dsRNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii The Argonautes (AGOs responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii Secondary Argonautes (SAGOs are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research

  18. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    Science.gov (United States)

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  19. Salmonella Diagnosis and Treatment

    Science.gov (United States)

    ... FDA) USDA Food Safety and Inspection Service Follow Salmonella RSS Diagnosis and Treatment Recommend on Facebook Tweet Share Compartir How Can Salmonella Infections Be Diagnosed? Diagnosing salmonellosis requires testing a ...

  20. Salmonella in Swedish cattle

    OpenAIRE

    Ågren, Estelle

    2017-01-01

    In Sweden, all herds detected with salmonella are put under restrictions and measures aiming at eradication are required. The purpose of these studies was to provide a basis for decisions on how surveillance and control of salmonella in Swedish cattle can be made more cost-efficient. Results from a bulk milk screening were used to investigate seroprevalence of salmonella and to study associations between salmonella status and geographical location, local animal density, number of test pos...

  1. 78 FR 42526 - Salmonella

    Science.gov (United States)

    2013-07-16

    ... HUMAN SERVICES Food and Drug Administration Salmonella Contamination of Dry Dog Food; Withdrawal of...) entitled ``Sec. 690.700 Salmonella Contamination of Dry Dog Food.'' This CPG is obsolete. DATES: The.... SUPPLEMENTARY INFORMATION: FDA issued the CGP entitled ``Sec. 690.700 Salmonella Contamination of Dry Dog Food...

  2. Take the tube: remodelling of the endosomal system by intracellular Salmonella enterica.

    Science.gov (United States)

    Liss, Viktoria; Hensel, Michael

    2015-05-01

    Salmonella enterica is a facultative intracellular pathogen residing in a unique host cell-derived membrane compartment, termed Salmonella-containing vacuole or SCV. By the activity of effector proteins translocated by the SPI2-endoced type III secretion system (T3SS), the biogenesis of the SCV is manipulated to generate a habitat permissive for intracellular proliferation. By taking control of the host cell vesicle fusion machinery, intracellular Salmonella creates an extensive interconnected system of tubular membranes arising from vesicles of various origins, collectively termed Salmonella-induced tubules (SIT). Recent work investigated the dynamic properties of these manipulations. New host cell targets of SPI2-T3SS effector proteins were identified. By applying combinations of live cell imaging and ultrastructural analyses, the detailed organization of membrane compartments inhabited and modified by intracellular Salmonella is now available. These studies provided unexpected new details on the intracellular environments of Salmonella. For example, one kind of SIT, the LAMP1-positive Salmonella-induced filaments (SIF), are composed of double-membrane tubules, with an inner lumen containing host cell cytosol and cytoskeletal filaments, and an outer lumen containing endocytosed cargo. The novel findings call for new models for the biogenesis of SCV and SIT and give raise to many open questions we discuss in this review. © 2015 John Wiley & Sons Ltd.

  3. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria.

    Science.gov (United States)

    Ashida, Hiroshi; Sasakawa, Chihiro

    2015-01-01

    Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.

  4. Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda

    Science.gov (United States)

    Griffin, Amanda J.; McSorley, Stephen J.

    2014-01-01

    Salmonella infections can cause a range of intestinal and systemic disease in human and animal hosts. While some Salmonella serovars initiate a localized intestinal inflammatory response, others use the intestine as a portal of entry to initiate a systemic infection. Considerable progress has been made in understanding bacterial invasion and dissemination strategies and the nature of the Salmonella-specific immune response to oral infection. Innate and adaptive immunity are rapidly initiated after oral infection but these effector responses can also be hindered by bacterial evasion strategies. Furthermore, although Salmonella resides within intramacrophage phagosomes, recent studies highlight a surprising collaboration of CD4 Th1, Th17, and B cell responses in mediating resistance to Salmonella infection. PMID:21307847

  5. Effector-independent and effector-dependent sequence representations underlie general and specific perceptuomotor sequence learning.

    Science.gov (United States)

    Andresen, David R; Marsolek, Chad J

    2012-01-01

    Perceptuomotor sequence learning could be due to learning of effector-independent sequence information (e.g., response locations), effector-dependent information (e.g., motor movements of a particular effector), or both. Evidence also suggests that learning of statistical regularities in sequences (general-regularity learning) and specific sequences (specific-sequence learning) are dissociable. The authors examined the degree to which general and specific-sequence learning rely on effector-independent and effector-dependent representations. During training, participants typed sequences that followed a construction rule with a subset of sequences repeatedly processed. At test, effector-independent and effector-dependent learning was examined with respect to general-regularity and specific-sequence learning. Results suggest that general-regularity learning is subserved by effector-independent sequence representations, whereas specific-sequence learning is subserved by effector-dependent sequence representations, further dissociating these types of learning.

  6. Subcellular targeting of Salmonella virulence proteins by host-mediated S-palmitoylation.

    Science.gov (United States)

    Hicks, Stuart W; Charron, Guillaume; Hang, Howard C; Galán, Jorge E

    2011-07-21

    Several pathogenic bacteria utilize type III secretion systems (TTSS) to deliver into host cells bacterial virulence proteins with the capacity to modulate a variety of cellular pathways. Once delivered into host cells, the accurate targeting of bacterial effectors to specific locations is critical for their proper function. However, little is known about the mechanisms these virulence effectors use to reach their subcellular destination. Here we show that the Salmonella TTSS effector proteins SspH2 and SseI are localized to the plasma membrane of host cells, a process dependent on S-palmitoylation of a conserved cysteine residue within their N-terminal domains. We also show that effector protein lipidation is mediated by a specific subset of host-cell palmitoyltransferases and that lipidation is critical for effector function. This study describes a remarkable mechanism by which a pathogen exploits host-cell machinery to properly target its virulence factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Multiple host kinases contribute to Akt activation during Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Bernhard Roppenser

    Full Text Available SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4 P2/PI(3-5 P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4 P2/PI(3-5 P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.

  8. Space Station end effector strategy study

    Science.gov (United States)

    Katzberg, Stephen J.; Jensen, Robert L.; Willshire, Kelli F.; Satterthwaite, Robert E.

    1987-01-01

    The results of a study are presented for terminology definition, identification of functional requirements, technolgy assessment, and proposed end effector development strategies for the Space Station Program. The study is composed of a survey of available or under-developed end effector technology, identification of requirements from baselined Space Station documents, a comparative assessment of the match between technology and requirements, and recommended strategies for end effector development for the Space Station Program.

  9. Function and targets of Fusarium oxysporum effectors

    NARCIS (Netherlands)

    Gawehns, F.K.K.

    2014-01-01

    A multi-layered immune system protects plants against pathogens. Adapted pathogens overcome or evade this immune system by secreting small proteins, called effectors. Often susceptibility genes encode host targets for these effectors, and loss-of-function mutations in such target genes can confer

  10. Salmonella Sepsis in African Children

    African Journals Online (AJOL)

    Infection with both Salmonella typhiand non-typhi salmonella. (NTS) is common among children in many African countries. Salmonella typhi predominates among older children and adults with the typical localising features of enteric fever. Nontyphoid salmonellae species are more often reported among children under 5 ...

  11. Genomics of Salmonella Species

    Science.gov (United States)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  12. ROBOTIC TANK INSPECTION END EFFECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Landry

    1999-10-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original

  13. Oxysterols and Their Cellular Effectors

    Directory of Open Access Journals (Sweden)

    Eija Nissilä

    2012-02-01

    Full Text Available Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR α and γ, and Epstein-Barr virus induced gene 2 (EBI2 have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.

  14. Construction of genetic markers for the study of Salmonella typhimurium infection of murine macrophages

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Olsen, John Elmerdahl

    effectors and host cell regulators and is a prokaryotic developmental program that follows a strict temporal and spatial path. Immediately following invasion, individual Salmonella cells are found within discrete vacuoles. Subsequently, intracellular bacterial replication begins after an initial lag period......  Salmonella pathogenesis is dependent on its ability to invade and replicate within a variety of host cells. Upon bacterial uptake by macrophages, maturation of the Salmonella Containing Vacuole (the SCV) initiates. The process of SCV maturation depends on the interactions between Salmonella...... and is accompanied by the formation of extensive membrane tubules (Salmonella-induced filaments, Sifs), which project from the SCVs and extend throughout the host cell. These events are coupled to interactions with host cell components and can be divided into discrete temporal and spatial steps: (1) Initial contact...

  15. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    Science.gov (United States)

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  16. Effector biology exhibits diversity at every level.

    Science.gov (United States)

    Ma, Wenbo; Wang, Yuanchao; McDowell, John M

    2017-11-21

    Effector proteins play key roles in the molecular interplay between plants and plant-associated organisms, and effector biology remains one of the most active areas in the research field of molecular plant-microbe Interactions. Using effectors as probes, much has been learned about pathogen virulence and host immunity, which has broad implications in developing disease-resistant crops that are essential for global food security. Thus, the MPMI Editorial Board felt that it is an opportune time to showcase recent progress in this area.

  17. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  18. A finger mechanism for adaptive end effectors

    OpenAIRE

    Dubey, Venketesh N.; Crowder, Richard M.

    2002-01-01

    This paper presents design and analysis of a rigid link finger, which may be suitable for a number of adaptive end effectors. The design has evolved from an industrial need for a tele-operated system to be used in nuclear environments. The end effector is designed to assist repair work in nuclear reactors during retrieval operation, particularly for the purpose of grasping objects of various shape, size and mass. The work is based on the University of Southampton's Whole Arm Manipulator, whic...

  19. Salmonella enteritidis ventriculitis

    National Research Council Canada - National Science Library

    Johan, A J; Hung, L C; Norlijah, O

    2013-01-01

    .... We present a case of Salmonella enteritidis meningitis in a six week old female who presented with a one week history of fever, diarrhea and seizures which was unsuccessfully treated with a third...

  20. Cell lines and Salmonella

    NARCIS (Netherlands)

    de Jonge R; Hendriks H; Garssen J; MGB; LPI

    2001-01-01

    Infectie met Salmonella kan gepaard gaan met de invasie van darmepitheelcellen. De aan de invasie voorafgaande aanhechting leidt reeds tot de transmigratie van witte bloedcellen (neutrofielen) vanuit de bloedbaan naar het epitheelweefsel. De migratie wordt gestimuleerd door de productie van

  1. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σE-regulated SPI-2 gene expression

    Directory of Open Access Journals (Sweden)

    Jie eLi

    2015-02-01

    Full Text Available The extracytoplasmic functioning sigma factor σE is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σE in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σE regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression of genes involved in Salmonella pathogenesis island (SPI-1 type-three secretion system (TTSS, SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σE in at least one of the three conditions. An important finding is that σE up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σE is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between E and SPI-2 genes, combined with the global regulatory effect of σE, may account for the lethality of rpoE-deficient Salmonella in murine infection.

  2. Salmonella exploits the host endolysosomal tethering factor HOPS complex to promote its intravacuolar replication

    Science.gov (United States)

    Sindhwani, Aastha; Kaur, Harmeet; Tuli, Amit

    2017-01-01

    Salmonella enterica serovar typhimurium extensively remodels the host late endocytic compartments to establish its vacuolar niche within the host cells conducive for its replication, also known as the Salmonella-containing vacuole (SCV). By maintaining a prolonged interaction with late endosomes and lysosomes of the host cells in the form of interconnected network of tubules (Salmonella-induced filaments or SIFs), Salmonella gains access to both membrane and fluid-phase cargo from these compartments. This is essential for maintaining SCV membrane integrity and for bacterial intravacuolar nutrition. Here, we have identified the multisubunit lysosomal tethering factor—HOPS (HOmotypic fusion and Protein Sorting) complex as a crucial host factor facilitating delivery of late endosomal and lysosomal content to SCVs, providing membrane for SIF formation, and nutrients for intravacuolar bacterial replication. Accordingly, depletion of HOPS subunits significantly reduced the bacterial load in non-phagocytic and phagocytic cells as well as in a mouse model of Salmonella infection. We found that Salmonella effector SifA in complex with its binding partner; SKIP, interacts with HOPS subunit Vps39 and mediates recruitment of this tethering factor to SCV compartments. The lysosomal small GTPase Arl8b that binds to, and promotes membrane localization of Vps41 (and other HOPS subunits) was also required for HOPS recruitment to SCVs and SIFs. Our findings suggest that Salmonella recruits the host late endosomal and lysosomal membrane fusion machinery to its vacuolar niche for access to host membrane and nutrients, ensuring its intracellular survival and replication. PMID:29084291

  3. 15-Deoxy-Δ12,14-prostaglandin J2 inhibits macrophage colonization by Salmonella enterica serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Michelle M C Buckner

    Full Text Available 15-deoxy-Δ(12,14-prostaglandin J2 (15d-PGJ2 is an anti-inflammatory downstream product of the cyclooxygenase enzymes. It has been implicated to play a protective role in a variety of inflammatory mediated diseases, including rheumatoid arthritis, neural damage, and myocardial infarctions. Here we show that 15d-PGJ2 also plays a role in Salmonella infection. Salmonella enterica Typhimurium is a Gram-negative facultative intracellular pathogen that is able to survive and replicate inside phagocytic immune cells, allowing for bacterial dissemination to systemic sites. Salmonella species cause a wide range of morbidity and mortality due to gastroenteritis and typhoid fever. Previously we have shown that in mouse models of typhoid fever, Salmonella infection causes a major perturbation in the prostaglandin pathway. Specifically, we saw that 15d-PGJ2 production was significantly increased in both liver and feces. In this work we show that 15d-PGJ2 production is also significantly increased in macrophages infected with Salmonella. Furthermore, we show that the addition of 15d-PGJ2 to Salmonella infected RAW264.7, J774, and bone marrow derived macrophages is sufficient to significantly reduce bacterial colonization. We also show evidence that 15d-PGJ2 is reducing bacterial uptake by macrophages. 15d-PGJ2 reduces the inflammatory response of these infected macrophages, as evidenced by a reduction in the production of cytokines and reactive nitrogen species. The inflammatory response of the macrophage is important for full Salmonella virulence, as it can give the bacteria cues for virulence. The reduction in bacterial colonization is independent of the expression of Salmonella virulence genes SPI1 and SPI2, and is independent of the 15d-PGJ2 ligand PPAR-γ. 15d-PGJ2 also causes an increase in ERK1/2 phosphorylation in infected macrophages. In conclusion, we show here that 15d-PGJ2 mediates the outcome of bacterial infection, a previously unidentified

  4. Regulation of proteinaceous effector expression in phytopathogenic fungi.

    Science.gov (United States)

    Tan, Kar-Chun; Oliver, Richard P

    2017-04-01

    Effectors are molecules used by microbial pathogens to facilitate infection via effector-triggered susceptibility or tissue necrosis in their host. Much research has been focussed on the identification and elucidating the function of fungal effectors during plant pathogenesis. By comparison, knowledge of how phytopathogenic fungi regulate the expression of effector genes has been lagging. Several recent studies have illustrated the role of various transcription factors, chromosome-based control, effector epistasis, and mobilisation of endosomes within the fungal hyphae in regulating effector expression and virulence on the host plant. Improved knowledge of effector regulation is likely to assist in improving novel crop protection strategies.

  5. Regulation of proteinaceous effector expression in phytopathogenic fungi.

    Directory of Open Access Journals (Sweden)

    Kar-Chun Tan

    2017-04-01

    Full Text Available Effectors are molecules used by microbial pathogens to facilitate infection via effector-triggered susceptibility or tissue necrosis in their host. Much research has been focussed on the identification and elucidating the function of fungal effectors during plant pathogenesis. By comparison, knowledge of how phytopathogenic fungi regulate the expression of effector genes has been lagging. Several recent studies have illustrated the role of various transcription factors, chromosome-based control, effector epistasis, and mobilisation of endosomes within the fungal hyphae in regulating effector expression and virulence on the host plant. Improved knowledge of effector regulation is likely to assist in improving novel crop protection strategies.

  6. Immunity to intestinal pathogens: lessons learned from Salmonella

    Science.gov (United States)

    McSorley, Stephen J.

    2014-01-01

    Summary Salmonella are a common source of food or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens. PMID:24942689

  7. Salmonella in sesame seed products.

    Science.gov (United States)

    Brockmann, Stefan O; Piechotowski, Isolde; Kimmig, Peter

    2004-01-01

    In the context of an international outbreak of multiresistant Salmonella Typhimurium DT 104 that was correlated to the consumption of halvah ("helva," an Asian candy made from sesame seed), we examined several sesame seed products for the occurrence of Salmonella. Of 117 ready-to-eat food items containing sesame, we isolated salmonellae from 11 (9.4%) samples. In addition to finding Salmonella Typhimurium DT 104 in the halvah involved in the outbreak, we also isolated different Salmonella Typhimurium strains out of halvah from other manufacturers and countries of origin, as well as Salmonella Offa, Salmonella Tennessee, and Salmonella Poona from sesame paste (tahini) and sesame seed, which is sold for raw consumption in cereals.

  8. Engineering Barriers to Infection by Undermining Pathogen Effector Function or by Gaining Effector Recognition

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim; Mclellan, Hazel; Aguilar, Geziel Barbosa

    2016-01-01

    This chapter reviews potential disease control strategies by employing the current understanding of Pathogen-Associated Molecular Patterns (PAMPs) and their receptors, as well as effectors and their targets. It discusses how effectoromics, i.e. surveying which, and to what level, effectors...

  9. A model of Salmonella colitis with features of diarrhea in SLC11A1 wild-type mice.

    Directory of Open Access Journals (Sweden)

    Heungjeong Woo

    Full Text Available BACKGROUND: Mice do not get diarrhea when orally infected with S. enterica, but pre-treatment with oral aminoglycosides makes them susceptible to Salmonella colitis. However, genetically susceptible ItyS mice (Nramp1(G169D allele die from systemic infection before they develop diarrhea, so a new model is needed to study the pathogenesis of diarrhea. We pretreated ItyR mice (Nramp1(G169 with oral kanamycin prior to infecting them with virulent S. Typhimurium strain 14028s in order to study Salmonella-induced diarrhea. We used both a visual scoring system and the measurement of fecal water content to measure diarrhea. BALB/c.D2(Nramp1 congenic started losing weight 5 days post-infection and they began to die from colitis 10-14 days after infection. A SPI-1 (invA mutant caused cecal, but not colonic inflammation and did not cause diarrhea. A phoP- mutant did not cause manifestations of diarrhea in either normal or NADPH-deficient (gp91(phox mice. However, strain 14028s caused severe colitis and diarrhea in gp91(phox-deficient mice on an ItyR background. pmr A and F mutants, which are less virulent in orally infected BALB/c mice, were fully virulent in this model of colitis. CONCLUSIONS: S. enterica must be able to invade the colonic epithelium and to persist in the colon in order to cause colitis with manifestations of diarrhea. The NADPH oxidase is not required for diarrhea in Salmonella colitis. Furthermore, a Salmonella phoP mutant can be cleared from the colon by non-oxidative host defenses.

  10. End effector with astronaut foot restraint

    Science.gov (United States)

    Monford, Leo G., Jr. (Inventor)

    1991-01-01

    The combination of a foot restraint platform designed primarily for use by an astronaut being rigidly and permanently attached to an end effector which is suitable for attachment to the manipulator arm of a remote manipulating system is described. The foot restraint platform is attached by a brace to the end effector at a location away from the grappling interface of the end effector. The platform comprises a support plate provided with a pair of stirrups for receiving the toe portion of an astronaut's boots when standing on the platform and a pair of heel retainers in the form of raised members which are fixed to the surface of the platform and located to provide abutment surfaces for abutting engagement with the heels of the astronaut's boots when his toes are in the stirrups. The heel retainers preclude a backward sliding movement of the feet on the platform and instead require a lifting of the heels in order to extract the feet. The brace for attaching the foot restraint platform to the end effector may include a pivot or swivel joint to permit various orientations of the platform with respect to the end effector.

  11. Cellular senescence and its effector programs

    Science.gov (United States)

    Salama, Rafik; Sadaie, Mahito; Hoare, Matthew; Narita, Masashi

    2014-01-01

    Cellular senescence is a stress response that accompanies stable exit from the cell cycle. Classically, senescence, particularly in human cells, involves the p53 and p16/Rb pathways, and often both of these tumor suppressor pathways need to be abrogated to bypass senescence. In parallel, a number of effector mechanisms of senescence have been identified and characterized. These studies suggest that senescence is a collective phenotype of these multiple effectors, and their intensity and combination can be different depending on triggers and cell types, conferring a complex and diverse nature to senescence. Series of studies on senescence-associated secretory phenotype (SASP) in particular have revealed various layers of functionality of senescent cells in vivo. Here we discuss some key features of senescence effectors and attempt to functionally link them when it is possible. PMID:24449267

  12. The risk of salmonellae shedding by dogs fed Salmonella-contaminated commercial raw food diets

    OpenAIRE

    Finley, Rita; Ribble, Carl; Aramini, Jeff; Vandermeer, Meredith; Popa, Maria; Litman, Marcus; Reid-Smith, Richard

    2007-01-01

    Twenty-eight research dogs were enrolled to determine the prevalence of salmonellae shedding after consumption of 1 Salmonella-contaminated commercial raw food diet meal. Sixteen dogs were exposed to Salmonella-contaminated commercial raw food diets and 12 to Salmonella-free commercial raw food diets. Seven of the exposed dogs shed salmonellae 1–7 days after consumption of Salmonella-contaminated raw food diets. None of the dogs fed Salmonella-free diets shed salmonellae. No clinical signs we...

  13. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors.

    Science.gov (United States)

    Hicks, Stuart W; Galán, Jorge E

    2013-05-01

    Several bacterial species have evolved specialized secretion systems to deliver bacterial effector proteins into eukaryotic cells. These effectors have the capacity to modulate host cell pathways in order to promote bacterial survival and replication. The spatial and temporal context in which the effectors exert their biochemical activities is crucial for their function. To fully understand effector function in the context of infection, we need to understand the mechanisms that lead to the precise subcellular localization of effectors following their delivery into host cells. Recent studies have shown that bacterial effectors exploit host cell machinery to accurately target their biochemical activities within the host cell.

  14. Minimal Mimicry: Mere Effector Matching Induces Preference

    Science.gov (United States)

    Sparenberg, Peggy; Topolinski, Sascha; Springer, Anne; Prinz, Wolfgang

    2012-01-01

    Both mimicking and being mimicked induces preference for a target. The present experiments investigate the minimal sufficient conditions for this mimicry-preference link to occur. We argue that mere effector matching between one's own and the other person's movement is sufficient to induce preference, independent of which movement is actually…

  15. MARTX toxins as effector delivery platforms.

    Science.gov (United States)

    Gavin, Hannah E; Satchell, Karla J F

    2015-12-01

    Bacteria frequently manipulate their host environment via delivery of microbial 'effector' proteins to the cytosol of eukaryotic cells. In the case of the multifunctional autoprocessing repeats-in-toxins (MARTX) toxin, this phenomenon is accomplished by a single, >3500 amino acid polypeptide that carries information for secretion, translocation, autoprocessing and effector activity. MARTX toxins are secreted from bacteria by dedicated Type I secretion systems. The released MARTX toxins form pores in target eukaryotic cell membranes for the delivery of up to five cytopathic effectors, each of which disrupts a key cellular process. Targeted cellular processes include modulation or modification of small GTPases, manipulation of host cell signaling and disruption of cytoskeletal integrity. More recently, MARTX toxins have been shown to be capable of heterologous protein translocation. Found across multiple bacterial species and genera--frequently in pathogens lacking Type 3 or Type 4 secretion systems--MARTX toxins in multiple cases function as virulence factors. Innovative research at the intersection of toxin biology and bacterial genetics continues to elucidate the intricacies of the toxin as well as the cytotoxic mechanisms of its diverse effector collection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Salmonella from Baby Turtles

    Centers for Disease Control (CDC) Podcasts

    2017-01-09

    Dr. Stacey Bosch, a veterinarian with CDC, discusses her article on Salmonella infections associated with baby turtles.  Created: 1/9/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 1/9/2017.

  17. Salmonella Infections - Multiple Languages

    Science.gov (United States)

    ... to Know - 한국어 (Korean) PDF Centers for Disease Control and Prevention Spanish (español) Expand Section Salmonella Infections: MedlinePlus Health Topic - English Infecciones por salmonela: Tema de salud de MedlinePlus - español ( ...

  18. Computational prediction and molecular characterization of an oomycete effector and the cognate Arabidopsis resistance gene

    National Research Council Canada - National Science Library

    Goritschnig, Sandra; Krasileva, Ksenia V; Dahlbeck, Douglas; Staskawicz, Brian J

    2012-01-01

    .... The availability of the Hpa genome sequence allowed the computational prediction of effectors and the development of effector delivery systems enabled validation of the predicted effectors in Arabidopsis...

  19. Salmonella Disrupts Host Endocytic Trafficking by SopD2-Mediated Inhibition of Rab7

    Directory of Open Access Journals (Sweden)

    Vanessa M. D’Costa

    2015-09-01

    Full Text Available Intracellular bacterial pathogens of a diverse nature share the ability to evade host immunity by impairing trafficking of endocytic cargo to lysosomes for degradation, a process that is poorly understood. Here, we show that the Salmonella enterica type 3 secreted effector SopD2 mediates this process by binding the host regulatory GTPase Rab7 and inhibiting its nucleotide exchange. Consequently, this limits Rab7 interaction with its dynein- and kinesin-binding effectors RILP and FYCO1 and thereby disrupts host-driven regulation of microtubule motors. Our study identifies a bacterial effector capable of directly binding and thereby modulating Rab7 activity and a mechanism of endocytic trafficking disruption that may provide insight into the pathogenesis of other bacteria. Additionally, we provide a powerful tool for the study of Rab7 function, and a potential therapeutic target.

  20. A second wave of Salmonella T3SS1 activity prolongs the lifespan of infected epithelial cells

    Science.gov (United States)

    2017-01-01

    Type III secretion system 1 (T3SS1) is used by the enteropathogen Salmonella enterica serovar Typhimurium to establish infection in the gut. Effector proteins translocated by this system across the plasma membrane facilitate invasion of intestinal epithelial cells. One such effector, the inositol phosphatase SopB, contributes to invasion and mediates activation of the pro-survival kinase Akt. Following internalization, some bacteria escape from the Salmonella-containing vacuole into the cytosol and there is evidence suggesting that T3SS1 is expressed in this subpopulation. Here, we investigated the post-invasion role of T3SS1, using SopB as a model effector. In cultured epithelial cells, SopB-dependent Akt phosphorylation was observed at two distinct stages of infection: during and immediately after invasion, and later during peak cytosolic replication. Single cell analysis revealed that cytosolic Salmonella deliver SopB via T3SS1. Although intracellular replication was unaffected in a SopB deletion mutant, cells infected with ΔsopB demonstrated a lack of Akt phosphorylation, earlier time to death, and increased lysis. When SopB expression was induced specifically in cytosolic Salmonella, these effects were restored to levels observed in WT infected cells, indicating that the second wave of SopB protects this infected population against cell death via Akt activation. Thus, T3SS1 has two, temporally distinct roles during epithelial cell colonization. Additionally, we found that delivery of SopB by cytosolic bacteria was translocon-independent, in contrast to canonical effector translocation across eukaryotic membranes, which requires formation of a translocon pore. This mechanism was also observed for another T3SS1 effector, SipA. These findings reveal the functional and mechanistic adaptability of a T3SS that can be harnessed in different microenvironments. PMID:28426838

  1. Thermal inactivation of eight Salmonella serotypes on dry corn flour.

    OpenAIRE

    VanCauwenberge, J E; Bothast, R J; Kwolek, W F

    1981-01-01

    Dry heat was used to inactivate Salmonella newington, Salmonella typhimurium, Salmonella anatum, Salmonella kentucky, Salmonella cubana, Salmonella seftenberg, Salmonella thompson, and Salmonella tennessee in corn flour at 10 and 15% moisture. The flour was spray inoculated at 10(5) Salmonella cells per g and then stored at 49 degrees C (120 degrees F); viable Salmonella cells were counted on Trypticase (BBL Microbiology Systems) soy agar plates every 30 min for the first 4 h and then at 4-h ...

  2. Repeat-containing protein effectors of plant-associated organisms

    OpenAIRE

    Mesarich, Carl H.; Joanna K Bowen; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered imm...

  3. In silico identification and characterization of effector catalogs

    NARCIS (Netherlands)

    Jonge, de R.

    2012-01-01

    Many characterized fungal effector proteins are small secreted proteins. Effectors are defined as those proteins that alter host cell structure and/or function by facilitating pathogen infection. The identification of effectors by molecular and cell biology techniques is a difficult task. However,

  4. TAL effector-mediated genome visualization (TGV).

    Science.gov (United States)

    Miyanari, Yusuke

    2014-09-01

    The three-dimensional remodeling of chromatin within nucleus is being recognized as determinant for genome regulation. Recent technological advances in live imaging of chromosome loci begun to explore the biological roles of the movement of the chromatin within the nucleus. To facilitate better understanding of the functional relevance and mechanisms regulating genome architecture, we applied transcription activator-like effector (TALE) technology to visualize endogenous repetitive genomic sequences in mouse cells. The application, called TAL effector-mediated genome visualization (TGV), allows us to label specific repetitive sequences and trace nuclear remodeling in living cells. Using this system, parental origin of chromosomes was specifically traced by distinction of single-nucleotide polymorphisms (SNPs). This review will present our approaches to monitor nuclear dynamics of target sequences and highlights key properties and potential uses of TGV. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Novel Control Effectors for Truss Braced Wing

    Science.gov (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  6. Ustilago maydis effectors and their impact on virulence.

    Science.gov (United States)

    Lanver, Daniel; Tollot, Marie; Schweizer, Gabriel; Lo Presti, Libera; Reissmann, Stefanie; Ma, Lay-Sun; Schuster, Mariana; Tanaka, Shigeyuki; Liang, Liang; Ludwig, Nicole; Kahmann, Regine

    2017-07-01

    Biotrophic fungal plant pathogens establish an intimate relationship with their host to support the infection process. Central to this strategy is the secretion of a range of protein effectors that enable the pathogen to evade plant immune defences and modulate host metabolism to meet its needs. In this Review, using the smut fungus Ustilago maydis as an example, we discuss new insights into the effector repertoire of smut fungi that have been gained from comparative genomics and discuss the molecular mechanisms by which U. maydis effectors change processes in the plant host. Finally, we examine how the expression of effector genes and effector secretion are coordinated with fungal development in the host.

  7. Impact of end effector technology on telemanipulation performance

    Science.gov (United States)

    Bejczy, A. K.; Szakaly, Z.; Ohm, T.

    1990-01-01

    Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system.

  8. Waardevermindering pluimveevlees besmet met Salmonella enteritidis en Salmonella typhymurium

    NARCIS (Netherlands)

    Horne, van P.L.M.

    2011-01-01

    De doelstelling van het onderzoek is om de waardevermindering van met Salmonella enteritidis (S.e.) en Salmonella typhymurium (S.t.) besmet pluimveevlees van vleeskuikens te bepalen. Hoe hoog is de opbrengstenderving en hoe hoog zijn de extra kosten van maatregelen voor de slachterij of

  9. Nitric oxide antagonizes the acid tolerance response that protects Salmonella against innate gastric defenses.

    Directory of Open Access Journals (Sweden)

    Travis J Bourret

    2008-03-01

    Full Text Available Reactive nitrogen species (RNS derived from dietary and salivary inorganic nitrogen oxides foment innate host defenses associated with the acidity of the stomach. The mechanisms by which these reactive species exert antimicrobial activity in the gastric lumen are, however, poorly understood.The genetically tractable acid tolerance response (ATR that enables enteropathogens to survive harsh acidity was screened for signaling pathways responsive to RNS. The nitric oxide (NO donor spermine NONOate derepressed the Fur regulon that controls secondary lines of resistance against organic acids. Despite inducing a Fur-mediated adaptive response, acidified RNS largely repressed oral virulence as demonstrated by the fact that Salmonella bacteria exposed to NO donors during mildly acidic conditions were shed in low amounts in feces and exhibited ameliorated oral virulence. NO prevented Salmonella from mounting a de novo ATR, but was unable to suppress an already functional protective response, suggesting that RNS target regulatory cascades but not their effectors. Transcriptional and translational analyses revealed that the PhoPQ signaling cascade is a critical ATR target of NO in rapidly growing Salmonella. Inhibition of PhoPQ signaling appears to contribute to most of the NO-mediated abrogation of the ATR in log phase bacteria, because the augmented acid sensitivity of phoQ-deficient Salmonella was not further enhanced after RNS treatment.Since PhoPQ-regulated acid resistance is widespread in enteric pathogens, the RNS-mediated inhibition of the Salmonella ATR described herein may represent a common component of innate host defenses.

  10. Detection of Salmonella in Meat

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Hansen, Flemming; Mansdal, Susanne

    2012-01-01

    Cost-effective and rapid monitoring of Salmonella in the meat production chain can contribute to food safety. The objective of this study was to validate an easy-to-use pre-PCR sample preparation method based on a simple boiling protocol for screening of Salmonella in meat and carcass swab samples...

  11. Salmonella onderzoek bij Nederlands pluimvee

    NARCIS (Netherlands)

    van de Giessen AW; Berkers PATA; Peters R; Notermans SHW

    1989-01-01

    Gedurende de eerste helft van 1989 werden 59 pluimveebedrijven uit de leg- en mestsector onderzocht op de aanwezigheid van Salmonella-kiemen. Op 53 bedrijven (90%) kon Salmonella bij pluimvee worden aangetoond. Op 10 bedrijven (17%) bleek S. enteritidis bij pluimvee aanwezig te zijn. Van de 19

  12. Repeat-containing protein effectors of plant-associated organisms

    Science.gov (United States)

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  13. Prevalence of Salmonella in Australian reptiles.

    Science.gov (United States)

    Scheelings, T Franciscus; Lightfoot, Dianne; Holz, Peter

    2011-01-01

    From January 2007 until June 2008, 504 reptiles of four families and 57 species were examined for Salmonella by using cloacal or intestinal swabs. Salmonella was identified in 139 (28%) of the 504 animals tested. Of the 504 reptiles examined, 210 were captive and 294 were wild. Ninety-eight (47%) of the captive reptiles were shedding Salmonella at the time of sampling. In contrast, only 41 (14%) of the wild reptiles were shedding Salmonella. The higher prevalence of Salmonella in captive reptiles was statistically significant (Preptiles in Australia are not natural carriers of Salmonella and that diet and captivity may influence Salmonella excretion in other species.

  14. Tenth CRL-Salmonella interlaboratory comparison study on typing of Salmonella spp.

    NARCIS (Netherlands)

    Korver H; Maas HME; Ward LR; Mevius DJ; Mooijman KA; MGB

    2006-01-01

    Het tiende ringonderzoek voor de typering van Salmonella werd in maart 2005 georganiseerd door het Communautair Referentie Laboratorium voor Salmonella (CRL-Salmonella, Bilthoven, Nederland) in samenwerking met de Health Protection Agency (HPA, Londen, Verenigd Koninkrijk) en het Centraal Instituut

  15. Eleventh CRL-Salmonella interlaboratory comparison study on typing of Salmonella spp.

    NARCIS (Netherlands)

    Berk PA; Maas HME; de Pinna E; Mooijman KA; MGB

    2006-01-01

    Het elfde ringonderzoek voor de typering van Salmonella werd in maart 2006 georganiseerd door het Communautair Referentie Laboratorium voor Salmonella (CRL-Salmonella, Bilthoven, Nederland) in samenwerking met de Health Protection Agency (HPA, Londen, Verenigd Koninkrijk). 26 Nationale Referentie

  16. Osteomielitis por salmonella

    OpenAIRE

    Alicia Velázquez Pérez; Teresa P. Rodríguez Torres; Orelvis Pérez Duerto

    2014-01-01

    Se presenta el caso de una paciente femenina de color blanco y dos años de edad, con diagnóstico prenatal de sicklemia, que desde edades tempranas tiene problemas de la enfermedad. Ingresó en esta ocasión por una de las complicaciones infecciosas que ocasiona este padecimiento, una osteomielitis del húmero izquierdo, aislándose el germen en el hemocultivo realizado, una salmonella. Necesitó de tratamiento enérgico y prolongado; se obtuvo un resultado satisfactorio en la evolución de la enferm...

  17. Salmonella, Shigella, and Yersinia

    Science.gov (United States)

    Dekker, John; Frank, Karen

    2015-01-01

    Synopsis Salmonella, Shigella, and Yersinia cause a well-characterized spectrum of disease in humans, ranging from asymptomatic carriage to hemorrhagic colitis and fatal typhoidal fever. These pathogens are responsible for millions of cases of food-borne illness in the U.S. each year, with substantial costs measured in hospitalizations and lost productivity. In the developing world, illness caused by these pathogens is not only more prevalent, but is also associated with a greater case-fatality rate. Classical methods for identification rely on selective media and serology, but newer methods based on mass spectrometry and PCR show great promise for routine clinical testing. PMID:26004640

  18. Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Tanner M Johanns

    2010-08-01

    Full Text Available The pathogenesis of persistent infection is dictated by the balance between opposing immune activation and suppression signals. Herein, virulent Salmonella was used to explore the role and potential importance of Foxp3-expressing regulatory T cells in dictating the natural progression of persistent bacterial infection. Two distinct phases of persistent Salmonella infection are identified. In the first 3-4 weeks after infection, progressively increasing bacterial burden was associated with delayed effector T cell activation. Reciprocally, at later time points after infection, reductions in bacterial burden were associated with robust effector T cell activation. Using Foxp3(GFP reporter mice for ex vivo isolation of regulatory T cells, we demonstrate that the dichotomy in infection tempo between early and late time points is directly paralleled by drastic changes in Foxp3(+ Treg suppressive potency. In complementary experiments using Foxp3(DTR mice, the significance of these shifts in Treg suppressive potency on infection outcome was verified by enumerating the relative impacts of regulatory T cell ablation on bacterial burden and effector T cell activation at early and late time points during persistent Salmonella infection. Moreover, Treg expression of CTLA-4 directly paralleled changes in suppressive potency, and the relative effects of Treg ablation could be largely recapitulated by CTLA-4 in vivo blockade. Together, these results demonstrate that dynamic regulation of Treg suppressive potency dictates the course of persistent bacterial infection.

  19. Recent developments in effector biology of filamentous plant pathogens.

    Science.gov (United States)

    Oliva, Ricardo; Win, Joe; Raffaele, Sylvain; Boutemy, Laurence; Bozkurt, Tolga O; Chaparro-Garcia, Angela; Segretin, Maria Eugenia; Stam, Remco; Schornack, Sebastian; Cano, Liliana M; van Damme, Mireille; Huitema, Edgar; Thines, Marco; Banfield, Mark J; Kamoun, Sophien

    2010-06-01

    Filamentous pathogens, such as plant pathogenic fungi and oomycetes, secrete an arsenal of effector molecules that modulate host innate immunity and enable parasitic infection. It is now well accepted that these effectors are key pathogenicity determinants that enable parasitic infection. In this review, we report on the most interesting features of a representative set of filamentous pathogen effectors and highlight recent findings. We also list and describe all the linear motifs reported to date in filamentous pathogen effector proteins. Some of these motifs appear to define domains that mediate translocation inside host cells.

  20. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity.

    Science.gov (United States)

    Franceschetti, Marina; Maqbool, Abbas; Jiménez-Dalmaroni, Maximiliano J; Pennington, Helen G; Kamoun, Sophien; Banfield, Mark J

    2017-06-01

    Fungi and oomycetes are filamentous microorganisms that include a diversity of highly developed pathogens of plants. These are sophisticated modulators of plant processes that secrete an arsenal of effector proteins to target multiple host cell compartments and enable parasitic infection. Genome sequencing revealed complex catalogues of effectors of filamentous pathogens, with some species harboring hundreds of effector genes. Although a large fraction of these effector genes encode secreted proteins with weak or no sequence similarity to known proteins, structural studies have revealed unexpected similarities amid the diversity. This article reviews progress in our understanding of effector structure and function in light of these new insights. We conclude that there is emerging evidence for multiple pathways of evolution of effectors of filamentous plant pathogens but that some families have probably expanded from a common ancestor by duplication and diversification. Conserved folds, such as the oomycete WY and the fungal MAX domains, are not predictive of the precise function of the effectors but serve as a chassis to support protein structural integrity while providing enough plasticity for the effectors to bind different host proteins and evolve unrelated activities inside host cells. Further effector evolution and diversification arise via short linear motifs, domain integration and duplications, and oligomerization. Copyright © 2017 American Society for Microbiology.

  1. Rack Insertion End Effector (RIEE) automation

    Science.gov (United States)

    Malladi, Narasimha

    1993-01-01

    NASA is developing a mechanism to manipulate and insert Racks into the Space Station Logistic modules. The mechanism consists of the following: a base with three motorized degrees of freedom, a 3 section motorized boom that goes from 15 to 44 feet in length, and a Rack Insertion End Effector (RIEE) with 5 hand wheels for precise alignment. The robotics section was tasked with the automation of the RIEE unit. In this report, for the automation of the RIEE unit, application of the Perceptics Vision System was conceptually developed to determine the position and orientation of the RIEE relative to the logistic module, and a MathCad program is written to display the needed displacements for precise alignment and final insertion of the Rack. The uniqueness of this report is that the whole report is in fact a MathCad program including text, derivations, and executable equations with example inputs and outputs.

  2. Salmonella Control Programs in Denmark

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Hald, Tine; Wong, Danilo Lo Fo

    2003-01-01

    We describe Salmonella control programs of broiler chickens, layer hens, and pigs in Denmark. Major reductions in the incidence of foodborne human salmonellosis have occurred by integrated control of farms and food processing plants. Disease control has been achieved by monitoring the herds...... and flocks, eliminating infected animals, and diversifying animals (animals and products are processed differently depending on Salmonella status) and animal food products according to the determined risk. In 2001, the Danish society saved U.S.$25.5 million by controlling Salmonella. The total annual...... Salmonella control costs in year 2001 were U.S.$14.1 million (U.S.$0.075/kg of pork and U.S.$0.02/kg of broiler or egg). These costs are paid almost exclusively by the industry. The control principles described are applicable to most industrialized countries with modern intensive farming systems....

  3. Salmonella in Sheep in Iceland

    Directory of Open Access Journals (Sweden)

    Gunnarsson E

    2002-03-01

    Full Text Available In 1995 several outbreaks of food poisoning in humans occurred in Iceland, that were traced to salmonella contamination of singed sheep heads. This prompted us to study the prevalence of salmonella infection in sheep and to trace where and how infection might have occurred. Faecal, intestinal contents and tonsillar samples were collected in the spring and autumn from sheep on 50 farms in the southwestern part of the country, where salmonellosis had been detected and from 5 farms in the northwestern part of the country. All faecal samples from the southwest were negative, whereas samples from 3 farms obtained in the autumn in the northwest were positive. Tonsillae taken in the autumn were positive in sheep from 3 farms in the southwest and 2 in the northwest. Our results show that salmonella infection is rare in Icelandic sheep but healthy carriers may harbour the bacteria in tonsillae. Salmonella was not detected in drainage from slaughterhouses nor in singed sheep heads.

  4. Using molecular techniques for rapid detection of Salmonella ...

    African Journals Online (AJOL)

    For this experiment, the whole chicken eggs were negative for Salmonella species by SMT. Salmonella enteritidis was dominating among the recovered Salmonella serovars, followed by. Salmonella typhimurium, while only two strains of Salmonella agona and Salmonella newport were isolated. The PCR assay combined ...

  5. Nematode effector proteins: an emerging paradigm of parasitism

    Science.gov (United States)

    Phytonematodes use a stylet and secreted effectors to invade host tissues and extract nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode ...

  6. Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Humira eSonah

    2016-02-01

    Full Text Available Effector proteins are mostly secretory proteins that stimulate plant infection by manipulating the host response. Identifying fungal effector proteins and understanding their function is of great importance in efforts to curb losses to plant diseases. Recent advances in high-throughput sequencing technologies have facilitated the availability of several fungal genomes and thousands of transcriptomes. As a result, the growing amount of genomic information has provided great opportunities to identify putative effector proteins in different fungal species. There is little consensus over the annotation and functionality of effector proteins, and mostly small secretory proteins are considered as effector proteins, a concept that tends to overestimate the number of proteins involved in a plant-pathogen interaction. With the characterization of Avr genes, criteria for computational prediction of effector proteins are becoming more efficient. There are hundreds of tools available for the identification of conserved motifs, signature sequences and structural features in the proteins. Many pipelines and online servers, which combine several tools, are made available to perform genome-wide identification of effector proteins. In this review, available tools and pipelines, their strength and limitations for effective identification of fungal effector proteins are discussed. We also present an exhaustive list of classically secreted proteins along with their key conserved motifs found in 12 common plant pathogens (11 fungi and one oomycete through an analytical pipeline.

  7. Osteomielitis por salmonella

    Directory of Open Access Journals (Sweden)

    Alicia Velázquez Pérez

    2014-08-01

    Full Text Available Se presenta el caso de una paciente femenina de color blanco y dos años de edad, con diagnóstico prenatal de sicklemia, que desde edades tempranas tiene problemas de la enfermedad. Ingresó en esta ocasión por una de las complicaciones infecciosas que ocasiona este padecimiento, una osteomielitis del húmero izquierdo, aislándose el germen en el hemocultivo realizado, una salmonella. Necesitó de tratamiento enérgico y prolongado; se obtuvo un resultado satisfactorio en la evolución de la enfermedad y se sigue sistemáticamente por consulta externa en la actualidad

  8. Flagella overexpression attenuates Salmonella pathogenesis.

    Directory of Open Access Journals (Sweden)

    Xinghong Yang

    Full Text Available Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE, was found to enfeeble wild-type Salmonella. Thus, this approach was adapted to discern whether flagella overexpression could induce similar attenuation. To test its feasibility, flagellar filament subunit FliC and flagellar regulon master regulator FlhDC were overexpressed in Salmonella enterica serovar Typhimurium wild-type strain H71. The results show that the expression of either FliC or FlhDC alone, and co-expression of the two, significantly attenuates Salmonella. The flagellated bacilli were unable to replicate within macrophages and thus were not lethal to mice. In-depth investigation suggests that flagellum-mediated AGE was due to the disruptive effects of flagella on the bacterial membrane, resulting in heightened susceptibilities to hydrogen peroxide and bile. Furthermore, flagellum-attenuated Salmonella elicited elevated immune responses to Salmonella presumably via FliC's adjuvant effect and conferred robust protection against wild-type Salmonella challenge.

  9. Flagella Overexpression Attenuates Salmonella Pathogenesis

    Science.gov (United States)

    Yang, Xinghong; Thornburg, Theresa; Suo, Zhiyong; Jun, SangMu; Robison, Amanda; Li, Jinquan; Lim, Timothy; Cao, Ling; Hoyt, Teri; Avci, Recep; Pascual, David W.

    2012-01-01

    Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE), was found to enfeeble wild-type Salmonella. Thus, this approach was adapted to discern whether flagella overexpression could induce similar attenuation. To test its feasibility, flagellar filament subunit FliC and flagellar regulon master regulator FlhDC were overexpressed in Salmonella enterica serovar Typhimurium wild-type strain H71. The results show that the expression of either FliC or FlhDC alone, and co-expression of the two, significantly attenuates Salmonella. The flagellated bacilli were unable to replicate within macrophages and thus were not lethal to mice. In-depth investigation suggests that flagellum-mediated AGE was due to the disruptive effects of flagella on the bacterial membrane, resulting in heightened susceptibilities to hydrogen peroxide and bile. Furthermore, flagellum-attenuated Salmonella elicited elevated immune responses to Salmonella presumably via FliC’s adjuvant effect and conferred robust protection against wild-type Salmonella challenge. PMID:23056473

  10. Genome analysis and CRISPR typing of Salmonella enterica serovar Virchow.

    Science.gov (United States)

    Bachmann, Nathan L; Petty, Nicola K; Ben Zakour, Nouri L; Szubert, Jan M; Savill, John; Beatson, Scott A

    2014-05-21

    Salmonella enterica subsp. enterica serovar Virchow has been recognized as a significant health burden in Asia, Australia and Europe. In addition to its global distribution, S. Virchow is clinically significant due to the frequency at which it causes invasive infections and its association with outbreaks arising from food-borne transmission. Here, we examine the genome of an invasive isolate of S. Virchow SVQ1 (phage type 8) from an outbreak in southeast Queensland, Australia. In addition to identifying new potential genotyping targets that could be used for discriminating between S. Virchow strains in outbreak scenarios, we also aimed to carry out a comprehensive comparative analysis of the S. Virchow genomes. Genome comparisons between S. Virchow SVQ1 and S. Virchow SL491, a previously published strain, identified a high degree of genomic similarity between the two strains with fewer than 200 single nucleotide differences. Clustered Regularly Interspaced Palindromic Repeats (CRISPR) regions were identified as a highly variable region that could be used to discriminate between S. Virchow isolates. We amplified and sequenced the CRISPR regions of fifteen S. Virchow isolates collected from seven different outbreaks across Australia. We observed three allelic types of the CRISPR region from these isolates based on the presence/absence of the spacers and were able to discriminate S. Virchow phage type 8 isolates originating from different outbreaks. A comparison with 27 published Salmonella genomes found that the S. Virchow SVQ1 genome encodes 11 previously described Salmonella Pathogenicity Islands (SPI), as well as additional genomic islands including a remnant integrative conjugative element that is distinct from SPI-7. In addition, the S. Virchow genome possesses a novel prophage that encodes the Type III secretion system effector protein SopE, a key Salmonella virulence factor. The prophage shares very little similarity to the SopE prophages found in other

  11. A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection

    Science.gov (United States)

    Chakraborty, Smarajit; Mizusaki, Hideaki; Kenney, Linda J.

    2015-01-01

    In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor (“I-switch”) to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad

  12. Biochemistry and cell signaling taught by bacterial effectors.

    Science.gov (United States)

    Cui, Jixin; Shao, Feng

    2011-10-01

    Bacterial virulence often relies on secreted effectors that modulate eukaryotic signal transduction. Recent studies provide a collection of examples in which bacterial effectors carry out unprecedented posttranslational modifications of key signaling molecules or organize a new signaling network. OspF and YopJ families of effectors use novel modification activities to block kinase phosphoactivation. Targeting of the ubiquitin system by IpaH and Cif/CHBP families provides insights into host ubiquitin signaling. Manipulation of small GTPases by VopS/IbpA and SidM suggests previously underappreciated regulation of signaling. Several other effectors, including SifA and EspG, organize newly discovered signaling networks in membrane trafficking. Studies of these effectors can generate new knowledge in enzyme catalysis and provide new angles for furthering our understanding of biochemical regulation of important signaling pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  14. Quantitative proteomic analysis of the Salmonella-lettuce interaction.

    Science.gov (United States)

    Zhang, Yuping; Nandakumar, Renu; Bartelt-Hunt, Shannon L; Snow, Daniel D; Hodges, Laurie; Li, Xu

    2014-11-01

    Human pathogens can internalize food crops through root and surface uptake and persist inside crop plants. The goal of the study was to elucidate the global modulation of bacteria and plant protein expression after Salmonella internalizes lettuce. A quantitative proteomic approach was used to analyse the protein expression of Salmonella enterica serovar Infantis and lettuce cultivar Green Salad Bowl 24 h after infiltrating S. Infantis into lettuce leaves. Among the 50 differentially expressed proteins identified by comparing internalized S. Infantis against S. Infantis grown in Luria Broth, proteins involved in glycolysis were down-regulated, while one protein involved in ascorbate uptake was up-regulated. Stress response proteins, especially antioxidant proteins, were up-regulated. The modulation in protein expression suggested that internalized S. Infantis might utilize ascorbate as a carbon source and require multiple stress response proteins to cope with stresses encountered in plants. On the other hand, among the 20 differentially expressed lettuce proteins, proteins involved in defense response to bacteria were up-regulated. Moreover, the secreted effector PipB2 of S. Infantis and R proteins of lettuce were induced after bacterial internalization into lettuce leaves, indicating human pathogen S. Infantis triggered the defense mechanisms of lettuce, which normally responds to plant pathogens. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Salmonella Modulates B Cell Biology to Evade CD8+ T Cell-Mediated Immune Responses

    Science.gov (United States)

    Lopez-Medina, Marcela; Perez-Lopez, Araceli; Alpuche-Aranda, Celia; Ortiz-Navarrete, Vianney

    2014-01-01

    Although B cells and antibodies are the central effectors of humoral immunity, B cells can also produce and secrete cytokines and present antigen to helper T cells. The uptake of antigen is mainly mediated by endocytosis; thus, antigens are often presented by MHC-II molecules. However, it is unclear if B cells can present these same antigens via MHC-I molecules. Recently, Salmonella bacteria were found to infect B cells, allowing possible antigen cross-processing that could generate bacterial peptides for antigen presentation via MHC-I molecules. Here, we will discuss available knowledge regarding Salmonella antigen presentation by infected B cell MHC-I molecules and subsequent inhibitory effects on CD8+ T cells for bacterial evasion of cell-mediated immunity. PMID:25484884

  16. Topology and organization of the Salmonella typhimurium type III secretion needle complex components.

    Directory of Open Access Journals (Sweden)

    Oliver Schraidt

    2010-04-01

    Full Text Available The correct organization of single subunits of multi-protein machines in a three dimensional context is critical for their functionality. Type III secretion systems (T3SS are molecular machines with the capacity to deliver bacterial effector proteins into host cells and are fundamental for the biology of many pathogenic or symbiotic bacteria. A central component of T3SSs is the needle complex, a multiprotein structure that mediates the passage of effector proteins through the bacterial envelope. We have used cryo electron microscopy combined with bacterial genetics, site-specific labeling, mutational analysis, chemical derivatization and high-resolution mass spectrometry to generate an experimentally validated topographic map of a Salmonella typhimurium T3SS needle complex. This study provides insights into the organization of this evolutionary highly conserved nanomachinery and is the basis for further functional analysis.

  17. A novel Salmonella serovar isolated from Peregrine Falcon (Falco peregrinus nestlings in Sweden: Salmonella enterica enterica serovar Pajala (Salmonella Pajala

    Directory of Open Access Journals (Sweden)

    Jorge Hernández

    2012-08-01

    Full Text Available A novel Salmonella serovar was isolated from Peregrine falcon (Falco peregrinus nestlings in northern Sweden in 2006. Three isolates of the same clone was retrieved from three falcon siblings and characterized as Salmonella enterica sub-species enterica: O-phase 13, 23:-: e, n, z 15 and the H-phase was not present. We propose the geographical name Salmonella enterica, sub-species enterica serovar Pajala to this novel Salmonella.

  18. Inhibitory Effects of Several Essential Oils towards Salmonella typhimurium, Salmonella paratyphi A and Salmonella paratyphi B

    Directory of Open Access Journals (Sweden)

    S.F. Mazhar

    2014-09-01

    Full Text Available Plant essential oils are natural products extracted from plants and because of their antimicrobial properties can be used as natural additives in foods. They are also useful for decontamination of food-borne pathogens and can be a safe additive in foods. The antimicrobial activities of essential oils belonging to Saturiea hortensis, Thymus vulgaris, Mentha polegium, Cuminum cyminum, Lavandula officinalis and Mentha viridis L. (spearmint were investigated at different concentrations (0.1, 0.3, 0.5, 1, 2, 5 and 10%v/v against Salmonella typhimurium, Salmonella paratyphi A and Salmonella paratyphi B by using the agar well diffusion method. Essential oils showed inhibitory effect on Salmonella spp. in the agar well diffusion assay. In addition, the capability of essential oils for decontamination of minced row beef, ground beef, minced raw chicken and minced raw fish inoculated with Salmonella spp. at 0.1 and 0.5%v/v were assessed. Reduction of the Salmonella spp. population was observed following the inoculation of the cultures with 0.1 and 0.5%v/v essential oils.

  19. The risk of salmonellae shedding by dogs fed Salmonella-contaminated commercial raw food diets.

    Science.gov (United States)

    Finley, Rita; Ribble, Carl; Aramini, Jeff; Vandermeer, Meredith; Popa, Maria; Litman, Marcus; Reid-Smith, Richard

    2007-01-01

    Twenty-eight research dogs were enrolled to determine the prevalence of salmonellae shedding after consumption of 1 Salmonella-contaminated commercial raw food diet meal. Sixteen dogs were exposed to Salmonella-contaminated commercial raw food diets and 12 to Salmonella-free commercial raw food diets. Seven of the exposed dogs shed salmonellae 1-7 days after consumption of Salmonella-contaminated raw food diets. None of the dogs fed Salmonella-free diets shed salmonellae. No clinical signs were observed in either group. Five of the 7 dogs shed the same serotypes as those recovered from food samples used for feeding. Results showed the same serotypes and antimicrobial resistance pattern in 2 of the 7 shedders. Dogs fed Salmonella-contaminated raw food diets can shed salmonellae and may, therefore, be a source of environmental contamination potentially leading to human or animal illness.

  20. Salmonella-induced changes in the gut microbiota and immune response genes transcriptome during administration of vancomycin and Bacteroides fragilis

    Directory of Open Access Journals (Sweden)

    Yu. V. Bukina

    2017-04-01

    Full Text Available The aim. To study Salmonella-induced changes in the intestinal wall microbiota, the expression of Salmonella effector proteins SipA, SopB, SopE2 and transcriptional activity of genes FFAR2, Foxp3, RORγt in rat GALT during administration of vancomycin and B.fragilis. Methods. Investigations of qualitative and quantitative composition of the microbiota of the wall of the small intestine were carried out, and the expression level of rat genes Foxp3, Rorc (Royt, FFAR2 and Salmonella effector proteins SipA, SopB and SopE2 were determined by RT-PCR, the relationship between groups of microorganisms was established. Results. Administration of B.fragilis against the background pre-treatment with vancomycin and Salmonella infection alters the quantitative composition of the microbiota in the wall of the small intestine contents: a decrease in Salmonella spp., E.coli, P.aeruginosa, Proteus spp., Enterobacter spp., Klebsiella spp. and Shigella spp., as well as increasing Bacteroides spp., E.faecalis, E.faecium and Peptostreptococcus anaerobius. The level of expression of Salmonella effector proteins in animals with the combined administration of vancomycin and S.enteritidis (I group, S.typhimurium (II group increased: SopB – 101 and 20 times; SopE2 - 80 and 2 times; SipA - 613 times (II group, and also 5-fold decrease was noted in the I group. Relative normalized number of mRNA of genes FFAR2, Foxp3, RORγt in GALT of rats in groups III and IV increased: FFAR2 - 2.7 and 5.4 times; Foxp3 - 2.5 and 85 times, RORγt level decreased by 70% and only in IV group. Conclusions. Using B.fragilis creates conditions for the correction of Salmonella-induced changes of the intestinal microbiome. Pretreatment of animals with vancomycin causes increased transcriptional activity of genes SipA, SopB and SopE2, except SipA after administration of S.enteritidis. Administration of B.fragilis increases the level of mRNA of genes FFAR2 and Foxp3 in GALT and reduces ROR

  1. Effector biology of plant-associated organisms: concepts and perspectives.

    Science.gov (United States)

    Win, J; Chaparro-Garcia, A; Belhaj, K; Saunders, D G O; Yoshida, K; Dong, S; Schornack, S; Zipfel, C; Robatzek, S; Hogenhout, S A; Kamoun, S

    2012-01-01

    Every plant is closely associated with a variety of living organisms. Therefore, deciphering how plants interact with mutualistic and parasitic organisms is essential for a comprehensive understanding of the biology of plants. The field of plant-biotic interactions has recently coalesced around an integrated model. Major classes of molecular players both from plants and their associated organisms have been revealed. These include cell surface and intracellular immune receptors of plants as well as apoplastic and host-cell-translocated (cytoplasmic) effectors of the invading organism. This article focuses on effectors, molecules secreted by plant-associated organisms that alter plant processes. Effectors have emerged as a central class of molecules in our integrated view of plant-microbe interactions. Their study has significantly contributed to advancing our knowledge of plant hormones, plant development, plant receptors, and epigenetics. Many pathogen effectors are extraordinary examples of biological innovation; they include some of the most remarkable proteins known to function inside plant cells. Here, we review some of the key concepts that have emerged from the study of the effectors of plant-associated organisms. In particular, we focus on how effectors function in plant tissues and discuss future perspectives in the field of effector biology.

  2. Rancangan End-effector untuk Robot Pemanen Buah Paprika

    Directory of Open Access Journals (Sweden)

    I Dewa Made Subrata

    2011-10-01

    Full Text Available A research on designing an end-effector for a sweet pepper (Capsicum grossum harvesting robot has been conducted. The objectives of this research were to design an end-effector prototype for the sweet pepper harvesting robot and to examine the performance of the end-effector in actuating the harvesting work. The end-effector was constructed in such a way so that enable to perform cutting and gripping motion in one action. The end-effector was designed using aluminum materials in order to get as light mass as possible. It dimension was 28 cm in length, 14 cm in width, and about 90 grams in weight. The field test of the prototype was conducted based on the conditions of plantation inside the greenhouse. Three kinds of inclination slope including 0o, 10o, and 20o were treated for the end-effector installation. The experimental result show that the third installation treatment ie: the end-effector with 20° inclination slope tend to produce the best performance which has the highest number of harvesting succeed.

  3. Rhizobia utilize pathogen-like effector proteins during symbiosis.

    Science.gov (United States)

    Kambara, Kumiko; Ardissone, Silvia; Kobayashi, Hajime; Saad, Maged M; Schumpp, Olivier; Broughton, William J; Deakin, William J

    2009-01-01

    A type III protein secretion system (T3SS) is an important host range determinant for the infection of legumes by Rhizobium sp. NGR234. Although a functional T3SS can have either beneficial or detrimental effects on nodule formation, only the rhizobial-specific positively acting effector proteins, NopL and NopP, have been characterized. NGR234 possesses three open reading frames potentially encoding homologues of effector proteins from pathogenic bacteria. NopJ, NopM and NopT are secreted by the T3SS of NGR234. All three can have negative effects on the interaction with legumes, but NopM and NopT also stimulate nodulation on certain plants. NopT belongs to a family of pathogenic effector proteases, typified by the avirulence protein, AvrPphB. The protease domain of NopT is required for its recognition and a subsequent strong inhibition in infection of Crotalaria juncea. In contrast, the negative effects of NopJ are relatively minor when compared with those induced by its Avr homologues. Thus NGR234 uses a mixture of rhizobial-specific and pathogen-derived effector proteins. Whereas some legumes recognize an effector as potentially pathogen-derived, leading to a block in the infection process, others perceive both the negative- and positive-acting effectors concomitantly. It is this equilibrium of effector action that leads to modulation of symbiotic development.

  4. Bioprospecting open reading frames for peptide effectors.

    Science.gov (United States)

    Xiong, Ling; Scott, Charles

    2014-01-01

    Recent successes in the development of small-molecule antagonists of protein-protein interactions designed based on co-crystal structures of peptides bound to their biological targets confirm that short peptides derived from interacting proteins can be high-value ligands for pharmacologic validation of targets and for identification of druggable sites. Evolved sequence space is likely to be enriched for interacting peptides, but identifying minimal peptide effectors within genomic sequence can be labor intensive. Here we describe the use of incremental truncation to diversify genetic material on the scale of open reading frames into comprehensive libraries of constituent peptides. The approach is capable of generating peptides derived from both continuous and discontinuous sequence elements, and is compatible with the expression of free linear or backbone cyclic peptides, with peptides tethered to amino- or carboxyl-terminal fusion partners or with the expression of peptides displayed within protein scaffolds (peptide aptamers). Incremental truncation affords a valuable source of molecular diversity to interrogate the druggable genome or evaluate the therapeutic potential of candidate genes.

  5. TAL effectors specificity stems from negative discrimination.

    Directory of Open Access Journals (Sweden)

    Basile I M Wicky

    Full Text Available Transcription Activator-Like (TAL effectors are DNA-binding proteins secreted by phytopathogenic bacteria that interfere with native cellular functions by binding to plant DNA promoters. The key element of their architecture is a domain of tandem-repeats with almost identical sequences. Most of the polymorphism is located at two consecutive amino acids termed Repeat Variable Diresidue (RVD. The discovery of a direct link between the RVD composition and the targeted nucleotide allowed the design of TAL-derived DNA-binding tools with programmable specificities that revolutionized the field of genome engineering. Despite structural data, the molecular origins of this specificity as well as the recognition mechanism have remained unclear. Molecular simulations of the recent crystal structures suggest that most of the protein-DNA binding energy originates from non-specific interactions between the DNA backbone and non-variable residues, while RVDs contributions are negligible. Based on dynamical and energetic considerations we postulate that, while the first RVD residue promotes helix breaks--allowing folding of TAL as a DNA-wrapping super-helix--the second provides specificity through a negative discrimination of matches. Furthermore, we propose a simple pharmacophore-like model for the rationalization of RVD-DNA interactions and the interpretation of experimental findings concerning shared affinities and binding efficiencies. The explanatory paradigm presented herein provides a better comprehension of this elegant architecture and we hope will allow for improved designs of TAL-derived biotechnological tools.

  6. Phenotypic and molecular characterization of Salmonella serotypes ...

    African Journals Online (AJOL)

    The presence of Salmonella and human pathogens in unpasteurized milk remains a public health hazard. The study reported the phenotypic and molecular characterization of Salmonella serotypes in cow raw milk, cheese and traditional yoghurt marketed for man's consumption in Nigeria. Isolation of Salmonella was done ...

  7. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.

    Science.gov (United States)

    Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H

    2017-01-01

    Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (acids), secreted proteins, with no predicted functions were selected for the HR suppression assay using Nicotiana benthamiana, in which each of the proteins were transiently expressed and evaluated for their ability to suppress HR caused by four cytotoxic effector-R gene combinations (Cp/Rx, ATR13/RPP13, Rpt2/RPS-2, and GPA/RBP-1) and one mutated R gene-Pto(Y207D). Nine out of twenty proteins, designated Shr1 to Shr9 (suppressors of hypersensitive response), were found to suppress HR in N. benthamiana. These effectors varied in the effector-R gene defenses they suppressed, indicating these pathogens can interfere with a variety of host defense pathways. In addition to HR suppression, effector Shr7 also suppressed PAMP-triggered immune response triggered by flg22. Finally, delivery of Shr7 through Pseudomonas fluorescens EtHAn suppressed nonspecific HR induced by Pseudomonas syringae DC3000 in wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

  8. Vaccines against invasive Salmonella disease

    Science.gov (United States)

    MacLennan, Calman A; Martin, Laura B; Micoli, Francesca

    2014-01-01

    Though primarily enteric pathogens, Salmonellae are responsible for a considerable yet under-appreciated global burden of invasive disease. In South and South-East Asia, this manifests as enteric fever caused by serovars Typhi and Paratyphi A. In sub-Saharan Africa, a similar disease burden results from invasive nontyphoidal Salmonellae, principally serovars Typhimurium and Enteritidis. The existing Ty21a live-attenuated and Vi capsular polysaccharide vaccines target S. Typhi and are not effective in young children where the burden of invasive Salmonella disease is highest. After years of lack of investment in new Salmonella vaccines, recent times have seen increased interest in the area led by emerging-market manufacturers, global health vaccine institutes and academic partners. New glycoconjugate vaccines against S. Typhi are becoming available with similar vaccines against other invasive serovars in development. With other new vaccines under investigation, including live-attenuated, protein-based and GMMA vaccines, now is an exciting time for the Salmonella vaccine field. PMID:24804797

  9. Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal.

    Science.gov (United States)

    McGowan, Jamie; Fitzpatrick, David A

    2017-01-01

    The oomycetes are a class of microscopic, filamentous eukaryotes within the stramenopiles-alveolate- Rhizaria (SAR) supergroup and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. This study investigated the expansion and evolution of effectors in 37 oomycete species in 4 oomycete orders, including Albuginales , Peronosporales , Pythiales , and Saprolegniales species. Our results highlight the large expansions of effector protein families, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, in Phytophthora species. Species-specific expansions, including expansions of chitinases in Aphanomyces astaci and Pythium oligandrum , were detected. Novel effectors which may be involved in suppressing animal immune responses in Ap. astaci and Py. insidiosum were also identified. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located in a number of oomycete species. We also investigated the "RxLR" effector complement of all 37 species and, as expected, observed large expansions in Phytophthora species numbers. Our results provide in-depth sequence information on all putative RxLR effectors from all 37 species. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available. IMPORTANCE The oomycetes are a class of microscopic, filamentous eukaryotes and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. In this study, we catalogued the number and evolution of effectors in 37 oomycete species whose genomes have been completely sequenced. Large expansions of effector protein

  10. The differential effects of 1,25-dihydroxyvitamin D3 on Salmonella-induced interleukin-8 and human beta-defensin-2 in intestinal epithelial cells.

    Science.gov (United States)

    Huang, F-C

    2016-07-01

    Salmonellosis or Salmonella, one of the most common food-borne diseases, remains a major public health problem worldwide. Intestinal epithelial cells (IECs) play an essential role in the mucosal innate immunity of the host to defend against the invasion of Salmonella by interleukin (IL)-8 and human β-defensin-2 (hBD-2). Accumulated research has unravelled important roles of vitamin D in the regulation of innate immunity. Therefore, we investigated the effects of 1,25-dihydroxyvitamin D3 (1,25D3) on Salmonella-induced innate immunity in IECs. We demonstrate that pretreatment of 1,25D3 results in suppression of Salmonella-induced IL-8 but enhancement of hBD-2, either protein secretion and mRNA expression, in IECs. Furthermore, 1,25D3 enhanced Salmonella-induced membranous recruitment of nucleotide oligomerization domain (NOD2) and its mRNA expression and activation of protein kinase B (Akt), a downstream effector of phosphoinositide 3-kinase (PI3K). Inhibition of the PI3K/Akt signal counteracted the suppressive effect of 1,25D3 on Salmonella-induced IL-8 expression, while knock-down of NOD2 by siRNA diminished the enhanced hBD-2 expression. These data suggest differential regulation of 1,25D3 on Salmonella-induced IL-8 and hBD-2 expression in IECs via PI3K/Akt signal and NOD2 protein expression, respectively. Active vitamin D-enhanced anti-microbial peptide in Salmonella-infected IECs protected the host against infection, while modulation of proinflammatory responses by active vitamin D prevented the host from the detrimental effects of overwhelming inflammation. Thus, active vitamin D-induced innate immunity in IECs enhances the host's protective mechanism, which may provide an alternative therapy for invasive Salmonella infection. © 2016 British Society for Immunology.

  11. Experimental approaches to investigate effector translocation into host cells in the Ustilago maydis/maize pathosystem.

    Science.gov (United States)

    Tanaka, Shigeyuki; Djamei, Armin; Presti, Libera Lo; Schipper, Kerstin; Winterberg, Sarah; Amati, Simone; Becker, Dirk; Büchner, Heike; Kumlehn, Jochen; Reissmann, Stefanie; Kahmann, Regine

    2015-01-01

    The fungus Ustilago maydis is a pathogen that establishes a biotrophic interaction with Zea mays. The interaction with the plant host is largely governed by more than 300 novel, secreted protein effectors, of which only four have been functionally characterized. Prerequisite to examine effector function is to know where effectors reside after secretion. Effectors can remain in the extracellular space, i.e. the plant apoplast (apoplastic effectors), or can cross the plant plasma membrane and exert their function inside the host cell (cytoplasmic effectors). The U. maydis effectors lack conserved motifs in their primary sequences that could allow a classification of the effectome into apoplastic/cytoplasmic effectors. This represents a significant obstacle in functional effector characterization. Here we describe our attempts to establish a system for effector classification into apoplastic and cytoplasmic members, using U. maydis for effector delivery. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Uncovering the Legionella genus effector repertoire - strength in diversity and numbers

    Science.gov (United States)

    Burstein, David; Amaro, Francisco; Zusman, Tal; Lifshitz, Ziv; Cohen, Ofir; Gilbert, Jack A; Pupko, Tal; Shuman, Howard A; Segal, Gil

    2016-01-01

    Infection by the human pathogen Legionella pneumophila relies on the translocation of ~300 virulence proteins, termed effectors, which manipulate host-cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species, and predicted their effector repertoire using a previously validated machine-learning approach. This analysis revealed a treasure trove of 5,885 predicted effectors. The effector repertoire of different Legionella species was found to be largely non-overlapping, and only seven core-effectors were shared among all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from their natural protozoan hosts. Furthermore, we detected numerous novel conserved effector domains, and discovered new domain combinations, which allowed inferring yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution. PMID:26752266

  13. Ramularia collo-cygni effectors and their role in planta

    DEFF Research Database (Denmark)

    Lopez, Jean-Baptiste

    2017-01-01

    and epidemiologic point of view, but few studies have been done at the molecular level. During my PhD, I studied this interaction with a focus on the effectors proteins. Effectors are small secreted protein allowing microorganism to bypass or counteract plant immune defense. In order to be able to study those...... proteins, I first developed a pipeline allowing in a semi high-throughput fashion cloning expression and screening in the host plant of the effectors. In the second part of this thesis I report my work on the functional characterization of a novel effector produced via the previously mentioned pipeline....... Finally, I contributed to a joint project on comparative transcriptomic between 2 Rcc isolates infecting 2 barley cultivars with contrasting sensitivities to Rcc. My first focus was to understand how Rcc adapt its transcriptome depending on the host. Secondly, I was interested to look at the differential...

  14. Gunite Scarifying End Effector. Innovative Technology Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-09-01

    The Gunite Scarifying End Effector (GSEE) is designed to remove a layer of the gunite tank walls, which are contaminated with radioactivity. Removing this radioactivity is necessary to close the tank.

  15. Toxoplasma gondii effectors are master regulators of the inflammatory response

    Science.gov (United States)

    Melo, Mariane B.; Jensen, Kirk D.C.; Saeij, Jeroen P.J.

    2011-01-01

    Toxoplasma is a highly successful parasite that establishes a life-long chronic infection. To do this it must carefully regulate immune activation and host cell effector mechanisms. Here we review the latest developments in our understanding of how Toxoplasma counteracts the host’s immune response, and in some cases provokes it, through the use of specific parasite effector proteins. An emerging theme from these discoveries is that Toxoplasma effectors are master regulators of the pro-inflammatory response, which elicits many of the host’s toxoplasmacidal mechanisms. We speculate that combinations of these effectors present in certain Toxoplasma strains work to maintain an optimal parasite burden in different hosts to ensure parasite transmission. PMID:21893432

  16. Prevalence and susceptibility of salmonella Typhi and salmonella ...

    African Journals Online (AJOL)

    Methods: Blood samples collected from presumptive typhoid fever patients from Ahmadu Bello University (ABU), Federal College of Education (FCE) and presumptive typhoid fever patients that attended two private clinics (Salama Clinics and Savanna Polyclinics) in Zaria were cultured for Salmonella species and identified ...

  17. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  18. Structural and biochemical characterization of SrcA, a multi-cargo type III secretion chaperone in Salmonella required for pathogenic association with a host.

    Directory of Open Access Journals (Sweden)

    Colin A Cooper

    2010-02-01

    Full Text Available Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2 is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 A revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2 and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.

  19. Cellulitis Due to Salmonella infantis.

    Directory of Open Access Journals (Sweden)

    Satish R Patil

    2013-01-01

    Full Text Available Bacteria of the genus Salmonella are highly adapted for the growth in both humans and animals and cause a wide spectrum of disease. The growth of Serotypes S. typhi and S. paratyphi is restricted to human hosts, in whom these organisms cause enteric (typhoid fever. The remaining Serotypes (non typhoidal Salmonella or NTS can colonize the gastrointestinal tracts of the broad range of animals, including mammals, reptiles, birds and insects. The usual clinical presentation of non-typhoidal salmonellae (NTS infection is self limited gastroenteritis; however bacteremia and focal extra intestinal infection may occur. However salmonella localization to the skin presenting as cutaneous ulceration is regarded as a rare event. Rates of morbidity and mortality associated with NTS are highest among the elderly, infants, and immunocompromised individuals, including those with hemoglobinopathies, HIV infection, or infections that cause blockade of the reticuloendothelial system. We isolated S.infantis in 50 years old man with left leg cellulitis. The serotype was confirmed at Central Research Institute, Kasauli.

  20. Salmonella radicidation of poultry carcasses

    NARCIS (Netherlands)

    Mulder, R.W.A.W.

    1982-01-01

    Validity of methods

    Experiments were carried out In which it was assessed which Salmonella isolation method is the most productive one In the examination of broiler carcasses. Refrigerated, refrigerated and radiated (2.50 kGy), frozen and frozen and

  1. Salmonella Infection and Water Frogs

    Centers for Disease Control (CDC) Podcasts

    2010-01-12

    This podcast, featuring lead investigator Shauna Mettee, discusses the first known outbreak of Salmonella in people due to contact with water frogs.  Created: 1/12/2010 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 1/12/2010.

  2. 'Acute Salmonella typhz' Acalculdus Cholecystitz's

    African Journals Online (AJOL)

    The diagnosis of AACwas established byultrasono graphy and confirmed at lapar otomy: Laboratory cultures grew Salmonella 1377M from bile and citrobacter spp. from the blood. Following surgical intervention, the child had an uneventful recovery andwas discharged three weeks after surgery. 7. Key words: Typhoid fever, ...

  3. Virulence determinants of Salmonella Gallinarum biovar Pullorum identified by PCR signature-tagged mutagenesis and the spiC mutant as a candidate live attenuated vaccine.

    Science.gov (United States)

    Geng, Shizhong; Jiao, Xinan; Barrow, Paul; Pan, Zhiming; Chen, Xiang

    2014-01-31

    Salmonella Gallinarum biovar Pullorum (S. Gallinarum biovar Pullorum) is the causative agent of pullorum disease (PD) in chickens which results in considerable economic losses to the poultry industries in developing countries. PCR-Signature Tagged Mutagenesis was used to identify virulence determinants of S. Gallinarum biovar Pullorum and novel attenuated live vaccine candidates for use against this disease. A library of 1800 signature-tagged S. Gallinarum biovar Pullorum mutants was constructed and screened for virulence-associated genes in chickens. The attenuation of 10 mutants was confirmed by in vivo and in vitro competitive index (CI) studies. The transposons were found to be located in SPI-1 (2/10 mutants), SPI-2 (3/10), the virulence plasmid (1/10) and non-SPI genes (4/10). One highly attenuated spiC mutant persisted in spleen and liver for less than 10 days and induced high levels of circulating antibody and protective immunity against oral challenge in young broiler chickens. The spiC mutant is a potential new vaccine candidate for use with chickens against this disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Implications of Spatiotemporal Regulation of Shigella flexneri Type Three Secretion Activity on Effector Functions: Think Globally, Act Locally.

    Science.gov (United States)

    Campbell-Valois, F-X; Pontier, Stéphanie M

    2016-01-01

    Shigella spp. are Gram-negative bacterial pathogens that infect human colonic epithelia and cause bacterial dysentery. These bacteria express multiple copies of a syringe-like protein complex, the Type Three Secretion apparatus (T3SA), which is instrumental in the etiology of the disease. The T3SA triggers the plasma membrane (PM) engulfment of the bacteria by host cells during the initial entry process. It then enables bacteria to escape the resulting phagocytic-like vacuole. Freed bacteria form actin comets to move in the cytoplasm, which provokes bacterial collision with the inner leaflet of the PM. This phenomenon culminates in T3SA-dependent secondary uptake and vacuolar rupture in neighboring cells in a process akin to what is observed during entry and named cell-to-cell spread. The activity of the T3SA of Shigella flexneri was recently demonstrated to display an on/off regulation during the infection. While the T3SA is active when bacteria are in contact with PM-derived compartments, it switches to an inactive state when bacteria are released within the cytosol. These observations indicate that effector proteins transiting through the T3SA are therefore translocated in a highly time and space constrained fashion, likely impacting on their cellular distribution. Herein, we present what is currently known about the composition, the assembly and the regulation of the T3SA activity and discuss the consequences of the on/off regulation of T3SA on Shigella effector properties and functions during the infection. Specific examples that will be developed include the role of effectors IcsB and VirA in the escape from LC3/ATG8-positive vacuoles formed during cell-to-cell spread and of IpaJ protease activity against N-miristoylated proteins. The conservation of a similar regulation of T3SA activity in other pathogens such as Salmonella or Enteropathogenic Escherichia coli will also be briefly discussed.

  5. EU Interlaboratory comparison study VII on bacteriological detection of Salmonella spp

    NARCIS (Netherlands)

    Korver H; Nagelkerke NJD; Giessen AW van de; Mooijman KA; MGB; IMAR

    2005-01-01

    In 2003 a seventh interlaboratory comparison study on bacteriological detection of Salmonella spp. was organised by the Community Reference Laboratory for Salmonella (CRL-Salmonella, Bilthoven, the Netherlands). National Reference Laboratories for Salmonella (NRLs-Salmonella) of the EU Member

  6. Salmonella – A Brief Summary

    Directory of Open Access Journals (Sweden)

    Nurmi Esko

    2002-03-01

    Full Text Available Abstract Salmonellosis is the main cause of human bacterial gastroenteritis in most European countries. Infections with Salmonella is usually subclinical, whereas clinical cases show symptoms with a wide range of severity. Infection is most commonly associated with the consumption of meat, especially poultry or pork, and eggs and their products. Salmonella can enter the food chain at any point throughout its length. The principal reservoir of Salmonellae is the gastrointestinal tract of mammals and birds, but Salmonellae are able to survive and even multiply in many external environments. In Norway, Sweden and Finland cost effective prevention methods have been used for several years to prevent and control Salmonellea infections. In addition, competitive exclusion (CE and vaccination might be relevant as biological methods to prevent colonisation of bird intestines by enteropathogens, especially Salmonella. Antibiotic drug resistance has been a problem since the start of the antibiotic era. The cause for anxiety is that more and more bacteria are becoming resistant, often to a whole range of antibiotics. The debate on the use of antimicrobials in veterinary medicine and animal production dates back almost as long as the use itself. There is a clear evidence to show that antibacterial agents given to animals for growth promotion, prophylactic purposes or treatment induce a rise in the number of antibiotic resistant strains isolated from the animals. These bacteria may be transmitted to humans by several possible routes. There are thus strong arguments for preventive efforts which have to be directed towards identifying real critical control points (HACCP throughout the whole food chain, which starts from the farm and ends at the consumer's table.

  7. 75 FR 48973 - Draft Guidance for Industry: Prevention of Salmonella

    Science.gov (United States)

    2010-08-12

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry: Prevention of Salmonella... availability of a draft guidance entitled ``Prevention of Salmonella Enteritidis in Shell Eggs During... ``Prevention of Salmonella Enteritidis in Shell Eggs During Production, Storage, and Transportation'' (the...

  8. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  9. Salmonella paratyphi C: genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi.

    Directory of Open Access Journals (Sweden)

    Wei-Qiao Liu

    Full Text Available BACKGROUND: Although over 1400 Salmonella serovars cause usually self-limited gastroenteritis in humans, a few, e.g., Salmonella typhi and S. paratyphi C, cause typhoid, a potentially fatal systemic infection. It is not known whether the typhoid agents have evolved from a common ancestor (by divergent processes or acquired similar pathogenic traits independently (by convergent processes. Comparison of different typhoid agents with non-typhoidal Salmonella lineages will provide excellent models for studies on how similar pathogens might have evolved. METHODOLOGIES/PRINCIPAL FINDINGS: We sequenced a strain of S. paratyphi C, RKS4594, and compared it with previously sequenced Salmonella strains. RKS4594 contains a chromosome of 4,833,080 bp and a plasmid of 55,414 bp. We predicted 4,640 intact coding sequences (4,578 in the chromosome and 62 in the plasmid and 152 pseudogenes (149 in the chromosome and 3 in the plasmid. RKS4594 shares as many as 4346 of the 4,640 genes with a strain of S. choleraesuis, which is primarily a swine pathogen, but only 4008 genes with another human-adapted typhoid agent, S. typhi. Comparison of 3691 genes shared by all six sequenced Salmonella strains placed S. paratyphi C and S. choleraesuis together at one end, and S. typhi at the opposite end, of the phylogenetic tree, demonstrating separate ancestries of the human-adapted typhoid agents. S. paratyphi C seemed to have suffered enormous selection pressures during its adaptation to man as suggested by the differential nucleotide substitutions and different sets of pseudogenes, between S. paratyphi C and S. choleraesuis. CONCLUSIONS: S. paratyphi C does not share a common ancestor with other human-adapted typhoid agents, supporting the convergent evolution model of the typhoid agents. S. paratyphi C has diverged from a common ancestor with S. choleraesuis by accumulating genomic novelty during adaptation to man.

  10. Live attenuated vaccines for invasive Salmonella infections

    Science.gov (United States)

    Tennant, Sharon M.; Levine, Myron M.

    2015-01-01

    Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed S. Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: S. Typhi, S. Paratyphi A, S. Paratyphi B (currently uncommon but may become dominant again), S. Typhimurium, S. Enteritidis and S. Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines. PMID:25902362

  11. Eleventh CRL-Salmonella interlaboratory comparison study on typing of Salmonella spp.

    NARCIS (Netherlands)

    Berk PA; Maas HME; Pinna E de; Mooijman KA; MGB

    2006-01-01

    The eleventh interlaboratory comparison study on the typing of Salmonella was organised by the Community Reference Laboratory for Salmonella (CRL-Salmonella, Bilthoven, The Netherlands) in collaboration with the Health Protection Agency (HPA, London, United Kingdom) in March 2006. 26 National

  12. Salmonella Typhimurium infection in the porcine intestine

    DEFF Research Database (Denmark)

    Schauser, Kirsten; Olsen, John Elmerdahl; Larsson, Lars-Inge

    2005-01-01

    The normal intestinal epithelium is renewed with a turnover rate of 3-5 days. During Salmonella infection increased cell loss is observed, possibly as a result of programmed cell death (PCD). We have, therefore, studied the effects of Salmonella Typhimurium infection on three elements involved...... in scattered epithelial cells and the number of positive cells increased with increasing times of exposure to Salmonella (P

  13. Type VI secretion delivers bacteriolytic effectors to target cells.

    Science.gov (United States)

    Russell, Alistair B; Hood, Rachel D; Bui, Nhat Khai; LeRoux, Michele; Vollmer, Waldemar; Mougous, Joseph D

    2011-07-20

    Peptidoglycan is the major structural constituent of the bacterial cell wall, forming a meshwork outside the cytoplasmic membrane that maintains cell shape and prevents lysis. In Gram-negative bacteria, peptidoglycan is located in the periplasm, where it is protected from exogenous lytic enzymes by the outer membrane. Here we show that the type VI secretion system of Pseudomonas aeruginosa breaches this barrier to deliver two effector proteins, Tse1 and Tse3, to the periplasm of recipient cells. In this compartment, the effectors hydrolyse peptidoglycan, thereby providing a fitness advantage for P. aeruginosa cells in competition with other bacteria. To protect itself from lysis by Tse1 and Tse3, P. aeruginosa uses specific periplasmically localized immunity proteins. The requirement for these immunity proteins depends on intercellular self-intoxication through an active type VI secretion system, indicating a mechanism for export whereby effectors do not access donor cell periplasm in transit.

  14. Diacylglycerol kinases in T cell tolerance and effector function

    Directory of Open Access Journals (Sweden)

    Shelley S Chen

    2016-11-01

    Full Text Available Diacylglycerol kinases (DGKs are a family of enzymes that regulate the relative levels of diacylglycerol (DAG and phosphatidic acid (PA in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR signal by recruiting multiple effector molecules such as RasGRP1, PKC, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms,  and , in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.

  15. Red seaweeds Sarcodiotheca gaudichaudii and Chondrus crispus down regulate virulence factors of Salmonella Enteritidis and induce immune responses in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Garima eKulshreshtha

    2016-03-01

    Full Text Available Red seaweeds are a rich source of unique bioactive compounds and secondary metabolites that are known to improve human and animal health. S. Enteritidis is a broad range host pathogen, which contaminates chicken and poultry products that end into the human food chain. Worldwide, Salmonella outbreaks have become an important economic and public health concern. Moreover, the development of resistance in Salmonella serovars towards multiple drugs highlights the need for alternative control strategies. This study evaluated the antimicrobial property of red seaweeds extracts against Salmonella Enteritidis using the Caenorhabditis elegans infection model. Six red seaweed species were tested for their antimicrobial activity against S. Enteritidis. Spread plate assay revealed that Sarcodiotheca gaudichaudii (SG and Chondrus crispus (CC (1%, w/v significantly reduced the growth of S. Enteritidis. Seaweed water extracts (SWE of SG and CC, at concentrations from 0.4 mg/ml to 2 mg/ml, significantly reduced the growth of S. Enteritidis (log CFU 4.5-5.3 and log 5.7-6.0, respectively. However, methanolic extracts of CC and SG did not affect the growth of S. Enteritidis. Addition of SWE (0.2 mg/ml, CC and SG significantly decreased biofilm formation and reduced the motility of S. Enteritidis. Quantitative real-time PCR analyses showed that SWE (CC and SG suppressed the expression of quorum sensing gene sdiA and of Salmonella Pathogenesis Island-1 (SPI-1 associated genes sipA and invF, indicating that SWE might reduce the invasion of S. Enteritidis in the host by attenuating virulence factors. Furthermore, CC and SG water extracts significantly improved the survival of infected C. elegans by impairing the ability of S. Enteritidis to colonize the digestive tract of the nematode and by enhancing the expression of C. elegans immune responsive genes. As the innate immune response pathways of C. elegans and mammals show a high degree of conservation, these results

  16. Red Seaweeds Sarcodiotheca gaudichaudii and Chondrus crispus down Regulate Virulence Factors of Salmonella Enteritidis and Induce Immune Responses in Caenorhabditis elegans.

    Science.gov (United States)

    Kulshreshtha, Garima; Borza, Tudor; Rathgeber, Bruce; Stratton, Glenn S; Thomas, Nikhil A; Critchley, Alan; Hafting, Jeff; Prithiviraj, Balakrishnan

    2016-01-01

    Red seaweeds are a rich source of unique bioactive compounds and secondary metabolites that are known to improve human and animal health. S. Enteritidis is a broad range host pathogen, which contaminates chicken and poultry products that end into the human food chain. Worldwide, Salmonella outbreaks have become an important economic and public health concern. Moreover, the development of resistance in Salmonella serovars toward multiple drugs highlights the need for alternative control strategies. This study evaluated the antimicrobial property of red seaweeds extracts against Salmonella Enteritidis using the Caenorhabditis elegans infection model. Six red seaweed species were tested for their antimicrobial activity against S. Enteritidis and two, Sarcodiotheca gaudichaudii (SG) and Chondrus crispus (CC), were found to exhibit such properties. Spread plate assay revealed that SG and CC (1%, w/v) significantly reduced the growth of S. Enteritidis. Seaweed water extracts (SWE) of SG and CC, at concentrations from 0.4 to 2 mg/ml, significantly reduced the growth of S. Enteritidis (log CFU 4.5-5.3 and log 5.7-6.0, respectively). However, methanolic extracts of CC and SG did not affect the growth of S. Enteritidis. Addition of SWE (0.2 mg/ml, CC and SG) significantly decreased biofilm formation and reduced the motility of S. Enteritidis. Quantitative real-time PCR analyses showed that SWE (CC and SG) suppressed the expression of quorum sensing gene sdiA and of Salmonella Pathogenesis Island-1 (SPI-1) associated genes sipA and invF, indicating that SWE might reduce the invasion of S. Enteritidis in the host by attenuating virulence factors. Furthermore, CC and SG water extracts significantly improved the survival of infected C. elegans by impairing the ability of S. Enteritidis to colonize the digestive tract of the nematode and by enhancing the expression of C. elegans immune responsive genes. As the innate immune response pathways of C. elegans and mammals show a high

  17. Identification of Anaplasma marginale type IV secretion system effector proteins.

    Directory of Open Access Journals (Sweden)

    Svetlana Lockwood

    Full Text Available Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS. The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now.By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141 of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system.The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work.

  18. Role of T3SS-1 SipD Protein in Protecting Mice against Non-typhoidal Salmonella Typhimurium.

    Directory of Open Access Journals (Sweden)

    Bakhos Jneid

    2016-12-01

    Full Text Available Salmonella enterica species are enteric pathogens that cause severe diseases ranging from self-limiting gastroenteritis to enteric fever and sepsis in humans. These infectious diseases are still the major cause of morbidity and mortality in low-income countries, especially in children younger than 5 years and immunocompromised adults. Vaccines targeting typhoidal diseases are already marketed, but none protect against non-typhoidal Salmonella. The existence of multiple non-typhoidal Salmonella serotypes as well as emerging antibiotic resistance highlight the need for development of a broad-spectrum protective vaccine. All Salmonella spp. utilize two type III Secretion Systems (T3SS 1 and 2 to initiate infection, allow replication in phagocytic cells and induce systemic disease. T3SS-1, which is essential to invade epithelial cells and cross the barrier, forms an extracellular needle and syringe necessary to inject effector proteins into the host cell. PrgI and SipD form, respectively, the T3SS-1 needle and the tip complex at the top of the needle. Because they are common and highly conserved in all virulent Salmonella spp., they might be ideal candidate antigens for a subunit-based, broad-spectrum vaccine.We investigated the immunogenicity and protective efficacy of PrgI and SipD administered by subcutaneous, intranasal and oral routes, alone or combined, in a mouse model of Salmonella intestinal challenge. Robust IgG (in all immunization routes and IgA (in intranasal and oral immunization routes antibody responses were induced against both proteins, particularly SipD. Mice orally immunized with SipD alone or SipD combined with PrgI were protected against lethal intestinal challenge with Salmonella Typhimurium (100 Lethal Dose 50% depending on antigen, route and adjuvant.Salmonella T3SS SipD is a promising antigen for the development of a protective Salmonella vaccine, and could be developed for vaccination in tropical endemic areas to control

  19. Integrated Stress Responses in Salmonella

    Science.gov (United States)

    Shen, Shu; Fang, Ferric C.

    2011-01-01

    The foodborne gram-negative pathogen Salmonella must adapt to varied environmental conditions encountered within foods, the host gastrointestinal tract and the phagosomes of host macrophages. Adaptation is achieved through the coordinate regulation of gene expression in response to environmental signals such as temperature, pH, osmolarity, redox state, antimicrobial peptides, and nutrient deprivation. This review will examine mechanisms by which the integration of regulatory responses to a broad array of environmental signals can be achieved. First, in the most straightforward case, tandem promoters allow gene expression to respond to multiple signals. Second, versatile sensor proteins may respond to more than one environmental signal. Third, transcriptional silencing and counter-silencing as demonstrated by the H-NS paradigm provides a general mechanism for the convergence of multiple regulatory inputs. Fourth, signaling cascades allow gene activation by independent sensory elements. These mechanisms allow Salmonella to utilize common adaptive stress pathways in response to a diverse range of environmental conditions. PMID:21570144

  20. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  1. p21-ras effector domain mutants constructed by "cassette" mutagenesis

    DEFF Research Database (Denmark)

    Stone, J C; Vass, W C; Willumsen, B M

    1988-01-01

    A series of mutations encoding single-amino-acid substitutions within the v-rasH effector domain were constructed, and the ability of the mutants to induce focal transformation of NIH 3T3 cells was studied. The mutations, which spanned codons 32 to 40, were made by a "cassette" mutagenesis...... technique that involved replacing this portion of the v-rasH effector domain with a linker carrying two BspMI sites in opposite orientations. Since BspMI cleaves outside its recognition sequence, BspMI digestion of the plasmid completely removed the linker, creating a double-stranded gap whose missing ras...

  2. Flagella Overexpression Attenuates Salmonella Pathogenesis

    OpenAIRE

    Xinghong Yang; Theresa Thornburg; Zhiyong Suo; SangMu Jun; Amanda Robison; Jinquan Li; Timothy Lim; Ling Cao; Teri Hoyt; Recep Avci; Pascual, David W.

    2012-01-01

    Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE), was found to enfeeble wild-type Salmonella. Thus, this approach was adapted to...

  3. Lactobacillus bulgaricus, Lactobacillus rhamnosus and Lactobacillus paracasei Attenuate Salmonella Enteritidis, Salmonella Heidelberg and Salmonella Typhimurium Colonization and Virulence Gene Expression In Vitro

    OpenAIRE

    Muyyarikkandy, Muhammed Shafeekh; Amalaradjou, Mary Anne

    2017-01-01

    Salmonella Enteritidis (SE), Salmonella Typhimurium (ST), and Salmonella Heidelberg (SH) have been responsible for numerous outbreaks associated with the consumption of poultry meat and eggs. Salmonella colonization in chicken is characterized by initial attachment to the cecal epithelial cells (CEC) followed by dissemination to the liver, spleen, and oviduct. Since cecal colonization is critical to Salmonella transmission along the food chain continuum, reducing this intestinal association c...

  4. Reiter's syndrome after salmonella infection

    Directory of Open Access Journals (Sweden)

    Čanović Predrag S.

    2004-01-01

    Full Text Available Two patients with Reiter's syndrome, after Salmonella infection were treated on the Infections disease ward at Clinical hospital center in Kragujevac. In the first patient, ten days after the onset of Salmonella infection, signs of edema and pain in the right ankle occurred, accompanied by expressed conjunctivitis. Within next two months consecutive metatarsophalanges changes joint of the right foot have appeared. In the second patient, two weeks after the onset of Salmonella infection, edema of the left hand joints and a week later edema of the right hand and right ankle joints appeared. In both patients inflammatory syndrome was expressed (high erythrocyte sedimentation rates, fibrinogen, C-reactive protein along with negative rheumatoid factors and positive antigen HLA-B27. Outcome of the disease in both cases was favorable upon receiving nonsteroid antirheumatic therapy. Signs of arthritis disappeared after three months. No signs of recurrent arthritis have been seen during the next four years in the first and next two years in the second patient.

  5. Robotic End Effectors for Hard-Rock Climbing

    Science.gov (United States)

    Kennedy, Brett; Leger, Patrick

    2004-01-01

    Special-purpose robot hands (end effectors) now under development are intended to enable robots to traverse cliffs much as human climbers do. Potential applications for robots having this capability include scientific exploration (both on Earth and other rocky bodies in space), military reconnaissance, and outdoor search and rescue operations. Until now, enabling robots to traverse cliffs has been considered too difficult a task because of the perceived need of prohibitively sophisticated planning algorithms as well as end effectors as dexterous as human hands. The present end effectors are being designed to enable robots to attach themselves to typical rock-face features with less planning and simpler end effectors. This advance is based on the emulation of the equipment used by human climbers rather than the emulation of the human hand. Climbing-aid equipment, specifically cams, aid hooks, and cam hooks, are used by sport climbers when a quick ascent of a cliff is desired (see Figure 1). Currently two different end-effector designs have been created. The first, denoted the simple hook emulator, consists of three "fingers" arranged around a central "palm." Each finger emulates the function of a particular type of climbing hook (aid hook, wide cam hook, and a narrow cam hook). These fingers are connected to the palm via a mechanical linkage actuated with a leadscrew/nut. This mechanism allows the fingers to be extended or retracted. The second design, denoted the advanced hook emulator (see Figure 2), shares these features, but it incorporates an aid hook and a cam hook into each finger. The spring-loading of the aid hook allows the passive selection of the type of hook used. The end effectors can be used in several different modes. In the aid-hook mode, the aid hook on one of the fingers locks onto a horizontal ledge while the other two fingers act to stabilize the end effector against the cliff face. In the cam-hook mode, the broad, flat tip of the cam hook is

  6. Identification and characterization of novel effectors of Cladosporium fulvum

    NARCIS (Netherlands)

    Ökmen, B.

    2013-01-01

    In order to establish disease, plant pathogenic fungi deliver effectors in the apoplastic space surrounding host cells as well as into host cells themselves to manipulate host physiology in favour of their own growth. Cladosporium fulvum is a non-obligate biotrophic fungus causing leaf mould disease

  7. Type IV secretion system of Brucella spp. and its effectors.

    Science.gov (United States)

    Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang

    2015-01-01

    Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.

  8. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation

    NARCIS (Netherlands)

    Jensen, K.D.C.; Wang, Y.; Tait Wonjo, E.D.; Shastri, A.J.; Hu, K.; Cornel, L.; Boedec, E.; Ong, Y.C.; Chien, Y.H.; Hunter, C.A.; Boothroyd, J.C.; Saeij, J.P.J.

    2011-01-01

    European and North American strains of the parasite Toxoplasma gondii belong to three distinct clonal lineages, type I, type II, and type III, which differ in virulence. Understanding the basis of Toxoplasma strain differences and how secreted effectors work to achieve chronic infection is a major

  9. Memory versus effector immune responses in oncolytic virotherapies.

    Science.gov (United States)

    Macnamara, Cicely; Eftimie, Raluca

    2015-07-21

    The main priority when designing cancer immuno-therapies has been to seek viable biological mechanisms that lead to permanent cancer eradication or cancer control. Understanding the delicate balance between the role of effector and memory cells on eliminating cancer cells remains an elusive problem in immunology. Here we make an initial investigation into this problem with the help of a mathematical model for oncolytic virotherapy; although the model can in fact be made general enough to be applied also to other immunological problems. According to this model, we find that long-term cancer control is associated with a large number of persistent effector cells (irrespective of the initial peak in effector cell numbers). However, this large number of persistent effector cells is sustained by a relatively large number of memory cells. Moreover, the results of the mathematical model suggest that cancer control from a dormant state cannot be predicted by the size of the memory population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Plasmodium cellular effector mechanisms and the hepatic microenvironment

    Science.gov (United States)

    Frevert, Ute; Krzych, Urszula

    2015-01-01

    Plasmodium falciparum malaria remains one of the most serious health problems globally. Immunization with attenuated parasites elicits multiple cellular effector mechanisms capable of eliminating Plasmodium liver stages. However, malaria liver stage (LS) immunity is complex and the mechanisms effector T cells use to locate the few infected hepatocytes in the large liver in order to kill the intracellular LS parasites remain a mystery to date. Here, we review our current knowledge on the behavior of CD8 effector T cells in the hepatic microvasculature, in malaria and other hepatic infections. Taking into account the unique immunological and lymphogenic properties of the liver, we discuss whether classical granule-mediated cytotoxicity might eliminate infected hepatocytes via direct cell contact or whether cytokines might operate without cell–cell contact and kill Plasmodium LSs at a distance. A thorough understanding of the cellular effector mechanisms that lead to parasite death hence sterile protection is a prerequisite for the development of a successful malaria vaccine to protect the 40% of the world’s population currently at risk of Plasmodium infection. PMID:26074888

  11. Cell volume homeostatic mechanisms: effectors and signalling pathways

    DEFF Research Database (Denmark)

    Hoffmann, E K; Pedersen, Stine Helene Falsig

    2011-01-01

    . Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased...

  12. How to conquer a tomato plant? Fusarium oxysporum effector targets

    NARCIS (Netherlands)

    de Sain, M.

    2016-01-01

    Pathogens secrete small proteins, called effectors, to alter the environment in their host to facilitate infection. The causal agent of Fusarium wilt on tomato, Fusarium oxysporum f. sp. lycopersici (Fol), secretes these proteins in the xylem sap of infected plants and hence they have been called

  13. Rapid detection and characterization of Salmonella enterica ...

    African Journals Online (AJOL)

    Multiplex polymerase chain reaction (PCR) was used for molecular typing of Salmonella enterica serovars in Egypt. During the summer of 2010, a total of 1075 samples were collected from cattle, sheep and poultry farms to be subjected for isolation of Salmonella (290 rectal swabs from cattle, 335 rectal swabs from sheep ...

  14. Case Report: Salmonella lung infection | Ohanu | International ...

    African Journals Online (AJOL)

    A case of an 84 year old man admitted because of fever, abdominal discomfort, weakness, past history of cough wheezing and abuse of prednisolone and Erythromycin. He had Bronchopneumonia and diabetes. Salmonella typhimurium was isolated from both his sputum and blood while stool was negative for salmonella.

  15. Antimicrobial susceptibility patterns of Salmonella typhi and ...

    African Journals Online (AJOL)

    The aim of this study was to determine antimicrobial susceptibility testing patterns of Candida Albicans and Salmonella typhi isolates. Fifteen isolates of each microorganism were collected from three hospitals located in Dar es Salaam region within a 3-month period in the year 2005. Candida Albicans and Salmonella typhi ...

  16. Antibiotic susceptibilities of Salmonella species prevalent among ...

    African Journals Online (AJOL)

    This study was conducted to assess the prevalence of Salmonella species among children having diarrhea in Katsina State, Nigeria. A total of 220 diarrhea stool samples of children aged five years and below (0-5 years) were collected and screened for Salmonella species using culture technique. Presumptively positive ...

  17. Quinolone resistance in Salmonella enterica serovar Typhi ...

    African Journals Online (AJOL)

    over Asia and Africa) emerged from Southeast Asia and then spread to other regions of the world [13]. Travellers also played a significant role in spreading the resistant. Salmonella Typhi, especially to the developed world [16,. 17]. The quinolone-resistant Salmonella Typhi is not only prevalent in hospital settings but also in ...

  18. Experimental reproduction of rotavirus and Salmonella pullorum ...

    African Journals Online (AJOL)

    ADEYEYE

    2017-07-10

    Jul 10, 2017 ... were inoculated with 1 X 106 cfu/ml of Salmonella pullorum, group C chicks were inoculated with 1 X 106 pfu/ml of rotavirus and ... Significant growth retardation was observed in chicks given either rotavirus or Salmonella pullorum, but this effect was more ... feed and water were provided ad libitum. All the.

  19. Experimental Salmonella-associated conjunctivitis in cats.

    OpenAIRE

    Fox, J G; Beaucage, C M; Murphy, J C; Niemi, S M

    1984-01-01

    Cats were infected experimentally with Salmonella typhimurium via the conjunctiva. Clinical signs consisted of lacrimation, conjunctivitis, blepharospasm, prominent nictitating membrane and scleral injection. These signs were accompanied by an absolute neutrophilia and conjunctival smears indicative of moderate to severe suppurative inflammation. Ocular signs disappeared by day 6 postinfection. Salmonella typhimurium was cultured intermittently from the inoculated conjunctivae and rectal swab...

  20. Antimicrobial susceptibilities of salmonellae isolated from food ...

    African Journals Online (AJOL)

    transmission of typhoid bacilli and other Salmonella spp. This study was conducted to determine the prevalence and antimicrobial resistance patterns of Salmonella spp. from food handlers and cattle and compare the patterns with specimens from patients. Methods: A total of 206 stool samples from apparently healthy food ...

  1. Seroprevalence of Salmonella Gallinarum Infection in Chicken ...

    African Journals Online (AJOL)

    Bheema

    ABSTRACT. Ethiopia owns a large poultry population whose growth is highly constrained by diseases. Fowl typhoid is a serious concern in growing and adult poultry and results from infection by. Salmonella Gallinarum (Salmonella enterica subsp. enterica serovar Gallinarum biovar. Gallinarum). Knowledge of the ...

  2. Experimental reproduction of rotavirus and Salmonella pullorum ...

    African Journals Online (AJOL)

    ADEYEYE

    2017-07-10

    Jul 10, 2017 ... experiment. Body weight. Growth retardation was observed from day 7 P.I. in all infected group till the end of the study. The effects of Rotavirus and ... Table 2: Mean body weights of birds inoculated orally with Rotavirus, Salmonella or Rotavirus/Salmonella .... species and humans (Mettifogo et al., 2014).

  3. Salmonella in the lairage of pig slaughterhouses

    NARCIS (Netherlands)

    Swanenburg, M.; Urlings, H.A.P.; Keuzenkamp, D.A.; Snijders, J.M.A.

    2001-01-01

    The purpose of this study was to determine if lairages of pig slaughterhouses can act as a source of contamination of slaughtered pigs with Salmonella. The prevalence and variety of serotypes of Salmonella in the lairages of two pig slaughterhouses were determined, and the efficacy of the usual

  4. Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi.

    Science.gov (United States)

    de Guillen, Karine; Ortiz-Vallejo, Diana; Gracy, Jérome; Fournier, Elisabeth; Kroj, Thomas; Padilla, André

    2015-10-01

    Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.

  5. Genome-scale identification of Legionella pneumophila effectors using a machine learning approach.

    Directory of Open Access Journals (Sweden)

    David Burstein

    2009-07-01

    Full Text Available A large number of highly pathogenic bacteria utilize secretion systems to translocate effector proteins into host cells. Using these effectors, the bacteria subvert host cell processes during infection. Legionella pneumophila translocates effectors via the Icm/Dot type-IV secretion system and to date, approximately 100 effectors have been identified by various experimental and computational techniques. Effector identification is a critical first step towards the understanding of the pathogenesis system in L. pneumophila as well as in other bacterial pathogens. Here, we formulate the task of effector identification as a classification problem: each L. pneumophila open reading frame (ORF was classified as either effector or not. We computationally defined a set of features that best distinguish effectors from non-effectors. These features cover a wide range of characteristics including taxonomical dispersion, regulatory data, genomic organization, similarity to eukaryotic proteomes and more. Machine learning algorithms utilizing these features were then applied to classify all the ORFs within the L. pneumophila genome. Using this approach we were able to predict and experimentally validate 40 new effectors, reaching a success rate of above 90%. Increasing the number of validated effectors to around 140, we were able to gain novel insights into their characteristics. Effectors were found to have low G+C content, supporting the hypothesis that a large number of effectors originate via horizontal gene transfer, probably from their protozoan host. In addition, effectors were found to cluster in specific genomic regions. Finally, we were able to provide a novel description of the C-terminal translocation signal required for effector translocation by the Icm/Dot secretion system. To conclude, we have discovered 40 novel L. pneumophila effectors, predicted over a hundred additional highly probable effectors, and shown the applicability of machine

  6. 9 CFR 113.122 - Salmonella Choleraesuis Bacterin.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Salmonella Choleraesuis Bacterin. 113... REQUIREMENTS Inactivated Bacterial Products § 113.122 Salmonella Choleraesuis Bacterin. Salmonella Choleraesuis Bacterin shall be prepared from a culture of Salmonella choleraesuis which has been inactivated and is...

  7. 9 CFR 113.123 - Salmonella Dublin Bacterin.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Salmonella Dublin Bacterin. 113.123... Inactivated Bacterial Products § 113.123 Salmonella Dublin Bacterin. Salmonella Dublin Bacterin shall be prepared from a culture of Salmonella dublin which has been inactivated and is nontoxic. Each serial of...

  8. 9 CFR 113.120 - Salmonella Typhimurium Bacterin.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Salmonella Typhimurium Bacterin. 113... REQUIREMENTS Inactivated Bacterial Products § 113.120 Salmonella Typhimurium Bacterin. Salmonella Typhimurium Bacterin shall be prepared from a culture of Salmonella typhimurium which has been inactivated and is...

  9. Report on the fifth workshop organised by CRL-Salmonella

    NARCIS (Netherlands)

    Raes M; Henken AM; MGB

    2001-01-01

    At 18 and 19 September 2000 a workshop was organised by the Community Reference Laboratory for Salmonella (CRL-Salmonella) in Bilthoven, the Netherlands. All National Reference Laboratories for Salmonella (NRLs-Salmonella) of the EU Member States and Norway participated (in total 38 participants).

  10. The Shigella flexneri OspB effector: an early immunomodulator.

    Science.gov (United States)

    Ambrosi, Cecilia; Pompili, Monica; Scribano, Daniela; Limongi, Dolores; Petrucca, Andrea; Cannavacciuolo, Sonia; Schippa, Serena; Zagaglia, Carlo; Grossi, Milena; Nicoletti, Mauro

    2015-01-01

    Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Interactions of Salmonella with animals and plants.

    Science.gov (United States)

    Wiedemann, Agnès; Virlogeux-Payant, Isabelle; Chaussé, Anne-Marie; Schikora, Adam; Velge, Philippe

    2014-01-01

    Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.

  12. Interactions of Salmonella with animals and plants

    Science.gov (United States)

    Wiedemann, Agnès; Virlogeux-Payant, Isabelle; Chaussé, Anne-Marie; Schikora, Adam; Velge, Philippe

    2015-01-01

    Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections. PMID:25653644

  13. Pathogenesis of Salmonella-induced enteritis

    Directory of Open Access Journals (Sweden)

    R.L. Santos

    2003-01-01

    Full Text Available Infections with Salmonella serotypes are a major cause of food-borne diseases worldwide. Animal models other than the mouse have been employed for the study of nontyphoidal Salmonella infections because the murine model is not suitable for the study of Salmonella-induced diarrhea. The microbe has developed mechanisms to exploit the host cell machinery to its own purpose. Bacterial proteins delivered directly into the host cell cytosol cause cytoskeletal changes and interfere with host cell signaling pathways, which ultimately enhance disease manifestation. Recently, marked advances have been made in our understanding of the molecular interactions between Salmonella serotypes and their hosts. Here, we discuss the molecular basis of the pathogenesis of Salmonella-induced enteritis.

  14. Salmonella investigation in an Ontario feed mill.

    Science.gov (United States)

    Hacking, W C; Mitchell, W R; Carlson, H C

    1978-01-01

    The frequency of Salmonella contamination of feedstuffs and finished broiler chicken feeds at an Ontario feed mill were investigated over a four-month period. Samples of feed ingredients and finished pelleted feeds were collected at various points during manufacture and cultured in trypticase soy broth prior to selective enrichment for isolation of Salmonella. Salmonella contamination was found in 4.3% of 93 finished pelleted broiler feeds examined. The contamination appeared to result primarily from the incorporation of contaminated animal protein ingredients into the feed. Meatmeal and the broiler, premix, which contained meatmeal as a filler, were most frequently contaminated followed by feather meal. Pelleting failed to eliminate the Salmonellae from the feeds. The methods used failed to detect Salmonella in the environment of the feed mill or its delivery trucks. Recommendations for control are made. PMID:369663

  15. Survival of Salmonella east bourne and Salmonella typhimurium in chocolate.

    Science.gov (United States)

    Tamminga, S K; Beumer, R R; Kampelmacher, E H; van Leusden, F M

    1976-02-01

    Experiments were carried out to assess the reduction rate of two salmonella strains (S. eastbourne and S. typhimurium) in chocolate bars. After artificial contamination of chocolate, after 'conching', with about 10(6) S. eastbourne/g. this organism was still recovered after 9 months storage. The strain of S. typhimurium was less resistant. Both serotypes died off more rapidly in bitter chocolate than in milk chocolate. After contamination with a smaller dose (about 10(3)/g.) with these two serotypes, similar differences were observed.

  16. New technologies in using recombinant attenuated Salmonella vaccine vectors.

    Science.gov (United States)

    Curtiss, Roy; Xin, Wei; Li, Yuhua; Kong, Wei; Wanda, Soo-Young; Gunn, Bronwyn; Wang, Shifeng

    2010-01-01

    Recombinant attenuated Salmonella vaccines (RASVs) have been constructed to deliver antigens from other pathogens to induce immunity to those pathogens in vaccinated hosts. The attenuation means should ensure that the vaccine survives following vaccination to colonize lymphoid tissues without causing disease symptoms. This necessitates that attenuation and synthesis of recombinant gene encoded protective antigens do not diminish the ability of orally administered vaccines to survive stresses encountered in the gastrointestinal tract. We have eliminated these problems by using RASVs with regulated delayed expression of attenuation and regulated delayed synthesis of recombinant antigens. These changes result in RASVs that colonize effector lymphoid tissues efficiently to serve as "factories" to synthesize protective antigens that induce higher protective immune responses than achieved when using previously constructed RASVs. We have devised a biological containment system with regulated delayed lysis to preclude RASV persistence in vivo and survival if excreted. Attributes were added to reduce the mild diarrhea sometimes experienced with oral live RASVs and to ensure complete safety in newborns. These collective technologies have been used to develop a novel, low-cost, RASV-synthesizing, multiple-protective Streptococcus pneumoniae antigens that will be safe for newborns/infants and will induce protective immunity to diverse S. pneumoniae serotypes after oral immunization.

  17. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice

    Directory of Open Access Journals (Sweden)

    Perdigón Gabriela

    2011-08-01

    Full Text Available Abstract Background Diarrheal infections caused by Salmonella, are one of the major causes of childhood morbidity and mortality in developing countries. Salmonella causes various diseases that range from mild gastroenteritis to enteric fever, depending on the serovar involved, infective dose, species, age and immune status of the host. Probiotics are proposed as an attractive alternative possibility in the prevention against this pathogen infection. Previously we demonstrated that continuous Lactobacillus casei CRL 431 administration to BALB/c mice before and after challenge with Salmonella enterica serovar Typhimurium (S. Typhimurium decreased the severity of Salmonella infection. The aim of the present work was to deep into the knowledge about how this probiotic bacterium exerts its effect, by assessing its impact on the expression and secretion of pro-inflammatory (TNFα, IFNγ and anti-inflammatory (IL-10 cytokines in the inductor and effector sites of the gut immune response, and analyzing toll-like receptor (TLR2, TLR4, TLR5 and TLR9 expressions in both healthy and infected mice. Results Probiotic administration to healthy mice increased the expression of TLR2, TLR4 and TLR9 and improved the production and secretion of TNFα, IFNγ and IL-10 in the inductor sites of the gut immune response (Peyer's patches. Post infection, the continuous probiotic administration, before and after Salmonella challenge, protected the host by modulating the inflammatory response, mainly in the immune effector site of the gut, decreasing TNFα and increasing IFNγ, IL-6 and IL-10 production in the lamina propria of the small intestine. Conclusions The oral administration of L. casei CRL 431 induces variations in the cytokine profile and in the TLRs expression previous and also after the challenge with S. Typhimurium. These changes show some of the immune mechanisms implicated in the protective effect of this probiotic strain against S. Typhimurium, providing

  18. The Salmonella enterica PhoP directly activates the horizontally acquired SPI-2 gene sseL and is functionally different from a S. bongori ortholog.

    Directory of Open Access Journals (Sweden)

    Ohad Gal-Mor

    Full Text Available To establish a successful infection within the host, a pathogen must closely regulate multiple virulence traits to ensure their accurate temporal and spatial expression. As a highly adapted intracellular pathogen, Salmonella enterica has acquired during its evolution various virulence genes via numerous lateral transfer events, including the acquisition of the Salmonella Pathogenicity Island 2 (SPI-2 and its associated effectors. Beneficial use of horizontally acquired genes requires that their expression is effectively coordinated with the already existing virulence programs and the regulatory set-up in the bacterium. As an example for such a mechanism, we show here that the ancestral PhoPQ system of Salmonella enterica is able to regulate directly the SPI-2 effector gene sseL (encoding a secreted deubiquitinase in an SsrB-independent manner and that PhoP plays a part in a feed-forward regulatory loop, which fine-tunes the cellular level of SseL. Additionally, we demonstrate the presence of conserved cis regulatory elements in the promoter region of sseL and show direct binding of purified PhoP to this region. Interestingly, in contrast to the S. enterica PhoP, an ortholog regulator from a S. bongori SARC 12 strain was found to be impaired in promoting transcription of sseL and other genes from the PhoP regulon. These findings have led to the identification of a previously uncharacterized residue in the DNA-binding domain of PhoP, which is required for the transcriptional activation of PhoP regulated genes in Salmonella spp. Collectively our data demonstrate an interesting interface between the acquired SsrB regulon and the ancestral PhoPQ regulatory circuit, provide novel insights into the function of PhoP, and highlight a mechanism of regulatory integration of horizontally acquired genes into the virulence network of Salmonella enterica.

  19. Analysis of Salmonella enterica serotype paratyphi A gene expression in the blood of bacteremic patients in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Alaullah Sheikh

    2010-12-01

    Full Text Available Salmonella enterica serotype Paratyphi A is a human-restricted cause of paratyphoid fever, accounting for up to a fifth of all cases of enteric fever in Asia.In this work, we applied an RNA analysis method, Selective Capture of Transcribed Sequences (SCOTS, and cDNA hybridization-microarray technology to identify S. Paratyphi A transcripts expressed by bacteria in the blood of three patients in Bangladesh. In total, we detected 1,798 S. Paratyphi A mRNAs expressed in the blood of infected humans (43.9% of the ORFeome. Of these, we identified 868 in at least two patients, and 315 in all three patients. S. Paratyphi A transcripts identified in at least two patients encode proteins involved in energy metabolism, nutrient and iron acquisition, vitamin biosynthesis, stress responses, oxidative stress resistance, and pathogenesis. A number of detected transcripts are expressed from PhoP and SlyA-regulated genes associated with intra-macrophage survival, genes contained within Salmonella Pathogenicity Islands (SPIs 1-4, 6, 10, 13, and 16, as well as RpoS-regulated genes. The largest category of identified transcripts is that of encoding proteins with unknown function. When comparing levels of bacterial mRNA using in vivo samples collected from infected patients to samples from in vitro grown organisms, we found significant differences for 347, 391, and 456 S. Paratyphi A transcripts in each of three individual patients (approximately 9.7% of the ORFeome. Of these, expression of 194 transcripts (4.7% of ORFs was concordant in two or more patients, and 41 in all patients. Genes encoding these transcripts are contained within SPI-1, 3, 6 and 10, PhoP-regulated genes, involved in energy metabolism, nutrient acquisition, drug resistance, or uncharacterized genes. Using quantitative RT-PCR, we confirmed increased gene expression in vivo for a subset of these genes.To our knowledge, we describe the first microarray-based transcriptional analysis of a pathogen

  20. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    NARCIS (Netherlands)

    van der Does, H.C.; Fokkens, L.; Yang, A.; Schmidt, S.M.; Langereis, L.; Lukasiewicz, J.M.; Hughes, T.R.; Rep, M.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called 'effectors'. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often

  1. Transient Loss of Protection Afforded by a Live Attenuated Non-typhoidal Salmonella Vaccine in Mice Co-infected with Malaria.

    Directory of Open Access Journals (Sweden)

    Jason P Mooney

    Full Text Available In immunocompetent individuals, non-typhoidal Salmonella serovars (NTS are associated with gastroenteritis, however, there is currently an epidemic of NTS bloodstream infections in sub-Saharan Africa. Plasmodium falciparum malaria is an important risk factor for invasive NTS bloodstream in African children. Here we investigated whether a live, attenuated Salmonella vaccine could be protective in mice, in the setting of concurrent malaria. Surprisingly, mice acutely infected with the nonlethal malaria parasite Plasmodium yoelii 17XNL exhibited a profound loss of protective immunity to NTS, but vaccine-mediated protection was restored after resolution of malaria. Absence of protective immunity during acute malaria correlated with maintenance of antibodies to NTS, but a marked reduction in effector capability of Salmonella-specific CD4 and CD8 T cells. Further, increased expression of the inhibitory molecule PD1 was identified on memory CD4 T cells induced by vaccination. Blockade of IL-10 restored protection against S. Typhimurium, without restoring CD4 T cell effector function. Simultaneous blockade of CTLA-4, LAG3, and PDL1 restored IFN-γ production by vaccine-induced memory CD4 T cells but was not sufficient to restore protection. Together, these data demonstrate that malaria parasite infection induces a temporary loss of an established adaptive immune response via multiple mechanisms, and suggest that in the setting of acute malaria, protection against NTS mediated by live vaccines may be interrupted.

  2. SipA Activation of Caspase-3 Is a Decisive Mediator of Host Cell Survival at Early Stages of Salmonella enterica Serovar Typhimurium Infection.

    Science.gov (United States)

    McIntosh, Anne; Meikle, Lynsey M; Ormsby, Michael J; McCormick, Beth A; Christie, John M; Brewer, James M; Roberts, Mark; Wall, Daniel M

    2017-09-01

    Salmonella invasion protein A (SipA) is a dual-function effector protein that plays roles in both actin polymerization and caspase-3 activation in intestinal epithelial cells. To date its function in other cell types has remained largely unknown despite its expression in multiple cell types and its extracellular secretion during infection. Here we show that in macrophages SipA induces increased caspase-3 activation early in infection. This activation required a threshold level of SipA linked to multiplicity of infection and may be a limiting factor controlling bacterial numbers in infected macrophages. In polymorphonuclear leukocytes, SipA or other Salmonella pathogenicity island 1 effectors had no effect on induction of caspase-3 activation either alone or in the presence of whole bacteria. Tagging of SipA with the small fluorescent phiLOV tag, which can pass through the type three secretion system, allowed visualization and quantification of caspase-3 activation by SipA-phiLOV in macrophages. Additionally, SipA-phiLOV activation of caspase-3 could be tracked in the intestine through multiphoton laser scanning microscopy in an ex vivo intestinal model. This allowed visualization of areas where the intestinal epithelium had been compromised and demonstrated the potential use of this fluorescent tag for in vivo tracking of individual effectors. Copyright © 2017 McIntosh et al.

  3. Molecular methods for serovar determination of Salmonella.

    Science.gov (United States)

    Shi, Chunlei; Singh, Pranjal; Ranieri, Matthew Louis; Wiedmann, Martin; Moreno Switt, Andrea Isabel

    2015-01-01

    Salmonella is a diverse foodborne pathogen, which has more than 2600 recognized serovars. Classification of Salmonella isolates into serovars is essential for surveillance and epidemiological investigations; however, determination of Salmonella serovars, by traditional serotyping, has some important limitations (e.g. labor intensive, time consuming). To overcome these limitations, multiple methods have been investigated to develop molecular serotyping schemes. Currently, molecular methods to predict Salmonella serovars include (i) molecular subtyping methods (e.g. PFGE, MLST), (ii) classification using serovar-specific genomic markers and (iii) direct methods, which identify genes encoding antigens or biosynthesis of antigens used for serotyping. Here, we reviewed reported methodologies for Salmonella molecular serotyping and determined the "serovar-prediction accuracy", as the percentage of isolates for which the serovar was correctly classified by a given method. Serovar-prediction accuracy ranged from 0 to 100%, 51 to 100% and 33 to 100% for molecular subtyping, serovar-specific genomic markers and direct methods, respectively. Major limitations of available schemes are errors in predicting closely related serovars (e.g. Typhimurium and 4,5,12:i:-), and polyphyletic serovars (e.g. Newport, Saintpaul). The high diversity of Salmonella serovars represents a considerable challenge for molecular serotyping approaches. With the recent improvement in sequencing technologies, full genome sequencing could be developed into a promising molecular approach to serotype Salmonella.

  4. Control of Salmonella enteritidis in Sweden.

    Science.gov (United States)

    Wierup, M; Engström, B; Engvall, A; Wahlström, H

    1995-05-01

    The Swedish control of Salmonella, with special reference to Salmonella enteritidis, in poultry is described. The control is directed at all serotypes of Salmonella and imported grandparent chickens are controlled, which is considered to be the main reason why Sweden so far is not found to be involved in the worldwide spread of different phagetypes of S. enteritidis. However, this spread has initiated a more stringent control of Salmonella in layers as earlier existed in broilers. Since 1990, 90% of the layer flocks are voluntarily tested for Salmonella before slaughter by bacteriological examination of pooled faecal samples. If S. enteritidis is isolated the flock is destroyed. This test, and in addition two similar tests during the production are mandatory as of January 1st, 1994. The voluntary Salmonella control programme has also been extended to all of the layer parents and hatcheries since 1991. Only heat-treated feed is given to all layer chickens during the rearing period and its use is becoming gradually more common also during the production period. Since 1987, four layer flocks have been found to be infected by S. enteritidis phagetype 4 and one flock with phagetype 6. During 1970-1984, 90% of all flocks of broilers were voluntarily tested bacteriologically for Salmonella before slaughter, and since 1984 such a control is mandatory to all flocks. As a result of this and other controls, S. enteritidis has not been isolated from broilers since 1972. Based on a governmental regulation from 1961, introduced as a result of a large Salmonella epidemic in 1953, Sweden runs an active, official control of Salmonella (Wierup et al., 1992).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Occurrence of Salmonella sp in laying hens

    Directory of Open Access Journals (Sweden)

    Gama NMSQ

    2003-01-01

    Full Text Available This study was carried out to investigate the presence of Salmonella sp in flocks of white laying hens. In different farms, the transport boxes of twelve flocks were inspected at arrival for the presence of Salmonella. Four positive (A, B, L and M and one negative (I flocks were monitored at each four weeks using bacteriological examination of cecal fresh feces up to 52 weeks. Birds were also evaluated at 52 weeks, when 500 eggs were taken randomly, and at 76 weeks, after forced molt. Salmonella enterica serovar Enteritidis and S. enterica rough strain were isolated from the transport boxes of the four positive flocks (flocks A, B, L and M. Salmonella sp was not isolated from the transport boxes or from the feces after 76 weeks-old in flock I. Salmonella sp was isolated in the 1st, 11th, 34th, 42nd and 76th weeks from flock A; in the 1st, 4th, 11th and 76th weeks from flock B; in the first week and in the 17th to 52nd weeks from flock L; and in the 1st and 76th weeks from flock M. S. Enteritidis, S. enterica rough strain and Salmonella enterica serovar Infantis were isolated from the four positive flocks. Besides, Salmonella enterica serovar Javiana was isolated from flocks B and L, and Salmonella enterica serovar Mbandaka was isolated from flock L. Eggs produced by flock A and by flock L were contaminated with S. Enteritidis and S. enterica rough strain. According to these results, Salmonella-infected flocks may produce contaminated eggs.

  6. Evidence for acquisition of virulence effectors in pathogenic chytrids

    Directory of Open Access Journals (Sweden)

    Summers Kyle

    2011-07-01

    Full Text Available Abstract Background The decline in amphibian populations across the world is frequently linked to the infection of the chytrid fungus Batrachochytrium dendrobatidis (Bd. This is particularly perplexing because Bd was only recently discovered in 1999 and no chytrid fungus had previously been identified as a vertebrate pathogen. Results In this study, we show that two large families of known virulence effector genes, crinkler (CRN proteins and serine peptidases, were acquired by Bd from oomycete pathogens and bacteria, respectively. These two families have been duplicated after their acquisition by Bd. Additional selection analyses indicate that both families evolved under strong positive selection, suggesting that they are involved in the adaptation of Bd to its hosts. Conclusions We propose that the acquisition of virulence effectors, in combination with habitat disruption and climate change, may have driven the Bd epidemics and the decline in amphibian populations. This finding provides a starting point for biochemical investigations of chytridiomycosis.

  7. Identification of Novel Type III Effectors Using Latent Dirichlet Allocation

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2012-01-01

    Full Text Available Among the six secretion systems identified in Gram-negative bacteria, the type III secretion system (T3SS plays important roles in the disease development of pathogens. T3SS has attracted a great deal of research interests. However, the secretion mechanism has not been fully understood yet. Especially, the identification of effectors (secreted proteins is an important and challenging task. This paper adopts machine learning methods to identify type III secreted effectors (T3SEs. We extract features from amino acid sequences and conduct feature reduction based on latent semantic information by using latent Dirichlet allocation model. The experimental results on Pseudomonas syringae data set demonstrate the good performance of the new methods.

  8. Survival of Salmonella Newport in oysters.

    Science.gov (United States)

    Morrison, Christopher M; Armstrong, Alexandra E; Evans, Sanford; Mild, Rita M; Langdon, Christopher J; Joens, Lynn A

    2011-08-02

    Salmonella enterica is the leading cause of laboratory-confirmed foodborne illness in the United States and raw shellfish consumption is a commonly implicated source of gastrointestinal pathogens. A 2005 epidemiological study done in our laboratory by Brands et al., showed that oysters in the United States are contaminated with Salmonella, and in particular, a specific strain of the Newport serovar. This work sought to further investigate the host-microbe interactions between Salmonella Newport and oysters. A procedure was developed to reliably and repeatedly expose oysters to enteric bacteria and quantify the subsequent levels of bacterial survival. The results show that 10 days after an exposure to Salmonella Newport, an average concentration of 3.7 × 10(3)CFU/g remains within the oyster meat, and even after 60 days there still can be more than 10(2)CFU/g remaining. However, the strain of Newport that predominated in the market survey done by Brands et al. does not survive within oysters or the estuarine environment better than any other strains of Salmonella we tested. Using this same methodology, we compared Salmonella Newport's ability to survive within oysters to a non-pathogenic strain of E. coli and found that after 10 days the concentration of Salmonella was 200-times greater than that of E. coli. We also compared those same strains of Salmonella and E. coli in a depuration process to determine if a constant 120 L/h flux of clean seawater could significantly reduce the concentration of bacteria within oysters and found that after 3 days the oysters retained over 10(4)CFU/g of Salmonella while the oysters exposed to the non-pathogenic strain of E. coli contained 100-times less bacteria. Overall, the results of this study demonstrate that any of the clinically relevant serovars of Salmonella can survive within oysters for significant periods of time after just one exposure event. Based on the drastic differences in survivability between Salmonella and a non

  9. Pleural Empyema due to Group D Salmonella

    Directory of Open Access Journals (Sweden)

    Jennifer C. Kam

    2012-01-01

    Full Text Available Non-typhi Salmonella normally presents as a bacteremia, enterocolitis, and endovascular infection but rarely manifests as pleuropulmonary disease. We present a case of a 66-year-old female with underlying pulmonary pathology, secondary to an extensive smoking history, who presented with a left-sided pleural effusion. The causative agent was identified as being group D Salmonella. Decortication of the lung was performed and the patient was discharged on antibiotics with resolution of her symptoms. This case helps to support the inclusion of Salmonella group D as a possible etiological agent of infection in the differential causes of exudative pleural effusions.

  10. Trauma Associated Acute Navicular Salmonella Osteomyelitis

    Directory of Open Access Journals (Sweden)

    Soner Sertan Kara

    2014-12-01

    Full Text Available Akut osteomyelit tani ve tedavide gecikme olmasi durumunda yol acabilecegi olasi sekeller ve mortalite nedeniyle tahrip edici olabilecek bir hastaliktir. Navikula nadiren tutulur ve Salmonella turleri de saglikli cocuklarda akut osteomyelite neden olabilir. Burada 4 yasinda, daha once bilinen bir immun yetmezligi, orak hucreli anemisi, hic bir gastrointestinal yakinma ya da supheli besin tuketim oykusu olmayan, ancak ayak bilegi burkulma oykusu olan ve akut navikuler Salmonella osteomiyeliti tanisi konulan bir erkek cocuk olgusu sunulmustur. Hasta cerrahi gecirmeden ve komplikasyon gelismeden iyilesmistir. Travma, altta yatan hastaligi olmayan, saglikli cocuklarda Salmonella osteomyelitini kolaylastirabilmektedir. Uygun tani ve tedavi, akut osteomiyelitin komplikasyonlarini ve gerekebilecek bir cerrahi girisimi engelleyebilir.

  11. EU Interlaboratory comparison study VII on bacteriological detection of Salmonella spp

    NARCIS (Netherlands)

    Korver H; Nagelkerke NJD; van de Giessen AW; Mooijman KA; MGB; IMAR

    2005-01-01

    In 2003 werd door het Communautair Referentie Laboratorium voor Salmonella (CRL-Salmonella, Bilthoven, the Netherlands) het zevende bacteriologische ringonderzoek georganiseerd. Nationale Referentie Laboratoria voor Salmonella (NRL's-Salmonella) van de EU lidstaten (16), van NRL Noorwegen en

  12. Regulation of mucosal immune responses in effector sites.

    Science.gov (United States)

    Bailey, M; Plunkett, F J; Rothkötter, H J; Vega-Lopez, M A; Haverson, K; Stokes, C R

    2001-11-01

    In human disease and rodent models, immune responses in the intestinal mucosa can be damaging. Damage is characterised by villus atrophy, crypt hyperplasia and reduced ability to digest and absorb nutrients. In normal individuals active responses to harmless environmental antigens associated with food and commensal bacteria are controlled by the development of immunological tolerance. Similar pathological changes occur in piglets weaned early from their mothers. Active immune responses to food antigens are observed in these piglets, and we and others have hypothesised that the changes occur as a result of transient allergic immune responses to novel food or bacteria antigens. The normal mechanism for producing tolerance to food antigens may operate at induction (Peyer's patches and mesenteric lymph nodes) or at the effector stage (intestinal lamina propria). In our piglet studies immunological tolerance occurs despite the initial active response. Together with evidence from rodents, this observation suggests that active responses are likely to be controlled at the effector stage, within the intestinal lamina propria. Support for this mechanism comes from the observation that human and pig intestinal T-cells are susceptible to apoptosis, and that this process is accelerated by antigen. We suggest that the role of the normal mature intestinal lamina propria is a balance between immunological effector and regulatory function. In neonatal animals this balance develops slowly and is dependant on contact with antigen. Immunological insults such as weaning may tip the balance of the developing mucosal immune system into excessive effector or regulatory function resulting in transient or chronic allergy or disease susceptibility.

  13. Assembly of Designer TAL Effectors by Golden Gate Cloning

    OpenAIRE

    Weber, Ernst; Gruetzner, Ramona; Werner, Stefan; Engler, Carola; Marillonnet, Sylvestre

    2011-01-01

    Generation of customized DNA binding domains targeting unique sequences in complex genomes is crucial for many biotechnological applications. The recently described DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas consists of a series of repeats arranged in tandem, each repeat binding a nucleotide of the target sequence. We present here a strategy for engineering of TALE proteins with novel DNA binding specificities based on the 17.5 repeat-containing ...

  14. Modulation of hemoglobin dynamics by an allosteric effector.

    Science.gov (United States)

    Lal, Jyotsana; Maccarini, Marco; Fouquet, Peter; Ho, Nancy T; Ho, Chien; Makowski, Lee

    2017-03-01

    Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure-function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy-Hb and HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo measurements accompanied by wide-angle X-ray scattering to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large-scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. These observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors. Published by Wiley-Blackwell. © 2016 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  15. The effector AvrRxo1 phosphorylates NAD in planta.

    Directory of Open Access Journals (Sweden)

    Teja Shidore

    2017-06-01

    Full Text Available Gram-negative bacterial pathogens of plants and animals employ type III secreted effectors to suppress innate immunity. Most characterized effectors work through modification of host proteins or transcriptional regulators, although a few are known to modify small molecule targets. The Xanthomonas type III secreted avirulence factor AvrRxo1 is a structural homolog of the zeta toxin family of sugar-nucleotide kinases that suppresses bacterial growth. AvrRxo1 was recently reported to phosphorylate the central metabolite and signaling molecule NAD in vitro, suggesting that the effector might enhance bacterial virulence on plants through manipulation of primary metabolic pathways. In this study, we determine that AvrRxo1 phosphorylates NAD in planta, and that its kinase catalytic sites are necessary for its toxic and resistance-triggering phenotypes. A global metabolomics approach was used to independently identify 3'-NADP as the sole detectable product of AvrRxo1 expression in yeast and bacteria, and NAD kinase activity was confirmed in vitro. 3'-NADP accumulated upon transient expression of AvrRxo1 in Nicotiana benthamiana and in rice leaves infected with avrRxo1-expressing strains of X. oryzae. Mutation of the catalytic aspartic acid residue D193 abolished AvrRxo1 kinase activity and several phenotypes of AvrRxo1, including toxicity in yeast, bacteria, and plants, suppression of the flg22-triggered ROS burst, and ability to trigger an R gene-mediated hypersensitive response. A mutation in the Walker A ATP-binding motif abolished the toxicity of AvrRxo1, but did not abolish the 3'-NADP production, virulence enhancement, ROS suppression, or HR-triggering phenotypes of AvrRxo1. These results demonstrate that a type III effector targets the central metabolite and redox carrier NAD in planta, and that this catalytic activity is required for toxicity and suppression of the ROS burst.

  16. Evaluation of a CHROMagar Salmonella Medium for the Isolation of Salmonella Species

    Directory of Open Access Journals (Sweden)

    yesim cekin

    2014-03-01

    Full Text Available Aim: Salmonella infections are the leading cause of food-borne infections and can cause gastroenteritis outbreaks worldwide. Salmonella species is defined as inability to lactose fermentation, using citrate as a carbon source, using lysine as nitrate source and forming Hydrogen sulfide (H2S in TSI agar. However, confirmation of false positive results is time consuming and lead to increased costs. The aim of this study is to evaluate the performance of CHROMagar Salmonella (CHROMagar Microbiology, France which is developed for isolation and detection of Salmonella species. Material and Method: For this purpose, among a total of 148 isolates which were isolated from various clinical specimens and stocked at the Central Laboratory of Akdeniz University Hospital, 65 were Salmonella spp., 10 were Pseudomonas aeruginosa, 10 were E. coli, 10 were Acinetobacter baumannii, 10 were Klebsiella pneumoniae, 18 were Morganella morganii, 11 were Citrobacter spp., 5 were Providencia spp., 4 were Aeromonas spp., 5 were Proteus spp. were included in this study. All of the 65 Salmonella spp. isolates apperared with mauve colonies at the CHROMagar Salmonella. Results: E. coli and Klebsiella pnemoniae species were seen as blue, Providencia species were seen as pale-blue; Morganella morganii species were seen as pale-pink, mauve; and Pseudomonas aeruginosa species were seen as pale. Acinebacter baumannii and Aeromonas spp. species were also seen as mauve colonies. Dicussion: CHROMagar Salmonella medium can detect Salmonella species with %100 sensitivity, however there is a need to biochemical or serological confirmation.

  17. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin.

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2017-01-01

    Full Text Available Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.

  18. PREVALENCE OF SALMONELLA IN CAPTIVE REPTILES FROM CROATIA.

    Science.gov (United States)

    Lukac, Maja; Pedersen, Karl; Prukner-Radovcic, Estella

    2015-06-01

    Salmonellosis transmitted by pet reptiles is an increasing public health issue worldwide. The aim of this study was to investigate the prevalence of Salmonella strains from captive reptiles in Croatia. From November 2009 to November 2011 a total of 292 skin, pharyngeal, cloacal, and fecal samples from 200 apparently healthy reptiles were tested for Salmonella excretions by bacteriologic culture and serotyping. These 200 individual reptiles included 31 lizards, 79 chelonians, and 90 snakes belonging to private owners or housed at the Zagreb Zoo, Croatia. Salmonella was detected in a total of 13% of the animals, among them 48.4% lizards, 8.9% snakes, and 3.8% turtles. Representatives of five of the six Salmonella enterica subspecies were identified with the following proportions in the total number of isolates: Salmonella enterica enterica 34.6%, Salmonella enterica houtenae 23.1%, Salmonella enterica arizonae 23.1%, Salmonella enterica diarizonae 15.4%, and Salmonella enterica salamae 3.8%. The 14 different serovars isolated included several rarely occurring serovars such as Salmonella Apapa, Salmonella Halle, Salmonella Kisarawe, and Salmonella Potengi. These findings confirm that the prevalence of Salmonella is considerable in captive reptiles in Croatia, indicating that these animals may harbor serovars not commonly seen in veterinary or human microbiologic practice. This should be addressed in the prevention and diagnostics of human reptile-transmitted infections.

  19. Division of the Salmonella-Containing Vacuole and Depletion of Acidic Lysosomes in Salmonella-Infected Host Cells Are Novel Strategies of Salmonella enterica To Avoid Lysosomes▿

    OpenAIRE

    Eswarappa, Sandeepa M.; Negi, Vidya Devi; Chakraborty, Sangeeta; Chandrasekhar Sagar, B. K.; Chakravortty, Dipshikha

    2009-01-01

    Salmonella has evolved several strategies to counteract intracellular microbicidal agents like reactive oxygen and nitrogen species. However, it is not yet clear how Salmonella escapes lysosomal degradation. Some studies have demonstrated that Salmonella can inhibit phagolysosomal fusion, whereas other reports have shown that the Salmonella-containing vacuole (SCV) fuses/interacts with lysosomes. Here, we have addressed this issue from a different perspective by investigating if the infected ...

  20. Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating.

    Science.gov (United States)

    Song, Won-Jae; Kang, Dong-Hyun

    2016-02-01

    This study evaluated the efficacy of a 915 MHz microwave with 3 different levels to inactivate 3 serovars of Salmonella in peanut butter. Peanut butter inoculated with Salmonella enterica serovar Senftenberg, S. enterica serovar Typhimurium and S. enterica serovar Tennessee were treated with a 915 MHz microwave with 2, 4 and 6 kW and acid and peroxide values and color changes were determined after 5 min of microwave heating. Salmonella populations were reduced with increasing treatment time and treatment power. Six kW 915 MHz microwave treatment for 5 min reduced these three Salmonella serovars by 3.24-4.26 log CFU/g. Four and two kW 915 MHz microwave processing for 5 min reduced these Salmonella serovars by 1.14-1.48 and 0.15-0.42 log CFU/g, respectively. Microwave treatment did not affect acid, peroxide, or color values of peanut butter. These results demonstrate that 915 MHz microwave processing can be used as a control method for reducing Salmonella in peanut butter without producing quality deterioration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Implications of Spatiotemporal Regulation of Shigella flexneri Type Three Secretion Activity on Effector Functions: Think Globally, Act Locally

    Science.gov (United States)

    Campbell-Valois, F.-X.; Pontier, Stéphanie M.

    2016-01-01

    Shigella spp. are Gram-negative bacterial pathogens that infect human colonic epithelia and cause bacterial dysentery. These bacteria express multiple copies of a syringe-like protein complex, the Type Three Secretion apparatus (T3SA), which is instrumental in the etiology of the disease. The T3SA triggers the plasma membrane (PM) engulfment of the bacteria by host cells during the initial entry process. It then enables bacteria to escape the resulting phagocytic-like vacuole. Freed bacteria form actin comets to move in the cytoplasm, which provokes bacterial collision with the inner leaflet of the PM. This phenomenon culminates in T3SA-dependent secondary uptake and vacuolar rupture in neighboring cells in a process akin to what is observed during entry and named cell-to-cell spread. The activity of the T3SA of Shigella flexneri was recently demonstrated to display an on/off regulation during the infection. While the T3SA is active when bacteria are in contact with PM-derived compartments, it switches to an inactive state when bacteria are released within the cytosol. These observations indicate that effector proteins transiting through the T3SA are therefore translocated in a highly time and space constrained fashion, likely impacting on their cellular distribution. Herein, we present what is currently known about the composition, the assembly and the regulation of the T3SA activity and discuss the consequences of the on/off regulation of T3SA on Shigella effector properties and functions during the infection. Specific examples that will be developed include the role of effectors IcsB and VirA in the escape from LC3/ATG8-positive vacuoles formed during cell-to-cell spread and of IpaJ protease activity against N-miristoylated proteins. The conservation of a similar regulation of T3SA activity in other pathogens such as Salmonella or Enteropathogenic Escherichia coli will also be briefly discussed. PMID:27014638

  2. Implications of Spatiotemporal Regulation of Shigella flexneri Type three Secretion Activity on Effector Functions: think globally, act locally

    Directory of Open Access Journals (Sweden)

    F-X eCampbell-Valois

    2016-03-01

    Full Text Available Shigella spp. are Gram-negative bacterial pathogens that infect human colonic epithelia and cause bacterial dysentery. These bacteria express multiple copies of a syringe-like protein complex, the Type Three Secretion apparatus (T3SA, which is instrumental in the etiology of the disease. The T3SA triggers the plasma membrane (PM engulfment of the bacteria by host cells during the initial entry process. It then enables bacteria to escape the resulting phagocytic-like vacuole. Freed bacteria form actin comets to move in the cytoplasm, which provokes bacterial collision with the inner leaflet of the PM. This phenomenon culminates in T3SA-dependent secondary uptake and vacuolar rupture in neighboring cells in a process akin to what is observed during entry and named cell-to-cell spread. The activity of the T3SA of Shigella flexneri was recently demonstrated to display an on/off regulation during the infection. While the T3SA is active when bacteria are in contact with PM-derived compartments, it switches to an inactive state when bacteria are released within the cytosol. These observations indicate that effector proteins transiting through the T3SA are therefore translocated in a highly time and space constrained fashion, likely impacting on their cellular distribution. Herein, we present what is currently known about the composition, the assembly and the regulation of the T3SA activity and discuss the consequences of the on/off regulation of T3SA on Shigella effector properties and functions during the infection. Specific examples that will be developed include the role of effectors IcsB and VirA in the escape from LC3/ATG8-positive vacuoles formed during cell-to-cell spread and of IpaJ protease activity against N-miristoylated proteins. The conservation of a similar regulation of T3SA activity in other pathogens such as Salmonella or Enteropathogenic Escherichia coli will also be briefly discussed.

  3. Surveillance and management of salmonella food poisoning.

    Science.gov (United States)

    Hainsworth, Terry

    Reports of Salmonella Montevideo in UK chocolate have put foodborne disease back in the headlines. This article looks at the nature, prevalence and management of this public health problem and highlights the importance of surveillance.

  4. SURVIVAL OF SALMONELLA SPECIES IN RIVER WATER.

    Science.gov (United States)

    The survival of four Salmonella strains in river water microcosms was monitored using culturing techniques, direct counts, whole cell hybridization, scanning electron microscopy, and resuscitation techniques via the direct viable count method and flow cytrometry. Plate counts of...

  5. antimicrobial susceptibility patterns of salmonella species in ...

    African Journals Online (AJOL)

    user

    Empirical treatment for enteric fevers should, therefore, be discouraged while quinolones, cefepime, carbapenem, azithromycin and third generation cephalosporins be given preference. KEY WORDS: Susceptibility, Antimicrobial, Salmonella species, Enteric fever. INTRODUCTION. In the 21st century, enteric fever in the.

  6. A carbon nanotube immunosensor for Salmonella

    Directory of Open Access Journals (Sweden)

    Mitchell B. Lerner

    2011-12-01

    Full Text Available Antibody-functionalized carbon nanotube devices have been suggested for use as bacterial detectors for monitoring of food purity in transit from the farm to the kitchen. Here we report progress towards that goal by demonstrating specific detection of Salmonella in complex nutrient broth solutions using nanotube transistors functionalized with covalently-bound anti-Salmonella antibodies. The small size of the active device region makes them compatible with integration in large-scale arrays. We find that the on-state current of the transistor is sensitive specifically to the Salmonella concentration and saturates at low concentration (<1000 cfu/ml. In contrast, the carrier mobility is affected comparably by Salmonella and other bacteria types, with no sign of saturation even at much larger concentrations (108 cfu/ml.

  7. Experimental reproduction of rotavirus and Salmonella pullorum ...

    African Journals Online (AJOL)

    Group A chicks were inoculated with 1 X 106 pfu/ml of rotavirus, group B chicks were inoculated with 1 X 106 cfu/ml of Salmonella pullorum, group C chicks were inoculated with 1 X 106 pfu/ml of rotavirus and 1 X 106 cfu/ml of Salmonella pullorum, while group D birds were given 1ml of PBS alone. Birds in all groups were ...

  8. Tentative Colistin Epidemiological Cut-Off Value for Salmonella spp

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Torpdahl, Mia; Zachariasen, Camilla

    2012-01-01

    . Interestingly, Salmonella Dublin and Salmonella Enteritidis belong to the same O-group (O:1, 9,12), suggesting that surface lipopolysaccharides (LPS) of the cell (O-antigen) play a role in colistin susceptibility. The epidemiological cut-off value of >2 mg/L for colistin suggested by European Committee...... on Antimicrobial Susceptibility Testing (EUCAST) is placed inside the distribution for both Salmonella Dublin and Salmonella Enteritidis. All tested Salmonella Dublin isolates, regardless of MIC colistin value, had identical pmrA and pmrB sequences. Missense mutations were found only in pmrA in one Salmonella...

  9. Interactions of Salmonella enterica with lettuce leaves.

    Science.gov (United States)

    Kroupitski, Y; Pinto, R; Brandl, M T; Belausov, E; Sela, S

    2009-06-01

    To investigate the interactions of Salmonella enterica with abiotic and plant surfaces and their effect on the tolerance of the pathogen to various stressors. Salmonella strains were tested for their ability to form biofilm in various growth media using a polystyrene plate model. Strong biofilm producers were found to attach better to intact Romaine lettuce leaf tissue compared to weak producers. Confocal microscopy and viable count studies revealed preferential attachment of Salmonella to cut-regions of the leaf after 2 h at 25 degrees C, but not for 18 h at 4 degrees C. Storage of intact lettuce pieces contaminated with Salmonella for 9 days at 4 degrees C resulted only in small changes in population size. Exposure of lettuce-associated Salmonella cells to acidic conditions (pH 3.0) revealed increased tolerance of the attached vs planktonic bacteria. Biofilm formation on polystyrene may provide a suitable model to predict the initial interaction of Salmonella with cut Romaine lettuce leaves. Association of the pathogen with lettuce leaves facilitates its persistence during storage and enhances its acid tolerance. Understanding the interactions between foodborne pathogens and lettuce might be useful in developing new approaches to prevent fresh produce-associated outbreaks.

  10. Salmonella Vaccination in Pigs: A Review.

    Science.gov (United States)

    Wales, A D; Davies, R H

    2017-02-01

    The control of Salmonella enterica in pig production is necessary for both public and animal health. The persistent and frequently asymptomatic nature of porcine Salmonella infection and the organism's abilities to colonize other animal species and to survive in the environment mean that effective control generally requires multiple measures. Vaccination is one such measure, and the present review considers its role and its future, drawing on studies in pigs from the 1950s to the present day. Once established in the body as an intracellular infectious agent, Salmonella can evade humoral immunity, which goes some way to explaining the often disappointing performance of inactivated Salmonella vaccines. More recent approaches, using mucosal presentation of antigens, live vaccines and adjuvants to enhance cell-mediated immunity, have met with more success. Vaccination strategies that involve stimulating both passive immunity from the dam plus active immunity in offspring appear to be most efficacious, although either approach alone can yield significant control of Salmonella. Problems that remain include relatively poor control of Salmonella serovars that are dissimilar to the vaccine antigen mix, and difficulties in measuring and predicting the performance of candidate vaccines in ways that are highly relevant to their likely use in commercial production. © 2016 Crown copyright. Zoonoses and Public Health published by Blackwell Verlag GmbH.This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  11. The Bactericidal Lectin RegIIIβ Prolongs Gut Colonization and Enteropathy in the Streptomycin Mouse Model for Salmonella Diarrhea.

    Science.gov (United States)

    Miki, Tsuyoshi; Goto, Ryosuke; Fujimoto, Mayuka; Okada, Nobuhiko; Hardt, Wolf-Dietrich

    2017-02-08

    The bactericidal lectin RegIIIβ is inducibly produced by intestinal epithelial cells as a defense against infection by enteropathogens. In the gut lumen, RegIIIβ kills not only certain enteropathogens, but also some commensal bacteria; thus, RegIIIβ is also thought to be an innate immune effector shaping microbiota composition and establishing intestinal homeostasis. Using the streptomycin mouse model for Salmonella colitis, we show that RegIIIβ can promote sustained gut colonization of Salmonella Typhimurium and prolong enteropathy. RegIIIβ expression was associated with suppression of Bacteroides spp. in the gut lumen, prolonged disease-associated alterations in colonic metabolism, and reduced luminal vitamin B6 levels. Supplementation with Bacteroides spp. or vitamin B6 accelerated pathogen clearance from the gut and remission of enteropathy. Our findings indicate that interventions at the level of RegIIIβ and supplementation with Bacteroides spp. or vitamin B6 might open new avenues for therapeutic intervention in the context of Salmonella colitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. An oral vaccine for type 1 diabetes based on live attenuated Salmonella.

    Science.gov (United States)

    Husseiny, Mohamed I; Rawson, Jeffrey; Kaye, Alexander; Nair, Indu; Todorov, Ivan; Hensel, Michael; Kandeel, Fouad; Ferreri, Kevin

    2014-04-25

    Type 1 diabetes (T1D) is a metabolic disease that is initiated by the autoimmune destruction of pancreatic insulin-producing beta cells that is accompanied by the development of antigen-specific antibodies and cytotoxic T lymphocytes (CTLs). Several studies have shown that vaccination with diabetic autoantigens provides some protection against this process. In this report we describe a new oral vaccine that utilizes live attenuated Salmonella for simultaneous delivery of autoantigens in conjunction with immunomodulatory cytokine genes to immune cells in the gut mucosa. Recent data showed that live attenuated Salmonella is a safe, simple and effective vector for expression of antigens and cytokines by antigen-presenting cells (APCs) of gut-associated lymphatic tissue (GALT). This novel strategy was tested by fusion of the diabetic autoantigen preproinsulin with Salmonella secretory effector protein (SseF) of pathogenicity island-2 (SPI2). In this way the autoantigen is only expressed inside the host immune cells and translocated to the host cell cytosol. In addition Salmonella was used to deliver the gene for the immunomodulatory cytokine transforming growth factor beta (TGFβ) for host cell expression. Oral co-vaccination of 8 week-old non-obese diabetic (NOD) mice with three weekly doses of both the autoantigen and cytokine significantly reduced the development of diabetes, improved the response to glucose challenge, preserved beta cell mass, and reduced the severity of insulitis compared with controls and autoantigen alone. Combination therapy also resulted in increased circulating levels of IL10 four weeks post-vaccination and IL2 for 12 weeks post-vaccination, but without effect on proinflammatory cytokines IL6, IL12(p70), IL17 and IFNγ. However, in non-responders there was a significant rise in IL12 compared with responders. Future studies will examine the mechanism of this vaccination strategy in more detail. In conclusion, Salmonella-based oral vaccines

  13. NRL Salmonella ringonderzoek II: bacteriologische detectie van Salmonella in aanwezigheid van competitieve flora

    NARCIS (Netherlands)

    Voogt N; in ' t Veld PH; Nagelkerke N; van de Giessen AW; MGB

    1999-01-01

    In april 1998 werd een bacteriologisch ringonderzoek voor de detectie van Salmonella in aanwezigheid van stoorflora georganiseerd door het Nationaal Referentie Laboratorium (NRL) voor Salmonella (RIVM, Bilthoven). Aan het ringonderzoek werd deelgenomen door 23 laboratoria in het kader van het Plan

  14. Impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the broiler crop and ceca.

    Science.gov (United States)

    Buhr, R J; Bourassa, D V; Hinton, A; Fairchild, B D; Ritz, C W

    2017-12-01

    Research was conducted to evaluate the impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the crop and ceca following feed withdrawal. In 4 experiments, pens of broilers in separate rooms were challenged with marker strains of either Salmonella Montevideo or Salmonella Heidelberg. Three d post challenge, a 12-hour feed withdrawal was initiated, and one pen of broilers was switched between rooms for each Salmonella serotype. In experiments 3 and 4, non-challenged broilers also were added to the Salmonella challenge pens. The litter of each pen was sampled before and after the feed withdrawal period, the broilers euthanized, and the crop and ceca aseptically removed for Salmonella isolation. Results showed that only the challenge Salmonella serotype was recovered from the litter in challenge pens where broilers were not moved, while both Salmonella serotypes were recovered from the litter of the switched pens. Salmonella was recovered from 56/80 crops and from 66/80 ceca of challenged broilers that remained in the challenge pens. The challenge Salmonella serotype was recovered from 50/80 crops and from 60/80 ceca, and the switched pens' litter Salmonella serotype was recovered from 19/80 crops but not from the ceca in broilers challenged with Salmonella and then switched between pens. For experiments 3 and 4, Salmonella was recovered from 19/40 crops and from only 2/40 ceca from the non-challenged broilers placed into the Salmonella challenge pens. The results from broilers that were switched between Salmonella challenge pens indicate that the recovery of Salmonella from the crop of broilers following feed withdrawal (on Salmonella-contaminated litter) appears to depend mainly on the initial challenge Salmonella (62%) and less on the litter Salmonella (24%) status during the feed withdrawal period. In contrast, only the initial challenge Salmonella was recovered from the ceca (79%) from broilers that remained in challenge pens or

  15. Salmonella

    Science.gov (United States)

    ... Linked to Raw Meal Organic Shake and Meal Products Recall & Advice to Consumers Case Count Maps Epi Curves ... Infections Associated with a Raw Scraped Ground Tuna Product Recall & Advice to Consumers Case Count Maps Epi Curves ...

  16. Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella.

    Directory of Open Access Journals (Sweden)

    Maureen Craig

    Full Text Available The phagocytic oxidative burst is a primary effector of innate immunity that protects against bacterial infection. However, the mechanism by which reactive oxygen species (ROS kill or inhibit bacteria is not known. It is often assumed that DNA is a primary target of oxidative damage, consistent with known effects of endogenously produced ROS in the bacterial cytoplasm. But most studies fail to distinguish between effects of host derived ROS versus damage caused by endogenous bacterial sources. We took advantage of both the ability of Salmonella enterica serovar Typhimurium to survive in macrophages and the genetic tractability of the system to test the hypothesis that phagocytic superoxide damages cytoplasmic targets including DNA.SodCI is a periplasmic Cu-Zn superoxide dismutase (SOD that contributes to the survival of Salmonella Typhimurium in macrophages. Through competitive virulence assays, we asked if sodCI has a genetic interaction with various cytoplasmic systems. We found that SodCI acts independently of cytoplasmic SODs, SodA and SodB. In addition, SodCI acts independently of the base excision repair system and RuvAB, involved in DNA repair. Although sodCI did show genetic interaction with recA, this was apparently independent of recombination and is presumably due to the pleiotropic effects of a recA mutation.Taken together, these results suggest that bacterial inhibition by phagocytic superoxide is primarily the result of damage to an extracytoplasmic target.

  17. Non-Hematopoietic MLKL Protects Against Salmonella Mucosal Infection by Enhancing Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Shui-Xing Yu

    2018-02-01

    Full Text Available The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL, a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL−/− mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL−/− mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL−/− mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization.

  18. Polyamines Are Required for Virulence in Salmonella enterica Serovar Typhimurium

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Thomsen, Line Elnif; Wallrodt, Inke

    2012-01-01

    and intracellular survival could, as well, be complemented by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection. Interestingly, intracellular survival of the polyamine mutant was significantly enhanced above the wild type level by the addition of exogenous putrescine...... from both of the major virulence loci SPI1 and SPI2 responded to exogenous polyamines and was reduced in the polyamine mutant. Together our data demonstrate that putrescine and spermidine play a critical role in controlling virulence in S. Typhimurium most likely through stimulation of expression...

  19. Influence of On-farm pig Salmonella status on Salmonella Shedding at Slaughter.

    Science.gov (United States)

    Casanova-Higes, A; Andrés-Barranco, S; Mainar-Jaime, R C

    2017-08-01

    The risk of Salmonella shedding among pigs at slaughter with regard to their previous on-farm Salmonella status was assessed in a group of pigs from a farm from NE of Spain. A total of 202 pigs that had been serologically monitored monthly during the fattening period and from which mesenteric lymph nodes (MLN) and faecal (SFEC) samples were collected at slaughter for Salmonella isolation were included. A repeated-measures anova was used to assess the relationship between mean OD% values during the fattening period and sampling time and bacteriology on MLN and SFEC. Pigs were also grouped into four groups, that is pigs seronegative during the fattening period and Salmonella negative in MLN (group A; n = 69); pigs seronegative during the fattening period but Salmonella positive in MLN (B; n = 36); pigs seropositive at least once and Salmonella positive in MLN (C; n = 50); and pigs seropositive at least once but Salmonella negative in (D; n = 47). Pigs shedding at slaughter seroconverted much earlier and showed much higher mean OD% values than non-shedders pigs. The proportion of Salmonella shedders in groups A and D was high and similar (26.1% and 29.8%, respectively), but significantly lower than that for groups B and C. The odds of shedding Salmonella for groups B and C were 4.8 (95% CI = 1.5-15.5) and 20.9 (3.7-118) times higher, respectively, when compared to A. It was concluded that a large proportion of Salmonella seronegative pigs may shed Salmonella at slaughter, which would be likely associated to previous exposure with contaminated environments (i.e. transport and lairage). For pigs already infected at farm, the likelihood of shedding Salmonella was much higher and may depend on whether the bacterium has colonized the MLN or not. The odds of shedding Salmonella spp. were always much higher for pigs in which Salmonella was isolated from MLN. © 2016 Blackwell Verlag GmbH.

  20. InvS Coordinates Expression of PrgH and FimZ and Is Required for Invasion of Epithelial Cells by Salmonella enterica serovar Typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Cai, Xia; Wu, Shuyan; Bomjan, Rajdeep; Nakayasu, Ernesto S.; Händler, Kristian; Hinton, Jay C. D.; Zhou, Daoguo; DiRita, Victor J.

    2017-04-24

    ABSTRACT

    Deep sequencing has revolutionized our understanding of the bacterial RNA world and has facilitated the identification of 280 small RNAs (sRNAs) inSalmonella. Despite the suspicions that sRNAs may play important roles inSalmonellapathogenesis, the functions of most sRNAs remain unknown. To advance our understanding of RNA biology inSalmonellavirulence, we searched for sRNAs required for bacterial invasion into nonphagocytic cells. After screening 75 sRNAs, we discovered that the ablation of InvS caused a significant decrease ofSalmonellainvasion into epithelial cells. A proteomic analysis showed that InvS modulated the levels of several type III secretedSalmonellaproteins. The level of PrgH, a type III secretion apparatus protein, was significantly lower in the absence of InvS, consistent with the known roles of PrgH in effector secretion and bacterial invasion. We discovered that InvS modulatesfimZexpression and hence flagellar gene expression and motility. We propose that InvS coordinates the increase of PrgH and decrease in FimZ that promote efficientSalmonellainvasion into nonphagocytic cells.

    IMPORTANCESalmonellosis continues to be the most common foodborne infection reported by the CDC in the United States. Central toSalmonellapathogenesis is the ability to invade nonphagocytic cells and to replicate inside host cells. Invasion genes are known to be regulated by protein transcriptional networks, but little is known

  1. Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity.

    Directory of Open Access Journals (Sweden)

    Remco Stam

    Full Text Available Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions.

  2. Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity.

    Science.gov (United States)

    Stam, Remco; Jupe, Julietta; Howden, Andrew J M; Morris, Jenny A; Boevink, Petra C; Hedley, Pete E; Huitema, Edgar

    2013-01-01

    Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN) gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions.

  3. Telepresence Master Glove Controller For Dexterous Robotic End-Effectors

    Science.gov (United States)

    Fowler, A. M.; Joyce, R. R.; Britt, J. P.

    1987-03-01

    This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computerin real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.

  4. Hacker Within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    Directory of Open Access Journals (Sweden)

    Taslima Taher Lina

    2016-05-01

    Full Text Available Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME, an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  5. Exact positioning of the robotic arm end effector

    Science.gov (United States)

    Korepanov, Valery; Dudkin, Fedir

    2016-07-01

    Orbital service becomes a new challenge of space exploration. The necessity to introduce it is connected first of all with an attractive opportunity to prolong the exploitation terms of expensive commercial satellites by, e.g., refilling of fuel or changing batteries. Other application area is a fight with permanently increasing amount of space litter - defunct satellites, burnt-out rocket stages, discarded trash and other debris. Now more than few tens of thousands orbiting objects larger than 5-10 cm (or about 1 million junks larger than 1 cm) are a huge problem for crucial and costly satellites and manned vehicles. For example, in 2014 the International Space Station had to change three times its orbit to avoid collision with space debris. So the development of the concepts and actions related to removal of space debris or non-operational satellites with use of robotic arm of a servicing satellite is very actual. Such a technology is also applicable for unmanned exploratory missions in solar system, for example for collecting a variety of samples from a celestial body surface. Naturally, the robotic arm movements should be controlled with great accuracy at influence of its non-rigidity, thermal and other factors. In these circumstances often the position of the arm end effector has to be controlled with high accuracy. The possibility of coordinate determination for the robotic arm end effector with use of a low frequency active electromagnetic system has been considered in the presented report. The proposed design of such a system consists of a small magnetic dipole source, which is mounted inside of the arm end effector and two or three 3-component magnetic field sensors mounted on a servicing satellite body. The data from this set of 3-component magnetic field sensors, which are fixed relatively to the satellite body, allows use of the mathematical approach for determination of position and orientation of the magnetic dipole source. The theoretical

  6. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy.

    Science.gov (United States)

    Lina, Taslima T; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W

    2016-01-01

    Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  7. Tips to Reduce Your Risk of Salmonella from Eggs

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Past Emails Salmonella and Eggs Language: English (US) Español (Spanish) Recommend ... can I reduce my chance of getting a Salmonella infection? Consider buying and using pasteurized eggs and ...

  8. Autophagy Facilitates Salmonella Replication in HeLa Cells

    Science.gov (United States)

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  9. Enjoying Homemade Ice Cream without the Risk of Salmonella Infection

    Science.gov (United States)

    ... Enjoying Homemade Ice Cream without the Risk of Salmonella Infection Share Tweet Linkedin Pin it More sharing ... year homemade ice cream causes several outbreaks of Salmonella infection with up to several hundred victims at ...

  10. Epidemiological Investigation of Salmonella enterica Serovar Kedougou in Thailand

    DEFF Research Database (Denmark)

    Pornruangwong, Srirat; Hendriksen, Rene S.; Pulsrikarn, Chaiwat

    2011-01-01

    Objective: Salmonella enterica serovar Kedougou is among the top 10 serovars reported in northern Thailand. The objective of this study was to identify risk factors associated with Salmonella Kedougou infection in Thailand and to compare the molecular types and antimicrobial resistance with Salmo......Objective: Salmonella enterica serovar Kedougou is among the top 10 serovars reported in northern Thailand. The objective of this study was to identify risk factors associated with Salmonella Kedougou infection in Thailand and to compare the molecular types and antimicrobial resistance.......023), region (northern Thailand; p factors associated with Salmonella Kedougou infection compared to other nontyphoid Salmonella. Of the Salmonella Kedougou isolates of human origin, 84% exhibited resistance to at least three antimicrobial classes...... association, whereas the majority of the animal isolates from United Kingdom clustered separately. Conclusions: This study reveals Salmonella Kedougou as a major cause of human infections in northern Thailand especially during the hot period and suggests a global spread probably due to travel. The clonal...

  11. Prevalence and antimicrobial profiles of Salmonella serovars from ...

    African Journals Online (AJOL)

    Prevalence and antimicrobial profiles of Salmonella serovars from ... Antimicrobial susceptibility test was performed with 17 antimicrobial agents ... for specific Salmonella control program to be instituted as part of a national food safety strategy.

  12. Salmonella Enteritidis experimental infection in chickens: Effects of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    USDA), Athens, USA. Accepted 6 ... Salmonella enterica serovar Enteritidis is a food borne pathogen of humans causing food-poisoning .... Comparison of percent sero-positive hens per group and means of Salmonella.

  13. Test results of Salmonella typing by the NRLs-Salmonella in the Member States of the EU and the EnterNet Laboratories - Collaborative study VI on typing of Salmonella

    NARCIS (Netherlands)

    Korver H; Raes M; Maas HME; Ward LR; Wannet WJB; Henken AM; MGB; LIS

    2002-01-01

    Test resultaten van Salmonella sero- en faagtypering en antimicrobiele gevoeligheidsbepalingen door de Nationale Referentie Laboratoria voor Salmonella in de Lidstaten van de Europese Unie en EnterNet Laboratoria: Ringonderzoek VI (2001) voor Salmonella. Een zesde ringonderzoek betreffende de

  14. Test results of Salmonella typing by the National Reference Laboratories for Salmonella in the Member States of the European Union and the EnterNet Laboratories - Collaborative study VII on typing of Salmonella

    NARCIS (Netherlands)

    Korver H; Maas HME; Ward LR; Wannet WJB; Henken AM; MGB; LIS

    2003-01-01

    Het Communautair Referentie Laboratorium voor Salmonella (CRL-Salmonella, Bilthoven, Nederland) organiseerde in samenwerking met Public Health Laboratory Services (PHLS), London, Verenigd Koninkrijk een zevende ringonderzoek aangaande de typering van Salmonella. Zeventien Nationale Referentie

  15. Applications of microscopy in Salmonella research.

    Science.gov (United States)

    Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A

    2015-01-01

    Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

  16. Evaluation of VIDAS Salmonella (SLM) easy Salmonella method for the detection of Salmonella in a variety of foods: collaborative study.

    Science.gov (United States)

    Crowley, Erin; Bird, Patrick; Fisher, Kiel; Goetz, Katherine; Benzinger, M Joseph; Agin, James; Goins, David; Johnson, Ronald L

    2011-01-01

    The VIDAS Salmonella (SLM) Easy Salmonella method is a specific enzyme-linked fluorescent immunoassay performed in the automated VIDAS instrument. The VIDAS Easy Salmonella method is a simple 2-step enrichment procedure, using pre-enrichment followed by selective enrichment in a newly formulated broth, SX2 broth. This new method was compared in a multilaboratory collaborative study to the U.S. Food and Drug Administration's Bacteriological Analytical Manual, Chapter 5 method for five food matrixes (liquid egg, vanilla ice cream, spinach, raw shrimp, and peanut butter) and the U.S. Department of Agriculture's Microbiology Laboratory Guidebook 4.04 method for deli turkey. Each food type was artificially contaminated with Salmonella at three inoculation levels. A total of 15 laboratories representing government, academia, and industry, throughout the United States, participated. In this study, 1583 samples were analyzed, of which 792 were paired replicates and 791 were unpaired replicates. Of the 792 paired replicates, 285 were positive by both the VIDAS and reference methods. Of the 791 unpaired replicates, 341 were positive by the VIDAS method and 325 were positive by the cultural reference method. A Chi-square analysis of each of the six food types was performed at the three inoculation levels tested. For all foods evaluated, the VIDAS Easy SLM method demonstrated results comparable to those of the reference methods for the detection of Salmonella.

  17. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    Science.gov (United States)

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the

  18. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  19. Lessons in Effector and NLR Biology of Plant-Microbe Systems.

    Science.gov (United States)

    Białas, Aleksandra; Zess, Erin K; De la Concepcion, Juan Carlos; Franceschetti, Marina; Pennington, Helen G; Yoshida, Kentaro; Upson, Jessica L; Chanclud, Emilie; Wu, Chih-Hang; Langner, Thorsten; Maqbool, Abbas; Varden, Freya A; Derevnina, Lida; Belhaj, Khaoula; Fujisaki, Koki; Saitoh, Hiromasa; Terauchi, Ryohei; Banfield, Mark J; Kamoun, Sophien

    2017-11-16

    A diversity of plant-associated organisms secrete effectors-proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat region (NLR)-containing proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.

  20. Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus

    Directory of Open Access Journals (Sweden)

    Maryam eRafiqi

    2013-07-01

    Full Text Available One of the emerging systems in plant-microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of Piriformospora indica, a soil borne endophyte forming intimate associations with roots of a wide range of plant species. Complete genome sequencing provides an opportunity to investigate the role of effectors during the interaction of this mutualistic fungus with plants. We describe in silico analyses to predict effectors of P. indica and we explore effector features considered here to mine a high priority protein list for functional analysis.

  1. Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus.

    Science.gov (United States)

    Rafiqi, Maryam; Jelonek, Lukas; Akum, Ndifor F; Zhang, Feng; Kogel, Karl-Heinz

    2013-01-01

    One of the emerging systems in plant-microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of Piriformospora indica, a soil borne endophyte forming intimate associations with roots of a wide range of plant species. Complete genome sequencing provides an opportunity to investigate the role of effectors during the interaction of this mutualistic fungus with plants. We describe in silico analyses to predict effectors of P. indica and we explore effector features considered here to mine a high priority protein list for functional analysis.

  2. Extended Spectrum Beta-lactam Resistance among Salmonella

    Science.gov (United States)

    Salmonella is an important food bourn pathogen capable of infecting both humans and animals. One of the most effective treatments for Salmonella infections is beta-lactam antibiotics, particularly extended spectrum beta-lactams; however, Salmonella resistant to these antibiotics have been recovered ...

  3. 21 CFR 866.3550 - Salmonella spp. serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Salmonella spp. serological reagents. 866.3550... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3550 Salmonella spp. serological reagents. (a) Identification. Salmonella spp. serological reagents are devices that...

  4. 76 FR 16425 - Draft Guidance for Industry: Testing for Salmonella

    Science.gov (United States)

    2011-03-23

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry: Testing for Salmonella Species... availability of a draft guidance for industry entitled ``Testing for Salmonella Species in Human Foods and... and other persons who are covered by FDA's final rule ``Prevention of Salmonella Enteritidis in Shell...

  5. 76 FR 81513 - Guidance for Industry: Prevention of Salmonella

    Science.gov (United States)

    2011-12-28

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry: Prevention of Salmonella Enteritidis... availability of a guidance for industry entitled ``Prevention of Salmonella Enteritidis in Shell Eggs During... with certain provisions contained in FDA's final rule ``Prevention of Salmonella Enteritidis in Shell...

  6. 9 CFR 113.30 - Detection of Salmonella contamination.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of Salmonella contamination... REQUIREMENTS Standard Procedures § 113.30 Detection of Salmonella contamination. The test for detection of Salmonella contamination provided in this section shall be conducted when such a test is prescribed in an...

  7. 78 FR 42451 - Animal Feeds Contaminated With Salmonella Microorganisms

    Science.gov (United States)

    2013-07-16

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 500 Animal Feeds Contaminated With Salmonella... Administration (FDA or Agency) is revoking an advisory opinion on animal feeds contaminated with Salmonella... enforcement strategy articulated in a final compliance policy guide (CPG) on Salmonella in food for animals...

  8. Characterization of a multidrug resistant Salmonella enterica give ...

    African Journals Online (AJOL)

    Salmonella enterica Give is one of the serotypes that have been incriminated in Salmonella infections; sometimes associated with hospitalization and mortalities in humans and animals in some parts of the world. In this work, we characterized one Salmonella Give isolated from cloaca swab of an Agama agama lizard ...

  9. Biofilm formation of Salmonella species isolated from fresh cabbage ...

    African Journals Online (AJOL)

    The aim of the study was to isolate Salmonella from fresh cabbage and spinach vegetables, determine antimicrobial resistance and biofilm formation of the isolates. Spinach and cabbage farm vegetables were found to harbour Salmonella. A total of eighty-two Salmonella isolates were recovered from both vegetables and ...

  10. Mechanism of Salmonella reduction in fermented pig feed

    NARCIS (Netherlands)

    Winsen, van R.L.; Lipman, L.J.A.; Biesterveld, S.; Urlings, B.A.P.; Snijders, J.M.A.; Knapen, van F.

    2001-01-01

    To protect consumers from Salmonella infection acquired through the consumption of pork meat, it is necessary to eradicate Salmonella from pork. In order to achieve this, the whole pork production chain should be free from Salmonella, including the pigs at the farm. In epidemiological studies it was

  11. Salmonella in raccoons (Procyon lotor) in southern Ontario, Canada.

    Science.gov (United States)

    Jardine, Claire; Reid-Smith, Richard J; Janecko, Nicol; Allan, Mike; McEwen, Scott A

    2011-04-01

    Numerous serotypes of Salmonella have been detected in a variety of wild animals, including raccoons (Procyon lotor). Raccoons are common, mid-size omnivores that live in close association with people in urban and rural areas in Ontario. Although raccoons are known to shed Salmonella, little is known about their potential long-term role in maintaining Salmonella infections. We sampled feces from raccoons in three areas of Ontario: one primarily urban site around Niagara, one primarily rural site north of Guelph, and the grounds of the Toronto Zoo, in 2007 to identify which serotypes of Salmonella were commonly shed by raccoons in southern Ontario. In addition, we conducted a longitudinal study at the Toronto Zoo site to determine if raccoons remain persistently infected with Salmonella. Salmonella was found in 45% of samples. The prevalence of Salmonella in raccoon feces ranged from 27% at the rural site to 65% at the urban site. We detected 16 serotypes of Salmonella in 83 positive samples. The most common serotype detected in raccoons from the rural and zoo sites was Salmonella enterica serotype Typhimurium, whereas Salmonella Newport was detected most commonly in the urban site. Only one raccoon of 11 that were captured in four or more consecutive trapping sessions shed the same Salmonella serotype for two consecutive months, suggesting that raccoons regularly acquire new Salmonella serotypes from the environment.

  12. Molecular detection of salmonella species from selected vegetables ...

    African Journals Online (AJOL)

    Molecular detection of salmonella species from selected vegetables sold in a north-central Nigerian setting. ... This finding shows that virulent Salmonella strains pose a major health hazard and public health concern to the affected population. Our study shows that there is a high prevalence rate of virulent Salmonella ...

  13. Resistance of broiler outbred lines to infection with Salmonella enteritidis

    NARCIS (Netherlands)

    Bolder, N.M.; Janss, L.L.G.; Putirulan, F.F.; Wagenaar, J.A.

    2002-01-01

    Salmonella infections originating from poultry are one of the major causes of food-borne disease. For the control of salmonella in poultry a multifactorial approach is more likely to be effective, and the genetic resistance of poultry breeds to salmonella infections may be a valuable contribution.

  14. Salmonella serovars in the herpetofauna of Indiana County, Pennsylvania.

    Science.gov (United States)

    Chambers, David L; Hulse, Arthur C

    2006-05-01

    Herpetofaunal Salmonella enterica serovars have not been fully examined in any U.S. region. Thirty-three Salmonella serovars were isolated from 156 samples from 34 species, all within Indiana County, Pennsylvania. Results suggest that herpetofaunas could potentially pose a threat to humans. Further understanding of Salmonella in herpetofaunas may prevent future human cases.

  15. Salmonella surrogate reduction using industrial peanut dry roasting parameters

    Science.gov (United States)

    Studies were conducted to evaluate the effectiveness of industrial peanut dry roasting parameters in Salmonella reduction using a Salmonella surrogate, Enterococcus faecium, which is slightly more heat tolerant than Salmonella. Runner-type peanuts were inoculated with E. faecium and roasted in a lab...

  16. Characterization of a Multidrug Resistant Salmonella Enterica Give ...

    African Journals Online (AJOL)

    Dr Olaleye

    ABSTRACT. Salmonella enterica Give is one of the serotypes that have been incriminated in Salmonella infections; sometimes associated with hospitalization and mortalities in humans and animals in some parts of the world. In this work, we characterized one. Salmonella Give isolated from cloaca swab of an Agama ...

  17. Characterizing Salmonella Contamination in Two Rendering Processing Plants.

    Science.gov (United States)

    Gong, Chao; Jiang, Xiuping

    2017-02-01

    A microbiological investigation on Salmonella contamination was conducted in two U.S. rendering plants to investigate the potential cross-contamination of Salmonella in the rendering processing environment. Sampling locations were predetermined at the areas where Salmonella contamination may potentially occur, including raw materials receiving, crax (rendered materials before grinding process) grinding, and finished meal loading-out areas. Salmonella was either enumerated directly on xylose lysine Tergitol 4 agar plates or enriched in Rappaport-Vassiliadis and tetrathionate broths. The presumptive Salmonella isolates were confirmed using CHROMagar plating and latex agglutination testing and then characterized using pulsed-field gel electrophoresis, serotyping, and biofilm-forming determination. Among 108 samples analyzed, 79 (73%) samples were Salmonella positive after enrichment. Selected Salmonella isolates (n = 65) were assigned to 31 unique pulsed-field gel electrophoresis patterns, with 16 Salmonella serotypes, including Typhimurium and Mbandaka, identified as predominant serotypes and 10 Salmonella strains determined as strong biofilm formers. Our results indicated that the raw materials receiving area was the primary source of Salmonella and that the surfaces surrounding crax grinding and finished meal loading-out areas harbor Salmonella in biofilms that may recontaminate the finished meals. The same Salmonella serotypes found in both raw materials receiving and the finished meal loading-out areas suggested a potential of cross-contamination between different areas in the rendering processing environment.

  18. Innovative technology summary report: Confined sluicing end effector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A Confined Sluicing End-Effector (CSEE) was field tested during the summer of 1997 in Tank W-3, one of the Gunite and Associated Tanks (GAAT) at the Oak Ridge Reservation (ORR). It should be noted that the specific device used at the Oak Ridge Reservation demonstration was the Sludge Retrieval End-Effector (SREE), although in common usage it is referred to as the CSEE. Deployed by the Modified Light-Duty Utility Arm (MLDUA) and the Houdini remotely operated vehicle (ROV), the CSEE was used to mobilize and retrieve waste from the tank. After removing the waste, the CSEE was used to scarify the gunite walls of Tank W-3, removing approximately 0.1 in of material. The CSEE uses three rotating water-jets to direct a short-range pressurized jet of water to effectively mobilize the waste. Simultaneously, the water and dislodged tank waste, or scarified materials, are aspirated using a water-jet pump-driven conveyance system. The material is then pumped outside of the tank, where it can be stored for treatment. The technology, its performance, uses, cost, and regulatory issues are discussed.

  19. Mast cell-derived mediators promote murine neutrophil effector functions.

    Science.gov (United States)

    Doener, Fatma; Michel, Anastasija; Reuter, Sebastian; Friedrich, Pamela; Böhm, Livia; Relle, Manfred; Codarri, Laura; Tenzer, Stefan; Klein, Matthias; Bopp, Tobias; Schmitt, Edgar; Schild, Hansjörg; Radsak, Markus Philipp; Taube, Christian; Stassen, Michael; Becker, Marc

    2013-10-01

    Mast cells are able to trigger life-saving immune responses in murine models for acute inflammation. In such settings, several lines of evidence indicate that the rapid and protective recruitment of neutrophils initiated by the release of mast cell-derived pro-inflammatory mediators is a key element of innate immunity. Herein, we investigate the impact of mast cells on critical parameters of neutrophil effector function. In the presence of activated murine bone marrow-derived mast cells, neutrophils freshly isolated from bone marrow rapidly lose expression of CD62L and up-regulate CD11b, the latter being partly driven by mast cell-derived TNF and GM-CSF. Mast cells also strongly enhance neutrophil phagocytosis and generation of reactive oxygen species. All these phenomena partly depend on mast cell-derived TNF and to a greater extend on GM-CSF. Furthermore, spontaneous apoptosis of neutrophils is greatly diminished due to the ability of mast cells to deliver antiapoptotic GM-CSF. Finally, we show in a murine model for acute lung inflammation that neutrophil phagocytosis is impaired in mast cell-deficient Kit (W-sh) /Kit (W-sh) mice but can be restored upon mast cell engraftment. Thus, a previously underrated feature of mast cells is their ability to boost neutrophil effector functions in immune responses.

  20. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis

    Science.gov (United States)

    Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O’Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J.W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.

    2013-01-01

    SUMMARY A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3′ UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function. PMID:23746840

  1. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility

    OpenAIRE

    Hutin, Mathilde; Alvaro L Pérez-Quintero; Lopez, Camilo; Szurek, Boris

    2015-01-01

    Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resist...

  2. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility

    OpenAIRE

    Mathilde eHutin; Alvaro L Pérez-Quintero; Camilo eLopez; Boris eSzurek

    2015-01-01

    Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a novel programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer ...

  3. Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2015-12-01

    Full Text Available The steadily increasing number of sequenced fungal and oomycete genomes has enabled detailed studies of how these eukaryotic microbes infect plants and cause devastating losses in food crops. During infection, fungal and oomycete pathogens secrete effector molecules which manipulate host plant cell processes to the pathogen’s advantage. Proteinaceous effectors are synthesised intracellularly and must be externalised to interact with host cells. Computational prediction of secreted proteins from genomic sequences is an important technique to narrow down the candidate effector repertoire for subsequent experimental validation. In this study, we benchmark secretion prediction tools on experimentally validated fungal and oomycete effectors. We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the neural network predictors of SignalP 3 (D-score and SignalP 2 perform best. For effector prediction in particular, the use of a sensitive method can be desirable to obtain the most complete candidate effector set. We show that the neural network predictors of SignalP 2 and 3, as well as TargetP were the most sensitive tools for fungal effector secretion prediction, whereas the hidden Markov model predictors of SignalP 2 and 3 were the most sensitive tools for oomycete effectors. Thus, previous versions of SignalP retain value for oomycete effector prediction, as the current version, SignalP 4, was unable to reliably predict the signal peptide of the oomycete Crinkler effectors in the test set. Our assessment of subcellular localisation predictors shows that cytoplasmic effectors are often predicted as not extracellular. This limits the reliability of secretion predictions that depend on these tools. We present our assessment with a view to informing future pathogenomics studies and suggest revised pipelines for secretion prediction to obtain optimal effector predictions in fungi and oomycetes.

  4. Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus

    OpenAIRE

    Rafiqi, Maryam; Jelonek, Lukas; Akum, Ndifor F.; Zhang, Feng; Kogel, Karl-Heinz

    2013-01-01

    One of the emerging systems in plant–microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of Piriformospora indica, a soil borne endophyte forming intimate associations with roots of...

  5. Effects of broiler feed medications on Salmonella.

    Science.gov (United States)

    Volkova, Victoriya V; Hubbard, Sue Ann; Magee, Danny L; Byrd, J Allen; Bailey, Richard H; Wills, Robert W

    2013-09-01

    This pilot analysis was conducted with data from 52 conventional grow-out broiler flocks in a prospective field observational study in the southeastern United States during 2003-2006. Each flock was sampled for Salmonella 1 wk before the end of grow-out, upon arrival at the processing plant, and during processing (prior to and immediately after carcass chilling). The broiler litter was sampled on the day of bird harvest. The grow-out feeding programs, including the medications delivered in feed, were surveyed with questionnaires completed by the broiler managers and feedmill managers. Each detail of the feeding program was tested for statistical association with the frequency of Salmonella in the flock at each sampling point, after accounting for variation in Salmonella frequency between the farms, broiler complexes, and companies. Significant associations were found between Salmonella frequency in the broiler flock pre- and postharvest and the inclusion of feeds containing individual coccidiostats and other antimicrobial growth promoters, days on feed, and total consumption of feeds containing these products, as well as with practices such as a mash feed and a nonmedicated withdrawal feed. The analysis provided testable hypotheses for how broiler feed medications impact the frequency of Salmonella in the flocks.

  6. Salmonella and Eggs: From Production to Plate

    Directory of Open Access Journals (Sweden)

    Harriet Whiley

    2015-02-01

    Full Text Available Salmonella contamination of eggs and egg shells has been identified as a public health concern worldwide. A recent shift in consumer preferences has impacted on the egg industry, with a push for cage-free egg production methods. There has also been an increased desire from consumers for raw and unprocessed foods, potentially increasing the risk of salmonellosis. In response to these changes, this review explores the current literature regarding Salmonella contamination of eggs during the production processing through to food handling protocols. The contamination of eggs with Salmonella during the production process is a complex issue, influenced by many variables including flock size, flock age, stress, feed, vaccination, and cleaning routines. Currently there is no consensus regarding the impact of caged, barn and free range egg production has on Salmonella contamination of eggs. The literature regarding the management and control strategies post-collection, during storage, transport and food handling is also reviewed. Pasteurisation and irradiation were identified as the only certain methods for controlling Salmonella and are essential for the protection of high risk groups, whereas control of temperature and pH were identified as potential control methods to minimise the risk for foods containing raw eggs; however, further research is required to provide more detailed control protocols and education programs to reduce the risk of salmonellosis from egg consumption.

  7. Test results of Salmonella serotyping in the Member States of the European Union. (Collaborative study III amongst the National Reference Laboratories for Salmonella)

    NARCIS (Netherlands)

    Voogt N; Maas HME; Leeuwen WJ van; Henken AM; MGB

    1998-01-01

    Het Communautair Referentie Laboratorium (CRL) voor Salmonella heeft een derde ringonderzoek voor de serotypering van Salmonella georganiseerd. Alle Nationale Referentie Laboratoria (NRLs) voor Salmonella van de Europese Unie deden aan het onderzoek mee. Het belangrijkste doel was het

  8. The detection of antibodies against Salmonella Enteritidis in reference materials using a LPS ELISA ; A collaborative study amongst the National Reference Laboratories for Salmonella

    NARCIS (Netherlands)

    Voogt N; Dufrenne JB; Nagelkerke N; Veld PH in' t; Henken AM; MGB

    1997-01-01

    Het Communautair Referentie Laboratorium voor Salmonella (CRL) heeft een ringonderzoek georganiseerd waarin een immunologische methode voor het aantonen van antilichamen tegen Salmonella Enteritidis (SE) werd uitgevoerd en waaraan alle Nationale Referentie Laboratoria voor Salmonella (NRLs)

  9. A plethora of virulence strategies hidden behind nuclear targeting of microbial effectors

    Directory of Open Access Journals (Sweden)

    Susana eRivas

    2011-12-01

    Full Text Available Plant immune responses depend on the ability to couple rapid recognition of the invading microbe to an efficient response. During evolution, plant pathogens have acquired the ability to deliver effector molecules inside host cells in order to manipulate cellular and molecular processes and establish pathogenicity. Following translocation into plant cells, microbial effectors may be addressed to different subcellular compartments. Intriguingly, a significant number of effector proteins from different pathogenic microorganisms, including viruses, oomycetes, fungi, nematodes and bacteria, is targeted to the nucleus of host cells. In agreement with this observation, increasing evidence highlights the crucial role played by nuclear dynamics and nucleocytoplasmic protein trafficking during a great variety of analyzed plant-pathogen interactions. Once in the nucleus, effector proteins are able to manipulate host transcription or directly subvert essential host components to promote virulence. Along these lines, it has been suggested that some effectors may affect histone packing and, thereby, chromatin configuration. In addition, microbial effectors may either directly activate transcription or target host transcription factors to alter their regular molecular functions. Alternatively, nuclear translocation of effectors may affect subcellular localization of their cognate resistance proteins in a process that is essential for resistance protein-mediated plant immunity. Here, we review recent progress in our field on the identification of microbial effectors that are targeted to the nucleus of host plant cells. In addition, we discuss different virulence strategies deployed by microbes, which have been uncovered through examination of the mechanisms that guide nuclear localization of effector proteins.

  10. Effector Biology in Focus: A Primer for Computational Prediction and Functional Characterization.

    Science.gov (United States)

    Dalio, Ronaldo J D; Herlihy, John; Oliveira, Tiago S; McDowell, John M; Machado, Marcos

    2018-01-01

    Plant-pathogen interactions are controlled by a multilayered immune system, which is activated by pathogen recognition in the host. Pathogens secrete effector molecules to interfere with the immune recognition or signaling network and reprogram cell structure or metabolism. Understanding the effector repertoires of diverse pathogens will contribute to unraveling the molecular mechanism of virulence and developing sustainable disease-control strategies for crops and natural ecosystems. Effector functionality has been investigated extensively in only a small number of pathogen species. However, many more pathogen genomes are becoming available, and much can be learned from a broader view of effector biology in diverse pathosystems. The purpose of this review is to summarize methodology for computational prediction of protein effectors, functional characterization of effector proteins and their targets, and the use of effectors as probes to screen for new sources of host resistance. Although these techniques were generally developed in model pathosystems, many of the approaches are directly applicable for exploration and exploitation of effector biology in pathosystems that are less well studied. We hope to facilitate such exploration, which will broaden understanding of the mechanisms that underpin the biological diversity of plant-pathogen interactions, and maximize the impact of new approaches that leverage effector biology for disease control.

  11. Impact of litter salmonella status during feed withdrawal on salmonella recovery from the broiler crop and ceca

    Science.gov (United States)

    Research was conducted to evaluate the impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the crop and ceca following feed withdrawal. In 4 experiments, pens of broilers in separate rooms were challenged with marker strains of either Salmonella Montevideo or Salmon...

  12. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines

    Science.gov (United States)

    de Freitas Neto, Oliveiro Caetano; Mesquita, Aline Lopes; de Paiva, Jaqueline Boldrin; Zotesso, Fábio; Berchieri Júnior, Angelo

    2008-01-01

    Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must

  13. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  14. Plants as alternative hosts for Salmonella.

    Science.gov (United States)

    Schikora, Adam; Garcia, Ana V; Hirt, Heribert

    2012-05-01

    Recent findings show that many human pathogenic bacteria can use multiple host organisms. For example, Salmonella Typhimurium can use plants as alternative hosts to humans and other animals. These bacteria are able to adhere to plant surfaces and actively infect the interior of plants. Similarly to the infection of animal cells, S. Typhimurium suppresses plant defense responses by a type III secretion mechanism, indicating that these bacteria possess a dedicated multi-kingdom infection strategy, raising the question of host specificity. In addition, evidence is accumulating that the interaction of Salmonella with plants is an active process with different levels of specificity, because different Salmonella serovars show variations in pathogenicity, and different plant species reveal various levels of resistance towards these bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Exploiting host immunity: the Salmonella paradigm

    Science.gov (United States)

    Behnsen, Judith; Perez-Lopez, Araceli; Nuccio, Sean-Paul; Raffatellu, Manuela

    2014-01-01

    Pathogens have evolved clever strategies to evade and in some cases exploit the attacks of an activated immune system. Salmonella enterica is one such pathogen, exploiting multiple aspects of host defense to promote its replication in the host. Here we review recent findings on the mechanisms by which Salmonella establishes systemic and chronic infection, including strategies involving manipulation of innate immune signaling and inflammatory forms of cell death, as well as immune evasion by establishing residency in M2 macrophages. We also examine recent evidence showing that the oxidative environment and the high levels of antimicrobial proteins produced in response to localized Salmonella gastrointestinal infection enable the pathogen to successfully outcompete the resident gut microbiota. PMID:25582038

  16. Salmonella-infektion kompliceret med akut nyreinsufficiens

    DEFF Research Database (Denmark)

    Thøgersen, Thøger; Jensen, Jørgen Erik; Jespersen, Bente

    2003-01-01

    Acute renal failure is a known complication to Salmonella gastroenteritis, and patients with chronic renal failure or impaired host defence are at increased risk. In the two presented cases there had been a few days of gastroenteritis before the hospitalisation, but the only symptoms...... at the admission were fatigue and dyspnoea. In both cases severe uraemia had developed and the patients and their physicians did not expect the episode of gastroenteritis to be the only etiology of acute renal failure. Both patients had normal renal histology and Salmonella was grown in their faeces. Subsequently......, their renal function was normalised. In these patients dialysis and renal biopsies would have been unnecessary if the ability of even a moderate Salmonella infection to cause acute renal failure in a healthy subject had been realised and prompt rehydration had been initiated....

  17. Quinolones in the treatment of Salmonella carriers.

    Science.gov (United States)

    Rodríguez-Noriega, E; Andrade-Villanueva, J; Amaya-Tapia, G

    1989-01-01

    Infections caused by Salmonella typhi are commonly followed by a chronic carrier state despite positive clinical and initial bacteriologic responses. The use of primary antibiotics like chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole has several major drawbacks, including in some instances the failure to prevent the carrier state. The appearance worldwide of strains with multiple resistance to the most commonly used regimens has prompted the search for new forms of therapy. Among the agents studied have been third-generation cephalosporins and quinolones, which are active in vitro against bacterial enteropathogens like S. typhi. Resolution of chronic carriage of S. typhi and other salmonellae is difficult, and regimens commonly fail (including those that combine antibiotic administration with removal of the gallbladder). In addition to being active in vitro against Salmonella species, the newer quinolones adequately penetrate the intestinal lumen, liver, bile, and gallbladder. Initial experience with norfloxacin and ciprofloxacin in oral treatment of the chronic S. typhi carrier state in adults has been promising.

  18. Assessment of Salmonella survival in dry-cured Italian salami.

    Science.gov (United States)

    Bonardi, S; Bruini, I; Bolzoni, L; Cozzolino, P; Pierantoni, M; Brindani, F; Bellotti, P; Renzi, M; Pongolini, S

    2017-12-04

    The inactivation of Salmonella during curing of Italian traditional pork salami was investigated. A total of 150 batches of ground raw meat (GRM) used for salami manufacturing by four producers were tested for Salmonella by real-time PCR followed by ISO 6579 cultural confirmation and MPN enumeration. Salami produced with Salmonella positive GRMs were re-tested at the end of their curing period. Aw, pH and NaCl content were also measured. Detection of Salmonella was performed testing both 25 and 50g of the samples. By Real-Time PCR 37% of the GRMs resulted positive, but cultural detection of Salmonella was obtained in 14% of the samples only. Salmonella enumeration ranged from 31 MPN/g to Salmonella in 100% of all positive samples, vs. 62% of ISO-25g. Salami made of the contaminated GRMs were 29% Salmonella-positive, as most batches of salami produced with Salmonella-positive GRMs resulted negative after regular curing (20-48days). Overall, 13% of salami produced with Salmonella-contaminated GRMs were positive. They belonged to six batches, which turned out negative after prolonged curing ranging between 49 and 86days. Salmonella enumeration in salami ranged from 8.7 MPN/g to Salmonella in cured salami (p value: >0.05). The most common Salmonella serovars in GRMs were Derby (52%), Typhimurium monophasic variant 4, (Barbuti et al., 1993), 12:i:- (19%) and Stanley (10%). Salmonella Derby (56%), London, Branderup, Panama (13%, respectively) and Goldcoast (6%) were most frequent in cured salami. The study showed negative correlation between real-time CT values and cultural confirmation of Salmonella, as well as the importance of sample size for Salmonella detection. Among considered factors with possible effect on the occurrence of Salmonella in salami, statistical analysis revealed a role for aw in salami and for Salmonella load in GRMs, while pH and NaCl content did not significantly affect the probability of finding Salmonella in dry-cured salami in the context of

  19. Septic arthritis of the ankle due to Salmonella enteritidis.

    LENUS (Irish Health Repository)

    Dineen, Patrick F

    2011-06-01

    Salmonella septic arthritis in healthy, immunocompetent patients is extremely rare. We present the case of a 70-year-old man who presented with a one-day history of painful swelling of his ankle from which was aspirated pus which subsequently grew Salmonella enteritidis. There was no history of trauma or symptoms consistent with Salmonella enterocolitis. Our patient recovered fully after two weeks on intravenous ceftriaxone and six weeks on oral ciprofloxacin. Salmonella is a notifiable disease in the European Union and the United States of America, and is associated with outbreaks as a result of food contamination. The nature of Salmonella arthritis and its appropriate management are outlined.

  20. Prevalence of Salmonella spp. in reptiles

    OpenAIRE

    加藤, 行男; 村上, 賢

    2007-01-01

    A total of 291 fecal samples from 252 wild reptiles and 39 pet reptiles were examined for the prevalence of Salmonella spp. in Japan. Salmonella spp. were isolated from 29 (11.5%) of 252 wild reptiles and 22 (55.6%) of 39 pet reptiles. The isolates were identified into subspecies I to IV. The majority of isolates (43.6%) belonged to subspecies I and these isolates could be identified into 9 serovars. The serovars isolated were found to be S. Newport, S. Litchifield and S. Thompson which cause...

  1. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System.

    Science.gov (United States)

    Tay, Daniel Ming Ming; Govindarajan, Kunde Ramamoorthy; Khan, Asif M; Ong, Terenze Yao Rui; Samad, Hanif M; Soh, Wei Wei; Tong, Minyan; Zhang, Fan; Tan, Tin Wee

    2010-10-15

    Effectors of Type III Secretion System (T3SS) play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE) sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i) comprehensive annotation of experimental status of effectors, ii) submission and curation review of records by users of the database, and iii) the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression) are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%). Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors. The T3SEdb represents a platform for inclusion of

  2. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Tong Minyan

    2010-10-01

    Full Text Available Abstract Background Effectors of Type III Secretion System (T3SS play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Results Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i comprehensive annotation of experimental status of effectors, ii submission and curation review of records by users of the database, and iii the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%. Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. Conclusions T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors

  3. Prediction and identification of the effectors of heterotrimeric G proteins in rice (Oryza sativa L.).

    Science.gov (United States)

    Li, Kuan; Xu, Chaoqun; Huang, Jian; Liu, Wei; Zhang, Lina; Wan, Weifeng; Tao, Huan; Li, Ling; Lin, Shoukai; Harrison, Andrew; He, Huaqin

    2017-03-01

    Heterotrimeric G protein signaling cascades are one of the primary metazoan sensing mechanisms linking a cell to environment. However, the number of experimentally identified effectors of G protein in plant is limited. We have therefore studied which tools are best suited for predicting G protein effectors in rice. Here, we compared the predicting performance of four classifiers with eight different encoding schemes on the effectors of G proteins by using 10-fold cross-validation. Four methods were evaluated: random forest, naive Bayes, K-nearest neighbors and support vector machine. We applied these methods to experimentally identified effectors of G proteins and randomly selected non-effector proteins, and tested their sensitivity and specificity. The result showed that random forest classifier with composition of K-spaced amino acid pairs and composition of motif or domain (CKSAAP_PROSITE_200) combination method yielded the best performance, with accuracy and the Mathew's correlation coefficient reaching 74.62% and 0.49, respectively. We have developed G-Effector, an online predictor, which outperforms BLAST, PSI-BLAST and HMMER on predicting the effectors of G proteins. This provided valuable guidance for the researchers to select classifiers combined with different feature selection encoding schemes. We used G-Effector to screen the effectors of G protein in rice, and confirmed the candidate effectors by gene co-expression data. Interestingly, one of the top 15 candidates, which did not appear in the training data set, was validated in a previous research work. Therefore, the candidate effectors list in this article provides both a clue for researchers as to their function and a framework of validation for future experimental work. It is accessible at http://bioinformatics.fafu.edu.cn/geffector. © The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. InstantLabs® Salmonella species detection method: matrix extension.

    Science.gov (United States)

    Sharma, Neil; Bambusch, Lauren; Le, Thu; Morey, Amit; Hayman, Melinda; Montez, Sergio J

    2014-01-01

    The performance of InstantLabs® Salmonella Species Food Safety Kit to detect Salmonella in four food matrixes was validated against the International Organization for Standardization (ISO) reference method 6579:2002. The matrixes (raw ground beef, raw chicken breast, raw ground chicken, and lettuce) were inoculated with low levels of Salmonella (Salmonella. Samples were validated using 375 g (meat) or 25 g (lettuce and poultry) test portions enriched in FASTGRO TM SE at 42±1 °C for 12 h and 10 h, respectively. All samples were confirmed using the ISO reference method, regardless of initial-screen result. The InstantLabs test method was shown to perform as well as or better than the reference method for the detection of Salmonella species in ground beef, chicken breast, ground chicken, and lettuce. Inclusivity and exclusivity testing revealed no false negatives among the 100 Salmonella serovars and no false positives among the 30 non-Salmonella species examined, respectively.

  5. Source attribution of human Salmonella cases in Sweden

    DEFF Research Database (Denmark)

    Wahlström, H.; Andersson, Y.; Plym-Forshell, L.

    2010-01-01

    The aim of this study was to identify the sources of sporadic domestic Salmonella cases in Sweden and to evaluate the usefulness of a source-attribution model in a country in which food animals are virtually free from Salmonella. The model allocates human sporadic domestic Salmonella cases...... to different sources according to distribution of Salmonella subtypes in the different sources. Sporadic domestic human Salmonella cases (n=1086) reported between July 2004 and June 2006 were attributed to nine food-animal and wildlife sources. Of all Salmonella cases, 82% were acquired abroad and 2.9% were...... associated with outbreaks. We estimated that 6.4% were associated with imported food, 0.5% with food-producing animals, and 0.6% with wildlife. Overall, 7.7% could not be attributed to any source. We concluded that domestic food-producing animals are not an important source for Salmonella in humans in Sweden...

  6. Krebs cycle rewired for macrophage and dendritic cell effector functions.

    Science.gov (United States)

    Ryan, Dylan Gerard; O'Neill, Luke A J

    2017-10-01

    The Krebs cycle is an amphibolic pathway operating in the mitochondrial matrix of all eukaryotic organisms. In response to proinflammatory stimuli, macrophages and dendritic cells undergo profound metabolic remodelling to support the biosynthetic and bioenergetic requirements of the cell. Recently, it has been discovered that this metabolic shift also involves the rewiring of the Krebs cycle to regulate cellular metabolic flux and the accumulation of Krebs cycle intermediates, notably, citrate, succinate and fumarate. Interestingly, a new role for Krebs cycle intermediates as signalling molecules and immunomodulators that dictate the inflammatory response has begun to emerge. This review will discuss the latest developments in Krebs cycle rewiring and immune cell effector functions, with a particular focus on the regulation of cytokine production. © 2017 Federation of European Biochemical Societies.

  7. Hanford Waste End Effector Phase I Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatchell, Brian K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mount, Jason C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neill, Kevin J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A.M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-22

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulants to determine pumping rate, dilution factors, and screen fouling rate.

  8. [Transcription activator-like effectors(TALEs)based genome engineering].

    Science.gov (United States)

    Zhao, Mei-Wei; Duan, Cheng-Li; Liu, Jiang

    2013-10-01

    Systematic reverse-engineering of functional genome architecture requires precise modifications of gene sequences and transcription levels. The development and application of transcription activator-like effectors(TALEs) has created a wealth of genome engineering possibilities. TALEs are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas species. The DNA-binding domain of each TALE typically consists of tandem 34-amino acid repeat modules rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Such "genome engineering" has now been established in human cells and a number of model organisms, thus opening the door to better understanding gene function in model organisms, improving traits in crop plants and treating human genetic disorders.

  9. Gibberellin Perception by the Gibberellin Receptor and its Effector Recognition

    Science.gov (United States)

    Hakoshima, Toshio; Murase, Kohji; Hirano, Yoshinori; Sun, Tai-Ping

    Gibberellins control a diverse range of growth and developmental processes in higher plants and have been widely utilized in the agricultural industry. By binding to a nuclear receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1), gibberellins regulate gene expression by promoting degradation of the transcriptional regulator DELLA proteins. The precise manner in which GID1 discriminates and becomes activated by bioactive gibberellins for specific binding to DELLA proteins remains unclear. We present the crystal structure of a ternary complex of Arabidopsis thaliana GID1A, a bioactive gibberellin and the N-terminal DELLA domain of GAI. In this complex, GID1a occludes gibberellin in a deep binding pocket covered by its N-terminal helical switch region, which in turn interacts with the DELLA domain containing DELLA, VHYNP and LExLE motifs. Our results establish a structural model of a plant hormone receptor which is distinct from the hormone-perception mechanism and effector recognition of the known auxin receptors.

  10. Genotyping of polymorphic effectors of Toxoplasma gondii isolates from China

    Directory of Open Access Journals (Sweden)

    Weisheng Cheng

    2017-11-01

    Full Text Available Abstract Background Toxoplasma gondii is an opportunistic protozoan apicomplexan and obligate intracellular parasite that infects a wide range of animals and humans. Rhoptry proteins 5 (ROP5, ROP16, ROP18 and dense granules 15 (GRA15 are the important effectors secreted by T. gondii which link to the strain virulence for mice and modulate the host’s response to the parasite. Little has been known about these molecules as well as GRA3 in type Chinese 1 strains that show polymorphism among strains of archetypical genotypes. This study examined the genetic diversity of these effectors and its correlated virulence in mice among T. gondii isolates from China. Results Twenty-one isolates from stray cats were detected, of which 15 belong to Chinese 1, and 6 to ToxoDB #205. Wh6 isolate, a Chinese 1 strain, has an avirulent phenotype. PCR-RFLP results of ROP5 and ROP18 presented few variations among the strains. Genotyping of GRA15 and ROP16 revealed that all the strains belong to type II allele except Xz7 which carries type I allele. ROP16 amino acid alignment at 503 locus demonstrated that 17 isolates are featured as type I or type III (ROP16I/III, and the other 4 as type II (ROP16II. The strains investigated may be divided into four groups based on GRA3 amino acid alignment, and all isolates of type Chinese 1 belong to the μ-1 allele except Wh6 which is identical to type II strain. Conclusions PCR-RFLP and sequence alignment analyses of ROP5, ROP16, ROP18, GRA3, and GRA15 in T. gondii revealed that strains with the same genotype may have variations in some of their key genes. GRA3 variation exhibited by Wh6 strain may be associated with the difference in phenotype and pathogenesis.

  11. Protection after stroke: cellular effectors of neurovascular unit integrity

    Directory of Open Access Journals (Sweden)

    Rafael Andres Posada-Duque

    2014-08-01

    Full Text Available Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs, which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood flow regulation, oxidative stress, inflammation and the loss of neural connections. Currently, no gold standard treatments are available outside the acute therapeutic window to improve outcome in stroke patients. Some promising candidate targets have been identified for the improvement of long-term recovery after stroke, such as Rho GTPases, cell adhesion proteins, kinases, and phosphatases. Previous studies by our lab indicated that Rho GTPases (Rac and RhoA are involved in both tissue damage and survival, as these proteins are essential for the morphology and movement of neurons, astrocytes and endothelial cells, thus playing a critical role in the balance between cell survival and death. Treatment with a pharmacological inhibitor of RhoA/ROCK blocks the activation of the neurodegeneration cascade. In addition, Rac and synaptic adhesion proteins (p120 catenin and N-catenin play critical roles in protection against cerebral infarction and in recovery by supporting the neurovascular unit and cytoskeletal remodeling activity to maintain the integrity of the brain parenchyma. Interestingly, neuroprotective agents, such as atorvastatin, and CDK5 silencing after cerebral ischemia and in a glutamate-induced excitotoxicity model may act on the same cellular effectors to recover neurovascular unit integrity. Therefore, future efforts must focus on individually targeting the structural and functional roles of each effector of neurovascular unit and the interactions in neural and non-neural cells in the post-ischemic brain and address how to promote the recovery or prevent the loss of homeostasis in the short, medium and long term.

  12. Evaluation of the respiratory route as a viable portal of entry for Salmonella in poultry via intratracheal challenge of Salmonella Enteritidis and Salmonella Typhimurium.

    Science.gov (United States)

    Kallapura, G; Morgan, M J; Pumford, N R; Bielke, L R; Wolfenden, A D; Faulkner, O B; Latorre, J D; Menconi, A; Hernandez-Velasco, X; Kuttappan, V A; Hargis, B M; Tellez, G

    2014-02-01

    Experimental and epidemiological evidence suggests that primary infection of Salmonella is by the oral-fecal route for poultry. However, the airborne transmission of Salmonella and similar enteric zoonotic pathogens has been historically neglected. Increasing evidence of Salmonella bioaerosol generation in production facilities and studies suggesting the vulnerabilities of the avian respiratory architecture together have indicated the possibility of the respiratory system being a potential portal of entry for Salmonella in poultry. Presently, we evaluated this hypothesis through intratracheal (IT) administration of Salmonella Enteritidis and Salmonella Typhimurium, as separate challenges, in a total of 4 independent trials, followed by enumeration of cfu recovery in ceca-cecal tonsils and recovery incidence in liver and spleen. In all trials, both Salmonella Enteritidis and Salmonella Typhimurium, challenged IT colonized cecae to a similar or greater extent than oral administration at identical challenge levels. In most trials, chickens cultured for cfu enumeration from IT-challenged chicks at same dose as orally challenged, resulted in an increase of 1.5 log higher Salmonella Enteritidis from ceca-cecal tonsils and a much lower dose IT of Salmonella Enteritidis could colonize ceca to the same extent than a higher oral challenge. This trend of increased cecal colonization due to IT challenge was observed with all trails involving week-old birds (experiment 2 and 3), which are widely considered to be more difficult to infect via the oral route. Liver-spleen incidence data showed 33% of liver and spleen samples to be positive for Salmonella Enteritidis administered IT (10(6) cfu/chick), compared with 0% when administered orally (experiment 2, trial 1). Collectively, these data suggest that the respiratory tract may be a largely overlooked portal of entry for Salmonella infections in chickens.

  13. Ultraviolet (UV-C) inactivation of Enterococcus faecium, Salmonella choleraesuis and Salmonella typhimurium in porcine plasma

    OpenAIRE

    Bl?zquez, Elena; Rodr?guez, Carmen; R?denas, Jes?s; P?rez de Rozas, Ana; Segal?s, Joaquim; Pujols, Joan; Polo, Javier

    2017-01-01

    The objective of this study was to assess the effectiveness of an ultraviolet (UV-C, 254 nm) irradiation system on reducing the load of Salmonella typhimurium (S. typhimurium), Salmonella choleraesuis (S. choleraesuis) resistant to streptomycin and Enterococcus faecium (E. faecium) inoculated in sterile porcine plasma and then subjected to different UV-C irradiation doses (750, 1500, 3000, 6000 and 9000 J/L) using a pilot plant UV-C device working under turbulent flow. Results indicated that ...

  14. Salmonella-TEK, a rapid screening method for Salmonella species in food.

    OpenAIRE

    Van Poucke, L S

    1990-01-01

    A micro-enzyme-linked immunosorbent assay (micro-ELISA) using the Salmonella-TEK screen kit was tested for the detection of Salmonella spp. in pure cultures as well as in 30 artificially contaminated food samples and in 45 naturally contaminated food samples. Different raw, fleshy foods and processed foods were used as test products. The artificially contaminated minced meat samples were preenriched in buffered peptone water, and after incubation, different selective enrichment broths were te...

  15. Elucidating the role of effectors in plant-fungal interactions: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    DILANTHA eFERNANDO

    2016-04-01

    Full Text Available Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as ‘effectors’ is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function.

  16. Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Guo-Feng Jiang

    2013-09-01

    Full Text Available It is well known that the type III secretion system (T3SS and type III (T3 effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2 which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2 is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME. Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.

  17. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants

    Science.gov (United States)

    Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain very large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) ...

  18. Characterization of naïve, memory and effector T cells in progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Romme; Ratzer, Rikke; Börnsen, Lars

    2017-01-01

    We characterized naïve, central memory (CM), effector memory (EM) and terminally differentiated effector memory (TEMRA) CD4+ and CD8+ T cells and their expression of CD49d and CD26 in peripheral blood in patients with multiple sclerosis (MS) and healthy controls. CD26+ CD28+ CD4+ TEMRA T cells were...

  19. Salmonella bacteriuria in a cat fed a Salmonella-contaminated diet.

    Science.gov (United States)

    Fauth, Erika; Freeman, Lisa M; Cornjeo, Lilian; Markovich, Jessica E; Janecko, Nicol; Weese, J Scott

    2015-09-01

    A 9-year-old castrated male domestic shorthair cat was evaluated because of hematuria and weight loss after an 8-year history of intermittent signs of feline lower urinary tract disease (FLUTD). A complete diet history revealed that the cat was eating a commercial diet that does not undergo the same processing procedures as most pet foods and so might be at increased risk for bacterial contamination owing to a nonstandard industry cooking procedure. The cat had a history consistent with FLUTD, but bacteriologic culture of the urine revealed Salmonella organisms. Additional analysis revealed Salmonella enterica serotype I:ROUGH-O:g,m,s:- in samples of urine and feces as well as Salmonella enterica serotype Johannesburg and Salmonella enterica serotype Senftenberg in the diet. The cat responded positively to antimicrobial treatment for the Salmonella bacteriuria as well as to dietary and environmental management for the clinical signs associated with FLUTD. Findings in this case highlighted an additional health consequence associated with ingestion of Salmonella-contaminated food. Such contamination is of particular concern with raw meat-based diets or diets that have not undergone standard industry cooking practices. Veterinarians should obtain a diet history for every companion animal during every evaluation to help with diagnosis and optimal treatment.

  20. First identification of Salmonella Urbana and Salmonella Ouakam in humans in Africa.

    Science.gov (United States)

    Saba, Courage Kosi Setsoafia; Escudero, Jose Antonio; Herrera-Leon, Silvia; Porrero, Maria Concepcion; Suarez, Monica; Dominguez, Lucas; Demuyakor, Bawa; Gonzalez-Zorn, Bruno

    2013-10-15

    Salmonella infections are increasing worldwide, but there are few reports on Salmonella surveillance in African countries and other developing countries. This has made it difficult to estimate the actual burden of salmonellosis, especially in Africa. This study was conducted in a neglected Northern Region of Ghana where there are no previous data on Salmonella serotypes. Standard microbiological tests were used for isolation, identification, and serotyping. Micro-dilution was used for the antimicrobial susceptibility tests. Four serotypes of Salmonella were identified: S. Urbana, S. Ouakam, S. Senftenberg, and S. Stanleyville. All the serotypes were susceptible to the 20 antibiotics used in the susceptibility test. S. Urbana and S. Ouakam were identified in humans for the first time in Africa. This study may serve as a baseline study for future investigations on Salmonella in the region and may assist public health officials to take the appropriate measures in case of a disease outbreak caused by Salmonella in the area. The article may also give health officials a fair idea of the resistance level of these serotypes in the region.

  1. Salmonella enteritidis and other Salmonella in laying hens and eggs from flocks with Salmonella in their environment.

    Science.gov (United States)

    Poppe, C; Johnson, R P; Forsberg, C M; Irwin, R J

    1992-01-01

    Seven Canadian layer flocks with Salmonella enteritidis in their environment were investigated to determine the numbers of hens infected with S. enteritidis, the localization of S. enteritidis in organs of infected hens and the numbers of S. enteritidis-infected eggs produced by two affected flocks. By a microagglutination test (MAT) using S. pullorum antigens, these flocks had more seropositive hens (mean 51.9 +/- 16.9%) than two Salmonella-free flocks (mean 13.0 +/- 4.2%). Culture of tissues of 580 hens (433 seropositive) from the seven flocks detected 26 (4.5%) S. enteritidis-infected hens from two flocks. In one flock, 2/150 hens were infected with S. enteritidis phage type (PT) 8, which was confined to the ceca, and no Salmonella spp. were isolated from 2520 eggs (one day's lay). In the second flock, where 24/150 hens were infected with S. enteritidis PT13, extraintestinal infection was found in nine hens and involved the ovaries and/or oviduct in two hens. Salmonella enteritidis PT13 was isolated from one sample of egg contents and from one sample of cracked shells from among 14,040 eggs (one day's lay) from this flock. The overall prevalence of S. enteritidis-contaminated eggs from the two flocks with infected hens was less than 0.06%. Other Salmonella spp. isolated were S. heidelberg from 58 hens (10%), and S. hadar, S. mbandaka and S. typhimurium from one hen (0.2%) each. The MAT with antigens of S. pullorum had a sensitivity of 81% and a specificity of 24% for detecting S. enteritidis-infected hens.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1423059

  2. Diverse targets of phytoplasma effectors: from plant development to defense against insects.

    Science.gov (United States)

    Sugio, Akiko; MacLean, Allyson M; Kingdom, Heather N; Grieve, Victoria M; Manimekalai, R; Hogenhout, Saskia A

    2011-01-01

    Phytoplasma research begins to bloom (75). Indeed, this review shows that substantial progress has been made with the identification of phytoplasma effectors that alter flower development, induce witches' broom, affect leaf shape, and modify plant-insect interactions. Phytoplasmas have a unique life cycle among pathogens, as they invade organisms of two distinct kingdoms, namely plants (Plantae) and insects (Animalia), and replicate intracellularly in both. Phytoplasmas release effectors into host cells of plants and insects to target host molecules, and in plants these effectors unload from the phloem to access distal tissues and alter basic developmental processes. The effectors provide phytoplasmas with a fitness advantage by modulating their plant and insect hosts. We expect that further research on the functional characterization of phytoplasma effectors will generate new knowledge that is relevant to fundamental aspects of plant sciences and entomology, and for agriculture by improving yields of crops affected by phytoplasma diseases. Copyright © 2011 by Annual Reviews. All rights reserved.

  3. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility.

    Science.gov (United States)

    Hutin, Mathilde; Pérez-Quintero, Alvaro L; Lopez, Camilo; Szurek, Boris

    2015-01-01

    Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resistance. One mechanism is to avoid the binding of TAL effectors by mutations of their DNA binding sites, resulting in resistance by loss-of-susceptibility. This article reviews our current knowledge of the susceptibility hubs targeted by Xanthomonas TAL effectors, possible evolutionary scenarios for plants to combat the pathogen with loss-of-function alleles, and how this knowledge can be used overall to develop new pathogen-informed breeding strategies and improve crop resistance.

  4. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility

    Directory of Open Access Journals (Sweden)

    Mathilde eHutin

    2015-07-01

    Full Text Available Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a novel programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resistance. One mechanism is to avoid the binding of TAL effectors by mutations of their DNA binding sites, resulting in resistance by loss-of-susceptibility. This article reviews our current knowledge of the susceptibility hubs targeted by Xanthomonas TAL effectors, possible evolutionary scenarios for plants to combat the pathogen with loss-of-function alleles, and how this knowledge can be used overall to develop new pathogen-informed breeding strategies and improve crop resistance.

  5. Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice

    Science.gov (United States)

    Zhao, Xinxin; Dai, Qinlong; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Wang, Mingshu; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Cheng, Anchun

    2017-01-01

    Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBAD rfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella

  6. Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice

    Directory of Open Access Journals (Sweden)

    Xinxin Zhao

    2017-09-01

    Full Text Available Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBADrfbN with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11 exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11 expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11 expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11, SLT26 (pCZ11, and SLT27 (pCZ11, respectively. Groups of BALB/c mice (12 mice/group were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or

  7. The Salmonella enterica Pan-genome

    NARCIS (Netherlands)

    Jacobsen, A.; Hendriksen, R. S.; Aaresturp, F. M.; Ussery, D. W.; Friis, C.

    2011-01-01

    Salmonella enterica is divided into four subspecies containing a large number of different serovars, several of which are important zoonotic pathogens and some show a high degree of host specificity or host preference. We compare 45 sequenced S. enterica genomes that are publicly available (22

  8. Serovars of Salmonella from captive reptiles

    DEFF Research Database (Denmark)

    Pedersen, Karl; Lassen-Nielsen, Anne Marie; Nordentoft, Steen

    2009-01-01

    The distribution on serovars of 60 Salmonella isolates from reptiles kept in captivity in Denmark during the period 1995–2006 was investigated. The isolates were all recovered from clinical specimens submitted to the National Veterinary Institute. A majority of the samples were from reptiles...

  9. Attachment of Salmonella spp. to pork meat

    DEFF Research Database (Denmark)

    Hansen, Trine; Riber, Leise; Löfström, Charlotta

    2011-01-01

    Five strains of Salmonella, one wildtype and four knock-out mutants (the prg, flhDC, yhjH and fliC genes) were investigated based on their probability to attach and subsequently detach from a surface of pork fillet. The attachment followed by detachment was measured and modelled for two different...

  10. Thirteenth CRL-Salmonella interlaboratory comparison study on typing of Salmonella spp. : Dertiende CRL-Salmonella ringonderzoek voor de typering van Salmonella spp.

    NARCIS (Netherlands)

    Berk PA; Maas HME; de Pinna E; Mooijman KA; LZO; cib

    2010-01-01

    De Nationale Referentie Laboratoria (NRL's) van de 27 Europese lidstaten scoorden goed bij de kwaliteitscontrole op Salmonella-typering in 2008. Vier laboratoria hadden hiervoor een herkansing nodig. Daarnaast is een analyse van alle NRL's als groep uitgevoerd, waaruit bleek dat zij 97 %

  11. Incidence and antimicrobial susceptibility pattern of salmonella ...

    African Journals Online (AJOL)

    A study was carried out to investigate the incidence of Salmonella species among 300 children using stool samples from six hospitals in the metropolitan Kano. The organisms were investigated using cultural, serological biochemical characterization and sensitivity to some antimicrobial agents. The incidence of the bacteria ...

  12. Colicinogeny in Salmonella serovars isolated in Brazil

    Directory of Open Access Journals (Sweden)

    Leila Carvalho Campos

    1988-06-01

    Full Text Available A study of colicinogeny was made in 748 strains of Salmonella (97 serovars isolated from different sources; human (291, animal (119, environmental (141, food (102 and animal feed (95. Colicin production was detected in 64 strains (8.6%, particularly isolated from foods (30.4%. Col. E1 (53 and Ia (44 were the most frequently observed, especially in S. agona for environment and food sources. Col V production was identified in 5 strains of S. typhimurium within 8 producer cultures isolated from humans. Its relationship with the sources and serovars of Salmonella are discussed.Investigou-se a produção de colicina em 748 amostras de Salmonella (97 sorovares advindas de díferentes fontes: humana (291, animal (119, ambiental (141, de alimentos (102 e rações (95. Detectaram-se 64 amostras (8,6% colicinogênicas, particularmente isoladas de alimentos (30,4%. ColE1 (53 e Ia (44 foram as mais freqüentes, especialmente no sorovar S, agona, de origem ambiental e de alimentos. Identificou-se também a produção de col V em 5 amostras de S. typhimurium dentre 8 culturas produtoras de origem humana. Discute-se a relação entre a capacidade colicinogênica e as fontes e sorovares de Salmonella.

  13. Sixteenth EURL-Salmonella interlaboratory comparison study on typing of Salmonella spp. : Zestiende EURL-Salmonella ringonderzoek voor de typering van Salmonella spp.

    NARCIS (Netherlands)

    Jacobs-Reitsma WF; Pol-Hofstad IE; Maas HME; de Pinna E; Mooijman KA; LZO; cib

    2012-01-01

    De 28 Nationale Referentie Laboratoria (NRL's) van de 27 Europese lidstaten scoorden in 2011 goed bij de kwaliteitscontrole om Salmonella te typeren. Twee laboratoria hadden hiervoor een herkansing nodig. Alle NRL's samen konden gemiddeld genomen aan 97 procent van de geteste stammen de juiste naam

  14. Experimental Salmonella typhimurium infections in rats. I

    DEFF Research Database (Denmark)

    Hougen, H P; Jensen, E T; Klausen, B

    1989-01-01

    The course of experimentally induced Salmonella typhimurium infection was studied in three groups of inbred LEW rats: homozygous +/+, athymic rnu/rnu and isogeneic thymus-grafted rnu/rnu rats. In the first experiment the animals were inoculated intraperitoneally with 10(8) bacteria and all animals...

  15. Salmonella typhi time to change empiric treatment

    DEFF Research Database (Denmark)

    Gade, C.; Engberg, J.; Weis, N.

    2008-01-01

    In the present case series report we describe seven recent cases of typhoid fever. All the patients were travellers returning from Pakistan, where typhoid is endemic. Salmonella typhi isolated from the patients by blood culture were reported as intermediary susceptible to fluoroquinolones in six...

  16. Antimicrobial susceptibility of Salmonella enterica strains isolated ...

    African Journals Online (AJOL)

    SARAH

    2015-11-30

    Nov 30, 2015 ... ABSTRACT. Objectives: The aim of this study was to determine the prevalence and antibiotic resistance profile of. Salmonella enterica isolated from raw beef, mutton and intestines sold in Ouagadougou; Burkina Faso. Methodology and Results: A total of 450 samples from raw meat of beef (n=175), mutton ...

  17. Inhibition of Escherichia Coli, Salmonella and Staphylococcus ...

    African Journals Online (AJOL)

    Escherichia coli O157:H7, Salmonella typhimurium and Staphylococcus. aureus are of great concern to the food industry, especially in foods stored under refrigerated conditions where, unlike most food-borne pathogens are able to multiply. This investigation was conducted to study the inhibitory effect of some spice ...

  18. Quinolone resistance in Salmonella enterica serovar Typhi ...

    African Journals Online (AJOL)

    Introduction. The human restricted bacteria, Salmonella enterica serovar. Typhi is the major cause of typhoid fever (or enteric fever), a characteristic severe systemic illness [1]. In 2010, typhoid fever accounted for an estimated global burden of. 27 million new cases and 200,000 deaths [2]. For over two decades, S. enterica ...

  19. Effect of Salmonella thyphymurium Infection on the ...

    African Journals Online (AJOL)

    Danfodiyo University Sokoto. They were fed on wheat bran, bean offal, cowpea hay, while water was provided ad libitum. Before the commencement of the experiment, .... Agerso H., Friis C., and Nielsen J.P. (2000). Pharmacokinetics and tissue distribution of amoxicillin in healthy and salmonella typhimurium infected pigs.

  20. Persistence of salmonella Typhimurium in Nopal

    Science.gov (United States)

    Having documented information available on the capability of Salmonella to remain in the cladode tissue it is important to understand the role of nopal on the lifecycle of enteropathogenic bacteria in humans, as well as for management and control programs of theses pathogens in plants. Because of th...

  1. Persistence of salmonella typhimurium in nopal cladodes

    Science.gov (United States)

    Fresh produce associated outbreaks have increased in the last few years. E.coli O157:H7 and Salmonella have been causative agents of infection in these outbreaks. Fresh produce is consumed raw, and in the absence of terminal kill treatment, it is imperative to understand sources of contamination o...

  2. Virulence factors of Salmonella enterica serovar Enteritidis

    NARCIS (Netherlands)

    Zhao, Y.

    2002-01-01

    Salmonella enterica serovar Enteritidis is one of the major etiologic agents of human food-borne gastrointestinal infections. Efforts to control the number of serovar Enteritidis infections have had a limited success, in part because of the lack of knowledge of the molecular mechanisms that

  3. Salmonella osteomyelitis by sickle cell anemia

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, H.; Tran, V.T.; Boeckmann, U.

    1985-10-01

    Case report of a 28 year old black sickle cell anemia patient with salmonella osteomyelitis of the radius. Aside from sickle cell anemia patients this skeletal complication of enteric salmonellosis is an extreme rarity. Description of the typical roentgenological features includes intracortical fissures and sequestration.

  4. Salmonella virulence plasmid: pathogenesis and ecology.

    Science.gov (United States)

    Silva, Claudia; Puente, José Luis; Calva, Edmundo

    2017-06-22

    A current view on the role of the Salmonella virulence plasmid in the pathogenesis of animal and human hosts is discussed; including the possible relevance in secondary ecological niches. Various strategies towards further studies in this respect are proposed within the One Health Concept. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Water Frogs, Aquariums, and Salmonella -- Oh My!

    Centers for Disease Control (CDC) Podcasts

    2009-12-09

    This CDC Kidtastics podcast discusses how people can get Salmonella from water frogs and aquariums.  Created: 12/9/2009 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 12/9/2009.

  6. Sixteenth EURL-Salmonella interlaboratory comparison study on typing of Salmonella spp. : Zestiende EURL-Salmonella ringonderzoek voor de typering van Salmonella spp.

    NARCIS (Netherlands)

    Jacobs-Reitsma WF; Pol-Hofstad IE; Maas HME; de Pinna E; Mooijman KA; LZO; cib

    2012-01-01

    De 28 Nationale Referentie Laboratoria (NRL's) van de 27 Europese lidstaten scoorden in 2011 goed bij de kwaliteitscontrole om Salmonella te typeren. Twee laboratoria hadden hiervoor een herkansing nodig. Alle NRL's samen konden gemiddeld genomen aan 97 procent van de geteste stammen de

  7. The genome sequence and effector complement of the flax rust pathogen Melampsora lini.

    Science.gov (United States)

    Nemri, Adnane; Saunders, Diane G O; Anderson, Claire; Upadhyaya, Narayana M; Win, Joe; Lawrence, Gregory J; Jones, David A; Kamoun, Sophien; Ellis, Jeffrey G; Dodds, Peter N

    2014-01-01

    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their

  8. The genome sequence and effector complement of the flax rust pathogen Melampsora lini

    Directory of Open Access Journals (Sweden)

    Adnane eNemri

    2014-03-01

    Full Text Available Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp. Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimise parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analysed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote

  9. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    Directory of Open Access Journals (Sweden)

    Nam-Soo Jwa

    2017-09-01

    Full Text Available Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP-triggered immunity (PTI and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  10. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    Science.gov (United States)

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  11. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.

    Science.gov (United States)

    Saunders, Diane G O; Win, Joe; Cano, Liliana M; Szabo, Les J; Kamoun, Sophien; Raffaele, Sylvain

    2012-01-01

    Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.

  12. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.

    Directory of Open Access Journals (Sweden)

    Diane G O Saunders

    Full Text Available Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i contain a secretion signal, (ii are encoded by in planta induced genes, (iii have similarity to haustorial proteins, (iv are small and cysteine rich, (v contain a known effector motif or a nuclear localization signal, (vi are encoded by genes with long intergenic regions, (vii contain internal repeats, and (viii do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.

  13. Nontyphoid Salmonella Infection: Microbiology, Clinical Features, and Antimicrobial Therapy

    Directory of Open Access Journals (Sweden)

    Hung-Ming Chen

    2013-06-01

    Full Text Available Nontyphoid Salmonella is the most common bacterial pathogen causing gastrointestinal infection worldwide. Most nontyphoid Salmonella infection is limited to uncomplicated gastroenteritis that seldom requires antimicrobial treatment. Nevertheless, invasive infections, such as bacteremia, osteomyelitis, and meningitis, may occur and require antimicrobial therapy. Continuous genetic and genomic evolution in Salmonella leading to increased virulence and resistance to multiple drugs are of significant public health concern. Two major changes in the epidemiology of nontyphoid salmonellosis in Europe and in the USA occurred in the second half of the 20th century: the emergence of foodborne human infections caused by Salmonella enterica serotype Enteriditis and by multidrug-resistant strains of Salmonella enterica serotype Typhimurium. In the 21st century, a worsening situation is the increasing resistance to fluoroquinolones and third-generation cephalosporins in nontyphoid Salmonella. Clinical isolates showing carbapenem resistance also have been identified. Although antimicrobial therapy is usually not indicated for uncomplicated Salmonella gastroenteritis, recent studies indicated that a short-course ceftriaxone therapy (3–5 days for patients with severe gastroenteritis would lead to a faster clinical recovery. Continuous surveillance of Salmonella in both humans and animals is mandatory. A better understanding of the mechanisms that lead to the emergence of antimicrobial resistance in Salmonella may help in the devising of better interventional strategies to reduce the spread of resistant Salmonella between humans and reservoirs along the food chain.

  14. CHROMOSOME TRANSFER KINETICS OF SALMONELLA HFR STRAINS.

    Science.gov (United States)

    JOHNSON, E M; FALKOW, S; BARON, L S

    1964-08-01

    Johnson, E. M. (Walter Reed Army Institute of Research, Washington, D.C.), Stanley Falkow, and L. S. Baron. Chromosome transfer kinetics of Salmonella Hfr strains. J. Bacteriol. 88:395-400. 1964.-The kinetics of chromosome transfer of an Hfr strain of Salmonella typhosa and an Hfr strain of S. typhimurium were examined in interrupted matings with multiply auxotrophic S. typhimurium recipients. The S. typhosa Hfr, TD-7, was found to transfer the pro-A, met-A, arg (A, C, F, or H), and ile markers at 8, 32, 36, and 51 min, respectively, after contact with the recipient strain. Comparison of these entry times with those of the analogous Escherichia coli Hfr P4X-6 for the same markers showed the gene order to be identical. However, the TD-7 entry times were considerably extended over those of P4X-6, which transfers these markers of E. coli F(-) strains at, respectively, 5, 20, 22.5, and 28 min. A similar extension of the entry times was noted with the S. typhimurium Hfr, SR-305, which transfers the markers in the reverse order, ile-met-A-pro-A, at 3 to 4, 18, and 46 min, respectively. Examination of P4X-6/Salmonella Hfr entry time ratios showed them to be constant at 0.63 for the earlier markers transferred by both TD-7 and SR-305. These data suggest that the physical length of the Salmonella chromosome is the same as that of E. coli, and that the rate of chromosome transfer of the Salmonella Hfr strains to S. typhimurium recipients is only 0.63 that of P4X-6 to E. coli F(-) strains under the same physical conditions.

  15. Thermal inactivation of Salmonella spp. in pork burger patties.

    Science.gov (United States)

    Gurman, P M; Ross, T; Holds, G L; Jarrett, R G; Kiermeier, A

    2016-02-16

    Predictive models, to estimate the reduction in Escherichia coli O157:H7 concentration in beef burgers, have been developed to inform risk management decisions; no analogous model exists for Salmonella spp. in pork burgers. In this study, "Extra Lean" and "Regular" fat pork minces were inoculated with Salmonella spp. (Salmonella 4,[5],12,i:-, Salmonella Senftenberg and Salmonella Typhimurium) and formed into pork burger patties. Patties were cooked on an electric skillet (to imitate home cooking) to one of seven internal temperatures (46, 49, 52, 55, 58, 61, 64 °C) and Salmonella enumerated. A generalised linear logistic regression model was used to develop a predictive model for the Salmonella concentration based on the internal endpoint temperature. It was estimated that in pork mince with a fat content of 6.1%, Salmonella survival will be decreased by -0.2407log10 CFU/g for a 1 °C increase in internal endpoint temperature, with a 5-log10 reduction in Salmonella concentration estimated to occur when the geometric centre temperature reaches 63 °C. The fat content influenced the rate of Salmonella inactivation (P=0.043), with Salmonella survival increasing as fat content increased, though this effect became negligible as the temperature approached 62 °C. Fat content increased the time required for patties to achieve a specified internal temperature (P=0.0106 and 0.0309 for linear and quadratic terms respectively), indicating that reduced fat pork mince may reduce the risk of salmonellosis from consumption of pork burgers. Salmonella serovar did not significantly affect the model intercepts (P=0.86) or slopes (P=0.10) of the fitted logistic curve. This predictive model can be applied to estimate the reduction in Salmonella in pork burgers after cooking to a specific endpoint temperature and hence to assess food safety risk. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  16. Sequential Delivery of Host-Induced Virulence Effectors by Appressoria and Intracellular Hyphae of the Phytopathogen Colletotrichum higginsianum

    Science.gov (United States)

    Kleemann, Jochen; Neumann, Ulla; van Themaat, Emiel Ver Loren; van der Does, H. Charlotte; Hacquard, Stéphane; Stüber, Kurt; Will, Isa; Schmalenbach, Wolfgang; Schmelzer, Elmon; O'Connell, Richard J.

    2012-01-01

    Phytopathogens secrete effector proteins to manipulate their hosts for effective colonization. Hemibiotrophic fungi must maintain host viability during initial biotrophic growth and elicit host death for subsequent necrotrophic growth. To identify effectors mediating these opposing processes, we deeply sequenced the transcriptome of Colletotrichum higginsianum infecting Arabidopsis. Most effector genes are host-induced and expressed in consecutive waves associated with pathogenic transitions, indicating distinct effector suites are deployed at each stage. Using fluorescent protein tagging and transmission electron microscopy-immunogold labelling, we found effectors localised to stage-specific compartments at the host-pathogen interface. In particular, we show effectors are focally secreted from appressorial penetration pores before host invasion, revealing new levels of functional complexity for this fungal organ. Furthermore, we demonstrate that antagonistic effectors either induce or suppress plant cell death. Based on these results we conclude that hemibiotrophy in Colletotrichum is orchestrated through the coordinated expression of antagonistic effectors supporting either cell viability or cell death. PMID:22496661

  17. Structural insight into effector proteins of Gram‐negative bacterial pathogens that modulate the phosphoproteome of their host

    National Research Council Canada - National Science Library

    Grishin, Andrey M; Beyrakhova, Ksenia A; Cygler, Miroslaw

    2015-01-01

    ... and ∼130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors...

  18. 76 FR 41157 - Guidance for Industry: Questions and Answers Regarding the Final Rule, Prevention of Salmonella...

    Science.gov (United States)

    2011-07-13

    ... Answers Regarding the Final Rule, Prevention of Salmonella Enteritidis in Shell Eggs During Production... Salmonella Enteritidis in Shell Eggs During Production, Storage, and Transportation'' (the draft guidance... rule entitled ``Prevention of Salmonella Enteritidis in Shell Eggs During Production, Storage, and...

  19. Development of a novel hexa-plex PCR method for identification and serotyping of Salmonella species.

    Science.gov (United States)

    Li, Ruichao; Wang, Yang; Shen, Jianzhong; Wu, Congming

    2014-01-01

    Salmonella is one of the most important foodborne pathogens, which causes a huge economic burden worldwide. To detect Salmonella rapidly is very meaningful in preventing salmonellosis and decreasing economic losses. Currently, isolation of Salmonella is confirmed by biochemical and serobased serotyping methods, which are time consuming, labor intensive, and complicated. To solve this problem, a hexa-plex polymerase chain reaction (PCR) method was developed using comparative genomics analysis and multiplex PCR technology to detect Salmonella and Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Agona, Salmonella Choleraesuis, and Salmonella Pullorum simultaneously. The accuracy of this method was tested by a collection of 142 Salmonella. Furthermore, the strategy described in this article to mine serovar-specific fragments for Salmonella could be used to find specific fragments for other Salmonella serotypes and bacteria. The combination of this strategy and multiplex PCR is promising in the rapid identification of foodborne pathogens.

  20. Design schemes and comparison research of the end-effector of large space manipulator

    Science.gov (United States)

    Feng, Fei; Liu, Yiwei; Liu, Hong; Cai, Hegao

    2012-07-01

    The end-effector of the large space manipulator is employed to assist the manipulator in handling and manipulating large payloads on orbit. Currently, there are few researches about the end-effector, and the existing end-effectors have some disadvantages, such as poor misalignment tolerance capability and complex mechanical components. According to the end positioning errors and the residual vibration characters of the large space manipulators, two basic performance requirements of the end-effector which include the capabilities of misalignment tolerance and soft capture are proposed. And the end-effector should accommodate the following misalignments of the mechanical interface. The translation misalignments in axial and radial directions and the angular misalignments in roll, pitch and yaw are ±100 mm, 100 mm, ±10o, ±15o, ±15o, respectively. Seven end-effector schemes are presented and the capabilities of misalignment tolerance and soft capture are analyzed elementarily. The three fingers-three petals end-effector and the steel cable-snared end-effector are the most feasible schemes among the seven schemes, and they are designed in detail. The capabilities of misalignment tolerance and soft capture are validated and evaluated, through the experiment on the micro-gravity simulating device and the dynamic analysis in ADAMS software. The results show that the misalignment tolerance capabilities of these two schemes could satisfy the requirement. And the translation misalignment tolerances in axial and radial directions and the angular misalignment tolerances in roll, pitch and yaw of the steel cable-snared end-effector are 30mm, 15mm, 6o, 3o and 3o larger than those of the three fingers-three petals end-effector, respectively. And the contact force of the steel cable-snared end-effector is smaller and smoother than that of the three fingers-three petals end-effector. The end-effector schemes and research methods are beneficial to the developments of the large

  1. Expression of the Salmonella Spp. Virulence Factor SifA in Yeast Alters Rho1 Activity on Peroxisomes

    Science.gov (United States)

    Vinh, Dani B. N.; Ko, Dennis C.; Rachubinski, Richard A.; Aitchison, John D.

    2010-01-01

    The Salmonella typhimurium effector protein SifA regulates the assembly and tubulation of the Salmonella phagosome. SifA localizes to the phagosome and interacts with the membrane via its prenylated tail. SifA is a structural homologue of another bacterial effector that acts as a GTP-exchange factor for Rho family GTPases and can bind GDP-RhoA. When coexpressed with a bacterial lipase that is activated by RhoA, SifA can induce tubulation of mammalian endosomes. In an effort to develop a genetic system to study SifA function, we expressed SifA and characterized its activity in yeast. GFP-SifA predominantly localized to yeast peroxisomal membranes. Under peroxisome-inducing conditions, GFP-SifA reduced the number of free peroxisomes and promoted the formation of large peroxisomes with membrane invaginations. GFP-SifA activity depended on the recruitment to peroxisomes of wild-type Rho1p and Pex25p, a receptor for Rho1p. GFP-SifA could also rescue the actin organization defects in pex25Δ and rho1 mutants, suggesting that SifA may recruit and potentiate Rho1p activity. We reexamined the distribution of GFP-SifA in mammalian cells and found the majority colocalizing with LAMP1-positive compartment and not with the peroxisomal marker PMP70. Together, these data suggest that SifA may use a similar mode of action via Rho proteins to alter yeast peroxisomal and mammalian endosomal membranes. Further definition of SifA activity on yeast peroxisomes could provide more insight into its role in regulating host membrane dynamics and small GTPases. PMID:20739463

  2. The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly

    NARCIS (Netherlands)

    Houterman, P.M.; Ma, L.; van Ooijen, G.; de Vroomen, M.J.; Cornelissen, B.J.C.; Takken, F.L.W.; Rep, M.

    2009-01-01

    To promote host colonization, many plant pathogens secrete effector proteins that either suppress or counteract host defences. However, when these effectors are recognized by the host's innate immune system, they trigger resistance rather than promoting virulence. Effectors are therefore key

  3. Deregulation of Rab and Rab effector genes in bladder cancer.

    Directory of Open Access Journals (Sweden)

    Joel R Ho

    Full Text Available Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1 were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder

  4. Deregulation of Rab and Rab Effector Genes in Bladder Cancer

    Science.gov (United States)

    Ho, Joel R.; Chapeaublanc, Elodie; Kirkwood, Lisa; Nicolle, Remy; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Southgate, Jennifer; Radvanyi, François; Goud, Bruno

    2012-01-01

    Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis

  5. Comparing human-Salmonella with plant-Salmonella protein-protein interaction predictions

    Directory of Open Access Journals (Sweden)

    Sylvia eSchleker

    2015-01-01

    Full Text Available Salmonellosis is the most frequent food-borne disease world-wide and can be transmitted to humans by a variety of routes, especially via animal and plant products. Salmonella bacteria are believed to use not only animal and human but also plant hosts despite their evolutionary distance. This raises the question if Salmonella employs similar mechanisms in infection of these diverse hosts. Given that most of our understanding comes from its interaction with human hosts, we investigate here to what degree knowledge of Salmonella-human interactions can be transferred to the Salmonella-plant system. Reviewed are recent publications on analysis and prediction of Salmonella-host interactomes. Putative protein-protein interactions (PPIs between Salmonella and its human and Arabidopsis hosts were retrieved utilizing purely interolog-based approaches in which predictions were inferred based on available sequence and domain information of known PPIs, and machine learning approaches that integrate a larger set of useful information from different sources. Transfer learning is an especially suitable machine learning technique to predict plant host targets from the knowledge of human host targets. A comparison of the prediction results with transcriptomic data shows a clear overlap between the host proteins predicted to be targeted by PPIs and their gene ontology enrichment in both host species and regulation of gene expression. In particular, the cellular processes Salmonella interferes with in plants and humans are catabolic processes. The details of how these processes are targeted, however, are quite different between the two organisms, as expected based on their evolutionary and habitat differences. Possible implications of this observation on evolution of host-pathogen communication are discussed.

  6. Recent Trends in Salmonella Outbreaks and Emerging Technology for Biocontrol of Salmonella Using Phages in Foods: A Review.

    Science.gov (United States)

    Oh, Jun-Hyun; Park, Mi-Kyung

    2017-12-28

    Salmonella is one of the principal causes of foodborne outbreaks. As traditional control methods have shown less efficacy against emerging Salmonella serotypes or antimicrobialresistant Salmonella , new approaches have been attempted. The use of lytic phages for the biocontrol of Salmonella in the food industry has become an attractive method owing to the many advantages offered by the use of phages as biocontrol agents. Phages are natural alternatives to traditional antimicrobial agents; they have proven effective in the control of bacterial pathogens in the food industry, which has led to the development of different phage products. The treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases, and ultimately promotes safe environments for animal and plant food production, processing, and handling. After an extensive investigation of the current literature, this review focuses predominantly on the efficacy of phages for the successful control of Salmonella spp. in foods. This review also addresses the current knowledge on the pathogenic characteristics of Salmonella , the prevalence of emerging Salmonella outbreaks, the isolation and characterization of Salmonella -specific phages, the effectiveness of Salmonella -specific phages as biocontrol agents, and the prospective use of Salmonella -specific phages in the food industry.

  7. Priming of Salmonella enterica serovar typhi-specific CD8(+ T cells by suicide dendritic cell cross-presentation in humans.

    Directory of Open Access Journals (Sweden)

    Rosângela Salerno-Goncalves

    2009-06-01

    Full Text Available The emergence of antibiotic-resistant strains of Salmonella enterica serovar Typhi (S. Typhi, the etiologic agent of typhoid fever, has aggravated an already important public health problem and added new urgency to the development of more effective typhoid vaccines. To this end it is critical to better understand the induction of immunity to S. Typhi. CD8(+ T cells are likely to play an important role in host defense against S. Typhi by several effector mechanisms, including killing of infected cells and IFN-gamma secretion. However, how S. Typhi regulates the development of specific CD8(+ responses in humans remains unclear. Recent studies in mice have shown that dendritic cells (DC can either directly (upon uptake and processing of Salmonella or indirectly (by bystander mechanisms elicit Salmonella-specific CD8(+ T cells.We report here that upon infection with live S. Typhi, human DC produced high levels of pro-inflammatory cytokines IL-6, IL-8 and TNF-alpha, but low levels of IL-12 p70 and IFN-gamma. In contrast, DC co-cultured with S. Typhi-infected cells, through suicide cross-presentation, uptake S. Typhi-infected human cells and release high levels of IFN-gamma and IL-12p70, leading to the subsequent presentation of bacterial antigens and triggering the induction of memory T cells, mostly CD3(+CD8(+CD45RA(-CD62L(- effector/memory T cells.This study is the first to demonstrate the effect of S. Typhi on human DC maturation and on their ability to prime CD8(+ cells and highlights the significance of these phenomena in eliciting adaptive immunity to S. Typhi.

  8. DMPD: MyDths and un-TOLLed truths: sensor, instructive and effector immunity totuberculosis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18191460 MyDths and un-TOLLed truths: sensor, instructive and effector immunity totuberculosis...g) (.svg) (.html) (.csml) Show MyDths and un-TOLLed truths: sensor, instructive and effector immunity totuberculosis...e and effector immunity totuberculosis. Authors Reiling N, Ehlers S, Holscher C. Publication Immunol Lett. 2

  9. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species

    NARCIS (Netherlands)

    Bolton, Melvin D.; van Esse, H. Peter; Vossen, Jack H.; de Jonge, Ronnie; Stergiopoulos, Ioannis; Stulemeijer, Iris J. E.; van den Berg, Grardy C. M.; Borrás-Hidalgo, Orlando; Dekker, Henk L.; de Koster, Chris G.; de Wit, Pierre J. G. M.; Joosten, Matthieu H. A. J.; Thomma, Bart P. H. J.

    2008-01-01

    During tomato leaf colonization, the biotrophic fungus Cladosporium fulvum secretes several effector proteins into the apoplast. Eight effectors have previously been characterized and show no significant homology to each other or to other fungal genes. To discover novel C. fulvum effectors that

  10. Lactobacillus bulgaricus, Lactobacillus rhamnosus and Lactobacillus paracasei Attenuate Salmonella Enteritidis, Salmonella Heidelberg and Salmonella Typhimurium Colonization and Virulence Gene Expression In Vitro

    Directory of Open Access Journals (Sweden)

    Muhammed Shafeekh Muyyarikkandy

    2017-11-01

    Full Text Available Salmonella Enteritidis (SE, Salmonella Typhimurium (ST, and Salmonella Heidelberg (SH have been responsible for numerous outbreaks associated with the consumption of poultry meat and eggs. Salmonella colonization in chicken is characterized by initial attachment to the cecal epithelial cells (CEC followed by dissemination to the liver, spleen, and oviduct. Since cecal colonization is critical to Salmonella transmission along the food chain continuum, reducing this intestinal association could potentially decrease poultry meat and egg contamination. Hence, this study investigated the efficacy of Lactobacillus delbreuckii sub species bulgaricus (NRRL B548; LD, Lactobacillus paracasei (DUP-13076; LP, and Lactobacillus rhamnosus (NRRL B442; LR in reducing SE, ST, and SH colonization in CEC and survival in chicken macrophages. Additionally, their effect on expression of Salmonella virulence genes essential for cecal colonization and survival in macrophages was evaluated. All three probiotics significantly reduced Salmonella adhesion and invasion in CEC and survival in chicken macrophages (p < 0.05. Further, the probiotic treatment led to a significant reduction in Salmonella virulence gene expression (p < 0.05. Results of the study indicate that LD, LP, and LR could potentially be used to control SE, ST, and SH colonization in chicken. However, these observations warrant further in vivo validation.

  11. Effector-mining in the poplar rust fungus Melampsora larici populina secretome

    Directory of Open Access Journals (Sweden)

    Cecile eLorrain

    2015-12-01

    Full Text Available The poplar leaf rust fungus, Melampsora larici-populina has been established as a tree-microbe interaction model. Understanding the molecular mechanisms controlling infection by pathogens appears essential for durable management of tree plantations. In biotrophic plant parasites, effectors are known to condition host cell colonization. Thus, investigation of candidate secreted effector proteins is a major goal in the poplar-poplar rust interaction. Unlike oomycetes, fungal effectors do not share conserved motifs and candidate prediction relies on a set of a priori criteria established from reported bona fide effectors. Secretome prediction, genome-wide analysis of gene families and transcriptomics of M. larici-populina have led to catalogues of more than a thousand secreted proteins. Automatized effector mining pipelines hold great promise for rapid and systematic identification and prioritization of candidate secreted effector proteins for functional characterization. In this review, we report on and discuss the current status of the poplar rust fungus secretome and prediction of candidate effectors in this species.

  12. Modeling salmonella Dublin into the dairy herd simulation model Simherd

    DEFF Research Database (Denmark)

    Kudahl, Anne Braad

    2010-01-01

    Infection with Salmonella Dublin in the dairy herd and effects of the infection and relevant control measures are currently being modeled into the dairy herd simulation model called Simherd. The aim is to compare the effects of different control strategies against Salmonella Dublin on both within...... of the simulations will therefore be used for decision support in the national surveillance and eradication program against Salmonella Dublin. Basic structures of the model are programmed and will be presented at the workshop. The model is in a phase of face-validation by a group of Salmonella......-herd- prevalence and economy by simulations. The project Dublin on both within-herd- prevalence and economy by simulations. The project is a part of a larger national project "Salmonella 2007 - 2011" with the main objective to reduce the prevalence of Salmonella Dublin in Danish Dairy herds. Results...

  13. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  14. Exosomes: novel effectors of human platelet lysate activity.

    Science.gov (United States)

    Torreggiani, E; Perut, F; Roncuzzi, L; Zini, N; Baglìo, S R; Baldini, N

    2014-09-22

    Despite the popularity of platelet-rich plasma (PRP) and platelet lysate (PL) in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF) released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC) treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg) showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB) and transforming growth factor beta 1 (TGF-β1) as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies.

  15. Tissue-specific effector functions of innate lymphoid cells

    Science.gov (United States)

    Björkström, Niklas K; Kekäläinen, Eliisa; Mjösberg, Jenny

    2013-01-01

    Innate lymphoid cells (ILCs) is the collective term for a group of related innate lymphocytes, including natural killer (NK) cells and the more recently discovered non-NK ILCs, which all lack rearranged antigen receptors such as those expressed by T and B cells. Similar to NK cells, the newly discovered ILCs depend on the transcription factor Id2 and the common γ-chain of the interleukin-2 receptor for development. However, in contrast to NK cells, non-NK ILCs also require interleukin-7. In addition to the cytotoxic functions of NK cells, assuring protection against tumour development and viruses, new data indicate that ILCs contribute to a wide range of homeostatic and pathophysiological conditions in various organs via specialized cytokine production capabilities. Here we summarize current knowledge on ILCs with a particular emphasis on their tissue-specific effector functions, in the gut, liver, lungs and uterus. When possible, we try to highlight the role that these cells play in humans. PMID:23489335

  16. Assembly of designer TAL effectors by Golden Gate cloning.

    Directory of Open Access Journals (Sweden)

    Ernst Weber

    Full Text Available Generation of customized DNA binding domains targeting unique sequences in complex genomes is crucial for many biotechnological applications. The recently described DNA binding domain of the transcription activator-like effectors (TALEs from Xanthomonas consists of a series of repeats arranged in tandem, each repeat binding a nucleotide of the target sequence. We present here a strategy for engineering of TALE proteins with novel DNA binding specificities based on the 17.5 repeat-containing AvrBs3 TALE as a scaffold. For each of the 17 full repeats, four module types were generated, each with a distinct base preference. Using this set of 68 repeat modules, recognition domains for any 17 nucleotide DNA target sequence of choice can be constructed by assembling selected modules in a defined linear order. Assembly is performed in two successive one-pot cloning steps using the Golden Gate cloning method that allows seamless fusion of multiple DNA fragments. Applying this strategy, we assembled designer TALEs with new target specificities and tested their function in vivo.

  17. Assembly of designer TAL effectors by Golden Gate cloning.

    Science.gov (United States)

    Weber, Ernst; Gruetzner, Ramona; Werner, Stefan; Engler, Carola; Marillonnet, Sylvestre

    2011-01-01

    Generation of customized DNA binding domains targeting unique sequences in complex genomes is crucial for many biotechnological applications. The recently described DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas consists of a series of repeats arranged in tandem, each repeat binding a nucleotide of the target sequence. We present here a strategy for engineering of TALE proteins with novel DNA binding specificities based on the 17.5 repeat-containing AvrBs3 TALE as a scaffold. For each of the 17 full repeats, four module types were generated, each with a distinct base preference. Using this set of 68 repeat modules, recognition domains for any 17 nucleotide DNA target sequence of choice can be constructed by assembling selected modules in a defined linear order. Assembly is performed in two successive one-pot cloning steps using the Golden Gate cloning method that allows seamless fusion of multiple DNA fragments. Applying this strategy, we assembled designer TALEs with new target specificities and tested their function in vivo.

  18. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Sirjana Devi Shrestha

    Full Text Available The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076 with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  19. NFKB1 regulates human NK cell maturation and effector functions.

    Science.gov (United States)

    Lougaris, Vassilios; Patrizi, Ornella; Baronio, Manuela; Tabellini, Giovanna; Tampella, Giacomo; Damiati, Eufemia; Frede, Natalie; van der Meer, Jos W M; Fliegauf, Manfred; Grimbacher, Bodo; Parolini, Silvia; Plebani, Alessandro

    2017-02-01

    NFKB1, a component of the canonical NF-κB pathway, was recently reported to be mutated in a limited number of CVID patients. CVID-associated mutations in NFKB2 (non-canonical pathway) have previously been shown to impair NK cell cytotoxic activity. Although a biological function of NFKB1 in non-human NK cells has been reported, the role of NFKB1 mutations for human NK cell biology and disease has not been investigated yet. We decided therefore to evaluate the role of monoallelic NFKB1 mutations in human NK cell maturation and functions. We show that NFKB1 mutated NK cells present impaired maturation, defective cytotoxicity and reduced IFN-γ production upon in vitro stimulation. Furthermore, human IL-2 activated NFKB1 mutated NK cells fail to up-regulate the expression of the activating marker NKp44 and show reduced proliferative capacity. These data suggest that NFKB1 plays an essential novel role for human NK cell maturation and effector functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  1. Requirements for Driving Antipathogen Effector Genes into Populations of Disease Vectors by Homing.

    Science.gov (United States)

    Beaghton, Andrea; Hammond, Andrew; Nolan, Tony; Crisanti, Andrea; Godfray, H Charles J; Burt, Austin

    2017-04-01

    There is a need for new interventions against the ongoing burden of vector-borne diseases such as malaria and dengue. One suggestion has been to develop genes encoding effector molecules that block parasite development within the vector, and then use the nuclease-based homing reaction as a form of gene drive to spread those genes through target populations. If the effector gene reduces the fitness of the mosquito and does not contribute to the drive, then loss-of-function mutations in the effector will eventually replace functional copies, but protection may nonetheless persist sufficiently long to provide a public health benefit. Here, we present a quantitative model allowing one to predict the duration of protection as a function of the probabilities of different molecular processes during the homing reaction, various fitness effects, and the efficacy of the effector in blocking transmission. Factors that increase the duration of protection include reducing the frequency of pre-existing resistant alleles, the probability of nonrecombinational DNA repair, the probability of homing-associated loss of the effector, the fitness costs of the nuclease and effector, and the completeness of parasite blocking. For target species that extend over an area much larger than the typical dispersal distance, the duration of protection is expected to be highest at the release site, and decrease away from there, eventually falling to zero, as effector-less drive constructs replace effector-containing ones. We also model an alternative strategy of using the nuclease to target an essential gene, and then linking the effector to a sequence that restores the essential function and is resistant to the nuclease. Depending upon parameter values, this approach can prolong the duration of protection. Our models highlight the key design criteria needed to achieve a desired level of public health benefit. Copyright © 2017 Beaghton et al.

  2. Motor resonance in left- and right-handers: evidence for effector-independent motor representations

    Directory of Open Access Journals (Sweden)

    Luisa eSartori

    2013-02-01

    Full Text Available The idea of motor resonance was born at the time that it was demonstrated that cortical and spinal pathways of the motor system are specifically activated during both action-observation and execution. What is not known is if the human action observation-execution matching system simulates actions through motor representations specifically attuned to the laterality of the observed effectors (i.e., effector-dependent representations or through abstract motor representations unconnected to the observed effector (i.e., effector-independent representations.To answer that question we need to know how the information necessary for motor resonance is represented or integrated within the representation of an effector. Transcranial magnetic stimulation (TMS-induced motor evoked potentials (MEPs were thus recorded from the dominant and non-dominant hands of left- and right-handed participants while they observed a left- or a right-handed model grasping an object. The anatomical correspondence between the effector being observed and the observer’s effector classically reported in the literature was confirmed by the MEP response in the dominant hand of participants observing models with their same hand preference. This effect was found in both left- as well as in right-handers. When a broader spectrum of options, such as actions performed by a model with a different hand preference, was instead considered, that correspondence disappeared. Motor resonance was noted in the observer’s dominant effector regardless of the laterality of the hand being observed. This would indicate that there is a more sophisticated mechanism which works to convert someone else’s pattern of movement into the observer’s optimal motor commands and that effector-independent representations specifically modulate motor resonance.

  3. Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita.

    Science.gov (United States)

    Rutter, William B; Hewezi, Tarek; Abubucker, Sahar; Maier, Tom R; Huang, Guozhong; Mitreva, Makedonka; Hussey, Richard S; Baum, Thomas J

    2014-09-01

    Meloidogyne incognita is one of the most economically damaging plant pathogens in agriculture and horticulture. Identifying and characterizing the effector proteins which M. incognita secretes into its host plants during infection is an important step toward finding new ways to manage this pest. In this study, we have identified the cDNAs for 18 putative effectors (i.e., proteins that have the potential to facilitate M. incognita parasitism of host plants). These putative effectors are secretory proteins that do not contain transmembrane domains and whose genes are specifically expressed in the secretory gland cells of the nematode, indicating that they are likely secreted from the nematode through its stylet. We have determined that, in the plant cells, these putative effectors are likely to localize to the cytoplasm. Furthermore, the transcripts of many of these novel effectors are specifically upregulated during different stages of the nematode's life cycle, indicating that they function at specific stages during M. incognita parasitism. The predicted proteins showed little to no homology to known proteins from free-living nematode species, suggesting that they evolved recently to support the parasitic lifestyle. On the other hand, several of the effectors are part of gene families within the M. incognita genome as well as that of M. hapla, which points to an important role that these putative effectors are playing in both parasites. With the discovery of these putative effectors, we have increased our knowledge of the effector repertoire utilized by root-knot nematodes to infect, feed on, and reproduce on their host plants. Future studies investigating the roles that these proteins play in planta will help mitigate the effects of this damaging pest.

  4. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors

    Directory of Open Access Journals (Sweden)

    David Lopez

    2018-03-01

    Full Text Available Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector

  5. Design and force analysis of end-effector for plug seedling transplanter

    Science.gov (United States)

    Hu, Yang; Jiang, Huanyu; Tong, Junhua

    2017-01-01

    Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients). Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting. PMID:28678858

  6. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada

    National Research Council Canada - National Science Library

    Dutil, Lucie; Irwin, Rebecca; Finley, Rita; Ng, Lai King; Avery, Brent; Boerlin, Patrick; Bourgault, Anne Marie; Cole, Linda; Daignault, Danielle; Desruisseau, Andrea; Demczuk, Walter; Hoang, Linda; Horsman, Greg B; Ismail, Johanne; Jamieson, Frances; Maki, Anne; Pacagnella, Ana; Pillai, Dylan R

    2010-01-01

    ...) between ceftiofur-resistant Salmonella enterica serovar Heidelberg isolated from retail chicken and incidence of ceftiofur-resistant Salmonella serovar Heidelberg infections in humans across Canada...

  7. International Spread of an Epidemic Population of Salmonella enterica Serotype Kentucky ST198 Resistant to Ciprofloxacin

    National Research Council Canada - National Science Library

    Simon Le Hello; Rene S. Hendriksen; Benoît Doublet; Ian Fisher; Eva Møller Nielsen; Jean M. Whichard; Brahim Bouchrif; Kayode Fashae; Sophie A. Granier; Nathalie Jourdan-Da Silva; Axel Cloeckaert; E. John Threlfall; Frederick J. Angulo; Frank M. Aarestrup; John Wain; François-Xavier Weill

    2011-01-01

    National Salmonella surveillance systems from France, England and Wales, Denmark, and the United States identified the recent emergence of multidrug-resistant isolates of Salmonella enterica serotype...

  8. Economic effects of introducing alternative Salmonella control strategies in Sweden

    OpenAIRE

    Kristian Sundström; Helene Wahlström; Sofie Ivarsson; Susanna Sternberg Lewerin

    2014-01-01

    The objective of the study was to analyse the economic effects of introducing alternative Salmonella control strategies in Sweden. Current control strategies in Denmark and the Netherlands were used as benchmarks. The true number of human Salmonella cases was estimated by reconstructing the reporting pyramids for the various scenarios. Costs were calculated for expected changes in human morbidity (Salmonella and two of its sequelae), for differences in the control programmes and for changes i...

  9. Ludwig's angina by Salmonella Typhi: a clinical dilemma.

    Science.gov (United States)

    Mahajan, R K; Sharma, S; Madan, P; Sharma, N

    2015-01-01

    Salmonella Typhi has rarely been associated with focal abscesses; and in literature, there is no evidence of its association with abscesses in the neck spaces. Ability of Salmonella Typhi to invade and localise in the neck spaces not only poses a diagnostic challenge but also underscores the necessity to understand the mechanisms that facilitate Salmonella Typhi to establish infections at sites completely non-traditional to the organism.

  10. Ludwig′s angina by Salmonella Typhi: A clinical dilemma

    Directory of Open Access Journals (Sweden)

    R K Mahajan

    2015-01-01

    Full Text Available Salmonella Typhi has rarely been associated with focal abscesses; and in literature, there is no evidence of its association with abscesses in the neck spaces. Ability of Salmonella Typhi to invade and localise in the neck spaces not only poses a diagnostic challenge but also underscores the necessity to understand the mechanisms that facilitate Salmonella Typhi to establish infections at sites completely non-traditional to the organism.

  11. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms

    OpenAIRE

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela; Said, Hamid M.

    2015-01-01

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse...

  12. In silico knockout studies of xenophagic capturing of salmonella

    OpenAIRE

    Jennifer Scheidel; Leonie Amstein; Jörg Ackermann; Ivan Dikic; Ina Koch

    2016-01-01

    The degradation of cytosol-invading pathogens by autophagy, a process known as xenophagy, is an important mechanism of the innate immune system. Inside the host, Salmonella Typhimurium invades epithelial cells and resides within a specialized intracellular compartment, the Salmonella-containing vacuole. A fraction of these bacteria does not persist inside the vacuole and enters the host cytosol. Salmonella Typhimurium that invades the host cytosol becomes a target of the autophagy machinery f...

  13. Development of bioluminescent Salmonella strains for use in food safety

    OpenAIRE

    Bailey R Hartford; Wills Robert; Kirkpatrick Tasha B; Howe Kevin; Karsi Attila; Lawrence Mark L

    2008-01-01

    Abstract Background Salmonella can reside in healthy animals without the manifestation of any adverse effects on the carrier. If raw products of animal origin are not handled properly during processing or cooked to a proper temperature during preparation, salmonellosis can occur. In this research, we developed bioluminescent Salmonella strains that can be used for real-time monitoring of the pathogen's growth on food products. To accomplish this, twelve Salmonella strains from the broiler pro...

  14. Salmonella – At Home in the Host Cell

    OpenAIRE

    Preeti eMalik Kale; Jolly, Carrie E.; Stephanie eLathrop; Seth eWinfree; Courtney eLuterbach; Olivia eSteele-Mortimer

    2011-01-01

    The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic “trigger”-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on c...

  15. A comparison between longitudinal shedding patterns of Salmonella Typhimurium and Salmonella Dublin on dairy farms.

    Science.gov (United States)

    Kirchner, M; McLaren, I; Clifton-Hadley, F A; Liebana, E; Wales, A D; Davies, R H

    2012-08-25

    Salmonella in cattle herds may behave as epidemic or endemic infections. An intensive longitudinal sampling study across all management groups and ages on six dairy farms in the UK was used to examine patterns of Salmonella shedding, following the prior identification of either Salmonella Dublin (SD) (three farms) or Salmonella Typhimurium (ST) (three farms) on the premises in the context of clinical salmonellosis. Individual faeces, pooled faeces and environmental samples (total 5711 samples), taken approximately every six weeks for 15-24 weeks, were cultured for Salmonella. SD was detected at low frequency (on any visit, 0.5-18.3 per cent of samples positive) and most consistently in calves. By contrast, ST was isolated at higher frequency (on any visit, 6.8-75 per cent of samples positive), and in higher numbers, up to 10(7) cfu/g faeces. Significantly more samples from calves were positive for ST than were positive for SD (50.6 per cent v 3.1 per cent; P < 0.001), which was also true for milking cows (46.3 per cent v 4.4 per cent; P < 0.001). The differences could help to explain the different patterns of bovine infection classically associated with these two serovars in the UK. No consistent effect upon shedding was seen among the ST-infected herds following vaccination.

  16. Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens.

    Science.gov (United States)

    Panstruga, Ralph; Dodds, Peter N

    2009-05-08

    Many biotrophic fungal and oomycete plant pathogens deliver effector proteins directly into host cells during infection. Recent advances are revealing the extensive effector repertoires of these pathogens and are beginning to shed light on how they manipulate host cells to establish a parasitic relationship. Surprisingly, oomycete effectors seem to share a common uptake system with those from the human malaria pathogen. The current explosion of information is opening new research avenues in molecular plant pathology and is providing new opportunities to limit the impact of plant disease on food production.

  17. Improved expression systems for regulated expression in Salmonella infecting eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Carlos Medina

    Full Text Available In this work we describe a series of improvements to the Salmonella-based salicylate-inducible cascade expression system comprised of a plasmid-borne expression module, where target gene expression is driven by the P(m promoter governed by the XylS2 regulator, and a genome-integrated regulatory module controlled by the nahR/P(sal system. We have constructed a set of high and low-copy number plasmids bearing modified versions of the expression module with a more versatile multiple cloning site and different combinations of the following elements: (i the nasF transcriptional attenuator, which reduces basal expression levels, (ii a strong ribosome binding site, and (iii the Type III Secretion System (TTSS signal peptide from the effector protein SspH2 to deliver proteins directly to the eukaryotic cytosol following bacterial infection of animal cells. We show that different expression module versions can be used to direct a broad range of protein production levels. Furthermore, we demonstrate that the efficient reduction of basal expression by the nasF attenuator allows the cloning of genes encoding highly cytotoxic proteins such as colicin E3 even in the absence of its immunity protein. Additionally, we show that the Salmonella TTSS is able to translocate most of the protein produced by this regulatory cascade to the cytoplasm of infected HeLa cells. Our results indicate that these vectors represent useful tools for the regulated overproduction of heterologous proteins in bacterial culture or in animal cells, for the cloning and expression of genes encoding toxic proteins and for pathogenesis studies.

  18. Comparative genome analysis of the high pathogenicity Salmonella Typhimurium strain UK-1.

    Directory of Open Access Journals (Sweden)

    Yingqin Luo

    Full Text Available Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains leads to a better understanding of the evolution of S. Typhimurium and its pathogenesis. S. Typhimurium strain UK-1 (belongs to phage type 1 is highly virulent when orally administered to mice and chickens and efficiently colonizes lymphoid tissues of these species. These characteristics make this strain a good choice for use in vaccine development. In fact, UK-1 has been used as the parent strain for a number of nonrecombinant and recombinant vaccine strains, including several commercial vaccines for poultry. In this study, we conducted a thorough comparative genome analysis of the UK-1 strain with other S. Typhimurium strains and examined the phenotypic impact of several genomic differences. Whole genomic comparison highlights an extremely close relationship between the UK-1 strain and other S. Typhimurium strains; however, many interesting genetic and genomic variations specific to UK-1 were explored. In particular, the deletion of a UK-1-specific gene that is highly similar to the gene encoding the T3SS effector protein NleC exhibited a significant decrease in oral virulence in BALB/c mice. The complete genetic complements in UK-1, especially those elements that contribute to virulence or aid in determining the diversity within bacterial species, provide key information in evaluating the functional characterization of important genetic determinants and for development of vaccines.

  19. Prevention of Salmonella contamination of finished soybean meal used for animal feed by a Norwegian production plant despite frequent Salmonella contamination of raw soy beans, 1994–2012

    OpenAIRE

    Wierup, Martin; Kristoffersen, Thor

    2014-01-01

    Background Salmonella contaminated animal feed is a major source for introducing Salmonella into the animal derived food chain. Because soybeans frequently are contaminated with Salmonella, soybean meal used as animal feed material, a by-product of a “crushing plant” which produces oil from soybeans, can be important source of Salmonella in the animal feed. We report the successful control of Salmonella from 1994 to 2012 in a Norwegian crushing plant producing soybean meal from imported soy b...

  20. DETEKSI Salmonella PADA NASI GORENG YANG DISEDIAKAN OLEH RESTORAN KERETA API KELAS EKONOMI [Detection of Salmonella on Fried Rice Served in Restaurant of Economic Class Train

    OpenAIRE

    Srianta; Elisa Rinihapsari

    2003-01-01

    Salmonella is a group of infective pathogenic bacteria for human being that cause many food borne disease outbreaks. Human, animal and some animal-based food products are whicle for Salmonella. Public transportation i.e. train/railway, often serve foods that potentially contaminated with Salmonella. Study on Salmonella detection on fried rice served in economic class train restaurant is necessary for controlling its safety and quality. Standard method was used to detect Salmonella on fried ri...

  1. Salmonellae in avian wildlife in Norway from 1969 to 2000

    DEFF Research Database (Denmark)

    Refsum, T.; Handeland, K.; Baggesen, Dorte Lau

    2002-01-01

    -B var. Java. Variant 0:4,12 comprised 96% (451 cases) of all serovar Typhimurium isolates, including all the passerines, while variant 0:4,5,12 accounted for the remaining 4% (18 cases). The occurrence of salmonellae in small passerines showed a distinct seasonality, with a peak in February and March......Postmortem records of wild-living birds in Norway with laboratory-confirmed findings of salmonella infection were summarized for the period from 1969 to 2000. Salmonella spp. were isolated from 470 birds belonging to 26 species. The salmonella-positive birds included 441 small passerines, 15 gulls...

  2. Pathogenicity, Epidemiology and Virulence Factors of Salmonella species: A Review

    Directory of Open Access Journals (Sweden)

    Tamègnon Victorien DOUGNON

    2017-12-01

    Full Text Available Salmonella infections are major public health problems worldwide. The hereby review aimed to establish an overview on the pathogenicity, epidemiology and virulence factors of Salmonella spp. in the world. A systematic search was conducted online using the keywords ‘Salmonella’, ‘Salmonella spp.’, ‘Salmonella spp. Epidemiology’, ‘virulence factors of Salmonella spp. in the world’, ‘bacteria responsible for the contamination of meat products’, ‘non-typhoid salmonella’. These keywords were entered into databases such as PubMed and Google Scholar using mainly French language. The obtained articles were included based on the reliability of their source, the study area (usually Benin and Africa and the subject. The review revealed that Salmonella spp. is motile Gram-negative rod-shaped bacteria, of the family Enterobacteriaceae, currently counting more than 2,600 serovars. Human contamination occurs through the ingestion of contaminated water and food and can cause gastroenteritis or typhoid fever, which are two serious public health problems. A gene set constituting the pathogenicity islands determines the pathogenesis of Salmonella spp. The diagnosis is based on bacteriological, serological and molecular techniques. Salmonella infections are usually treated using antibiotics; however, emergence of antibiotic resistance in these microorganisms suggests that the anti-salmonella control should explore new sources such as medicinal plants

  3. Salmonella serotype distribution in the Dutch broiler supply chain.

    Science.gov (United States)

    van Asselt, E D; Thissen, J T N M; van der Fels-Klerx, H J

    2009-12-01

    Salmonella serotype distribution can give insight in contamination routes and persistence along a production chain. Therefore, it is important to determine not only Salmonella prevalence but also to specify the serotypes involved at the different stages of the supply chain. For this purpose, data from a national monitoring program in the Netherlands were used to estimate the serotype distribution and to determine whether this distribution differs for the available sampling points in the broiler supply chain. Data covered the period from 2002 to 2005, all slaughterhouses (n = 22), and the following 6 sampling points: departure from hatchery, arrival at the farm, departure from the farm, arrival at the slaughterhouse, departure from the slaughterhouse, and end of processing. Furthermore, retail data for 2005 were used for comparison with slaughterhouse data. The following serotypes were followed throughout the chain: Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Paratyphi B var. Java (Salmonella Java), Salmonella Infantis, Salmonella Virchow, and Salmonella Mbandaka. Results showed that serotype distribution varied significantly throughout the supply chain (P supply chain up to the retail phase.

  4. Immunity to Intracellular Salmonella Depends on Surface-associated Antigens

    Science.gov (United States)

    Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk

    2012-01-01

    Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937

  5. Salmonella species isolated from animal feed in Iraq.

    Science.gov (United States)

    Al-Hindawi, N; Taha, R R

    1979-01-01

    Of 700 animal feed samples, 32 (4.5%) harbored Salmonella. The highest percentage of contamination was found in sheep feed and local protein. A total of 17 Salmonella serotypes were identified. The most frequent serotypes were Salmonella meleagridis. S. bornum, S. montevideo, and S. drypool. S. bornum was isolated for the first time in Iraq and from both local feed and its ingredients. The common somatic group found was that of Salmonella group C; then came groups E, G, B, and D. Three serotypes (S. enteritidis, S. california, and S. muenchen) seemed to form a link of infection among feed, food, patients, and carriers. PMID:453836

  6. Salmonella serotypes encountered in animal feed additives in Lebanon.

    Science.gov (United States)

    Nabbut, N H

    1978-05-01

    Animal feed-additive samples (n = 300) were examined for the presence of salmonellae, using the selenite-F broth-enrichment method followed by subculturing on Salmonella-Shigella and brilliant green agar with sulfadiazine selective agar plates. Samples consisted of a variety of feed additives: 119 bone meal samples, 77 meat meal samples, 40 fish meal samples, and 64 miscellaneous meal samples. Results of examination found 49 (41.2%) of the bone meal samples, 6 (7.8%) of the meat meal samples and 2 (5%) of the fish meal samples contained salmonellae. Of 57 isolates representing 24 serotypes, 4 most frequently isolated serotypes were Salmonella meleagridis (35.1%), Salmonella tennessee (7%), Salmonella chester (5.2%), and Salmonella senftenberg (5.2%). This study shows a high Salmonella-contamination rate of bone meal compared with meat meal and fish meal samples. Of 12 known positive bone meal samples that were examined, 100% of 25-g samples, compared with 70% to 100% of 2.5-g samples and 30% to 90% of 0.25-g samples and 30% to 90% of 0.25-g samples, were positive for salmonellae.

  7. Liver abscess caused by Salmonella choleraesuis

    Directory of Open Access Journals (Sweden)

    Kamatani T

    2015-04-01

    Full Text Available Takashi Kamatani,1 Takemichi Okada,2 Hiroyoshi Iguchi,2 Yoshihito Takahashi,3 Hiroaki Yokomori1 1Department of Internal Medicine, 2Department of Radiology, 3Department of Surgery, Kitasato University Medical Center, Saitama, Japan Abstract: A 65-year-old man with long-term alcohol abuse presented with intermittent fever. Abdominal computed tomography revealed multiple masses. Abscess blood and pus cultures conducted after percutaneous catheter drainage with pigtail catheters yielded Salmonella choleraesuis. Antibiotic treatment with meropenem was started using multiple catheters in the liver. Drainage catheters in different locations were exchanged several times with larger-bored catheters. After septicemia was detected, abscesses spread to the peritoneal cavity. Pleural complications developed. Antibiotic treatment, with careful drainage guided by ultrasound or computed tomography, controlled the abscesses and complications. This report describes the difficult clinical course and treatment of a liver abscess from S. choleraesuis. Keywords: liver abscess, Salmonella choleraesuis, bacteremia, CT

  8. Aptasensors for quantitative detection of Salmonella Typhimurium.

    Science.gov (United States)

    Ansari, Najmeh; Yazdian-Robati, Rezvan; Shahdordizadeh, Mahin; Wang, Zhouping; Ghazvini, Kiarash

    2017-09-15

    Salmonella is one of the most frequent causes of food borne infectious disease. Among nearly 2500 documented serotypes are reported, Salmonella Typhimurium is the number one serotype associated with salmonellosis worldwide. Many different methods have been developed for the detection and quantification of S. typhimurium. Most of these assays are usually expensive, time consuming and require difficult sample preparation steps. Therefore, it is necessary to develop rapid, robust, cost-effective and sensitive alternative detection methods. In the last years, aptasensors, used for detection of S. typhimurium in different samples. In this review, recent advances and applications of aptasensors for the detection and quantification of S. typhimurium in details have been summarized. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Whole Genome Epidemiological Typing of Salmonella

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas

    Salmonella is one of the most common foodborne pathogens worldwide. In the US alone, salmonellosis was estimated to cause 1.4 million cases effecting 17,000 hospitalization and almost 600 deaths each year. Particularly, Salmonella enterica is a common cause of minor and large food borne outbreaks...... used for typing is crucial for successful discrimination. The core genes or the genes that are conserved in all members of a genus or species are potentially good candidates for investigating genomic variation in phylogeny and epidemiology. A total of 2,882 core genes have been observed among 73....../absence of all genes across genomes, is similar to the consensus tree but with higher branching confidence value. The core genes can be divided into two categories: a few highly variable genes and a larger set of conserved core genes, with low variance. These core genes are useful for investigating molecular...

  10. Salmonella Dublin kan give store tab

    DEFF Research Database (Denmark)

    Nielsen, Torben Dahl; Nielsen, Liza Rosenbaum; Kudahl, Anne Margrethe Braad

    2012-01-01

    Store besætninger lider størst økonomisk tab ved infektion med Salmonella Dublin. Selv i en veldrevet besætning kan tabet løbe op i mellem 1,3 og 3,3 millioner kr. over en tiårs periode. Ved uhensigtsmæssige hygiejne- og managementrutiner kan tabet nemt blive meget højere.......Store besætninger lider størst økonomisk tab ved infektion med Salmonella Dublin. Selv i en veldrevet besætning kan tabet løbe op i mellem 1,3 og 3,3 millioner kr. over en tiårs periode. Ved uhensigtsmæssige hygiejne- og managementrutiner kan tabet nemt blive meget højere....

  11. O-Serotype Conversion in Salmonella Typhimurium Induces Protective Immune Responses against Invasive Non-Typhoidal Salmonella Infections

    OpenAIRE

    Li, Pei; Liu, Qing; Luo, Hongyan; Liang, Kang; Yi, Jie; Luo, Ying; Hu, Yunlong; Han, Yue; Kong, Qingke

    2017-01-01

    Salmonella infections remain a big problem worldwide, causing enteric fever by Salmonella Typhi (or Paratyphi) or self-limiting gastroenteritis by non-typhoidal Salmonella (NTS) in healthy individuals. NTS may become invasive and cause septicemia in elderly or immuno-compromised individuals, leading to high mortality and morbidity. No vaccines are currently available for preventing NTS infection in human. As these invasive NTS are restricted to several O-antigen serogroups including B1, D1, C...

  12. Prevalence of Nontyphoidal Salmonella and Salmonella Strains with Conjugative Antimicrobial-Resistant Serovars Contaminating Animal Feed in Texas.

    Science.gov (United States)

    Hsieh, Yi-Cheng; Poole, Toni L; Runyon, Mick; Hume, Michael; Herrman, Timothy J

    2016-02-01

    The objective of this study was to characterize 365 nontyphoidal Salmonella enterica isolates from animal feed. Among the 365 isolates, 78 serovars were identified. Twenty-four isolates (7.0%) were recovered from three of six medicated feed types. Three of these isolates derived from the medicated feed, Salmonella Newport, Salmonella Typhimurium var. O 5- (Copenhagen), and Salmonella Lexington var. 15+ (Manila), displayed antimicrobial resistance. Susceptibility testing revealed that only 3.0% (12) of the 365 isolates displayed resistance to any of the antimicrobial agents. These 12 isolates were recovered from unmedicated dry beef feed (n = 3), medicated dry beef feed (n = 3), cabbage culls (n = 2), animal protein products (n = 2), dry dairy cattle feed (n = 1), and fish meal (n = 1). Only Salmonella Newport and Salmonella Typhimurium var. O 5- (Copenhagen) were multidrug resistant. Both isolates possessed the IncA/C replicon and the blaCMY-2 gene associated with cephalosporin resistance. Plasmid replicons were amplified from 4 of 12 resistant isolates. Plasmids (40 kb) were Salmonella Montevideo and Salmonella Kentucky. Conjugation experiments were done using 7 of the 12 resistant isolates as donors. Only Salmonella Montevideo, possessing a plasmid and amplifying IncN, produced transconjugants. Transconjugants displayed the same antimicrobial resistance profile as did the donor isolate. Three isolates that amplified replicons corresponding to IncA/C or IncHI2 did not produce transconjugants at 30 or 37°C. The results of this study suggest that the prevalence of antimicrobial-resistant Salmonella contaminating animal feed is low in Texas. However, Salmonella was more prevalent in feed by-products; fish meal had the highest prevalence (84%) followed by animal protein products (48%). Ten of the 35 feed types had no Salmonella contamination. Further investigation is needed to understand the possible role of specific feed types in the dissemination of antimicrobial

  13. Hydrophobic peptide auxotrophy in Salmonella typhimurium.

    OpenAIRE

    Brãnes, L V; Somers, J M; Kay, W W

    1981-01-01

    The growth of a pleiotropic membrane mutant of Salmonella typhimurium with modified lipopolysaccharide composition was found to be strictly dependent on the peptone component of complex media. Nutritional Shiftdown into minimal media allowed growth for three to four generations. Of 20 commercial peptones, only enzymatic digests supported growth to varying degrees. Neither trace cations, amino acids, vitamins, carbohydrates, lipids, glutathione, polyamines, carbodimides, nor synthetic peptides...

  14. Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein.

    Science.gov (United States)

    Alcoforado Diniz, Juliana; Coulthurst, Sarah J

    2015-07-01

    The type VI secretion system (T6SS) is widespread in Gram-negative bacteria and can deliver toxic effector proteins into eukaryotic cells or competitor bacteria. Antibacterial T6SSs are increasingly recognized as key mediators of interbacterial competition and may contribute to the outcome of many polymicrobial infections. Multiple antibacterial effectors can be delivered by these systems, with diverse activities against target cells and distinct modes of secretion. Polymorphic toxins containing Rhs repeat domains represent a recently identified and as-yet poorly characterized class of T6SS-dependent effectors. Previous work had revealed that the potent antibacterial T6SS of the opportunistic pathogen Serratia marcescens promotes intraspecies as well as interspecies competition (S. L. Murdoch, K. Trunk, G. English, M. J. Fritsch, E. Pourkarimi, and S. J. Coulthurst, J Bacteriol 193:6057-6069, 2011, http://dx.doi.org/10.1128/JB.05671-11). In this study, two new Rhs family antibacterial effectors delivered by this T6SS have been identified. One of these was shown to act as a DNase toxin, while the other contains a novel, cytoplasmic-acting toxin domain. Importantly, using S. marcescens, it has been demonstrated for the first time that Rhs proteins, rather than other T6SS-secreted effectors, can be the primary determinant of intraspecies competition. Furthermore, a new family of accessory proteins associated with T6SS effectors has been identified, exemplified by S. marcescens EagR1, which is specifically required for deployment of its associated Rhs effector. Together, these findings provide new insight into how bacteria can use the T6SS to deploy Rhs-family effectors and mediate different types of interbacterial interactions. Infectious diseases caused by bacterial pathogens represent a continuing threat to health and economic prosperity. To counter this threat, we must understand how such organisms survive and prosper. The type VI secretion system is a weapon that

  15. Salmonella typhimurium phage typing for pathogens.

    Science.gov (United States)

    Rabsch, Wolfgang

    2007-01-01

    Phage typing provides a rapid, accurate, and cheap method of investigating Salmonella strains for epidemiological use. Salmonella strains within a particular serovar may be differentiated into a number of phage types by their pattern of susceptibility to lysis by a set of phages with different specificity. Characterization based on the pattern of phage lysis of wild strains isolated from different patients, carriers, or other sources is valuable in epidemiological study. The phages must have well-defined propagation strains that allow reproducible discrimination between different Salmonella Typhimurium strains. Different schemes have been developed for this serovar in different countries. The Felix/Callow (England) and Lilleengen typing systems (Sweden) used for laboratory-based epidemiological analysis were helpful for control of salmonellosis. More recently, the extended phage-typing system of Anderson (England) that distinguishes more than 300 definitive phage types (DTs) has been used worldwide in Europe, the United States, and Australia. The use of this method for decades show us that some phage types (DT204 in the 1970s and DT104 in the 1990s) have a broad host range and are distributed worldwide, other phage types such as DT2 or DT99 are frequently associated with disease in pigeons, indicative of a narrow host range.

  16. Regulatory principles governing Salmonella and Yersinia virulence

    Science.gov (United States)

    Erhardt, Marc; Dersch, Petra

    2015-01-01

    Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process. PMID:26441883

  17. Distribution of virulence plasmids within Salmonellae.

    Science.gov (United States)

    Woodward, M J; McLaren, I; Wray, C

    1989-03-01

    The virulence region of the Salmonella dublin 50 MDa plasmid shared homology with 678 of 1021 salmonellae tested in colony hybridization experiments. The majority of S. dublin, S. typhimurium and S. enteritidis isolates tested hybridized with the region whereas, with the exception of S. hessarek, S. pullorum and S. gallinarum, other serotypes did not. Homologous virulence regions were plasmid encoded. In S. typhimurium a common 60 MDa plasmid was present in all phage types tested but not in DT4, DT37 and DT170. Smaller plasmids showing partial homology were found in DT12, DT18, DT193 and DT204C. In S. enteritidis a distinct plasmid profile for each of eight phage types was observed. Hybridizing plasmids were found in DT3, DT4, DT8, DT9 and DT11 whereas DT7, which was plasmid free, and DT10 and DT14, which harboured plasmids, did not hybridize. The extent of homology shared between S. dublin, S. typhimurium and S. enteritidis virulence plasmids was about 10 MDa and appeared conserved. Virulence plasmids from S. typhimurium and S. enteritidis did not show homology with a region of the S. dublin 50 MDa plasmid which was not associated with virulence functions whereas plasmids of about 24 MDa and 38 MDa in some S. typhimurium phage types did. The association of conserved virulence regions upon differing plasmids within salmonellae is discussed with reference to possible mechanisms of distribution and evolution of virulence genes.

  18. Antigenic relationships within the genus Salmonella as revealed by anti-Salmonella enteritidis monoclonal antibodies.

    Science.gov (United States)

    Malik, M; Butchaiah, G; Bansal, M P; Siddiqui, M Z; Bakshi, C S; Singh, R K

    2002-04-01

    A panel of 38 monoclonal antibodies (MAbs) that react with outer membrane proteins (OMPs) of Salmonella enteritidis was produced. On the basis of their binding pattern in ELISA, the MAbs were divided into three groups. The first group, consisting of 15 MAbs, was found to be Salmonella-specific as they did not cross-react with Escherichia coli or Pasteurella multocida. The second group of 15 MAbs cross-reacted with E. coli but not with P. multocida, reflecting the closer antigenic relationship of E. coli with Salmonella. The third group of 8 MAbs cross-reacted with both E. coli and P. multocida, indicating that the antigenic determinants identified by these MAbs are conserved in all the three genera. The antigenic relationship of the Salmonella serovars (S. enteritidis, S. gallinarum, S. typhimurium, S. dublin, S. agona, S. indiana and S. choleraesuis) was studied using OMPs prepared from them and the anti-S. enteritidis MAbs. Three MAbs appeared to be specific for S. enteritidis as they did not cross-react with any of the other Salmonella serovars. Twelve of the 38 MAbs cross-reacted with all the serovars tested. Six of these were specific to the Salmonella genus as they did not cross-react with any of the other Gram-negative bacteria tested. The reactivity pattern of the other MAbs indicated that S. gallinarum was antigenically close to S. enteritidis, followed in order by S. dublin, S. agona, S. typhimurium and S. indiana, whereas S. choleraesuis seemed to be antigenically quite distant from S. enteritidis.

  19. 3D Reconstruction of End-Effector in Autonomous Positioning Process Using Depth Imaging Device

    National Research Council Canada - National Science Library

    Hu, Yanzhu; Li, Leiyuan

    2016-01-01

    .... In order to solve this problem, a simple depth imaging equipment (Kinect) is used and Kalman filtering method based on three-frame subtraction to capture the end-effector motion is proposed in this paper...

  20. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    NARCIS (Netherlands)

    Ordonez, Soledad R; Veldhuizen, Edwin J A|info:eu-repo/dai/nl/19545264X; van Eijk, Martin|info:eu-repo/dai/nl/255160216; Haagsman, Henk P|info:eu-repo/dai/nl/069273278

    2017-01-01

    Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that

  1. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    Science.gov (United States)

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Gene Expression Profiles of Human Phosphotyrosine Phosphatases Consequent to Th1 Polarisation and Effector Function

    National Research Council Canada - National Science Library

    Patricia Castro-Sánchez; Rocio Ramirez-Munoz; Pedro Roda-Navarro

    2017-01-01

    .... Despite the relevance of CD4 T cell polarisation and effector function in human autoimmune diseases, the expression profile of PTPs during T helper polarisation and restimulation at inflammatory...

  3. Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors.

    Science.gov (United States)

    Chen, Xiao-Ren; Zhang, Bo-Yue; Xing, Yu-Ping; Li, Qi-Yuan; Li, Yan-Peng; Tong, Yun-Hui; Xu, Jing-You

    2014-11-18

    Phytophthora cactorum, a hemibiotrophic oomycete pathogen, can cause destructive diseases on numerous crops worldwide, leading to essential economic losses every year. However, little has been known about its molecular pathogenicity mechanisms. To gain insight into its repertoire of effectors, the P. cactorum transcriptome was investigated using Illumina RNA-seq. We first demonstrated an in vitro inoculation method that can be used to mimic natural cyst germination on host plants. Over 28 million cDNA reads were obtained for five life cycle stages (mycelium, sporangium, zoospore, cyst and germinating cyst) and de novo assembled into 21,662 unique genes. By comparisons with 11 public databases, 88.99% of the unique genes were annotated, including 15,845 mapped to the gene models of the annotated relative Phytophthora infestans. Using TribeMCL, 5,538 gene families conserved across P. cactorum and other three completely sequenced Phytophthora pathogen species were determined. In silico analyses revealed that 620 P. cactorum effector homologues including 94 RXLR effector candidates matched known or putative virulence genes in other oomycetes. About half of the RXLR effector candidates were predicted to share a conserved structure unit, termed the WY-domain fold. A subset of the effector genes were checked and validated by PCR amplification. Transcriptional experiments indicated that effector genes were differentially expressed during the life cycle and host infection stages of P. cactorum. Ectopic expression in Nicotiana benthamiana revealed that RXLR, elicitin and NLP effectors can trigger plant cell death. These effectors are highly conserved across oomycete species. Single nucleotide polymorphisms for RXLR effectors were detected in a collection of P. cactorum isolates from different countries and hosts. This study demonstrates the comprehensive sequencing, de novo assembly, and analyses of the transcriptome of P. cactorum life cycle stages. In the absence of genome

  4. Study of Salmonella Typhimurium Infection in Laying Hens

    Science.gov (United States)

    Pande, Vivek V.; Devon, Rebecca L.; Sharma, Pardeep; McWhorter, Andrea R.; Chousalkar, Kapil K.

    2016-01-01

    Members of Salmonella enterica are frequently involved in egg and egg product related human food poisoning outbreaks worldwide. In Australia, Salmonella Typhimurium is frequently involved in egg and egg product related foodborne illness and Salmonella Mbandaka has also been found to be a contaminant of the layer farm environment. The ability possessed by Salmonella Enteritidis to colonize reproductive organs and contaminate developing eggs has been well-described. However, there are few studies investigating this ability for Salmonella Typhimurium. The hypothesis of this study was that the Salmonella Typhimurium can colonize the gut for a prolonged period of time and that horizontal infection through feces is the main route of egg contamination. At 14 weeks of age hens were orally infected with either S. Typhimurium PT 9 or S. Typhimurium PT 9 and Salmonella Mbandaka. Salmonella shedding in feces and eggs was monitored for 15 weeks post-infection. Egg shell surface and internal contents of eggs laid by infected hens were cultured independently for detection of Salmonella spp. The mean Salmonella load in feces ranged from 1.54 to 63.35 and 0.31 to 98.38 most probable number/g (MPN/g) in the S. Typhimurium and S. Typhimurium + S. Mbandaka group, respectively. No correlation was found between mean fecal Salmonella load and frequency of egg shell contamination. Egg shell contamination was higher in S. Typhimurium + S. Mbandaka infected group (7.2% S. Typhimurium, 14.1% S. Mbandaka) compared to birds infected with S. Typhimurium (5.66%) however, co-infection had no significant impact on egg contamination by S. Typhimurium. Throughout the study Salmonella was not recovered from internal contents of eggs laid by hens. Salmonella was isolated from different segments of oviduct of hens from both the groups, however pathology was not observed on microscopic examination. This study investigated Salmonella shedding for up to 15 weeks p.i which is a longer period of time

  5. Study of Salmonella Typhimurium infection in laying hens

    Directory of Open Access Journals (Sweden)

    Kapil eChousalkar

    2016-02-01

    Full Text Available Members of Salmonella enterica are frequently involved in egg and egg product related human food poisoning outbreaks worldwide. In Australia, Salmonella Typhimurium is frequently involved in egg and egg product related foodborne illness and Salmonella Mbandaka has also been found to be a contaminant of the layer farm environment. The ability possessed by Salmonella Enteritidis to colonise reproductive organs and contaminate developing eggs has been well described. However, there are few studies investigating this ability for Salmonella Typhimurium. The hypothesis of this study was that the Salmonella Typhimurium can colonise the gut for a prolonged period of time and that horizontal infection through feces is the main route of egg contamination. At 14 weeks of age hens were orally infected with either S. Typhimurium PT 9 or S. Typhimurium PT 9 and Salmonella Mbandaka. Salmonella shedding in feces and eggs was monitored for 15 weeks post infection. Egg shell surface and internal contents of eggs laid by infected hens were cultured independently for detection of Salmonella spp. The mean Salmonella load in feces ranged from 1.54 to 63.35 and 0.31 to 98.38 most probable number/g (MPN/g in the S. Typhimurium and S. Typhimurium + S. Mbandaka group respectively. No correlation was found between mean fecal Salmonella load and frequency of egg shell contamination. Egg shell contamination was higher in S. Typhimurium + S. Mbandaka infected group (7.2% Typhimurium, 14.1% Mbandaka compared to birds infected with S. Typhimurium (5.66% however, co-infection had no significant impact on egg contamination by S. Typhimurium. Throughout the study Salmonella was not recovered from internal contents of eggs laid by hens. Salmonella was isolated from different segments of oviduct of hens from both the groups, however pathology was not observed on microscopic examination. This study investigated Salmonella shedding for up to 15 weeks p.i which is a longer period of

  6. Survival of Salmonella during baking of peanut butter cookies.

    Science.gov (United States)

    Lathrop, Amanda A; Taylor, Tiffany; Schnepf, James

    2014-04-01

    Peanuts and peanut-based products have been the source of recent Salmonella outbreaks worldwide. Because peanut butter is commonly used as an ingredient in baked goods, such as cookies, the potential risk of Salmonella remaining in these products after baking needs to be assessed. This research examines the potential hazard of Salmonella in peanut butter cookies when it is introduced via the peanut-derived ingredient. The survival of Salmonella during the baking of peanut butter cookies was determined. Commercial, creamy-style peanut butter was artificially inoculated with a five-strain Salmonella cocktail at a target concentration of 10(8) CFU/g. The inoculated peanut butter was then used to prepare peanut butter cookie dough following a standard recipe. Cookies were baked at 350 °F (177 °C) and were sampled after 10, 11, 12, 13, 14, and 15 min. Temperature profiles of the oven and cookies were monitored during baking. The water activity and pH of the inoculated and uninoculated peanut butter, raw dough, and baked cookies were measured. Immediately after baking, cookies were cooled, and the survival of Salmonella was determined by direct plating or enrichment. After baking cookies for 10 min, the minimum reduction of Salmonella observed was 4.8 log. In cookies baked for 13 and 14 min, Salmonella was only detectable by enrichment reflecting a Salmonella reduction in the range of 5.2 to 6.2 log. Cookies baked for 15 min had no detectable Salmonella. Results of this study showed that proper baking will reduce Salmonella in peanut butter cookies by 5 log or more.

  7. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells

    OpenAIRE

    Christie, Peter J.; Vogel, Joseph P.

    2000-01-01

    Several bacterial pathogens utilize conjugation machines to export effector molecules during infection. Such systems are members of the type IV or ‘adapted conjugation’ secretion family. The prototypical type IV system is the Agrobacterium tumefaciens T-DNA transfer machine, which delivers oncogenic nucleoprotein particles to plant cells. Other pathogens, including Bordetella pertussis, Legionella pneumophila, Brucella spp. and Helicobacter pylori, use type IV machines to export effector prot...

  8. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid.

    Directory of Open Access Journals (Sweden)

    Jorunn I B Bos

    2010-11-01

    Full Text Available Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid, based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP-mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we

  9. Identification of Hyaloperonospora arabidopsidis Transcript Sequences Expressed during Infection Reveals Isolate-Specific Effectors

    OpenAIRE

    Cabral, A.; Stassen, J.H.; Seidl, M.F.; Bautor, J.; Parker, J. E.; Van den Ackerveken, G.

    2011-01-01

    Biotrophic plant pathogens secrete effector proteins that are important for infection of the host. The aim of this study was to identify effectors of the downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) that are expressed during infection of its natural host Arabidopsis thaliana. Infection-related transcripts were identified from Expressed Sequence Tags (ESTs) derived from leaves of the susceptible Arabidopsis Ws eds1-1 mutant inoculated with the highly virulent Hpa isolate Waco9. A...

  10. The common structural architecture of Shigella flexneri and Salmonella typhimurium type three secretion needles.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Demers

    2013-03-01

    Full Text Available The Type Three Secretion System (T3SS, or injectisome, is a macromolecular infection machinery present in many pathogenic Gram-negative bacteria. It consists of a basal body, anchored in both bacterial membranes, and a hollow needle through which effector proteins are delivered into the target host cell. Two different architectures of the T3SS needle have been previously proposed. First, an atomic model of the Salmonella typhimurium needle was generated from solid-state NMR data. The needle subunit protein, PrgI, comprises a rigid-extended N-terminal segment and a helix-loop-helix motif with the N-terminus located on the outside face of the needle. Second, a model of the Shigella flexneri needle was generated from a high-resolution 7.7-Å cryo-electron microscopy density map. The subunit protein, MxiH, contains an N-terminal α-helix, a loop, another α-helix, a 14-residue-long β-hairpin (Q51-Q64 and a C-terminal α-helix, with the N-terminus facing inward to the lumen of the needle. In the current study, we carried out solid-state NMR measurements of wild-type Shigella flexneri needles polymerized in vitro and identified the following secondary structure elements for MxiH: a rigid-extended N-terminal segment (S2-T11, an α-helix (L12-A38, a loop (E39-P44 and a C-terminal α-helix (Q45-R83. Using immunogold labeling in vitro and in vivo on functional needles, we located the N-terminus of MxiH subunits on the exterior of the assembly, consistent with evolutionary sequence conservation patterns and mutagenesis data. We generated a homology model of Shigella flexneri needles compatible with both experimental data: the MxiH solid-state NMR chemical shifts and the state-of-the-art cryoEM density map. These results corroborate the solid-state NMR structure previously solved for Salmonella typhimurium PrgI needles and establish that Shigella flexneri and Salmonella typhimurium subunit proteins adopt a conserved structure and orientation in their

  11. Biophysical analysis of the interaction of Rab6a GTPase with its effector domains.

    Science.gov (United States)

    Bergbrede, Tim; Chuky, Nam; Schoebel, Stefan; Blankenfeldt, Wulf; Geyer, Matthias; Fuchs, Evelyn; Goody, Roger S; Barr, Francis; Alexandrov, Kirill

    2009-01-30

    Rab GTPases are key regulators of intracellular vesicular transport that control vesicle budding, cargo sorting, transport, tethering, and fusion. In the inactive (GDP-bound) conformation, Rab GTPases are targeted to intracellular compartments where they are converted into the active GTP-bound form and recruit effector domain containing proteins. Rab6a has been implicated in dynein-mediated vesicle movement at the Golgi apparatus and shown to interact with a plethora of effector proteins. In this study, we identify minimal Rab6a binding domains of three Rab6a effector proteins: PIST, BicaudalD2, and p150(glued). All three domains are >15-kDa fragments predicted to form coiled-coil structures that display no sequence homology to each other. Complex formation with BicaudalD2 and p150 has a moderate inhibitory effect on the intrinsic GTPase activity of Rab6a, while interaction with PIST has no influence on the hydrolysis rate. The effectors bind activated Rab6a with comparable affinities with K(d) values ranging from high nanomolar to low micromolar. Transient kinetic analysis revealed that effectors bind to Rab6a in an apparent single-step reaction characterized by relatively rapid on- and off-rates. We propose that the high off-rates of Rab6.effector complexes enable GTPase-activating protein-mediated net dissociation, which would not be possible if the off-rate were significantly slower.

  12. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.

    Science.gov (United States)

    Abdelsamed, Hossam A; Moustaki, Ardiana; Fan, Yiping; Dogra, Pranay; Ghoneim, Hazem E; Zebley, Caitlin C; Triplett, Brandon M; Sekaly, Rafick-Pierre; Youngblood, Ben

    2017-06-05

    Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (TEM), and longer-lived central memory (TCM) and stem cell memory (TSCM) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of TCM and TSCM memory cells resulted in phenotypic conversion into TEM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired TEM-associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells. © 2017 Abdelsamed et al.

  13. SPRYSEC effectors: a versatile protein-binding platform to disrupt plant innate immunity

    Directory of Open Access Journals (Sweden)

    Amalia Diaz-Granados

    2016-10-01

    Full Text Available Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These round worms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein-protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism.

  14. The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation.

    Directory of Open Access Journals (Sweden)

    Vardis Ntoukakis

    2013-01-01

    Full Text Available The major virulence strategy of phytopathogenic bacteria is to secrete effector proteins into the host cell to target the immune machinery. AvrPto and AvrPtoB are two such effectors from Pseudomonas syringae, which disable an overlapping range of kinases in Arabidopsis and Tomato. Both effectors target surface-localized receptor-kinases to avoid bacterial recognition. In turn, tomato has evolved an intracellular effector-recognition complex composed of the NB-LRR protein Prf and the Pto kinase. Structural analyses have shown that the most important interaction surface for AvrPto and AvrPtoB is the Pto P+1 loop. AvrPto is an inhibitor of Pto kinase activity, but paradoxically, this kinase activity is a prerequisite for defense activation by AvrPto. Here using biochemical approaches we show that disruption of Pto P+1 loop stimulates phosphorylation in trans, which is possible because the Pto/Prf complex is oligomeric. Both P+1 loop disruption and transphosphorylation are necessary for signalling. Thus, effector perturbation of one kinase molecule in the complex activates another. Hence, the Pto/Prf complex is a sophisticated molecular trap for effectors that target protein kinases, an essential aspect of the pathogen's virulence strategy. The data presented here give a clear view of why bacterial virulence and host recognition mechanisms are so often related and how the slowly evolving host is able to keep pace with the faster-evolving pathogen.

  15. New clues in the nucleus: Transcriptional reprogramming in effector-triggered immunity

    Directory of Open Access Journals (Sweden)

    SAIKAT eBHATTACHARJEE

    2013-09-01

    Full Text Available The robustness of plant effector-triggered immunity is correlated with massive alterations of the host transcriptome. Yet the molecular mechanisms that cause and underlie this reprogramming remain obscure. Here we will review recent advances in deciphering nuclear functions of plant immune receptors and of associated proteins. Important open questions remain, such as the identities of the primary transcription factors involved in control of effector-triggered immune responses, and indeed whether this can be generalized or whether particular effector-resistance protein interactions impinge on distinct sectors in the transcriptional response web. Multiple lines of evidence have implicated WRKY transcription factors at the core of responses to microbe-associated molecular patterns and in intersections with effector-triggered immunity. Recent findings from yeast two-hybrid studies suggest that members of the TCP transcription factor family are targets of several effectors from diverse pathogens. Additional transcription factor families that are directly or indirectly involved in effector-triggered immunity are likely to be identified.

  16. Development of bioluminescent Salmonella strains for use in food safety

    Science.gov (United States)

    Karsi, Attila; Howe, Kevin; Kirkpatrick, Tasha B; Wills, Robert; Bailey, R Hartford; Lawrence, Mark L

    2008-01-01

    Background Salmonella can reside in healthy animals without the manifestation of any adverse effects on the carrier. If raw products of animal origin are not handled properly during processing or cooked to a proper temperature during preparation, salmonellosis can occur. In this research, we developed bioluminescent Salmonella strains that can be used for real-time monitoring of the pathogen's growth on food products. To accomplish this, twelve Salmonella strains from the broiler production continuum were transformed with the broad host range plasmid pAKlux1, and a chicken skin attachment model was developed. Results Salmonella strains carrying pAKlux1 constitutively expressed the luxCDABE operon and were therefore detectable using bioluminescence. Strains were characterized in terms of bioluminescence properties and plasmid stability. To assess the usefulness of bioluminescent Salmonella strains in food safety studies, we developed an attachment model using chicken skin. The effect of washing on attachment of Salmonella strains to chicken skin was tested using bioluminescent strains, which revealed the attachment properties of each strain. Conclusion This study demonstrated that bioluminescence is a sensitive and effective tool to detect Salmonella on food products in real-time. Bioluminescence imaging is a promising technology that can be utilized to evaluate new food safety measures for reducing Salmonella contamination on food products. PMID:18211715

  17. SURVIVAL OF SALMONELLA IN WASTE EGG WASH WATER

    Science.gov (United States)

    The survival of salmonellae under various environmental conditions has been subject of numerous research studies. Due to low densities of these organisms in natural samples, laboratory or clinical cultures were used to ensure that the initial density of salmonellae was sufficien...

  18. Survival of Salmonella spp. In Waste Egg Wash Water

    Science.gov (United States)

    The survival of salmonellae under various environmental conditions has been subject of numerous research studies. Due to low densities of these organisms in natural samples, laboratory or clinical cultures were used to ensure that the initial density of salmonellae was sufficien...

  19. Modeling of Salmonella Contamination in the Pig Slaughterhouse

    NARCIS (Netherlands)

    Swart, A.N.; Evers, E.G.; Simons, R.L.L.; Swanenburg, M.

    2016-01-01

    In this article we present a model for Salmonella contamination of pig carcasses in the slaughterhouse. This model forms part of a larger QMRA (quantitative microbial risk assessment) on Salmonella in slaughter and breeder pigs, which uses a generic model framework that can be parameterized for

  20. Characterization of Salmonella enterica Ituri isolated from diseased ...

    African Journals Online (AJOL)

    User

    2013-04-17

    Apr 17, 2013 ... Salmonella enterica Ituri is an uncommon serotype associated with poultry disease. One of the serotype isolated from a poultry disease in Nigeria was characterized by serotyping and screening for the presence of Salmonella genomic island 1(SGI1) as a possible factor responsible for its involvement.