WorldWideScience

Sample records for salmon aquaculture impacts

  1. Salmon lice – impact on wild salmonids and salmon aquaculture

    Science.gov (United States)

    Torrissen, O; Jones, S; Asche, F; Guttormsen, A; Skilbrei, O T; Nilsen, F; Horsberg, T E; Jackson, D

    2013-01-01

    Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion. PMID:23311858

  2. A global assessment of salmon aquaculture impacts on wild salmonids.

    Directory of Open Access Journals (Sweden)

    Jennifer S Ford

    2008-02-01

    Full Text Available Since the late 1980s, wild salmon catch and abundance have declined dramatically in the North Atlantic and in much of the northeastern Pacific south of Alaska. In these areas, there has been a concomitant increase in the production of farmed salmon. Previous studies have shown negative impacts on wild salmonids, but these results have been difficult to translate into predictions of change in wild population survival and abundance. We compared marine survival of salmonids in areas with salmon farming to adjacent areas without farms in Scotland, Ireland, Atlantic Canada, and Pacific Canada to estimate changes in marine survival concurrent with the growth of salmon aquaculture. Through a meta-analysis of existing data, we show a reduction in survival or abundance of Atlantic salmon; sea trout; and pink, chum, and coho salmon in association with increased production of farmed salmon. In many cases, these reductions in survival or abundance are greater than 50%. Meta-analytic estimates of the mean effect are significant and negative, suggesting that salmon farming has reduced survival of wild salmon and trout in many populations and countries.

  3. Physiological consequences of the salmon louse (Lepeophtheirus salmonis) on juvenile pink salmon (Oncorhynchus gorbuscha): implications for wild salmon ecology and management, and for salmon aquaculture.

    Science.gov (United States)

    Brauner, C J; Sackville, M; Gallagher, Z; Tang, S; Nendick, L; Farrell, A P

    2012-06-19

    Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.

  4. Salmon Aquaculture and Antimicrobial Resistance in the Marine Environment

    Science.gov (United States)

    Buschmann, Alejandro H.; Tomova, Alexandra; López, Alejandra; Maldonado, Miguel A.; Henríquez, Luis A.; Ivanova, Larisa; Moy, Fred; Godfrey, Henry P.; Cabello, Felipe C.

    2012-01-01

    Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments. PMID:22905164

  5. Salmon aquaculture and antimicrobial resistance in the marine environment.

    Directory of Open Access Journals (Sweden)

    Alejandro H Buschmann

    Full Text Available Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments.

  6. Future challanges for the maturing Norwegian salmon aquaculture industry

    DEFF Research Database (Denmark)

    Asche, Frank; Guttormsen, Atle G.; Nielsen, Rasmus

    2013-01-01

    In this paper, we analyze total factor productivity change in the Norwegian salmon aquaculture sector from 1996 to 2008. During this period, the production has on average been growing with 8% per year. At the same time, the price of salmon has stabilized indicating that an increase in demand is d...

  7. The impact of water exchange rate and treatment processes on water-borne hormones in recirculation aquaculture systems containing sexually maturing Atlantic salmon Salmo salar

    Science.gov (United States)

    A controlled seven-month study was conducted in six replicated water recirculation aquaculture systems (WRAS) to assess post-smolt Atlantic salmon (Salmo salar) performance in relation to WRAS water exchange rate. Unexpectedly high numbers of precocious sexually mature fish were observed in all WRAS...

  8. Disease Risk and Market Structure in Salmon Aquaculture

    NARCIS (Netherlands)

    Fischer, C.; Guttormsen, Atle; Smith, Martin

    2017-01-01

    We develop a model of a multi-national firm producing commodities for a global market in multiple locations with location-specific risks and different regulatory standards. Salmon aquaculture and disease outbreaks provide an empirically relevant example. We specifically examine details of the

  9. Looking for sustainable solutions in salmon aquaculture

    Directory of Open Access Journals (Sweden)

    Jennifer Bailey

    2014-05-01

    Full Text Available Sustainable development poses highly complex issues for those who attempt to implement it. Using the Brundtland Commission’s definition of sustainable development as a vantage point, this article discusses the issues posed by the production of one kind of food, farmed Atlantic salmon, as a means of illustrating the complexity, interconnectedness and high-data requirements involved in assessing whether a given industry is sustainable. These issues are explored using the three commonly accepted aspects of sustainability – its environmental, social and economic aspects – and the dilemmas posed by the need to make the trade-offs necessary among these. It concludes by arguing that decisions of this complexity require complex and multiple decision-making structures and suggests four that are essential for the task.http://dx.doi.org/10.5324/eip.v8i1.1801

  10. Atlantic salmon and eastern oyster breeding programs at the National Cold Water Marine Aquaculture Center

    Science.gov (United States)

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) focuses on the coldwater marine aquaculture industry’s highest priority research needs including development of improved genetic stocks. Coldwater aquaculture production has potential for expansion, and both Atlantic salmon and Eas...

  11. Key environmental challenges for food groups and regions representing the variation within the EU, Ch.3 Salmon Aquaculture Supply Chain

    DEFF Research Database (Denmark)

    G., Ólafsdóttir; Andrade, Grace Patricia Viera; Nielsen, Thorkild

    2013-01-01

    The report is aimed to give a thorough review of different environmental impacts that the food and drink sector are producing along the whole chain, from fork to farm and to assess which of them are the key environmental challenges for Europe. A representative range of product groups have been...... chosen: • Orange juice • Beef and dairy • Aquaculture (salmon)...

  12. Using the H-index to assess disease priorities for salmon aquaculture.

    Science.gov (United States)

    Murray, Alexander G; Wardeh, Maya; McIntyre, K Marie

    2016-04-01

    Atlantic salmon's (Salmo salar) annual aquaculture production exceeds 2M tonnes globally, and for the UK forms the largest single food export. However, aquaculture production is negatively affected by a range of different diseases and parasites. Effort to control pathogens should be focused on those which are most "important" to aquaculture. It is difficult to specify what makes a pathogen important; this is particularly true in the aquatic sector where data capture systems are less developed than for human or terrestrial animal diseases. Mortality levels might be one indicator, but these can cause a range of different problems such as persistent endemic losses, occasional large epidemics or control/treatment costs. Economic and multi-criteria decision methods can incorporate this range of impacts, however these have not been consistently applied to aquaculture and the quantity and quality of data required is large, so their potential for comparing aquatic pathogens is currently limited. A method that has been developed and applied to both human and terrestrial animal diseases is the analysis of published scientific literature using the H-index method. We applied this method to salmon pathogens using Web of Science searches for 23 pathogens. The top 3 H-indices were obtained for: sea lice, furunculosis, and infectious salmon anaemia; post 2000, Amoebic Gill Disease (AGD) replaced furunculosis. The number of publications per year describing bacterial disease declined significantly, while those for viruses and sea lice increased significantly. This reflects effective bacterial control by vaccination, while problems related to viruses and sea lice have increased. H-indices by country reflected different national concerns (e.g. AGD ranked top for Australia). Averaged national H-indices for salmon diseases tend to increase with log of salmon production; countries with H-Indices significantly below the trend line have suffered particularly large disease losses. The H

  13. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites.

    Science.gov (United States)

    Shah, Syed Q A; Cabello, Felipe C; L'abée-Lund, Trine M; Tomova, Alexandra; Godfrey, Henry P; Buschmann, Alejandro H; Sørum, Henning

    2014-05-01

    Antimicrobial resistance (AR) detected by disc diffusion and antimicrobial resistance genes detected by DNA hybridization and polymerase chain reaction with amplicon sequencing were studied in 124 marine bacterial isolates from a Chilean salmon aquaculture site and 76 from a site without aquaculture 8 km distant. Resistance to one or more antimicrobials was present in 81% of the isolates regardless of site. Resistance to tetracycline was most commonly encoded by tetA and tetG; to trimethoprim, by dfrA1, dfrA5 and dfrA12; to sulfamethizole, by sul1 and sul2; to amoxicillin, by blaTEM ; and to streptomycin, by strA-strB. Integron integrase intl1 was detected in 14 sul1-positive isolates, associated with aad9 gene cassettes in two from the aquaculture site. intl2 Integrase was only detected in three dfrA1-positive isolates from the aquaculture site and was not associated with gene cassettes in any. Of nine isolates tested for conjugation, two from the aquaculture site transferred AR determinants to Escherichia coli. High levels of AR in marine sediments from aquaculture and non-aquaculture sites suggest that dispersion of the large amounts of antimicrobials used in Chilean salmon aquaculture has created selective pressure in areas of the marine environment far removed from the initial site of use of these agents. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Life cycle assessment of a novel closed-containment salmon aquaculture technology.

    Science.gov (United States)

    McGrath, Keegan P; Pelletier, Nathan L; Tyedmers, Peter H

    2015-05-05

    In salmonid aquaculture, a variety of technologies have been deployed that attempt to limit a range of environmental impacts associated with net-pen culture. One such technology employs a floating, solid-walled enclosure as the primary culture environment, providing greater potential control over negative interactions with surroundings waters while limiting energy use required for water circulation, thermo-regulation and supplemental oxygen provision. Here, we utilize life cycle assessment to model contributions to a suite of global-scale resource depletion and environmental concerns (including global warming potential, acidification potential, marine eutrophication potential, cumulative energy use, and biotic resource use) of such a technology deployed commercially to rear Chinook salmon in coastal British Columbia, Canada. Results indicate that at full grow-out, feed provisioning and on-site energy use dominate contributions across four of five impact categories assessed. For example, per tonne of salmon harvested, feed contributed approximately 72% to global warming potential, 72% to acidification potential, and accounted for 100% of biotic resource use. However, for both feed and on-site energy use, impacts are heavily influenced by specific sources of inputs; therefore efforts to improve the environmental performance of this technology should focus on reducing these in favor of less impactful alternatives.

  15. Effects of host migration, diversity and aquaculture on sea lice threats to Pacific salmon populations.

    Science.gov (United States)

    Krkosek, Martin; Gottesfeld, Allen; Proctor, Bart; Rolston, Dave; Carr-Harris, Charmaine; Lewis, Mark A

    2007-12-22

    Animal migrations can affect disease dynamics. One consequence of migration common to marine fish and invertebrates is migratory allopatry-a period of spatial separation between adult and juvenile hosts, which is caused by host migration and which prevents parasite transmission from adult to juvenile hosts. We studied this characteristic for sea lice (Lepeophtheirus salmonis and Caligus clemensi) and pink salmon (Oncorhynchus gorbuscha) from one of the Canada's largest salmon stocks. Migratory allopatry protects juvenile salmon from L. salmonis for two to three months of early marine life (2-3% prevalence). In contrast, host diversity facilitates access for C. clemensi to juvenile salmon (8-20% prevalence) but infections appear ephemeral. Aquaculture can augment host abundance and diversity and increase parasite exposure of wild juvenile fish. An empirically parametrized model shows high sensitivity of salmon populations to increased L. salmonis exposure, predicting population collapse at one to five motile L. salmonis per juvenile pink salmon. These results characterize parasite threats of salmon aquaculture to wild salmon populations and show how host migration and diversity are important factors affecting parasite transmission in the oceans.

  16. Domestic cultivation of salmon in the Pacific Northwest and aquaculture of Malaysian prawns in controlled environments

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, B.A.; Sandifer, P.A.; Smith, T.I.J.

    1978-07-01

    Aquaculture of salmon and shrimp is discussed. Domsea Farms in the Pacific Northwest has facilities for spawning, hatching, and rearing of coho salmon for U.S. markets. Health management programs operate to keep salmon free from bacterial or viral diseases. Recent developments in technology for the intensive culture of a tropical prawn (Macrobrachium rosenbergii) are considered. Commercial facilities in South Carolina consisting of hatchery, nursery, production, and brood stock phases are described. Designs for very intensive grow-out systems include small earthen pond units, modified Shigueno-type tanks, and aquacells. Major problem areas of commercial shrimp production are identified. (10 diagrams, 1 graph, 11 photos, numerous references)

  17. Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter

    Science.gov (United States)

    Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad; Herzsprung, Peter; Schmitt-Kopplin, Philippe; Neu, Thomas R.; Graeber, Daniel; Osorio, Sebastian; Valenzuela, Jose; Carlos Reyes, Juan; Woelfl, Stefan; Hertkorn, Norbert

    2017-03-01

    Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures. Aquacultures released large quantities of readily bioavailable metabolites (primarily carbohydrates and peptides/proteins, and lipids), causing the organic matter downstream of all the investigated aquacultures to deviate strongly from the highly processed, polydisperse and molecularly heterogeneous DOM found in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state and thus impairing the ecosystem health. The bacterial DOM degradation rates explain the attenuation of aquaculture DOM within the subsequent stream reaches. This knowledge may aid the development of improved waste processing facilities and may help to define emission thresholds to protect sensitive stream ecosystems.

  18. World Aquaculture: Environmental Impacts and Troubleshooting Alternatives

    Directory of Open Access Journals (Sweden)

    Marcel Martinez-Porchas

    2012-01-01

    Full Text Available Aquaculture has been considered as an option to cope with the world food demand. However, criticisms have arisen around aquaculture, most of them related to the destruction of ecosystems such as mangrove forest to construct aquaculture farms, as well as the environmental impacts of the effluents on the receiving ecosystems. The inherent benefits of aquaculture such as massive food production and economical profits have led the scientific community to seek for diverse strategies to minimize the negative impacts, rather than just prohibiting the activity. Aquaculture is a possible panacea, but at present is also responsible for diverse problems related with the environmental health; however the new strategies proposed during the last decade have proven that it is possible to achieve a sustainable aquaculture, but such strategies should be supported and proclaimed by the different federal environmental agencies from all countries. Additionally there is an urgent need to improve legislation and regulation for aquaculture. Only under such scenario, aquaculture will be a sustainable practice.

  19. World Aquaculture: Environmental Impacts and Troubleshooting Alternatives

    Science.gov (United States)

    Martinez-Porchas, Marcel; Martinez-Cordova, Luis R.

    2012-01-01

    Aquaculture has been considered as an option to cope with the world food demand. However, criticisms have arisen around aquaculture, most of them related to the destruction of ecosystems such as mangrove forest to construct aquaculture farms, as well as the environmental impacts of the effluents on the receiving ecosystems. The inherent benefits of aquaculture such as massive food production and economical profits have led the scientific community to seek for diverse strategies to minimize the negative impacts, rather than just prohibiting the activity. Aquaculture is a possible panacea, but at present is also responsible for diverse problems related with the environmental health; however the new strategies proposed during the last decade have proven that it is possible to achieve a sustainable aquaculture, but such strategies should be supported and proclaimed by the different federal environmental agencies from all countries. Additionally there is an urgent need to improve legislation and regulation for aquaculture. Only under such scenario, aquaculture will be a sustainable practice. PMID:22649291

  20. Price formation of the salmon aquaculture futures market

    DEFF Research Database (Denmark)

    Ankamah-Yeboah, Isaac; Nielsen, Max; Nielsen, Rasmus

    2017-01-01

    , the 3-, 4-, 5-, 9- and 12-months futures contracts provide the expected leadership role in the price discovery function, a case that supports a matured market that can be considered a necessary price risk management tool. The mixed finding is an indication of a maturing or near matured futures market......This study examines price formation of the internationally traded salmon futures exchange. Analyzing data from 2006 to 2015, the study identifies the co-integration relationship between the spot market price and 1–6-, 9- and 12-month futures contract prices. With exception of the 12-month maturity...... futures price, the unbiasedness hypothesis is shown to hold, thus evidence of risk neutrality and efficiency among the co-integrated pairs. Further, it is evident that the spot price provides leadership role in the price discovery function for the 1-, 2- and 6-months futures contract. On the contrary...

  1. Sustainable development? Salmon aquaculture and late modernity in the archipelago of Chiloé, Chile

    Directory of Open Access Journals (Sweden)

    Jonathan R. Barton

    2016-11-01

    Full Text Available Chiloé is an archipelago that has, since the 1980s, become one of the motors of the Chilean economy. Salmon aquaculture swiftly transformed the tradition of isolation and poverty that had defined the local identity and livelihoods. This is now changing due to the rapid experience of modernity. This modernity is driven by transnational capital and large-scale state intervention in the promotion of salmon aquaculture and its current central role in defining development in the islands. While this sector has generated private and public employment and infrastructure, there has also been an important shift in the expectations and aspirations of the local population, towards increased hybridization and also a mercantilization of island culture. The success of salmon production reveals that the conditions of isolation can be transformed, and even benefits reaped from integration into the modern world –globalised, capitalist and rational, rather than traditional– however it also entails risks for the sustainability of fragile socio-ecological systems, including the existence of traditional and alternative livelihoods.

  2. Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems.

    Science.gov (United States)

    Schmidt, Victor; Amaral-Zettler, Linda; Davidson, John; Summerfelt, Steven; Good, Christopher

    2016-08-01

    Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed-containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters are not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters, and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative-protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water, and biofilter medium in each corresponding RAS unit. Our results provide data on how fish diet influences the RAS environment and corroborate previous findings that diet has a clear influence on the microbiome structure of the salmon intestine, particularly within the order Lactobacillales (lactic acid bacteria). We conclude that the strong stability of taxa likely involved in water quality processing regardless of diet (e

  3. Salmon Population Summary - Impacts of climate change on Pacific salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This work involves 1) synthesizing information from the literature and 2) modeling impacts of climate change on specific aspects of salmon life history and...

  4. Systemic granuloma observed in Atlantic salmon Salmo salar raised to market size in a freshwater recirculation aquaculture system

    Science.gov (United States)

    Systemic granuloma was observed in sampled adult Atlantic salmon Salmo salar raised to harvest size in a freshwater recirculation aquaculture system. The prevalence of this condition was estimated at 10-20% of the population, with affected individuals grossly demonstrating pathology in varying degre...

  5. The effects of ozonation on select waterborne steroid hormones in recirculation aquaculture systems containing sexually mature Atlantic salmon Salmo salar

    Science.gov (United States)

    A controlled 3-month study was conducted in 6 replicated water recirculation aquaculture systems (RAS) containing a mixture of sexually mature and immature Atlantic salmon Salmo salar to determine whether water ozonation is associated with a reduction in waterborne hormones. Post-smolt Atlantic salm...

  6. The Sea of Okhotsk and the Bering Sea as the region of natural aquaculture: Organochlorine pesticides in Pacific salmon.

    Science.gov (United States)

    Tsygankov, Vasiliy Yu; Lukyanova, Olga N; Khristoforova, Nadezhda K

    2016-12-15

    Kuril Islands of the Sea of Okhotsk and the western part of the Bering Sea are an area of natural feeding of Pacific salmon, and the catch area of ones for food market. Food safety of products is an important task of aquaculture. Сoncentrations of HCHs (α-, β-, γ-) and DDT and its metabolites (DDD and DDE) were determined in organs of the pink (Oncorhynchus gorbuscha), chum (O. keta), chinook (O. tshawytscha), and sockeye (O. nerka), which caught from the natural aquaculture region of Russia (near the Kuril Islands (the northern-western part of the Pacific Ocean), the Sea of Okhotsk and the Bering Sea). The average total concentration of OCPs in organs of salmon from Western Pacific is lower than that in salmon from the North Pacific American coast and the Atlantic Ocean. The region can be used to grow smolts, which will be later released into the ocean. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Impact of aquaculture on coastal marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Abidi, S.A.H.

    Since aquaculture is intimately linked with aquatic environmental quality, entry of pollutants to coastal waters constitutes the greatest threat to marine environmental quality and, hence, to long term viability of coastal aquaculture. Fish...

  8. Fillet quality and processing attributes of postsmolt Atlantic salmon, Salmo salar, fed a fishmeal-free diet and a fishmeal-based diet in recirculation aquaculture systems

    Science.gov (United States)

    Many studies have evaluated the adequacy of alternate ingredient diets for Atlantic salmon, Salmo salar, mainly with focus on fish performance and health; however, comprehensive analysis of fillet quality is lacking, particularly for salmon fed these diets in recirculation aquaculture systems (RAS)....

  9. Investigating the effectiveness of peracetic acid to reduce post-vaccination Saprolegnia spp.-associated mortality in Atlantic salmon parr while assessing impact on nitrification in recirculation aquaculture systems

    Science.gov (United States)

    Closed containment operations utilizing recirculation aquaculture systems (RAS) can provide critical barriers to the introduction of obligate fish pathogens (Timmons and Ebeling, 2010); however, opportunistic pathogens will be present and can cause disease when conditions favor these agents. One par...

  10. Environmental impact analysis of aquaculture in net cages in a ...

    African Journals Online (AJOL)

    Environmental impact analysis of aquaculture in net cages in a Brazilian water reservoir, based in zooplankton communities. Maria Cristina Crispim, Karla Patrícia Ponte Araújo, Hênio do Nascimento Melo Júnior ...

  11. Intestinal microbiota of healthy and unhealthy Atlantic salmon Salmo salar L. in a recirculating aquaculture system

    Science.gov (United States)

    Wang, Chun; Sun, Guoxiang; Li, Shuangshuang; Li, Xian; Liu, Ying

    2017-04-01

    The present study sampled the intestinal content of healthy and unhealthy Atlantic salmon (Salmo salar L.), the ambient water of unhealthy fish, and the biofilter material in the recirculating aquaculture system (RAS) to understand differences in the intestinal microbiota. The V4-V5 regions of the prokaryotic 16S rRNA genes in the samples were analyzed by MiSeq high-throughput sequencing. The fish were adults with no differences in body length or weight. Representative members of the intestinal microbiota were identified. The intestinal microbiota of the healthy fish included Proteobacteria (44.33%), Actinobacteria (17.89%), Bacteroidetes (15.25%), and Firmicutes (9.11%), among which the families Micrococcaceae and Oxalobacteraceae and genera Sphingomonas, Streptomyces, Pedobacter, Janthinobacterium, Burkholderia, and Balneimonas were most abundant. Proteobacteria (70.46%), Bacteroidetes (7.59%), and Firmicutes (7.55%) dominated the microbiota of unhealthy fish, and Chloroflexi (2.71%), and Aliivibrio and Vibrio as well as genera in the family Aeromonadaceae were most strongly represented. Overall, the intestinal hindgut microbiota differed between healthy and unhealthy fish. This study offers a useful tool for monitoring the health status of fish and for screening the utility of probiotics by studying the intestinal microbiota.

  12. Increased susceptibility to infectious salmon anemia virus (ISAv) in Lepeophtheirus salmonis – infected Atlantic salmon

    Science.gov (United States)

    The salmon louse and infectious salmon anemia virus (ISAv) are the two most significant pathogens of concern to the Atlantic salmon (Salmo salar) aquaculture industry. However, the interactions between sea lice and ISAv, as well as the impact of a prior sea lice infection on the susceptibility of th...

  13. Aquaculture impact and treatment systems of effluents with aquatic macrophytes

    OpenAIRE

    Henry-Silva, Gustavo Gonzaga; Monteiro Camargo, Antonio Fernando [UNESP

    2008-01-01

    Aquaculture effluents are enriched by nitrogen, phosphorus and organic matter and contribute to increase eutrophication of the receiving water bodies and reduction or change in biodiversity. To reduce effluent loading is important to formulate highly digestible diets with lower nutrient levels. In addition, it is necessary to treat effluents to attend to new legislation demands and the pressure of environmentalist. This review of the aquaculture activities and its impacts on the environmental...

  14. Assessing benthic ecological impacts of bottom aquaculture using macrofaunal assemblages.

    Science.gov (United States)

    Wang, Lu; Fan, Ying; Yan, Cunjun; Gao, Chunzi; Xu, Zhaodong; Liu, Xiaoshou

    2017-01-15

    Bottom aquaculture of bivalves is a high-yield culture method, which is increasingly adopted by shellfish farmers worldwide. However, the effects of bottom aquaculture on benthic ecosystems are not well-known. Manila clam (Ruditapes philippinarum), is a widely distributed bottom aquaculture mollusk species. To assess the ecological impacts of Manila clam bottom aquaculture, clams and other macrofaunal assemblages were investigated during four cruises (July and November 2011, February and May 2012) at six sampling sites in Jiaozhou Bay, China. Correlation analysis showed that macrofaunal assemblages had significant negative correlations with the abundance of Manila clams. However, according to the results of several biotic indices, a low disturbance was detected by Manila clam bottom aquaculture. In conclusion, AMBI (AZTI'S Marine Biotic Index) and M-AMBI (Multivariate AZTI Marine Biotic Index) indices are more suitable for assessing ecological quality than polychaete/amphipod ratios when the disturbance is slight, such as at a bivalve bottom aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Impact of an aquaculture extension project in Bangladesh

    DEFF Research Database (Denmark)

    Rand, John; Tarp, Finn

    2009-01-01

    This paper is an impact study of key short- and long-run effects of the Danida supported Mymensingh Aquaculture Extension Project (MAEP) in Bangladesh, applying different matching and double difference estimators. Results are mixed. First, the paper finds a positive short-run impact on pond...

  16. Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter

    DEFF Research Database (Denmark)

    Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad

    2017-01-01

    Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level...... in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state...

  17. Comparative Genomics Identifies Candidate Genes for Infectious Salmon Anemia (ISA) Resistance in Atlantic Salmon (Salmo salar)

    OpenAIRE

    Li, Jieying; Keith A. Boroevich; Koop, Ben F; Davidson, William S.

    2010-01-01

    Infectious salmon anemia (ISA) has been described as the hoof and mouth disease of salmon farming. ISA is caused by a lethal and highly communicable virus, which can have a major impact on salmon aquaculture, as demonstrated by an outbreak in Chile in 2007. A quantitative trait locus (QTL) for ISA resistance has been mapped to three microsatellite markers on linkage group (LG) 8 (Chr 15) on the Atlantic salmon genetic map. We identified bacterial artificial chromosome (BAC) clones and three f...

  18. Evaluating the chronic effects of nitrate on the health and performance of post-smolt Atlantic salmon Salmo salar in freshwater recirculation aquaculture systems

    Science.gov (United States)

    Commercial production of Atlantic salmon smolts, post-smolts, and market-size fish using land-based recirculation aquaculture systems (RAS) is expanding. RAS generally provide a nutrient-rich environment in which nitrate accumulates as an end-product of nitrification. An 8-month study was conducted ...

  19. Assessing the effectiveness of peracetic acid to remediate post-vaccination Saprolegnia spp.-associated mortality in Atlantic salmon Salmo salar parr in recirculation aquaculture systems

    Science.gov (United States)

    Disease is a major barrier to aquaculture production worldwide, and within the salmon industry it is responsible for the majority of market supply fluctuation. Ubiquitous oomycetes of the Saprolegnia genus are particularly problematic disease agents, associated with an estimated 10% mortality among ...

  20. Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter

    DEFF Research Database (Denmark)

    Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad

    2017-01-01

    Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level...

  1. “AquaTrace” The development of tools for tracing and evaluating the genetic impact of fish from aquaculture

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Bekkevold, Dorte; Svåsand, Terje

    2012-01-01

    and farming technologies which are economically viable, environmentally friendly, and perceived as socially acceptable. Here we present the objectives, implementation, and potential impact of a new EU FP7 project. The rationale behind AquaTrace is development of reliable and cost‐effective molecular tools...... Atlantic salmon and brown trout as model species. Thus, the scientific objectives of AquaTrace are to address and assess the genetic impact of aquaculture escapees introducing genes to wild populations that have been undergoing adaptation to farmed conditions through breeding and domestication selection...

  2. Environmental impact of seasonal integrated aquaculture ponds ...

    African Journals Online (AJOL)

    The environmental impact of fingerponds, particularly on hydrology and biodiversity, was low, although land-use changes at the immediate site where the ponds were dug had direct impacts. Whereas this study was based on short-term monitoring of experimental fingerponds, scaling up of these systems may increase their ...

  3. Using Satellite Tracking and Isotopic Information to Characterize the Impact of South American Sea Lions on Salmonid Aquaculture in Southern Chile.

    Directory of Open Access Journals (Sweden)

    Maritza Sepúlveda

    Full Text Available Apex marine predators alter their foraging behavior in response to spatial and/or seasonal changes in natural prey distribution and abundance. However, few studies have identified the impacts of aquaculture that represents a spatially and temporally predictable and abundant resource on their foraging behavior. Using satellite telemetry and stable isotope analysis we examined the degree of spatial overlap between the South American sea lion (SASL and salmon farms, and quantify the amount of native prey versus farmed salmonids in SASL diets. We instrumented eight SASL individuals with SRDL-GPS tags. Vibrissae, hair and skin samples were collected for δ13C and δ15N analyses from five of the tagged individuals and from four males captured in a haul-out located adjacent to salmon farms. Tracking results showed that almost all the foraging areas of SASL are within close proximity to salmon farms. The most important prey for the individuals analyzed was farmed salmonids, with an estimated median (±SD contribution of 19.7 ± 13.5‰ and 15.3 ± 9.6‰ for hair and skin, respectively. Using vibrissae as a temporal record of diet for each individual, we observed a remarkable switch in diet composition in two SASL, from farmed salmonids to pelagic fishes, which coincided with the decrease of salmon production due to the infectious salmon anemia virus that affected salmon farms in Chile at the end of 2008. Our study demonstrates the usefulness of integrating stable isotope derived dietary data with movement patterns to characterize the impacts of a non-native prey on the foraging ecology of an apex marine predator, providing important applied implications in situations where interactions between aquaculture and wildlife are common.

  4. Using Satellite Tracking and Isotopic Information to Characterize the Impact of South American Sea Lions on Salmonid Aquaculture in Southern Chile

    Science.gov (United States)

    Sepúlveda, Maritza; Newsome, Seth D.; Pavez, Guido; Oliva, Doris; Costa, Daniel P.; Hückstädt, Luis A.

    2015-01-01

    Apex marine predators alter their foraging behavior in response to spatial and/or seasonal changes in natural prey distribution and abundance. However, few studies have identified the impacts of aquaculture that represents a spatially and temporally predictable and abundant resource on their foraging behavior. Using satellite telemetry and stable isotope analysis we examined the degree of spatial overlap between the South American sea lion (SASL) and salmon farms, and quantify the amount of native prey versus farmed salmonids in SASL diets. We instrumented eight SASL individuals with SRDL-GPS tags. Vibrissae, hair and skin samples were collected for δ13C and δ15N analyses from five of the tagged individuals and from four males captured in a haul-out located adjacent to salmon farms. Tracking results showed that almost all the foraging areas of SASL are within close proximity to salmon farms. The most important prey for the individuals analyzed was farmed salmonids, with an estimated median (±SD) contribution of 19.7 ± 13.5‰ and 15.3 ± 9.6‰ for hair and skin, respectively. Using vibrissae as a temporal record of diet for each individual, we observed a remarkable switch in diet composition in two SASL, from farmed salmonids to pelagic fishes, which coincided with the decrease of salmon production due to the infectious salmon anemia virus that affected salmon farms in Chile at the end of 2008. Our study demonstrates the usefulness of integrating stable isotope derived dietary data with movement patterns to characterize the impacts of a non-native prey on the foraging ecology of an apex marine predator, providing important applied implications in situations where interactions between aquaculture and wildlife are common. PMID:26309046

  5. Investigating the influence of nitrate nitrogen on post-smolt Atlantic salmon Salmo salar reproductive physiology in water recirculation aquaculture systems

    Science.gov (United States)

    Good, Christopher; Davidson, John; Iwanowicz, Luke; Meyer, Michael T.; Dietze, Julie E.; Kolpin, Dana W.; Marancik, David; Birkett, Jill; Williams, Christina; Summerfelt, Steven T.

    2017-01-01

    A major issue affecting land-based, closed containment Atlantic salmon Salmo salar growout production in water recirculation aquaculture systems (RAS) is precocious male maturation, which can negatively impact factors such as feed conversion, fillet yield, and product quality. Along with other water quality parameters, elevated nitrate nitrogen (NO3-N) has been shown to influence the reproductive development and endogenous sex steroid production in a number of aquatic animal species, including Atlantic salmon. We sought to determine whether elevated NO3-N in RAS can influence early maturation in post-smolt Atlantic salmon in an 8-month trial in replicated freshwater RAS. Post-smolt Atlantic salmon (102 ± 1 g) were stocked into six RAS, with three RAS randomly selected for dosing with high NO3-N (99 ± 1 mg/L) and three RAS set for low NO3-N (10 ± 0 mg/L). At 2-, 4-, 6-, and 8-months post-stocking, 5 fish were randomly sampled from each RAS, gonadosomatic index(GSI) data were collected, and plasma was sampled for 11-ketotestosterone(11-KT) quantification. At 4- and 8-months post-stocking, samples of culture tank and spring water (used as “makeup” or replacement water) were collected and tested for a suite of 42 hormonally active compounds using liquid chromatography/mass spectrometry, as well as for estrogenicity using the bioluminescent yeast estrogen screen (BLYES) reporter system. Finally, at 8-months post-stocking 8–9 salmon were sampled from each RAS for blood gas and chemistry analyses, and multiple organ tissues were sampled for histopathology evaluation. Overall, sexually mature males were highly prevalent in both NO3-N treatment groups by study’s end, and there did not appear to be an effect of NO3-N on male maturation prevalence based on grilse identification, GSI, and 11-KT results, indicating that other culture parameters likely instigated early maturation. No important differences were noted between treatment groups for

  6. Evaluation of feed and feeding regime on growth performance, flesh quality and fecal viscosity of Atlantic salmon ( Salmo salar L.) in recirculating aquaculture systems

    Science.gov (United States)

    Sun, Guoxiang; Liu, Ying; Li, Yong; Li, Xian; Wang, Shunkui

    2015-10-01

    The effects of different feeds and feeding regimes on growth performance, flesh quality and fecal viscosity of Atlantic salmon ( Salmo salar L.) in recirculating aquaculture systems (RAS) were investigated. Fish (initial body weight of 1677 g ± 157 g) were fed with four commercial feeds (Nosan salmon-NS, Aller gold-AG, Skretting salmon-SS and Han ye-HY) in two feeding regimes (80% and 100% satiation) for 78 d. The results showed that salmon specific growth ratio (SGR) and weight gain ratio (WGR) were significantly affected by feed type and feeding regime ( P enzymes including protease, lipase and amylase were also significantly affected by feed type and feeding regime ( P pH among all groups showed significant differences ( P < 0.05), ranging from 26.67 to 29.67, while no obvious difference was found in flesh color. Fecal viscosity for different treatments showed no significant difference, though improvement was found in 100% satiation group. From present experiment, it was concluded that both feed type and feeding regime can affect the important quality attributes of Atlantic salmon.

  7. Projected impacts of climate change on salmon habitat restoration

    OpenAIRE

    Battin, James; Wiley, Matthew W.; Mary H. Ruckelshaus; Palmer, Richard N.; Korb, Elizabeth; Bartz, Krista K.; Imaki, Hiroo

    2007-01-01

    Throughout the world, efforts are under way to restore watersheds, but restoration planning rarely accounts for future climate change. Using a series of linked models of climate, land cover, hydrology, and salmon population dynamics, we investigated the impacts of climate change on the effectiveness of proposed habitat restoration efforts designed to recover depleted Chinook salmon populations in a Pacific Northwest river basin. Model results indicate a large negative impact of climate change...

  8. Aquaculture disturbance impacts the diet but not ecological linkages of a ubiquitous predatory fish

    Science.gov (United States)

    McPeek, Kathleen C.; McDonald, P. Sean; VanBlaricom, Glenn

    2015-01-01

    Aquaculture operations are a frequent and prominent cause of anthropogenic disturbance to marine and estuarine communities and may alter species composition and abundance. However, little is known about how such disturbances affect trophic linkages or ecosystem functions. In Puget Sound, Washington, aquaculture of the Pacific geoduck clam (Panopea generosa) is increasing and involves placing nets and polyvinyl chloride (PVC) tubes in intertidal areas to protect juvenile geoducks from predators. Initial studies of the structured phase of the farming cycle have documented limited impacts on the abundance of some species. To examine the effect of geoduck aquaculture on ecological linkages, the trophic relationships of a local ubiquitous consumer, Pacific staghorn sculpin (Leptocottus armatus), to its invertebrate prey were compared between geoduck aquaculture sites and nearby reference areas with no aquaculture. Mark-recapture data indicated that sculpin exhibit local site fidelity to cultured and reference areas. The stomach contents of sculpin and stable isotope signatures of sculpin and their prey were examined to study the trophic ecology of cultured and reference areas. Results showed that the structured phase of geoduck aquaculture initiated some changes to staghorn sculpin ecology, as reflected in sculpin diet through stomach content analysis. However, carbon and nitrogen stable isotopes revealed that the general food web function of sculpin remained unchanged. The source of carbon at the base of the food web and the trophic position of sculpin were not impacted by geoduck aquaculture. The study has important implications for geoduck aquaculture management and will inform regulatory decisions related to shellfish aquaculture policy.

  9. Modelling the impacts of semi-intensive aquaculture on the foodweb ...

    African Journals Online (AJOL)

    Nutrient loadings are an important component of aquaculture impacts as they can lead to cascade effects at the ecosystem level. An evaluation of these effects on foodweb functioning is presented and discussed for the case study of Lake Burullus in the Nile Delta, Egypt, where semi-intensive aquaculture in earthen ponds ...

  10. Modelling growth performance and feeding behaviour of Atlantic salmon (Salmo salar L.) in commercial-size aquaculture net pens: Model details and validation through full-scale experiments.

    Science.gov (United States)

    Føre, Martin; Alver, Morten; Alfredsen, Jo Arve; Marafioti, Giancarlo; Senneset, Gunnar; Birkevold, Jens; Willumsen, Finn Victor; Lange, Guttorm; Espmark, Åsa; Terjesen, Bendik Fyhn

    2016-11-01

    We have developed a mathematical model which estimates the growth performance of Atlantic salmon in aquaculture production units. The model consists of sub-models estimating the behaviour and energetics of the fish, the distribution of feed pellets, and the abiotic conditions in the water column. A field experiment where three full-scale cages stocked with 120,000 salmon each (initial mean weight 72.1  ± SD 2.8 g) were monitored over six months was used to validate the model. The model was set up to simulate fish growth for all the three cages using the feeding regimes and observed environmental data as input, and simulation results were compared with the experimental data. Experimental fish achieved end weights of 878, 849 and 739 g in the three cages respectively. However, the fish contracted Pancreas Disease (PD) midway through the experiment, a factor which is expected to impair growth and increase mortality rate. The model was found able to predict growth rates for the initial period when the fish appeared to be healthy. Since the effects of PD on fish performance are not modelled, growth rates were overestimated during the most severe disease period. This work illustrates how models can be powerful tools for predicting the performance of salmon in commercial production, and also imply their potential for predicting differences between commercial scale and smaller experimental scales. Furthermore, such models could be tools for early detection of disease outbreaks, as seen in the deviations between model and observations caused by the PD outbreak. A model could potentially also give indications on how the growth performance of the fish will suffer during such outbreaks. We believe that our manuscript is relevant for the aquaculture industry as it examines the growth performance of salmon in a fish farm in detail at a scale, both in terms of number of fish and in terms of duration, that is higher than usual for such studies. In addition, the fish

  11. A Management Tool for Assessing Aquaculture Environmental Impacts in Chilean Patagonian Fjords: Integrating Hydrodynamic and Pellets Dispersion Models

    Science.gov (United States)

    Tironi, Antonio; Marin, Víctor H.; Campuzano, Francisco J.

    2010-05-01

    This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.

  12. A management tool for assessing aquaculture environmental impacts in Chilean Patagonian Fjords: integrating hydrodynamic and pellets dispersion models.

    Science.gov (United States)

    Tironi, Antonio; Marin, Víctor H; Campuzano, Francisco J

    2010-05-01

    This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.

  13. 78 FR 34093 - An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska

    Science.gov (United States)

    2013-06-06

    ... AGENCY An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska AGENCY... the revised draft document titled, ``An Assessment of Potential Mining Impacts on Salmon Ecosystems of... Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska'' is available primarily via the Internet on...

  14. 77 FR 31353 - An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, AK

    Science.gov (United States)

    2012-05-25

    ... AGENCY An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, AK AGENCY... of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska'' (EPA-910-R-12-004a-d). The... draft ``An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska'' is...

  15. Economic analysis of the environmental impact on marine cage lobster aquaculture in Vietnam

    OpenAIRE

    Ly, Nguyen Thi Y

    2009-01-01

    In Vietnam, marine cage lobster aquaculture has been expanding significantly over the last years. Besides the economic contribution for locals living in the coastal areas in Central of Vietnam, this industry has created some problems that are relating to the marine environmental protection where trash fish feed is predominant. This paper investigates the environmental impact on cage marine lobster aquaculture in Vietnam by using the Change of Productivity method in which nitrogen releasing fr...

  16. The AquAdvantage Salmon Controversy – A Tale of Aquaculture, Genetically Engineered Fish and Regulatory Uncertainty

    OpenAIRE

    Goubau, Alain

    2011-01-01

    This paper discusses the controversy around the potentially imminent commercialization of the first genetically engineered animal for human food consumption in the United States. The industrialization of commercial fishing in the wake of growing demand has led to a rapid decline in wild fish stocks. Over the last 50 years, modern aquaculture has developed into an important industry, to the point that it now supplies nearly half of all the fish humans consume. Yet modern aquaculture, including...

  17. The impact and control of biofouling in marine aquaculture: a review.

    Science.gov (United States)

    Fitridge, Isla; Dempster, Tim; Guenther, Jana; de Nys, Rocky

    2012-01-01

    Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5-10% of production costs (equivalent to US$ 1.5 to 3 billion yr(-1)), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms.

  18. Variation in some quality attributes of Atlantic salmon fillets from aquaculture related to geographic origin and water temperature

    DEFF Research Database (Denmark)

    Johansson, Gine Ørnholt; Frosch, Stina; Jørgensen, Bo Munk

    2017-01-01

    an efficient use of the information gathered in the different links of the value chain, a deeper knowledge of the correlations between the various quality attributes and factors like the geographical origin of the salmon, the company and the water temperature of the fish farm, is needed. In the present study......It is well know that factors like fat content and texture affect the yield when making products from Atlantic salmon (Salmo salar L.). The relation between these factors and other quality attributes like water holding capacity and protein content, however, has received limited attention. To enable...

  19. 78 FR 25266 - An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska

    Science.gov (United States)

    2013-04-30

    ... AGENCY An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska AGENCY... Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska'' (EPA-910-R-12-004Ba-c... assessment to determine the significance of Bristol Bay's ecological resources and the potential impacts of...

  20. Organic salmon

    DEFF Research Database (Denmark)

    Ankamah Yeboah, Isaac; Nielsen, Max; Nielsen, Rasmus

    The year 2016 is groundbreaking for organic aquaculture producers in EU, as it represents the deadline for implementing a full organic life cycle in the aquaculture production. Such a shift induces production costs for farmers and if it should be profitable, they must receive higher prices....... This study identifies the price premium on organic salmon in the Danish retail sale sector using consumer panel scanner data for households by applying the hedonic price model while permitting unobserved heterogeneity between households. A premium of 20% for organic salmon is found. Since this premium...... is closer to organic labeled agriculture products than to ecolabelled capture fisheries products, it indicates that consumers value organic salmon as an agriculture product more than fisheries product....

  1. The ecological impact of salmon farming in Scottish coastal waters: a preliminary appraisal

    National Research Council Canada - National Science Library

    Gowen, R.J; Bradbury, N.B; Brown, J.R

    1985-01-01

    Results from environmental impact studies and nutritional studies of salmonids we are used to assess the environmental impact resulting from salmon farming in the sea-lochs of the west coast of Scotland...

  2. Identifying salmon lice transmission characteristics between Faroese salmon farms

    DEFF Research Database (Denmark)

    Kragesteen, Trondur J.; Simonsen, Knud; Visser, AW

    2017-01-01

    Sea lice infestations are an increasing challenge in the ever-growing salmon aquaculture sector and cause large economic losses. The high salmon production in a small area creates a perfect habitat for parasites. Knowledge of how salmon lice planktonic larvae disperse and spread the infection...... between farms is of vital importance in developing treatment management plans to combat salmon lice infestations. Using a particle tracking model forced by tidal currents, we show that Faroese aquaculture farms form a complex network. In some cases as high as 10% of infectious salmon lice released at one...

  3. The Impact of Egg Ozonation on Hatching Success, Larval Growth, and Survival of Atlantic Cod, Atlantic Salmon, and Rainbow Trout.

    Science.gov (United States)

    Fry, Jessica; Casanova, Pérez Juan; Hamoutene, Dounia; Lush, Lynn; Walsh, Andy; Couturier, Cyr

    2015-03-01

    The direct exposure of fish eggs to ozonated water has generated interest as a means of ensuring pathogen-free eggs without the use of harsh chemicals. However, there are numerous knowledge gaps, including safe contact times, exposure levels, and potential long-term effects on aquaculture species in both freshwater and seawater. The effect of different ozone (O3) doses (0.5-1.0, 1.5-2.0, and 2.5-3.0 mg of O3/L for 90 s) on recently fertilized eggs of Atlantic Cod Gadus morhua and eyed eggs of Atlantic Salmon Salmo salar and Rainbow Trout Oncorhynchus mykiss was evaluated in comparison with the effects of two commercial disinfectants: Perosan (0.004 mg/L) and Ovadine (100 mg/L). The impact of ozone application was evaluated based on hatching success, larval nucleic acid concentration, larval growth, and survival. Overall, results indicated that ozonation of Atlantic Cod eggs at a dose less than 3.0 mg/L for 90 s produced no negative effect on the larvae up to 30 d posthatch. Furthermore, ozonation of Atlantic Salmon and Rainbow Trout eggs generated no negative effect on the larvae, based on monitoring until 85% yolk sac re-absorption (16 d posthatch).

  4. Impact of pond aquaculture effluents on seagrass performance in NE Hainan, tropical China.

    Science.gov (United States)

    Herbeck, Lucia S; Sollich, Miriam; Unger, Daniela; Holmer, Marianne; Jennerjahn, Tim C

    2014-08-15

    The impact of pond aquaculture effluents on the distribution and performance of seagrasses was examined in NE Hainan, tropical China. Samples were taken along transects in three back-reef areas with different extent of aquaculture production in their hinterland. High δ(15)N in seagrass leaves and epiphytes (6-9‰) similar to values in pond effluents documented aquaculture as dominant nitrogen source in the back-reefs with decreasing impact with distance from shore. Seagrass species abundance, shoot density and biomass were lower and concentrations of nutrients, chlorophyll and suspended matter were higher at nearshore sites with high and moderate pond abundance than at the control site. High epiphyte loads and low δ(34)S in seagrass leaves suggest temporal shading and sulphide poisoning of the nearshore seagrasses. Observed gradients in environmental parameters and seagrass performance indicate that the distance from the pond outlets and size of the adjacent pond agglomeration are major determinants of seagrass degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fluoroquinolones and Tetracycline Antibiotics in a Portuguese Aquaculture System and Aquatic Surroundings: Occurrence and Environmental Impact.

    Science.gov (United States)

    Pereira, André M P T; Silva, Liliana J G; Meisel, Leonor M; Pena, Angelina

    2015-01-01

    The growth of aquaculture over the past few years is widely recognized as one of the main sources of antibiotics, mainly fluoroquinolones (FQ) and tetracyclines (TC), in the aquatic environment, consequently, increasing the risk of the emergence of antibiotic bacterial resistance and promoting the spread of resistant genes. This study aimed to (1) develop and validate a multiresidue method for determination and quantification of ciprofloxacin (CIP), difloxacin (DIFL), enrofloxacin (ENR), norfloxacin (NOR), sarafloxacin (SARA), and oxytetracycline (OXY) in aquaculture waters and surrounding water bodies and (2) provide the first Portuguese data to utilize in assessment of risk of adverse effects. In addition, the potential environmental impact posed by these antibiotics to aquatic organisms, belonging to different trophic levels, when exposed to the studied aquaculture waters was also assessed. The analytical strategy comprised of solid-phase extraction (SPE) through Oasis HLB cartridges, and detection and quantification by liquid chromatography with tandem mass spectrometry (LC/MS(n)). Method detection limits (MDL) and method quantification limits (MQL) were in the range of 0.7-3 ng/L and 2.4-10 ng/L, respectively. Recoveries varied between 57.4 and 122.8%. The method was applied to 31 water samples collected from an aquaculture and surrounding water bodies located in north of Portugal. Residues of all antibiotics, except SARA and DIFL, were detected at concentrations ranging from 3 to 75.1 ng/L. Norfloxacin was the antibiotic present at highest frequency and concentration. Regarding the environmental impact assessment (EIA), a risk quotient higher than 1 was observed for NOR.

  6. Impact of converison of mangrove ecosystem for aquaculture purposes

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Wafar, S.

    ,000 hectare are produced. The species cultivated are mugil cephalus, Chanon-Chanos, Penaeus Monodon, P. indicus, Macrobrachium, etc. About 32.13% of this area is along west coast and the yield rate is about 500-600 kg/ha/yr. Some of the impacts of conversion...

  7. Management options to mitigate environmental impact of aquaculture in the Philippines

    OpenAIRE

    Edpalina, Rizalita Rosalejos

    2009-01-01

    Asia-Pacific represents the most important region for fisheries and aquaculture production. It is world's largest contributor to the world's aquaculture, producing 46.9 million tons or 91% of the global aquaculture production (FAO, 2005). The growth of aquaculture production has been very strong for the last ten years due to the increased production from China. The aquaculture production in Southeast Asia is diversified comprising 41.6% freshwater fish, 23.5% of aquatic plants, 6.7% crustacea...

  8. A modeled comparison of direct and food web-mediated impacts of common pesticides on Pacific salmon.

    Science.gov (United States)

    Macneale, Kate H; Spromberg, Julann A; Baldwin, David H; Scholz, Nathaniel L

    2014-01-01

    In the western United States, pesticides used in agricultural and urban areas are often detected in streams and rivers that support threatened and endangered Pacific salmon. Although concentrations are rarely high enough to cause direct salmon mortality, they can reach levels sufficient to impair juvenile feeding behavior and limit macroinvertebrate prey abundance. This raises the possibility of direct adverse effects on juvenile salmon health in tandem with indirect effects on salmon growth as a consequence of reduced prey abundance. We modeled the growth of ocean-type Chinook salmon (Oncorhynchus tshawytscha) at the individual and population scales, investigating insecticides that differ in how long they impair salmon feeding behavior and in how toxic they are to salmon compared to macroinvertebrates. The relative importance of these direct vs. indirect effects depends both on how quickly salmon can recover and on the relative toxicity of an insecticide to salmon and their prey. Model simulations indicate that when exposed to a long-acting organophosphate insecticide that is highly toxic to salmon and invertebrates (e.g., chlorpyrifos), the long-lasting effect on salmon feeding behavior drives the reduction in salmon population growth with reductions in prey abundance having little additional impact. When exposed to short-acting carbamate insecticides at concentrations that salmon recover from quickly but are lethal to invertebrates (e.g., carbaryl), the impacts on salmon populations are due primarily to reductions in their prey. For pesticides like carbaryl, prey sensitivity and how quickly the prey community can recover are particularly important in determining the magnitude of impact on their predators. In considering both indirect and direct effects, we develop a better understanding of potential impacts of a chemical stressor on an endangered species and identify data gaps (e.g., prey recovery rates) that contribute uncertainty to these assessments.

  9. A modeled comparison of direct and food web-mediated impacts of common pesticides on Pacific salmon.

    Directory of Open Access Journals (Sweden)

    Kate H Macneale

    Full Text Available In the western United States, pesticides used in agricultural and urban areas are often detected in streams and rivers that support threatened and endangered Pacific salmon. Although concentrations are rarely high enough to cause direct salmon mortality, they can reach levels sufficient to impair juvenile feeding behavior and limit macroinvertebrate prey abundance. This raises the possibility of direct adverse effects on juvenile salmon health in tandem with indirect effects on salmon growth as a consequence of reduced prey abundance. We modeled the growth of ocean-type Chinook salmon (Oncorhynchus tshawytscha at the individual and population scales, investigating insecticides that differ in how long they impair salmon feeding behavior and in how toxic they are to salmon compared to macroinvertebrates. The relative importance of these direct vs. indirect effects depends both on how quickly salmon can recover and on the relative toxicity of an insecticide to salmon and their prey. Model simulations indicate that when exposed to a long-acting organophosphate insecticide that is highly toxic to salmon and invertebrates (e.g., chlorpyrifos, the long-lasting effect on salmon feeding behavior drives the reduction in salmon population growth with reductions in prey abundance having little additional impact. When exposed to short-acting carbamate insecticides at concentrations that salmon recover from quickly but are lethal to invertebrates (e.g., carbaryl, the impacts on salmon populations are due primarily to reductions in their prey. For pesticides like carbaryl, prey sensitivity and how quickly the prey community can recover are particularly important in determining the magnitude of impact on their predators. In considering both indirect and direct effects, we develop a better understanding of potential impacts of a chemical stressor on an endangered species and identify data gaps (e.g., prey recovery rates that contribute uncertainty to these

  10. Impact of Common Kingfisher on a salmon population during the nestling period in southern England

    Directory of Open Access Journals (Sweden)

    Vilches A.

    2013-08-01

    Full Text Available The effect of fish-eating birds on their fish-prey populations has been a matter of concern to conservationists, anglers and fishery interests, especially when both bird and fish species have conservation status and are afforded some protection by law. Understanding the predator-prey interactions will assist in managing these potential conflicts. This situation could arise with the Common Kingfisher (Alcedo atthis, whose range covers many important Atlantic salmon (Salmo salar rivers. In order to increase our knowledge on predator-prey interactions between these species, we collected data on the diet and feeding rates of a kingfisher population breeding in an Atlantic salmon river in southern England (River Frome. Results showed that, during nestling period, kingfishers provided a mean of 62 fish per day to the nest and that the mean salmon intake was 2.5% of the entire diet, which is equivalent to 86 salmon parr consumed by each kingfishers pair for the entire breeding period (assuming 2.2 broods/pair/year. The total 0-group salmon population in the River Frome was 63 900. The estimated loss of 0-group salmon parr to the kingfishers over one season was 0.8%, thus supporting the view that the kingfisher has a negligible biological impact over this salmon population.

  11. Edible peanut worm ( Sipunculus nudus) in the Beibu Gulf: Resource, aquaculture, ecological impact and counterplan

    Science.gov (United States)

    Li, Junwei; Xie, Xiaoyong; Zhu, Changbo; Guo, Yongjian; Chen, Suwen

    2017-10-01

    Sipunculus nudus is an important economic species because of its high nutritional and medicinal values. The exploitation and utilization of S. nudus primarily occur in the coastal regions of the Beibu Gulf. However, wild resource of S. nudus is rapidly decreasing because of the overexploitation, which has led to considerable developments of artificial breeding techniques. The cultivation scale of S. nudus has increased in response to successful artificial breeding; however, methods for culturing S. nudus in tidal flats or ponds require further study. Most studies have focused on the breeding, nutrition, medical value and ecological impact of these worms. Studies on the distribution, sediment requirements, nutrition characteristics, breeding techniques and aquaculture ecology of this species are summarized in this paper to promote the development of the aquaculture industry for S. nudus. The high biomass of S. nudus in the Beibu Gulf is positively correlated with the sediment characteristics and water quality of the region. The production of peanut worm has improved to some extent through culturing; however, the nutrient value and ecological environment problems have been observed, which reflect the over exploitation of trace elements and the sediment. These problems will worsen unless they are resolved, and the release of organic materials, nitrogen and phosphorus during harvesting impacts the coastal environment. Moreover, genetic erosion is a potential risk for larvae in artificial breeding programs in tidal flats. Therefore, culturing and collecting methods should be improved and the wild resource conservation should be implemented to promote the sustainable development of the peanut worm.

  12. Long-term epidemiological survey of Kudoa thyrsites (Myxozoa) in Atlantic salmon (Salmo salar L.) from commercial aquaculture farms.

    Science.gov (United States)

    Marshall, W L; Sitjà-Bobadilla, A; Brown, H M; MacWilliam, T; Richmond, Z; Lamson, H; Morrison, D B; Afonso, L O B

    2016-08-01

    Kudoa thyrsites (Myxozoa) encysts within myocytes of a variety of fishes. While infected fish appear unharmed, parasite-derived enzymes degrade the flesh post-mortem. In regions of British Columbia (BC), Canada, up to 4-7% of fillets can be affected, thus having economic consequences and impacting the competitiveness of BC's farms. K. thyrsites was monitored in two farms having high (HP) or low (LP) historical infection prevalence. At each farm, 30 fish were sampled monthly for blood and muscle during the first year followed by nine samplings during year two. Prevalence and intensity were measured by PCR and histology of muscle samples. In parallel, fillet tests were used to quantify myoliquefaction. Infections were detected by PCR after 355 and 509 degree days at LP and HP farms, respectively. Prevalence reached 100% at the HP farm by 2265 degree days and declined during the second year, whereas it plateaued near 50% at the LP farm. Infection intensities decreased after 1 year at both farms. Blood was PCR-positive at both farms between 778 and 1113 degree days and again after 2000 degree days. This is the first monitoring project in a production environment and compares data between farms with different prevalence. © 2015 John Wiley & Sons Ltd.

  13. The impact of escaped farmed Atlantic salmon (Salmo salar L.) on catch statistics in Scotland.

    Science.gov (United States)

    Green, Darren M; Penman, David J; Migaud, Herve; Bron, James E; Taggart, John B; McAndrew, Brendan J

    2012-01-01

    In Scotland and elsewhere, there are concerns that escaped farmed Atlantic salmon (Salmo salar L.) may impact on wild salmon stocks. Potential detrimental effects could arise through disease spread, competition, or inter-breeding. We investigated whether there is evidence of a direct effect of recorded salmon escape events on wild stocks in Scotland using anglers' counts of caught salmon (classified as wild or farmed) and sea trout (Salmo trutta L.). This tests specifically whether documented escape events can be associated with reduced or elevated escapes detected in the catch over a five-year time window, after accounting for overall variation between areas and years. Alternate model frameworks were somewhat inconsistent, however no robust association was found between documented escape events and higher proportion of farm-origin salmon in anglers' catch, nor with overall catch size. A weak positive correlation was found between local escapes and subsequent sea trout catch. This is in the opposite direction to what would be expected if salmon escapes negatively affected wild fish numbers. Our approach specifically investigated documented escape events, contrasting with earlier studies examining potentially wider effects of salmon farming on wild catch size. This approach is more conservative, but alleviates some potential sources of confounding, which are always of concern in observational studies. Successful analysis of anglers' reports of escaped farmed salmon requires high data quality, particularly since reports of farmed salmon are a relatively rare event in the Scottish data. Therefore, as part of our analysis, we reviewed studies of potential sensitivity and specificity of determination of farmed origin. Specificity estimates are generally high in the literature, making an analysis of the form we have performed feasible.

  14. The impact of escaped farmed Atlantic salmon (Salmo salar L. on catch statistics in Scotland.

    Directory of Open Access Journals (Sweden)

    Darren M Green

    Full Text Available In Scotland and elsewhere, there are concerns that escaped farmed Atlantic salmon (Salmo salar L. may impact on wild salmon stocks. Potential detrimental effects could arise through disease spread, competition, or inter-breeding. We investigated whether there is evidence of a direct effect of recorded salmon escape events on wild stocks in Scotland using anglers' counts of caught salmon (classified as wild or farmed and sea trout (Salmo trutta L.. This tests specifically whether documented escape events can be associated with reduced or elevated escapes detected in the catch over a five-year time window, after accounting for overall variation between areas and years. Alternate model frameworks were somewhat inconsistent, however no robust association was found between documented escape events and higher proportion of farm-origin salmon in anglers' catch, nor with overall catch size. A weak positive correlation was found between local escapes and subsequent sea trout catch. This is in the opposite direction to what would be expected if salmon escapes negatively affected wild fish numbers. Our approach specifically investigated documented escape events, contrasting with earlier studies examining potentially wider effects of salmon farming on wild catch size. This approach is more conservative, but alleviates some potential sources of confounding, which are always of concern in observational studies. Successful analysis of anglers' reports of escaped farmed salmon requires high data quality, particularly since reports of farmed salmon are a relatively rare event in the Scottish data. Therefore, as part of our analysis, we reviewed studies of potential sensitivity and specificity of determination of farmed origin. Specificity estimates are generally high in the literature, making an analysis of the form we have performed feasible.

  15. An ecosystem-based approach and management framework for the integrated evaluation of bivalve aquaculture impacts

    DEFF Research Database (Denmark)

    Cranford, Peter J.; Kamermans, Pauline; Krause, Gesche

    2012-01-01

    for bivalve aquaculture be based on a tiered indicator monitoring system that is structured on the principle that increased environmental risk requires increased monitoring effort. More than 1 threshold for each indicator would permit implementation of predetermined impact prevention and mitigation measures...... and ecological systems, marine regulators require an ecosystem-based decision framework that structures and integrates the relationships between these systems and facilitates communication of aquaculture–environment interactions and policy-related developments and decisions. The Drivers-Pressures-State Change-Impact...... to assess DPSIR framework components, are reviewed with a focus on the key environmental issues associated with bivalve farming. Indicator selection criteria are provided to facilitate constraining the number of indicators within the management framework. It is recommended that an ecosystem-based approach...

  16. Impacts of organophosphate pesticide, sumithion on water quality and benthic invertebrates in aquaculture ponds

    Directory of Open Access Journals (Sweden)

    Md. Hanif Uddin

    2016-05-01

    Full Text Available This experiment was carried out to evaluate the effect of an organophosphate pesticide, sumithion on water and sediment quality and benthic invertebrates in aquaculture ponds for 120 days. Three treatments were tried in duplicate: no sumithion (control, weekly application of 1.0 mg/L sumithion (Low dose treatment and 2.0 mg/L sumithion (High dose treatment. Among the different water quality parameters, transparency, NO3–N and PO4–P concentrations were significantly (p < 0.05 decreased in sumithion high dose and low dose, compared to control. The pH, organic matter (%, available phosphorus (mg/L and total nitrogen (% of bottom-sediment also did not vary significantly (p < 0.05 among the treatments. Seven genera of benthic invertebrates belonging to Chironomidae, Oligochaeta and Mollusca were identified over the experimental period. The abundances of benthic invertebrates (number per m2 were significantly (p < 0.05 decreased in both groups treated with summation, compared to control without pesticide. The findings suggest that sumithion had adverse effect on abundance of benthic invertebrates that might have also negative impact on culture animals in aquaculture ponds.

  17. Assessing peracetic acid as a means to control post-vaccination Saprolegniasis in Atlantic salmon Salmo salar parr in recirculation aquaculture systems

    Science.gov (United States)

    Land-based closed containment facilities, utilizing recirculation aquaculture system (RAS) technologies, can reduce or eliminate the introduction of obligate fish pathogens. Regardless, the presence of opportunistic pathogens must be assumed, and these agents can cause disease during unfavorable con...

  18. Why are not there more Atlantic salmon (Salmo salar)

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, D. L. [Vermont Univ., School of Natural Resources, Vermont Cooperative Fish and Wildlife Research Unit, Burlington, VT (United States); Behnke, R. J. [Colorado State Univ., Dept. of Fishery and Wildlife Biology, Fort Collins, CO (United States); Gephard, S. R. [Connecticut Dept. of Environmnetal Protection, Fisheries Div., Old Lyme, CT (United States); McCormick, S. D. [Anadromous Fish Research Center, USGS/Biological Resources Div., Turners Falls, MA (United States); Reeves, G. H. [USDA Forest Service, Corvallis, OR (United States)

    1998-12-31

    The causes of decline and extirpation of salmon on a global scale are investigated. In some cases single factors such as dams, pollution and dewatering, increased density of humans near salmon rivers, overfishing, changes in ocean conditions or intensive aquaculture could be identified as likely causes. The available evidence is not sufficient to link cause and effect for most declines because they are the result of multiple factors, and data that would help to discriminate factors on scales of space or time are lacking. For this reason, it is not possible to allocate the proportional impact of multiple factors that contribute to the the demise of salmon populations. More rigorous methodologies, including more effective sampling techniques, testing of multiple effects integrated across space and time, and adaptive management are needed to account for the continuing decline of salmon.

  19. Impact of Salmonid alphavirus infection in diploid and triploid Atlantic salmon (Salmo salar L. fry.

    Directory of Open Access Journals (Sweden)

    Tharangani K Herath

    Full Text Available With increasing interest in the use of triploid salmon in commercial aquaculture, gaining an understanding of how economically important pathogens affect triploid stocks is important. To compare the susceptibility of diploid and triploid Atlantic salmon (Salmo salar L. to viral pathogens, fry were experimentally infected with Salmonid alphavirus sub-type 1 (SAV1, the aetiological agent of pancreas disease (PD affecting Atlantic salmon aquaculture in Europe. Three groups of fry were exposed to the virus via different routes of infection: intraperitoneal injection (IP, bath immersion, or cohabitation (co-hab and untreated fry were used as a control group. Mortalities commenced in the co-hab challenged diploid and triploid fish from 11 days post infection (dpi, and the experiment was terminated at 17 dpi. Both diploid and triploid IP challenged groups had similar levels of cumulative mortality at the end of the experimental period (41.1% and 38.9% respectively, and these were significantly higher (p < 0.01 than for the other challenge routes. A TaqMan-based quantitative PCR was used to assess SAV load in the heart, a main target organ of the virus, and also liver, which does not normally display any pathological changes during clinical infections, but exhibited severe degenerative lesions in the present study. The median viral RNA copy number was higher in diploid fish compared to triploid fish in both the heart and the liver of all three challenged groups. However, a significant statistical difference (p < 0.05 was only apparent in the liver of the co-hab groups. Diploid fry also displayed significantly higher levels of pancreatic and myocardial degeneration than triploids. This study showed that both diploid and triploid fry are susceptible to experimental SAV1 infection. The lower virus load seen in the triploids compared to the diploids may possibly be related to differences in cell metabolism between the two groups, however, further

  20. [Antibiotics and aquaculture in Chile: implications for human and animal health].

    Science.gov (United States)

    Cabello, Felipe C

    2004-08-01

    Industrial antibiotic usage in agribusinesses and aquaculture is the force that drives the evolution of antibiotic resistant bacteria that produce human and animal disease in many countries. Several studies have demonstrated that most of the industrial use of antibiotics is unnecessary, and that modernization and hygienic changes can reduce this use of antibiotics without negative economic impact. In Chile, industrial aquaculture of salmon has expanded rapidly in the last 20 years becoming a major export business. The exponential growth of this industry has been accompanied by an unrestricted heavy usage of antibiotics in the aquatic environments of lakes, rivers and the ocean, and its impact is being felt in the emergence of antibiotic-resistant bacteria around aquaculture sites and a decrease in the plancktonic diversity in the same areas. The passage of antibiotic resistance genes from aquatic bacteria to human and animal pathogens has been demonstrated, indicating that industrial use of antibiotics in aquaculture affects negatively the antibiotic therapy of human and animal bacterial infections. The Chilean situation triggers important concerns because it includes the use of fluoroquinolones in aquaculture, that are not biodegradable and are able to remain in the environment for years as well as being still effective in treating human infections. The use of large volumes of a wide spectrum of antibiotics in an aquatic environment heavily contaminated with human and animal pathogens also amplifies the opportunities for gene transfer among bacteria, facilitating the emergence of antibiotic resistance and more pathogenic bacterial recombinants. The detection of residual antibiotics in salmons marketed for human consumption that can modify the normal flora of the population also suggests the need for controls on this antibiotic usage and on the presence of residual antibiotics in aquaculture food products. This important problem of public health demands an active

  1. Impacts of aquaculture wastewater irrigation on soil microbial functional diversity and community structure in arid regions

    OpenAIRE

    Chen, Lijuan; Feng, Qi; Li, Changsheng; Wei, Yongping; Zhao, Yan; Feng, Yongjiu; Zheng, Hang; Li, Fengrui; Li, Huiya

    2017-01-01

    Aquaculture wastewater is one of the most important alternative water resources in arid regions where scarcity of fresh water is common. Irrigation with this kind of water may affect soil microbial functional diversity and community structure as changes of soil environment would be significant. Here, we conducted a field sampling to investigate these effects using Biolog and metagenomic methods. The results demonstrated that irrigation with aquaculture wastewater could dramatically reduce soi...

  2. Can stream and riparian restoration offset climate change impacts to salmon populations?

    Science.gov (United States)

    Justice, Casey; White, Seth M; McCullough, Dale A; Graves, David S; Blanchard, Monica R

    2017-03-01

    Understanding how stream temperature responds to restoration of riparian vegetation and channel morphology in context of future climate change is critical for prioritizing restoration actions and recovering imperiled salmon populations. We used a deterministic water temperature model to investigate potential thermal benefits of riparian reforestation and channel narrowing to Chinook Salmon populations in the Upper Grande Ronde River and Catherine Creek basins in Northeast Oregon, USA. A legacy of intensive land use practices in these basins has significantly reduced streamside vegetation and increased channel width across most of the stream network, resulting in water temperatures that far exceed the optimal range for salmon growth and survival. By combining restoration scenarios with climate change projections, we were able to evaluate whether future climate impacts could be offset by restoration actions. A combination of riparian restoration and channel narrowing was predicted to reduce peak summer water temperatures by 6.5 °C on average in the Upper Grande Ronde River and 3.0 °C in Catherine Creek in the absence of other perturbations. These results translated to increases in Chinook Salmon parr abundance of 590% and 67% respectively. Although projected climate change impacts on water temperature for the 2080s time period were substantial (i.e., median increase of 2.7 °C in the Upper Grande Ronde and 1.5 °C in Catherine Creek), we predicted that basin-wide restoration of riparian vegetation and channel width could offset these impacts, reducing peak summer water temperatures by about 3.5 °C in the Upper Grande Ronde and 1.8 °C in Catherine Creek. These results underscore the potential for riparian and stream channel restoration to mitigate climate change impacts to threatened salmon populations in the Pacific Northwest. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Comparative genomics identifies candidate genes for infectious salmon anemia (ISA) resistance in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Li, Jieying; Boroevich, Keith A; Koop, Ben F; Davidson, William S

    2011-04-01

    Infectious salmon anemia (ISA) has been described as the hoof and mouth disease of salmon farming. ISA is caused by a lethal and highly communicable virus, which can have a major impact on salmon aquaculture, as demonstrated by an outbreak in Chile in 2007. A quantitative trait locus (QTL) for ISA resistance has been mapped to three microsatellite markers on linkage group (LG) 8 (Chr 15) on the Atlantic salmon genetic map. We identified bacterial artificial chromosome (BAC) clones and three fingerprint contigs from the Atlantic salmon physical map that contains these markers. We made use of the extensive BAC end sequence database to extend these contigs by chromosome walking and identified additional two markers in this region. The BAC end sequences were used to search for conserved synteny between this segment of LG8 and the fish genomes that have been sequenced. An examination of the genes in the syntenic segments of the tetraodon and medaka genomes identified candidates for association with ISA resistance in Atlantic salmon based on differential expression profiles from ISA challenges or on the putative biological functions of the proteins they encode. One gene in particular, HIV-EP2/MBP-2, caught our attention as it may influence the expression of several genes that have been implicated in the response to infection by infectious salmon anemia virus (ISAV). Therefore, we suggest that HIV-EP2/MBP-2 is a very strong candidate for the gene associated with the ISAV resistance QTL in Atlantic salmon and is worthy of further study.

  4. Bioremediation of aquaculture wastes.

    Science.gov (United States)

    Chávez-Crooker, Pamela; Obreque-Contreras, Johanna

    2010-06-01

    Environmental impacts of wastes from large-scale, intensive aquaculture are substantial and can lead to complex ecosystem changes. The application of known and new technologies can capture inorganic nitrogen from water and reduce organic enrichment of sediments. Biological methods, including Integrated Multi-trophic Aquaculture are now gaining interest for increasing in situ removal of nitrogen and other nutrients at sea cage sites. Several studies on biological nitrogen removal through nitrification, denitrification and anaerobic ammonium oxidation (anammox) have been reported and a number of bacterial groups active in this regard have been described. Nevertheless, additional efforts need to be focused on remediation of aquaculture wastewater and marine sediments. Conventional treatment systems have several disadvantages. Development of more efficient reactor systems and a holistic, integrated approach to waste treatment would allow more environmentally balanced aquaculture practices. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    Science.gov (United States)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-01-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastesspp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  6. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    Science.gov (United States)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-10-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  7. Aquaculture: global status and trends

    Science.gov (United States)

    Bostock, John; McAndrew, Brendan; Richards, Randolph; Jauncey, Kim; Telfer, Trevor; Lorenzen, Kai; Little, David; Ross, Lindsay; Handisyde, Neil; Gatward, Iain; Corner, Richard

    2010-01-01

    Aquaculture contributed 43 per cent of aquatic animal food for human consumption in 2007 (e.g. fish, crustaceans and molluscs, but excluding mammals, reptiles and aquatic plants) and is expected to grow further to meet the future demand. It is very diverse and, contrary to many perceptions, dominated by shellfish and herbivorous and omnivorous pond fish either entirely or partly utilizing natural productivity. The rapid growth in the production of carnivorous species such as salmon, shrimp and catfish has been driven by globalizing trade and favourable economics of larger scale intensive farming. Most aquaculture systems rely on low/uncosted environmental goods and services, so a critical issue for the future is whether these are brought into company accounts and the consequent effects this would have on production economics. Failing that, increased competition for natural resources will force governments to allocate strategically or leave the market to determine their use depending on activities that can extract the highest value. Further uncertainties include the impact of climate change, future fisheries supplies (for competition and feed supply), practical limits in terms of scale and in the economics of integration and the development and acceptability of new bio-engineering technologies. In the medium term, increased output is likely to require expansion in new environments, further intensification and efficiency gains for more sustainable and cost-effective production. The trend towards enhanced intensive systems with key monocultures remains strong and, at least for the foreseeable future, will be a significant contributor to future supplies. Dependence on external feeds (including fish), water and energy are key issues. Some new species will enter production and policies that support the reduction of resource footprints and improve integration could lead to new developments as well as reversing decline in some more traditional systems. PMID:20713392

  8. Aquaculture: global status and trends.

    Science.gov (United States)

    Bostock, John; McAndrew, Brendan; Richards, Randolph; Jauncey, Kim; Telfer, Trevor; Lorenzen, Kai; Little, David; Ross, Lindsay; Handisyde, Neil; Gatward, Iain; Corner, Richard

    2010-09-27

    Aquaculture contributed 43 per cent of aquatic animal food for human consumption in 2007 (e.g. fish, crustaceans and molluscs, but excluding mammals, reptiles and aquatic plants) and is expected to grow further to meet the future demand. It is very diverse and, contrary to many perceptions, dominated by shellfish and herbivorous and omnivorous pond fish either entirely or partly utilizing natural productivity. The rapid growth in the production of carnivorous species such as salmon, shrimp and catfish has been driven by globalizing trade and favourable economics of larger scale intensive farming. Most aquaculture systems rely on low/uncosted environmental goods and services, so a critical issue for the future is whether these are brought into company accounts and the consequent effects this would have on production economics. Failing that, increased competition for natural resources will force governments to allocate strategically or leave the market to determine their use depending on activities that can extract the highest value. Further uncertainties include the impact of climate change, future fisheries supplies (for competition and feed supply), practical limits in terms of scale and in the economics of integration and the development and acceptability of new bio-engineering technologies. In the medium term, increased output is likely to require expansion in new environments, further intensification and efficiency gains for more sustainable and cost-effective production. The trend towards enhanced intensive systems with key monocultures remains strong and, at least for the foreseeable future, will be a significant contributor to future supplies. Dependence on external feeds (including fish), water and energy are key issues. Some new species will enter production and policies that support the reduction of resource footprints and improve integration could lead to new developments as well as reversing decline in some more traditional systems.

  9. STUDY ON IMPACT OF SALINE WATER INUNDATION ON FRESHWATER AQUACULTURE IN SUNDARBAN USING RISK ANALYSIS TOOLS

    Directory of Open Access Journals (Sweden)

    B.K Chand

    2012-11-01

    Full Text Available The impact of saline water inundation on freshwater aquaculture was evaluated through risk assessment tools. Fishponds in low-lying areas of Sagar and Basanti block are prone to saline water flooding. Respondents of Sagar block considered events like cyclone and coastal flooding as extreme risk; erratic monsoon, storm surge and land erosion as high risk; temperature rise, sea level rise, hot & extended summer and precipitation as medium risk. Likewise, in Basanti block the respondents rated cyclone as extreme risk; erratic monsoon, storm surge as high risk; temperature rise, hot & extended summer, land erosion, and precipitation as medium risk; coastal flooding and sea level rise as low risk. Fish farmers of Sagar block classified the consequences of saline water flooding like breach of pond embankment and mass mortality of fishes as extreme risk; escape of existing fish stock and diseases as high risk; entry of unwanted species, retardation of growth and deterioration of water quality as medium risk; and damage of pond environment as low risk. Farmers of Basanti block categorised breach of pond dyke, mass mortality of fishes and entry of unwanted species as extreme risk; escape of fish and diseases as high risk; retardation of growth as medium risk; deterioration of water quality and damage of pond environment as low risk. To reduce the threats against saline water ingression, farmers are taking some coping measures like increase in pond dyke height; repair and strengthening of dyke; plantation on dyke; dewatering and addition of fresh water; application of chemicals/ lime/ dung; addition of tree branches in pond for hide outs etc.

  10. The image of fish from aquaculture among Europeans: impact of exposure to balanced information

    NARCIS (Netherlands)

    Altintzoglou, T.; Verbeke, W.; Vanhonacker, F.; Luten, J.B.

    2010-01-01

    This study investigated the effect of balanced, nonpersuasive information related to safety, healthiness, and sustainability of aquaculture on the image of farmed fish among European consumers. It was demonstrated that there is neither positive nor negative influence of this type of information on

  11. Impacts of aquaculture wastewater irrigation on soil microbial functional diversity and community structure in arid regions.

    Science.gov (United States)

    Chen, Lijuan; Feng, Qi; Li, Changsheng; Wei, Yongping; Zhao, Yan; Feng, Yongjiu; Zheng, Hang; Li, Fengrui; Li, Huiya

    2017-09-11

    Aquaculture wastewater is one of the most important alternative water resources in arid regions where scarcity of fresh water is common. Irrigation with this kind of water may affect soil microbial functional diversity and community structure as changes of soil environment would be significant. Here, we conducted a field sampling to investigate these effects using Biolog and metagenomic methods. The results demonstrated that irrigation with aquaculture wastewater could dramatically reduce soil microbial functional diversity. The values of diversity indices and sole carbon source utilization were all significantly decreased. Increased soil salinity, especially Cl concentration, appeared primarily associated with the decreases. Differently, higher bacterial community diversity was obtained in aquaculture wastewater irrigated soils. More abundant phyla Actinobacteria, Chloroflexi, Acidobacteria, Gemmatimonadetes and fewer members of Proteobacteria, Bacteroidetes and Planctomycetes were found in this kind of soils. Changes in the concentration of soil Cl mainly accounted for the shifts of bacterial community composition. This research can improve our understanding of how aquaculture wastewater irrigation changes soil microbial process and as a result, be useful to manage soil and wastewater resources in arid regions.

  12. Modeling the Environmental Impact of Aquacultural Facilities - A Foundation for Future Management

    Directory of Open Access Journals (Sweden)

    Dale M. Licata

    1986-10-01

    Full Text Available A numerical model for computing the oxygen consumption and leakage of nutrients and organic matter from an aquacultural facility has been implemented. It is based upon the energy equation for fish and accounts for metabolism and growth over a range of temperatures and fish weight classes.

  13. Antimicrobial use and resistance in aquaculture: findings of a globally administered survey of aquaculture-allied professionals.

    Science.gov (United States)

    Tuševljak, N; Dutil, L; Rajić, A; Uhland, F C; McClure, C; St-Hilaire, S; Reid-Smith, R J; McEwen, S A

    2013-09-01

    There is limited published information regarding antimicrobial use (AMU) and antimicrobial resistance (AMR) in aquaculture. Our objective was to determine the opinions of aquaculture-allied professionals around the world on the frequency of AMU and AMR in common aquatic species. The study questionnaire included five sections: respondent demographics, extent of AMU in aquaculture, frequency of observations of AMR in aquaculture, AMR monitoring and surveillance and antimicrobial susceptibility testing in various jurisdictions. It was administered in English and Spanish to 604 professionals in 25 countries and with varying expertise in aquaculture. The response rate was 33% (199/604). Over half of the participants had >10 years of experience in aquaculture: 70% (140/199) were involved in fish health/clinical work and their primary experience was with salmon, tilapia, trout, shrimp (including prawn) and/or catfish. Tetracycline use was reported by 28%, 46%, 18%, 37% and 9% of respondents working with catfish, salmon, tilapia, trout and shrimp, respectively. Resistance to tetracycline in one or more species of bacteria was reported as 'frequent-to-almost always' for the same aquaculture species by 39%, 28%, 17%, 52% and 36% of respondents, respectively. 'Frequent-to-almost always' use of quinolone was reported by 70% (32/46) and 67% (8/12) of respondents from the United States and Canada, respectively, where quinolone products are not approved for aquaculture, and extra-label fluoroquinolone use is either prohibited (United States) or discouraged (Canada). Similar frequencies of quinolone use were also reported by the majority of respondents from Europe [70% (7/10)] and Asia [90% (9/10)] where labelled indications exist. This baseline information can be used to prioritize research or surveillance for AMU and AMR in aquaculture. © 2012 Blackwell Verlag GmbH.

  14. Stream Physical Characteristics Impact Habitat Quality for Pacific Salmon in Two Temperate Coastal Watersheds.

    Science.gov (United States)

    Fellman, Jason B; Hood, Eran; Dryer, William; Pyare, Sanjay

    2015-01-01

    Climate warming is likely to cause both indirect and direct impacts on the biophysical properties of stream ecosystems especially in regions that support societally important fish species such as Pacific salmon. We studied the seasonal variability and interaction between stream temperature and DO in a low-gradient, forested stream and a glacial-fed stream in coastal southeast Alaska to assess how these key physical parameters impact freshwater habitat quality for salmon. We also use multiple regression analysis to evaluate how discharge and air temperature influence the seasonal patterns in stream temperature and DO. Mean daily stream temperature ranged from 1.1 to 16.4°C in non-glacial Peterson Creek but only 1.0 to 8.8°C in glacial-fed Cowee Creek, reflecting the strong moderating influence glacier meltwater had on stream temperature. Peterson Creek had mean daily DO concentrations ranging from 3.8 to 14.1 mg L(-1) suggesting future climate changes could result in an even greater depletion in DO. Mean daily stream temperature strongly controlled mean daily DO in both Peterson (R2=0.82, Psalmon were abundant. Our results demonstrate the complexity of stream temperature and DO regimes in coastal temperate watersheds and highlight the need for watershed managers to move towards multi-factor risk assessment of potential habitat quality for salmon rather than single factor assessments alone.

  15. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

  16. Stream Physical Characteristics Impact Habitat Quality for Pacific Salmon in Two Temperate Coastal Watersheds.

    Directory of Open Access Journals (Sweden)

    Jason B Fellman

    Full Text Available Climate warming is likely to cause both indirect and direct impacts on the biophysical properties of stream ecosystems especially in regions that support societally important fish species such as Pacific salmon. We studied the seasonal variability and interaction between stream temperature and DO in a low-gradient, forested stream and a glacial-fed stream in coastal southeast Alaska to assess how these key physical parameters impact freshwater habitat quality for salmon. We also use multiple regression analysis to evaluate how discharge and air temperature influence the seasonal patterns in stream temperature and DO. Mean daily stream temperature ranged from 1.1 to 16.4°C in non-glacial Peterson Creek but only 1.0 to 8.8°C in glacial-fed Cowee Creek, reflecting the strong moderating influence glacier meltwater had on stream temperature. Peterson Creek had mean daily DO concentrations ranging from 3.8 to 14.1 mg L(-1 suggesting future climate changes could result in an even greater depletion in DO. Mean daily stream temperature strongly controlled mean daily DO in both Peterson (R2=0.82, P<0.01 and Cowee Creek (R2=0.93, P<0.01. However, DO in Peterson Creek was mildly related to stream temperature (R2=0.15, P<0.01 and strongly influenced by discharge (R2=0.46, P<0.01 on days when stream temperature exceeded 10°C. Moreover, Peterson Creek had DO values that were particularly low (<5.0 mg L(-1 on days when discharge was low but also when spawning salmon were abundant. Our results demonstrate the complexity of stream temperature and DO regimes in coastal temperate watersheds and highlight the need for watershed managers to move towards multi-factor risk assessment of potential habitat quality for salmon rather than single factor assessments alone.

  17. Influence of stocking density on growth, body composition and energy budget of Atlantic salmon Salmo salar L. in recirculating aquaculture systems

    Science.gov (United States)

    Liu, Baoliang; Liu, Ying; Liu, Ziyi; Qiu, Denggao; Sun, Guoxiang; Li, Xian

    2014-09-01

    Atlantic salmon Salmo salar were reared at four stocking densities—high density D 1 (final density ˜39 kg/m3), medium densities D 2 (˜29 kg/m3) and D 3 (˜19 kg/m3), and low density D 4 (˜12 kg/m3)—for 40 days to investigate the effect of stocking density on their growth performance, body composition and energy budgets. Stocking density did not significantly affect specific growth rate in terms of weight (SGRw) but did affect specific growth rate in terms of energy (SGRe). Stocking density significantly influenced the ration level (RLw and RLe), feed conversion ratio (FCRw and FCRe) and apparent digestibility rate (ADR). Ration level and FCRw tended to increase with increasing density. Fish at the highest density D 1 and lowest density D 4 showed lower FCRe and higher ADR than at medium densities. Stocking density significantly affected protein and energy contents of the body but did not affect its moisture, lipid, or ash contents. The expenditure of energy for metabolism in the low-density and high-density groups was lower than that in the medium-density groups. Stocking density affected energy utilization from the feces but had no effect on excretion rate. The greater energy allocation to growth at high density and low density may be attributed to reduced metabolic rate and increased apparent digestibility rate. These findings provide information that will assist selection of suitable stocking densities in the Atlantic-salmon-farming industry.

  18. Impacts, Perceptions and Management of Climate-Related Risks to Cage Aquaculture in the Reservoirs of Northern Thailand.

    Science.gov (United States)

    Lebel, Louis; Lebel, Phimphakan; Lebel, Boripat

    2016-12-01

    Weather is suspected to influence fish growth and survival, and be a factor in mass mortality events in cage aquaculture in reservoirs. The purpose of this study was to identify the important climate-related risks faced by cage aquaculture farms; evaluate how these risks were currently being managed; and explore how farmers might adapt to the effects of climate change. Fish farmers were interviewed across the northern region of Thailand to get information on impacts, perceptions and practices. Drought or low water levels, heat waves, cold spells and periods with dense cloud cover, each caused significant financial losses. Perceptions of climate-related risks were consistent with experienced impacts. Risks are primarily managed in the short-term with techniques like aeration and reducing feed. In the mid-term farmers adjust stocking calendars, take financial measures and seek new information. Farmers also emphasize the importance of maintaining good relations with other stakeholders and reservoir management. Larger farms placed greater importance on risk management than small farms, even though types and levels of risk perceived were very similar. Most fish farms were managed by men alone, or men and women working together. Gender differences in risk perception were not detected, but women judged a few risk management practices as more important than men. Fish farmers perceived that climate is changing, but their perceptions were not strongly associated with recently having suffered impacts from extreme weather. The findings of this study provide important inputs to improving risk management under current and future climate.

  19. Impacts, Perceptions and Management of Climate-Related Risks to Cage Aquaculture in the Reservoirs of Northern Thailand

    Science.gov (United States)

    Lebel, Louis; Lebel, Phimphakan; Lebel, Boripat

    2016-12-01

    Weather is suspected to influence fish growth and survival, and be a factor in mass mortality events in cage aquaculture in reservoirs. The purpose of this study was to identify the important climate-related risks faced by cage aquaculture farms; evaluate how these risks were currently being managed; and explore how farmers might adapt to the effects of climate change. Fish farmers were interviewed across the northern region of Thailand to get information on impacts, perceptions and practices. Drought or low water levels, heat waves, cold spells and periods with dense cloud cover, each caused significant financial losses. Perceptions of climate-related risks were consistent with experienced impacts. Risks are primarily managed in the short-term with techniques like aeration and reducing feed. In the mid-term farmers adjust stocking calendars, take financial measures and seek new information. Farmers also emphasize the importance of maintaining good relations with other stakeholders and reservoir management. Larger farms placed greater importance on risk management than small farms, even though types and levels of risk perceived were very similar. Most fish farms were managed by men alone, or men and women working together. Gender differences in risk perception were not detected, but women judged a few risk management practices as more important than men. Fish farmers perceived that climate is changing, but their perceptions were not strongly associated with recently having suffered impacts from extreme weather. The findings of this study provide important inputs to improving risk management under current and future climate.

  20. Increased competition for aquaculture from fisheries

    DEFF Research Database (Denmark)

    Jensen, Frank; Nielsen, Max; Nielsen, Rasmus

    2014-01-01

    ; and supplies from aquaculture have grown continuously. In this paper, the impact of improved fisheries management on aquaculture growth is studied assuming perfect substitution between farmed and wild fish. We find that improved fisheries management, ceteris paribus, reduces the growth potential of global...... aquaculture in markets where wild fisheries constitute a large share of total supply....

  1. Urban stormwater runoff negatively impacts lateral line development in larval zebrafish and salmon embryos.

    Science.gov (United States)

    Young, Alexander; Kochenkov, Valentin; McIntyre, Jenifer K; Stark, John D; Coffin, Allison B

    2018-02-12

    After a storm, water often runs off of impervious urban surfaces directly into aquatic ecosystems. This stormwater runoff is a cocktail of toxicants that have serious effects on the ecological integrity of aquatic habitats. Zebrafish that develop in stormwater runoff suffer from cardiovascular toxicity and impaired growth, but the effects of stormwater on fish sensory systems are not understood. Our study investigated the effect of stormwater on hair cells of the lateral line in larval zebrafish and coho salmon. Our results showed that although toxicants in stormwater did not kill zebrafish hair cells, these cells did experience damage. Zebrafish developing in stormwater also experienced impaired growth, fewer neuromasts in the lateral line, and fewer hair cells per neuromast. A similar reduction in neuromast number was observed in coho salmon reared in stormwater. Bioretention treatment, intended to filter out harmful constituents of stormwater, rescued the lateral line defects in zebrafish but not in coho salmon, suggesting that not all of the harmful constituents were removed by the filtration media and that salmonids are particularly sensitive to aquatic toxicants. Collectively, these data demonstrate that sub-lethal exposure to stormwater runoff negatively impacts a fish sensory system, which may have consequences for organismal fitness.

  2. Aquaculture; Acquacoltura

    Energy Technology Data Exchange (ETDEWEB)

    De Murtas, I.D. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-12-01

    This paper attempts an overview of the progress made in the field of aquaculture. Aquaculture is a system of techniques strongly influenced by natural environmental conditions. Aquaculture as a biological technique oriented towards the production of useful aquatic organisms, is reaching a stage of consolidation which will place it on an equal footing which agriculture and animal husbandry. Aquaculture provides important economic and nutritional benefits to many regions of developing world. In 1994, over 90 percent of total aquaculture production was in Asia, with China, India, Japan, Indonesia, Thailand, Philippines and Republic of Korea as the seven leader producers. [Italiano] L`acquacoltura, vale a dire l`arte di riprodurre artificialmente pesci, alghe, molluschi e crostacei ed altri organismi acquatici utili all`uomo, si presenta oggi come un`attivita` di assoluto rilievo nell`insieme dei vari comparti di produzione alimentare. L`aumento della produzione e` costante anche se cinque paesi asiatici (Cina, India, Giappone, Filippine e Corea del Sud) contribuiscono per l`80% al volume della produzione mondiale. Nel presente lavoro vengono descritti lo stato dell`acquacoltura e della maricoltura nel mondo e le filiere di allevamento delle principali specie.

  3. Inshore capture-based tuna aquaculture impact on Posidonia oceanica meadows in the eastern part of the Adriatic Sea.

    Science.gov (United States)

    Kružić, Petar; Vojvodić, Vjeročka; Bura-Nakić, Elvira

    2014-09-15

    Mapping and monitoring of the seagrass Posidonia oceanica in the eastern (Croatian) part of the Adriatic Sea since 2004 indicates a significant decline in meadow density in an area impacted by inshore capture-based tuna aquaculture. The density and overall condition of P. oceanica meadows impacted by tuna farms near Fulija Islet was compared to two reference sites (Iž Island and Mrtovnjak Islet). The factors with the most significant influence on P. oceanica meadows were found to be the input of organic matter originating from the cages, as well as high epiphyte biomass caused by nutrient enrichment. Significant differences in nutrient concentrations were found between the sites impacted by tuna farms (Fulija Islet) and the control stations. Shoot density of the P. oceanica meadows decreased at the stations in close vicinity to the tuna farm, which suggests that the tuna farm activity strongly affected the surrounding meadows. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A Project Approach to Teaching Aquaculture and Entrepreneurial Skills in the Cage Culture of Salmonids Program at the Marine Institute.

    Science.gov (United States)

    Churchill, Edgar; Smith, Boyd

    Between September and December 1986, the Marine Institute in Newfoundland, Canada, used a "projects approach" to train aquaculture workers for 10 new salmon farms to be opened in spring 1987 by a producers' cooperative. The projects approach combined instruction in the aquaculture skills needed to operate a salmon farm and the entrepreneurial…

  5. Identifying salmon lice transmission characteristics between Faroese salmon farms

    DEFF Research Database (Denmark)

    Kragesteen, Trondur J.; Simonsen, Knud; Visser, AW

    2017-01-01

    between farms is of vital importance in developing treatment management plans to combat salmon lice infestations. Using a particle tracking model forced by tidal currents, we show that Faroese aquaculture farms form a complex network. In some cases as high as 10% of infectious salmon lice released at one...... farm site enter a neighboring fjord containing another farm site. Farms were characterized as emitters, receivers or isolated, and we could identify two clusters of farms that were largely isolated from each other. The farm characteristics are a valuable input for the development of management plans...... for the entire Faroese salmon industry...

  6. Impact of water boundary layer diffusion on the nitrification rate of submerged biofilter elements from a recirculating aquaculture system

    DEFF Research Database (Denmark)

    Prehn, Jonas; Waul, Christopher Kevin; Pedersen, Lars-Flemming

    2012-01-01

    Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS’s. The aim of this study...... was to determine the impact of hydraulic film diffusion on the nitrification rate in a submerged biofilter. Using an experimental batch reactor setup with recirculation, active nitrifying biofilter units from a RAS were exposed to a range of hydraulic flow velocities. Corresponding nitrification rates were...... measured following ammonium chloride, NH4Cl, spikes and the impact of hydraulic film diffusion was quantified. The nitrification performance of the tested biofilter could be significantly increased by increasing the hydraulic flow velocity in the filter. Area based first order nitrification rate constants...

  7. Impacts of organophosphate pesticide, sumithion on water quality and benthic invertebrates in aquaculture ponds

    OpenAIRE

    Uddin, Md. Hanif; Shahjahan, Md.; Ruhul Amin, A.K.M.; Haque, Md. Mahfuzul; Islam, Md. Ashraful; Azim, M. Ekram

    2016-01-01

    This experiment was carried out to evaluate the effect of an organophosphate pesticide, sumithion on water and sediment quality and benthic invertebrates in aquaculture ponds for 120 days. Three treatments were tried in duplicate: no sumithion (control), weekly application of 1.0 mg/L sumithion (Low dose treatment) and 2.0 mg/L sumithion (High dose treatment). Among the different water quality parameters, transparency, NO3–N and PO4–P concentrations were significantly (p 

  8. Climate change, ecosystem impacts, and management for Pacific salmon

    Science.gov (United States)

    D.E. Schindler; X. Augerot; E. Fleishman; N.J. Mantua; B. Riddell; M. Ruckelshaus; J. Seeb; M. Webster

    2008-01-01

    As climate change intensifies, there is increasing interest in developing models that reduce uncertainties in projections of global climate and refine these projections to finer spatial scales. Forecasts of climate impacts on ecosystems are far more challenging and their uncertainties even larger because of a limited understanding of physical controls on biological...

  9. Weight loss and fillet quality characteristics of Atlantic salmon (Salmo salar) after purging for 5, 10, 15 or 20 days

    Science.gov (United States)

    Atlantic salmon, Salmo salar, are typically cultured in marine net pens. However, technological advancements in recirculating aquaculture systems have increased the feasibility of culturing Atlantic salmon in land-based systems to alleviate environmental and disease issues limiting sustainability. ...

  10. Benthic Foraminifera As A Novel Bio-monitoring Tool In The Assessment Of Environmental Impacts Linked To Marine Aquaculture

    Science.gov (United States)

    Alammar, Montaha; Austin, William

    2017-04-01

    The present study represents an attempt to evaluate the impacts of marine aquaculture on benthic foraminiferal communities in order to develop an improved, quantitative understanding of their response to the variation in benthic environmental gradients associated with fish farms in Scotland. Furthermore, their performance as a bio-monitoring tool will be discussed and outlined in ongoing research to evaluate their performance alongside traditional bioecological indicators. Foraminiferal faunas offer the potential to assess ecological quality status through their response to stress gradients (e.g. organic matter enrichment), such as that caused by intensive fish farming in coastal sediments. In this study, we followed the Foraminiferal Bio-Monitoring (FOBIMO) protocol (Schönfeld. et al., 2012), which proposed a standardised methodology of using foraminifera as a bio-monitoring tool to evaluate the quality of the marine ecosystem and applied these protocols to the rapidly expanding marine aquaculture sector in Scotland, UK. Eight stations were sampled along a transect in Loch Creran, west coast of Scotland, to describe the spatial and down-core (temporal) distribution pattern of benthic foraminiferal assemblages. Triplicate, Rose-Bengal stained samples from an interval of (0-1cm) below the sediment surface were studied at each station from below the fish cages (impacted stations) to a distance from the farming sites (control stations). Morphospecies counts were conducted, and the organic carbon and the grain size distributions determined. Species richness beneath these fish farming cages were analysed and showed a reduction of foraminifera density and diversity at the impacted stations.

  11. Organic waste impact of capture-based Atlantic bluefin tuna aquaculture at an exposed site in the Mediterranean Sea

    Science.gov (United States)

    Vezzulli, Luigi; Moreno, Mariapaola; Marin, Valentina; Pezzati, Elisabetta; Bartoli, Marco; Fabiano, Mauro

    2008-06-01

    A variety of pelagic and benthic parameters were measured at an aquaculture farm used for the fattening of Atlantic bluefin tuna ( Thunnus thynnus) which is located at an exposed site (700 m from the coast, average bottom depth of 45 m and average current speed of 6 cm s -1) in the Mediterranean Sea. The objective was to test whether modern off-shore tuna fattening industries can exert a sustainable organic waste impact on the receiving environment as has been reported for the offshore culture of more traditional Mediterranean species such as sparids. In the water column, the concentration of phytopigments, organic matter, heterotrophic bacteria and the taxonomic abundance of mesozooplankton (at the species level) were assessed. In the sediment, we assessed the concentration of reduced sulphur pools, phytopigments, organic matter, heterotrophic bacteria and the taxonomic abundance of meiofauna (at the taxa level) and nematodes (at the genus level). For most parameters, we found no substantial differences between farm and control sites. Deviations of farm values from control values, when they occurred, were small and did not indicate any significant impact on either the pelagic and benthic environment. Deviations were more apparent in the benthic compartment where lower redox potential values, higher bacterial production rates and a change in nematode genus composition pointed out to early changes in the sediment's metabolism. In addition, indigenous potential pathogenic bacteria showed higher concentration at the fish farm stations and were a warning of an undesirable event that may become established following aquaculture practice in oligotrophic environments. The overall data from this study provide extensive experimental evidence to support the sustainability of modern offshore farming technology in minimizing the hypertrophic-dystrophic risks associated with the rapidly-expanding tuna-fattening industry in the Mediterranean Sea.

  12. IMPACT OF HEAVY METAL TO FISH AQUACULTURE IN FLOATING NET CAGE IN CIRATA RESERVOIR, INDONESIA

    Directory of Open Access Journals (Sweden)

    Tri Heru Prihadi

    2008-06-01

    Full Text Available Utilization of Cirata Reservoir for fisheries aquaculture with floating net cage system has been increasing rapidly. Industrial waste existed along watershed brings significant heavy metal pollutant that flows and difficult to control. Consequences of such activities were reflected in the degradation of reservoir environment indicated by sedimentation, water quality degradation and fish mass mortality because of up welling. The objectives of this research were: 1 to obtain data and information on heavy metal content in Cirata Reservoir waters, and 2 to observe and understand the effect of heavy metal to the fish cultured in floating net cage to support aquaculture in floating net cage system. Water quality and fish histology analyses were the methodologies used in this research. Descriptive and laboratory analysis were carry out to analysis the data. Based on observation and descriptive analyses, the content of heavy metal in Cirata Reservoir was classified as worse. Concentration of Pb, Cr, Hg, and Cd in the sample of water and tilapia digestive organ becomes fragile. Infiltration of hemoglobin cell, necrosis, degeneration and pigmentation occurred in body organs when up welling happened. Beside that, during up-welling digestive organ become easily breakable resulted in fish mass mortality in floating net cage. The affinity of hemoglobin to the toxic gas was higher than to oxygen, therefore aeration was not affective and mass mortality cannot be avoided. This was because of various events that occured to the fish and the other water biota that encompassed regular diffusion, bio-magnification, and bio-concentration to fish.

  13. Aquaculture Information Package

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, T.; Rafferty, K. [editors

    1998-01-01

    This package of information is intended to provide background to developers of geothermal aquaculture projects. The material is divided into eight sections and includes information on market and price information for typical species, aquaculture water quality issues, typical species culture information, pond heat loss calculations, an aquaculture glossary, regional and university aquaculture offices and state aquaculture permit requirements.

  14. Biotechnological Innovations in Aquaculture

    Directory of Open Access Journals (Sweden)

    Mangesh M. Bhosale

    2016-04-01

    Full Text Available Aquaculture is gaining commendable importance to meet the required protein source for ever increasing human population. The aquaculture industry is currently facing problems on developing economically viable production systems by reducing the impact on environment. Sustainable and enhanced fish production from aquaculture may be better achieved through application of recent biotechnological innovations. Utilisation of transgenic technology has led to production of fishes with faster growth rate with disease resistance. The full advantage of this technology could not be achieved due to concern of acceptance for Genetically Modified Organisms (GMOs. The biotechnological intervention in developing plant based feed ingredient in place of fish meal which contain high phosphorus is of prime area of attention for fish feed industry. The replacement of fish meal will also reduce fish feed cost to a greater extent. Year round fish seed production of carps through various biotechnological interventions is also need of the hour. This paper discusses technical, environmental and managerial considerations regarding the use of these biotechnological tools in aquaculture along with the advantages of research application and its commercialization.

  15. Modeling the Potential Impacts of Climate Change on Pacific Salmon Culture Programs: An Example at Winthrop National Fish Hatchery

    Science.gov (United States)

    Hanson, Kyle C.; Peterson, Douglas P.

    2014-09-01

    Hatcheries have long been used in an attempt to mitigate for declines in wild stocks of Pacific salmon ( Oncorhynchus spp.), though the conservation benefit of hatcheries is a topic of ongoing debate. Irrespective of conservation benefits, a fundamental question is whether hatcheries will be able to function as they have in the past given anticipated future climate conditions. To begin to answer this question, we developed a deterministic modeling framework to evaluate how climate change may affect hatcheries that rear Pacific salmon. The framework considers the physiological tolerances for each species, incorporates a temperature-driven growth model, and uses two metrics commonly monitored by hatchery managers to determine the impacts of changes in water temperature and availability on hatchery rearing conditions. As a case study, we applied the model to the US Fish and Wildlife Service's Winthrop National Fish Hatchery. We projected that hatchery environmental conditions remained within the general physiological tolerances for Chinook salmon in the 2040s (assuming A1B greenhouse gas emissions scenario), but that warmer water temperatures in summer accelerated juvenile salmon growth. Increased growth during summer coincided with periods when water availability should also be lower, thus increasing the likelihood of physiological stress in juvenile salmon. The identification of these climate sensitivities led to a consideration of potential mitigation strategies such as chilling water, altering rations, or modifying rearing cycles. The framework can be refined with new information, but in its present form, it provides a consistent, repeatable method to assess the vulnerability of hatcheries to predicted climate change.

  16. Impact of forest management on coho salmon (Oncorhynchus kisutch) populations of the Clearwater River, Washington: A project summary

    Science.gov (United States)

    C. J. Cederholm; L. M. Reid

    1987-01-01

    Abstract - In 1972, declining coho salmon production and visible forestry impacts on coho habitats prompted the initiation of an ongoing fisheries research project in the Clearwater River basin of the Olympic Peninsula. Heavy fishery catches have resulted in a general under-seeding of the basin, as demonstrated by stocking experiments and inventories of potential...

  17. Impacts of episodic acidification on in-stream survival and physiological impairment of Atlantic salmon (Salmo salar) smolts

    Science.gov (United States)

    McCormick, S.D.; Keyes, A.; Nislow, K.H.; Monette, M.Y.

    2009-01-01

    We conducted field studies to determine the levels of acid and aluminum (Al) that affect survival, smolt development, ion homeostasis, and stress in Atlantic salmon (Salmo salar) smolts in restoration streams of the Connecticut River in southern Vermont, USA. Fish were held in cages in five streams encompassing a wide range of acid and Al levels for two 6-day intervals during the peak of smolt development in late April and early May. Physiological parameters were unchanged from initial sampling at the hatchery and the high water quality reference site (pH > 7.0, inorganic Al water chemistry alone. The results indicate that Al and low pH under field conditions in some New England streams can cause mortality and impair smolt development in juvenile Atlantic salmon and provide direct evidence that episodic acidification is impacting conservation and recovery of Atlantic salmon in the northeastern USA.

  18. Relative resistance of Pacific salmon to infectious salmon anaemia virus.

    Science.gov (United States)

    Rolland, J B; Winton, J R

    2003-09-01

    Infectious salmon anaemia (ISA) is a major disease of Atlantic salmon, Salmo salar, caused by an orthomyxovirus (ISAV). Increases in global aquaculture and the international movement of fish made it important to determine if Pacific salmon are at risk. Steelhead trout, Oncorhynchus mykiss, and chum, O. keta, Chinook, O. tshawytscha, coho, O. kisutch, and Atlantic salmon were injected intraperitoneally with a high, medium, or low dose of a Norwegian strain of ISAV. In a second challenge, the same species, except chum salmon, were injected with a high dose of either a Canadian or the Norwegian strain. Average cumulative mortality of Atlantic salmon in trial 1 was 12% in the high dose group, 20% in the medium dose group and 16% in the low dose group. The average cumulative mortality of Atlantic salmon in trial 2 was 98%. No signs typical of ISA and no ISAV-related mortality occurred among any of the groups of Oncorhynchus spp. in either experiment, although ISAV was reisolated from some fish sampled at intervals post-challenge. The results indicate that while Oncorhynchus spp. are quite resistant to ISAV relative to Atlantic salmon, the potential for ISAV to adapt to Oncorhynchus spp. should not be ignored.

  19. Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota.

    Science.gov (United States)

    Ismail, Nur Afifah Hanun; Wee, Sze Yee; Aris, Ahmad Zaharin

    2017-12-01

    Fishes are a major protein food source for humans, with a high economic value in the aquaculture industry. Because endocrine disrupting compounds (EDCs) have been introduced into aquatic ecosystems, the exposure of humans and animals that depend on aquatic foods, especially fishes, should be seriously considered. EDCs are emerging pollutants causing global concern because they can disrupt the endocrine system in aquatic organisms, mammals, and humans. These pollutants have been released into the environment through many sources, e.g., wastewater treatment plants, terrestrial run-off (industrial activities, pharmaceuticals, and household waste), and precipitation. The use of pharmaceuticals, pesticides, and fertilizers for maintaining and increasing fish health and growth also contributes to EDC pollution in the water body. Human and animal exposure to EDCs occurs via ingestion of contaminated matrices, especially aquatic foodstuffs. This paper aims to review human EDC exposure via fish consumption. In respect to the trace concentration of EDCs in fish, types of instrument and clean-up method are of great concerns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts

    DEFF Research Database (Denmark)

    Thorstad, E.B.; Okland, F.; Aarestrup, Kim

    2008-01-01

    We review factors affecting the within-river spawning migration of Atlantic salmon. With populations declining across the entire distribution range, it is important that spawners survive in the last phase of the spawning migration. Knowledge on the factors affecting migration is essential...... migration. Impacts of human activities may also cause altered migration patterns, affect the within-river distribution of the spawning population, and severe barriers may result in displacement of the spawning population to other rivers. Factors documented to affect within-river migration include previous...... experience, water discharge, water temperature, water velocity, required jump heights, fish size, fish acclimatisation, light, water quality/pollution, time of the season, and catch and handling stress. How each of these factors affects the upstream migration is to a varying extent understood; however...

  1. Environmental impact of non-certified versus certified (ASC) intensive Pangasius aquaculture in Vietnam, a comparison based on a statistically supported LCA.

    Science.gov (United States)

    Nhu, Trang T; Schaubroeck, Thomas; Henriksson, Patrik J G; Bosma, Roel; Sorgeloos, Patrick; Dewulf, Jo

    2016-12-01

    Pangasius production in Vietnam is widely known as a success story in aquaculture, the fastest growing global food system because of its tremendous expansion by volume, value and the number of international markets to which Pangasius has been exported in recent years. While certification schemes are becoming significant features of international fish trade and marketing, an increasing number of Pangasius producers have followed at least one of the certification schemes recognised by international markets to incorporate environmental and social sustainability practices in aquaculture, typically the Pangasius Aquaculture Dialogue (PAD) scheme certified by the Aquaculture Stewardship Council (ASC). An assessment of the environmental benefit of applying certification schemes on Pangasius production, however, is still needed. This article compared the environmental impact of ASC-certified versus non-ASC certified intensive Pangasius aquaculture, using a statistically supported LCA. We focused on both resource-related (water, land and total resources) and emissions-related (global warming, acidification, freshwater and marine eutrophication) categories. The ASC certification scheme was shown to be a good approach for determining adequate environmental sustainability, especially concerning emissions-related categories, in Pangasius production. However, the non-ASC certified farms, due to the large spread, the impact (e.g., water resources and freshwater eutrophication) was possibly lower for a certain farm. However, this result was not generally prominent. Further improvements in intensive Pangasius production to inspire certification schemes are proposed, e.g., making the implementation of certification schemes more affordable, well-oriented and facilitated; reducing consumed feed amounts and of the incorporated share in fishmeal, especially domestic fishmeal, etc. However, their implementation should be vetted with key stakeholders to assess their feasibility. Copyright

  2. Ecological impacts of fluridone and copper sulphate in catfish aquaculture ponds.

    Science.gov (United States)

    Jacob, Annie P; Culver, David A; Lanno, Roman P; Voigt, Astrid

    2016-05-01

    Fluridone and copper sulphate are often used for controlling macrophytes and algae in aquaculture ponds. The present study examined the ecological effects of these chemicals on macrophyte, phytoplankton, and zooplankton biomass; plankton community structure; water quality parameters; and fish survival and yield in catfish culture ponds using a randomized complete block design. The estimated half-life of fluridone in the individual ponds ranged from 1.6 d to 10.8 d. Free copper ion activity in ponds treated with copper sulphate was dynamic, ranging from pCu of 7.7 to 8.9 after each application and decreasing to approximately 12 (1 × 10(-12)  M) within 1 wk after each application, approaching observed values in control ponds (pCu = 12.3-13.4). No difference in macrophyte biomass was observed among treatments. Fluridone and copper treatments elicited different responses within the phytoplankton community. Copper treatments reduced Cyanophyta biomass but increased biomass of more tolerant taxa among the Chlorophyta and Chrysophyta. Fluridone treatments reduced total phytoplankton biomass including Cyanophyta and increased the sensitivity of Chlorophyta and Chrysophyta to copper. Copper also affected zooplankton community composition as a result of direct toxic effects on sensitive zooplankton taxa (e.g., Cladocera), whereas Copepoda biomass in copper-treated ponds exceeded that in controls. Catfish survival and yield were not significantly different among treatments. The results of the present study suggest that fluridone and copper interact at realistic application rates, increasing the ability to control algae compared with treatments where they are applied alone. © 2015 SETAC.

  3. Assimilation of freshwater salmonid aquaculture waste by native aquatic biota

    National Research Council Canada - National Science Library

    Kullman, M.A

    2006-01-01

    .... Assimilation of aquaculture-derived carbon was evident in the minnows, as well as in the pelagic and profundal invertebrates. These studies showed that aquaculture waste was an important nutrient source for native organisms, and that mortality impacts were localized.

  4. Disease in marine aquaculture

    Science.gov (United States)

    Sindermann, C. J.

    1984-03-01

    It has become almost a truism that success in intensive production of animals must be based in part on development of methods for disease diagnosis and control. Excellent progress has been made in methods of diagnosis for major pathogens of cultivated fish, crustacean and molluscan species. In many instances these have proved to be facultative pathogens, able to exert severe effects in populations of animals under other stresses (marginal physical or chemical conditions; overcrowding). The concept of stress management as a critical prophylactic measure is not new, but its significance is being demonstrated repeatedly. The particular relationship of water quality and facultative pathogens such as Vibrio, Pseudomonas and Aeromonas species has been especially apparent. Virus diseases of marine vertebrates and invertebrates — little known two decades ago — are now recognized to be of significance to aquaculture. Virus infections of oysters, clams, shrimps and crabs have been described, and mortalities have been attributed to them. Several virus diseases of fish have also been recognized as potential or actual problems in culture. In some instances, the pathogens seem to be latent in natural populations, and may be provoked into patency by stresses of artificial environments. One of the most promising approaches to disease prophylaxis is through immunization. Fish respond well to various vaccination procedures, and new non-stressing methods have been developed. Vibriosis — probably the most severe disease of ocean-reared salmon — has been controlled to a great extent through use of a polyvalent bacterin, which can be modified as new pathogenic strains are isolated. Prophylactic immunization for other bacterial diseases of cultivated fish has been attempted, especially in Japan, with some success. There is also some evidence that the larger crustaceans may be immunologically responsive, and that at least short-term protection may be afforded to cultured

  5. LABORATORY DIAGNOSIS OF INFECTIOUS SALMON ANEMIA (ISA)

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Olesen, Niels Jørgen; Østergaard, Peter

    The first outbreak of ISA on the Faroe Islands was diagnosed in March 2000. Despite intensive surveillance, control and eradication of ISA, the disease has since spread to most of the Faroe Islands affecting about half of the 23 aquaculture farms. Sampling and laboratory diagnosis of ISA is perfo...... characterisation of the virus causing infectious salmon anemia in Atlantic salmon (Salmo salar L): an orthomyxo-like virus in a teleost....

  6. Public, animal, and environmental health implications of aquaculture.

    Science.gov (United States)

    Garrett, E. S.; dos Santos, C. L.; Jahncke, M. L.

    1997-01-01

    Aquaculture is important to the United States and the world's fishery system. Both import and export markets for aquaculture products will expand and increase as research begins to remove physiologic and other animal husbandry barriers. Overfishing of wild stock will necessitate supplementation and replenishment through aquaculture. The aquaculture industry must have a better understanding of the impact of the "shrouded" public and animal health issues: technology ignorance, abuse, and neglect. Cross-pollination and cross-training of public health and aquaculture personnel in the effect of public health, animal health, and environmental health on aquaculture are also needed. Future aquaculture development programs require an integrated Gestalt public health approach to ensure that aquaculture does not cause unacceptable risks to public or environmental health and negate the potential economic and nutritional benefits of aquaculture. PMID:9366596

  7. Impacts of episodic acidification on in-stream survival and physiological impairment of Atlantic salmon (Salmo salar) smolts

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, S.D.; Monette, M.Y. [United States Geological Survey, Turners Falls, MA (United States). Conte Anadromous Fish Research Center; Massachusetts Univ., Amherst, MA (United States). Organismic and Evolutionary Biology Program; Keyes, A. [United States Geological Survey, Turners Falls, MA (United States). Conte Anadromous Fish Research Center; Nislow, K.H. [Massachusetts Univ., Amherst, MA (United States). Organismic and Evolutionary Biology Program; United States Dept. of Agriculture, Amherst, MA (United States). Northern Research Station

    2009-02-20

    Episodic acidification is negatively impacting the conservation and recovery of Atlantic salmon in the northeastern United States. This article described a set of field studies conducted to determine the impacts of acid and aluminium (Al) levels on the survival, smolt development, ion homeostasis, and stress in Atlantic salmon smolts located in Connecticut River restoration streams in Vermont. The fish were observed in cages in 5 separate streams that encompassed a range of different acid and Al levels for two 6-day intervals at the peak of smolt development. The study showed that physiological parameters remained unchanged for smolts located in the high water quality reference site. However, mortality, loss of plasma chloride, and gill Na{sup +}/K{sup +}-ATPase activity, and elevated gill Al occurred at the sites with the highest levels of inorganic Al and the lowest pH levels. Losses of plasma chloride, moderately elevated gill Al, and increased plasma cortisol and glucose levels occurred at less severely impacted sites. The study also demonstrated that gill Al was a more accurate predictor of integrated physiological impacts than water chemistry. It was concluded that Al and low pH can cause mortality and impair smolt development in juvenile Atlantic salmon. 36 refs., 2 tabs., 4 figs.

  8. Aquaculture information package

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, T.; Rafferty, K.

    1998-08-01

    This package of information is intended to provide background information to developers of geothermal aquaculture projects. The material is divided into eight sections and includes information on market and price information for typical species, aquaculture water quality issues, typical species culture information, pond heat loss calculations, an aquaculture glossary, regional and university aquaculture offices and state aquaculture permit requirements. A bibliography containing 68 references is also included.

  9. Oyster Reef Restoration and Aquaculture Impacts on Denitrification and the Benthic Community

    Science.gov (United States)

    Human impacts have greatly altered coastal ecosystems through a variety of processes including nutrient enrichment and overfishing. The negative consequences of these actions are well known and include increased macroalgae blooms, low oxygen conditions, and losses of biodiversity...

  10. Freshwater treatment of amoebic gill disease and sea-lice in seawater salmon production: considerations of water chemistry and fish welfare

    OpenAIRE

    Powell, Mark Darryn; Kristensen, Torstein

    2014-01-01

    Amoebic gill disease (AGD) and sea lice are two of the most significant disease issues facing the Norwegian Atlantic salmon aquaculture industry. Although both diseases respond to various extents, to freshwater treatment, the chemistry, interactions and efficacy of treatment can be variable. These variations can have significant impacts upon the success and failure of treatment and costs to the production cycle. Although it is known that soft freshwater is most effective in bathing of Atlan...

  11. Final NPDES Permit Issued to Acadia Aquaculture | NPDES ...

    Science.gov (United States)

    2017-04-10

    EPA NE issued a final permit to Acadia Aquaculture Inc. on February 21, 2002 for the regulation of discharges from a proposed Atlantic salmon growing net pen facility in Blue Hill Bay, Maine. Links to the Final Permit and the Response to Comments are provided on this page.

  12. Use of hydrodynamic and benthic models for managing environmental impacts of marine aquaculture

    DEFF Research Database (Denmark)

    Henderson, A.; Gamito, S.; Karakassis, I.

    2001-01-01

    capacity or exploitation capacity in relation to nutrients and medicines release, including whole water body/regional impacts. The relationship and predictability of toxic algal blooms remains some way off. Modelling the complexities of degradation, resuspension and the effect of the scavenging process...... the tools for planning and monitoring as well as regulation, and a number of countries have well-developed policies and procedures in place which utilize modelling tools. The main impacts currently modelled are nutrient enhancement, organic waste deposition and the dispersion and deposition of medicines...... and chemicals. The release of these wastes is influenced by species- and site- specific characteristics, as well as culture and husbandry techniques. The modelling process requires consideration of definitions and limitations; standards for model development including clear objectives and justification; good...

  13. Bivalve aquaculture transfers in Atlantic Europe. Part B: Environmental impacts of transfer activities

    DEFF Research Database (Denmark)

    Brenner, M.; Fraser, D.; Van Nieuwenhove, K.

    2014-01-01

    been documented worldwide owing to the intentional or unintentional translocation of animals. It is therefore important to develop risk reduction methods which have not yet been documented to be incorporated into current fish health or environmental legislation. This part of the study describes...... the impacts of transfer activities of cultured bivalve shellfish along the European Atlantic coast; identifies hitch hiker species, fouling organisms or infectious agents which can be translocated with a target species. Further, the study highlights the need for thorough, standard risk reduction measures...... designed to minimise the impact on ecosystems worldwide. In a companion paper details of actual transfer activities in Atlantic Europe are presented and all levels of legislation dealing with transfer activities on a global, regional and national scale are carefully reviewed....

  14. Microalgae diets for landbased aquaculture of the cockle Cerastoderma edule: impacts of dietary fatty acids on growth

    NARCIS (Netherlands)

    Reis Batista, dos I.C.

    2015-01-01

    Land-based shellfish culture as a part of a multi-trophic aquaculture systems has yet to be implemented in Europe. Recently the pilot project Zeeuwse Tong (The Netherlands) evaluated the feasibility of a system of fish (Dover sole), ragworms, phytoplankton and bivalves. This thesis focused on the

  15. Evaluating signals of oil spill impacts, climate, and species interactions in Pacific herring and Pacific salmon populations in Prince William Sound and Copper River, Alaska.

    Science.gov (United States)

    Ward, Eric J; Adkison, Milo; Couture, Jessica; Dressel, Sherri C; Litzow, Michael A; Moffitt, Steve; Hoem Neher, Tammy; Trochta, John; Brenner, Rich

    2017-01-01

    The Exxon Valdez oil spill occurred in March 1989 in Prince William Sound, Alaska, and was one of the worst environmental disasters on record in the United States. Despite long-term data collection over the nearly three decades since the spill, tremendous uncertainty remains as to how significantly the spill affected fishery resources. Pacific herring (Clupea pallasii) and some wild Pacific salmon populations (Oncorhynchus spp.) in Prince William Sound declined in the early 1990s, and have not returned to the population sizes observed in the 1980s. Discerning if, or how much of, this decline resulted from the oil spill has been difficult because a number of other physical and ecological drivers are confounded temporally with the spill; some of these drivers include environmental variability or changing climate regimes, increased production of hatchery salmon in the region, and increases in populations of potential predators. Using data pre- and post-spill, we applied time-series methods to evaluate support for whether and how herring and salmon productivity has been affected by each of five drivers: (1) density dependence, (2) the EVOS event, (3) changing environmental conditions, (4) interspecific competition on juvenile fish, and (5) predation and competition from adult fish or, in the case of herring, humpback whales. Our results showed support for intraspecific density-dependent effects in herring, sockeye, and Chinook salmon, with little overall support for an oil spill effect. Of the salmon species, the largest driver was the negative impact of adult pink salmon returns on sockeye salmon productivity. Herring productivity was most strongly affected by changing environmental conditions; specifically, freshwater discharge into the Gulf of Alaska was linked to a series of recruitment failures-before, during, and after EVOS. These results highlight the need to better understand long terms impacts of pink salmon on food webs, as well as the interactions between

  16. Evaluating signals of oil spill impacts, climate, and species interactions in Pacific herring and Pacific salmon populations in Prince William Sound and Copper River, Alaska.

    Directory of Open Access Journals (Sweden)

    Eric J Ward

    Full Text Available The Exxon Valdez oil spill occurred in March 1989 in Prince William Sound, Alaska, and was one of the worst environmental disasters on record in the United States. Despite long-term data collection over the nearly three decades since the spill, tremendous uncertainty remains as to how significantly the spill affected fishery resources. Pacific herring (Clupea pallasii and some wild Pacific salmon populations (Oncorhynchus spp. in Prince William Sound declined in the early 1990s, and have not returned to the population sizes observed in the 1980s. Discerning if, or how much of, this decline resulted from the oil spill has been difficult because a number of other physical and ecological drivers are confounded temporally with the spill; some of these drivers include environmental variability or changing climate regimes, increased production of hatchery salmon in the region, and increases in populations of potential predators. Using data pre- and post-spill, we applied time-series methods to evaluate support for whether and how herring and salmon productivity has been affected by each of five drivers: (1 density dependence, (2 the EVOS event, (3 changing environmental conditions, (4 interspecific competition on juvenile fish, and (5 predation and competition from adult fish or, in the case of herring, humpback whales. Our results showed support for intraspecific density-dependent effects in herring, sockeye, and Chinook salmon, with little overall support for an oil spill effect. Of the salmon species, the largest driver was the negative impact of adult pink salmon returns on sockeye salmon productivity. Herring productivity was most strongly affected by changing environmental conditions; specifically, freshwater discharge into the Gulf of Alaska was linked to a series of recruitment failures-before, during, and after EVOS. These results highlight the need to better understand long terms impacts of pink salmon on food webs, as well as the

  17. All about Aquaculture.

    Science.gov (United States)

    Brody, Michael J.; Patterson, B. Patricia

    1992-01-01

    Describes a sequence of activities in which students set up a classroom aquarium to learn about aquaculture. Discusses the aquarium system, filtration and maintenance, adding organisms to the system, technological considerations, aquaculture economics, and political and social aspects of aquaculture. (MDH)

  18. Stringency of environmental regulation and aquaculture growth

    DEFF Research Database (Denmark)

    Gedefaw Abate, Tenaw; Nielsen, Rasmus; Tveterås, Ragnar

    2016-01-01

    During the last three decades, aquaculture has been the fastest growing animal-food-producing sector in the world, accounting for half of the present seafood supply. However, there is a significant growth disparity among aquaculture-producing countries. The reasons why some countries have achieved...... remarkable growth in aquaculture while others have stagnated or even declined have not been determined. In this article, we investigate whether environmental regulations have an impact on aquaculture growth. Using a cross-country regression analysis, we show that stringent environmental regulations...... are negatively related to aquaculture growth, whereas GDP growth has a positive effect. Countries often face a difficult balancing act between growth and environmental considerations when devising regulations. Our empirical results suggest that stricter environmental regulations in developed countries have...

  19. Modeling parasite dynamics on farmed salmon for precautionary conservation management of wild salmon.

    Directory of Open Access Journals (Sweden)

    Luke A Rogers

    Full Text Available Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis on domesticated populations of Atlantic salmon (Salmo salar in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity, local host density (measured as cohort surface area, and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March-June juvenile wild Pacific salmon (Oncorhynchus spp. migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.

  20. Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon

    Science.gov (United States)

    Rogers, Luke A.; Peacock, Stephanie J.; McKenzie, Peter; DeDominicis, Sharon; Jones, Simon R. M.; Chandler, Peter; Foreman, Michael G. G.; Revie, Crawford W.; Krkošek, Martin

    2013-01-01

    Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions. PMID:23577082

  1. Effects of feeding a fishmeal-free versus a fishmeal-based diet on post-smolt Atlantic salmon salmo salar performance, water quality, and waste production in recirculation aquaculture systems

    Science.gov (United States)

    The Atlantic salmon farming industry has progressively decreased the proportion of fishmeal used in commercial diets due to rising costs and sustainability concerns. A variety of alternate proteins have been identified to partially replace fishmeal; however, very little research has described the ef...

  2. Addition of a selective breeding program for resistance to sea lice Lepeophtheirus salmonis (Kroyer 1838) to existing lines of Atlantic Salmon, Salmo salar L., at the USDA's National Cold Water Marine Aquaculture Center

    Science.gov (United States)

    Sea lice are likely the single most economically costly pathogen that has faced the salmon farming industry over the past 40 years. The most recent economic estimates put the annual cost of sea lice at just under $500 million USD in 2006. This is likely an underestimate of the current costs to indus...

  3. BIOTECHNOLOGY OF THE FISH AQUACULTURE

    Directory of Open Access Journals (Sweden)

    L. P. Buchatsky

    2013-12-01

    Full Text Available The latest progress in biotechnology on fish aquaculture and different modern methods of investigations for increasing of fish productivity in aquaculture are analyzed. Except for the applied aspect, the use of modern biotechnological methods of investigations opens new possibilities for fundamental researches of sex-determining mechanisms, polyploidy, distant hybridization, and developmental biology of bony fishes. Review contains examples of utilizing modern biotechnology methods to obtain transgenic fishes with accelerated growth and for designing surrogate fishes. Methods for receiving unisexual shoals of salmon and sturgeon female fishes with the view of obtaining a large quantity of caviar, as well as receiving sterile (triploid fishes are analyzed. Great attention is given to androgenesis, particularly to disperm one, in connection with the problem of conserving rare and vanishing fish species using only sperm genetic material. Examples how distant hybrids may be obtained with the use of disperm androgenesis and alkylated DNA are given. Methods of obtaining fish primordium germ cells, recent developments in cultivation of fish stem cells and their use in biotechnology, as well as ones of transplantation of oogonium and spermatogonium to obtain surrogate fishes. The examples of successful experiments on spermatogonial xenotransplantation and characteristic of antifreezing fish proteins and also the prospect of their practical usage are given.

  4. Feeding aquaculture in an era of finite resources

    Science.gov (United States)

    Naylor, Rosamond L.; Hardy, Ronald W.; Bureau, Dominique P.; Chiu, Alice; Elliott, Matthew; Farrell, Anthony P.; Forster, Ian; Gatlin, Delbert M.; Goldburg, Rebecca J.; Hua, Katheline; Nichols, Peter D.

    2009-01-01

    Aquaculture's pressure on forage fisheries remains hotly contested. This article reviews trends in fishmeal and fish oil use in industrial aquafeeds, showing reduced inclusion rates but greater total use associated with increased aquaculture production and demand for fish high in long-chain omega-3 oils. The ratio of wild fisheries inputs to farmed fish output has fallen to 0.63 for the aquaculture sector as a whole but remains as high as 5.0 for Atlantic salmon. Various plant- and animal-based alternatives are now used or available for industrial aquafeeds, depending on relative prices and consumer acceptance, and the outlook for single-cell organisms to replace fish oil is promising. With appropriate economic and regulatory incentives, the transition toward alternative feedstuffs could accelerate, paving the way for a consensus that aquaculture is aiding the ocean, not depleting it. PMID:19805247

  5. Salmon Farming and Salmon People: Identity and Environment in the Leggatt Inquiry

    Science.gov (United States)

    Schreiber, Dorothee

    2003-01-01

    In October of 2001, the Leggatt Inquiry into salmon farming traveled to four small communities (Port Hardy, Tofino, Alert Bay, and Campbell River) close to the centers of operation for the finfish aquaculture industry in British Columbia. In doing so, it gave local people, particularly First Nations people, an opportunity to speak about salmon…

  6. An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska (Final Report)

    Science.gov (United States)

    The Bristol Bay watershed in southwestern Alaska supports the largest sockeye salmon fishery in the world, is home to 25 federally recognized tribal governments, and contains large mineral resources. The potential for large-scale mining activities in the watershed has raised conc...

  7. Does the level of asepsis impact the success of surgically implanting tags in Atlantic salmon?

    DEFF Research Database (Denmark)

    Jepsen, Niels; Boutrup, Torsten S.; Midwood, Jonathan D.

    2013-01-01

    conditions, 100 hatchery salmon smolts (Salmo salar) were surgically implanted with tags with and without trailing antenna and were kept in a hatchery facility. After 34 days, the surviving smolts were euthanized and survival, growth and healing were compared between fish tagged under aseptic conditions...

  8. Half a century of genetic interaction between farmed and wild Atlantic salmon: Status of knowledge and unanswered questions

    OpenAIRE

    Glover, Kevin; Solberg, Monica Favnebøe; McGinnity, Phil; Hindar, Kjetil; Verspoor, Eric; Coulson, Mark W.; Hansen, Michael Möller; Araki, Hitoshi; Skaala, Øystein; Svåsand, Terje

    2017-01-01

    Atlantic salmon (Salmo salar) is one of the best researched fishes, and its aquaculture plays a global role in the blue revolution. However, since the 1970s, tens of millions of farmed salmon have escaped into the wild. We review current knowledge of genetic interactions and identify the unanswered questions. Native salmon populations are typically genetically distinct from each other and potentially locally adapted. Farmed salmon represent a limited number of wild source popul...

  9. Half a century of genetic interaction between farmed and wild Atlantic salmon: status of knowledge and unanswered questions

    OpenAIRE

    Glover, Kevin; Solberg, Monica Favnebøe; McGinnity, Phil; Hindar, Kjetil; Verspoor, Eric; Coulson, Mark W.; Hansen, Michael Möller; Araki, Hitoshi; Skaala, Øystein; Svåsand, Terje

    2017-01-01

    Atlantic salmon (Salmo salar) is one of the best researched fishes, and its aquaculture plays a global role in the blue revolution. However, since the 1970s, tens of millions of farmed salmon have escaped into the wild. We review current knowledge of genetic interactions and identify the unanswered questions. Native salmon populations are typically genetically distinct from each other and potentially locally adapted. Farmed salmon represent a limited number of wild source popul...

  10. Dynamical seasonal ocean forecasts to aid salmon farm management in a climate hotspot

    Directory of Open Access Journals (Sweden)

    Claire M. Spillman

    2014-01-01

    Full Text Available Marine aquaculture businesses are subject to a range of environmental conditions that can impact on day to day operations, the health of the farmed species, and overall production. An understanding of future environmental conditions can assist marine resource users plan their activities, minimise risks due to adverse conditions, and maximise opportunities. Short-term farm management is assisted by weather forecasts, but longer term planning may be hampered by an absence of useful climate information at relevant spatial and temporal scales. Here we use dynamical seasonal forecasts to predict water temperatures for south-east Tasmanian Atlantic salmon farm sites several months into the future. High summer temperatures pose a significant risk to production systems of these farms. Based on twenty years of historical validation, the model shows useful skill (i.e., predictive ability for all months of the year at lead-times of 0–1 months. Model skill is highest when forecasting for winter months, and lowest for December and January predictions. The poorer performance in summer may be due to increased variability due to the convergence of several ocean currents offshore from the salmon farming region. Accuracy of probabilistic forecasts exceeds 80% for all months at lead-time 0 months for the upper tercile (warmest 33% of values and exceeds 50% at a lead-time of 3 months. This analysis shows that useful information on future ocean conditions up to several months into the future can be provided for the salmon aquaculture industry in this region. Similar forecasting techniques can be applied to other marine industries such as wild fisheries and pond aquaculture in other regions. This future knowledge will enhance environment-related decision making of marine managers and increase industry resilience to climate variability.

  11. Cessation of a salmon decline with control of parasites

    KAUST Repository

    Peacock, Stephanie J.

    2013-04-01

    The resilience of coastal social-ecological systems may depend on adaptive responses to aquaculture disease outbreaks that can threaten wild and farm fish. A nine-year study of parasitic sea lice (Lepeophtheirus salmonis) and pink salmon (Oncorhynchus gorbuscha) from Pacific Canada indicates that adaptive changes in parasite management on salmon farms have yielded positive conservation outcomes. After four years of sea lice epizootics and wild salmon population decline, parasiticide application on salmon farms was adapted to the timing of wild salmon migrations. Winter treatment of farm fish with parasiticides, prior to the out-migration of wild juvenile salmon, has reduced epizootics of wild salmon without significantly increasing the annual number of treatments. Levels of parasites on wild juvenile salmon significantly influence the growth rate of affected salmon populations, suggesting that these changes in management have had positive outcomes for wild salmon populations. These adaptive changes have not occurred through formal adaptive management, but rather, through multi-stakeholder processes arising from a contentious scientific and public debate. Despite the apparent success of parasite control on salmon farms in the study region, there remain concerns about the long-term sustainability of this approach because of the unknown ecological effects of parasticides and the potential for parasite resistance to chemical treatments. © 2013 by the Ecological Society of America.

  12. Guidelines on defining potential exposure and associated biological effects from aquaculture pest and pathogen treatments: anti-sea lice bath treatments in the Bay of Fundy, New Brunswick

    National Research Council Canada - National Science Library

    Parsons, J; Burgetz, I

    2013-01-01

    An internal peer review meeting was held to assess preliminary results from research related to three anti-sea lice pesticides "bath treatments" currently, or recently, used by the salmon aquaculture...

  13. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    Science.gov (United States)

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  14. Price premium of organic salmon in Danish retail sale

    DEFF Research Database (Denmark)

    Ankamah Yeboah, Isaac; Nielsen, Max; Nielsen, Rasmus

    2016-01-01

    for organic salmon in Danish retail sale using consumer panel scanner data from households by applying a random effect hedonic price model that permits unobserved household heterogeneity. A price premium of 20% was identified for organic salmon. The magnitude of this premium is comparable to organic labeled......The year 2016 will be pivotal for organic aquaculture producers in EU, because it represents the deadline for implementing the complete organic life cycle in aquaculture production. Depending on the sturdiness of farms already producing, such a shift in the industry may affect production costs...

  15. Analysis of the production of salmon fillet - Prediction of production yield

    DEFF Research Database (Denmark)

    Johansson, Gine Ørnholt; Guðjónsdóttir, María; Nielsen, Michael Engelbrecht

    2017-01-01

    The aim was to investigate the influence of raw material variation in Atlantic salmon from aquaculture on filleting yield, and to develop a decision tool for choosing the appropriate raw material for optimized yield. This was achieved by tracking salmon on an individual level (n = 60) through a p...

  16. Infectious diseases affect marine fisheries and aquaculture economics.

    Science.gov (United States)

    Lafferty, Kevin D; Harvell, C Drew; Conrad, Jon M; Friedman, Carolyn S; Kent, Michael L; Kuris, Armand M; Powell, Eric N; Rondeau, Daniel; Saksida, Sonja M

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  17. Infectious diseases affect marine fisheries and aquaculture economics

    Science.gov (United States)

    Lafferty, Kevin D.; Harvell, C. Drew; Conrad, Jonathan M.; Friedman, Carolyn S.; Kent, Michael L.; Kuris, Armand M.; Powell, Eric N.; Rondeau, Daniel; Saksida, Sonja M.

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  18. Aquaculture in mangrove environment

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    A general account of aquaculture of India in mangrove environment has been discussed. In-spite of being a none-too-tidal aquaculture site, the estuaries and backwaters fringEd. by mangrove vegetation have long been used for rearing and fattening...

  19. Responsible aquaculture in 2050: Valuing local conditions and human innovations will be key to success

    NARCIS (Netherlands)

    Diana, J.S.; Egna, H.S.; Chopin, T.; Peterson, M.S.; Cao, L.; Pomeroy, R.; Verdegem, M.C.J.; Slack, W.T.; Bondad-Reantaso, M.G.; Cabello, F.

    2013-01-01

    As aquaculture production expands, we must avoid mistakes made during increasing intensification of agriculture. Understanding environmental impacts and measures to mitigate them is important for designing responsible aquaculture production systems. There are four realistic goals that can make

  20. Aluminum exposure impacts brain plasticity and behavior in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Grassie, C; Braithwaite, V A; Nilsson, J; Nilsen, T O; Teien, H-C; Handeland, S O; Stefansson, S O; Tronci, V; Gorissen, M; Flik, G; Ebbesson, L O E

    2013-08-15

    Aluminum (Al) toxicity occurs frequently in natural aquatic ecosystems as a result of acid deposition and natural weathering processes. Detrimental effects of Al toxicity on aquatic organisms are well known and can have consequences for survival. Fish exposed to Al in low pH waters will experience physiological and neuroendocrine changes that disrupt homeostasis and alter behavior. To investigate the effects of Al exposure on both the brain and behavior, Atlantic salmon (Salmo salar) kept in water treated with Al (pH 5.7, 0.37±0.04 μmol 1(-1) Al) for 2 weeks were compared with fish kept in under control conditions (pH 6.7, physiological stress, indicated by elevated plasma cortisol and glucose levels. Here we show for the first time that exposure to Al in acidic conditions also impaired learning performance in a maze task. Al toxicity also reduced the expression of NeuroD1 transcript levels in the forebrain of exposed fish. As in mammals, these data show that exposure to chronic stress, such as acidified Al, can reduce neural plasticity during behavioral challenges in salmon, and may impair the ability to cope with new environments.

  1. Prenatal Stress Exposure Generates Higher Early Survival and Smaller Size without Impacting Developmental Rate in a Pacific Salmon.

    Science.gov (United States)

    Capelle, Pauline M; Semeniuk, Christina A D; Sopinka, Natalie M; Heath, John W; Love, Oliver P

    2016-12-01

    Prenatal exposure to elevated glucocorticoids can act as a signal of environmental stress, resulting in modifications to offspring phenotype. While "negative" phenotypic effects (i.e., smaller size, slower growth) are often reported, recent research coupling phenotype with other fitness-related traits has suggested positive impacts of prenatal stress. Using captive Chinook salmon (Oncorhynchus tshawytscha), we treated eggs with biologically relevant cortisol levels-low (300 ng mL(-1) ), high (1,000 ng mL(-1) ), or control (0 ng mL(-1) )-to examine the early-life impacts of maternally transferred stress hormones on offspring. Specifically, we measured early survival, rate of development, and multiple measures of morphology. Low and high cortisol dosing of eggs resulted in significantly higher survival compared to controls (37% and 24% higher, respectively). Fish reared from high dose eggs were structurally smaller compared to control fish, but despite this variation in structural size, exposure to elevated cortisol did not impact developmental rate. These results demonstrate that elevations in egg cortisol can positively influence offspring fitness through an increase in early survival while also altering phenotype at a critical life-history stage. Overall, these results suggest that exposure to prenatal stress may not always produce apparently negative impacts on offspring fitness and further proposes that complex phenotypic responses should be examined in relevant environmental conditions. © 2017 Wiley Periodicals, Inc.

  2. The use of Probiotics in Aquaculture | Edun | Nigerian Journal of ...

    African Journals Online (AJOL)

    Disease outbreaks are being increasingly recognized as important constraints to aquaculture production and trade, affecting the economic development of the sector in many countries. An increase of productivity in aquaculture has been accompanied by ecological impacts including emergence of a large variety of ...

  3. Bioaccessibility and intestinal cell uptake of astaxanthin from salmon and commercial supplements.

    Science.gov (United States)

    Chitchumroonchokchai, Chureeporn; Failla, Mark L

    2017-09-01

    Although the keto-carotenoid astaxanthin (Ast) is not typically present in human plasma due to its relative scarcity in the typical diet, global consumption of salmon, the primary source of Ast in food, and Ast supplements continues to increase. The first objective of the present study was to investigate the bioaccessibility of Ast from uncooked and cooked fillets of wild and aquacultured salmon, Ast-supplements and krill oil, during simulated gastric and small intestinal digestion. Uptake of E-Ast from micelles generated during digestion of wild salmon by monolayers of Caco-2 was also monitored. Both wild and aquacultured salmon flesh contained E-Ast and Z-isomers of unesterified Ast, whereas Ast esters were the predominant form of the carotenoid in commercial supplements and krill oil. Flesh from wild salmon contained approximately 10 times more Ast than aquacultured salmon. Common styles of cooking flesh from wild and aquacultured salmon decreased Ast content by 48-57% and 35-47%, respectively. Ast in salmon flesh, supplements and krill oil was relatively stable (>80% recovery) during in vitro digestion. The efficiency of transfer of Ast into mixed micelles during digestion of uncooked wild salmon was 43%, but only 12% for uncooked acquacultured salmon. Cooking wild salmon significantly decreased Ast bioaccessibility. The relative bioaccessibility of Ast (41-67%) after digestion of oil vehicle in commercial supplements was inversely proportional to carotenoid content (3-10mg/capsule), whereas bioaccessibility of endogenous Ast in phospholipid-rich krill oil supplement was 68%. >95% of Ast in mixed micelles generated during digestion of supplements and krill oil was unesterified. Caco-2 intestinal cells accumulated 11-14% of E-Ast delivered in mixed micelles generated from digested wild salmon. Apical uptake and basolateral secretion of E-Ast by Caco-2 cells grown on inserts were greater after digestion of Ast-enriched krill oil compared to uncooked wild salmon

  4. Impact of oxygen depletion on planktonic community with emphasis temperature dynamics at aquaculture scale in Blanakan, West Java

    Science.gov (United States)

    Takarina, Noverita Dian; Wardhana, Wisnu; Soedjiarti, Titi

    2017-05-01

    It is hypothesized that rise in temperature under climate change regimes can cause oxygen depletion and can reduce the diversity and population of plankton and decrease the potential food source for fish in ponds. Therefore, this paper aims to investigate the primary factors that can affect the planktonic community with emphasis on temperature rise and oxygen depletion. Sampling was conducted in Blanakan, West Java. Samples were assessed to determine levels of planktonic community and other water quality parameters. DO was monitored in situ along with pH and temperature. Based on the results, the temperature average in ponds was 31.88±1.93 °C and ranged from 29.0 to 35.0 °C. The DO average was 7.63±0.59 mg/l and ranged from 7.0 to 8.5 mg/l. The rise of pond temperature affected slighltyto the DO and had reduced the DO level to the lowest level (7.0-7.2 mg/l) when temperature reached its peak at 32.5-35.0 °C. The results showed that the oxygen depletion will significantly reduce the phytoplankton population (r2=0.54). However, the oxygen depletion did not affect the plankton diversity. The results revealedthe presence of 23 genera of phytoplankton and 18 genera for zooplankton in Blanakan ponds. Nitzchia and Pleurosigma were known as genera that can adapt both in the DOmin and DOmax environment (7.0-8.5 mg/l). At aquaculture scale, temperature has potential to influence oxygen level and affect planktonic community. It is recommended to provide natural shades and develop aeration systems to increase oxygen levels in ponds.

  5. Does Aquaculture Support the Needs of Nutritionally Vulnerable Nations?

    Directory of Open Access Journals (Sweden)

    Christopher D. Golden

    2017-05-01

    Full Text Available Aquaculture now supplies half of the fish consumed directly by humans. We evaluate whether aquaculture, given current patterns of production and distribution, supports the needs of poor and food-insecure populations throughout the world. We begin by identifying 41 seafood-reliant nutritionally vulnerable nations (NVNs, and ask whether aquaculture meets human nutritional demand directly via domestic production or trade, or indirectly via purchase of nutritionally rich dietary substitutes. We find that a limited number of NVNs have domestically farmed seafood, and of those, only specific aquaculture approaches (e.g., freshwater in some locations have the potential to benefit nutritionally vulnerable populations. While assessment of aquaculture's direct contribution via trade is constrained by data limitations, we find that it is unlikely to contribute substantially to human nutrition in vulnerable groups, as most exported aquaculture consists of high-value species for international markets. We also determine that subpopulations who benefit from aquaculture profits are likely not the same subpopulations who are nutritionally vulnerable, and more research is needed to understand the impacts of aquaculture income gains. Finally, we discuss the relationship of aquaculture to existing trends in capture fisheries in NVNs, and suggest strategies to create lasting solutions to nutritional security, without exacerbating existing challenges in access to food and land resources.

  6. LCA and emergy accounting of aquaculture systems: towards ecological intensification.

    Science.gov (United States)

    Wilfart, Aurélie; Prudhomme, Jehane; Blancheton, Jean-Paul; Aubin, Joël

    2013-05-30

    An integrated approach is required to optimise fish farming systems by maximising output while minimising their negative environmental impacts. We developed a holistic approach to assess the environmental performances by combining two methods based on energetic and physical flow analysis. Life Cycle Assessment (LCA) is a normalised method that estimates resource use and potential impacts throughout a product's life cycle. Emergy Accounting (EA) refers the amount of energy directly or indirectly required by a product or a service. The combination of these two methods was used to evaluate the environmental impacts of three contrasting fish-farming systems: a farm producing salmon in a recirculating system (RSF), a semi-extensive polyculture pond (PF1) and an extensive polyculture pond (PF2). The RSF system, with a low feed-conversion ratio (FCR = 0.95), had lower environmental impacts per tonne of live fish produced than did the two pond farms, when the effects on climate change, acidification, total cumulative energy demand, land competition and water dependence were considered. However, RSF was clearly disconnected from the surrounding environment and depended highly on external resources (e.g. nutrients, energy). Ponds adequately incorporated renewable natural resources but had higher environmental impacts due to incomplete use of external inputs. This study highlighted key factors necessary for the successful ecological intensification of fish farming, i.e., minimise external inputs, lower the FCR, and increase the use of renewable resources from the surrounding environment. The combination of LCA and EA seems to be a practical approach to address the complexity of optimising biophysical efficiency in aquaculture systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. AFSC/ABL: Adult Pink Salmon Predation in Prince William Sound and Southeast Alaska, 2009-2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The project objectives were to assess potential salmon predation impact on juvenile salmon and herring by: (1) comparing diets of adult pink salmon during their...

  8. Helminth parasites of finfish commercial aquaculture in Latin America.

    Science.gov (United States)

    Soler-Jiménez, L C; Paredes-Trujillo, A I; Vidal-Martínez, V M

    2017-03-01

    Latin America has tripled production by aquaculture up to 78 million tonnes in the past 20 years. However, one of the problems that aquaculture is facing is the presence of helminth parasites and the diseases caused by them in the region. In this review we have collected all the available information on helminths affecting commercial aquaculture in Latin America and the Caribbean (LAC), emphasizing those causing serious economic losses. Monogeneans are by far the most common and aggressive parasites affecting farmed fish in LAC. They have been recognized as serious pathogens in intensive fish culture because they reach high levels of infection rapidly, and can infect other phylogenetically related fish species. The next most important group comprises the larval stages of digeneans (metacercariae) such as Diplostomum sp. and Centrocestus formosanus, which cause serious damage to farmed fish. Since LAC aquaculture has been based mainly on exotic species (tilapia, salmon, trout and carp), most of their parasites have been brought into the region together with the fish for aquaculture. Recently, one of us (A.I.P.-T.) has suggested that monogeneans, which have generally been considered to be harmless, can produce serious effects on the growth of cultured Nile tilapia. Therefore, the introduction of fish together with their 'harmless' parasites into new sites, regions or countries in LAC should be considered a breakdown of biosecurity in those countries involved. Therefore, the application of quarantine procedures and preventive therapeutic treatments should be considered before allowing these introductions into a country.

  9. Possible influence of salmon farming on long-term resident behaviour of wild saithe (Pollachius virens L.)

    OpenAIRE

    Otterå, Håkon Magne; Skilbrei, Ove

    2014-01-01

    - The culture of Atlantic salmon is one of the most developed aquaculture industries in the world. The production from smolt to market size usually takes place in sea cages in open waters, and these structures tend to attract wild fish, as they do for other farmed species. For salmon farming, saithe (Pollachius virens) is one of the most-frequently observed species around sea cages. An important question is whether the large concentration of salmon farms in some areas might alter the natur...

  10. Epigenetic considerations in aquaculture

    Directory of Open Access Journals (Sweden)

    Mackenzie R. Gavery

    2017-12-01

    Full Text Available Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.

  11. Aquaculture report 1976

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D.K.; Watson, L.; Kent, J.C.; Johnson, D.W.

    1977-04-08

    Growth of channel catfish (Ictalurus punctatus) and Tilapia zillii in the Reft River Geothermal Area (RRGT) geothermal waters can equal or surpass that in a commercial aquaculture facility. Fish and prawn mortality over the course of the intermediate term preliminary study did not appear to be related to any inherent geothermal water chemistry conditions. Temperature control was a problem but does not appear to be beyond design control. The absence of temperature-related mortality in channel catfish, Tilapia zilli, and yellow perch (Perca flavescens) indicates increased survival and suggests reduced expenditures for disease control. It may also allow higher fish densities in commercial aquaculture operations using geothermal water. Results of this study indicate potential for commercial aquaculture development at the Raft River Geothermal Testing Site.

  12. Characterisation of potential aquaculture pond effluents, and ...

    African Journals Online (AJOL)

    An understanding of specific aquaculture systems and the impacts of their management practices leads to sound and cost-effective policies to protect the aquatic environment. Water samples were collected in 2009 from fish ponds, streams that receive effluents directly from ponds and reference streams in Ghana to assess ...

  13. Biotechnology and species development in aquaculture | Ayoola ...

    African Journals Online (AJOL)

    The use of biotechnology in various aspects of human endeavour have obviously created a great impact but not without some risks. Not withstanding, there is still the need for its adoption as more of the already adopted biotechnologies are being improved upon with lesser demerits. Aquaculture is not also left out in the ...

  14. Hybridization between genetically modified Atlantic salmon and wild brown trout reveals novel ecological interactions.

    Science.gov (United States)

    Oke, Krista B; Westley, Peter A H; Moreau, Darek T R; Fleming, Ian A

    2013-07-22

    Interspecific hybridization is a route for transgenes from genetically modified (GM) animals to invade wild populations, yet the ecological effects and potential risks that may emerge from such hybridization are unknown. Through experimental crosses, we demonstrate transmission of a growth hormone transgene via hybridization between a candidate for commercial aquaculture production, GM Atlantic salmon (Salmo salar) and closely related wild brown trout (Salmo trutta). Transgenic hybrids were viable and grew more rapidly than transgenic salmon and other non-transgenic crosses in hatchery-like conditions. In stream mesocosms designed to more closely emulate natural conditions, transgenic hybrids appeared to express competitive dominance and suppressed the growth of transgenic and non-transgenic (wild-type) salmon by 82 and 54 per cent, respectively. To the best of our knowledge, this is the first demonstration of environmental impacts of hybridization between a GM animal and a closely related species. These results provide empirical evidence of the first steps towards introgression of foreign transgenes into the genomes of new species and contribute to the growing evidence that transgenic animals have complex and context-specific interactions with wild populations. We suggest that interspecific hybridization be explicitly considered when assessing the environmental consequences should transgenic animals escape to nature.

  15. Quantifying the ocean, freshwater and human effects on year-to-year variability of one-sea-winter Atlantic salmon angled in multiple Norwegian rivers.

    Directory of Open Access Journals (Sweden)

    Jaime Otero

    Full Text Available Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse from Norwegian rivers over 29 years (1979-2007. Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching

  16. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix D: Natural River Drawdown Engineering

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  17. The growth of finfish in global open-ocean aquaculture under climate change.

    Science.gov (United States)

    Klinger, Dane H; Levin, Simon A; Watson, James R

    2017-10-11

    Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds-Atlantic salmon ( Salmo salar ), gilthead seabream ( Sparus aurata ) and cobia ( Rachycentron canadum )-is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses. © 2017 The Author(s).

  18. Antibacterial Resistance in African Catfish Aquaculture: a Review

    Directory of Open Access Journals (Sweden)

    Madubuike U. ANYANWU

    2016-03-01

    Full Text Available Antibacterial resistance (AR is currently one of the greatest threats to mankind as it constitutes health crisis. Extensive use of antibacterial agents in human and veterinary medicine, and farm crops have resulted in emergence of antibacterial-resistant organisms in different environmental settings including aquaculture. Antibacterial resistance in aquaculture is a serious global concern because antibacterial resistance genes (ARGs can be transferred easily from aquaculture setting to other ecosystems and the food chain. African catfish (ACF aquaculture has increased at a phenomenal rate through a continuous process of intensification, expansion and diversification. Risk of bacterial diseases has also increased and consequently there is increased use of antibacterial agents for treatment. Antibacterial resistance in ACF aquaculture has huge impact on the food chain and thus represents risk to public and animal health. In “one health” approach of curbing AR, knowledge of the sources, mechanisms and magnitude of AR in ACF aquaculture and its potential impact on the food chain is important in designing and prioritizing monitoring programs that may generate data that would be relevant for performing quantitative risk assessments, implementation of antibacterial stewardship plans, and developing effective treatment strategies for the control of ACF disease and reducing risk to public health. This review provides insight on the sources, mechanisms, prevalence and impact of antibacterial resistance in ACF aquaculture environment, a setting where the impact of AR is neglected or underestimated.

  19. The impact of Holocene soil-geomorphic riparian development on the role of salmon- derived nutrients in the coastal temperate rainforest of southeast Alaska

    Science.gov (United States)

    D'Amore, D. V.; Bonzey, N.; Berkowitz, J.; Ruegg, J.; Bridgham, S.

    2008-12-01

    Salmon and riparian systems are linked in an ecological cycle that is important to both salmon life histories and riparian ecological functions in the coastal temperate rainforest (CTR) of southeast Alaska. Glacial rebound after the last glacial maximum during the Pleistocene expanded riparian zones by uplifting former estuaries in the CTR. The development of these lower river systems enhanced the movement of salmon into stream channels adjacent to terrestrial vegetation and increased the supply of salmon derived nutrients (SDN) to terrestrial ecosystems during the late Holocene. The flow of SDN to and from river systems has been the focus of recent research due to the potential for enhanced aquatic and terrestrial ecosystem productivity. However, there is very little known about the geomorphic development of the terrestrial and aquatic system that supports this important ecological coupling. Mass-spawning species of salmon are most often found in alluvial-fan and floodplain-channel process groups associated with specific soil geomorphic associations in southeast Alaska. We have developed an integrated model of geological controls over stream channel formation combined with soil geomorphology to provide a template for integrating studies of nutrient cycles associated with SDN in CTR streams. River systems and fish populations started to stabilize in their present configuration approximately 6ky ago, which established the primary template for soil and vegetation development in riparian zones along salmon spawning channels. Subsequent sediment delivery from the watershed formed at least two terraces on top of the estuarine base-level. A lower, younger floodplain terrace and an older terrace were identified and described and provide a range of characteristics associated with soil development in riparian zones of these distal portions of large watersheds in the CTR. Many SDN studies have not been able to distinguish the impact of SDN on terrestrial nutrient cycles due

  20. Microalgae for aquaculture

    NARCIS (Netherlands)

    Michels, M.H.A.

    2015-01-01

    In 2007, the project ‘Zeeuwse Tong’ (Zeeland Sole) was founded with support of the province of Zeeland, the Netherlands. The aim of the Zeeuwse Tong project was to establish an innovative land-based integrated multi-trophic aquaculture sector, which is producing sole, ragworms, algae, shellfish and

  1. Certify Sustainable Aquaculture?

    DEFF Research Database (Denmark)

    Bush, Simon; Belton, Ben; Hall, Derek

    2013-01-01

    Aquaculture, the farming of aquatic organisms, provides close to 50% of the world's supply of seafood, with a value of U.S. $125 billion. It makes up 13% of the world's animal-source protein (excluding eggs and dairy) and employs an estimated 24 million people (1). With capture (i.e., wild...

  2. Aquaculture in the ecosystem

    National Research Council Canada - National Science Library

    Holmer, M; Black, K; Duarte, C.M; Marba, N; Kakakassis, I

    2008-01-01

    ... aquaculture is one of the fastest growing industries in the world, comparable to the computer technology industry (Chapters 9 and 10). The demand for marine products is controlled by a complexity of factors in our society, not least the increasing human population and the increasing global affluence that allows the consumer to buy higher price...

  3. Safety in Aquaculture

    Science.gov (United States)

    Durborow, Robert M.; Myers, Melvin L.

    2016-01-01

    In this article, occupational safety interventions for agriculture-related jobs, specifically in aquaculture, are reviewed. Maintaining quality of life and avoiding economic loss are two areas in which aquaculturists can benefit by incorporating safety protocols and interventions on their farms. The information in this article is based on farm…

  4. Aquaculture. Teacher Edition.

    Science.gov (United States)

    Walker, Susan S.

    This color-coded guide was developed to assist teachers in helping interested students plan, build, stock, and run aquaculture facilities of varied sizes. The guide contains 15 instructional units, each of which includes some or all of the following basic components: objective sheet, suggested activities for the teacher, instructor supplements,…

  5. Confinement Aquaculture. Final Report.

    Science.gov (United States)

    Delaplaine School District, AR.

    The Delaplaine Agriculture Department Confinement Project, begun in June 1988, conducted a confinement aquaculture program by comparing the growth of channel catfish raised in cages in a pond to channel catfish raised in cages in the Black River, Arkansas. The study developed technology that would decrease costs in the domestication of fish, using…

  6. The future of aquaculture

    Science.gov (United States)

    Fish is now the largest source of animal protein in the world, with aquaculture contributing more than half the world’s seafood supply. The world needs to produce significantly more fish in the future to meet the demands of a growing and increasingly affluent global population. Capture fisheries ar...

  7. Molecular genetics in aquaculture

    Directory of Open Access Journals (Sweden)

    Liliana Di Stasio

    2010-01-01

    Full Text Available Great advances in molecular genetics have deeply changed the way of doing research in aquaculture, as it has already done in other fields. The molecular revolution started in the 1980’s, thanks to the widespread use of restriction enzymes and Polymerase Chain Reaction technology, which makes it possible to easily detect the genetic variability directly at the DNA level. In aquaculture, the molecular data are used for several purposes, which can be clustered into two main groups. The first one, focused on individuals, includes the sex identification and parentage assignment, while the second one, focused on populations, includes the wide area of the genetic characterization, aimed at solving taxonomic uncertainties, preserving genetic biodiversity and detecting genetic tags. For the future, the increase in the number of molecular markers and the construction of high density genetic maps, as well as the implementation of genomic resources (including genome sequencing, are expected to provide tools for the genetic improvement of aquaculture species through Marked Assisted Selection. In this review the characteristics of different types of molecular markers, along with their applications to a variety of aquaculture issues are presented.

  8. Spatial Heterogeneity in Shallow Streambed Water Temperatures, Copper River Delta, Alaska: Implications for Understanding Landscape-Scale Climate Change Impacts to Pacific Salmon Egg Incubation Rates

    Science.gov (United States)

    Adelfio, L. A.; Wondzell, S. M.; Reeves, G. H.; Mantua, N. J.

    2015-12-01

    Shallow streambed water temperature is a driving factor for Pacific salmon egg incubation. Small (1 to 2 oC) increases in incubation period water temperature may accelerate embryo development. We collected year-round water temperature data at 14 salmon spawning areas on the Copper River Delta (CRD), a 100 km wide coastal foreland in Southcentral Alaska. Our data show considerable temporal and spatial heterogeneity in shallow streambed water temperatures. Different water sources (precipitation vs. groundwater) and a spectrum of hydraulic conductivity and pressure head conditions were also observed. Landscape-scale patterns were not adequately characterized by typical watershed metrics including elevation, area, and slope. We found that catchment- and reach- scale geomorphology and surficial geology govern the surface-groundwater interactions that determine shallow streambed water temperature. The observed differences indicate that, across the CRD landscape, shallow streambed water temperature will not respond equally to projected climatic changes. Water temperature sensitivity to atmospheric conditions also varied by season, suggesting that year-round water temperature data are valuable for assessing potential climate change impacts to Pacific salmon in catchments where incubation period air temperatures are projected to exceed the freezing point with increasing frequency.

  9. Broad-scale impacts of salmon farms on temperate macroalgal assemblages on rocky reefs.

    Science.gov (United States)

    Oh, E S; Edgar, G J; Kirkpatrick, J B; Stuart-Smith, R D; Barrett, N S

    2015-09-15

    Intensive fish culture in open sea pens delivers large amounts of nutrients to coastal environments. Relative to particulate waste impacts, the ecological impacts of dissolved wastes are poorly known despite their potential to substantially affect nutrient-assimilating components of surrounding ecosystems. Broad-scale enrichment effects of salmonid farms on Tasmanian reef communities were assessed by comparing macroalgal cover at four fixed distances from active fish farm leases across 44 sites. Macroalgal assemblages differed significantly between sites immediately adjacent (100m) to fish farms and reference sites at 5km distance, while sites at 400m and 1km exhibited intermediate characteristics. Epiphyte cover varied consistently with fish farm impacts in both sheltered and exposed locations. The green algae Chaetomorpha spp. predominated near fish farms at swell-exposed sites, whereas filamentous green algae showed elevated densities near sheltered farms. Cover of canopy-forming perennial algae appeared unaffected by fish farm impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Stream-Sediment Geochemistry in Mining-Impacted Drainages of the Yankee Fork of the Salmon River, Custer County, Idaho

    Science.gov (United States)

    Frost, Thomas P.; Box, Stephen E.

    2009-01-01

    This reconnaissance study was undertaken at the request of the USDA Forest Service, Region 4, to assess the geochemistry, in particular the mercury and selenium contents, of mining-impacted sediments in the Yankee Fork of the Salmon River in Custer County Idaho. The Yankee Fork has been the site of hard-rock and placer mining, primarily for gold and silver, starting in the 1880s. Major dredge placer mining from the 1930s to 1950s in the Yankee Fork disturbed about a 10-kilometer reach. Mercury was commonly used in early hard-rock mining and placer operations for amalgamation and recovery of gold. During the late 1970s, feasibility studies were done on cyanide-heap leach recovery of gold from low-grade ores of the Sunbeam and related deposits. In the mid-1990s a major open-pit bulk-vat leach operation was started at the Grouse Creek Mine. This operation shut down when gold values proved to be lower than expected. Mercury in stream sediments in the Yankee Fork ranges from below 0.02 ppm to 7 ppm, with the highest values associated with old mill locations and lode and placer mines. Selenium ranges from below the detection limit for this study of 0.2 ppm to 4 ppm in Yankee Fork sediment samples. The generally elevated selenium content in the sediment samples reflect the generally high selenium contents in the volcanic rocks that underlie the Yankee Fork and the presence of gold and silver selenides in some of the veins that were exploited in the early phases of mining.

  11. Environmental impact of non-certified versus certified (ASC) intensive Pangasius aquaculture in Vietnam, a comparison based on a statistically supported LCA

    NARCIS (Netherlands)

    Nhu, Trang T.; Schaubroeck, Thomas; Henriksson, Patrik J.G.; Bosma, Roel; Sorgeloos, Patrick; Dewulf, Jo

    2016-01-01

    Pangasius production in Vietnam is widely known as a success story in aquaculture, the fastest growing global food system because of its tremendous expansion by volume, value and the number of international markets to which Pangasius has been exported in recent years. While certification schemes

  12. PROTEOMICS in aquaculture

    DEFF Research Database (Denmark)

    Rodrigues, Pedro M.; Silva, Tomé S.; Dias, Jorge

    2012-01-01

    Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous g...... nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue. This article is part of a Special Issue entitled: Farm animal proteomics.......Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous...... of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological...

  13. Marketing netcoatings for aquaculture.

    Science.gov (United States)

    Martin, Robert J

    2014-10-17

    Unsustainable harvesting of natural fish stocks is driving an ever growing marine aquaculture industry. Part of the aquaculture support industry is net suppliers who provide producers with nets used in confining fish while they are grown to market size. Biofouling must be addressed in marine environments to ensure maximum product growth by maintaining water flow and waste removal through the nets. Biofouling is managed with copper and organic biocide based net coatings. The aquaculture industry provides a case study for business issues related to entry of improved fouling management technology into the marketplace. Several major hurdles hinder entry of improved novel technologies into the market. The first hurdle is due to the structure of business relationships. Net suppliers can actually cut their business profits dramatically by introducing improved technologies. A second major hurdle is financial costs of registration and demonstration of efficacy and quality product with a new technology. Costs of registration are prohibitive if only the net coatings market is involved. Demonstration of quality product requires collaboration and a team approach between formulators, net suppliers and farmers. An alternative solution is a vertically integrated business model in which the support business and product production business are part of the same company.

  14. Hybrid governance of aquaculture: Opportunities and challenges.

    Science.gov (United States)

    Vince, Joanna; Haward, Marcus

    2017-10-01

    The development of third party assessment and certification of fisheries and aquaculture has provided new forms of governance in sectors that were traditionally dominated by state based regulation. Emerging market based approaches are driven by shareholder expectations as well as commitment to corporate social responsibility, whereas community engagement is increasingly centered on the questions of social license to operate. Third party assessment and certification links state, market and community into an interesting and challenging hybrid form of governance. While civil society organizations have long been active in pursuing sustainable and safe seafood production, the development of formal non-state based certification provides both opportunities and challenges, and opens up interesting debates over hybrid forms of governance. This paper explores these developments in coastal marine resources management, focusing on aquaculture and the development and operation of the Aquaculture Stewardship Council. It examines the case of salmonid aquaculture in Tasmania, Australia, now Australia's most valuable seafood industry, which remains the focus of considerable community debate over its siting, operation and environmental impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Counter-insurgents of the blue revolution? Parasites and diseases affecting aquaculture and science.

    Science.gov (United States)

    Blaylock, Reginald B; Bullard, Stephen A

    2014-12-01

    Aquaculture is the fastest-growing segment of food production and is expected to supply a growing portion of animal protein for consumption by humans. Because industrial aquaculture developed only recently compared to industrial agriculture, its development occurred within the context of a growing environmental awareness and acknowledgment of environmental issues associated with industrial farming. As such, parasites and diseases have become central criticisms of commercial aquaculture. This focus on parasites and diseases, however, has created a nexus of opportunities for research that has facilitated considerable scientific advances in the fields of parasitology and aquaculture. This paper reviews Myxobolus cerebralis , Lepeophtheirus salmonis , white spot syndrome virus, and assorted flatworms as select marquee aquaculture pathogens, summarizes the status of the diseases caused by each and their impacts on aquaculture, and highlights some of the significant contributions these pathogens have made to the science of parasitology and aquaculture.

  16. Microbial Diseases in Shrimp Aquaculture

    Digital Repository Service at National Institute of Oceanography (India)

    Karunasagar, Iddya; Karunasagar, Indrani; Umesha, R.K.

    Diseases in Shrimp Aquaculture Iddya Karunasagar, Indrani Karunasagar and R. K. Umesha Department of Fishery Microbiology, University of Agricultural Sciences, College of Fisheries, Mangalore-575 002, India Introduction Aquaculture is one of the fastest... growing food production sectors in the world (Subasinghe et al. 1998). According to FAO statistics, over 80% of fish produced by aquaculture comes from Asia, with the production valued at $ 38.855 billion (FAO, 1996). However, disease outbreaks have caused...

  17. Does aquaculture add resilience to the global food system?

    Science.gov (United States)

    Troell, Max; Naylor, Rosamond L; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H; Folke, Carl; Arrow, Kenneth J; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R; Gren, Asa; Kautsky, Nils; Levin, Simon A; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H; Xepapadeas, Tasos; de Zeeuw, Aart

    2014-09-16

    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.

  18. Gill damage to Atlantic salmon (Salmo salar) caused by the common jellyfish (Aurelia aurita) under experimental challenge.

    Science.gov (United States)

    Baxter, Emily J; Sturt, Michael M; Ruane, Neil M; Doyle, Thomas K; McAllen, Rob; Harman, Luke; Rodger, Hamish D

    2011-04-07

    Over recent decades jellyfish have caused fish kill events and recurrent gill problems in marine-farmed salmonids. Common jellyfish (Aurelia spp.) are among the most cosmopolitan jellyfish species in the oceans, with populations increasing in many coastal areas. The negative interaction between jellyfish and fish in aquaculture remains a poorly studied area of science. Thus, a recent fish mortality event in Ireland, involving Aurelia aurita, spurred an investigation into the effects of this jellyfish on marine-farmed salmon. To address the in vivo impact of the common jellyfish (A. aurita) on salmonids, we exposed Atlantic salmon (Salmo salar) smolts to macerated A. aurita for 10 hrs under experimental challenge. Gill tissues of control and experimental treatment groups were scored with a system that rated the damage between 0 and 21 using a range of primary and secondary parameters. Our results revealed that A. aurita rapidly and extensively damaged the gills of S. salar, with the pathogenesis of the disorder progressing even after the jellyfish were removed. After only 2 hrs of exposure, significant multi-focal damage to gill tissues was apparent. The nature and extent of the damage increased up to 48 hrs from the start of the challenge. Although the gills remained extensively damaged at 3 wks from the start of the challenge trial, shortening of the gill lamellae and organisation of the cells indicated an attempt to repair the damage suffered. Our findings clearly demonstrate that A. aurita can cause severe gill problems in marine-farmed fish. With aquaculture predicted to expand worldwide and evidence suggesting that jellyfish populations are increasing in some areas, this threat to aquaculture is of rising concern as significant losses due to jellyfish could be expected to increase in the future.

  19. Aquaculture as a part of a multi-use platform

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Svenstrup Petersen, Ole; Aarup Ahrensberg, Nick

    2014-01-01

    aquaculture. These developments urgently require effective marine technology and governance solutions to facilitate installation, operation and maintenance of these novel offshore activities. Simultaneously, both economic costs and environmental impact have to remain within acceptable limits, in order...... to increase the feasibility of the use of ocean space. Aquaculture can play an important role in the multi-use of ocean space. This idea is tested on four different sites around Europe, where this paper focus on the one in the Baltic Sea....

  20. Antimicrobial resistance and the environment: Assessment of advances, gaps and recommendations for agriculture, aquaculture and pharmaceutical manufacturing.

    Science.gov (United States)

    Topp, Edward; Larsson, Joakim; Miller, Daniel; Van den Eede, Christel; Virta, Marko

    2017-12-22

    A roundtable discussion held at the 4th international symposium on the Environmental Dimension of Antibiotic Resistance (EDAR4) considered key issues concerning the impact on the environment of antibiotic use in agriculture and aquaculture, and emissions from antibiotic manufacturing. The critical control points for reducing emissions of antibiotics from agriculture are antibiotic stewardship, and the pre-treatment of manure and sludge to abate antibiotic resistant bacteria. Antibiotics are sometimes added to fish and shellfish production sites via the feed, representing a direct route of contamination of the aquatic environment. Vaccination reduces the need for antibiotic use in high value (e. g. salmon) production systems. Consumer and regulatory pressure will over time contribute to reducing the emission of very high concentrations of antibiotics from manufacturing. Research priorities include the development of technologies, practices and incentives that will allow effective reduction in antibiotic use, together with evidence-based standards for antibiotic residues in effluents. All relevant stakeholders need to be aware of the threat of antimicrobial resistance (AMR) and apply best practice in agriculture, aquaculture and pharmaceutical manufacturing in order to mitigate antibiotic resistance development. Research and policy development on AMR mitigation must be cognizant of the varied challenges facing high and low income countries. © Crown copyright 2017.

  1. Family-specific differences in growth rate and hepatic gene expression in juvenile triploid growth hormone (GH) transgenic Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Xu, Qingheng; Feng, Charles Y; Hori, Tiago S; Plouffe, Debbie A; Buchanan, John T; Rise, Matthew L

    2013-12-01

    Growth hormone transgenic (GHTg) Atlantic salmon (Salmo salar) have enhanced growth when compared to their non-transgenic counterparts, and this trait can be beneficial for aquaculture production. Biological confinement of GHTg Atlantic salmon may be achieved through the induction of triploidy (3N). The growth rates of triploid GH transgenic (3NGHTg) Atlantic salmon juveniles were found to significantly vary between families in the AquaBounty breeding program. In order to characterize gene expression associated with enhanced growth in juvenile 3NGHTg Atlantic salmon, a functional genomics approach (32K cDNA microarray hybridizations followed by QPCR) was used to identify and validate liver transcripts that were differentially expressed between two fast-growing 3NGHTg Atlantic salmon families (AS11, AS26) and a slow-growing 3NGHTg Atlantic salmon family (AS25); juvenile growth rate was evaluated over a 45-day period. Of 687 microarray-identified differentially expressed features, 143 (116 more highly expressed in fast-growing and 27 more highly expressed in slow-growing juveniles) were identified in the AS11 vs. AS25 microarray study, while 544 (442 more highly expressed in fast-growing and 102 more highly expressed in slow-growing juveniles) were identified in the AS26 vs. AS25 microarray study. Forty microarray features (39 putatively associated with fast growth and 1 putatively associated with slow growth) were present in both microarray experiment gene lists. The expression levels of 15 microarray-identified transcripts were studied using QPCR with individual RNA samples to validate microarray results and to study biological variability of transcript expression. The QPCR results agreed with the microarray results for 12 of 13 putative fast-growth associated transcripts, but QPCR did not validate the microarray results for 2 putative slow-growth associated transcripts. Many of the 39 microarray-identified genes putatively associated at the transcript expression

  2. Offshore Aquaculture: I Know It When I See It

    Directory of Open Access Journals (Sweden)

    Halley E. Froehlich

    2017-05-01

    Full Text Available Offshore aquaculture is increasingly viewed as a mechanism to meet growing protein demand for seafood, while minimizing adverse consequences on the environment and other uses in the oceans. However, despite growing interest in offshore aquaculture, there appears to be no consensus as to what measures commonly define an offshore site or how effects of offshore aquaculture—relative to more nearshore practices—are assessed. This lack of agreement on what constitutes offshore aquaculture has the potential to convolute communication, create uncertainty in regulatory processes, and impede understanding of the ecological implications of offshore farming. To begin addressing these issues, we reviewed and analyzed biologically-focused primary and gray literature (Ntotal = 70 that categorize and quantify characteristics of offshore aquaculture from around the world. We found that many “offshore” descriptions are relatively close to shore (<3 nm and significantly shallower (minimum depth ≤30 m than may be assumed. We also uncovered an overall lack of consistent reporting of even the most common location-focused metrics (distance from shore, depth, current, a dearth of impact related studies (n = 17, and narrow scope of the studies themselves (i.e., 82% nutrient pollution. Of the finite subset of articles that investigated negative ecological impacts of offshore aquaculture, we found the probability of any measurable impact from an offshore farm appears to significantly decrease with distance from the farm (probability of measurable response at 90 m ± SE = 0.01 ± 0.03. Such general, but informative points of reference could be more robustly quantified with better systematic and standardized reporting of physical farm characteristics and a broader scope of ecological investigation into the effects of marine aquaculture. With offshore aquaculture still in its infancy, consistent metrics are needed for a comparable framework to guide sustainable

  3. Aquaculture. Second Edition. Teacher Edition.

    Science.gov (United States)

    Walker, Susan S.; Crummett, Dan

    This teacher and student guide for aquaculture contains 15 units of instruction that cover the following topics: (1) introduction to aquaculture; (2) the aquatic environment; (3) fundamental fish biology; (4) marketing; (5) site selection; (6) facility design and layout; (7) water quality management; (8) fish health management; (9) commercial…

  4. Background paper on aquaculture research

    DEFF Research Database (Denmark)

    Wenblad, Axel; Jokumsen, Alfred; Eskelinen, Unto

    The Board of MISTRA established in 2012 a Working Group (WG) on Aquaculture to provide the Board with background information for its upcoming decision on whether the foundation should invest in aquaculture research. The WG included Senior Advisor Axel Wenblad, Sweden (Chairman), Professor Ole...... due to the availability of vast water resources of good quality (both marine and fresh water), a high veterinary status and generally well developed public infrastructure. Swedish aquaculture has the potential to develop into a green business producing environmentally sustainable healthy food with low...... of adequate funding from national and international sources (e.g. EMFF, research councils, EU, Nordic and BONUS). Finally, the financial sector should be made more confident with aquaculture to facilitate investments in aquaculture. The integration of environmental, economic and social sustainability...

  5. Time-delayed subsidies: interspecies population effects in salmon.

    Directory of Open Access Journals (Sweden)

    Michelle C Nelson

    Full Text Available Cross-boundary nutrient inputs can enhance and sustain populations of organisms in nutrient-poor recipient ecosystems. For example, Pacific salmon (Oncorhynchus spp. can deliver large amounts of marine-derived nutrients to freshwater ecosystems through their eggs, excretion, or carcasses. This has led to the question of whether nutrients from one generation of salmon can benefit juvenile salmon from subsequent generations. In a study of 12 streams on the central coast of British Columbia, we found that the abundance of juvenile coho salmon was most closely correlated with the abundance of adult pink salmon from previous years. There was a secondary role for adult chum salmon and watershed size, followed by other physical characteristics of streams. Most of the coho sampled emerged in the spring, and had little to no direct contact with spawning salmon nutrients at the time of sampling in the summer and fall. A combination of techniques suggest that subsidies from spawning salmon can have a strong, positive, time-delayed influence on the productivity of salmon-bearing streams through indirect effects from previous spawning events. This is the first study on the impacts of nutrients from naturally-occurring spawning salmon on juvenile population abundance of other salmon species.

  6. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    van der Naald, Wayne; Duff, Cameron; Friesen, Thomas A. (Oregon Department of Fish and Wildlife, Clackamas, OR)

    2006-02-01

    Pacific salmon Oncorhynchus spp. populations have declined over the last century due to a variety of human impacts. Chum salmon O. keta populations in the Columbia River have remained severely depressed for the past several decades, while upriver bright (URB) fall Chinook salmon O. tschawytscha populations have maintained relatively healthy levels. For the past seven years we have collected data on adult spawning and juvenile emergence and outmigration of URB fall Chinook and chum salmon populations in the Ives and Pierce islands complex below Bonneville Dam. In 2004, we estimated 1,733 fall Chinook salmon and 336 chum salmon spawned in our study area. Fall Chinook salmon spawning peaked 19 November with 337 redds and chum salmon spawning peaked 3 December with 148 redds. Biological characteristics continue to suggest chum salmon in our study area are similar to nearby stocks in Hardy and Hamilton creeks, and Chinook salmon we observe are similar to upriver bright stocks. Temperature data indicated that 2004 brood URB fall Chinook salmon emergence began on 6 January and ended 27 May 2005, with peak emergence occurring 12 March. Chum salmon emergence began 4 February and continued through 2 May 2005, with peak emergence occurring on 21 March. Between 13 January and 28 June, we sampled 28,984 juvenile Chinook salmon and 1,909 juvenile chum salmon. We also released 32,642 fin-marked and coded-wire tagged juvenile fall Chinook salmon to assess survival. The peak catch of juvenile fall Chinook salmon occurred on 18 April. Our results suggested that the majority of fall Chinook salmon outmigrate during late May and early June, at 70-80 mm fork length (FL). The peak catch of juvenile chum salmon occurred 25 March. Juvenile chum salmon appeared to outmigrate at 40-55 mm FL. Outmigration of chum salmon peaked in March but extended into April and May.

  7. Genomic approaches in aquaculture and fisheries

    DEFF Research Database (Denmark)

    Cancela, M. Leonor; Bargelloni, Luca; Boudry, Pierre

    2010-01-01

    . Improving state-of-the-art genomics research in various aquaculture systems, as well as its industrial applications, remains one of the major challenges in this area and should be the focus of well developed strategies to be implemented in the next generation of projects. This chapter will first provide......Despite the enormous input into the worldwide development of fish and shellfish farming in the recent decades, in part as an attempt to minimize the impact of fishing on already overexploited natural populations, the application of genomics to aquaculture and fisheries remains poorly developed...... an overview of the genomic tools and resources available, then discuss the application of genomic approaches to the improvement of fish and shellfish farming (e.g. breeding, reproduction, growth, nutrition and product quality), including the evaluation of stock diversity and the use of selection procedures...

  8. Transcriptomic analysis of responses to infectious salmon anemia virus infection in macrophage-like cells

    Science.gov (United States)

    The aquatic orthomyxovirus infectious salmon anemia virus (ISAV) is an important pathogen for salmonid aquaculture, however little is known about protective and pathological host responses to infection. We have investigated intracellular responses during cytopathic ISAV infection in the macrophage-l...

  9. Ecosystem-based approach to aquaculture management

    Directory of Open Access Journals (Sweden)

    Patrick White

    2008-12-01

    Full Text Available Ecosystems have real thresholds and limits which, when exceeded, can affect major system restructuring. Once thresholds and limits have been exceeded, changes can be irreversible. Diversity is important to ecosystem functioning. The ecosystem approach is a strategy for the integrated management of land, water, and living resources that promotes conservation and sustainable use in an equitable way. The application of the ecosystem approach will help to reach a balance of the three main objectives: conservation, sustainable use, and a fair and equitable sharing of the benefits and use of the natural resources. Aquaculture development needs to be within the carrying capacity of the water resource so that it is sustainable and does not greatly impact the environment. The determination of the carrying capacity needs to be science-based. The planning of development in ecosystems has been done for freshwater ecosystems within the PAMB (Protected Area Management Board framework, but in many cases this does not give the correct significance to the impact of aquaculture on the water resources in the ecosystem. It also needs to be extended to river basins and estuaries, brackishwater areas, and inland bays, and seas. The planning and management of aquaculture needs to be undertaken at the local government unit (LGU level in a coordinated manner by all the LGUs that have a part of the water resource. The co-management of aquaculture, in terms of monitoring of the environment, monitoring of production, and monitoring of licenses, needs to be funded out of license fees and non-compliance fines collected by the LGUs. A number of these management activities need to be undertaken jointly (monitoring the environment and others separately but in a coordinated manner (e.g., checking licenses and checking compliance.

  10. Dispersal and assimilation of an aquaculture waste subsidy in a low productivity coastal environment.

    Science.gov (United States)

    White, C A; Nichols, P D; Ross, D J; Dempster, T

    2017-07-15

    To understand dispersal and assimilation of aquaculture waste subsidies in a naturally low-productivity environment, we applied a novel, rapid transmethylation technique to analyse sediment and biota fatty acid composition. This technique was initially validated at Atlantic salmon farms in Macquarie Harbour, Australia, where sediments were collected at farm and control locations. Subsequently, sediment, benthic polychaete and zooplankton were sampled at sites 0, 50, 250, 500 and 1000m distant from multiple cages. Results demonstrated an acute deposition zone up to 50m from cages and a diffuse zone extending 500m from cages. Changes in sediment concentration of linoleic acid, oleic acid and total fatty acids were effective tracers of farm deposition. Bacterial biomarkers indicated that aquaculture waste stimulates bacterial productivity in sediments, with elevated biomarker concentrations also detected in benthic polychaetes. Overall, fatty acid analysis was a sensitive technique to characterize the benthic footprint of aquaculture influence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Comparative economic performance and carbon footprint of two farming models for producing atlantic salmon (salmo salar): Land-based closed containment system in freshwater and open pen in seawater

    Science.gov (United States)

    Ocean net pen production of Atlantic salmon is approaching 2 million metric tons (MT) annually and has proven to be cost- and energy- efficient. Recently, with technology improvements, freshwater aquaculture of Atlantic salmon from eggs to harvestable size of 4 -5 kg in land-based closed containmen...

  12. A game theory based framework for assessing incentives for local area collaboration with an application to Scottish salmon farming.

    Science.gov (United States)

    Murray, Alexander G

    2014-08-01

    Movements of water that transport pathogens mean that in net-pen aquaculture diseases are often most effectively managed collaboratively among neighbours. Such area management is widely and explicitly applied for pathogen management in marine salmon farms. Effective area management requires the active support of farm managers and a simple game-theory based framework was developed to identify the conditions required under which collaboration is perceived to be in their own best interest. The model applied is based on area management as practiced for Scottish salmon farms, but its simplicity allows it to be generalised to other area-managed net-pen aquaculture systems. In this model managers choose between purchasing tested pathogen-free fish or cheaper, untested fish that might carry pathogens. Perceived pay-off depends on degree of confidence that neighbours will not buy untested fish, risking input of pathogens that spread between farms. For a given level of risk, confidence in neighbours is most important in control of moderate-impact moderate-probability diseases. Common low-impact diseases require high confidence since there is a high probability a neighbour will import, while testing for rare high-impact diseases may be cost-effective regardless of neighbours actions. In some cases testing may be beneficial at an area level, even if all individual farms are better off not testing. Higher confidence is required for areas with many farms and so focusing management on smaller, epidemiologically imperfect, areas may be more effective. The confidence required for collaboration can be enhanced by the development of formal agreements and the involvement of outside disinterested parties such as trade bodies or government. Copyright © 2014. Published by Elsevier B.V.

  13. Next generation sequencing assays for benthic monitoring of the environmental impact associated with salmon farming (pilot study)

    DEFF Research Database (Denmark)

    Pawlowski, Jan; Esling, Philippe; Lejzerowicz, Franck

    2015-01-01

    to overcome the limitations of traditional morphology-based approach. We analysed 140 samples of eDNA/RNA extracted from surface sediment samples collected at 4 salmon farming sites in Norway. We sequenced the variable region 37F of 18S rRNA gene specific to foraminifera, and the variable region V4 of the 18S...... evidence for the usefulness of NGS approach to assess the benthic diversity of foraminifera and metazoans. For both groups we found a good correlation between diversity indices inferred from NGS and morphological data. The foraminifera show a clear pattern of the diversity increase with the distance...

  14. Marine Spatial Planning Makes Room for Offshore Aquaculture in a Crowded Coastal Zone

    Science.gov (United States)

    Stevens, J.

    2016-12-01

    Offshore aquaculture is an emerging industry predicted to contribute significantly to global seafood production and food security. However, aquaculture farms can generate conflicts by displacing existing ocean user groups and impacting ecosystems. Further, there are multiple farm types with different seafood species, productivity levels and impacts. Thus, it is important to strategically and simultaneously plan farm type and location in relation to the seascape in order to most effectively maximize aquaculture value while also minimizing conflicts and environmental impacts. We address this problem and demonstrate the value of multi-objective planning with a case study that integrates bioeconomic modeling with ecosystem service tradeoff analysis to inform the marine spatial planning (MSP) of mussel, finfish and kelp aquaculture farms in the already-crowded Southern California Bight (SCB) ecosystem. We considered four user groups predicted to conflict with or be impacted by the three types of aquaculture: wild-capture fisheries, ocean viewshed from coastal properties, marine benthic habitat protection, and risk of disease outbreak between farms. Results indicate that significant conflicts and impacts, expected under conventional planning, can be reduced by strategic planning. For example, 28% of potential mussel farm sites overlap with wild-capture halibut fishery grounds, yet MSP can enable mussel aquaculture to generate up to a third of its total potential industry value without impacting halibut fishery yield. Results also highlight hotspot areas in the SCB most appropriate for each type of aquaculture under MSP, as well as particular mussel, finfish and kelp aquaculture spatial plans that align with legislative regulations on allowable impacts from future aquaculture farms in California. This study comprehensively informs aquaculture farm design in the SCB, and demonstrates the value of multi-objective simultaneous planning as a key component in MSP.

  15. Influence of body condition on the population dynamics of Atlantic salmon with consideration of the potential impact of sea lice.

    Science.gov (United States)

    Susdorf, R; Salama, N K G; Lusseau, D

    2017-11-21

    Atlantic salmon Salmo salar is an iconic species of high conservation and economic importance. At sea, individuals typically are subject to sea lice infestation, which can have detrimental effects on their host. Over recent decades, the body condition and marine survival in NE Atlantic stocks have generally decreased, reflected in fewer adults returning to rivers, which is partly attributable to sea lice. We developed a deterministic stage-structured population model to assess condition-mediated population dynamics resulting in changing fecundity, age at sexual maturation and marine survival rate. The model is parameterized using data from the North Esk system, north-east Scotland. Both constant and density-dependent juvenile survival rates are considered. We show that even small sea lice-mediated changes in mean body condition of MSW can cause substantial population declines, whereas 1SW condition is less influential. Density dependence alleviates the condition-mediated population effect. The resilience of the population to demographic perturbations declines as adult condition is reduced. Indirect demographic changes in salmonid life-history traits (e.g., body condition) are often considered unimportant for population trajectory. The model shows that Atlantic salmon population dynamics can be highly responsive to sea lice-mediated effects on adult body condition, thus highlighting the importance of non-lethal parasitic long-term effects. © 2017 The Authors Journal of Fish Diseases Published by John Wiley & Sons Ltd.

  16. Getting proficient in RAS fundamentals - TCFFI trains aquaculture facility owners, operators and designers

    Science.gov (United States)

    Many federal, state, and tribal aquaculture programs are adopting water recirculation technologies as a means to maintaining and/or expanding their level of fish production, while reducing the environmental impact of waste dissemination. Similarly, the North American commercial aquaculture industry ...

  17. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability

    NARCIS (Netherlands)

    Martins, C.I.; Eding, E.H.; Verdegem, M.C.J.; Heinsbroek, L.T.N.; Schneider, O.; Blancheton, J.P.; Roque dÓrbcastel, E.; Verreth, J.A.J.

    2010-01-01

    The dual objective of sustainable aquaculture, i.e., to produce food while sustaining natural resources is achieved only when production systems with a minimum ecological impact are used. Recirculating aquaculture systems (RASs) provide opportunities to reduce water usage and to improve waste

  18. Consumer preferences for sustainable aquaculture products: Evidence from in-depth interviews, think aloud protocols and choice experiments.

    Science.gov (United States)

    Risius, Antje; Janssen, Meike; Hamm, Ulrich

    2017-06-01

    Fish from aquaculture is becoming more important for human consumption. Sustainable aquaculture procedures were developed as an alternative to overcome the negative environmental impacts of conventional aquaculture procedures and wild fisheries. The objective of this contribution is to determine what consumers expect from sustainable aquaculture and whether they prefer sustainable aquaculture products. A combination of qualitative research methods, with think aloud protocols and in-depth interviews, as well as quantitative methods, using choice experiments and face-to-face interviews, was applied. Data was collected in three different cities of Germany. Results revealed that sustainable aquaculture was associated with natural, traditional, local, and small scale production systems with high animal welfare standards. Overall, participants paid a lot of attention to the declaration of origin; in particular fish products from Germany and Denmark were preferred along with local products. Frequently used sustainability claims for aquaculture products were mostly criticized as being imprecise by the participants of the qualitative study; even though two claims tested in the choice experiments had a significant positive impact on the choice of purchase. Similarly, existing aquaculture-specific labels for certified sustainable aquaculture had an impact on the buying decision, but were not well recognized and even less trusted. Overall, consumers had a positive attitude towards sustainable aquaculture. However, communication measures and labelling schemes should be improved to increase consumer acceptance and make a decisive impact on consumers' buying behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture.

    Science.gov (United States)

    Tomova, Alexandra; Ivanova, Larisa; Buschmann, Alejandro H; Rioseco, Maria Luisa; Kalsi, Rajinder K; Godfrey, Henry P; Cabello, Felipe C

    2015-10-01

    Antimicrobials are heavily used in Chilean salmon aquaculture. We previously found significant differences in antimicrobial-resistant bacteria between sediments from an aquaculture and a non-aquaculture site. We now show that levels of antimicrobial resistance genes (ARG) are significantly higher in antimicrobial-selected marine bacteria than in unselected bacteria from these sites. While ARG in tetracycline- and florfenicol-selected bacteria from aquaculture and non-aquaculture sites were equally frequent, there were significantly more plasmid-mediated quinolone resistance genes per bacterium and significantly higher numbers of qnrB genes in quinolone-selected bacteria from the aquaculture site. Quinolone-resistant urinary Escherichia coli from patients in the Chilean aquacultural region were significantly enriched for qnrB (including a novel qnrB gene), qnrS, qnrA and aac(6')-1b, compared with isolates from New York City. Sequences of qnrA1, qnrB1 and qnrS1 in quinolone-resistant Chilean E. coli and Chilean marine bacteria were identical, suggesting horizontal gene transfer between antimicrobial-resistant marine bacteria and human pathogens. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Concentrations of trace elements in Pacific and Atlantic salmon

    Science.gov (United States)

    Khristoforova, N. K.; Tsygankov, V. Yu.; Boyarova, M. D.; Lukyanova, O. N.

    2015-09-01

    Concentrations of Hg, As, Cd, Pb, Zn, and Cu were analyzed in the two most abundant species of Pacific salmon, chum and pink salmon, caught in the Kuril Islands at the end of July, 2013. The concentrations of toxic elements (Hg, As, Pb, Cd) in males and females of these species are below the maximum permissible concentrations for seafood. It was found that farmed filleted Atlantic salmon are dominated by Zn and Cu, while muscles of wild salmon are dominated by Pb. Observed differences are obviously related to peculiar environmental geochemical conditions: anthropogenic impact for Atlantic salmon grown in coastal waters and the influence of the natural factors volcanism and upwelling for wild salmon from the Kuril waters.

  1. Optimizing Ocean Space: Co-siting Open Ocean Aquaculture

    Science.gov (United States)

    Cobb, B. L.; Wickliffe, L. C.; Morris, J. A., Jr.

    2016-12-01

    In January of 2016, NOAA's National Marine Fisheries Service released the Gulf Aquaculture Plan (GAP) to manage the development of environmentally sound and economically sustainable open ocean finfish aquaculture in the Gulf of Mexico (inside the U.S. Exclusive Economic Zone [EEZ]). The GAP provides the first regulatory framework for aquaculture in federal waters with estimated production of 64 million pounds of finfish, and an estimated economic impact of $264 million annually. The Gulf of Mexico is one of the most industrialized ocean basins in the world, with many existing ocean uses including oil and natural gas production, shipping and commerce, commercial fishing operations, and many protected areas to ensure conservation of valuable ecosystem resources and services. NOAA utilized spatial planning procedures and tools identifying suitable sites for establishing aquaculture through exclusion analyses using authoritative federal and state data housed in a centralized geodatabase. Through a highly collaborative, multi-agency effort a mock permitting exercise was conducted to illustrate the regulatory decision-making process for the Gulf. Further decision-making occurred through exploring co-siting opportunities with oil and natural gas platforms. Logistical co-siting was conducted to reduce overall operational costs by looking at distance to major port and commodity tonnage at each port. Importantly, the process of co-siting allows aquaculture to be coupled with other benefits, including the availability of previously established infrastructure and the reduction of environmental impacts.

  2. Norwegian Salmon Goes to Market: The Case of the Austevoll Seafood Cluster

    Science.gov (United States)

    Phyne, John; Hovgaard, Gestur; Hansen, Gard

    2006-01-01

    This paper examines the impact of the globalisation of the farmed salmon commodity chain upon farmed salmon production in the western Norwegian municipality of Austevoll. On the basis of field research conducted in 2002 and 2003, we conclude that salmon farming in Austevoll has responded to the challenges of "buyer-driven" food chains by…

  3. The Lummi Indians and the Canadian/American Pacific Salmon Treaty.

    Science.gov (United States)

    Boxberger, Daniel L.

    1988-01-01

    Explores the probable impact of the 1985 international Pacific Salmon Treaty on the Lummi tribe's catch of Fraser River salmon and economic well-being. Discusses the 1974 Boldt Decision, which allocated half of Washington State's salmon catch to treaty tribes, and contradictions in the federal government's conception of international treaties. (SV)

  4. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon Salmo salar

    Science.gov (United States)

    Waldrop, Thomas; Summerfelt, Steven T.; Mazik, Patricia M.; Good, Christopher

    2018-01-01

    Swimming exercise, typically measured in body-lengths per second (BL/s), and dissolved oxygen (DO), are important environmental variables in fish culture. While there is an obvious physiological association between these two parameters, their interaction has not been adequately studied in Atlantic salmon Salmo salar. Because exercise and DO are variables that can be easily manipulated in modern aquaculture systems, we sought to assess the impact of these parameters, alone and in combination, on the performance, health and welfare of juvenile Atlantic salmon. In our study, Atlantic salmon fry were stocked into 12 circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5–2 BL/s) or low (<0.5 BL/s) swimming speeding and high (100% saturation) or low (70% saturation) DO while being raised from 10 g to approximately 350 g in weight. Throughout the study period, we assessed the impacts of exercise and DO concentration on growth, feed conversion, survival and fin condition. By study's end, both increased swimming speed and higher DO were independently associated with a statistically significant increase in growth performance (p < .05); however, no significant differences were noted in survival and feed conversion. Caudal fin damage was associated with low DO, while right pectoral fin damage was associated with higher swimming speed. Finally, precocious male sexual maturation was associated with low swimming speed. These results suggest that providing exercise and dissolved oxygen at saturation during Atlantic salmon early rearing can result in improved growth performance and a lower incidence of precocious parr.

  5. Dependency on aquaculture in northern Vietnam

    DEFF Research Database (Denmark)

    Le Minh, Hanh; Phan, Van Thi; Nghia, Nguyen Huu

    2017-01-01

    Whilst a range of studies address the aquaculture livelihoods in southern Vietnam’s Mekong Delta, the role of aquaculture in northern Vietnam remains less described. We, therefore, conducted interviews with 199 households in the two northern provinces Quang Ninh and Nghe An in 2014 to analyse...... the dependence on aquaculture in these two provinces and amongst farmers specializing in shrimp and freshwater fish production, respectively. Further, we tested the ability of different socio-economic variables to explain the observed reliance on aquaculture using an ANCOVA model. The study identifies...... a substantial reliance on aquaculture of farmers in the study area with at least half of their income generated by aquaculture. Our analyses highlight that the educational background of farmers explain their engagement in aquaculture better than how long they have worked as aquaculture farmers. Freshwater fish...

  6. Linking individual migratory behaviour of Atlantic salmon to their genetic origin

    DEFF Research Database (Denmark)

    Jepsen, Niels; Eg Nielsen, Einar; Deacon, M.

    2005-01-01

    by increased aquaculture activities. The interpretation of results from studies of survival and behaviour of fish from such “mixed stocks” require information of the genetic background of individual fish. We used genetic analysis combined with radiotelemetry to study upstream migration of Atlantic salmon....... The results indicate that stocked, foreign salmon had a slightly higher mortality and moved more up and down in the river than the native salmon did, but all salmon had problems passing the physical obstructions in the river. The DNA analyses enabled us to compare the behaviour of fish of different genetic...... origin, but the interpretation of the results was hampered by a high mortality of tagged fish. This study demonstrates that the combination of recent genetic methods and telemetry provides a potent tool for better management of mixed stock fisheries...

  7. Microorganisms in recirculating aquaculture systems and their management

    NARCIS (Netherlands)

    Rurangwa, E.; Verdegem, M.C.J.

    2015-01-01

    Recirculation aquaculture systems (RASs) are increasingly considered as production systems of the future with a minimum ecological impact for the production of aquatic food. To maintain a good water quality and to produce quality and healthy fishery products, the systems depend on a diverse

  8. REUSE OF SALINE AQUACULTURE EFFLUENT FOR ENERGY PLANT PRODUCTION

    National Research Council Canada - National Science Library

    Réka Hegedus; Dénes Gál; Ferenc Pekár; Mária Oncsik Bíróné; Gyula Lakatos

    2011-01-01

    ...). Keywords: effluent, energy plant, irrigation, salt, phytoremediation INTRODUCTION The growth of the aquaculture industry has been associated with negative environmental impacts from the discharge of untreated effluent into the adjacent receiving water bodies. It is well known that discharge of effluents, treated or non-treated, into the envir...

  9. Promoting aquaculture in rural Sri Lanka

    International Development Research Centre (IDRC) Digital Library (Canada)

    Increased aquaculture productivity and income. • Improved knowledge and information-sharing between aquaculture farmers. • Widespread availability of technical information in local languages. • Creation of a legacy of farmers, particularly women, able to access, share, and apply knowledge about sustainable aquaculture.

  10. Aquaculture Thesaurus: Descriptors Used in the National Aquaculture Information System.

    Science.gov (United States)

    Lanier, James A.; And Others

    This document provides a listing of descriptors used in the National Aquaculture Information System (NAIS), a computer information storage and retrieval system on marine, brackish, and freshwater organisms. Included are an explanation of how to use the document, subject index terms, and a brief bibliography of the literature used in developing the…

  11. A highly redundant BAC library of Atlantic salmon (Salmo salar: an important tool for salmon projects

    Directory of Open Access Journals (Sweden)

    Koop Ben F

    2005-04-01

    Full Text Available Abstract Background As farming of Atlantic salmon is growing as an aquaculture enterprise, the need to identify the genomic mechanisms for specific traits is becoming more important in breeding and management of the animal. Traits of importance might be related to growth, disease resistance, food conversion efficiency, color or taste. To identify genomic regions responsible for specific traits, genomic large insert libraries have previously proven to be of crucial importance. These large insert libraries can be screened using gene or genetic markers in order to identify and map regions of interest. Furthermore, large-scale mapping can utilize highly redundant libraries in genome projects, and hence provide valuable data on the genome structure. Results Here we report the construction and characterization of a highly redundant bacterial artificial chromosome (BAC library constructed from a Norwegian aquaculture strain male of Atlantic salmon (Salmo salar. The library consists of a total number of 305 557 clones, in which approximately 299 000 are recombinants. The average insert size of the library is 188 kbp, representing 18-fold genome coverage. High-density filters each consisting of 18 432 clones spotted in duplicates have been produced for hybridization screening, and are publicly available 1. To characterize the library, 15 expressed sequence tags (ESTs derived overgos and 12 oligo sequences derived from microsatellite markers were used in hybridization screening of the complete BAC library. Secondary hybridizations with individual probes were performed for the clones detected. The BACs positive for the EST probes were fingerprinted and mapped into contigs, yielding an average of 3 contigs for each probe. Clones identified using genomic probes were PCR verified using microsatellite specific primers. Conclusion Identification of genes and genomic regions of interest is greatly aided by the availability of the CHORI-214 Atlantic salmon BAC

  12. Charting the Research Course for Sustainable Aquaculture in Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Vun L. W.

    2016-01-01

    Full Text Available Due to arising needs and demands, aquaculture is currently the fastest growing food production sector. In order to increase yield and yet to remain sustainable, the challenges would be to minimise impact on the environment and ecosystem services. Aquaculture activity contributes significantly to Malaysia and also the state of Sabah’s economy and food security. Hence, the future changes in the environment as a result of rapid population growth and development would pose as threats to this industry in terms of quality, quantity and sustainability. Unforeseen environmental changes such as environmental pollution from other sources, climate change and the changes in policies would jeopardize the sustainability of this industry. In order to anticipate such impacts to the aquaculture activities, this paper set to chart a sustainable course for its development. Four important research courses were proposed: establishment of a sustainable framework, assessment of impacts of climate change, viability and vulnerability assessment due to future environmental changes and food security. Such findings would eventually allow the stakeholders to plan and manage the resources and aquaculture activities in such a way that foster sustainable food security and resilient aquatic ecosystems.

  13. Directly measured denitrification reveals oyster aquaculture and restored oyster reefs remove nitrogen at comparable high rates

    Science.gov (United States)

    Coastal systems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for ecosystem functioning. Oyster restoration and aquaculture are both hypothesized to mitigate excessive nitrogen (N) loads via benthic denitrification (DNF). However, this has...

  14. The role of oyster restoration and aquaculture in nutrient cycling within a Rhode Island estuary

    Science.gov (United States)

    Coastal ecosystems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for other organisms. Oyster aquaculture and restoration are hypothesized to mitigate excessive nitrogen (N) loads via benthic denitrification. However, this has not been exam...

  15. The role of oyster restoration and aquaculture in nitrogen removal within a Rhode Island estuary

    Science.gov (United States)

    Coastal systems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for ecosystem functioning. Oyster aquaculture and restoration are hypothesized to mitigate excessive nitrogen (N) loads via assimilation, burial, or benthic denitrification. Stu...

  16. Aquaculture feed and food safety.

    Science.gov (United States)

    Tacon, Albert G J; Metian, Marc

    2008-10-01

    The ultimate objective of an aquaculture feed manufacturer and aquaculture food supplier is to ensure that the feed or food produced is both safe and wholesome. Reported food safety risks, which may be associated with the use of commercial animal feeds, including compound aquaculture feeds, usually result from the possible presence of unwanted contaminants, either within the feed ingredients used or from the external contamination of the finished feed on prolonged storage. The major animal feed contaminants that have been reported to date have included Salmonellae, mycotoxins, veterinary drug residues, persistent organic pollutants, agricultural and other chemicals (solvent residues, melamine), heavy metals (mercury, lead, cadmium) and excess mineral salts (hexavalent chromium, arsenic, selenium, flourine), and transmissible spongiform encephalopathies. Apart from the direct negative effect of these possible contaminants on the health of the cultured target species, there is a risk that the feed contaminants may be passed along the food chain, via contaminated aquaculture produce, to consumers. In recent years, public concern regarding food safety has increased as a consequence of the increasing prevalence of antibiotic residues, persistent organic pollutants, and chemicals in farmed seafood. The important role played by the Food and Agriculture Organization of the United Nations (FAO) and the Codex Alimentarius Commission in the development of international standards, guidelines, and recommendations to protect the health of consumers and ensure fair practices in the food trade is discussed.

  17. The impact of DO and salinity on microbial community in poly(butylene succinate) denitrification reactors for recirculating aquaculture system wastewater treatment.

    Science.gov (United States)

    Deng, Ya-Le; Ruan, Yun-Jie; Zhu, Song-Ming; Guo, Xi-Shan; Han, Zhi-Ying; Ye, Zhang-Ying; Liu, Gang; Shi, Ming-Ming

    2017-12-01

    The interactions between environmental factors and bacterial community shift in solid-phase denitrification are crucial for optimum operation of a reactor and to achieve maximum treatment efficiency. In this study, Illumina high-throughput sequencing was applied to reveal the effects of different operational conditions on bacterial community distribution of three continuous operated poly(butylene succinate) biological denitrification reactors used for recirculating aquaculture system (RAS) wastewater treatment. The results indicated that salinity decreased OTU numbers and diversity while dissolved oxygen (DO) had no obvious influence on OTU numbers. Significant microbial community composition differences were observed among and between three denitrification reactors under varied operation conditions. This result was also demonstrated by cluster analysis (CA) and detrended correspondence analysis (DCA). Hierarchical clustering and redundancy analysis (RDA) was performed to test the relationship between environmental factors and bacterial community compositions and result indicated that salinity, DO and hydraulic retention time (HRT) were the three key factors in microbial community formation. Besides, Simplicispira was detected under all operational conditions, which worth drawing more attention for nitrate removal. Moreover, the abundance of nosZ gene and 16S rRNA were analyzed by real-time PCR, which suggested that salinity decreased the proportion of denitrifiers among whole bacterial community while DO had little influence on marine reactors. This study provides an overview of microbial community shift dynamics in solid-phase denitrification reactors when operation parameters changed and proved the feasibility to apply interval aeration for denitrification process based on microbial level, which may shed light on improving the performance of RAS treatment units.

  18. Chinook Bycatch - Contemporary Salmon Genetic Stock Composition Estimates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to measure and monitor impacts on ESA-listed populations and to estimate overall Chinook salmon stock composition in bycatch...

  19. Large-scale climatic effects on traditional Hawaiian fishpond aquaculture.

    Directory of Open Access Journals (Sweden)

    Daniel McCoy

    Full Text Available Aquaculture accounts for almost one-half of global fish consumption. Understanding the regional impact of climate fluctuations on aquaculture production thus is critical for the sustainability of this crucial food resource. The objective of this work was to understand the role of climate fluctuations and climate change in subtropical coastal estuarine environments within the context of aquaculture practices in He'eia Fishpond, O'ahu Island, Hawai'i. To the best of our knowledge, this was the first study of climate effects on traditional aquaculture systems in the Hawaiian Islands. Data from adjacent weather stations were analyzed together with in situ water quality instrument deployments spanning a 12-year period (November 2004 -November 2016. We found correlations between two periods with extremely high fish mortality at He'eia Fishpond (May and October 2009 and slackening trade winds in the week preceding each mortality event, as well as surface water temperatures elevated 2-3°C higher than the background periods (March-December 2009. We posit that the lack of trade wind-driven surface water mixing enhanced surface heating and stratification of the water column, leading to hypoxic conditions and stress on fish populations, which had limited ability to move within net pen enclosures. Elevated water temperature and interruption of trade winds previously have been linked to the onset of El Niño in Hawai'i. Our results provide empirical evidence regarding El Niño effects on the coastal ocean, which can inform resource management efforts about potential impact of climate variation on aquaculture production. Finally, we provide recommendations for reducing the impact of warming events on fishponds, as these events are predicted to increase in magnitude and frequency as a consequence of global warming.

  20. Large-scale climatic effects on traditional Hawaiian fishpond aquaculture.

    Science.gov (United States)

    McCoy, Daniel; McManus, Margaret A; Kotubetey, Keliʻiahonui; Kawelo, Angela Hiʻilei; Young, Charles; D'Andrea, Brandon; Ruttenberg, Kathleen C; Alegado, Rosanna ʻAnolani

    2017-01-01

    Aquaculture accounts for almost one-half of global fish consumption. Understanding the regional impact of climate fluctuations on aquaculture production thus is critical for the sustainability of this crucial food resource. The objective of this work was to understand the role of climate fluctuations and climate change in subtropical coastal estuarine environments within the context of aquaculture practices in He'eia Fishpond, O'ahu Island, Hawai'i. To the best of our knowledge, this was the first study of climate effects on traditional aquaculture systems in the Hawaiian Islands. Data from adjacent weather stations were analyzed together with in situ water quality instrument deployments spanning a 12-year period (November 2004 -November 2016). We found correlations between two periods with extremely high fish mortality at He'eia Fishpond (May and October 2009) and slackening trade winds in the week preceding each mortality event, as well as surface water temperatures elevated 2-3°C higher than the background periods (March-December 2009). We posit that the lack of trade wind-driven surface water mixing enhanced surface heating and stratification of the water column, leading to hypoxic conditions and stress on fish populations, which had limited ability to move within net pen enclosures. Elevated water temperature and interruption of trade winds previously have been linked to the onset of El Niño in Hawai'i. Our results provide empirical evidence regarding El Niño effects on the coastal ocean, which can inform resource management efforts about potential impact of climate variation on aquaculture production. Finally, we provide recommendations for reducing the impact of warming events on fishponds, as these events are predicted to increase in magnitude and frequency as a consequence of global warming.

  1. Salmon Muscle Adherence to Polymer Coatings and Determination of Antibiotic Residues by Reversed-Phase High-Performance Liquid Chromatography Coupled to Selected Reaction Monitoring Mass Spectrometry, Atomic Force Microscopy, and Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    E. Zumelzu

    2015-01-01

    Full Text Available The persistent adhesion of salmon muscle to food container walls after treatment with urea solution was observed. This work evaluated the diffusion of antibiotics from the salmon muscle to the polyethylene terephthalate (PET coating protecting the electrolytic chromium coated steel (ECCS plates. New aquaculture production systems employ antibiotics such as florfenicol, florfenicol amine, oxytetracycline, and erythromycin to control diseases. The introduction of antibiotics is a matter of concern regarding the effects on human health and biodiversity. It is important to determine their impact on the adhesion of postmortem salmon muscle to can walls and the surface and structural changes affecting the functionality of multilayers. This work characterized the changes occurring in the multilayer PET polymer and steel of containers by electron microscopy, 3D atomic force microscopy (3D-AFM, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectroscopy (FT-IR analyses. A robust mass spectrometry methodology was employed to determine the presence of antibiotic residues. No evidence of antibiotics was observed on the protective coating in the range between 0.001 and 2.0 ng/mL; however, the presence of proteins, cholesterol, and alpha-carotene was detected. This in-depth profiling of the matrix-level elements is relevant for the use of adequate materials in the canning export industry.

  2. Impacts of short-term acid and aluminum exposure on Atlantic salmon (Salmo salar) physiology: A direct comparison of parr and smolts

    Science.gov (United States)

    Monette, M.Y.; McCormick, S.D.

    2008-01-01

    Episodic acidification resulting in increased acidity and inorganic aluminum (Ali) is known to impact anadromous salmonids and has been identified as a possible cause of Atlantic salmon population decline. Sensitive life-stages such as smolts may be particularly vulnerable to impacts of short-term (days–week) acid/Al exposure, however the extent and mechanism(s) of this remain unknown. To determine if Atlantic salmon smolts are more sensitive than parr to short-term acid/Al, parr and smolts held in the same experimental tanks were exposed to control (pH 6.3–6.6, 11–37 μg l−1 Ali) and acid/Al (pH 5.0–5.4, 43–68 μg l−1 Ali) conditions in the lab, and impacts on ion regulation, stress response and gill Al accumulation were examined after 2 and 6 days. Parr and smolts were also held in cages for 2 and 6 days in a reference (Rock River, RR) and an acid/Al-impacted tributary (Ball Mountain Brook, BMB) of the West River in Southern Vermont. In the lab, losses in plasma Cl− levels occurred in both control parr and smolts as compared to fish sampled prior to the start of the study, however smolts exposed to acid/Al experienced additional losses in plasma Cl− levels (9–14 mM) after 2 and 6 days, and increases in plasma cortisol (4.3-fold) and glucose (2.9-fold) levels after 6 days, whereas these parameters were not significantly affected by acid/Al in parr. Gill Na+,K+-ATPase (NKA) activity was not affected by acid/Al in either life-stage. Both parr and smolts held at BMB (but not RR) exhibited declines in plasma Cl−, and increases in plasma cortisol and glucose levels; these differences were significantly greater in smolts after 2 days but similar in parr and smolts after 6 days. Gill NKA activity was reduced 45–54% in both life-stages held at BMB for 6 days compared to reference fish at RR. In both studies, exposure to acid/Al resulted in gill Al accumulation in parr and smolts, with parr exhibiting two-fold greater gill Al than smolts after 6

  3. Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies.

    Science.gov (United States)

    Hulata, G

    2001-01-01

    The aim of this review was to highlight the extent to which the genetic technologies are implemented by the aquaculture industry. The review shows that some of the modern genetic technologies are already extensively applied by the diverse aquaculture industries, though not to the same extent for all important aquacultured species (according to FAO 1998 figures). Some species (common carp, Atlantic salmon, rainbow trout, channel catfish, Nile tilapia, and the Pacific oyster) received concentrated breeding efforts, while other major cultured species (Chinese and Indian carps and the giant tiger shrimp) received, so far, relatively limited attention, and a few species (Yesso scallop, blue mussel, white Amur bream, and milkfish) have, apparently, not been genetically improved at all. Most of the genetically improved strains reaching the aquaculture industry were developed through traditional selective breeding (selection, crossbreeding, and hybridization). Emerging, more modern technologies for genetic manipulation seem to take 10-20 years from being established experimentally until applications affect the industry. Thus, chromosome-set and sex manipulations started to affect the industry during the 1980's and 1990's. DNA marker technology and gene manipulations have yet hardly affected the industry. The former have not matured yet, but hold much promise. The latter could have affected the industry already had it not been restricted by public concern.

  4. 76 FR 9209 - Draft NOAA National Aquaculture Policy

    Science.gov (United States)

    2011-02-16

    ... comment on a draft national aquaculture policy that supports sustainable marine aquaculture in the United... national approach for supporting sustainable aquaculture. The NOAA Aquaculture Program will host national... of all forms of marine aquaculture, from shellfish farming and habitat restoration to the culture of...

  5. 76 FR 9210 - Draft DOC National Aquaculture Policy

    Science.gov (United States)

    2011-02-16

    ... DOC National Aquaculture Policy AGENCY: Commerce. ACTION: Notice of availability of draft aquaculture... draft national aquaculture policy that supports sustainable aquaculture in the United States. The intent of the policy is to guide DOC's actions and decisions on aquaculture and to provide a national...

  6. Use of Probiotics in Aquaculture

    Science.gov (United States)

    Martínez Cruz, Patricia; Ibáñez, Ana L.; Monroy Hermosillo, Oscar A.; Ramírez Saad, Hugo C.

    2012-01-01

    The growth of aquaculture as an industry has accelerated over the past decades; this has resulted in environmental damages and low productivity of various crops. The need for increased disease resistance, growth of aquatic organisms, and feed efficiency has brought about the use of probiotics in aquaculture practices. The first application of probiotics occurred in 1986, to test their ability to increase growth of hydrobionts (organisms that live in water). Later, probiotics were used to improve water quality and control of bacterial infections. Nowadays, there is documented evidence that probiotics can improve the digestibility of nutrients, increase tolerance to stress, and encourage reproduction. Currently, there are commercial probiotic products prepared from various bacterial species such as Bacillus sp., Lactobacillus sp., Enterococcus sp., Carnobacterium sp., and the yeast Saccharomyces cerevisiae among others, and their use is regulated by careful management recommendations. The present paper shows the current knowledge of the use of probiotics in aquaculture, its antecedents, and safety measures to be carried out and discusses the prospects for study in this field. PMID:23762761

  7. Atlantic Salmon Smolt Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Annual data are collected as part of smolt trapping operations using fish trapping methods. Traps collect emigrating salmon smolts to identify cohort...

  8. Atlantic Salmon Telemetry Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Annual telemetry data are collected as part of specific projects (assessments within watersheds) or as opportunistic efforts to characterize Atlantic salmon smolt...

  9. Calcitonin Salmon Nasal Spray

    Science.gov (United States)

    ... bottle and turn to tighten. Then take the plastic cover off of the top of the spray unit. ... room temperature in an upright position. Replace the plastic cover to keep the nozzle clean. Opened calcitonin salmon ...

  10. Ocean modelling for aquaculture and fisheries in Irish waters

    Science.gov (United States)

    Dabrowski, T.; Lyons, K.; Cusack, C.; Casal, G.; Berry, A.; Nolan, G. D.

    2016-01-01

    The Marine Institute, Ireland, runs a suite of operational regional and coastal ocean models. Recent developments include several tailored products that focus on the key needs of the Irish aquaculture sector. In this article, an overview of the products and services derived from the models are presented. The authors give an overview of a shellfish model developed in-house and that was designed to predict the growth, the physiological interactions with the ecosystem, and the level of coliform contamination of the blue mussel. As such, this model is applicable in studies on the carrying capacity of embayments, assessment of the impacts of pollution on aquaculture grounds, and the determination of shellfish water classes. Further services include the assimilation of the model-predicted shelf water movement into a new harmful algal bloom alert system used to inform end users of potential toxic shellfish events and high biomass blooms that include fish-killing species. Models are also used to identify potential sites for offshore aquaculture, to inform studies of potential cross-contamination in farms from the dispersal of planktonic sea lice larvae and other pathogens that can infect finfish, and to provide modelled products that underpin the assessment and advisory services on the sustainable exploitation of the resources of marine fisheries. This paper demonstrates that ocean models can provide an invaluable contribution to the sustainable blue growth of aquaculture and fisheries.

  11. INFECTIOUS SALMON ANEMIA

    Directory of Open Access Journals (Sweden)

    M. Yu. Shchelkanov

    2017-01-01

    Full Text Available The aim of this work consists in the analysis of modern scientific conceptions about infectious salmon anemia (ISA etiologically linked with ISAV (infectious salmon anemia virus (Orthomyxoviridae, Isavirus. ISA is deadly disease of Salmonidae fishes.Discussion. ISA began to extend actively among salmon breeding farms since the extremity of the XX century and poses nowadays serious threat of fishing industry as there are no not only anti-ISAV chemopreparates and effective vaccines, but also scientifically based ideas of ISAV ecology. In the offered review data on the discovery history, taxonomical status, virion morphology and genome structure as well as ecology of ISAV, clinical features, pathogenesis and laboratory diagnostics, actions in the epizootic foci for the prevention of further distribution and prophylaxis of ISA, arrangement for protection against salmon louses and utilized approaches to anti-ISAV vaccines development are discussed. There is very important that ISAV is capable to be transferred by salmon louses – pelagic crustaceans (Copepoda: Caligidae that allows to classify ISAV as arbovirus ecological group which are transferred due to biological transmission by arthropods (copepods to vertebrate animals (salmons. It is the only example known so far when representatives of Crustacea act as a vector for arboviruses.Conclusion. Investigation of ISAV ecology turns into one of "touchstones" allowing to judge technological readiness of mankind to master resources of the World Ocean. 

  12. Salmon 2100: the future of wild Pacific salmon

    National Research Council Canada - National Science Library

    Lackey, R.T; Lach, D.H; Duncan, S.L

    2006-01-01

    Realistic options to restore and sustain wild salmon runs in California, Oregon, Washington, Idaho and southern British Columbia are identified by 36 salmon scientists, resource managers, and policy experts...

  13. Integrating subsistence practice and species distribution modeling: assessing invasive elodea's potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    Science.gov (United States)

    Luizza, Matthew W.; Evangelista, Paul H.; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-07-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state's vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska's first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon ( Oncorhynchus tshawytscha) and whitefish ( Coregonus nelsonii) subsistence. State models were applied to future climate (2040-2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  14. Integrating subsistence practice and species distribution modeling: assessing invasive elodea’s potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    Science.gov (United States)

    Luizza, Matthew; Evangelista, Paul; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-01-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state’s vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska’s first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon (Oncorhynchus tshawytscha) and whitefish (Coregonus nelsonii) subsistence. State models were applied to future climate (2040–2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  15. Genome wide response to dietary tetradecylthioacetic acid supplementation in the heart of Atlantic Salmon (Salmo salar L

    Directory of Open Access Journals (Sweden)

    Grammes Fabian

    2012-05-01

    Full Text Available Abstract Background Under-dimensioned hearts causing functional problems are associated with higher mortality rates in intensive Atlantic salmon aquaculture. Previous studies have indicated that tetradecylthioacetic acid (TTA induces cardiac growth and also stimulates transcription of peroxisome proliferator activated receptors (PPAR αand βin the Atlantic salmon heart. Since cardiac and transcriptional responses to feed are of high interest in aquaculture, the objective of this study was to characterize the transcriptional mechanisms induced by TTA in the heart of Atlantic salmon. Results Atlantic salmon were kept at sea for 17 weeks. During the first 8 weeks the fish received a TTA supplemented diet. Using microarrays, profound transcriptional effects were observed in the heart at the end of the experiment, 9 weeks after the feeding of TTA stopped. Approximately 90% of the significant genes were expressed higher in the TTA group. Hypergeometric testing revealed the over-representation of 35 gene ontology terms in the TTA fed group. The GO terms were generally categorized into cardiac performance, lipid catabolism, glycolysis and TCA cycle. Conclusions Our results indicate that TTA has profound effects on cardiac performance based on results from microarray and qRT-PCR analysis. The gene expression profile favors a scenario of ”physiological”lright hypertrophy recognized by increased oxidative fatty acid metabolism, glycolysis and TCA cycle activity as well as cardiac growth and contractility in the heart ventricle. Increased cardiac efficiency may offer significant benefits in the demanding Aquaculture situations.

  16. Pacific Coastal Salmon Recovery Fund

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Congress established the Pacific Coastal Salmon Recovery Fund (PCSRF) to monitor the restoration and conservation of Pacific salmon and steelhead populations and...

  17. The Salmon Louse Lepeophtheirus salmonis (Copepoda: Caligidae life cycle has only two Chalimus stages.

    Directory of Open Access Journals (Sweden)

    Lars A Hamre

    Full Text Available Each year the salmon louse (Lepeophtheirussalmonis Krøyer, 1838 causes multi-million dollar commercial losses to the salmon farming industry world-wide, and strict lice control regimes have been put in place to reduce the release of salmon louse larvae from aquaculture facilities into the environment. For half a century, the Lepeophtheirus life cycle has been regarded as the only copepod life cycle including 8 post-nauplius instars as confirmed in four different species, including L. salmonis. Here we prove that the accepted life cycle of the salmon louse is wrong. By observations of chalimus larvae molting in incubators and by morphometric cluster analysis, we show that there are only two chalimus instars: chalimus 1 (comprising the former chalimus I and II stages which are not separated by a molt and chalimus 2 (the former chalimus III and IV stages which are not separated by a molt. Consequently the salmon louse life cycle has only six post-nauplius instars, as in other genera of caligid sea lice and copepods in general. These findings are of fundamental importance in experimental studies as well as for interpretation of salmon louse biology and for control and management of this economically important parasite.

  18. Benthic monitoring of salmon farms in Norway using foraminiferal metabarcoding

    DEFF Research Database (Denmark)

    Pawlowski, Jan; Esling, Philippe; Lejzerowicz, Franck

    2016-01-01

    The rapid growth of the salmon industry necessitates the development of fast and accurate tools to assess its environmental impact. Macrobenthic monitoring is commonly used to measure the impact of organic enrichment associated with salmon farm activities. However, classical benthic monitoring can...... of macrofauna-based benthic monitoring. Here, we tested the application of foraminiferal metabarcoding to benthic monitoring of salmon farms in Norway. We analysed 140 samples of eDNA and environmental RNA (eRNA) extracted from surface sediment samples collected at 4 salmon farming sites in Norway. We sequenced...... appears to be a promising alternative to classical benthic monitoring, providing a solution to the morpho-taxonomic bottleneck of macrofaunal surveys....

  19. Assessing the impact of swimming exercise and the relative susceptibility of rainbow trout oncorhynchus mykiss (walbaum) and atlantic salmon salmo salar L. following injection challenge with weissella ceti

    Science.gov (United States)

    All-female rainbow trout and mixed-sex Atlantic salmon (approximately 200 g and 120 g initial weight, respectively) were maintained in small circular tanks in a flow-through system under study conditions for a period of five months. The four tank populations consisted of rainbow trout exposed to ei...

  20. REVIEW OF AQUACULTURAL PRODUCTION SYSTEM MODELS ...

    African Journals Online (AJOL)

    This management is synonymous with water management since water of suitable quality and quantity is a pre-requisite for any successful aquacultural production. ... Farm Aquaculture Resource Management (FARM), Pond-Water Availability Period (PWAP) model, AquaFarm and Raceway design and simulation system ...

  1. Exploring Aquaculture. Curriculum Guide for Agriscience 282.

    Science.gov (United States)

    Texas A and M Univ., College Station. Dept. of Agricultural Education.

    This curriculum guide provides materials for teachers to use in developing a course in "Exploring Aquaculture, Agriscience 282," one of 28 semester courses in agricultural science and technology for Texas high schools. This introductory course is designed to acquaint students with the growing industry of aquaculture; it includes…

  2. Promoting Rural Income from Sustainable Aquaculture through ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Sri Lanka is looking toward aquaculture for rural economic diversification and increased food production, especially in the northern and eastern provinces recently liberated from civil ... Knowledge of alternative production options is critical to ensure that aquaculture successfully contributes to sustainable rural livelihoods.

  3. Success Stories in Asian Aquaculture | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2009-10-13

    Oct 13, 2009 ... Sena S. De Silva is Director General of the Network of Aquaculture Centres in Asia- Pacific and Honorary Professor of Aquaculture and Fisheries Biology at the School of Life and Environmental Sciences, Deakin University, Victoria, Australia. F. Brian Davy is Senior Fellow at the International Institute for ...

  4. An Effective Aquaculture Extension System from Farmers ...

    African Journals Online (AJOL)

    Regionally, government extension system and reading materials also played a significant role in the diffusion of aquaculture information to peri-urban farmers, and were considered to be of high quality and very accessible. This study recommends that the aquaculture division should identify the institutional mechanism ...

  5. biotechnology in aquaculture: prospects and challenges

    African Journals Online (AJOL)

    JOSEPH

    Nigerian Institute for Oceanography and Marine Research/African Regional. AquacultureCentre, Buguma, Box 367 Uniport Post Office, Choba, Rivers State, Nigeria. (Received 27.7.10, Accepted 03.6.11) ... process according to (FAO, 2005) has a wide range of useful applications in fisheries and aquaculture. The potential of ...

  6. The need for effective disease control in international aquaculture.

    Science.gov (United States)

    Hill, B J

    2005-01-01

    Globally, aquaculture is steadily expanding both in terms of total production and the range of species farmed. At an overall annual growth rate of about 10%, it is by far the fastest growing sector of food animal production in the world and is providing an increasing proportion of the total production of fish and shellfish for human consumption. However, diseases continue to cause significant economic losses in international aquaculture production and to have a detrimental effect on valuable export trade for some countries. Financial losses have been drastic in some cases and the national economies of some developing countries have been adversely affected. Even just at the local level, disease can have a serious impact on the livelihoods and food security of many individual small farmers and their families, particularly in poorer countries. Despite all the problems caused, diseases continue to be spread internationally even where import health safeguards are in place. Recent examples of such spread are presented and some reasons for the appearance of a disease in a country for the first time are given. It is an unfortunate fact that despite many years of damaging economic and social impact of disease in different sectors of aquaculture, and large sums being spent on research around the world, there are relatively few effective and officially approved products available to control or prevent them. Despite the potential market, there are as yet no commercial vaccines available to prevent the damaging effects of many of the most serious diseases. Without such vaccines, it is likely that the serious impact of diseases in international aquaculture will continue for many years to come.

  7. Hydrogen peroxide decomposition kinetics in aquaculture water

    DEFF Research Database (Denmark)

    Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    Hydrogen peroxide (HP) is used in aquaculture systems where preventive or curative water treatments occasionally are required. Use of chemical agents can be challenging in recirculating aquaculture systems (RAS) due to extended water retention time and because the agents must not damage the fish ...... in RAS by addressing disinfection demand and identify efficient and safe water treatment routines.......Hydrogen peroxide (HP) is used in aquaculture systems where preventive or curative water treatments occasionally are required. Use of chemical agents can be challenging in recirculating aquaculture systems (RAS) due to extended water retention time and because the agents must not damage the fish...... reared or the nitrifying bacteria in the biofilters at concentrations required to eliminating pathogens. This calls for quantitative insight into the fate of the disinfectant residuals during water treatment. This paper presents a kinetic model that describes the HP decomposition in aquaculture water...

  8. Baltic Salmon, Salmo salar, from Swedish River Lule Älv Is More Resistant to Furunculosis Compared to Rainbow Trout

    Science.gov (United States)

    Holten-Andersen, Lars; Dalsgaard, Inger; Buchmann, Kurt

    2012-01-01

    Background Furunculosis, caused by Aeromonas salmonicida, continues to be a major health problem for the growing salmonid aquaculture. Despite effective vaccination programs regular outbreaks occur at the fish farms calling for repeated antibiotic treatment. We hypothesized that a difference in natural susceptibility to this disease might exist between Baltic salmon and the widely used rainbow trout. Study Design A cohabitation challenge model was applied to investigate the relative susceptibility to infection with A. salmonicida in rainbow trout and Baltic salmon. The course of infection was monitored daily over a 30-day period post challenge and the results were summarized in mortality curves. Results A. salmonicida was recovered from mortalities during the entire test period. At day 30 the survival was 6.2% and 34.0% for rainbow trout and Baltic salmon, respectively. Significant differences in susceptibility to A. salmonicida were demonstrated between the two salmonids and hazard ratio estimation between rainbow trout and Baltic salmon showed a 3.36 higher risk of dying from the infection in the former. Conclusion The finding that Baltic salmon carries a high level of natural resistance to furunculosis might raise new possibilities for salmonid aquaculture in terms of minimizing disease outbreaks and the use of antibiotics. PMID:22276121

  9. A Meramod® model approach for the Environmental Impact Assessment (EIA of the off–shore aquaculture improvement in the Alghero Bay (North western Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    M. Saroglia

    2010-04-01

    Full Text Available Marine fish farming generates particulate wastes which are dispersed in the sea environment. To deal with this problem, particulate waste dispersion models have been developed to predict the effects of fish cage culture. In this study, we evaluated the seabed deposition of a fish farming facility located in the central western Mediterranean by using the Meramod® model. The objectives where first to assess the actual scenario, and second to forecast the possible impact due to the forthcoming enlargement of the farming area with the addition of new fish cages. By computing the hydrodynamic measurements and the daily amount of feed recorded between July and December 2006, the impact seabed surfaces forecasted by the model increased from 5.6ha in the actual scenario, up to 7.3ha in the future. The model estimated a maximum level of total solid flux deposition of 3,800g/m2bed/year and a maximum level of total carbon flux deposition of 1,350g/m2bed/year for both scenarios. Furthermore, the model predicted that the installation of 4 new fish cages (with an hypothetical mean daily amount of feed of 50kg/cage will produce a total solid and carbon flux deposition levels ranging 0-400 and 0-150g/m2bed/year respectively, under the new fish cages location.

  10. Public Perceptions of Aquaculture: Evaluating Spatiotemporal Patterns of Sentiment around the World.

    Directory of Open Access Journals (Sweden)

    Halley E Froehlich

    Full Text Available Aquaculture is developing rapidly at a global scale and sustainable practices are an essential part of meeting the protein requirements of the ballooning human population. Locating aquaculture offshore is one strategy that may help address some issues related to nearshore development. However, offshore production is nascent and distinctions between the types of aquatic farming may not be fully understood by the public-important for collaboration, research, and development. Here we evaluate and report, to our knowledge, the first multinational quantification of the relative sentiments and opinions of the public around distinct forms of aquaculture. Using thousands of newspaper headlines (Ntotal = 1,596 from developed (no. countries = 26 and developing (42 nations, ranging over periods of 1984 to 2015, we found an expanding positive trend of general 'aquaculture' coverage, while 'marine' and 'offshore' appeared more negative. Overall, developing regions published proportionally more positive than negative headlines than developed countries. As case studies, government collected public comments (Ntotal = 1,585 from the United States of America (USA and New Zealand mirrored the media sentiments; offshore perception being particularly negative in the USA. We also found public sentiment may be influenced by local environmental disasters not directly related to aquaculture (e.g., oil spills. Both countries voiced concern over environmental impacts, but the concerns tended to be more generalized, rather than targeted issues. Two factors that could be inhibiting informed discussion and decisions about offshore aquaculture are lack of applicable knowledge and actual local development issues. Better communication and investigation of the real versus perceived impacts of aquaculture could aid in clarifying the debate about aquaculture, and help support future sustainable growth.

  11. Public Perceptions of Aquaculture: Evaluating Spatiotemporal Patterns of Sentiment around the World.

    Science.gov (United States)

    Froehlich, Halley E; Gentry, Rebecca R; Rust, Michael B; Grimm, Dietmar; Halpern, Benjamin S

    2017-01-01

    Aquaculture is developing rapidly at a global scale and sustainable practices are an essential part of meeting the protein requirements of the ballooning human population. Locating aquaculture offshore is one strategy that may help address some issues related to nearshore development. However, offshore production is nascent and distinctions between the types of aquatic farming may not be fully understood by the public-important for collaboration, research, and development. Here we evaluate and report, to our knowledge, the first multinational quantification of the relative sentiments and opinions of the public around distinct forms of aquaculture. Using thousands of newspaper headlines (Ntotal = 1,596) from developed (no. countries = 26) and developing (42) nations, ranging over periods of 1984 to 2015, we found an expanding positive trend of general 'aquaculture' coverage, while 'marine' and 'offshore' appeared more negative. Overall, developing regions published proportionally more positive than negative headlines than developed countries. As case studies, government collected public comments (Ntotal = 1,585) from the United States of America (USA) and New Zealand mirrored the media sentiments; offshore perception being particularly negative in the USA. We also found public sentiment may be influenced by local environmental disasters not directly related to aquaculture (e.g., oil spills). Both countries voiced concern over environmental impacts, but the concerns tended to be more generalized, rather than targeted issues. Two factors that could be inhibiting informed discussion and decisions about offshore aquaculture are lack of applicable knowledge and actual local development issues. Better communication and investigation of the real versus perceived impacts of aquaculture could aid in clarifying the debate about aquaculture, and help support future sustainable growth.

  12. Baltic Salmon, Salmo salar, from Swedish River Lule Älv Is More Resistant to Furunculosis Compared to Rainbow Trout

    DEFF Research Database (Denmark)

    Holten-Andersen, Lars; Dalsgaard, Inger; Buchmann, Kurt

    2012-01-01

    Background: Furunculosis, caused by Aeromonas salmonicida, continues to be a major health problem for the growing salmonid aquaculture. Despite effective vaccination programs regular outbreaks occur at the fish farms calling for repeated antibiotic treatment. We hypothesized that a difference...... in natural susceptibility to this disease might exist between Baltic salmon and the widely used rainbow trout. Study Design: A cohabitation challenge model was applied to investigate the relative susceptibility to infection with A. salmonicida in rainbow trout and Baltic salmon. The course of infection...

  13. Potential disease interaction reinforced: double-virus-infected escaped farmed Atlantic salmon, Salmo salar L., recaptured in a nearby river.

    Science.gov (United States)

    Madhun, A S; Karlsbakk, E; Isachsen, C H; Omdal, L M; Eide Sørvik, A G; Skaala, Ø; Barlaup, B T; Glover, K A

    2015-02-01

    The role of escaped farmed salmon in spreading infectious agents from aquaculture to wild salmonid populations is largely unknown. This is a case study of potential disease interaction between escaped farmed and wild fish populations. In summer 2012, significant numbers of farmed Atlantic salmon were captured in the Hardangerfjord and in a local river. Genetic analyses of 59 of the escaped salmon and samples collected from six local salmon farms pointed out the most likely source farm, but two other farms had an overlapping genetic profile. The escapees were also analysed for three viruses that are prevalent in fish farming in Norway. Almost all the escaped salmon were infected with salmon alphavirus (SAV) and piscine reovirus (PRV). To use the infection profile to assist genetic methods in identifying the likely farm of origin, samples from the farms were also tested for these viruses. However, in the current case, all the three farms had an infection profile that was similar to that of the escapees. We have shown that double-virus-infected escaped salmon ascend a river close to the likely source farms, reinforcing the potential for spread of viruses to wild salmonids. © 2014 The Authors. Journal of Fish Diseases published by John Wiley & Sons Ltd.

  14. Hydrologic modelling for climate change impacts analysis of shifts in future hydrologic regimes: implications for stream temperature and salmon habitat

    Science.gov (United States)

    Bennett, K. E.; Werner, A. T.; Schnorbus, M.; Salathé, E. P.; Nelitz, M.

    2009-05-01

    The challenges faced by climate change impact analysts must be solved through interdisciplinary collaboration between research scientists, institutions and stakeholders. In particular, hydrologic modelers, climate scientists, biologists, ecologists, engineers and water resource managers must interact to pool expertise and provide tools to address the complex issues associated with future climate change. The current study examines the results of an application of the VIC macro-scale hydrologic model to predict future changes to soil moisture, snowpack, evapo-transpiration, and streamflow in the Fraser Basin of British Columbia - and then apply these results to stream temperature and fish habitat models to predict future impacts on freshwater ecosystems. The results of this work will be presented to fisheries managers to provide them with the information needed to develop adaptation strategies that will help mitigate the adverse effects of climate change. This presentation will focus on the hydrologic modelling results of a number of downscaled scenarios to examine the projected differences for the 2050s (2041 - 2070) as compared to the historical baseline (1961- 1990). By the 2050s, although the magnitude of change varies by GCM and emissions scenarios, overall precipitation and temperature is projected to increase, particularly in the winter, which leads to increased winter time runoff for many basins. However, this is combined with declines in snow water equivalent (SWE) for many sites, which coupled with lower early season soil moisture, leads to declines in summer runoff and baseflow. SWE increases in some basins under the cgcm3 A1B and echam5 A1B scenarios at high elevations. A similar result was found in this region with the Canadian Regional Climate Model (CRCM) 4, driven with run 4 of the CGCM3 under the A2 emissions scenario. Lack of water availability during the summer time periods appears to limit evaporation, causing declines in summer ET across most

  15. Functionality of a bacillus cereus biological agent in response to physiological variables encountered in cyprinus carpio aquaculture

    CSIR Research Space (South Africa)

    Lalloo, R

    2008-05-01

    Full Text Available Modern aquaculture utilises intensive reticulated systems resulting in waste accumulation and proliferation of disease. Conventional chemical treatments cause resistance in pathogens and negative environmental impact. The potential of a Bacillus...

  16. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  17. Costs of climate change: Economic value of Yakima River salmon

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.M.; Shankle, S.A.; Scott, M.J.; Neitzel, D.A.; Chatters, J.C.

    1992-07-01

    This work resulted from a continuing multidisciplinary analysis of species preservation and global change. The paper explores the economic cost of a potential regional warming as it affects one Pacific Northwest natural resource, the spring chinook salmon (Oncorhynchus tshcawytscha). Climate change and planned habitat improvements impact the production and economic value of soling chinook salmon of the Yakima River tributary of the Columbia River in eastern Washington. The paper presents a derivation of the total economic value of a chinook salmon, which includes the summation of the existence, commercial, recreational, and capital values of the fish. When currently available commercial, recreational, existence, and capital values for chinook salmon were applied to estimated population changes, the estimated change in the economic value per fish associated with reduction of one fish run proved significant.

  18. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture.

    Science.gov (United States)

    Øverland, Margareth; Skrede, Anders

    2017-02-01

    The global expansion in aquaculture production implies an emerging need of suitable and sustainable protein sources. Currently, the fish feed industry is dependent on high-quality protein sources of marine and plant origin. Yeast derived from processing of low-value and non-food lignocellulosic biomass is a potential sustainable source of protein in fish diets. Following enzymatic hydrolysis, the hexose and pentose sugars of lignocellulosic substrates and supplementary nutrients can be converted into protein-rich yeast biomass by fermentation. Studies have shown that yeasts such as Saccharomyces cerevisiae, Candida utilis and Kluyveromyces marxianus have favourable amino acid composition and excellent properties as protein sources in diets for fish, including carnivorous species such as Atlantic salmon and rainbow trout. Suitable downstream processing of the biomass to disrupt cell walls is required to secure high nutrient digestibility. A number of studies have shown various immunological and health benefits from feeding fish low levels of yeast and yeast-derived cell wall fractions. This review summarises current literature on the potential of yeast from lignocellulosic biomass as an alternative protein source for the aquaculture industry. It is concluded that further research and development within yeast production can be important to secure the future sustainability and economic viability of intensive aquaculture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. REVIEW OF AQUACULTURE GENETIC RESEARCHES IN THAILAND

    Directory of Open Access Journals (Sweden)

    UTHAIRAT NA-NAKORN

    1992-01-01

    Full Text Available Aquaculture business has been well established in Thailand for more than 40 years. The most recent data indicated a total production of 260 380 tons. Sixty-five percent of the total production came from coastal aquaculture, mainly tiger prawn (Penaeus monodon culture. Other important species for coastal aquaculture are banana prawn (P. merguensis, cockle (Anadara granosa, green mussel (Perna viridis, oyster (Crassostrea belcheri, Saccostrea commercialis, sea bass (Lates calcarifer and grouper (Epinephelus tauvina. Freshwater aquaculture, although produced only 35% of the annual production, provides major protein source for people in rural areas. Important freshwater species are Nile tilapia (Oreochromis niloticus, tawes (Puntius gonionotus, sepat Siam (Trichogasterpectoralis, walking catfish (Glorias spp., stripped catfish (Pangasius sutchi and giant freshwater prawn (Macrobrachium rosenbergii. Optimum aquacultural practises, namely stocking density, nutrition requirement and water quality have been obtained in most cultured species. But genetic approach has not been considered, thus resulting in deterioration in economic traits which might be due to excessive inbreeding (reviewed by Uraiwan 1989 and/or negative selection (Wongsangchan 1985. The history of researches on genetics in aquaculture in Thailand started in 1982 when the aquaculture genetic programme in form of a network has been established at the National Inland Fisheries Institute, Department of Fisheries. This programme was supported by the International Development Research Centre (IDRC, Canada in cooperation with Dalhousie University, Canada (Uraiwan 1989. In the same year a genetic improvement programme aiming at improving economic characters of some economic fish species has been conducted at the Department of Aquaculture, Kasetsart University. Paralelly a course in Fish Genetics has been offered. Since then different approaches of genetics have been applied with final

  20. Drama of the commons in small-scale shrimp aquaculture in northwestern, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Eranga Kokila Galappaththi

    2015-03-01

    Full Text Available Aquaculture, and shrimp aquaculture in particular, can have major social and environmental impacts. However, aquaculture remains an understudied area in commons research. Can aspects of commons theory be applied to solve problems of aquaculture? We examined three coastal community-based shrimp aquaculture operations in northwestern Sri Lanka using a case study approach. These shrimp farms were individually owned by small producers and managed under local-level rules designed by cooperatives (samithis. The common-pool resource of major interest was water for aquaculture ponds, obtained from an interconnected common water body. We evaluated the shrimp farming social-ecological system by using Ostrom’s design principles for collective action. Key elements of the system were: clearly defined boundaries; collaboratively designed crop calendar, bottom-up approach involving community associations, multi-level governance, and farmers-and-government collaborative structures. Together, these elements resolved the excludability and subtractability problems of commons by establishing boundary and membership rules and collective choice rules.

  1. Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems

    Directory of Open Access Journals (Sweden)

    Juan Carlos Camacho-Chab

    2016-08-01

    Full Text Available Coastal zones support fisheries that provide food for humans and feed for animals. The decline of fisheries worldwide has fostered the development of aquaculture. Recent research has shown that extracellular polymeric substances (EPS synthesized by microorganisms contribute to sustainable aquaculture production, providing feed to the cultured species, removing waste and contributing to the hygiene of closed systems. As ubiquitous components of coastal microbial habitats at the air–seawater and seawater–sediment interfaces as well as of biofilms and microbial aggregates, EPS mediate deleterious processes that affect the performance and productivity of aquaculture facilities, including biofouling of marine cages, bioaccumulation and transport of pollutants. These biomolecules may also contribute to the persistence of harmful algal blooms (HABs and their impact on cultured species. EPS may also exert a positive influence on aquaculture activity by enhancing the settling of aquaculturally valuable larvae and treating wastes in bioflocculation processes. EPS display properties that may have biotechnological applications in the aquaculture industry as antiviral agents and immunostimulants and as a novel source of antifouling bioproducts.

  2. A scoping analysis of peer-reviewed literature about linkages between aquaculture and determinants of human health.

    Science.gov (United States)

    Burns, Theresa E; Wade, Joy; Stephen, Craig; Toews, Lorraine

    2014-06-01

    For many of the world's poor, aquatic products are critical for food security and health. Because the global population is increasing as wild aquatic stocks are declining, aquaculture is an increasingly important source of aquatic products. We undertook a scoping review of the English-language peer-reviewed literature to evaluate how the research community has examined the impacts of aquaculture on four key determinants of human health: poverty, food security, food production sustainability, and gender equality. The review returned 156 primary research articles. Most research (75%) was focused in Asia, with limited research from Africa (10%) and South America (2%). Most research (80%) focused on freshwater finfish and shrimp production. We used qualitative content analysis of records which revealed 11 themes: famer income; the common environment; shared resources; integrated farming/ polyculture; employment; extensive vs. intensive production; local vs. distant ownership; food security; income equity; gender equality; and input costs. We used quantitative content analysis of records and full-text publications about freshwater finfish and shrimp aquaculture to record the frequency with which themes were represented and the positive or negative impacts of aquaculture associated with each theme. Scatter plots showed that no theme was identified in more than half of all articles and publications for both production types. Farmer income was a theme that was identified commonly and was positively impacted by both shrimp and fresh water finfish aquaculture. Polyculture, employment, and local ownership were identified less often as themes, but were also associated with positive impacts. The common environment and shared resources were more common themes in shrimp aquaculture than freshwater finfish aquaculture research, while polyculture and local ownership were more common themes in freshwater finfish aquaculture than shrimp aquaculture. Gender equality, employment, and

  3. Dietary soyasaponin supplementation to pea protein concentrate reveals nutrigenomic interactions underlying enteropathy in Atlantic salmon (Salmo salar)

    OpenAIRE

    Kortner Trond M; Skugor Stanko; Penn Michael H; Mydland Liv; Djordjevic Brankica; Hillestad Marie; Krasnov Aleksei; Krogdahl Åshild

    2012-01-01

    Abstract Background Use of plant ingredients in aquaculture feeds is impeded by high contents of antinutritional factors such as saponins, which may cause various pharmacological and biological effects. In this study, transcriptome changes were analyzed using a 21 k oligonucleotide microarray and qPCR in the distal intestine of Atlantic salmon fed diets based on five plant protein sources combined with soybean saponins. Results Diets with corn gluten, sunflower, rapeseed or horsebean produced...

  4. Occurrence and potential transfer of mycotoxins in gilthead sea bream and Atlantic salmon by use of novel alternative feed ingredients

    OpenAIRE

    Nácher-Mestre, Jaime; Serrano, Roque; Beltrán, Eduardo; Pérez-Sánchez, Jaume; Karalazos, V.; Hernández Hernández, Félix; Berntssen, Marc H. G.

    2015-01-01

    Plant ingredients and processed animal proteins (PAP) are suitable alternative feedstuffs for fish feeds in aquaculture practice, although their use can introduce contaminants that are not previously associated with marine salmon and gilthead sea bream farming. Mycotoxins are well known natural contaminants in plant feed material, although they also could be present on PAPs after fungi growth during storage. The present study surveyed commercially available plant ingredients (19) and PAP (19)...

  5. Seawater circulating system in an aquaculture laboratory

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.; Ingole, B.S.; Parulekar, A.H.

    The note gives an account, for the first time in India, of an Aquaculture Laboratory with open type seawater circulating system developed at the National Institute of Oceanography, Goa, India. Besides describing the details of the system...

  6. Aquaculture in Coastal and Marine US Waters

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aquaculture, also known as aquafarming, is the farming of aquatic organisms such as fish, crustaceans, mollusks, and aquatic plants. The presence and location of...

  7. Aquaculture practices and the coastal marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Ansari, Z.A.; Sreepada, R.A.

    . The size of the industry which is now beginning to emerge, the scale of its individual production units, raise questions concerning the high input rate of feed and chemical and a correspondingly high production of wastes. In intensive aquaculture system...

  8. Aquaculture: Environmental, toxicological, and health issues.

    Science.gov (United States)

    Cole, David W; Cole, Richard; Gaydos, Steven J; Gray, Jon; Hyland, Greg; Jacques, Mark L; Powell-Dunford, Nicole; Sawhney, Charu; Au, William W

    2009-07-01

    Aquaculture is one of the fastest growing food-producing sectors, supplying approximately 40% of the world's fish food. Besides such benefit to the society, the industry does have its problems. There are occupational hazards and safety concerns in the aquaculture industry. Some practices have caused environmental degradation. Public perception to farmed fish is that they are "cleaner" than comparable wild fish. However, some farmed fish have much higher body burden of natural and man-made toxic substances, e.g. antibiotics, pesticides, and persistent organic pollutants, than wild fish. These contaminants in fish can pose health concerns to unsuspecting consumers, in particular pregnant or nursing women. Regulations and international oversight for the aquaculture industry are extremely complex, with several agencies regulating aquaculture practices, including site selection, pollution control, water quality, feed supply, and food safety. Since the toxicological, environmental, and health concerns of aquaculture have not been adequately reviewed recently, we are providing an updated review of the topic. Specifically, concerns and recommendations for improving the aquaculture industry, and for protection of the environment and the consumers will be concisely presented.

  9. Lessons from two high CO2 worlds - future oceans and intensive aquaculture.

    Science.gov (United States)

    Ellis, Robert P; Urbina, Mauricio A; Wilson, Rod W

    2017-06-01

    Exponentially rising CO2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studies have demonstrated that elevated CO2 projected for end of this century (e.g. 800-1000 μatm) can also impact physiology, and have substantial effects on behaviours linked to sensory stimuli (smell, hearing and vision) both having negative implications for fitness and survival. In contrast, the aquaculture industry was farming aquatic animals at CO2 levels that far exceed end-of-century climate change projections (sometimes >10 000 μatm) long before the term 'ocean acidification' was coined, with limited detrimental effects reported. It is therefore vital to understand the reasons behind this apparent discrepancy. Potential explanations include 1) the use of 'control' CO2 levels in aquaculture studies that go beyond 2100 projections in an ocean acidification context; 2) the relatively benign environment in aquaculture (abundant food, disease protection, absence of predators) compared to the wild; 3) aquaculture species having been chosen due to their natural tolerance to the intensive conditions, including CO2 levels; or 4) the breeding of species within intensive aquaculture having further selected traits that confer tolerance to elevated CO2 . We highlight this issue and outline the insights that climate change and aquaculture science can offer for both marine and freshwater settings. Integrating these two fields will stimulate discussion on the direction of future cross-disciplinary research. In doing so, this article aimed to optimize future research efforts and elucidate effective mitigation strategies for managing the negative impacts of elevated CO2 on future aquatic ecosystems and the sustainability of fish and shellfish aquaculture.

  10. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-round in Integrated Multi-trophic Aquaculture

    DEFF Research Database (Denmark)

    Silva Marinho, Goncalo; Holdt, Susan Løvstad; Jacobsen, Charlotte

    2015-01-01

    This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly) at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA) and at a reference site...... such as cabbage and lettuce. Compared to fat (salmon) and lean fish (cod) this seaweed species contains higher proportions of ARA and SDA, but lower EPA (only cod) and DHA. Conclusively, the season of harvest is important for the choice of lipid quantity and quality, but the marine vegetables provide better...

  11. Performance of salmon fishery portfolios across western North America.

    Science.gov (United States)

    Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C

    2014-12-01

    Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally

  12. Ectoparasite Caligus rogercresseyi modifies the lactate response in Atlantic salmon (Salmo salar) and Coho salmon (Oncorhynchus kisutch).

    Science.gov (United States)

    Vargas-Chacoff, L; Muñoz, J L P; Hawes, C; Oyarzún, R; Pontigo, J P; Saravia, J; González, M P; Mardones, O; Labbé, B S; Morera, F J; Bertrán, C; Pino, J; Wadsworth, S; Yáñez, A

    2017-08-30

    Although Caligus rogercresseyi negatively impacts Chilean salmon farming, the metabolic effects of infection by this sea louse have never been completely characterized. Therefore, this study analyzed lactate responses in the plasma, as well as the liver/muscle lactate dehydrogenase (LDH) activity and gene expression, in Salmo salar and Oncorhynchus kisutch infested by C. rogercresseyi. The lactate responses of Atlantic and Coho salmon were modified by the ectoparasite. Both salmon species showed increasing in plasma levels, whereas enzymatic activity increased in the muscle but decreased in the liver. Gene expression was overexpressed in both Coho salmon tissues but only in the liver for Atlantic salmon. These results suggest that salmonids need more energy to adapt to infection, resulting in increased gene expression, plasma levels, and enzyme activity in the muscles. The responses differed between both salmon species and over the course of infection, suggesting potential species-specific responses to sea-lice infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Functional Genomic Analysis of the Impact of Camelina (Camelina sativa) Meal on Atlantic Salmon (Salmo salar) Distal Intestine Gene Expression and Physiology.

    Science.gov (United States)

    Brown, Tyler D; Hori, Tiago S; Xue, Xi; Ye, Chang Lin; Anderson, Derek M; Rise, Matthew L

    2016-06-01

    The inclusion of plant meals in diets of farmed Atlantic salmon can elicit inflammatory responses in the distal intestine (DI). For the present work, fish were fed a standard fish meal (FM) diet or a diet with partial replacement of FM with solvent-extracted camelina meal (CM) (8, 16, or 24 % CM inclusion) during a 16-week feeding trial. A significant decrease in growth performance was seen in fish fed all CM inclusion diets (Hixson et al. in Aquacult Nutr 22:615-630, 2016). A 4x44K oligonucleotide microarray experiment was carried out and significance analysis of microarrays (SAM) and rank products (RP) methods were used to identify differentially expressed genes between the DIs of fish fed the 24 % CM diet and those fed the FM diet. Twelve features representing six known transcripts and two unknowns were identified as CM responsive by both SAM and RP. The six known transcripts (including thioredoxin and ependymin), in addition to tgfb, mmp13, and GILT, were studied using qPCR with RNA templates from all four experimental diet groups. All six microarray-identified genes were confirmed to be CM responsive, as was tgfb and mmp13. Histopathological analyses identified signs of inflammation in the DI of salmon fed CM-containing diets, including lamina propria and sub-epithelial mucosa thickening, infiltration of eosinophilic granule cells, increased goblet cells and decreased enterocyte vacuolization. All of these were significantly altered in 24 % CM compared to all other diets, with the latter two also altered in 16 % CM compared with 8 % CM and control diet groups. Significant correlation was seen between histological parameters as well as between five of the qPCR analyzed genes and histological parameters. These molecular biomarkers of inflammation arising from long-term dietary CM exposure will be useful in the development of CM-containing diets that do not have deleterious effects on salmon growth or physiology.

  14. BREEDING AND GENETICS SYMPOSIUM: Climate change and selective breeding in aquaculture.

    Science.gov (United States)

    Sae-Lim, P; Kause, A; Mulder, H A; Olesen, I

    2017-04-01

    Aquaculture is the fastest growing food production sector and it contributes significantly to global food security. Based on Food and Agriculture Organization (FAO) of the United Nations, aquaculture production must increase significantly to meet the future global demand for aquatic foods in 2050. According to Intergovernmental Panel on Climate Change (IPCC) and FAO, climate change may result in global warming, sea level rise, changes of ocean productivity, freshwater shortage, and more frequent extreme climate events. Consequently, climate change may affect aquaculture to various extents depending on climatic zones, geographical areas, rearing systems, and species farmed. There are 2 major challenges for aquaculture caused by climate change. First, the current fish, adapted to the prevailing environmental conditions, may be suboptimal under future conditions. Fish species are often poikilothermic and, therefore, may be particularly vulnerable to temperature changes. This will make low sensitivity to temperature more important for fish than for livestock and other terrestrial species. Second, climate change may facilitate outbreaks of existing and new pathogens or parasites. To cope with the challenges above, 3 major adaptive strategies are identified. First, general 'robustness' will become a key trait in aquaculture, whereby fish will be less vulnerable to current and new diseases while at the same time thriving in a wider range of temperatures. Second, aquaculture activities, such as input power, transport, and feed production contribute to greenhouse gas emissions. Selection for feed efficiency as well as defining a breeding goal that minimizes greenhouse gas emissions will reduce impacts of aquaculture on climate change. Finally, the limited adoption of breeding programs in aquaculture is a major concern. This implies inefficient use of resources for feed, water, and land. Consequently, the carbon footprint per kg fish produced is greater than when fish from

  15. 75 FR 14015 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2010-03-23

    ... Environmental Impact Statement (EIS), the Final Regulatory Impact Review (RIR), and the Initial Regulatory... and delay. However, salmon caught incidentally in trawl nets always die as a result of that capture... salmon support subsistence, commercial, personal use, and sport fisheries in their regions of origin. The...

  16. Infectious diseases of Pacific salmon

    Science.gov (United States)

    1954-01-01

    Investigations on infectious diseases of Pacific salmon due to micro-organisms other than viruses are reviewed. The etiological agents include trematodes, fungi, protozoa and bacteria. Bacteria have been found to be the most important agents of disease in the several species of Pacific salmon. Kidney disease, due to a small, unnamed Gram-positive diplobacillus, causes serious mortalities in young salmon reared in hatcheries. The disease has also been found in wild fish. Aquatic myxobacteria are important agents of disease both in the hatchery and in the natural habitat. One of the myxobacteria, Chondrococcus columnaris, causes disease at relatively high water temperatures. The problem of the taxonomy of this organism is discussed. Another myxobacterium, Cytophaga psychrophila, has been found responsible for epizootics in coho salmon at lower water temperatures, i.e., in the range of 40° to 55° F. In outbreaks of gill disease in young salmon, myxobacteria of several kinds have been implicated.

  17. Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems.

    Science.gov (United States)

    Arrojado, Cátia; Pereira, Carla; Tomé, João P C; Faustino, Maria A F; Neves, Maria G P M S; Tomé, Augusto C; Cavaleiro, José A S; Cunha, Angela; Calado, Ricardo; Gomes, Newton C M; Almeida, Adelaide

    2011-10-01

    Aquaculture activities are increasing worldwide, stimulated by the progressive reduction of natural fish stocks in the oceans. However, these activities also suffer heavy production and financial losses resulting from fish infections caused by microbial pathogens, including multidrug resistant bacteria. Therefore, strategies to control fish infections are urgently needed, in order to make aquaculture industry more sustainable. Antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to treat diseases and prevent the development of antibiotic resistance by pathogenic bacteria. The aim of this work was to evaluate the applicability of aPDT to inactivate pathogenic fish bacteria. To reach this objective a cationic porphyrin Tri-Py(+)-Me-PF was tested against nine pathogenic bacteria isolated from a semi-intensive aquaculture system and against the cultivable bacteria of the aquaculture system. The ecological impact of aPDT in the aquatic environment was also tested on the natural bacterial community, using the overall bacterial community structure and the cultivable bacteria as indicators. Photodynamic inactivation of bacterial isolates and of cultivable bacteria was assessed counting the number of colonies. The impact of aPDT in the overall bacterial community structure of the aquaculture water was evaluated by denaturing gel gradient electrophoresis (DGGE). The results showed that, in the presence of Tri-Py(+)-Me-PF, the growth of bacterial isolates was inhibited, resulting in a decrease of ≈7-8 log after 60-270 min of irradiation. Cultivable bacteria were also considerably affected, showing decreases up to the detection limit (≈2 log decrease on cell survival), but the inactivation rate varied significantly with the sampling period. The DGGE fingerprint analyses revealed changes in the bacterial community structure caused by the combination of aPDT and light. The results indicate that aPDT can be regarded as a new approach to control fish

  18. Restructuring European freshwater aquaculture from family-owned to large-scale firms - lessons from Danish aquaculture

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Asche, Frank; Nielsen, Max

    2016-01-01

    to take advantage of economies of scale. In Denmark, a structural change was ‘kicked off’ in 2005. In just 6 years, 30% of Danish production in freshwater has been reallocated to larger and more technologically advanced recirculation farms. Labour productivity has increased and the environmental impact...... growth in the industry. The lack of production growth in EU aquaculture is often explained by strict environmental regulation and bureaucracy. In this article, we argue that an additional important element is an industry structure that limits the innovation and use of new technologies. Historically...

  19. Water quality, seasonality, and trajectory of an aquaculture-wastewater plume in the Red Sea

    KAUST Repository

    Hozumi, Aya

    2017-12-28

    As aquaculture activity increases globally, understanding water mass characteristics of the aquaculture-wastewater plume, its nutrients, and its organic matter load and spatial distribution in the coastal recipient, is critical to develop a more sustainable aquaculture operation and to improve coastal management. We examined wastewater (estimated 42-48 m3 s-1) discharged from the largest aquaculture facility in the Red Sea and surveyed the area around the aquaculture outfall to characterize the biogeochemical properties of the wastewater plume and its spatial distribution. In addition, we assessed its associated microbial community structure. The plume was characterized by elevated levels of salinity, density, and turbidity, and traveled along paths determined by the bathymetry to form a dense, 1-3 m thick layer above the seafloor. The effluent was observed at least 3.8 km from the outfall throughout the year, but up to 8 km in early autumn. The total nitrogen concentration in the plume was more than 4 times higher than in surface waters 1.4 km from the outfall. High-throughput sequencing data revealed that bacterial and cyanobacterial communities significantly differed, and flow cytometry results showed that total cell counts were significantly higher at the outfall. Arcobacter, a genus associated with opportunistic pathogenic species (e.g. A. butzleri), was more abundant, while Prochlorococcus sp. was significantly less abundant at the outfall. This dense, bottom-flowing plume may have a detrimental impact on benthic and demersal communities.

  20. Methodological approach for the collection and simultaneous estimation of greenhouse gases emission from aquaculture ponds.

    Science.gov (United States)

    Vasanth, Muthuraman; Muralidhar, Moturi; Saraswathy, Ramamoorthy; Nagavel, Arunachalam; Dayal, Jagabattula Syama; Jayanthi, Marappan; Lalitha, Natarajan; Kumararaja, Periyamuthu; Vijayan, Koyadan Kizhakkedath

    2016-12-01

    Global warming/climate change is the greatest environmental threat of our time. Rapidly developing aquaculture sector is an anthropogenic activity, the contribution of which to global warming is little understood, and estimation of greenhouse gases (GHGs) emission from the aquaculture ponds is a key practice in predicting the impact of aquaculture on global warming. A comprehensive methodology was developed for sampling and simultaneous analysis of GHGs, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from the aquaculture ponds. The GHG fluxes were collected using cylindrical acrylic chamber, air pump, and tedlar bags. A cylindrical acrylic floating chamber was fabricated to collect the GHGs emanating from the surface of aquaculture ponds. The sampling methodology was standardized and in-house method validation was established by achieving linearity, accuracy, precision, and specificity. GHGs flux was found to be stable at 10 ± 2 °C of storage for 3 days. The developed methodology was used to quantify GHGs in the Pacific white shrimp Penaeus vannamei and black tiger shrimp Penaeus monodon culture ponds for a period of 4 months. The rate of emission of carbon dioxide was found to be much greater when compared to other two GHGs. Average GHGs emission in gha(-1) day(-1) during the culture was comparatively high in P.vannamei culture ponds.

  1. PCR survey for Paramoeba perurans in fauna, environmental samples and fish associated with marine farming sites for Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Hellebø, A; Stene, A; Aspehaug, V

    2017-05-01

    Amoebic gill disease (AGD) caused by the amoeba Paramoeba perurans is an increasing problem in Atlantic salmon aquaculture. In the present PCR survey, the focus was to identify reservoir species or environmental samples where P. perurans could be present throughout the year, regardless of the infection status in farmed Atlantic salmon. A total of 1200 samples were collected at or in the proximity to farming sites with AGD, or with history of AGD, and analysed for the presence of P. perurans. No results supported biofouling organisms, salmon lice, biofilm or sediment to maintain P. perurans. However, during clinical AGD in Atlantic salmon, the amoeba were detected in several samples, including water, biofilm, plankton, several filter feeders and wild fish. It is likely that some of these samples were positive as a result of the continuous exposure through water. Positive wild fish may contribute to the spread of P. perurans. Cleaner fish tested positive for P. perurans when salmon tested negative, indicating that they may withhold the amoeba longer than salmon. The results demonstrate the high infection pressure produced from an AGD-afflicted Atlantic salmon population and thus the importance of early intervention to reduce infection pressure and horizontal spread of P. perurans within farms. © 2016 John Wiley & Sons Ltd.

  2. Intestinal barrier function of Atlantic salmon (Salmo salar L. post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator

    Directory of Open Access Journals (Sweden)

    Ellis Tim

    2010-11-01

    Full Text Available Abstract Background Fish farmed under high intensity aquaculture conditions are subjected to unnatural environments that may cause stress. Therefore awareness of how to maintain good health and welfare of farmed fish is important. For Atlantic salmon held in sea cages, water flow, dissolved oxygen (DO levels and temperature will fluctuate over time and the fish can at times be exposed to detrimentally low DO levels and high temperatures. This experimental study investigates primary and secondary stress responses of Atlantic salmon post smolts to long-term exposure to reduced and fluctuating DO levels and high water temperatures, mimicking situations in the sea cages. Plasma cortisol levels and cortisol release to the water were assessed as indicators of the primary stress response and intestinal barrier integrity and physiological functions as indicators of secondary responses to changes in environmental conditions. Results Plasma cortisol levels were elevated in fish exposed to low (50% and 60% saturation DO levels and low temperature (9°C, at days 9, 29 and 48. The intestinal barrier function, measured as electrical resistance (TER and permeability of mannitol at the end of the experiment, were reduced at 50% DO, in both proximal and distal intestine. When low DO levels were combined with high temperature (16°C, plasma cortisol levels were elevated in the cyclic 1:5 h at 85%:50% DO group and fixed 50% DO group compared to the control (85% DO group at day 10 but not at later time points. The intestinal barrier function was clearly disturbed in the 50% DO group; TER was reduced in both intestinal regions concomitant with increased paracellular permeability in the distal region. Conclusions This study reveals that adverse environmental conditions (low water flow, low DO levels at low and high temperature, that can occur in sea cages, elicits primary and secondary stress responses in Atlantic salmon post smolts. The intestinal barrier function

  3. Real-time remote monitoring system for aquaculture water quality

    National Research Council Canada - National Science Library

    Luo Hongpin; Li Guanglin; Peng Weifeng; Song Jie; Bai Qiuwei

    2015-01-01

      A multi-parameters monitoring system based on wireless network was set up to achieve remote real-time monitoring of aquaculture water quality, in order to improve the quality of aquaculture products...

  4. Streptomyces bacteria as potential probiotics in aquaculture

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2016-02-01

    Full Text Available In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effective in improving the growth, survival and health status of the aquatic livestock. This review aims to highlight the genus Streptomyces can be a good candidate for probiotics in aquaculture. Studies showed that the feed supplemented with Streptomyces could protect fish and shrimp from pathogens as well as increase the growth of the aquatic organisms. Furthermore, the limitations of Streptomyces as probiotics in aquaculture is also highlighted and solutions are discussed to these limitations.

  5. Reproduction of European Eel in Aquaculture (REEL)

    DEFF Research Database (Denmark)

    Tomkiewicz, Jonna; Tybjerg, Lars; Støttrup, Josianne

    Project aim: Enhance methods and technology applied to produce and culture European eel larvae as basis for the development of a future self-sustained eel aquaculture. Background: The severe decline of the European eel stock calls for conservation measures including national eel management plans...... and establishment of a self-sustained eel aquaculture. In 2005, the National Institute of Aquatic Resources at the Technical University of Denmark (DTU Aqua), the Faculty of Life Sciences at Copenhagen University (KU-Life) and the eel aquaculture industry started to build up a research and technology platform...... feeding. The results were in particular promising because they evidenced that methods successfully applied to Japanese eel has a potential for application also to the European eel. ROE II and III were supported by the Ministry of Food, Agriculture and Fisheries and the European Commission through...

  6. Intake of farmed Atlantic salmon fed soybean oil increases insulin resistance and hepatic lipid accumulation in mice.

    Directory of Open Access Journals (Sweden)

    Lisa Kolden Midtbø

    Full Text Available BACKGROUND: To ensure sustainable aquaculture, fish derived raw materials are replaced by vegetable ingredients. Fatty acid composition and contaminant status of farmed Atlantic salmon (Salmo salar L. are affected by the use of plant ingredients and a spillover effect on consumers is thus expected. Here we aimed to compare the effects of intake of Atlantic salmon fed fish oil (FO with intake of Atlantic salmon fed a high proportion of vegetable oils (VOs on development of insulin resistance and obesity in mice. METHODOLOGY/PRINCIPAL FINDINGS: Atlantic salmon were fed diets where FO was partly (80% replaced with three different VOs; rapeseed oil (RO, olive oil (OO or soy bean oil (SO. Fillets from Atlantic salmon were subsequently used to prepare Western diets (WD for a mouse feeding trial. Partial replacement of FO with VOs reduced the levels of polychlorinated biphenyls (PCB and dichloro-diphenyl-tricloroethanes (DDT with more than 50% in salmon fillets, in WDs containing the fillets, and in white adipose tissue from mice consuming the WDs. Replacement with VOs, SO in particular, lowered the n-3 polyunsaturated fatty acid (PUFA content and increased n-6 PUFA levels in the salmon fillets, in the prepared WDs, and in red blood cells collected from mice consuming the WDs. Replacing FO with VO did not influence obesity development in the mice, but replacement of FO with RO improved glucose tolerance. Compared with WD-FO fed mice, feeding mice WD-SO containing lower PCB and DDT levels but high levels of linoleic acid (LA, exaggerated insulin resistance and increased accumulation of fat in the liver. CONCLUSION/SIGNIFICANCE: Replacement of FO with VOs in aqua feed for farmed salmon had markedly different spillover effects on metabolism in mice. Our results suggest that the content of LA in VOs may be a matter of concern that warrants further investigation.

  7. Intake of farmed Atlantic salmon fed soybean oil increases insulin resistance and hepatic lipid accumulation in mice.

    Science.gov (United States)

    Midtbø, Lisa Kolden; Ibrahim, Mohammad Madani; Myrmel, Lene Secher; Aune, Ulrike Liisberg; Alvheim, Anita Røyneberg; Liland, Nina S; Torstensen, Bente E; Rosenlund, Grethe; Liaset, Bjørn; Brattelid, Trond; Kristiansen, Karsten; Madsen, Lise

    2013-01-01

    To ensure sustainable aquaculture, fish derived raw materials are replaced by vegetable ingredients. Fatty acid composition and contaminant status of farmed Atlantic salmon (Salmo salar L.) are affected by the use of plant ingredients and a spillover effect on consumers is thus expected. Here we aimed to compare the effects of intake of Atlantic salmon fed fish oil (FO) with intake of Atlantic salmon fed a high proportion of vegetable oils (VOs) on development of insulin resistance and obesity in mice. Atlantic salmon were fed diets where FO was partly (80%) replaced with three different VOs; rapeseed oil (RO), olive oil (OO) or soy bean oil (SO). Fillets from Atlantic salmon were subsequently used to prepare Western diets (WD) for a mouse feeding trial. Partial replacement of FO with VOs reduced the levels of polychlorinated biphenyls (PCB) and dichloro-diphenyl-tricloroethanes (DDT) with more than 50% in salmon fillets, in WDs containing the fillets, and in white adipose tissue from mice consuming the WDs. Replacement with VOs, SO in particular, lowered the n-3 polyunsaturated fatty acid (PUFA) content and increased n-6 PUFA levels in the salmon fillets, in the prepared WDs, and in red blood cells collected from mice consuming the WDs. Replacing FO with VO did not influence obesity development in the mice, but replacement of FO with RO improved glucose tolerance. Compared with WD-FO fed mice, feeding mice WD-SO containing lower PCB and DDT levels but high levels of linoleic acid (LA), exaggerated insulin resistance and increased accumulation of fat in the liver. Replacement of FO with VOs in aqua feed for farmed salmon had markedly different spillover effects on metabolism in mice. Our results suggest that the content of LA in VOs may be a matter of concern that warrants further investigation.

  8. Intake of Farmed Atlantic Salmon Fed Soybean Oil Increases Insulin Resistance and Hepatic Lipid Accumulation in Mice

    Science.gov (United States)

    Myrmel, Lene Secher; Aune, Ulrike Liisberg; Alvheim, Anita Røyneberg; Liland, Nina S.; Torstensen, Bente E.; Rosenlund, Grethe; Liaset, Bjørn; Brattelid, Trond; Kristiansen, Karsten; Madsen, Lise

    2013-01-01

    Background To ensure sustainable aquaculture, fish derived raw materials are replaced by vegetable ingredients. Fatty acid composition and contaminant status of farmed Atlantic salmon (Salmo salar L.) are affected by the use of plant ingredients and a spillover effect on consumers is thus expected. Here we aimed to compare the effects of intake of Atlantic salmon fed fish oil (FO) with intake of Atlantic salmon fed a high proportion of vegetable oils (VOs) on development of insulin resistance and obesity in mice. Methodology/principal findings Atlantic salmon were fed diets where FO was partly (80%) replaced with three different VOs; rapeseed oil (RO), olive oil (OO) or soy bean oil (SO). Fillets from Atlantic salmon were subsequently used to prepare Western diets (WD) for a mouse feeding trial. Partial replacement of FO with VOs reduced the levels of polychlorinated biphenyls (PCB) and dichloro-diphenyl-tricloroethanes (DDT) with more than 50% in salmon fillets, in WDs containing the fillets, and in white adipose tissue from mice consuming the WDs. Replacement with VOs, SO in particular, lowered the n−3 polyunsaturated fatty acid (PUFA) content and increased n−6 PUFA levels in the salmon fillets, in the prepared WDs, and in red blood cells collected from mice consuming the WDs. Replacing FO with VO did not influence obesity development in the mice, but replacement of FO with RO improved glucose tolerance. Compared with WD-FO fed mice, feeding mice WD-SO containing lower PCB and DDT levels but high levels of linoleic acid (LA), exaggerated insulin resistance and increased accumulation of fat in the liver. Conclusion/Significance Replacement of FO with VOs in aqua feed for farmed salmon had markedly different spillover effects on metabolism in mice. Our results suggest that the content of LA in VOs may be a matter of concern that warrants further investigation. PMID:23301026

  9. Experimental infection studies demonstrating Atlantic salmon as a host and reservoir of viral hemorrhagic septicemia virus type IVa with insights into pathology and host immunity

    Science.gov (United States)

    Lovy, Jan; Piesik, P.; Hershberger, P.K.; Garver, K.A.

    2013-01-01

    In British Columbia, Canada (BC), aquaculture of finfish in ocean netpens has the potential for pathogen transmission between wild and farmed species due to the sharing of an aquatic environment. Viral hemorrhagic septicemia virus (VHSV) is enzootic in BC and causes serious disease in wild Pacific herring, Clupea pallasii, which often enter and remain in Atlantic salmon, Salmo salar, netpens. Isolation of VHSV from farmed Atlantic salmon has been previously documented, but the effects on the health of farmed salmon and the wild fish sharing the environment are unknown. To determine their susceptibility, Atlantic salmon were exposed to a pool of 9 isolates of VHSV obtained from farmed Atlantic salmon in BC by IP-injection or by waterborne exposure and cohabitation with diseased Pacific herring. Disease intensity was quantified by recording mortality, clinical signs, histopathological changes, cellular sites of viral replication, expression of interferon-related genes, and viral tissue titers. Disease ensued in Atlantic salmon after both VHSV exposure methods. Fish demonstrated gross disease signs including darkening of the dorsal skin, bilateral exophthalmia, light cutaneous hemorrhage, and lethargy. The virus replicated within endothelial cells causing endothelial cell necrosis and extensive hemorrhage in anterior kidney. Infected fish demonstrated a type I interferon response as seen by up-regulation of genes for IFNα, Mx, and ISG15. In a separate trial infected salmon transmitted the virus to sympatric Pacific herring. The results demonstrate that farmed Atlantic salmon can develop clinical VHS and virus can persist in the tissues for at least 10 weeks. Avoiding VHS epizootics in Atlantic salmon farms would limit the potential of VHS in farmed Atlantic salmon, the possibility for further host adaptation in this species, and virus spillback to sympatric wild fishes.

  10. Towards sustainable coexistence of aquaculture and fisheries in the coastal zone

    DEFF Research Database (Denmark)

    Bergh, Øjvind; Gomez, Emma Bello; Børsheim, Knut Yngve

    2012-01-01

    ecosystem‐based management as demanded by the Marine Strategy Directive. The biological interconnectedness of fisheries and aquaculture is strong, with factors such as competition for space, disease transmission, genetic impact from escapees, availability of food for cultured finfish, and organic......Globally, coastal areas are subject to an increase in competing activities. Coastal fisheries and aquaculture are highly dependent on availability and accessibility of appropriate sites. Aquaculture production is increasing, whereas fisheries are at best stagnant. Coastal activities also include...... Planning (MSP) and improved management tools supporting policies for space allocation along the entire European coastline. Successful MSP is not likely to be achieved without a certain level of conflict, and without iterative adaptations in management actions. MSP is viewed an essential part of advancing...

  11. Integration of a wind farm with a wave- and an aquaculture farm

    DEFF Research Database (Denmark)

    He, W.; Weissenberger, J.; Bergh, Ø.

    with other marine energy producers such as wave energy and other maritime users such as aquaculture farms may result in significant benefits in terms of economics, optimising spatial utilization, and minimising the environmental impact. In this research project, the integration benefits and disadvantages...

  12. Genetically modified organisms (GMOs) and aquaculture.

    Science.gov (United States)

    Beardmore, J A; Porter, Joanne S

    2003-01-01

    This paper reviews the nature of genetically modified organisms (GMOs), the range of aquatic species in which GMOs have been produced, the methods and target genes employed, the benefits to aquaculture, the problems attached to use of GMOs in aquatic species and the regulatory and other social frameworks surrounding them. A set of recommendations aimed at best practice is appended. This states the potential value of GMOs in aquaculture but also calls for improved knowledge particularly of sites of integration, risk analysis, progress in achieving sterility in fish for production and better dissemination of relevant information.

  13. Aquaculture at Oregon Inst. of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.

    1976-07-01

    The geothermal hot water resource developed from on-campus wells is used for space heating and heating the college's potable hot water supply. The development of this resource has provided waste water for aquaculture. The available water for aquaculture is a volume of 200 to 250 gal/min with a mean temperature of 57/sup 0/C. This water was tested on mosquitofish, guppies, and crayfish. A program is now underway to see if the giant freshwater prawn may be grown commercially in geothermal waste water. (MHR)

  14. Naked Gene Salmon: Debating Fish, Genes, and the Politics of Science in the "Age of Publics".

    Science.gov (United States)

    Finstad, Terje

    This article follows what was supposed to become a new salmon for the aquaculture industry on its travels through Norwegian society during the 1980s. This is a history of a new animal technology that was born out of the biotechnology hype of the 1980s. The article takes Edmund Russell's claim that the tools of historians of technology can be utilized for investigating animals as technologies as a point of departure. However, instead of investigating the construction of the fish, the article focuses on how the new creature was integrated into society through controversy.

  15. Surveys of brown bear predation on spawning sockeye salmon in three tributaries to Karluk Lake, Alaska.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Surveys of live salmon and carcasses were made in three lateral tributaries to Karluk Lake. The objectives were to assess the impacts of bear predation on spawning...

  16. Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China

    Science.gov (United States)

    Yang, Ping; He, Qinghua; Huang, Jiafang; Tong, Chuan

    2015-08-01

    Shallow water ponds are important contributors to greenhouse gas (GHG) fluxes into the atmosphere. Aquaculture ponds cover an extremely large area in China's entire coastal zone. Knowledge of greenhouse gas fluxes from aquaculture ponds is very limited, but measuring GHG fluxes from aquaculture ponds is fundamental for estimating their impact on global warming. This study investigated the magnitude of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes from two coastal aquaculture ponds during 2011 and 2012 in the Shanyutan wetland of the Min River estuary, southeastern China, and determined the factors that may regulate GHG fluxes from the two ponds. The average fluxes of CO2, CH4 and N2O were 20.78 mgCO2 m-2h-1, 19.95 mgCH4 m-2h-1 and 10.74 μgN2O m-2h-1, respectively, in the shrimp pond. The average fluxes of CO2, CH4 and N2O were -60.46 mgCO2 m-2h-1, 1.65 mgCH4 m-2h-1 and 11.8 μgN2O m-2h-1, respectively, in the mixed shrimp and fish aquaculture pond during the study period. The fluxes of all three gases showed distinct temporal variations. The variations in the GHG fluxes were influenced by interactions with the thermal regime, pH, trophic status and chlorophyll-a content. Significant differences in the CO2 and N2O fluxes between the shrimp pond and the mixed aquaculture pond were observed from September to November, whereas the CH4 fluxes from the two ponds were not significantly different. The difference in the CO2 flux likely was related to the effects of photosynthesis, biological respiration and the mineralization of organic matter, whereas the N2O fluxes were controlled by the interactions between nitrogen substrate availability and pH. Water salinity, trophic status and dissolved oxygen concentration likely affected CH4 emission. Our results suggest that subtropical coastal aquaculture ponds are important contributors to regional CH4 and N2O emissions into the atmosphere, and their contribution to global warming must be considered

  17. Promoting Women Participation in Aquaculture as a Viable Tool for ...

    African Journals Online (AJOL)

    This paper therefore review the potential of aquaculture in reducing poverty by enhancing food security and as a source of income, also the paper focus on the roles of women in aquaculture, factors limiting their participation in fish farming and the strategies for promoting women participation in aquaculture as a veritable ...

  18. Aquaculture for increased fish production in East Africa | Rutaisire ...

    African Journals Online (AJOL)

    Fish is produced for human consumption and other purposes through capture fisheries and aquaculture. Fish production from natural stocks has already reached its limits and is declining while aquaculture production is increasing. Aquaculture is making a significant contribution to fish production in several countries thus ...

  19. Preliminary investigation on the conversion of aquaculture solid ...

    African Journals Online (AJOL)

    Conversion of aquaculture solid wastes into single cell protein (SCP) for fish feed through solid state fermentation using three fungi species, Aspergilus niger, Trichodema viride and Rhizopus species were investigated. Solid aquaculture waste was collected from the sedimentation unit of a re-circulating aquaculture farm in ...

  20. 7 CFR 1437.303 - Aquaculture, including ornamental fish.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Aquaculture, including ornamental fish. 1437.303... ASSISTANCE PROGRAM Determining Coverage Using Value § 1437.303 Aquaculture, including ornamental fish. (a... humans; and (3) Ornamental fish propagated and reared in an aquatic medium. (b) The aquacultural facility...

  1. A research update for the Stuttgart National Aquaculture Research Center

    Science.gov (United States)

    Aquaculture (fish farming) has played an ever-increasing role in providing people with fish, shrimp, and shellfish. Aquaculture is currently the fastest growing sector of global food production and in 2016 totaled 90 million tons valued at $180 billion. The production of food-fish from aquaculture...

  2. SALMON 2100: THE FUTURE OF WILD PACIFIC SALMON

    Science.gov (United States)

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  3. Salmon as drivers of physical and biological disturbance in river channels

    Science.gov (United States)

    Albers, S. J.; Petticrew, E. L.

    2012-04-01

    Large migrations across landscapes and ecosystem boundaries combined with disturbances of riverine spawning habitats through nest construction indicate the huge potential that Pacific salmon (Onchorhynchus sp.) have to disturb and alter regional energy flow. Nutrients derived from ocean-reared dead and decaying salmon are released into surrounding aquatic ecosystems fertilizing the water column, recently disturbed by increased suspended sediments due to nest construction. These opposing forces of disturbance and fertilization on spawning habitat have been demonstrated to impact local geomorphic and ecological cycles within salmon streams. An often cited, yet not fully tested, hypothesis is that this pulse of nutrients provided by decaying salmon can shift freshwater habitats to higher production levels. This hypothesis, however, remains contested and uncertain. Fine sediments are increasingly being recognized as important delivery and storage vectors for marine-derived nutrients (MDNs) in spawning streams. The temporal and spatial significance of these sediment vectors on gravelbed storage of MDN have not been quantified thereby restricting our ability to estimate the impact of gravelbed storage of MDNs on the riverine habitats. The objectives of this study were to i) quantify the magnitude of sediment deposition and retention in an active spawning area and ii) determine the contribution of MDN associated with the fine sediment storage. The Horsefly River spawning channel (HFC), an artificial salmon stock enhancement stream, was used to examine the biogeomorphic impacts of salmon spawning. We organized the HFC in an upstream-downstream paired treatment approach where the upstream enclosure was kept free of salmon and the downstream enclosure was loaded with actively spawning salmon. We used the difference in suspended sediment concentration between the salmon enclosure and the control enclosure to determine the contribution of salmon nest construction to suspended

  4. Modeling the Transmission of Piscirickettsia salmonis in Farmed Salmon

    Science.gov (United States)

    Cisternas, Jaime; Moreno, Adolfo

    2007-05-01

    Farming Atlantic salmon is an economic activity of growing relevance in the southern regions of Chile. The need to increase efficiency and reach production goals, as well as restrictions on the use of water resources, had led in recent years to certain practices that proved prone to bacterial infections among the fish. Our study focuses on the impact of rickettsial bacteria in farmed salmon, and the possibility of controlling its incidence once it is established along the salmon life cicle. We used compartmental models to separate fish in their maturation stages and health status. The mathematical analysis will involve differential equations with and without delays, and linear stability principles. Our goal was to build a simple model that explains the basic mechanisms at work and provides predictions on the outcome of different control strategies.

  5. Enhancing aquaculture development:mapping the tilapia aquaculture value chain in Ghana

    OpenAIRE

    Asiedu, Berchie; Failler, Pierre; Beyens, Yolaine

    2015-01-01

    Fish is important in the diet of millions of Ghanaians supplying protein and micronutrients. Ghanaians have developed taste preferences for the consumption of Oreochromis niloticus (Nile tilapia), thereby booming the tilapia aquaculture industry. This paper looks comprehensively at the value chain of the tilapia aquaculture sector in Ghana to identify particular areas of intervention and development opportunities in achieving food security and nutrition needs, safety, quality and trade benefi...

  6. Salmon Site Remedial Investigation Report, Main Body

    Energy Technology Data Exchange (ETDEWEB)

    US DOE/NV

    1999-09-01

    installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  7. Salmon Site Remedial Investigation Report, Exhibit 5

    Energy Technology Data Exchange (ETDEWEB)

    USDOE/NV

    1999-09-01

    installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  8. Salmon Site Remedial Investigation Report, Exhibit 2

    Energy Technology Data Exchange (ETDEWEB)

    USDOE NV

    1999-09-01

    installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  9. Fish farmers' perceptions of constraints affecting aquaculture ...

    African Journals Online (AJOL)

    The study focused on fish farmers' perceptions of constraints affecting aquaculture development in Akwa-Ibom State of Nigeria. Random sampling procedure was used to select 120 respondents from whom primary data was collected. Data analysis was with the aid of descriptive statistics. Results show that fish farming ...

  10. Copper toxicity in aquaculture: A practical approach

    Science.gov (United States)

    Copper sulfate is used as a therapeutant for various applications in aquaculture. There is a great deal of information on the toxicity of copper, especially in low-alkalinity waters; however, much of this information is fragmented, and a comprehensive guide of copper toxicity and safe concentration...

  11. Can greening of aquaculture sequester blue carbon?

    Science.gov (United States)

    Ahmed, Nesar; Bunting, Stuart W; Glaser, Marion; Flaherty, Mark S; Diana, James S

    2017-05-01

    Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.

  12. Inverness College: Innovations in Aquaculture Training.

    Science.gov (United States)

    Regional Technology Strategies, Inc., Carrboro, NC.

    This paper describes the aquaculture program developed at Inverness College in Scotland. Inverness is located in the Scottish Highlands and serves an area roughly the size of Belgium, but with a population of only 300,000. The regional infrastructure and human capital resources in the Highlands are relatively weak due to inadequate transportation,…

  13. Organic matter decomposition in simulated aquaculture ponds

    NARCIS (Netherlands)

    Torres Beristain, B.

    2005-01-01

    Different kinds of organic and inorganic compounds (e.g. formulated food, manures, fertilizers) are added to aquaculture ponds to increase fish production. However, a large part of these inputs are not utilized by the fish and are decomposed inside the pond. The microbiological decomposition of the

  14. REVIEW OF AQUACULTURAL PRODUCTION SYSTEM MODELS

    African Journals Online (AJOL)

    user

    models of aquacultural production systems with the aim of adopting a suitable one for predicting the environment, .... cultured organisms. Thus, production is easily modeled as the sum of the weights of each surviving fish or the product of the average weight of the fish and the ..... for the effects by consumption of released.

  15. Biotechnology in Aquaculture: Prospects and Challenges | Edun ...

    African Journals Online (AJOL)

    Fish farming is the world's fastest-growing sector of agricultural business. Consumer demand for fish products is increasing. At the same time, wild fish stocks are rapidly declining, mainly because of over-fishing. Aquaculture contributes more than 16 million tones of fish and shellfish annually to the world food supply.

  16. Success Stories in Asian Aquaculture | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    -Pacific de même que professeur honoraire d'aquaculture et de biologie halieutique à la School of Life and Environmental Sciences de l'Université Deakin, qui se trouve dans l'État de Victoria, en Australie. Membre honoraire ...

  17. The use of probiotics in aquaculture.

    Science.gov (United States)

    Hai, N V

    2015-10-01

    This study aims to present comprehensive notes for the use of probiotics in aquaculture. Probiotics have been proven to be positive promoters of aquatic animal growth, survival and health. In aquaculture, intestines, gills, the skin mucus of aquatic animals, and habitats or even culture collections and commercial products, can be sources for acquiring appropriate probiotics, which have been identified as bacteria (Gram-positive and Gram-negative) and nonbacteria (bacteriophages, microalgae and yeasts). While a bacterium is a pathogen to one aquatic animal, it can bring benefits to another fish species; a screening process plays a significant role in making a probiotic species specific. The administration of probiotics varies from oral/water routine to feed additives, of which the latter is commonly used in aquaculture. Probiotic applications can be either mono or multiple strains, or even in combination with prebiotic, immunostimulants such as synbiotics and synbiotism, and in live or dead forms. Encapsulating probiotics with live feed is a suitable approach to convey probiotics to aquatic animals. Dosage and duration of time are significant factors in providing desired results. Several modes of actions of probiotics are presented, while some others are not fully understood. Suggestions for further studies on the effects of probiotics in aquaculture are proposed. © 2015 The Society for Applied Microbiology.

  18. Fisheries, aquaculture and living well in Bolivia

    International Development Research Centre (IDRC) Digital Library (Canada)

    VIDA (PPV) alliance evaluated the potential contribution of fisheries and aquaculture to food security, developed recommended best practices, implemented pilot .... In: Proyecto Mejoramiento de la Legislación. Para la Pesca y Acuicultura. Tribunal Constitucional. Plurinacional, Bolivia. • FAO. (2014). The State of World ...

  19. Life cycle assessment of aquaculture systems-a review of methodologies.

    Science.gov (United States)

    Henriksson, Patrik J G; Guinée, Jeroen B; Kleijn, René; de Snoo, Geert R

    As capture fishery production has reached its limits and global demand for aquatic products is still increasing, aquaculture has become the world's fastest growing animal production sector. In attempts to evaluate the environmental consequences of this rapid expansion, life cycle assessment (LCA) has become a frequently used method. The present review of current peer-reviewed literature focusing on LCA of aquaculture systems is intended to clarify the methodological choices made, identify possible data gaps, and provide recommendations for future development within this field of research. The results of this review will also serve as a start-up activity of the EU FP7 SEAT (Sustaining Ethical Aquaculture Trade) project, which aims to perform several LCA studies on aquaculture systems in Asia over the next few years. From a full analysis of methodology in LCA, six phases were identified to differ the most amongst ten peer-reviewed articles and two PhD theses (functional unit, system boundaries, data and data quality, allocation, impact assessment methods, interpretation methods). Each phase is discussed with regards to differences amongst the studies, current LCA literature followed by recommendations where appropriate. The conclusions and recommendations section reflects on aquaculture-specific scenarios as well as on some more general issues in LCA. Aquaculture LCAs often require large system boundaries, including fisheries, agriculture, and livestock production systems from around the globe. The reviewed studies offered limited coverage of production in developing countries, low-intensity farming practices, and non-finfish species, although most farmed aquatic products originate from a wide range of farming practices in Asia. Apart from different choices of functional unit, system boundaries and impact assessment methods, the studies also differed in their choice of allocation factors and data sourcing. Interpretation of results also differed amongst the studies

  20. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production.

    Science.gov (United States)

    Pahlow, M; van Oel, P R; Mekonnen, M M; Hoekstra, A Y

    2015-12-01

    As aquaculture becomes more important for feeding the growing world population, so too do the required natural resources needed to produce aquaculture feed. While there is potential to replace fish meal and fish oil with terrestrial feed ingredients, it is important to understand both the positive and negative implications of such a development. The use of feed with a large proportion of terrestrial feed may reduce the pressure on fisheries to provide feed for fish, but at the same time it may significantly increase the pressure on freshwater resources, due to water consumption and pollution in crop production for aquafeed. Here the green, blue and gray water footprint of cultured fish and crustaceans related to the production of commercial feed for the year 2008 has been determined for the major farmed species, representing 88% of total fed production. The green, blue and gray production-weighted average feed water footprints of fish and crustaceans fed commercial aquafeed are estimated at 1629 m3/t, 179 m3/t and 166 m3/t, respectively. The estimated global total water footprint of commercial aquafeed was 31-35 km3 in 2008. The top five contributors to the total water footprint of commercial feed are Nile tilapia, Grass carp, Whiteleg shrimp, Common carp and Atlantic salmon, which together have a water footprint of 18.2 km3. An analysis of alternative diets revealed that the replacement of fish meal and fish oil with terrestrial feed ingredients may further increase pressure on freshwater resources. At the same time economic consumptive water productivity may be reduced, especially for carnivorous species. The results of the present study show that, for the aquaculture sector to grow sustainably, freshwater consumption and pollution due to aquafeed need to be taken into account. Copyright © 2015. Published by Elsevier B.V.

  1. HEAVY METALS IN ABIOTIC AND BIOTIC COMPONENTS OF AQUACULTURE HYDROECOSYSTEM “ISHKHAN”

    Directory of Open Access Journals (Sweden)

    A. Melnik

    2015-12-01

    Full Text Available Purpose. To determine the heavy metal content in abiotic components (water and bottom sediments of tanks, feeds, organs and tissues of rainbow trout in the conditions of industrial aquaculture. Methodology. The materials for the study were 1+ rainbow trout cultivated in 2011–2012, which were produced from brood rainbow trout reared in the tank aquaculture farm “Ishkhan”. Experimental fish were collected from rearing tanks №№ 3–4. Mean fish weight was 466 g with mean fork length of 36 cm. Fish stocking density at the final stage of rearing was 50 kg/m3 or 100 fish/m2. Fish were kept according to standard salmon culture methods. Quantitative determination of heavy metal concentrations in water, bottom sediments and fish were performed by direct suction of solution in propane-butane-air flame with the aid of absorption spectrophotometer S-115-M1. Findings. The results of the performed studies include the determined ecological state of rearing tanks and quality of marketable rainbow trout of the fish farm “Ishkhan” by the above-mentioned characteristics. Main hydrochemical parameters, which characterized water quality, complied with aquaculture norms. However, a tendency for an increase in heavy metal content was noted in bottom sediments. In particular, an increased content of copper, nickel as well as toxic elements – lead and cadmium was observed. Originality. First study of the ecological state of rearing tanks of the fish farm “Ishkhan”. Practical value. The obtained results of the ecological state of rearing tanks of the fish farm “Ishkhan” will allow crating optimum conditions for fish rearing.

  2. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon

    Science.gov (United States)

    L.G. Crozier; A.P. Hendry; P.W. Lawson; T.P. Quinn; N.J. Mantua; J. Battin; R.G. Shaw; R.B. Huey

    2008-01-01

    Salmon life histories are finely tuned to local environmental conditions, which are intimately linked to climate. We summarize the likely impacts of climate change on the physical environment of salmon in the Pacific Northwest and discuss the potential evolutionary consequences of these changes, with particular reference to Columbia River Basin spring/summer Chinook (...

  3. Analyzing variations in life-history traits of Pacific salmon in the context of Dynamic Energy Budget (DEB) theory.

    NARCIS (Netherlands)

    Pecquerie, L; Johnson, L.R.; Kooijman, S.A.L.M.; Nisbet, R.M.

    2011-01-01

    To determine the response of Pacific salmon (Oncorhynchus spp.) populations to environmental change, we need to understand impacts on all life stages. However, an integrative and mechanistic approach is particularly challenging for Pacific salmon as they use multiple habitats (river, estuarine and

  4. Group behavioural responses of Atlantic salmon (Salmo salar L.) to light, infrasound and sound stimuli.

    Science.gov (United States)

    Bui, Samantha; Oppedal, Frode; Korsøen, Øyvind J; Sonny, Damien; Dempster, Tim

    2013-01-01

    Understanding species-specific flight behaviours is essential in developing methods of guiding fish spatially, and requires knowledge on how groups of fish respond to aversive stimuli. By harnessing their natural behaviours, the use of physical manipulation or other potentially harmful procedures can be minimised. We examined the reactions of sea-caged groups of 50 salmon (1331 ± 364 g) to short-term exposure to visual or acoustic stimuli. In light experiments, fish were exposed to one of three intensities of blue LED light (high, medium and low) or no light (control). Sound experiments included exposure to infrasound (12 Hz), a surface disturbance event, the combination of infrasound and surface disturbance, or no stimuli. Groups that experienced light, infrasound, and the combination of infrasound and surface disturbance treatments, elicited a marked change in vertical distribution, where fish dived to the bottom of the sea-cage for the duration of the stimulus. Light treatments, but not sound, also reduced the total echo-signal strength (indicative of swim bladder volume) after exposure to light, compared to pre-stimulus levels. Groups in infrasound and combination treatments showed increased swimming activity during stimulus application, with swimming speeds tripled compared to that of controls. In all light and sound treatments, fish returned to their pre-stimulus swimming depths and speeds once exposure had ceased. This work establishes consistent, short-term avoidance responses to these stimuli, and provides a basis for methods to guide fish for aquaculture applications, or create avoidance barriers for conservation purposes. In doing so, we can achieve the manipulation of group position with minimal welfare impacts, to create more sustainable practices.

  5. Group behavioural responses of Atlantic salmon (Salmo salar L. to light, infrasound and sound stimuli.

    Directory of Open Access Journals (Sweden)

    Samantha Bui

    Full Text Available Understanding species-specific flight behaviours is essential in developing methods of guiding fish spatially, and requires knowledge on how groups of fish respond to aversive stimuli. By harnessing their natural behaviours, the use of physical manipulation or other potentially harmful procedures can be minimised. We examined the reactions of sea-caged groups of 50 salmon (1331 ± 364 g to short-term exposure to visual or acoustic stimuli. In light experiments, fish were exposed to one of three intensities of blue LED light (high, medium and low or no light (control. Sound experiments included exposure to infrasound (12 Hz, a surface disturbance event, the combination of infrasound and surface disturbance, or no stimuli. Groups that experienced light, infrasound, and the combination of infrasound and surface disturbance treatments, elicited a marked change in vertical distribution, where fish dived to the bottom of the sea-cage for the duration of the stimulus. Light treatments, but not sound, also reduced the total echo-signal strength (indicative of swim bladder volume after exposure to light, compared to pre-stimulus levels. Groups in infrasound and combination treatments showed increased swimming activity during stimulus application, with swimming speeds tripled compared to that of controls. In all light and sound treatments, fish returned to their pre-stimulus swimming depths and speeds once exposure had ceased. This work establishes consistent, short-term avoidance responses to these stimuli, and provides a basis for methods to guide fish for aquaculture applications, or create avoidance barriers for conservation purposes. In doing so, we can achieve the manipulation of group position with minimal welfare impacts, to create more sustainable practices.

  6. Infection with purified Piscine orthoreovirus demonstrates a causal relationship with heart and skeletal muscle inflammation in Atlantic salmon.

    Directory of Open Access Journals (Sweden)

    Øystein Wessel

    Full Text Available Viral diseases pose a significant threat to the productivity in aquaculture. Heart- and skeletal muscle inflammation (HSMI is an emerging disease in Atlantic salmon (Salmo salar farming. HSMI is associated with Piscine orthoreovirus (PRV infection, but PRV is ubiquitous in farmed Atlantic salmon and thus present also in apparently healthy individuals. This has brought speculations if additional etiological factors are required, and experiments focusing on the causal relationship between PRV and HSMI are highly warranted. A major bottleneck in PRV research has been the lack of cell lines that allow propagation of the virus. To bypass this, we propagated PRV in salmon, bled the fish at the peak of the infection, and purified virus particles from blood cells. Electron microscopy, western blot and high-throughput sequencing all verified the purity of the viral particles. Purified PRV particles were inoculated into naïve Atlantic salmon. The purified virus replicated in inoculated fish, spread to naïve cohabitants, and induced histopathological changes consistent with HSMI. PRV specific staining was demonstrated in the pathological lesions. A dose-dependent response was observed; a high dose of virus gave earlier peak of the viral load and development of histopathological changes compared to a lower dose, but no difference in the severity of the disease. The experiment demonstrated that PRV can be purified from blood cells, and that PRV is the etiological agent of HSMI in Atlantic salmon.

  7. THE STATUS OF AQUACULTURE IN THE WORLD AND IN EUROPE

    Directory of Open Access Journals (Sweden)

    Nikola Fijan

    2002-06-01

    Full Text Available During the past few years, several authors have presented the production data and the problems in Croatian aquaculture and suggested measures for improvements. Some of these authors referred to some sectors of aquaculture in the world. This paper reports basic statistical data of the Food and Agriculture Organization (FAO, United Nations of the world aquaculture during the period of 1990–1999. The annual growth rate in that period averaged about 10%, and in the year 1999 the aquaculture provided 31.7% of the world needs for aquatic products. The total production and industrialization of aquaculture will continue. Planning of aquaculture development in Croatia and the preparations for joining the European Economic Community must take into account the status of aquaculture and trends in the world, the common fishery policy of EEC (green document, the production in EEC member states and EEC–candidate states and especially the production in neighboring countries. The number, the size and the strength of organizational structures helping the development of aquaculture in EEC are showing these factors to be of decisive importance for the future of sustainable aquaculture in Croatia, too. The very low fish consumption in the country is a negative health factor for the Croatian citizens and it emphasizes the importance of faster development of aquaculture. The paper is intended to stimulate improvements in the aquaculture development strategy, to promote more positive approach towards this food production sector and to speed up its successfulness in Croatia.

  8. Merging remotely sensed data, models and indicators for a sustainable development of coastal aquaculture in Algeria

    Science.gov (United States)

    Brigolin, Daniele; Venier, Chiara; Amine Taji, Mohamed; Lourguioui, Hichem; Mangin, Antoine; Pastres, Roberto

    2014-05-01

    Finfish cage farming is an economically relevant activity, which exerts pressures on coastal systems and thus require a science-based management, based on the Ecosystem Approach, in order to be carry out in a sustainable way. Within MEDINA project (EU 282977), ocean color data and models were used for estimating indicators of pressures of aquaculture installations along the north African coast. These indicators can provide important support for decision makers in the allocation of new zones for aquaculture, by taking into account the suitability of an area for this activity and minimizing negative environmental effects, thus enhancing the social acceptability of aquaculture. The increase in the number of farms represents a strategic objective for the Algerian food production sector, which is currently being supported by different national initiatives. The case-study presented in this work was carried out in the Gulf of Bejaia. Water quality for aquaculture was first screened based on ocean color CDOM data (http://www.globcolour.info/). The SWAN model was subsequently used to propagate offshore wave data and to derive wave height statistics. On this basis, sub-areas of the Gulf were ranked, according their optimality in respect to cage resistance and fish welfare requirements. At the three best sites an integrated aquaculture impact assessment model was therefore applied: this tool allows one to obtain a detailed representation of fish growth and population dynamics inside the rearing cages, and to simulate the deposition of uneaten food and faeces on the sediment and the subsequent mineralization of organic matter. This integrated model was used to produce a set of indicators of the fish cages environmental interaction under different scenarios of forcings (water temperature, feeding, currents). These model-derived indicators could usefully contribute to the implementation of the ecosystem approach for the management of aquaculture activities, also required by the

  9. Annual methane and nitrous oxide emissions from rice paddies and inland fish aquaculture wetlands in southeast China

    Science.gov (United States)

    Wu, Shuang; Hu, Zhiqiang; Hu, Tao; Chen, Jie; Yu, Kai; Zou, Jianwen; Liu, Shuwei

    2018-02-01

    Inland aquaculture ponds have been documented as important sources of atmospheric methane (CH4) and nitrous oxide (N2O), while their regional or global source strength remains unclear due to lack of direct flux measurements by covering more typical habitat-specific aquaculture environments. In this study, we compared the CH4 and N2O fluxes from rice paddies and nearby inland fish aquaculture wetlands that were converted from rice paddies in southeast China. Both CH4 and N2O fluxes were positively related to water temperature and sediment dissolved organic carbon, but negatively related to water dissolved oxygen concentration. More robust response of N2O fluxes to water mineral N was observed than to sediment mineral N. Annual CH4 and N2O fluxes from inland fish aquaculture averaged 0.51 mg m-2 h-1 and 54.78 μg m-2 h-1, amounting to 42.31 kg CH4 ha-1 and 2.99 kg N2O-N ha-1, respectively. The conversion of rice paddies to conventional fish aquaculture significantly reduced CH4 and N2O emissions by 23% and 66%, respectively. The emission factor for N2O was estimated to be 0.46% of total N input in the feed or 1.23 g N2O-N kg-1 aquaculture production. The estimate of sustained-flux global warming potential of annual CH4 and N2O emissions and the net economic profit suggested that such conversion of rice paddies to inland fish aquaculture would help to reconcile the dilemma for simultaneously achieving both low climatic impacts and high economic benefits in China. More solid direct field measurements from inland aquaculture are in urgent need to direct the overall budget of national or global CH4 and N2O fluxes.

  10. Exploring fish microbial communities to mitigate emerging diseases in aquaculture.

    Science.gov (United States)

    de Bruijn, Irene; Liu, Yiying; Wiegertjes, Geert F; Raaijmakers, Jos M

    2018-01-01

    Aquaculture is the fastest growing animal food sector worldwide and expected to further increase to feed the growing human population. However, existing and (re-)emerging diseases are hampering fish and shellfish cultivation and yield. For many diseases, vaccination protocols are not in place and the excessive use of antibiotics and other chemicals is of substantial concern. A more sustainable disease control strategy to protect fish and shellfish from (re-)emerging diseases could be achieved by introduction or augmentation of beneficial microbes. To establish and maintain a 'healthy' fish microbiome, a fundamental understanding of the diversity and temporal-spatial dynamics of fish-associated microbial communities and their impact on growth and health of their aquatic hosts is required. This review describes insights in the diversity and functions of the fish bacterial communities elucidated with next-generation sequencing and discusses the potential of the microbes to mitigate (re-)emerging diseases in aquaculture. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Microbial quality of raw aquacultured fish fillets procured from Internet and local retail markets.

    Science.gov (United States)

    Pao, S; Ettinger, M R; Khalid, M F; Reid, A O; Nerrie, B L

    2008-08-01

    The microbial quality of raw fillets of aquacultured catfish, salmon, tilapia, and trout was evaluated. A total of 272 fillets from nine local and nine Internet retail markets were tested. Mean values were 5.7 log CFU/g for total aerobic mesophiles, 6.3 log CFU/g for psychrotrophs, and 1.9 log most probable number (MPN) per gram for coliforms. Differences in these microbial levels between the two kinds of markets and among the four types of fish were not significant (P > 0.05), except that Internet trout fillets had about 0.8-log higher aerobic mesophiles than did trout fillets purchased locally. Although Escherichia coli was detected in 1.4, 1.5, and 5.9% of trout, salmon, and tilapia, respectively, no sample had > or = 1.0 log MPN/g. However, E. coli was found in 13.2% of catfish, with an average of 1.7 log MPN/g. About 27% of all fillets had Listeria spp., and a positive correlation between the prevalence of Listeria spp. and Listeria monocytogenes was observed. Internet fillets had a higher prevalence of both Listeria spp. and L. monocytogenes than did those fillets purchased locally. L. monocytogenes was present in 23.5% of catfish but in only 5.7, 10.3, and 10.6% of trout, tilapia, and salmon, respectively. Salmonella and E. coli O157 were not found in any sample. A follow-up investigation using catfish operation as a model revealed that gut waste exposed during evisceration is a potential source of coliforms and Listeria spp.

  12. Hydrogen peroxide treatment in Atlantic salmon induces stress and detoxification response in a daily manner.

    Science.gov (United States)

    Vera, L M; Migaud, H

    2016-01-01

    Daily variation in the absorption, metabolism and excretion of toxic substances will ultimately determine the actual concentration to which the cells and tissues are exposed. In aquaculture, Atlantic salmon (Salmo salar) can be frequently exposed to hydrogen peroxide (H2O2) to treat topical skin and gill infections, particularly in relation to parasitic infections (e.g. sea lice Lepeophtheirus salmonis and amoebic gill disease caused by Neoparamoeba perurans). It is well accepted that the time of administration influences pharmacodynamics and pharmacokinetics of drugs which in turn affects their efficacy and toxicity. Consequently, a better understanding of drug side effects as a function of time of day exposure would help to improve treatment efficacy and fish welfare. To this end, salmon were exposed to H2O2 (1500 mg/L) for 20 min at six different times of the day during a 24-h cycle and we investigated the time-dependent effects of exposure on physiological stress (glucose, lactate and cortisol) and antioxidant enzyme expression (gpx1, cat, Mn-sod and hsp70) in liver and gills. In addition, at each sampling point, 8 control fish were also sampled. Our results revealed that the time of administration of H2O2 caused significant differences in the induction of both physiological and oxidative stress responses. Glucose and lactate were higher in the treated fish during daytime whereas cortisol levels appeared to be systematically increased (>1000 ng/mL) after H2O2 treatment irrespective of exposure time, although differences with control levels were higher during the day. In liver, gene expression of antioxidant enzymes displayed daily rhythmicity in both treated and control groups and showed higher mRNA expression levels in salmon treated with H2O2 at ZT6 (6 h after lights onset). In gills, rhythmic expression was only found for gpx1 in the control fish and for hsp70 and Mn-sod in the treated groups. However, in the treated salmon, higher gene expression levels of

  13. Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis.

    Science.gov (United States)

    Morais, Sofia; Pratoomyot, Jarunan; Taggart, John B; Bron, James E; Guy, Derrick R; Bell, J Gordon; Tocher, Douglas R

    2011-05-20

    Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. This study has identified

  14. Genotype-specific responses in Atlantic salmon (Salmo salar subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis

    Directory of Open Access Journals (Sweden)

    Guy Derrick R

    2011-05-01

    Full Text Available Abstract Background Expansion of aquaculture is seriously limited by reductions in fish oil (FO supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. Results A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2 was only up-regulated and desaturases (Δ5 fad and Δ6 fad showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate

  15. ZONING OF COASTAL AREA FOR MARINE AQUACULTURE Š PRESENT SITUATIONS AND PROBLEMS

    Directory of Open Access Journals (Sweden)

    Lav Bavčević

    2001-12-01

    Full Text Available We already acepted that Croatian economical and geopolitical possition can bee improved only with better utilization of coastal area. Under these conditions mariculture also makes a part od sea master plan because demands for mariculture are focused on clean environmental conditions to obtain economic benefits. Increased pressure to the coastal area is global trend and if not planed and organized can provoke conflicts and can affect further development. Under these condition, marine aquaculture is frequent subject of many discussion focused on the environmental impact. Conflict of different interest in coastal area with no argumentation is putting marine aquaculture in worst position related with tourism and industry. Hard argumentations is laying in noneadequate frame of work in some facilities and to take advantake competitors are preasenting marine aquaculture in worst picture. Marine aquaculture product has to be health product, which can be completely damaged because of non-responsible approach of other activity. Mariculture also can suffer from self-pollution as for example tourism and must be well planed and managed. Fecal pollution from towns, pollution from bad controlled tourists activity, industry, influence of intensive and non controlled agriculture in coast line, are also potential danger for quality of all sea products and also cultured products from marine aquaculture. High quality of marine products can be obtained by zoning of coastal area, and in concept of these zoning it is necessary to define the zones for marine aquaculture. Procedure of zoning has to be divided in three steps: deetrmination of present status of area, definition of shore land for making mariculture related shore infrastructure and definitions of areas suitable for mariculture with limits of production. These can make positive situations with avoiding conflicts in exploitation of common resources in future. Zone for marine aquaculture has to be controlled

  16. Impact of naturally spawning captive-bred Atlantic salmon on wild populations: depressed recruitment and increased risk of climate-mediated extinction.

    Science.gov (United States)

    McGinnity, Philip; Jennings, Eleanor; DeEyto, Elvira; Allott, Norman; Samuelsson, Patrick; Rogan, Gerard; Whelan, Ken; Cross, Tom

    2009-10-22

    The assessment report of the 4th International Panel on Climate Change confirms that global warming is strongly affecting biological systems and that 20-30% of species risk extinction from projected future increases in temperature. It is essential that any measures taken to conserve individual species and their constituent populations against climate-mediated declines are appropriate. The release of captive bred animals to augment wild populations is a widespread management strategy for many species but has proven controversial. Using a regression model based on a 37-year study of wild and sea ranched Atlantic salmon (Salmo salar) spawning together in the wild, we show that the escape of captive bred animals into the wild can substantially depress recruitment and more specifically disrupt the capacity of natural populations to adapt to higher winter water temperatures associated with climate variability. We speculate the mechanisms underlying this seasonal response and suggest that an explanation based on bio-energetic processes with physiological responses synchronized by photoperiod is plausible. Furthermore, we predict, by running the model forward using projected future climate scenarios, that these cultured fish substantially increase the risk of extinction for the studied population within 20 generations. In contrast, we show that positive outcomes to climate change are possible if captive bred animals are prevented from breeding in the wild. Rather than imposing an additional genetic load on wild populations by releasing maladapted captive bred animals, we propose that conservation efforts should focus on optimizing conditions for adaptation to occur by reducing exploitation and protecting critical habitats. Our findings are likely to hold true for most poikilothermic species where captive breeding programmes are used in population management.

  17. Probiotics as Antiviral Agents in Shrimp Aquaculture

    OpenAIRE

    Bestha Lakshmi; Buddolla Viswanath; D. V. R. Sai Gopal

    2013-01-01

    Shrimp farming is an aquaculture business for the cultivation of marine shrimps or prawns for human consumption and is now considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. Intensification of shrimp farming had led to the development of a number of diseases, which resulted in the excessive use of antimicrobial agents, which is finally responsible for many adverse effects. Currently, probiotics are ch...

  18. Probiotics as control agents in aquaculture

    Science.gov (United States)

    Geovanny D, Gómez R.; Balcázar, José Luis; Ma, Shen

    2007-01-01

    Infectious diseases constitute a limiting factor in the development of the aquaculture production, and control has solely concentrated on the use of antibiotics. However, the massive use of antibiotics for the control of diseases has been questioned by acquisition of antibiotic resistance and the need of alternative is of prime importance. Probiotics, live microorganisms administered in adequate amounts that confer a healthy effect on the host, are emerging as significant microbial food supplements in the field of prophylaxis.

  19. New aquaculture drugs under FDA review

    Science.gov (United States)

    Bowker, James D.; Gaikowski, Mark P.

    2012-01-01

    Only eight active pharmaceutical ingredients available in 18 drug products have been approved by the U.S. Food and Drug Administration for use in aquaculture. The approval process can be lengthy and expensive, but several new drugs and label claims are under review. Progress has been made on approvals for Halamid (chloramine-T), Aquaflor (florfenicol) and 35% PeroxAid (hydrogen peroxide) as therapeutic drugs. Data are also being generated for AQUI-S 20E, a fish sedative.

  20. Pêches, aquaculture et bien vivre en Bolivie

    International Development Research Centre (IDRC) Digital Library (Canada)

    De 2011 à 2014, l'alliance PECES PARA LA VIDA (PPV –. Poissons pour la vie) a évalué l'éventuelle contribution des pêches et de l'aquaculture à la sécurité .... Van Damme, P. et Bravo, N. (2009). Diagnóstico de. Pesca Continental y Acuicultura en Bolivia. Anexo. 1. In: Proyecto Mejoramiento de la Legislación Para.

  1. Probiotics as Antiviral Agents in Shrimp Aquaculture

    Directory of Open Access Journals (Sweden)

    Bestha Lakshmi

    2013-01-01

    Full Text Available Shrimp farming is an aquaculture business for the cultivation of marine shrimps or prawns for human consumption and is now considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. Intensification of shrimp farming had led to the development of a number of diseases, which resulted in the excessive use of antimicrobial agents, which is finally responsible for many adverse effects. Currently, probiotics are chosen as the best alternatives to these antimicrobial agents and they act as natural immune enhancers, which provoke the disease resistance in shrimp farm. Viral diseases stand as the major constraint causing an enormous loss in the production in shrimp farms. Probiotics besides being beneficial bacteria also possess antiviral activity. Exploitation of these probiotics in treatment and prevention of viral diseases in shrimp aquaculture is a novel and efficient method. This review discusses the benefits of probiotics and their criteria for selection in shrimp aquaculture and their role in immune power enhancement towards viral diseases.

  2. Site Dependent Beneficial Effects of Aquaculture Effluent

    Science.gov (United States)

    Buzby, K. M.; Viadero, R. C.

    2005-05-01

    The effect of aquaculture effluent on community structure was examined in a stream formed by the discharge of treated acid mine water. The mine water stream and the raceway stream whose source was treated mine water were sampled. In addition, a site below the confluence of the mine water and raceway streams was also sampled. Initially, there were no significant differences in macroinvertebrate density, diversity or community structure in the closed canopy, low light, mine water and raceway streams. However, in the high light environment below the confluence, the community included a substantial proportion of grazers and density was significantly lower. After an inadvertent resuspension of precipitated metal hydroxides from the AMD treatment facility, communities in the mine water stream and below the confluence were strongly dominated by chironomids while the raceway stream maintained much of its diversity. At the end of the study period diversity in all streams was significantly greater than in earlier samples however, densities were 6-8x lower than initial values in the raceway and mine water streams. This study demonstrated that there was little effect of aquaculture effluent on the benthic community in a low-light environment. Additionally, aquaculture effluent mediated the negative effects of AMD metals.

  3. State of the art of Italian aquaculture

    Directory of Open Access Journals (Sweden)

    P. Melotti

    2010-04-01

    Full Text Available According to aquaculture production statistics published by FEAP (2007, Italy is the fifth largest fish producer in the European Union having a total quantity for 2006 estimated around 60,000 t. This data is exclusively referred to rainbow trout (Oncorhynchus mykiss, seabream (Sparus aurata, seabass (Dicentrarchus labrax and European eel (Anguilla anguilla but even if we consider the total aquaculture production elaborated by ISMEA (2006 through year 2005 including sturgeons, carps, striped bass, catfish and ornamental fish, Italy ranks fourth with 69,100 t after Norway (655,364 t, Great Britain (141,793 t and Greece (83,600 t. Over the last 15 years, Italian finfish production has known a decrease related to all the species mainly reared (trout, eel, carps, catfish except for the eurhyaline species that have had an important expansion (Table 1. Based on these considerations, in this work we describe the main features of fish aquaculture in Italy focalizing the attention to the single sectors of the farmed species and their trend for the future.

  4. Meeting the Needs for More Fish Through Aquaculture

    Science.gov (United States)

    Giap, D. H.; Lam, T. J.

    2015-10-01

    Fish is one of the major sources of animal protein. Due to rising world populations, increasing income and urbanization, demand for fish has been increasing. In order to meet the need for more fish, aquaculture has become increasingly important as wild populations and production from capture fisheries have declined due to overfishing and poor management. In recent years, production from aquaculture has increased rapidly to address the shortfalls in capture fisheries, especially in Asia where aquaculture production accounts for about 90% of world aquaculture production by volume. This paper reviews the status of the world’s fish production, provides an update on Asian aquaculture, and highlights developments that are contributing to sustainable fish production, particularly integrated multi-trophic aquaculture and aquaponics.

  5. Effects of nanoparticles in species of aquaculture interest.

    Science.gov (United States)

    Khosravi-Katuli, Kheyrollah; Prato, Ermelinda; Lofrano, Giusy; Guida, Marco; Vale, Gonçalo; Libralato, Giovanni

    2017-07-01

    Recently, it was observed that there is an increasing application of nanoparticles (NPs) in aquaculture. Manufacturers are trying to use nano-based tools to remove the barriers about waterborne food, growth, reproduction, and culturing of species, their health, and water treatment in order to increase aquaculture production rates, being the safe-by-design approach still unapplied. We reviewed the applications of NPs in aquaculture evidencing that the way NPs are applied can be very different: some are direclty added to feed, other to water media or in aquaculture facilities. Traditional toxicity data cannot be easily used to infer on aquaculture mainly considering short-term exposure scenarios, underestimating the potential exposure of aquacultured species. The main outputs are (i) biological models are not recurrent, and in the case, testing protocols are frequently different; (ii) most data derived from toxicity studies are not specifically designed on aquaculture needs, thus contact time, exposure concentrations, and other ancillary conditions do not meet the required standard for aquaculture; (iii) short-term exposure periods are investigated mainly on species of indirect aquaculture interest, while shrimp and fish as final consumers in aquaculture plants are underinvestigated (scarce or unknown data on trophic chain transfer of NPs): little information is available about the amount of NPs accumulated within marketed organisms; (iv) how NPs present in the packaging of aquacultured products can affect their quality remained substantially unexplored. NPs in aquaculture are a challenging topic that must be developed in the near future to assure human health and environmental safety. Graphical abstract ᅟ.

  6. Recent Major Advances of Biotechnology and Sustainable Aquaculture in China

    OpenAIRE

    Xiang, Jianhai

    2015-01-01

    Background: Global aquaculture production has increased continuously over the last five decades, and particularly in China. Its aquaculture has become the fastest growing and most efficient agri-sector, with production accounting for more than 70% of the world?s aquaculture output. In the new century, with serious challenges regarding population, resources and the environment, China has been working to develop high-quality, effective, healthy, and sustainable blue agriculture through the appl...

  7. Offshore finfish aquaculture in the United States: An examination of federal laws that could be used to address environmental and occupational public health risks.

    Science.gov (United States)

    Fry, Jillian P; Love, David C; Shukla, Arunima; Lee, Ryan M

    2014-11-19

    Half of the world's edible seafood comes from aquaculture, and the United States (US) government is working to develop an offshore finfish aquaculture industry in federal waters. To date, US aquaculture has largely been regulated at the state level, and creating an offshore aquaculture industry will require the development of a new regulatory structure. Some aquaculture practices involve hazardous working conditions and the use of veterinary drugs, agrochemicals, and questionable farming methods, which could raise environmental and occupational public health concerns if these methods are employed in the offshore finfish industry in the US. This policy analysis aims to inform public health professionals and other stakeholders in the policy debate regarding how offshore finfish aquaculture should be regulated in the US to protect human health; previous policy analyses on this topic have focused on environmental impacts. We identified 20 federal laws related to offshore finfish aquaculture, including 11 that are relevant to preventing, controlling, or monitoring potential public health risks. Given the novelty of the industry in the US, myriad relevant laws, and jurisdictional issues in an offshore setting, federal agencies need to work collaboratively and transparently to ensure that a comprehensive and functional regulatory structure is established that addresses the potential public health risks associated with this type of food production.

  8. Nitrogen uptake in riparian plant communities across a sharp ecological boundary of salmon density

    Directory of Open Access Journals (Sweden)

    Reimchen TE

    2003-05-01

    Full Text Available Abstract Background Recent studies of anadromous salmon (Oncorhynchus spp. on the Pacific Coast of North America indicate an important and previously unrecognized role of salmonid nutrients to terrestrial biota. However, the extent of this uptake by primary producers and consumers and the influences on community structure remain poorly described. We examine here the contribution of salmon nutrients to multiple taxa of riparian vegetation (Blechnum spicant, Menziesii ferruginea, Oplopanax horridus, Rubus spectabilis, Vaccinium alaskaense, V. parvifolium, Tsuga heterophylla and measure foliar δ15N, total %N and plant community structure at two geographically separated watersheds in coastal British Columbia. To reduce potentially confounding effects of precipitation, substrate and other abiotic variables, we made comparisons across a sharp ecological boundary of salmon density that resulted from a waterfall barrier to salmon migration. Results δ15N and %N in foliage, and %cover of soil nitrogen indicators differed across the waterfall barrier to salmon at each watershed. δ15N values were enriched by 1.4‰ to 9.0‰ below the falls depending on species and watershed, providing a relative contribution of marine-derived nitrogen (MDN to vegetation of 10% to 60%. %N in foliar tissues was slightly higher below the falls, with the majority of variance occurring between vegetation species. Community structure also differed with higher incidence of nitrogen-rich soil indicator species below the waterfalls. Conclusions Measures of δ15N, %N and vegetation cover indicate a consistent difference in the riparian community across a sharp ecological boundary of salmon density. The additional N source that salmon provide to nitrogen-limited habitats appears to have significant impacts on the N budget of riparian vegetation, which may increase primary productivity, and result in community shifts between sites with and without salmon access. This, in turn, may

  9. What shapes food value chains? Lessons from aquaculture in Asia

    DEFF Research Database (Denmark)

    Jespersen, Karen Sau; Kelling, I; Ponte, Stefano

    2014-01-01

    In this article, we explain what shapes food value chains through the analysis of selected aquaculture industries in four key Asian producing countries. Worldwide production of aquatic resources has grown rapidly in the past few decades, and aquaculture production in Asia has played a decisive role...... and private standards. We find that the most sophisticated aquaculture operations in Asia are found in value chains led by retailers and branded processors and where the quality of domestic institutional frameworks has facilitated compliance with increasing demands from buyers overseas. Finally, we reflect...... on the sustainability challenges of aquaculture and provide four broad observations on the governance of food value chains....

  10. Forensic identification of severely degraded Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) tissues.

    Science.gov (United States)

    Dalvin, Sussie; Glover, Kevin A; Sørvik, Anne Ge; Seliussen, Bjørghild B; Taggart, John B

    2010-11-03

    Aquaculture is a globally important and rapidly growing industry. It contributes positively to the economy and sustainability of coastal communities, but it is not without regulatory challenges. These challenges are diverse, and may include identification of fish discarded in an illegal manner, biological discharge from fish ensilage tanks, and partially destroyed or processed tissues. Robust genetic tools are required by management authorities to address these challenges. In this paper, we describe nine species-specific primer sets amplifying very short DNA fragments within the mitochondrial DNA cytochrome c oxidase (COI) gene, which were designed to permit diagnostic identification of degraded DNA from two of the most commonly farmed salmonids in Europe and North America. Of the nine designed primer sets, six were found to be species-specific (four Atlantic salmon, two rainbow trout), whereas the remaining three sets (two Atlantic salmon, one rainbow trout) also amplified a product from other, closely related, salmonid DNA templates. Screening of DNA templates from 11 other non-salmonid native fish species did not produce PCR products with any of the primer sets. Specific tests confirmed the ability of these markers to identify Atlantic salmon and rainbow trout tissues in treated food products, chemically treated ensilage waste and fillets left to degrade in saltwater for up to 31 days at 15°C. Importantly, these markers provided diagnostic identification in cases where other genetic methods failed because of degraded DNA quality. Results from this study demonstrate that amplification of very short DNA fragments using species-specific primers represents a robust and versatile method to create cheap and efficient genetic tests that can be implemented in a range of forensic applications. These markers will provide fishery, aquaculture and food regulatory authorities with a method to investigate and enforce regulations within these industries.

  11. Protecting the endangered lake salmon

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, H.; Oesch, P. [ed.

    1997-11-01

    In addition to the Ringed Seal, the labyrinthine Saimaa lake system created after the Ice Age also trapped a species of salmon, whose entire life cycle became adapted to fresh water. In order to improve the living conditions of this lake salmon which - like the ringed seal - is today classified as an endangered species, an intensive research programme has been launched. The partners include the Finnish Game and Fisheries Research Institute, fishing and environmental authorities and - in collaboration with UPM-Kymmene Oy and Kuurnan Voima Oy - the IVO subsidiary Pamilo Oy

  12. Adaptive potential of a Pacific salmon challenged by climate change

    Science.gov (United States)

    Muñoz, Nicolas J.; Farrell, Anthony P.; Heath, John W.; Neff, Bryan D.

    2015-02-01

    Pacific salmon provide critical sustenance for millions of people worldwide and have far-reaching impacts on the productivity of ecosystems. Rising temperatures now threaten the persistence of these important fishes, yet it remains unknown whether populations can adapt. Here, we provide the first evidence that a Pacific salmon has both physiological and genetic capacities to increase its thermal tolerance in response to rising temperatures. In juvenile chinook salmon (Oncorhynchus tshawytscha), a 4 °C increase in developmental temperature was associated with a 2 °C increase in key measures of the thermal performance of cardiac function. Moreover, additive genetic effects significantly influenced several measures of cardiac capacity, indicative of heritable variation on which selection can act. However, a lack of both plasticity and genetic variation was found for the arrhythmic temperature of the heart, constraining this upper thermal limit to a maximum of 24.5 +/- 2.2 °C. Linking this constraint on thermal tolerance with present-day river temperatures and projected warming scenarios, we predict a 17% chance of catastrophic loss in the population by 2100 based on the average warming projection, with this chance increasing to 98% in the maximum warming scenario. Climate change mitigation is thus necessary to ensure the future viability of Pacific salmon populations.

  13. A molecular approach to pre-harvest impact on post-harvest quality of trout

    DEFF Research Database (Denmark)

    Nielsen, Michael Engelbrecht; Hyldig, Grethe; Nielsen, Henrik Hauch

    Fish meat quality is influenced by many biological and physical factors like e.g. rearing, feeding, slaughtering, processing and storage. Observations from the commercial aquaculture industry indicate that infections in e.g. salmon caused by Moritella viscosus or Pancreas Disease (PD) results...... in downgrading of fish quality and subsequent a reduction in prize. Despite this, the impact of infectious diseases on the meat quality and the mechanisms behind are poorly investigated. Wound repair is a dynamic, interactive response to tissue injury that involves a complex interaction and cross talk of various...... cell types, extracellular matrix molecules, soluble mediators and cytokines. In order to describe the molecular mechanisms and processes of wound repair, a panel of genes covering immunological factors and tissue regeneration were used to measure changes at the mRNA level following mechanical tissue...

  14. Infectious salmon anaemia virus (ISAV) mucosal infection in Atlantic salmon.

    Science.gov (United States)

    Aamelfot, Maria; McBeath, Alastair; Christiansen, Debes H; Matejusova, Iveta; Falk, Knut

    2015-10-21

    All viruses infecting fish must cross the surface mucosal barrier to successfully enter a host. Infectious salmon anaemia virus (ISAV), the causative agent of the economically important infectious salmon anaemia (ISA) in Atlantic salmon, Salmo salar L., has been shown to use the gills as its entry point. However, other entry ports have not been investigated despite the expression of virus receptors on the surface of epithelial cells in the skin, the gastrointestinal (GI) tract and the conjunctiva. Here we investigate the ISAV mucosal infection in Atlantic salmon after experimental immersion (bath) challenge and in farmed fish collected from a confirmed outbreak of ISA in Norway. We show for the first time evidence of early replication in several mucosal surfaces in addition to the gills, including the pectoral fin, skin and GI tract suggesting several potential entry points for the virus. Initially, the infection is localized and primarily infecting epithelial cells, however at later stages it becomes systemic, infecting the endothelial cells lining the circulatory system. Viruses of low and high virulence used in the challenge revealed possible variation in virus progression during infection at the mucosal surfaces.

  15. Fisheries And Aquaculture Resources And Their Interactions With Environment in Turkey

    Science.gov (United States)

    Deniz, H.

    2003-04-01

    potential of aquaculture was fully realised and there were, therefore, no areas specifically designated for aquaculture. Aquaculture development is therefore being restricted by the loss of access to some of the best sites. The most common conflicts occur with environmental protection, tourism, recreation, urbanisation, archaeology and navigation. In order to prevent such conflicts and minimise the environmental impacts the open sea fishery, offshore mariculture systems, and echo-friendly technologies have to be adopted. In addition to that integrated coastal management models must be developed and implemented. Key words: fisheries and aquaculture resources, environment, interaction, tourism, protected areas, mangement and sustainability.

  16. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook...

  17. Bivalve aquaculture-environment interactions in the context of climate change.

    Science.gov (United States)

    Filgueira, Ramón; Guyondet, Thomas; Comeau, Luc A; Tremblay, Réjean

    2016-12-01

    Coastal embayments are at risk of impacts by climate change drivers such as ocean warming, sea level rise and alteration in precipitation regimes. The response of the ecosystem to these drivers is highly dependent on their magnitude of change, but also on physical characteristics such as bay morphology and river discharge, which play key roles in water residence time and hence estuarine functioning. These considerations are especially relevant for bivalve aquaculture sites, where the cultured biomass can alter ecosystem dynamics. The combination of climate change, physical and aquaculture drivers can result in synergistic/antagonistic and nonlinear processes. A spatially explicit model was constructed to explore effects of the physical environment (bay geomorphic type, freshwater inputs), climate change drivers (sea level, temperature, precipitation) and aquaculture (bivalve species, stock) on ecosystem functioning. A factorial design led to 336 scenarios (48 hydrodynamic × 7 management). Model outcomes suggest that the physical environment controls estuarine functioning given its influence on primary productivity (bottom-up control dominated by riverine nutrients) and horizontal advection with the open ocean (dominated by bay geomorphic type). The intensity of bivalve aquaculture ultimately determines the bivalve-phytoplankton trophic interaction, which can range from a bottom-up control triggered by ammonia excretion to a top-down control via feeding. Results also suggest that temperature is the strongest climate change driver due to its influence on the metabolism of poikilothermic organisms (e.g. zooplankton and bivalves), which ultimately causes a concomitant increase of top-down pressure on phytoplankton. Given the different thermal tolerance of cultured species, temperature is also critical to sort winners from losers, benefiting Crassostrea virginica over Mytilus edulis under the specific conditions tested in this numerical exercise. In general, it is

  18. Replacing Fish Oil with Vegetable Oils in Salmon Feed Increases Hepatic Lipid Accumulation and Reduces Insulin Sensitivity in Mice

    DEFF Research Database (Denmark)

    Midtbø, Lisa Kolden

    Background: Due to a growing global aquaculture production, fish oil (FO) and fish meal (FM) are partly replaced with vegetable ingredients in aqua feed for Atlantic salmon. These replacements in the feed lead to an altered fatty acid composition in the salmon fillet. We aimed to investigate how...... levels of diacylglycerol (DAG), ceramides and arachidonic acid (AA)-derived oxylipins compared with mice fed WD-FO. In addition, C57BL/6J mice were fed fish oil-enriched diets with different carbohydrate sources, and we observed that sucrose dose-dependently abrogate the antiobesity effect of fish oil......%) of FO with different vegetable oils (VOs); rape seed oil (WDRO), olive oil (WD-OO) or soybean oil (WD-SO). These diets were given to C57BL/6J mice, and mice had higher hepatic lipid accumulation and lower insulin sensitivity when given WD-SO compared with WD-FO. Mice given WD-SO had higher hepatic...

  19. Proteomics and its applications to aquaculture in China: infection, immunity, and interaction of aquaculture hosts with pathogens.

    Science.gov (United States)

    Peng, Xuan-Xian

    2013-01-01

    China is the largest fishery producer worldwide in term of its aquaculture output, and plays leading and decisive roles in international aquaculture development. To improve aquaculture output further and promote aquaculture business development, infectious diseases and immunity of fishes and other aquaculture species must be studied. In this regard, aquaculture proteomics has been widely carried out in China to get a better understanding of aquaculture host immunity and microbial pathogenesis as well as host-pathogen interactions, and to identify novel disease targets and vaccine candidates for therapeutic interventions. These proteomics studies include development of novel methods, assays, and advanced concepts in order to characterize proteomics mechanisms of host innate immune defense and microbial pathogenesis. This review article summarizes some recently published technical approaches and their applications to aquaculture proteomics with an emphasis on the responses of aquaculture animals to bacteria, viruses, and other aqua-environmental stresses, and development of broadly cross-protective vaccine candidates. The reviewed articles are those that have been published in international peer reviewed journals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Norwegian salmon goes to market: The case of the Austevoll seafood cluster

    DEFF Research Database (Denmark)

    Hovgaard, Gestur

    2006-01-01

    This paper examines the impact of the globalisation of the farmed salmon comodity chain upon farmed salmon production in the western Norwegian municipality of Austevoll. On the basis of field research conducted in 2002 and 2003, we conclude that salmon farming in Austevoll has responded to the ch...... with suggestions for incorporating the literatues on global food chains and industrial clusters in the study of seafood production and global markets....... to the challenges of 'buyer-driven' food chains by virtue of its history as a seafood cluster. Despite this era of 'homogenised globalisation'. Nevertheless, recent changes in the global farmed salmon supply chain may result in the imposition of vertical relations in the Austevoll cluster. We conclude...

  1. Ecological risk assessment for Pacific salmon exposed to dimethoate in California.

    Science.gov (United States)

    Whitfield Aslund, Melissa; Breton, Roger L; Padilla, Lauren; Winchell, Michael; Wooding, Katie L; Moore, Dwayne R J; Teed, R Scott; Reiss, Rick; Whatling, Paul

    2017-02-01

    A probabilistic risk assessment of the potential direct and indirect effects of acute dimethoate exposure to salmon populations of concern was conducted for 3 evolutionarily significant units (ESUs) of Pacific salmon in California. These ESUs were the Sacramento River winter-run chinook, the California Central Valley spring-run chinook, and the California Central Valley steelhead. Refined acute exposures were estimated using the Soil and Water Assessment Tool, a river basin-scale model developed to quantify the impact of land-management practices in large, complex watersheds. Both direct effects (i.e., inhibition of brain acetylcholinesterase activity) and indirect effects (i.e., altered availability of aquatic invertebrate prey) were assessed. Risk to salmon and their aquatic invertebrate prey items was determined to be de minimis. Therefore, dimethoate is not expected to have direct or indirect adverse effects on Pacific salmon in these 3 ESUs. Environ Toxicol Chem 2017;36:532-543. © 2016 SETAC. © 2016 SETAC.

  2. Use of Barley for the Purification of Aquaculture Wastewater in a Hydroponics System

    OpenAIRE

    A. M. Snow; Abdel E. Ghaly

    2008-01-01

    Barley was examined for its ability to remove nutrients from aquaculture wastewater. The effects of seed sterilization using ethanol and bleach and seed density on germination and plant growth were investigated. Surface sterilization of barley seeds had a negative impact on germination. Increasing the ethanol concentration and/or the bleach concentration reduced the germination percentage. Barley seeds were first germinated in water in the hydroponics system. The seedlings then received waste...

  3. The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L. Males.

    Directory of Open Access Journals (Sweden)

    Fernando Ayllon

    2015-11-01

    Full Text Available Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1-5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS using a pool sequencing approach (20 individuals per river and phenotype of male salmon returning to rivers as sexually mature either after one sea winter (2009 or three sea winters (2011 in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33-36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens, has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.

  4. Perception of Aquaculture Education to Support Further Growth of Aquaculture Industry in Victoria, Australia

    Science.gov (United States)

    Awal, Sadiqul; Christie, Andrew; Watson, Matthew; Hannadige, Asanka G. T.

    2012-01-01

    Purpose: The central aim of this study was to determine the perception of aquaculture educational provisions in the state of Victoria, and whether they are sufficient to ultimately support further growth of the industry. Design/methodology/approach: Questionnaires were formulated and distributed to participants in a variety of ways, including via…

  5. The sound of migration: exploring data sonification as a means of interpreting multivariate salmon movement datasets

    Directory of Open Access Journals (Sweden)

    Jens C. Hegg

    2018-02-01

    Full Text Available The migration of Pacific salmon is an important part of functioning freshwater ecosystems, but as populations have decreased and ecological conditions have changed, so have migration patterns. Understanding how the environment, and human impacts, change salmon migration behavior requires observing migration at small temporal and spatial scales across large geographic areas. Studying these detailed fish movements is particularly important for one threatened population of Chinook salmon in the Snake River of Idaho whose juvenile behavior may be rapidly evolving in response to dams and anthropogenic impacts. However, exploring movement data sets of large numbers of salmon can present challenges due to the difficulty of visualizing the multivariate, time-series datasets. Previous research indicates that sonification, representing data using sound, has the potential to enhance exploration of multivariate, time-series datasets. We developed sonifications of individual fish movements using a large dataset of salmon otolith microchemistry from Snake River Fall Chinook salmon. Otoliths, a balance and hearing organ in fish, provide a detailed chemical record of fish movements recorded in the tree-like rings they deposit each day the fish is alive. This data represents a scalable, multivariate dataset of salmon movement ideal for sonification. We tested independent listener responses to validate the effectiveness of the sonification tool and mapping methods. The sonifications were presented in a survey to untrained listeners to identify salmon movements with increasingly more fish, with and without visualizations. Our results showed that untrained listeners were most sensitive to transitions mapped to pitch and timbre. Accuracy results were non-intuitive; in aggregate, respondents clearly identified important transitions, but individual accuracy was low. This aggregate effect has potential implications for the use of sonification in the context of crowd

  6. Saprolegnia species in Norwegian salmon hatcheries: field survey identifies S. diclina sub-clade IIIB as the dominating taxon.

    Science.gov (United States)

    Thoen, E; Vrålstad, T; Rolén, E; Kristensen, R; Evensen, Ø; Skaar, I

    2015-06-03

    Saprolegnia isolates within the recognized clades encompassing the taxa S. parasitica and S. diclina act as opportunist and aggressive pathogens to both fish and their eggs. They are responsible for significant economic losses in aquaculture, particularly in salmonid hatcheries. However, the identity, distribution and pathogenic significance of involved species often remain unexplored. In this study, 89 Saprolegnia isolates were recovered from water, eggs and salmon tissue samples that originated from salmon (Salmo salar) hatcheries along the coast of Norway. The cultures were characterized morphologically and molecularly in order to provide an overview of the species composition of Saprolegnia spp. present in Norwegian salmon hatcheries. We demonstrate that S. diclina clearly dominated and contributed to 79% of the recovered isolates. Parsimony analyses of the nuclear ribosomal internal transcribed spacer (ITS) region split these isolates into 2 strongly supported sub-clades, S. diclina sub-clade IIIA and IIIB, where sub-clade IIIB accounted for 66% of all isolates. A minor portion of the isolates constituted other taxa that were either conspecific or showed strong affinity to S. parasitica, S. ferax, S. hypogyna and Scoliolegnia asterophora. The unique sub-clade IIIB of S. diclina was most prevalent in water and salmon eggs, while S. parasitica isolates were more frequently isolated from post hatching stages. The study demonstrated that morphological criteria in many cases were insufficient for species delimitation due to lack of sexual structures or incoherent morphological expression of such features within the tested replicates.

  7. Primary Isolation and Characterization of Tenacibaculum maritimum from Chilean Atlantic Salmon Mortalities Associated with a Pseudochattonella spp. Algal Bloom.

    Science.gov (United States)

    Apablaza, Patricia; Frisch, Kathleen; Brevik, Øyvind Jakobsen; Småge, Sverre Bang; Vallestad, Camilla; Duesund, Henrik; Mendoza, Julio; Nylund, Are

    2017-09-01

    This study presents the first isolation of Tenacibaculum maritimum from farmed Atlantic Salmon Salmo salar in Chile. The isolate, designated T. maritimum Ch-2402, was isolated from gills of Atlantic Salmon at a farm located in region X, Los Lagos, Chile, during the harmful algal bloom caused by Pseudochattonella spp. in February 2016. The algal bloom is reported to have caused 40,000 metric tons of mortality in this salmon farming area. The bacterium T. maritimum, which causes tenacibaculosis, is recognized as an important pathogen of marine fish worldwide. Genetic, phylogenetic, and phenotypic characterizations were used to describe the T. maritimum Ch-2402 isolate. The isolate was similar to the type strain of T. maritimum but was genetically unique. Tenacibaculum dicentrarchi isolates were also recovered during sampling from the same farm. Based on the fact that T. maritimum has been shown to cause disease in Atlantic Salmon in other regions, the presence of this bacterium poses a potential risk of disease to fish in the Chilean aquaculture industry. Received November 6, 2016; accepted May 29, 2017.

  8. Optimization of aquaculture systems in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, M. [Instituto Ciencias de la Construccion Eduardo Torroja, Madrid (Spain); Carrillo, M. [Instituto de Acuicultura de Torre la Sal, Castellon (Spain)

    1997-12-31

    An analysis of present heat production systems, using fossil fuel combustion, employed for sea water heating in Spanish hatcheries is given in this paper and compared to a technical solution based on the employment of a heat pump. Price per unit of produced energy is calculated for each system using liquid and gaseous fuels, and then these prices are compared to the price obtained for a heat pump. The heat pump system is also compared, from the point of view of its precision in maintaining temperatures, to the systems used at the present. A project prototype for thermal conditioning and temperature control in aquaculture rearing tanks is described. (author)

  9. Plant protein-based feeds and commercial feed enable isotopic tracking of aquaculture emissions into marine macrozoobenthic bioindicator species.

    Science.gov (United States)

    Kusche, Henrik; Hillgruber, Nicola; Rößner, Yvonne; Focken, Ulfert

    2017-06-01

    Brittle stars (Ophiura spp.) and other benthic macrofauna were collected in a prospective mariculture area in the North Sea to determine if these taxa could be used as indicator species to track nutrients released from future offshore aquaculture sites. We analysed natural carbon and nitrogen stable isotopic signatures in tissues from macrofauna and compared these to six feed ingredients and four experimental diets made thereof, as well as to a commercial feed with and without lipid and carbonate removal. Our data suggest practicability of using isotopic signatures of Ophiura spp. to track aquaculture-derived organic material if plant-based fish diet ingredients and commercial feed were used for fish farming in the German Exclusive Economic Zone. Diets with high fish meal content would not be detected in Ophiura spp. using isotopic measures due to the similarity with the marine background. Our data provide valuable baseline information for studies on the impact of offshore aquaculture on the marine environment.

  10. Abnormal swimming behavior and increased deformities in rainbow trout Oncorhynchus mykiss cultured in low exchange water recirculation aquaculture systems

    Science.gov (United States)

    Two studies were conducted to determine if accumulating water quality parameters would negatively impact rainbow trout Oncorhynchus mykiss health and welfare within water recirculation aquaculture systems (WRAS) that were operated at low and near-zero water exchange, with and without ozonation, and ...

  11. Collaborative Approaches to Flow Restoration in Intermittent Salmon-Bearing Streams: Salmon Creek, CA, USA

    National Research Council Canada - National Science Library

    Cleo Woelfle-Erskine

    2017-01-01

    ... and sustainably by their users. Understanding the linkages between salmon and groundwater is one major focus of salmon recovery and climate change adaptation planning in central California and increasingly throughout the Pacific Northwest...

  12. Scaling-up Sustainable Aquaculture Development in Sri Lanka ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Scaling-up Sustainable Aquaculture Development in Sri Lanka. The Government of Sri Lanka is increasingly emphasizing aquaculture development as a means to foster rural development, alleviate poverty, and increase food security. A two-year IDRC-funded project identified challenges to the sustainable management of ...

  13. Building climate resilience in Thailand's aquaculture industry | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2015-01-21

    Jan 21, 2015 ... People in Southeast Asia have been farming fish for centuries, and aquaculture is an important industry in Thailand. In 2010, the total yield of aquatic animal products was more than 3 million tons, with approximately 42% coming from freshwater and coastal aquaculture and the rest from wild capture ...

  14. Fish production practices and use of aquaculture technologies ...

    African Journals Online (AJOL)

    The role of aquaculture in meeting the increasing demand for fish all over the World cannot be over emphasized. The study investigated types of improved aquaculture technologies used by the fish farmers in Oyo State. A structured questionnaire was used to collect data from 117 (60%) fish farmers randomly selected from ...

  15. Support to the CGIAR Program on Aquaculture | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Support to the CGIAR Program on Aquaculture. More than 700 million people depend on aquatic agricultural systems (AAS) for their livelihood. These are diverse farming systems that include a mix of cultivation, livestock-raising, aquaculture, fishing, and gathering natural resources such as fruits, seeds, timber and wildlife.

  16. Inland Aquaculture and Adaptation to Climate Change in Northern ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Aquaculture currently contributes almost half of the aquatic animals consumed by humans, and this percentage is expected to grow. A large fraction of global aquaculture production takes place in the tropics and subtropics of Asia, serving as an important source of employment and food security for rural residents. However ...

  17. Aqua-Topics. Aquaculture for Youth and Youth Educators.

    Science.gov (United States)

    McVey, Eileen

    This booklet contains information on aquaculture and ideas for aquaculture projects. The information provided is for students at upper elementary through high school learning levels. Recommended activities at the end of the text are organized by level of difficulty. The activities can be modified depending on area and availability of resources. A…

  18. Inland Aquaculture and Adaptation to Climate Change in Northern ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    However, research on climate change and aquaculture is limited compared to many other agricultural activities. This project focuses on tilapia grown in farm ponds or floating cages in rivers and reservoirs in northern Thailand. It explores both how aquaculture practices should adapt to changing climatic conditions and the ...

  19. Aquaculture intérieure et adaptation aux changements climatiques ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Risk Management Practices. Briefs. Aquaculture and Climate. Journal articles. River-based cage aquaculture of tilapia in Northern Thailand : sustainability of rearing and business practices. Journal articles. Learning about climate-related risks: decisions of Northern Thailand fish farmers in a role-playing simulation game ...

  20. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated.

  1. Aquaculture intérieure et adaptation aux changements climatiques ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les chercheurs exploreront des façons d'adapter les pratiques aquacoles aux changements climatiques et analyseront la valeur de l'aquaculture comme stratégie d'adaptation. Les chercheurs étudieront les ... Papers. Improving climate risk management as an adaptation strategy in inland aquaculture in Northern Thailand ...

  2. Does aquaculture add resilience to the global food system?

    NARCIS (Netherlands)

    Troell, M.; Naylor, R.L.; Metian, M.; Beveridge, M.; Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barrett, S.; Crepin, A.S.; Ehrlich, P.; Gren, R.; Kautsky, N.; Levin, S.A.; Nyborg, K.; Osterblom, H.; Polasky, S.; Scheffer, M.; Walker, B.H.; Xepapadeas, T.; Zeeuw, de A.

    2014-01-01

    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment

  3. Potential hazards and risks associated with the aquaculture industry ...

    African Journals Online (AJOL)

    Aquaculture, the farming of aquatic organisms, is fraught with potential hazards and risks which are categorized into occupational, environmental, food safety and public health. This paper reviewed major hazards and risks associated with the aquaculture industry and proffered strategies for their management and control.

  4. Building climate resilience in Thailand's aquaculture industry | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    People in Southeast Asia have been farming fish for centuries, and aquaculture is an important industry in Thailand. In 2010, the total yield of aquatic animal products was more than 3 million tons, with approximately 42% coming from freshwater and coastal aquaculture and the rest from wild capture fisheries. As consumer ...

  5. Major constraints affecting aquaculture development in Akwa Ibom ...

    African Journals Online (AJOL)

    The study contributes to nationwide attempts to enhance the contributions of aquaculture to the fishery subsector, and consequent overall gross domestic product of Nigeria, as well as to the protein intake of her citizenry. The focus is on the determination of the magnitude of constraints affecting aquaculture development in ...

  6. Food Security, Fisheries and Aquaculture in the Bolivian Amazon ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    scale aquaculture value chains in two pilot areas: capture fisheries in the northern Bolivian Amazon (Paiche) and pond aquaculture of native fish in the Marmoré basin in the northeastern Amazon. The team will analyze the nutritional value of ...

  7. Benthic macroinvertebrate community structure in Napoleon Gulf, Lake Victoria: effects of cage aquaculture in eutrophic lake.

    Science.gov (United States)

    Egessa, Robert; Pabire, Gandhi Willy; Ocaya, Henry

    2018-02-02

    An investigation was conducted on the macro-benthic fauna of the Napoleon Gulf in the northern part of Lake Victoria from March 2011 to December 2016 at the cage fish farm. The aim was to examine the likely impact of cage aquaculture on macro-benthic invertebrates. Cage aquaculture is now a common practice on Lake Victoria yet little is known about its long-term effect on macro-benthic faunal assemblages. Temporal variation indicated a general decline in annual faunal density at the farm area with corresponding stability at upstream (control) and downstream sites. Arthropods remained numerically dominant at the control and downstream sites. The percentage abundance of EPT (Ephemeroptera, Plecoptera, and Trichoptera) and Malacostraca was highest at the upstream and lowest at the farm area. The farm area which initially was dominated by molluscs became dominated by arthropods after 3 years. The decrease in density of molluscs at the farm area was attributed to the general decrease in density of two species: Bellamya unicolor (Gastropoda) and Corbicula africana (Bivalvia). These two species were initially abundant but showed decline within the farm area with corresponding stability at the upstream and downstream areas. Oligochaete annelids were more abundant within the farm area than at the upstream and downstream sites. These findings suggested that molluscs offered better prediction of the impact of cages on the environment than arthropods. Besides that, in a community dominated by pollution-tolerant organisms, the impact of aquaculture may not be immediate especially when organic loading from aquaculture is moderate.

  8. Mechanisms of antimicrobial resistance in finfish aquaculture environments

    Science.gov (United States)

    Miranda, Claudio D.; Tello, Alfredo; Keen, Patricia L.

    2013-01-01

    Consumer demand for affordable fish drives the ever-growing global aquaculture industry. The intensification and expansion of culture conditions in the production of several finfish species has been coupled with an increase in bacterial fish disease and the need for treatment with antimicrobials. Understanding the molecular mechanisms of antimicrobial resistance prevalent in aquaculture environments is important to design effective disease treatment strategies, to prioritize the use and registration of antimicrobials for aquaculture use, and to assess and minimize potential risks to public health. In this brief article we provide an overview of the molecular mechanisms of antimicrobial resistance in genes found in finfish aquaculture environments and highlight specific research that should provide the basis of sound, science-based policies for the use of antimicrobials in aquaculture. PMID:23986749

  9. Mechanisms of antimicrobial resistance in finfish aquaculture environments

    Directory of Open Access Journals (Sweden)

    Claudio D. Miranda

    2013-08-01

    Full Text Available Consumer demand for affordable fish drives the ever-growing global aquaculture industry. The intensification and expansion of culture conditions in the production of several finfish species has been coupled with an increase in bacterial fish disease and the need for treatment with antimicrobials. Understanding the molecular mechanisms of antimicrobial resistance prevalent in aquaculture environments is important to design effective disease treatment strategies, to prioritize the use and registration of antimicrobials for aquaculture use, and to assess and minimize potential risks to public health. In this brief article we provide an overview of the molecular mechanisms of antimicrobial resistance mechanisms in finfish aquaculture environments and highlight specific research that should provide the basis of sound, science-based policies for the use of antimicrobials in aquaculture.

  10. Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon.

    Science.gov (United States)

    Skaftnesmo, K O; Edvardsen, R B; Furmanek, T; Crespo, D; Andersson, E; Kleppe, L; Taranger, G L; Bogerd, J; Schulz, R W; Wargelius, A

    2017-10-18

    Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b

  11. Genomic Approaches in Marine Biodiversity and Aquaculture

    Directory of Open Access Journals (Sweden)

    Jorge A Huete-Pérez

    2013-01-01

    Full Text Available Recent advances in genomic and post-genomic technologies have now established the new standard in medical and biotechnological research. The introduction of next-generation sequencing, NGS,has resulted in the generation of thousands of genomes from all domains of life, including the genomes of complex uncultured microbial communities revealed through metagenomics. Although the application of genomics to marine biodiversity remains poorly developed overall, some noteworthy progress has been made in recent years. The genomes of various model marine organisms have been published and a few more are underway. In addition, the recent large-scale analysis of marine microbes, along with transcriptomic and proteomic approaches to the study of teleost fishes, mollusks and crustaceans, to mention a few, has provided a better understanding of phenotypic variability and functional genomics. The past few years have also seen advances in applications relevant to marine aquaculture and fisheries. In this review we introduce several examples of recent discoveries and progress made towards engendering genomic resources aimed at enhancing our understanding of marine biodiversity and promoting the development of aquaculture. Finally, we discuss the need for auspicious science policies to address challenges confronting smaller nations in the appropriate oversight of this growing domain as they strive to guarantee food security and conservation of their natural resources.

  12. Trophic ontogeny of fluvial Bull Trout and seasonal predation on Pacific Salmon in a riverine food web

    Science.gov (United States)

    Lowery, Erin D.; Beauchamp, David A.

    2015-01-01

    Bull Trout Salvelinus confluentus are typically top predators in their host ecosystems. The Skagit River in northwestern Washington State contains Bull Trout and Chinook Salmon Oncorhynchus tshawytschapopulations that are among the largest in the Puget Sound region and also contains a regionally large population of steelhead O. mykiss (anadromous Rainbow Trout). All three species are listed as threatened under the Endangered Species Act (ESA). Our objective was to determine the trophic ecology of Bull Trout, especially their role as predators and consumers in the riverine food web. We seasonally sampled distribution, diets, and growth of Bull Trout in main-stem and tributary habitats during 2007 and winter–spring 2008. Consumption rates were estimated with a bioenergetics model to (1) determine the annual and seasonal contributions of different prey types to Bull Trout energy budgets and (2) estimate the potential impacts of Bull Trout predation on juvenile Pacific salmon populations. Salmon carcasses and eggs contributed approximately 50% of the annual energy budget for large Bull Trout in main-stem habitats, whereas those prey types were largely inaccessible to smaller Bull Trout in tributary habitats. The remaining 50% of the energy budget was acquired by eating juvenile salmon, resident fishes, and immature aquatic insects. Predation on listed Chinook Salmon and steelhead/Rainbow Trout was highest during winter and spring (January–June). Predation on juvenile salmon differed between the two study years, likely due to the dominant odd-year spawning cycle for Pink Salmon O. gorbuscha. The population impact on ocean- and stream-type Chinook Salmon was negligible, whereas the impact on steelhead/Rainbow Trout was potentially very high. Due to the ESA-listed status of Bull Trout, steelhead, and Chinook Salmon, the complex trophic interactions in this drainage provide both challenges and opportunities for creative adaptive management strategies.

  13. Cardiomyopathy syndrome in Atlantic salmon Salmo salar L.: A review of the current state of knowledge.

    Science.gov (United States)

    Garseth, Å H; Fritsvold, C; Svendsen, J C; Bang Jensen, B; Mikalsen, A B

    2017-10-24

    Cardiomyopathy syndrome (CMS) is a severe cardiac disease affecting Atlantic salmon Salmo salar L. The disease was first recognized in farmed Atlantic salmon in Norway in 1985 and subsequently in farmed salmon in the Faroe Islands, Scotland and Ireland. CMS has also been described in wild Atlantic salmon in Norway. The demonstration of CMS as a transmissible disease in 2009, and the subsequent detection and initial characterization of piscine myocarditis virus (PMCV) in 2010 and 2011 were significant discoveries that gave new impetus to the CMS research. In Norway, CMS usually causes mortality in large salmon in ongrowing and broodfish farms, resulting in reduced fish welfare, significant management-related challenges and substantial economic losses. The disease thus has a significant impact on the Atlantic salmon farming industry. There is a need to gain further basic knowledge about the virus, the disease and its epidemiology, but also applied knowledge from the industry to enable the generation and implementation of effective prevention and control measures. This review summarizes the currently available, scientific information on CMS and PMCV with special focus on epidemiology and factors influencing the development of CMS. © 2017 The Authors. Journal of Fish Diseases Published by John Wiley & Sons Ltd.

  14. In situ measurement of coastal ocean movements and survival of juvenile Pacific salmon.

    Science.gov (United States)

    Welch, David W; Melnychuk, Michael C; Payne, John C; Rechisky, Erin L; Porter, Aswea D; Jackson, George D; Ward, Bruce R; Vincent, Stephen P; Wood, Chris C; Semmens, Jayson

    2011-05-24

    Many salmon populations in both the Pacific and Atlantic Oceans have experienced sharply decreasing returns and high ocean mortality in the past two decades, with some populations facing extirpation if current marine survival trends continue. Our inability to monitor the movements of marine fish or to directly measure their survival precludes experimental tests of theories concerning the factors regulating fish populations, and thus limits scientific advance in many aspects of fisheries management and conservation. Here we report a large-scale synthesis of survival and movement rates of free-ranging juvenile salmon across four species, 13 river watersheds, and 44 release groups of salmon smolts (>3,500 fish tagged in total) in rivers and coastal ocean waters, including an assessment of where mortality predominantly occurs during the juvenile migration. Of particular importance, our data indicate that, over the size range of smolts tagged, (i) smolt survival was not strongly related to size at release, (ii) tag burden did not appear to strongly reduce the survival of smaller animals, and (iii) for at least some populations, substantial mortality occurred much later in the migration and more distant from the river of origin than generally expected. Our findings thus have implications for determining where effort should be invested to improve the accuracy of salmon forecasting, to understand the mechanisms driving salmon declines, and to predict the impact of climate change on salmon stocks.

  15. Economic valuation of a mangrove ecosystem threatened by shrimp aquaculture in Sri Lanka.

    Science.gov (United States)

    Gunawardena, M; Rowan, J S

    2005-10-01

    Mangrove ecosystems in Sri Lanka are increasingly under threat from development projects, especially aquaculture. An economic assessment is presented for a relatively large (42 ha) shrimp culture development proposed for the Rekawa Lagoon system in the south of Sri Lanka, which involved an extended cost-benefit analysis of the proposal and an estimate of the "total economic value" (TEV) of a mangrove ecosystem. The analysis revealed that the internal benefits of developing the shrimp farm are higher than the internal costs in the ratio of 1.5:1. However, when the wider environmental impacts are more comprehensively evaluated, the external benefits are much lower than the external costs in a ratio that ranges between 1:6 and 1:11. In areas like Rekawa, where agriculture and fisheries are widely practiced at subsistence levels, shrimp aquaculture developments have disproportionately large impacts on traditional livelihoods and social welfare. Thus, although the analysis retains considerable uncertainties, more explicit costing of the environmental services provided by mangrove ecosystems demonstrates that low intensity, but sustainable, harvesting has far greater long-term value to local stakeholders and the wider community than large shrimp aquaculture developments.

  16. Bivalve aquaculture transfers in Atlantic Europe. Part A: Transfer activities and legal framework

    DEFF Research Database (Denmark)

    Muehlbauer, F.; Fraser, D.; Brenner, M.

    2014-01-01

    frameworks are discussed. Recommendations for the development of integrated risk assessment methods are given. These may help to minimize the intrinsic threats of transfer activities in marine environments. The resulting impacts and effects of transfer activities of bivalves for aquaculture purpose...... of exotic species around the world. Threats due to the transfer and introduction of species have been identified and a range of global and regional agreements, guidelines, standards and statutes to minimize effects have been established. Yet whether such regulations can protect and conserve the marine...... environment and address economic considerations remains unanswered. This study provides the first overview of bivalve transfer activities for aquaculture purposes along the European Atlantic coast. Existing international and EU legislation is described, and potential weaknesses in the existing legislative...

  17. Quality of antimicrobial products used in white leg shrimp (Litopenaeus vannamei) aquaculture in Northern Vietnam

    DEFF Research Database (Denmark)

    Tran, Kim Chi; Tran, Minh Phu; Phan, Thi Van

    2018-01-01

    . The documented poor quality of antimicrobial products and inadequate labelling has negative impacts on effective disease treatment; contribute to development of antimicrobial resistance, and the use of such products is associated with food safety and occupational health hazards. There is an urgent need......Antimicrobials are important to treat diseases in aquaculture and the objective of this study was to evaluate the quality of antimicrobial products commonly used in white leg shrimp (Litopenaeus vannamei) aquaculture in Northern Vietnam. A total of 25 antimicrobial products were obtained from 20...... to analyse the concentration of the declared antimicrobials. Results revealed that only 1/12 products with a single antimicrobial contained an active substance within ± 10% (accepted level of variation) of the concentration declared on the product label. More than half of the products contained antimicrobial...

  18. Formaldehyde concentration in discharge from land based aquaculture facilities in Atlantic Canada.

    Science.gov (United States)

    Lalonde, Benoit A; Ernst, William; Garron, Christine

    2015-04-01

    Formaldehyde is used in freshwater aquaculture facilities in the Maritimes region of Canada to prevent external parasites and is discharged without treatment to freshwater receiving environments. In this study, formaldehyde was measured at effluent outfalls and 100 m downstream of four land based aquaculture facilities at various post-treatment time intervals. Concentrations of formaldehyde ranged from 0.2 to 7.1 mg/L. Based on Environment Canada's environmental no effect value, all of the samples show a potential risk to aquatic life. Furthermore, based on a chronic aquatic life water quality criterion of 1.61 mg/L all but two of the samples had concentrations considered to be toxic to aquatic life. An acute water quality criteria was only exceeded once in all of the environmental measurements of formaldehyde. These results lead us to hypothesize that the discharge of formaldehyde from land-based facilities may cause adverse chronic impacts.

  19. An EST-based approach for identifying genes expressed in the intestine and gills of pre-smolt Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Adzhubei Alexei

    2005-12-01

    Full Text Available Abstract Background The Atlantic salmon is an important aquaculture species and a very interesting species biologically, since it spawns in fresh water and develops through several stages before becoming a smolt, the stage at which it migrates to the sea to feed. The dramatic change of habitat requires physiological, morphological and behavioural changes to prepare the salmon for its new environment. These changes are called the parr-smolt transformation or smoltification, and pre-adapt the salmon for survival and growth in the marine environment. The development of hypo-osmotic regulatory ability plays an important part in facilitating the transition from rivers to the sea. The physiological mechanisms behind the developmental changes are largely unknown. An understanding of the transformation process will be vital to the future of the aquaculture industry. A knowledge of which genes are expressed prior to the smoltification process is an important basis for further studies. Results In all, 2974 unique sequences, consisting of 779 contigs and 2195 singlets, were generated for Atlantic salmon from two cDNA libraries constructed from the gills and the intestine, accession numbers [Genbank: CK877169-CK879929, CK884015-CK886537 and CN181112-CN181464]. Nearly 50% of the sequences were assigned putative functions because they showed similarity to known genes, mostly from other species, in one or more of the databases used. The Swiss-Prot database returned significant hits for 1005 sequences. These could be assigned predicted gene products, and 967 were annotated using Gene Ontology (GO terms for molecular function, biological process and/or cellular component, employing an annotation transfer procedure. Conclusion This paper describes the construction of two cDNA libraries from pre-smolt Atlantic salmon (Salmo salar and the subsequent EST sequencing, clustering and assigning of putative function to 1005 genes expressed in the gills and/or intestine.

  20. Defatted biomass of the microalga, Desmodesmus sp., can replace fishmeal in the feeds for Atlantic salmon

    Directory of Open Access Journals (Sweden)

    Viswanath eKiron

    2016-05-01

    Full Text Available Microalgal biomass is a potential feed ingredient that can replace fishmeal and ensure sustainability standards in aquaculture. To understand the efficacy of the defatted biomass from the marine microalga, Desmodesmus sp. a 70-day feeding study was performed with Atlantic salmon (Salmo salar smolts. Three groups of fish (av. wt. 167 g were offered either a control feed (without the microalga or the microalga-containing (10/20% feeds. At the end of the feeding period, the growth indices (condition factor, specific growth rate and survival of the microalga-fed fish were not significantly different from the respective values of the control fish, but the feed conversion ratios were inferior. The proximate composition of the whole body of salmon from the three groups did not vary significantly. Compared to the control fish, the alga-fed fish had lower lipid content (10% alga-fed fish in their fillet. The protein and lipid digestibility in the three feeds did not differ significantly, but the digestibility of energy in the 10% alga-feed was significantly lower than that of the control feed. Furthermore, comparison of the distal intestinal proteome of Atlantic salmon revealed that the expressions of Alpha-2-HS-glycoprotein-like (Ahsg, Myosin-11 isoform X1 (My11 and Dihydrolipoyl dehydrogenase, mitochondrial-like (Dld were altered by the microalgal feeding. Examination of the physiological status of the fish based on the serum antioxidant capacities did not reveal any alga-feed-related differences. Moreover, the expression of the selected immune and inflammatory marker genes and the micromorphological observations did not indicate any aberration in the intestinal health of the microalga-fed fish. It is possible to include 20% of defatted Desmodesmus sp. in the feeds of Atlantic salmon.

  1. Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York

    Science.gov (United States)

    Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.

    2016-01-01

    Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the Salmon River during May and June prior to out-migration. Over the 4 years examined (2009–2012), annual consumption of Chinook Salmon parr by hatchery-released yearling steelhead O. mykiss and Coho Salmon O. kisutch ranged from 1.5 to 3.3 million and from 0.4 to 2.1 million, respectively. In 2009, Fallfish Semotilus corporalis were estimated to consume 2.9 million Chinook Salmon parr. Predation was higher in May, when the average TL of Chinook Salmon parr was 44.5 mm, than in June. Fallfish were also important predators of naturally reproduced steelhead subyearlings, consuming an estimated 800,000 steelhead in 2009. Hatchery-released yearling salmonids consumed 13.8–15.3% of the Chinook Salmon parr that were estimated to be present in the Salmon River during 2010–2012. Earlier releases of hatchery salmonid yearlings could reduce the riverine consumption of Chinook Salmon parr by facilitating the out-migration of yearlings prior to Chinook Salmon emergence.

  2. An Overview of Aquaculture in the Nordic Countries

    DEFF Research Database (Denmark)

    Paisley, Larry; Ariel, Ellen; Lyngstad, T. M.

    2010-01-01

    in the Nordic countries has a long history; beginning in the 1850s when hatcheries for restocking of salmon and trout were established in Norway. Nowadays, Atlantic salmon is the dominant cultured species in Norway and the Faroe Islands, whereas rainbow trout dominate in Denmark, Finland, and Sweden. Arctic...

  3. The response of nitrifying microbial assemblages to ammonium (NH4+) enrichment from salmon farm activities in a northern Chilean Fjord

    Science.gov (United States)

    Elizondo-Patrone, Claudia; Hernández, Klaudia; Yannicelli, Beatriz; Olsen, Lasse Mork; Molina, Verónica

    2015-12-01

    The consequences of aquaculture include alterations in nitrogen cycling in aquatic environments that may lead to ecosystem degradation. Herein salmon aquaculture release of ammonium (NH4+) to the water column and its effects on natural archaea and bacteria ammonia-oxidizers (AOA and AOB) and nitrite-oxidizing bacteria (NOB) community structure were studied in the Comau fjord using molecular approaches, such as: cloning (AOA and AOB richness), qPCR for C. Nitrosopumilus maritimus (AOA) and Nitrospina sp. (NOB) abundance (DNA) and RT-qPCR only for Nitrospina sp activity (RNA). Sampling was carried out in brackish (0.7-25 salinity, 30 salinity, 25 m depth) waters during contrasting salmon production periods: rest (winter 2012), growth and harvest (summer and winter 2013). During the rest period, the highest NH4+ concentration was observed at Vodudahue River, whereas during productive periods NH4+ accumulated in the brackish layer inside salmon cages and in the vicinty (up to 700 m distance from the cages). The nitrifier community from the fjord reference station (Stn-C) was characterized by C. N. maritimus (AOA) and Nitrosomonas sp. (AOB) sequences affiliated with cosmopolitan ecotypes (e.g., marine, freshwater, hydrothermal), maxima abundances of C. N. maritimus (AOA) and Nitrospina sp. and extreme ranges of Nitrospina sp. activity occurred in the brackish layer. During productive periods, abundances of C. N. maritimus were co-varied with NH4+ concentrations inside salmon cages (summer) and the adjacent areas (winter). Productive periods were characterized by lower abundances but more homogeneity between brackish and marine areas than for the Stn-C nitrifiers. The physiological state of Nitrospina sp. estimated from cDNA:DNA ratios indicated higher growth during winter 2013 associated with NH4+ enrichment derived from production and river input. Our results suggest that in Comau Fjord, NH4+ enrichment events occur during salmon production and also naturally by river

  4. Responses of pink salmon to CO2-induced aquatic acidification

    Science.gov (United States)

    Ou, Michelle; Hamilton, Trevor J.; Eom, Junho; Lyall, Emily M.; Gallup, Joshua; Jiang, Amy; Lee, Jason; Close, David A.; Yun, Sang-Seon; Brauner, Colin J.

    2015-10-01

    Ocean acidification negatively affects many marine species and is predicted to cause widespread changes to marine ecosystems. Similarly, freshwater ecosystems may potentially be affected by climate-change-related acidification; however, this has received far less attention. Freshwater fish represent 40% of all fishes, and salmon, which rear and spawn in freshwater, are of immense ecosystem, economical and cultural importance. In this study, we investigate the impacts of CO2-induced acidification during the development of pink salmon, in freshwater and following early seawater entry. At this critical and sensitive life stage, we show dose-dependent reductions in growth, yolk-to-tissue conversion and maximal O2 uptake capacity; as well as significant alterations in olfactory responses, anti-predator behaviour and anxiety under projected future increases in CO2 levels. These data indicate that future populations of pink salmon may be at risk without mitigation and highlight the need for further studies on the impact of CO2-induced acidification on freshwater systems.

  5. Key Performance Characteristics of Organic Shrimp Aquaculture in Southwest Bangladesh

    Directory of Open Access Journals (Sweden)

    Christian Reinhard Vogl

    2012-05-01

    Full Text Available In Bangladesh, black tiger shrimp (Penaeus monodon; Fabricius, 1798 aquaculture has come to be one of the most important sectors in both the rural and national economies. Likewise, organic shrimp aquaculture has emerged as an alternative farming enterprise for farmers especially in the southwestern districts of Bangladesh. The present study aims to show key performance characteristics of organic shrimp farmers and farming in a prototypical shrimp farming area in Bangladesh. Data was collected in 2009 from organic shrimp farmers in the Kaligonj and Shyamnagar sub-districts through questionnaire interviews, transect walks and focus group discussions. The mean productivity of organic shrimp farming in the area is 320 kg ha−1 yr−1 (ranging from 120 to 711 kg ha−1year−1. Organic farmers are more likely to have a higher monthly income and less aquaculture experience. Moreover, suitable landholdings and classified labor distribution have been found to play an important role in the development of organic shrimp aquaculture. The most common assets of organic shrimp aquaculture are high yield, low production cost, available post larvae and high market prices. Small business farmers are likely to earn more income benefits from organic shrimp aquaculture than their larger-scale counterparts. Finally, the paper suggests that more research is needed to stimulate the success of organic shrimp aquaculture.

  6. Nitrous oxide (N2O) emission from aquaculture: a review.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Khanal, Samir Kumar

    2012-06-19

    Nitrous oxide (N(2)O) is an important greenhouse gas (GHG) which has a global warming potential 310 times that of carbon dioxide (CO(2)) over a hundred year lifespan. N(2)O is generated during microbial nitrification and denitrification, which are common in aquaculture systems. To date, few studies have been conducted to quantify N(2)O emission from aquaculture. Additionally, very little is known with respect to the microbial pathways through which N(2)O is formed in aquaculture systems. This review suggests that aquaculture can be an important anthropogenic source of N(2)O emission. The global N(2)O-N emission from aquaculture in 2009 is estimated to be 9.30 × 10(10) g, and will increase to 3.83 × 10(11)g which could account for 5.72% of anthropogenic N(2)O-N emission by 2030 if the aquaculture industry continues to increase at the present annual growth rate (about 7.10%). The possible mechanisms and various factors affecting N(2)O production are summarized, and two possible methods to minimize N(2)O emission, namely aquaponic and biofloc technology aquaculture, are also discussed. The paper concludes with future research directions.

  7. Managing to harvest? Perspectives on the potential of aquaculture

    Science.gov (United States)

    Muir, James

    2005-01-01

    Aquaculture has been one of the most rapid and technically innovative of food production sectors globally, with significant investment, scientific and technical development and production growth in many parts of the world over the past two decades. While this has had a significant effect on the global supply of aquatic food products and had an important impact in rural and urban food supply and employment in many developing economies, growth and increasing internationalization has not been without concern for natural resource use, environmental impact and social disruption. The expectations for production and diversification are now significant and while the scientific and technical means are already available to meet much of the intended targets, practical constraints of investment, profitability, resource access and system efficiency are likely to become far more important constraints for the future. This review offers a contemporary perspective on the ways in which the sector might develop, its interactions with constraints and the strategies that may be required to ensure that future development is both positive and sustainable. PMID:15713597

  8. A new specific reference gene based on growth hormone gene (GH1) used for detection and relative quantification of Aquadvantage® GM salmon (Salmo salar L.) in food products.

    Science.gov (United States)

    Hafsa, Ahmed Ben; Nabi, Nesrine; Zellama, Mohamed Salem; Said, Khaled; Chaouachi, Maher

    2016-01-01

    Genetic transformation of fish is mainly oriented towards the improvement of growth for the benefit of the aquaculture. Actually, Atlantic salmon (Salmo salar) is the species most transformed to achieve growth rates quite large compared to the wild. To anticipate the presence of contaminations with GM salmon in fish markets and the lack of labeling regulations with a mandatory threshold, the proper methods are needed to test the authenticity of the ingredients. A quantitative real-time polymerase chain reaction (QRT-PCR) method was used in this study. Ct values were obtained and validated using 15 processed food containing salmon. The relative and absolute limits of detection were 0.01% and 0.01 ng/μl of genomic DNA, respectively. Results demonstrate that the developed QRT-PCR method is suitable specifically for identification of S. salar in food ingredients based on the salmon growth hormone gene 1 (GH1). The processes used to develop the specific salmon reference gene case study are intended to serve as a model for performing quantification of Aquadvantage® GM salmon on future genetically modified (GM) fish to be commercialized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Technology Model of Aquaculture Production System

    Science.gov (United States)

    Hor, K. W.; Salleh, S. M.; Abdullah; Ezree, Mohd; Zaman, I.; Hatta, M. H.; Ahmad, S.; Ismail, A. E.; Mahmud, W. A. W.

    2017-10-01

    The high market demand has led to the rapid growth in fish farming. The young generation are inexperienced in determining the estimated results of fish farming and the preparation of fish pond during the period of fish farming. These need a complete guide as their reference which includes the knowledge of fish farming. The main objective of this project is to develop a practical design of real pond appropriate with aquaculture technology and fish farming production. There are three parts of study in this project which include fish farming cage, growth of fish and water quality of fish farming pond. Few of experiments were carried out involved the collection data in terms of growth of fish and parameters of water quality.

  10. Effects of salmon lice infection and salmon lice protection on fjord migrating Atlantic salmon and brown trout post-smolts

    DEFF Research Database (Denmark)

    Sivertsgard, Rolf; Thorstad, Eva B.; Okland, Finn

    2007-01-01

    to infective salmon lice larvae in the laboratory immediately before release in the inner part of the fjord to simulate a naturally high infection pressure. Groups of infected Atlantic salmon (n = 20) and brown trout (n = 12) were also retained in the hatchery to control the infection intensity and lice...

  11. THE FISHERIES AND AQUACULTURE COMPONENT OF RURAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Adrian ZUGRAVU

    2006-01-01

    Full Text Available Fisheries and aquaculture can provide a key contribution to food security and poverty alleviation. Fisheries and aquaculture policy is an instrument for the conservation and management of fisheries and aquaculture. It was created with the aims of managing a common resource. Fisheries policies and management strategies the world over is in a state of flux, continued attempts to use fisheriesas the key to solving a complex web of social and economic issues threaten to overwhelm the basic fact that, if this resources are overfished, they will not sustain either social or development.

  12. The culturable intestinal microbiota of triploid and diploid juvenile Atlantic salmon (Salmo salar - a comparison of composition and drug resistance

    Directory of Open Access Journals (Sweden)

    Cantas Leon

    2011-11-01

    Full Text Available Abstract Background With the increased use of ploidy manipulation in aquaculture and fisheries management this investigation aimed to determine whether triploidy influences culturable intestinal microbiota composition and bacterial drug resistance in Atlantic salmon (Salmo salar. The results could provide answers to some of the physiological differences observed between triploid and diploid fish, especially in terms of fish health. Results No ploidy effect was observed in the bacterial species isolated, however, triploids were found to contain a significant increase in total gut microbiota levels, with increases in Pseudomonas spp., Pectobacterium carotovorum, Psychrobacter spp., Bacillus spp., and Vibrio spp., (12, 42, 9, 10, and 11% more bacteria in triploids than diploids, respectively, whereas a decrease in Carnobacterium spp., within triploids compared to diploids was close to significant (8% more bacteria in diploids. With the exception of gentamicin, where no bacterial resistance was observed, bacterial isolates originating from triploid hosts displayed increased resistance to antibacterials, three of which were significant (tetracycline, trimethoprim, and sulphonamide. Conclusion Results indicate that triploidy influences both the community and drug resistance of culturable intestinal microbiota in juvenile salmon. These results demonstrate differences that are likely to contribute to the health of triploid fish and have important ramifications on the use of antibacterial drugs within aquaculture.

  13. Case definition for clinical and subclinical bacterial kidney disease (BKD) in Atlantic Salmon (Salmo salar L.) in New Brunswick, Canada.

    Science.gov (United States)

    Boerlage, A S; Stryhn, H; Sanchez, J; Hammell, K L

    2017-03-01

    Bacterial kidney disease (BKD) is considered an important cause of loss in salmon aquaculture in Atlantic Canada. Causative agent of BKD is the Gram-positive bacteria Renibacterium salmoninarum. Infected salmon are often asymptomatic (subclinical infection), and the disease is considered chronic. One of the challenges in quantifying information from farm production and health records is the application of a standardized case definition. Case definitions for farm-level and cage-level clinical and subclinical BKD were developed using retrospective longitudinal data from aquaculture practices in New Brunswick, Canada, combining (i) industry records of weekly production data including mortalities, (ii) field observations for BKD using reports of veterinarians and/or fish health technicians, (iii) diagnostic submissions and test results and (iv) treatments used to control BKD. Case definitions were evaluated using veterinarians' expert judgements as reference standard. Eighty-nine and 66% of sites and fish groups, respectively, were associated with BKD at least once. For BKD present (subclinical or clinical), sensitivity and specificity of the case definition were 75-100% varying between event, fish group, site cycle and level (site pen). For clinical BKD, sensitivities were 29-64% and specificities 91-100%. Industry data can be used to develop sensitive case definitions. © 2016 John Wiley & Sons Ltd.

  14. Taxonomy of Means and Ends in Aquaculture Production—Part 1: The Functions

    OpenAIRE

    Ragnheidur Bjornsdottir; Gudmundur Valur Oddsson; Ragnheidur I. Thorarinsdottir; Runar Unnthorsson

    2016-01-01

    The aquaculture sector has been increasing its share in the total fish production in the world. Numerous studies have been published about aquaculture, introducing a variety of techniques and methods that have been applied or could be applied in aquaculture production systems. The purpose of this study is to present a systemic overview of the functions of aquaculture production systems. Each function of an aquaculture system is applied to carry out a certain purpose. The results are divided i...

  15. Nutrient flow in improved upland aquaculture systems in Yen Chau, province Son La (Vietnam)

    OpenAIRE

    Pucher, Johannes Gregor

    2014-01-01

    In South-East Asia, pond aquaculture plays an important role in the integrated agriculture aquaculture systems of small-scale farmers and contributes to their food security and income. In mountainous regions, aquaculture differs from aquaculture that is practiced in the lowland due to differences in climate and availability of feeds, fertilizers and water. In Northern Vietnam, the traditional aquaculture is a polyculture of 5-7 fish species. The macro-herbivorous grass carp (Ctenopharyngodon ...

  16. THE FUTURE OF PACIFIC NORTHWEST SALMON: ANATOMY OF A CRISIS

    Science.gov (United States)

    Salmon are categorized biologically into two groups: Pacific salmon or Atlantic salmon. All seven species of Pacific salmon on both sides of the North Pacific Ocean have declined substantially from historic levels, but large runs still occur in northern British Columbia, Yukon,...

  17. Detection of quantitative trait loci (QTL) related to grilsing and late sexual maturation in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Gutierrez, Alejandro P; Lubieniecki, Krzysztof P; Fukui, Steve; Withler, Ruth E; Swift, Bruce; Davidson, William S

    2014-02-01

    In Atlantic salmon aquaculture, early sexual maturation represents a major problem for producers. This is especially true for grilse, which mature after one sea winter before reaching a desirable harvest weight, rather than after two sea winters. Salmon maturing as grilse have a much lower market value than later maturing individuals. For this reason, most companies desire fish that grow fast and mature late. Marker-assisted selection has the potential to improve the efficiency of selection against early maturation and for late sexual maturation; however, studies identifying age of sexual maturation-related genetic markers are lacking for Atlantic salmon. Therefore, we used a 6.5K single-nucleotide polymorphism (SNP) array to genotype five families from the Mainstream Canada broodstock program and search for SNPs associated with early (grilsing) or late sexual maturation. There were 529 SNP loci that were variable across all five families, and this was the set that was used for quantitative trait loci (QTL) analysis. GridQTL identified two chromosomes, Ssa10 and Ssa21, containing QTL related to grilsing. In contrast, only one QTL, on Ssa18, was found linked to late maturation in Atlantic salmon. Our previous work on these five families did not identify genome-wide significant growth-related QTL on Ssa10, Ssa21, or Ssa18. Therefore, taken together, these results suggest that both grilsing and late sexual maturation are controlled independently of one another and also from growth-related traits. The identification of genomic regions associated with grilsing or late sexual maturation provide an opportunity to incorporate this information into selective breeding programs that will enhance Atlantic salmon farming.

  18. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture.

    Science.gov (United States)

    Blanchard, Julia L; Watson, Reg A; Fulton, Elizabeth A; Cottrell, Richard S; Nash, Kirsty L; Bryndum-Buchholz, Andrea; Büchner, Matthias; Carozza, David A; Cheung, William W L; Elliott, Joshua; Davidson, Lindsay N K; Dulvy, Nicholas K; Dunne, John P; Eddy, Tyler D; Galbraith, Eric; Lotze, Heike K; Maury, Olivier; Müller, Christoph; Tittensor, Derek P; Jennings, Simon

    2017-09-01

    Fisheries and aquaculture make a crucial contribution to global food security, nutrition and livelihoods. However, the UN Sustainable Development Goals separate marine and terrestrial food production sectors and ecosystems. To sustainably meet increasing global demands for fish, the interlinkages among goals within and across fisheries, aquaculture and agriculture sectors must be recognized and addressed along with their changing nature. Here, we assess and highlight development challenges for fisheries-dependent countries based on analyses of interactions and trade-offs between goals focusing on food, biodiversity and climate change. We demonstrate that some countries are likely to face double jeopardies in both fisheries and agriculture sectors under climate change. The strategies to mitigate these risks will be context-dependent, and will need to directly address the trade-offs among Sustainable Development Goals, such as halting biodiversity loss and reducing poverty. Countries with low adaptive capacity but increasing demand for food require greater support and capacity building to transition towards reconciling trade-offs. Necessary actions are context-dependent and include effective governance, improved management and conservation, maximizing societal and environmental benefits from trade, increased equitability of distribution and innovation in food production, including continued development of low input and low impact aquaculture.

  19. Bioethical Considerations of Advancing the Application of Marine Biotechnology and Aquaculture

    Directory of Open Access Journals (Sweden)

    Reginal M. Harrell

    2017-06-01

    Full Text Available Normative ethical considerations of growth of the marine biotechnology and aquaculture disciplines in biopharming, food production, and marine products commercialization from a bioethical perspective have been limited. This paucity of information begs the question of what constitutes a bioethical approach (i.e., respect for individuals or autonomy; beneficence, nonmaleficence, and justice to marine biotechnology and aquaculture, and whether it is one that is appropriate for consideration. Currently, thoughtful discussion on the bioethical implications of use, development, and commercialization of marine organisms or their products, as well as potential environmental effects, defaults to human biomedicine as a model. One must question the validity of using human bioethical principlism moral norms for appropriating a responsible marine biotechnology and aquaculture ethic. When considering potential impacts within these disciplines, deference must be given to differing value systems in order to find common ground to advance knowledge and avoid emotive impasses that can hinder the science and its application. The import of bioethical considerations when conducting research and/or production is discussed. This discussion is directed toward applying bioethical principles toward technology used for food, biomedical development (e.g., biopharming, or as model species for advancement of knowledge for human diseases.

  20. Effects of feeding and stocking density on digestion of cultured Atlantic salmon Salmo salar L.

    Science.gov (United States)

    Sun, Guoxiang; Zheng, Jimeng; Liu, Baoliang; Liu, Ying

    2014-11-01

    The combined effects of feeding rate (0.8%, 1.0%, and 1.2% initial body weight/day), feeding frequency (two, three, and four times/day) and stocking density (10, 15, and 20 kg/m3) in recirculating aquaculture systems (RAS) on growth performance, digestion and waste generation of Atlantic salmon ( Salmo salar L.) were investigated in an 8-week orthogonal experiment (L9(3)3) with a constant daily water renewal at 7.50% of total volume. No mortality occurred during the experimental period. Feed conversion ratio (FCR) varied from 0.90 to 1.13 and specific growth rate (SGR) ranged from 0.48% to 0.69%/day. SGR, thermal growth coefficient (TGC) and FCR were not significantly ( P>0.05) affected by the three factors, while net protein utilization (NPU) was significantly ( Psalmon farming industry.

  1. Use of chemicals in aquaculture - issues of concern

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.

    Majority of aquaculture practices are still based on extensive and semi-intensive farming systems though a trend to intensify operations to enhance yields and improve the efficiency of the production process has emerged in recent years. Apart from...

  2. The perception of aquaculture on the Swedish West Coast.

    Science.gov (United States)

    Thomas, Jean-Baptiste E; Nordström, Jonas; Risén, Emma; Malmström, Maria E; Gröndahl, Fredrik

    2017-09-22

    Efforts are on the way on the Swedish West Coast to develop the capacity for cultivation of marine resources, notably of kelps. Given that this is a region of great natural and national heritage, public opposition to marine developments has been identified as a possible risk factor. This survey thus sought to shed light on awareness levels, perceptions of different types of aquaculture and on reactions to a scenario depicting future aquaculture developments on the West Coast. When asked about their general opinions of aquaculture, respondents tended to be favourable though a majority chose neutral responses. On the whole, respondents were favourable to the depicted scenario. Finally, it was found that the high-awareness group tended to be more supportive than the low or medium-awareness groups, hinting at the benefits of increasing awareness to reduce public aversion and to support a sustainable development of aquaculture on the Swedish West Coast.

  3. Aquaculture in desert and arid lands: development constraints and opportunities

    National Research Council Canada - National Science Library

    Crespi, V; Lovatelli, A

    2011-01-01

    Aquaculture in desert and arid lands has been growing steadily over the last decade thanks to the modern technologies and alternative energy sources that have allowed water in these places of extremes...

  4. Proximate analyses - Utilization of Marine Process Waste for Aquaculture Feeds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Limited amounts of forage fish are available as an ingredient in feeds for the expanding aquaculture industry. Work is being conducted on a variety of underutilized...

  5. Utilizacion de Artemia en acuicultura; [Artemia in aquaculture

    National Research Council Canada - National Science Library

    Amat, F

    1985-01-01

    In this paper is given practical information on the feasibilities displayed by Artemia in aquaculture, information arising from the author's experience, and supported by data taken from another experts...

  6. Meagre (Argyrosomus regius Asso, 1801 aquaculture in Croatia

    Directory of Open Access Journals (Sweden)

    Kružić Nikolina

    2016-03-01

    Full Text Available The objective of this review is to present current status of meagre aquaculture in Croatia. Meagre Argyrosomus regius (Asso, 1801 is a fast growing migratory fish species which used to be widespread along the coast of the Adriatic Sea. Today, it is very rare in fisheries catches and is considered highly endangered. Recently, meagre has become an increasingly important species in the Mediterranean aquaculture. In Croatia, meagre is a relatively new cultured species whose farming started after the year 2000. Since the European Commission identified species diversification as a top priority in the framework of the 2020 strategies for Aquaculture, and with recent studies revealing that meagre adapt easily to captivity and maintain a rapid growth rate, this species became an interesting candidate for Croatian as well as Mediterranean aquaculture.

  7. Human Health Consequences of Use of Antimicrobial Agents in Aquaculture

    DEFF Research Database (Denmark)

    Heuer, Ole Eske; Kruse, H.; Grave, K.

    2009-01-01

    in aquaculture, several are classified by the World Health Organisation as critically important for use in humans. Occurrence of resistance to these antimicrobial agents in human pathogens severely limits the therapeutic options in human infections. Considering the rapid growth and importance of aquaculture...... gene transfer and reach human pathogens, or drug-resistant pathogens from the aquatic environment may reach humans directly. Horizontal gene transfer may occur in the aquaculture environment, in the food chain, or in the human intestinal tract. Among the antimicrobial agents commonly used...... industry in many regions of the world and the widespread, intensive, and often unregulated use of antimicrobial agents in this area of animal production, efforts are needed to prevent development and spread of antimicrobial resistance in aquaculture to reduce the risk to human health....

  8. Aquaculture and the utilisation of plant wastes in fish feeds

    CSIR Research Space (South Africa)

    Jacobs, A

    2010-08-31

    Full Text Available The growing aquaculture industry uses fish diets containing fishmeal as the main protein source. As part of the global drive to replace fishmeal with a more reliable, sustainable and cost-effective protein source, CSIR Biosciences investigated...

  9. Aquaculture intérieure et adaptation aux changements climatiques ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Extrants. Dossiers. Aquaculture insurance. Dossiers. Hatchery management in a seasonal and variable climate. Dossiers. Aeration techniques for fish ponds. Dossiers. The effect of temperature on the circulation of water in fish rearing ponds ...

  10. Future directions in breeding for disease resistance in aquaculture species

    Directory of Open Access Journals (Sweden)

    Ross D. Houston

    Full Text Available ABSTRACT Infectious disease is a major constraint for all species produced via aquaculture. The majority of farmed fish and shellfish production is based on stocks with limited or no selective breeding. Since disease resistance is almost universally heritable, there is huge potential to select for improved resistance to key diseases. This short review discusses the current methods of breeding more resistant aquaculture stocks, with success stories and current bottlenecks highlighted. The current implementation of genomic selection in breeding for disease resistance and routes to wider-scale implementation and improvement in aquaculture are discussed. Future directions are highlighted, including the potential of genome editing tools for mapping causative variation underlying disease resistance traits and for breeding aquaculture animals with enhanced resistance to disease.

  11. Optimizing nitrate removal in woodchip beds treating aquaculture effluents

    DEFF Research Database (Denmark)

    von Ahnen, Mathis; Pedersen, Per Bovbjerg; Hoffmann, Carl Christian

    2016-01-01

    Nitrate is typically removed from aquaculture effluents using heterotrophic denitrification reactors. Heterotrophic denitrification reactors, however, require a constant input of readily available organic carbon (C) sources which limits their application in many aquaculture systems for practical...... the potential of optimizing woodchip reactors for treating aquaculture effluent. A central composite design (CCD) was applied to assess the effects of simultaneously changing the empty bed contact time (EBCTs of 5.0-15.0 h; corresponding to theoretical hydraulic retention times of 3.3-9.9 h) and bicarbonate...... (HCO3 -) inlet concentration (0.50-1.59 g HCO3 -/l) on the removal rate of NO3 -N, and additional organic and inorganic nutrients, in effluent deriving from an experimental recirculating aquaculture system (RAS).Volumetric NO3 -N removal rates ranged from 5.20 ± 0.02 to 8.96 ± 0.19 g/m3/day and were...

  12. Aquaculture in South Africa: A cooperative research programme

    CSIR Research Space (South Africa)

    Safriel, O

    1984-06-01

    Full Text Available During the past few years the National Programme for Environmental Sciences has been involved in assessing the potential of aquaculture in South Africa and in formulating a research policy which will provide the information needed to place...

  13. Aquaculture en milieu rural au Sri Lanka | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le Sri Lanka se tourne vers l'aquaculture pour diversifier son économie rurale et accroître sa production alimentaire, particulièrement dans les provinces du nord et de l'est du pays, qui se relèvent du conflit civil. Bien que l'aquaculture représente une stratégie de sécurité alimentaire prometteuse, elle doit être gérée de ...

  14. Mechanisms of antimicrobial resistance in finfish aquaculture environments

    OpenAIRE

    Miranda, Claudio D.; Alfredo eTello; Keen, Patricia L.

    2013-01-01

    Consumer demand for affordable fish drives the ever-growing global aquaculture industry. The intensification and expansion of culture conditions in the production of several finfish species has been coupled with an increase in bacterial fish disease and the need for treatment with antimicrobials. Understanding the molecular mechanisms of antimicrobial resistance prevalent in aquaculture environments is important to design effective disease treatment strategies, to prioritize the use and regis...

  15. An Intelligent Four-Electrode Conductivity Sensor for Aquaculture

    OpenAIRE

    Zhang, Jiaran; Li, Daoliang; Wang, Cong; Ding, Qisheng

    2012-01-01

    International audience; Conductivity is regard as a key technical parameter in modern intensive fish farming management. The water conductivity sensors are sophisticated devices used in the aquaculture monitoring field to understand the effects of climate changes on fish ponds. In this paper a new four-electrode smart sensor is proposed for water conductivity measurements of aquaculture monitoring.The main advantages of these sensors include a high precision, a good stability and an intrinsic...

  16. Nutrients valorisation via duckweed-based wastewater treatment and aquaculture

    OpenAIRE

    El-Shafai, S.A.A.M.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated. The treatment system was efficiënt in organic matter removal during the entire year, while nitrogen, phosphorus and faecal coliform removal were negatively affected by the decline in temperature in winter...

  17. Modeling of TAN in recirculating aquaculture systems by AQUASIM

    DEFF Research Database (Denmark)

    Arvin, Erik; Pedersen, Lars-Flemming

    2011-01-01

    Modeling of total ammonium nitrogen (TAN) in recirculating aquaculture systems (RAS) contribute to identifying and quantifying the most important processes and their relative contribution to removal of TAN. AQUASIM is a flexible modular simulation system for water quality in natural and technical...... systems developed by EAWAG (Reichert, 1994). AQUASIM allows simulating complex biological, chemical and physical processes in standardized hydraulic systems. We used AQUASIM to model the steady state TAN concentrations in 12 experimental recirculating aquaculture systems (RAS) operated by DTU AQUA...

  18. Pyrethroid insecticides in urban salmon streams of the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Weston, D.P., E-mail: dweston@berkeley.edu [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg., Berkeley, CA 94720-3140 (United States); Asbell, A.M., E-mail: aasbell@berkeley.edu [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg., Berkeley, CA 94720-3140 (United States); Hecht, S.A., E-mail: scott.hecht@noaa.gov [NOAA Fisheries, Office of Protected Resources, 510 Desmond Drive S.E., Lacey, WA 98503 (United States); Scholz, N.L., E-mail: nathaniel.scholz@noaa.gov [NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112 (United States); Lydy, M.J., E-mail: mlydy@siu.edu [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, 171 Life Sciences II, Carbondale, IL 62901 (United States)

    2011-10-15

    Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 deg. C), and in one additional sample at a more environmentally realistic temperature (13 deg. C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols. - Highlights: > Salmon-bearing creeks can be adversely impacted by insecticides from urban runoff. > Pyrethroid insecticides were found in one-third of the creeks in Washington and Oregon. > Two creeks contained concentrations acutely lethal to sensitive invertebrates. > Bifenthrin was of greatest concern, though less than in prior studies. > Standard toxicity testing underestimates the ecological risk of pyrethroids. - Pyrethroid insecticides are present in sediments of urban creeks of Oregon and Washington, though less commonly than in studies elsewhere in the U.S.

  19. Within-farm spread of infectious salmon anemia virus (ISAV) in Atlantic salmon Salmo salar farms in Chile.

    Science.gov (United States)

    Mardones, F O; Jansen, P A; Valdes-Donoso, P; Jarpa, M; Lyngstad, T M; Jimenez, D; Carpenter, T E; Perez, A M

    2013-09-24

    Spread of infectious salmon anemia virus (ISAV) at the cage level was quantified using a subset of data from 23 Atlantic salmon Salmo salar farms located in southern Chile. Data collected from official surveillance activities were systematically organized to obtain detailed information on infectious salmon anemia (ISA) outbreaks. Descriptive statistics for outbreak duration, proportion of infected fish, and time to secondary infection were calculated to quantify the magnitude of ISAV incursions. Linear and multiple failure time (MFT) regression models were used to determine factors associated with the cage-level reproduction number (Rc) and hazard rate (HR) for recurrent events, respectively. In addition, the Knox test was used to assess if cage-to-cage transmissions were clustered in space and time. Findings suggest that within farms, ISA outbreaks, on average, lasted 30 wk (median = 26 wk, 95% CI = 24 to 37 wk) and affected 57.3% (95% CI = 47.7 to 67.0%) of susceptible cages. The median time to secondarily diagnosed cages was 23 d. Occurrence of clinical ISAV outbreaks was significantly associated with increased Rc, whereas increased HR was significantly associated with clinical outbreaks and with a large number of fish. Spatio-temporal analysis failed to identify clustering of cage cases, suggesting that within-farm ISAV spread is independent of the spatial location of the cages. Results presented here will help to better understand ISAV transmission, to improve the design of surveillance programs in Chile and other regions in which salmon are intensively farmed, and to examine the economic impact of ISAV and related management strategies on various cost and demand shifting factors.

  20. Ecology. Can science rescue salmon?

    Science.gov (United States)

    Mann, C C; Plummer, M L

    2000-08-04

    At a press conference on 27 July, the National Marine Fisheries Service (NMFS) released a long-awaited plan to save the Columbia River's endangered salmon by restoring fish habitat, overhauling hatcheries, limiting harvest, and improving river flow. What the plan did not do, however, was call for immediate breaching of four dams on the Snake River, the Columbia's major tributary--an option that has been the subject of a nationwide environmental crusade. The NMFS will hold that option in abeyance while it sees whether the less drastic measures will do the trick. Responses from both sides were immediate and outraged.

  1. Multivariate models of adult Pacific salmon returns.

    Directory of Open Access Journals (Sweden)

    Brian J Burke

    Full Text Available Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon.

  2. Multivariate models of adult Pacific salmon returns.

    Science.gov (United States)

    Burke, Brian J; Peterson, William T; Beckman, Brian R; Morgan, Cheryl; Daly, Elizabeth A; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon.

  3. A stochastic model for infectious salmon anemia (ISA) in Atlantic salmon farming

    OpenAIRE

    Scheel, Ida; Aldrin, Magne; Frigessi, Arnoldo; Jansen, Peder A

    2007-01-01

    Infectious salmon anemia (ISA) is one of the main infectious diseases in Atlantic salmon farming with major economical implications. Despite the strong regulatory interventions, the ISA epidemic is not under control, worldwide. We study the data covering salmon farming in Norway from 2002 to 2005 and propose a stochastic space-time model for the transmission of the virus. We model seaway transmission between farm sites, transmission through shared management and infrastructure, biomass effect...

  4. Analyzing variations in life-history traits of Pacific salmon in the context of Dynamic Energy Budget (DEB) theory

    Science.gov (United States)

    Pecquerie, Laure; Johnson, Leah R.; Kooijman, Sebastiaan A. L. M.; Nisbet, Roger M.

    2011-11-01

    To determine the response of Pacific salmon ( Oncorhynchus spp.) populations to environmental change, we need to understand impacts on all life stages. However, an integrative and mechanistic approach is particularly challenging for Pacific salmon as they use multiple habitats (river, estuarine and marine) during their life cycle. Here we develop a bioenergetic model that predicts development, growth and reproduction of a Pacific salmon in a dynamic environment, from an egg to a reproducing female, and that links female state to egg traits. This model uses Dynamic Energy Budget (DEB) theory to predict how life history traits vary among five species of Pacific salmon: Pink, Sockeye, Coho, Chum and Chinook. Supplemented with a limited number of assumptions on anadromy and semelparity and external signals for migrations, the model reproduces the qualitative patterns in egg size, fry size and fecundity both at the inter- and intra-species levels. Our results highlight how modeling all life stages within a single framework enables us to better understand complex life-history patterns. Additionally we show that body size scaling relationships implied by DEB theory provide a simple way to transfer model parameters among Pacific salmon species, thus providing a generic approach to study the impact of environmental conditions on the life cycle of Pacific salmon.

  5. The efficacy of emamectin benzoate against infestations of Lepeophtheirus salmonis on farmed Atlantic salmon (Salmo salar L) in Scotland, 2002-2006.

    Science.gov (United States)

    Lees, Fiona; Baillie, Mark; Gettinby, George; Revie, Crawford W

    2008-02-06

    Infestations of the parasitic copepod Lepeophtheirus salmonis, commonly referred to as sea lice, represent a major challenge to commercial salmon aquaculture. Dependence on a limited number of theraputants to control such infestations has led to concerns of reduced sensitivity in some sea lice populations. This study investigates trends in the efficacy of the in-feed treatment emamectin benzoate in Scotland, the active ingredient most widely used across all salmon producing regions. Study data were drawn from over 50 commercial Atlantic salmon farms on the west coast of Scotland between 2002 and 2006. An epi-informatics approach was adopted whereby available farm records, descriptive epidemiological summaries and statistical linear modelling methods were used to identify factors that significantly affect sea lice abundance following treatment with emamectin benzoate (SLICE(R), Schering Plough Animal Health). The results show that although sea lice infestations are reduced following the application of emamectin benzoate, not all treatments are effective. Specifically there is evidence of variation across geographical regions and a reduction in efficacy over time. Reduced sensitivity and potential resistance to currently available medicines are constant threats to maintaining control of sea lice populations on Atlantic salmon farms. There is a need for on-going monitoring of emamectin benzoate treatment efficacy together with reasons for any apparent reduction in performance. In addition, strategic rotation of medicines should be encouraged and empirical evidence for the benefit of such strategies more fully evaluated.

  6. Migratory salmonid redd habitat characteristics in the Salmon River, New York

    Science.gov (United States)

    Johnson, James H.; Nack, Christopher C.; McKenna, James E.

    2010-01-01

    Non-native migratory salmonids ascend tributaries to spawn in all the Great Lakes. In Lake Ontario, these species include Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), steelhead (O. mykiss), and brown trout (Salmo trutta). Although successful natural reproduction has been documented for many of these species, little research has been conducted on their spawning habitat. We examined the spawning habitat of these four species in the Salmon River, New York. Differences in fish size among the species were significantly correlated with spawning site selection. In the Salmon River, the larger species spawned in deeper areas with larger size substrate and made the largest redds. Discriminant function analysis correctly classified redds by species 64–100% of the time. The size of substrate materials below Lighthouse Hill Dam is within the preferred ranges for spawning for these four species indicating that river armoring has not negatively impacted salmonid production. Intra-specific and inter-specific competition for spawning sites may influence redd site selection for smaller salmonids and could be an impediment for Atlantic salmon (S. salar) restoration.

  7. Coho Salmon (Oncorhynchus kisutch Prefer and Are Less Aggressive in Darker Environments.

    Directory of Open Access Journals (Sweden)

    Leigh P Gaffney

    Full Text Available Fish are capable of excellent vision and can be profoundly influenced by the visual properties of their environment. Ambient colours have been found to affect growth, survival, aggression and reproduction, but the effect of background darkness (i.e., the darkness vs. lightness of the background on preference and aggression has not been evaluated systematically. One-hundred Coho salmon (Oncorhynchus kisutch, a species that is increasing in popularity in aquaculture, were randomly assigned to 10 tanks. Using a Latin-square design, every tank was bisected to allow fish in each tank to choose between all the following colour choices (8 choices in total: black vs. white, light grey, dark grey, and a mixed dark grey/black pattern, as well as industry-standard blue vs. white, light grey, dark grey, and black. Fish showed a strong preference for black backgrounds over all other options (p < 0.01. Across tests, preference strength increased with background darkness (p < 0.0001. Moreover, having darker backgrounds in the environment resulted in less aggressive behaviour throughout the tank (p < 0.0001. These results provide the first evidence that darker tanks are preferred by and decrease aggression in salmonids, which points to the welfare benefits of housing farmed salmon in enclosures containing dark backgrounds.

  8. [Aquaculture in the Netherlands: problems and perspectives].

    Science.gov (United States)

    Hogendoorn, H

    1986-11-15

    New interest is being focussed on the more than 100-year-old field of fish culture in the Netherlands. The systems of production available show varying degrees of control of the fish and their environment, and they have a corresponding yield: 0.01-250 kg/m3/year. The recently developed recirculation systems (40-80 kg/m3) make possible the commercial production of luxury species of fish, independently of climatological conditions and having minimum effects on the environment. Some technical aspects of reproduction, housing, nutrition, growth, health control and marketing of the fish require further attention. But the absence of a solid tradition of fish culture is the main problem in the development of fish culture in the Netherlands today. Good fish stockmanship is required at farmers' level. And the organisation and governmental support, that turned agriculture into a highly successful industry, are also essential. For the moment, the most promising commercial prospects are provided by a number of luxury fish species: trout, salmon, eel, sole, turbot, tilapia, catfish, seabass and seabream. A joint effort may help to overcome the remaining technical and logistical uncertainties.

  9. 76 FR 25246 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2011 Management Measures

    Science.gov (United States)

    2011-05-04

    ... scientific uncertainty in forecasting SRFC stock abundance, the Council designed management measures for... well the Council's 2010 management objectives were met. The second report, ``Preseason Report I Stock...), provides the 2011 salmon stock abundance projections and analyzes the impacts on the stocks and Council...

  10. Nutrient compensation as management tool– Sugar kelp production in sustainable aquaculture

    DEFF Research Database (Denmark)

    Schmedes, Peter Søndergaard; Boderskov, Teis; Silva Marinho, Goncalo

    Integrated multi-trophic aquaculture (IMTA) is theoretically a sustainable production form, which minimizes waste products from e.g. fish farms, by the co-production of bivalves or/and seaweed. For the Danish fish farmers the extractive organisms could be the solution for increasing fish production...... and robust mitigation tool for nitrogen removal and hopefully allow for future expansion of sustainable marine fish production in Denmark......., but do the principles of IMTA fully mitigate the nutrient impact from open net-pen fish production at realistic production scales? In this project, commercial scale cultivation of sugar kelp (Saccharina latissima) was investigated with regard to operation, yield, biofilter capacity and mapping...

  11. Thirty Years of Research on the Application of Cybernetic Methods in Fisheries and Aquaculture Technology

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    2000-01-01

    Full Text Available The paper surveys the research activities at the Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway, in the application of cybernetic principles in fisheries technology, aqua-culture technology and ocean ranching during the period 1969-1999. It is believed that the results obtained in these activities will have an impact upon the future developments in one of the most important sectors of the Norwegian economy. Numerous reports and publications are listed in the comprehensive bibliography.

  12. Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research

    Science.gov (United States)

    Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product qua...

  13. Sex-biased gene expression and sequence conservation in Atlantic and Pacific salmon lice (Lepeophtheirus salmonis).

    Science.gov (United States)

    Poley, Jordan D; Sutherland, Ben J G; Jones, Simon R M; Koop, Ben F; Fast, Mark D

    2016-07-04

    Salmon lice, Lepeophtheirus salmonis (Copepoda: Caligidae), are highly important ectoparasites of farmed and wild salmonids, and cause multi-million dollar losses to the salmon aquaculture industry annually. Salmon lice display extensive sexual dimorphism in ontogeny, morphology, physiology, behavior, and more. Therefore, the identification of transcripts with differential expression between males and females (sex-biased transcripts) may help elucidate the relationship between sexual selection and sexually dimorphic characteristics. Sex-biased transcripts were identified from transcriptome analyses of three L. salmonis populations, including both Atlantic and Pacific subspecies. A total of 35-43 % of all quality-filtered transcripts were sex-biased in L. salmonis, with male-biased transcripts exhibiting higher fold change than female-biased transcripts. For Gene Ontology and functional analyses, a consensus-based approach was used to identify concordantly differentially expressed sex-biased transcripts across the three populations. A total of 127 male-specific transcripts (i.e. those without detectable expression in any female) were identified, and were enriched with reproductive functions (e.g. seminal fluid and male accessory gland proteins). Other sex-biased transcripts involved in morphogenesis, feeding, energy generation, and sensory and immune system development and function were also identified. Interestingly, as observed in model systems, male-biased L. salmonis transcripts were more frequently without annotation compared to female-biased or unbiased transcripts, suggesting higher rates of sequence divergence in male-biased transcripts. Transcriptome differences between male and female L. salmonis described here provide key insights into the molecular mechanisms controlling sexual dimorphism in L. salmonis. This analysis offers targets for parasite control and provides a foundation for further analyses exploring critical topics such as the interaction

  14. Salmon Site Remedial Investigation Report, Appendix B (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    USDOE/NV

    1999-09-01

    installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  15. Modelling for an improved integrated multi-trophic aquaculture system for the production of highly valued marine species

    Directory of Open Access Journals (Sweden)

    Luana Granada

    2014-05-01

    Full Text Available Integrated multi-trophic aquaculture (IMTA is regarded as a suitable approach to limit aquaculture nutrients and organic matter outputs through biomitigation. Here, species from different trophic or nutritional levels are connected through water transfer. The co-cultured species are used as biofilters, and each level has its own independent commercial value, providing both economic and environmental sustainability. In order to better understand and optimize aquaculture production systems, dynamic modelling has been developed towards the use of models for analysis and simulation of aquacultures. Several models available determine the carrying capacity of farms and the environmental effects of bivalve and fish aquaculture. Also, in the last two decades, modelling strategies have been designed in order to predict the dispersion and deposition of organic fish farm waste, usually using the mean settling velocity of faeces and feed pellets. Cultured organisms growth, effects of light and temperature on algae growth, retention of suspended solids, biodegradation of nitrogen and wastewater treatment are examples of other modelled parameters in aquaculture. Most modelling equations have been developed for monocultures, despite the increasing importance of multi-species systems, such as polyculture and IMTA systems. The main reason for the development of multi-species models is to maximize the production and optimize species combinations in order to reduce the environmental impacts of aquaculture. Some multi-species system models are available, including from the polyculture of different species of bivalves with fish to more complex systems with four trophic levels. These can incorporate ecosystem models and use dynamic energy budgets for each trophic group. In the proposed IMTA system, the bioremediation potential of the marine seaweed Gracilaria vermiculophylla (nutrient removal performance and the Mediterranean filter-feeding polychaete Sabella

  16. Potential use of power plant reject heat in commercial aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    1977-01-01

    Current research and commercial activities in aquaculture operations have been reviewed. An aquaculture system using mostly herbivorous species in pond culture is proposed as a means of using waste heat to produce reasonably priced protein. The system uses waste water streams, such as secondary sewage effluent, animal wastes, or some industrial waste streams as a primary nutrient source to grow algae, which is fed to fish and clams. Crayfish feed on the clam wastes thereby providing a clean effluent from the aquaculture system. Alternate fish associations are presented and it appears that a carp or tilapia association is desirable. An aquaculture system capable of rejecting all the waste heat from a 1000-MW(e) power station in winter can accommodate about half the summer heat rejection load. The aquaculture facility would require approximately 133 ha and would produce 4.1 x 10/sup 5/ kg/year of fish, 1.5 x 10/sup 6/ kg/year of clam meat, and 1.5 x 10/sup 4/ kg/year of live crayfish. The estimated annual pretax profit from this operation is one million dollars. Several possible problem areas have been identified. However, technical solutions appear to be readily available to solve these problems. The proposed system shows considerable economic promise. Small scale experiments have demonstrated the technical feasibility of various components of the system. It therefore appears that a pilot scale experimental facility should be operated.

  17. CROOS - Collaborative Research on Oregon Ocean Salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Goal 1: Improve understanding of salmon ocean ecology by integrating stock-specific distribution patterns over space and time with biological and environmental data....

  18. Karluk Lake sockeye salmon studies 1984: Draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the findings of a study on Karluk Lake sockeye salmon. The objectives of the study were to: collect sediment core samples from Karluk Lake and...

  19. Pacific Northwest Salmon Habitat Project Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the Pacific Northwest Salmon Habitat Project Database Across the Pacific Northwest, both public and private agents are working to improve riverine habitat for a...

  20. AFSC/ABL: Chum salmon allozyme baseline

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Allozymes from 46 loci were analyzed from chum salmon (Oncorhynchus keta) collected at 61 locations in southeast Alaska and northern British Columbia. Of the 42...

  1. Comparison of Asian Aquaculture Products by Use of Statistically Supported Life Cycle Assessment.

    Science.gov (United States)

    Henriksson, Patrik J G; Rico, Andreu; Zhang, Wenbo; Ahmad-Al-Nahid, Sk; Newton, Richard; Phan, Lam T; Zhang, Zongfeng; Jaithiang, Jintana; Dao, Hai M; Phu, Tran M; Little, David C; Murray, Francis J; Satapornvanit, Kriengkrai; Liu, Liping; Liu, Qigen; Haque, M Mahfujul; Kruijssen, Froukje; de Snoo, Geert R; Heijungs, Reinout; van Bodegom, Peter M; Guinée, Jeroen B

    2015-12-15

    We investigated aquaculture production of Asian tiger shrimp, whiteleg shrimp, giant river prawn, tilapia, and pangasius catfish in Bangladesh, China, Thailand, and Vietnam by using life cycle assessments (LCAs), with the purpose of evaluating the comparative eco-efficiency of producing different aquatic food products. Our starting hypothesis was that different production systems are associated with significantly different environmental impacts, as the production of these aquatic species differs in intensity and management practices. In order to test this hypothesis, we estimated each system's global warming, eutrophication, and freshwater ecotoxicity impacts. The contribution to these impacts and the overall dispersions relative to results were propagated by Monte Carlo simulations and dependent sampling. Paired testing showed significant (p production systems in the intraspecies comparisons, even after a Bonferroni correction. For the full distributions instead of only the median, only for Asian tiger shrimp did more than 95% of the propagated Monte Carlo results favor certain farming systems. The major environmental hot-spots driving the differences in environmental performance among systems were fishmeal from mixed fisheries for global warming, pond runoff and sediment discards for eutrophication, and agricultural pesticides, metals, benzalkonium chloride, and other chlorine-releasing compounds for freshwater ecotoxicity. The Asian aquaculture industry should therefore strive toward farming systems relying upon pelleted species-specific feeds, where the fishmeal inclusion is limited and sourced sustainably. Also, excessive nutrients should be recycled in integrated organic agriculture together with efficient aeration solutions powered by renewable energy sources.

  2. Predictive model of food intake of the Seabass Dicentrarchus labrax in closed aquaculture systems

    Directory of Open Access Journals (Sweden)

    Allan T Souza

    2015-12-01

    Full Text Available Fish feeding is the main source of waste in aquaculture and is also responsible for most of the environmental impacts derived from this activity. The European Seabass Dicentrarchus labrax is one of the most farmed fishes in the continent, generating an important load of waste on the environment. The consumption of food in fishes is highly dependent on the water temperature and salinity, which create a source of variability on the amount of the ration consumed by fishes. This issue is often neglected by farmers, which aggravates the ration waste. The use of models in aquaculture is increasing in the recent years, and is an excellent tool to combine an increased production with the mitigation of environmental impacts. In this context, this study aimed at developing a predictive model of the D. labrax consumption rate in closed aquaculture systems. Based on the literature review we were able to develop a conceptual diagram and a prototype of the model using the STELLA software (isee®. The preliminary results indicated that the model was capable of predicting the ration consumption of the D. labrax according to the oscillations in the water temperature and salinity. The consumption rate and growth were higher at 21ºC and with a salinity of 28 psu. Laboratory assays are need to validate the models outputs, and they are scheduled to start in October 2015. Finally, the model’s structure, equations, inputs and outputs were integrated into an easy-to-use software developed by the FoodInTech® company, that will help farmers to increase their yields and reduce the waste of ration and the nutrient load on the environment.

  3. Salmon River Habitat Enhancement. 1990 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  4. Quantifying Temperature Effects on Fall Chinook Salmon

    Energy Technology Data Exchange (ETDEWEB)

    Jager, Yetta [ORNL

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  5. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  6. Strategies to enhance the competitiveness of semi-intensive aquaculture systems in costal earth ponds: the organic aquaculture approach

    Directory of Open Access Journals (Sweden)

    Manuel Sardinha

    2014-06-01

    on the performance of seabream. Lower culture density (0.5 kg/m3 resulted in higher overall growth performance. The impact, in terms of nitrogenous (N and phosphorus (P loads, among the various scenarios were calculated and clearly reinforce the environmental sustainability of these semi-intensive production systems. The use of organic feeds does not lead to a significant enhancement of the growth performance. Therefore, the additional costs associated to feeding under organic standards, need to be incorporated in the sale price, thus requiring a targeted and differentiated marketing and distribution approach. Sociedade Piscicultura Farense Lda, as other traditional aquacultures depends on the enhancement of the natural environment, combined with production fine-tuning and product positioning, rewarding the quality of the final product. The positive effects of extensive and semi-intensive aquaculture in coastal areas, including environmental protection and restoration in areas of particular ecological interest, employment opportunity and development in rural and coastal areas are highly appealing concepts for the general community, particularly to conscious consumers.

  7. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens.

    Science.gov (United States)

    Zhao, J; Chen, M; Quan, C S; Fan, S D

    2015-09-01

    In many countries, infectious diseases are a considerable threat to aquaculture. The pathogenicity of micro-organisms that infect aquaculture systems is closely related to the release of virulence factors and the formation of biofilms, both of which are regulated by quorum sensing (QS). Thus, QS disruption is a potential strategy for preventing disease in aquaculture systems. QS inhibitors (QSIs) not only inhibit the expression of virulence-associated genes but also attenuate the virulence of aquaculture pathogens. In this review, we discuss QS systems in important aquaculture pathogens and focus on the relationship between QS mechanisms and bacterial virulence in aquaculture. We further elucidate QS disruption strategies for targeting aquaculture pathogens. Four main types of QSIs that target aquaculture pathogens are discussed based on their mechanisms of action. © 2014 John Wiley & Sons Ltd.

  8. Occupational Health and Safety in Aquaculture: Insights on Brazilian Public Policies.

    Science.gov (United States)

    de Oliveira, Pedro Keller; Cavalli, Richard Souto; Kunert Filho, Hiran Castagnino; Carvalho, Daiane; Benedetti, Nadine; Rotta, Marco Aurélio; Peixoto Ramos, Augusto Sávio; de Brito, Kelly Cristina Tagliari; de Brito, Benito Guimarães; da Rocha, Andréa Ferretto; Stech, Marcia Regina; Cavalli, Lissandra Souto

    2017-01-01

    Aquaculture has many occupational hazards, including those that are physical, chemical, biological, ergonomic, and mechanical. The risks in aquaculture are inherent, as this activity requires particular practices. The objective of the present study was to show the risks associated with the aquaculture sector and present a critical overview on the Brazilian public policies concerning aquaculture occupational health. Methods include online research involved web searches and electronic databases including Pubmed, Google Scholar, Scielo and government databases. We conducted a careful revision of Brazilian labor laws related to occupational health and safety, rural workers, and aquaculture. The results and conclusion support the idea that aquaculture requires specific and well-established industry programs and policies, especially in developing countries. Aquaculture still lacks scientific research, strategies, laws, and public policies to boost the sector with regard to occupational health and safety. The establishment of a safe workplace in aquaculture in developing countries remains a challenge for all involved in employer-employee relationships.

  9. The use and benefits of Bacillus based biological agents in aquaculture

    CSIR Research Space (South Africa)

    Nemutanzhela, ME

    2014-01-01

    Full Text Available Global shortages in seafood resources have driven the growth of aquaculture as an economic activity, predominantly in developing countries. As a consequence of space and resource constraints, traditional aquaculture has been intensified...

  10. Comparative anatomy of the dorsal hump in mature Pacific salmon.

    Science.gov (United States)

    Susuki, Kenta; Ban, Masatoshi; Ichimura, Masaki; Kudo, Hideaki

    2017-07-01

    Mature male Pacific salmon (Genus Oncorhynchus) demonstrate prominent morphological changes, such as the development of a dorsal hump. The degree of dorsal hump formation depends on the species in Pacific salmon. It is generally accepted that mature males of sockeye (O. nerka) and pink (O. gorbuscha) salmon develop most pronounced dorsal humps. The internal structure of the dorsal hump in pink salmon has been confirmed in detail. In this study, the dorsal hump morphologies were analyzed in four Pacific salmon species inhabiting Japan, masu (O. masou), sockeye, chum (O. keta), and pink salmon. The internal structure of the dorsal humps also depended on the species; sockeye and pink salmon showed conspicuous development of connective tissue and growth of bone tissues in the dorsal tissues. Masu and chum salmon exhibited less-pronounced increases in connective tissues and bone growth. Hyaluronic acid was clearly detected in dorsal hump connective tissue by histochemistry, except for in masu salmon. The lipid content in dorsal hump connective tissue was richer in masu and chum salmon than in sockeye and pink salmon. These results revealed that the patterns of dorsal hump formation differed among species, and especially sockeye and pink salmon develop pronounced dorsal humps through both increases in the amount of connective tissue and the growth of bone tissues. In contrast, masu and chum salmon develop their dorsal humps by the growth of bone tissues, rather than the development of connective tissue. © 2017 Wiley Periodicals, Inc.

  11. Monitoring and managing microbes in aquaculture - Towards a sustainable industry

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Sonnenschein, Eva; Gram, Lone

    2016-01-01

    Microorganisms are of great importance to aquaculture where they occur naturally, and can be added artificially, fulfilling different roles. They recycle nutrients, degrade organic matter and, occasionally, they infect and kill the fish, their larvae or the live feed. Also, some microorganisms may...... protect fish and larvae against disease. Hence, monitoring and manipulating the microbial communities in aquaculture environments hold great potential; both in terms of assessing and improving water quality, but also in terms of controlling the development of microbial infections. Using microbial...... manipulate and engineer these microbiomes. Similarly, we can reduce the need to apply antibiotics in aquaculture through manipulation of the microbiome, i.e. by the use of probiotic bacteria. Recent studies have demonstrated that fish pathogenic bacteria in live feed can be controlled by probiotics...

  12. Microbial populations causing off-flavour in recirculated aquaculture systems

    DEFF Research Database (Denmark)

    Lukassen, Mie Bech; Nielsen, Jeppe Lund; Schramm, Edward

    the distribution of geoA in more than 50 European and Brazilian aquaculture systems has allowed us to identify the diversity among geosmin-producing bacteria. The different populations of geosmin-producers were evaluated relative to plant design, environmental and operational parameters in full-scale aquaculture...... phase. Furthermore, the gene expressions of the individual groups show positive correlations to the organic loading and presence of oxygen. The current study reveals the presence of important populations involved in geosmin production and which parameters are of importance for their presence...... and activity. These findings are useful for the future optimization and management of full-scale aquaculture plants, and can be used as a diagnostic tool in developing strategies to limit the presence and growth of geosmin-producing bacteria....

  13. Temporal variation on environmental variables and pollution indicators in marine sediments under sea Salmon farming cages in protected and exposed zones in the Chilean inland Southern Sea.

    Science.gov (United States)

    Urbina, Mauricio A

    2016-12-15

    The impacts of any activity on marine ecosystems will depend on the characteristics of the receptor medium and its resilience to external pressures. Salmon farming industry develops along a constant gradient of hydrodynamic conditions in the south of Chile. However, the influence of the hydrodynamic characteristics (weak or strong) on the impacts of intensive salmon farming is still poorly understood. This one year study evaluates the impacts of salmon farming on the marine sediments of both protected and exposed marine zones differing in their hydrodynamic characteristics. Six physico-chemical, five biological variables and seven indexes of marine sediments status were evaluated under the salmon farming cages and control sites. Our results identified a few key variables and indexes necessary to accurately evaluate the salmon farming impacts on both protected and exposed zones. Interestingly, the ranking of importance of the variables and the temporality of the observed changes, varied depending on the hydrodynamic characteristics. Biological variables (nematodes abundance) and environmental indexes (Simpson's dominance, Shannon's diversity and Pielou evenness) are the first to reflect detrimental impacts under the salmon farming cages. Then the physico-chemical variables such as redox, sulphurs and phosphorus in both zones also show detrimental impacts. Based on the present results we propose that the hydrodynamic regime is an important driver of the magnitude and temporality of the effects of salmon farming on marine sediments. The variables and indexes that best reflect the effects of salmon farming, in both protected and exposed zones, are also described. Copyright © 2016. Published by Elsevier B.V.

  14. Salmon-Eating Grizzly Bears Exposed to Elevated Levels of Marine Derived Persistent Organic Pollutants

    Science.gov (United States)

    Christensen, J. R.; Ross, P. S.; Whiticar, M. J.

    2004-12-01

    The coastal grizzly bears of British Columbia (BC, Canada) rely heavily on salmon returning from the Pacific Ocean, whereas interior bears do not have access to or readily utilize this marine-derived food source. Since salmon have been shown to accumulate persistent organic pollutants (POPs) from the North Pacific Ocean, we hypothesized that salmon consumption by grizzly bears would be reflected by an increase in the POP burden. To test this hypothesis we collected hair and fat tissue from grizzlies at various locations around BC to compare salmon-eating (coastal) grizzlies to non-salmon-eating (interior) grizzlies. We characterized the feeding habits for each bear sampled by measuring the stable carbon and nitrogen isotope signature of their hair. The positive relationship between 13C/12C and 15N/14N isotopic ratios suggests that the majority of the meat portion of the diet of coastal grizzlies is coming from salmon, rather than from terrestrial or freshwater sources. By contrast, stable isotope ratios revealed that interior bears have an almost exclusive vegetarian diet with no marine influence. As hypothesized, the coastal grizzly bears have significantly greater OC pesticide and lower-brominated PBDE congener body burden than the interior grizzlies. We also found a positive relationship between C and N isotope ratios and these same POP contaminants in bear tissue. Overall, these results demonstrate that Pacific salmon represents a significant vector delivering both OC pesticides and PBDEs to BC coastal grizzly bears.

  15. Effect of exposure on salmon lice Lepeophtheirus salmonis population dynamics in Faroese salmon farms

    DEFF Research Database (Denmark)

    Patursson, Esbern J.; Simonsen, Knud; Visser, Andre

    2017-01-01

    of the freshwater exchange rate, the tidal exchange rate and dispersion by tidal currents. Salmon farms were ranked according to the rate of increase in the average numbers of salmon lice per fish. In a multiple linear regression, physical exposure together with temperature were shown to have a significant effect...

  16. Carotenoid dynamics in Atlantic salmon

    Directory of Open Access Journals (Sweden)

    Omholt Stig W

    2006-04-01

    Full Text Available Abstract Background Carotenoids are pigment molecules produced mainly in plants and heavily exploited by a wide range of organisms higher up in the food-chain. The fundamental processes regulating how carotenoids are absorbed and metabolized in vertebrates are still not fully understood. We try to further this understanding here by presenting a dynamic ODE (ordinary differential equation model to describe and analyse the uptake, deposition, and utilization of a carotenoid at the whole-organism level. The model focuses on the pigment astaxanthin in Atlantic salmon because of the commercial importance of understanding carotenoid dynamics in this species, and because deposition of carotenoids in the flesh is likely to play an important life history role in anadromous salmonids. Results The model is capable of mimicking feed experiments analyzing astaxanthin uptake and retention over short and long time periods (hours, days and years under various conditions. A sensitivity analysis of the model provides information on where to look for possible genetic determinants underlying the observed phenotypic variation in muscle carotenoid retention. Finally, the model framework is used to predict that a specific regulatory system controlling the release of astaxanthin from the muscle is not likely to exist, and that the release of the pigment into the blood is instead caused by the androgen-initiated autolytic degradation of the muscle in the sexually mature salmon. Conclusion The results show that a dynamic model describing a complex trait can be instrumental in the early stages of a project trying to uncover underlying determinants. The model provides a heuristic basis for an experimental research programme, as well as defining a scaffold for modelling carotenoid dynamics in mammalian systems.

  17. Carotenoid dynamics in Atlantic salmon.

    Science.gov (United States)

    Rajasingh, Hannah; Øyehaug, Leiv; Våge, Dag Inge; Omholt, Stig W

    2006-04-18

    Carotenoids are pigment molecules produced mainly in plants and heavily exploited by a wide range of organisms higher up in the food-chain. The fundamental processes regulating how carotenoids are absorbed and metabolized in vertebrates are still not fully understood. We try to further this understanding here by presenting a dynamic ODE (ordinary differential equation) model to describe and analyse the uptake, deposition, and utilization of a carotenoid at the whole-organism level. The model focuses on the pigment astaxanthin in Atlantic salmon because of the commercial importance of understanding carotenoid dynamics in this species, and because deposition of carotenoids in the flesh is likely to play an important life history role in anadromous salmonids. The model is capable of mimicking feed experiments analyzing astaxanthin uptake and retention over short and long time periods (hours, days and years) under various conditions. A sensitivity analysis of the model provides information on where to look for possible genetic determinants underlying the observed phenotypic variation in muscle carotenoid retention. Finally, the model framework is used to predict that a specific regulatory system controlling the release of astaxanthin from the muscle is not likely to exist, and that the release of the pigment into the blood is instead caused by the androgen-initiated autolytic degradation of the muscle in the sexually mature salmon. The results show that a dynamic model describing a complex trait can be instrumental in the early stages of a project trying to uncover underlying determinants. The model provides a heuristic basis for an experimental research programme, as well as defining a scaffold for modelling carotenoid dynamics in mammalian systems.

  18. Harvest Management and Recovery of Snake River Salmon Stocks : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 7 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Lestelle, Lawrence C.; Gilbertson, Larry G.

    1993-06-01

    Management measures to regulate salmon fishing harvest have grown increasingly complex over the past decade in response to the needs for improved protection for some salmon runs and to alter harvest sharing between fisheries. The development of management plans that adequately address both needs is an immensely complicated task, one that involves a multitude of stocks, each with its own migration patterns and capacity to sustain exploitation. The fishing industry that relies on these fish populations is also highly diverse. The management task is made especially difficult because the stocks are often intermingled on the fishing grounds, creating highly mixed aggregates of stocks and species on which the fisheries operate. This situation is the one confronting harvest managers attempting to protect Snake River salmon. This report provides an overview of some of the factors that will need to be addressed in assessing the potential for using harvest management measures in the recovery of Snake River salmon stocks. The major sections of the report include the following: perspectives on harvest impacts; ocean distribution and in-river adult migration timing; description of management processes and associated fisheries of interest; and altemative harvest strategies.

  19. The Presence of Pathogenic Bacteria in Recirculating Aquaculture System Biofilms and their Response to Various Sanitizers

    OpenAIRE

    King, Robin K.

    2001-01-01

    THE PRESENCE OF BACTERIAL PATHOGENS IN BIOFILMS OF RECIRCULATING AQUACULTURE SYSTEMS AND THEIR RESPONSE TO VARIOUS SANITIZERS Robin K. King ABSTRACT Recirculating aquaculture offers a prospect for successful fish farming, but this form of aquaculture presents a great potential for pathogenic microorganisms to become established in the system through the formation of biofilms. Biofilms are capable of forming on all aquaculture system components, incorporating the various microflor...

  20. Southern Chile, trout and salmon country: invasion patterns and threats for native species Sur de Chile, país de truchas y salmones: patrones de invasión y amenazas para las especies nativas

    Directory of Open Access Journals (Sweden)

    DORIS SOTO

    2006-03-01

    Full Text Available In order to evaluate the present distribution patterns of salmonids and their potential effects on native fish, we sampled 11 large lakes and 105 streams, encompassing a total of 13 main hydrographic watersheds of southern Chile (39° to 52°S. Overall, trout (Salmo trutta and Oncorhynchus mykiss accounted for more than 60 % of total fish abundance and more than 80 % of total biomass, while 40 % of the streams sampled did not have native fish. Salmon, introduced for aquaculture, such as O. kisutch, Salmo salar, and O. tshawytscha, were only present in lakes with salmon farming and did not seem to be reproducing naturally in affluent streams. We tested the effect of river geographic origin (Andes mountains, central valley, or Coastal range on fish abundance and found that rainbow trout was more restricted to the Andean streams with higher water discharge, while brown trout was widely distributed and did not relate to any of several catchment attributes measured. The abundance of native fish was greater in lakes than in streams and the highest native fish biodiversity occurred in streams of the central valley. The most common native species were Galaxias maculatus, G. platei, Brachygalaxias bullocki, Aplochiton zebra and Basilichthys australis. Streams with higher conductivity, larger pool areas, more fine sediments, and low brown trout densities were more suitable for native fish. Thus, catchments with higher anthropogenic disturbance appeared as refuges for native species. Given the descriptive nature of our study we can only presume the negative impacts of trout and salmon on native fish; an effect which should be superimposed on biogeographical conditioning of present distribution. Yet based on the present abundance and distribution patterns of salmonids and native fish, negative effects are very likely. Conservation of native fish biodiversity in central valley streams, far from protected areas or national parks and fully exposed to human