WorldWideScience

Sample records for salinity reduced growth

  1. Partial substitution of NO(3)(-) by NH(4)(+) fertilization increases ammonium assimilating enzyme activities and reduces the deleterious effects of salinity on the growth of barley.

    Science.gov (United States)

    Kant, Surya; Kant, Pragya; Lips, Herman; Barak, Simon

    2007-03-01

    Productivity of cereal crops is restricted in saline soils but may be improved by nitrogen nutrition. In this study, the effect of ionic nitrogen form on growth, mineral content, protein content and ammonium assimilation enzyme activities of barley (Hordeum vulgare cv. Alexis L.) irrigated with saline water, was determined. Leaf and tiller number as well as plant fresh and dry weights declined under salinity (120 mM NaCl). In non-saline conditions, growth parameters were increased by application of NH(4)(+)/NO(3)(-) (25:75) compared to NO(3)(-) alone. Under saline conditions, application of NH(4)(+)/NO(3)(-) led to a reduction of the detrimental effects of salt on growth. Differences in growth between the two nitrogen regimes were not due to differences in photosynthesis. The NH(4)(+)/NO(3)(-) regime led to an increase in total N in control and saline treatments, but did not cause a large decrease in plant Na(+) content under salinity. Activities of GS (EC 6.3.1.2), GOGAT (EC 1.4.1.14), PEPC (EC 4.1.1.31) and AAT (EC 2.6.1.1) increased with salinity in roots, whereas there was decreased activity of the alternative ammonium assimilation enzyme GDH (EC 1.4.1.2). The most striking effect of nitrogen regime was observed on GDH whose salinity-induced decrease in activity was reduced from 34% with NO(3)(-) alone to only 14% with the mixed regime. The results suggest that the detrimental effects of salinity can be reduced by partial substitution of NO(3)(-) with NH(4)(+) and that this is due to the lower energy cost of N assimilation with NH(4)(+) as opposed to NO(3)(-) nutrition.

  2. Will inundation and salinity levels associated with projected sea level rise reduce the survival, growth, and reproductive capacity of Sarcocornia pacifica (pickleweed)?

    Science.gov (United States)

    Woo, I.; Takekawa, John Y.

    2012-01-01

    In the San Francisco Bay Estuary, CA, USA, sea level rise (SLR) is projected to increase by 1.4 m during the next 90 years resulting in increased inundation and salt water intrusion up-estuary. Since inundation and salinity are critical factors that drive vegetation structure and composition in coastal wetlands, we asked whether inundation and salinity levels associated with SLR would reduce the survival, growth, and reproductive capacity of a dominant halophyte, Sarcocornia pacifica (pickleweed). We conducted a 4 × 4 factorial greenhouse experiment to examine the effects of a range of inundation periods (25, 50, 75, and 100%) and water salinities (0, 10, 20, 30 psu) on individual S. pacifica adults and seedlings. We found that inundation and salinity treatments affected the height of adults and seedlings combined. When examined separately, adult height was negatively affected by inundation ≥75%, while seedling height was affected by the interaction of both inundation and salinity. Adult belowground biomass was negatively affected by complete inundation. Seedling aboveground biomass decreased 46% at the highest salinity (30 psu) and belowground biomass decreased at salinities ≥20 psu. Adult flower production was not affected by treatments but was reduced by 38% at 30 psu salinity for seedlings. While adult survival was 99%, seedling survival was 56% with greatest mortality at low (25%) inundation, possibly because their roots were more susceptible to desiccation. Vegetation structure of the marsh platform comprised of S. pacifica adults will be susceptible to greater inundation rates associated with SLR. Our results suggest that adults may grow less tall, thus altering the vegetation structure and likely the tidal marsh wildlife that rely on these habitats.

  3. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  4. Assessment of Halophyte Growth in Saline Environments

    Science.gov (United States)

    Garrett, A.; Stracke, S.; Nowak, B.; Goehring, N.; Saito, L.; Verburg, P.

    2016-12-01

    Salinization of soil and water can pose a serious threat for irrigated agricultural lands in arid and semi-arid regions as high concentrations of salt negatively impacts crop production and, consequently, the agricultural economy. Highly salt-tolerant plants, or halophytes, may provide a viable option for saline areas, enabling economic production from previously unproductive land. Many halophytes can be used for human consumption, forage for livestock, or biofuel production. These plants may also remediate saline soils by taking up the salt from the soil, thereby improving conditions for conventional crop cultivation. This project aims to determine halophyte growth under different salt stresses. Two halophytic crops, AC Saltlander green wheatgrass (Elymus hoffmannii) and Rainbow quinoa (Chenopodium quinoa var. rainbow), were cultivated in a greenhouse with saline soil treatments (2, 4, 6, 8 and 12 dS/m) and saline irrigation treatments (1, 2, 4, and 6 dS/m), resulting in 20 different treatment combinations. Plant characteristics such as leaf area, number of tillers and branches, and leaf height were measured until harvest. A subset of harvested biomass (inflorescences, stems, leaves, and roots) and soil subsamples were analyzed for nutrient and salt content to determine relationships between salinity treatments, aboveground and belowground biomass, and nutrient content. Results from this experiment will be used to help parametrize models simulating different management scenarios for a variety of halophytic species.

  5. Estimating Leaching Requirements for Barley Growth under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi

    2012-01-01

    Full Text Available The utilization of marginal water resources for agriculture is receiving considerable attention. The lands irrigated with saline water are required to reduce salt accumulations through leaching and/or drainage practices. A field experiment was carried out to investigate the effect of saline irrigation and leaching fraction on barley (Hordeum vulgare L. growth. For this purpose highly saline water was diluted to the salinity levels of 3, 6 and 9 dS m-1 and applied by drip irrigation at 0.0, 0.15, 0.20 and 0.25 leaching fractions (LF. The results of the experiment showed that both quantity and quality of water regulated salts distribution within the soil in the following manner: a the salts were found higher near or immediate below the soil surface; b an enhanced LF carried more salts down the soil horizon but there was no significant difference in plant yield between different treatments of leaching fractions. Salinity of water significantly impaired barley growth. The good drainage of sandy soil enhanced the leaching process and minimized the differences between leaching fractions. The increment in saline treatments (3, 6 and 9 dS m-1 added more salts and stressed plant growth. However, the conjunctive use of marginal water at proportional LF could be effective in enhancing the yield potential of crops in water-scarce areas.

  6. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization

    Directory of Open Access Journals (Sweden)

    Rui Manuel Almeida Machado

    2017-05-01

    Full Text Available Salinity is a major problem affecting crop production all over the world: 20% of cultivated land in the world, and 33% of irrigated land, are salt-affected and degraded. This process can be accentuated by climate change, excessive use of groundwater (mainly if close to the sea, increasing use of low-quality water in irrigation, and massive introduction of irrigation associated with intensive farming. Excessive soil salinity reduces the productivity of many agricultural crops, including most vegetables, which are particularly sensitive throughout the ontogeny of the plant. The salinity threshold (ECt of the majority of vegetable crops is low (ranging from 1 to 2.5 dS m−1 in saturated soil extracts and vegetable salt tolerance decreases when saline water is used for irrigation. The objective of this review is to discuss the effects of salinity on vegetable growth and how management practices (irrigation, drainage, and fertilization can prevent soil and water salinization and mitigate the adverse effects of salinity.

  7. Growth and Physiological Responses of Phaseolus Species to Salinity Stress

    Directory of Open Access Journals (Sweden)

    J. S. Bayuelo-Jiménez

    2012-01-01

    Full Text Available This paper reports the changes on growth, photosynthesis, water relations, soluble carbohydrate, and ion accumulation, for two salt-tolerant and two salt-sensitive Phaseolus species grown under increasing salinity (0, 60 and 90 mM NaCl. After 20 days exposure to salt, biomass was reduced in all species to a similar extent (about 56%, with the effect of salinity on relative growth rate (RGR confined largely to the first week. RGR of salt-tolerant species was reduced by salinity due to leaf area ratio (LAR reduction rather than a decline in photosynthetic capacity, whereas unit leaf rate and LAR were the key factors in determining RGR on salt-sensitive species. Photosynthetic rate and stomatal conductance decreased gradually with salinity, showing significant reductions only in salt-sensitive species at the highest salt level. There was little difference between species in the effect of salinity on water relations, as indicated by their positive turgor. Osmotic adjustment occurred in all species and depended on higher K+, Na+, and Cl− accumulation. Despite some changes in soluble carbohydrate accumulation induced by salt stress, no consistent contributions in osmotic adjustment could be found in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation in Phaseolus species.

  8. Growth and ionic content of quinoa under saline irrigation

    DEFF Research Database (Denmark)

    Riccardi, M.; Pulvento, C.; Lavini, A.

    2014-01-01

    Drought and salinity are the most important abiotic stresses that affect plant's growth and productivity. The aim of the present work was to evaluate the effect of salt and water deficit on water relations, growth parameters and capacity to accumulate inorganic solutes in quinoa plants. An irriga......Drought and salinity are the most important abiotic stresses that affect plant's growth and productivity. The aim of the present work was to evaluate the effect of salt and water deficit on water relations, growth parameters and capacity to accumulate inorganic solutes in quinoa plants....... Actual evapotranspiration (ETa), water productivity (WP), biomass allocation, relative growth rate (RGR), net assimilation rate (NAR), specific leaf area, leaf area ratio and ions accumulation of quinoa plants were evaluated. WP and plant growth were not influenced by saline irrigation, as quinoa plants...... incorporated salt ions in the tissues (stems, roots, leaves) preserving seed quality. Treatment with a reduction in the irrigation water to 25 % of full irrigated treatment (Q25) caused an increase in WP and a reduced dry matter accumulation in the leaves. Quinoa plants (Q25) were initially negatively affected...

  9. Effect of Salinity on the Growth Parameters of Halotolerant ...

    African Journals Online (AJOL)

    Effect of Salinity on the Growth Parameters of Halotolerant Microalgae, Dunaliella spp. ... per cell in all strains (p ≤ 0.05). This study shows that there is a good relationship between growth rate and efficient photosynthetic apparatus during the cultivation. Keywords: Dunaliella, salinity stress, chlorophyll, specific growth rate ...

  10. Effects of salinity on growth and metabolism in blue tilapia ...

    African Journals Online (AJOL)

    The results show that the optimum condition for farming blue tilapia, Oreochromis aureus, both with respect to growth rate and metabolic parameters is at salinities lower than 12 ppt. This is an important finding for the tilapia industry. Keywords: Tilapia, salinity, growth, survival, metabolism. African Journal of Biotechnology ...

  11. Population ecology of the gulf ribbed mussel across a salinity gradient: recruitment, growth and density

    Science.gov (United States)

    Honig, Aaron; Supan, John; LaPeyre, Megan K.

    2015-01-01

    Benthic intertidal bivalves play an essential role in estuarine ecosystems by contributing to habitat provision, water filtration, and promoting productivity. As such, changes that impact population distributions and persistence of local bivalve populations may have large ecosystem level consequences. Recruitment, growth, mortality, population size structure and density of the gulf coast ribbed mussel, Geukensia granosissima, were examined across a salinity gradient in southeastern Louisiana. Data were collected along 100-m transects at interior and edge marsh plots located at duplicate sites in upper (salinity ~4 psu), central (salinity ~8 psu) and lower (salinity ~15 psu) Barataria Bay, Louisiana, U.S.A. Growth, mortality and recruitment were measured in established plots from April through November 2012. Mussel densities were greatest within the middle bay (salinity ~8) regardless of flooding regime, but strongly associated with highest stem densities of Juncus roemerianus vegetation. Mussel recruitment, growth, size and survival were significantly higher at mid and high salinity marsh edge sites as compared to all interior marsh and low salinity sites. The observed patterns of density, growth and mortality in Barataria Bay may reflect detrital food resource availability, host vegetation community distribution along the salinity gradient, salinity tolerance of the mussel, and reduced predation at higher salinity edge sites.

  12. Salinity reduces carbon assimilation and the harvest index of cassava plants (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    Jailson Lopes Cruz

    2017-08-01

    Full Text Available This study was developed to evaluate the effects of salinity on the growth and gas exchange of cassava plants, cultivar Verdinha. The four concentrations of NaCl (mM were as follows: 0, 20, 40, and 60. Under salinity, the lowest concentration of Na+ ions was observed in the tuberous roots; however, the dry matter of tuberous roots was reduced with an application of just 20 mM NaCl. The harvest index was reduced 50% with the highest salt concentration. Salinity reduced carbon assimilation (A, stomatal conductance (gs, transpiration, and the instantaneous water use efficiency. The correlation between gs and A was high and positive, showing that stomatal movement was one of the responsible for the lower A. Under salt stress, there was an increase in intercellular CO2 concentration, indicating the impairment of carbon metabolism. Based on the reduction of dry matter of the tuberous roots (reduction of 81% under 60 mM NaCl, it was concluded that cassava is sensitive to salinity. The growth of shoots and the absorbing roots were minimally affected by salinity, even in the situation where A was reduced; therefore, the sensitivity of cassava was related to the high sensitivity of the tuberous roots to the ionic and/or osmotic effects of salinity. Thus, tuberous roots can be the target organ in studies that aim to improve the tolerance of cassava to salinity.

  13. Saline water irrigation managements on growth of ornamental plants

    Directory of Open Access Journals (Sweden)

    Francisco I. F. Oliveira

    Full Text Available ABSTRACT Biosaline agriculture is an option for using waters with lower quality. Thus, the objective of this study was to evaluate the growth of ornamental species under irrigation with increasing water salinity levels in two methods of water application. The study was conducted in a greenhouse, in the municipality of Fortaleza, Ceará, Brazil. The treatments were distributed in randomized blocks in split plots, with six levels of water salinity in the plots (0.6 - control, 1.2, 1.8, 2.4, 3.0 and 3.6 dS m-1, two methods of water application in the subplots (localized and sprinkler irrigation and four ornamental species in the sub-subplots (Catharanthus roseus, Allamanda cathartica, Ixora coccinea and Duranta erecta, with four replicates. Increase in irrigation water electrical conductivity reduced the growth of the studied ornamental species. It was not possible to establish an ideal method for irrigation of ornamental species. Effects of non-localized irrigation on leaf growth were more evident in the species C. roseus and D. erecta, which showed higher specific leaf area.

  14. Effects of salinity stress on seedlings growth, mineral nutrients and ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... plants to salt stress have long been investigated, since a better knowledge of the effect of NaCl on plants is critical for land management in saline areas (Munns, 2002,. 2005). Salinity can inhibit plant growth by a range of mechanisms, including low external water potential, ion toxicity and interference with ...

  15. Effects of salinity on growth and organic solutes accumulation of ...

    African Journals Online (AJOL)

    Salinity is a problem that has increased annually and among the viable alternatives for the reintegration of saline areas to the productive system is the cultivation of tree species. This study aimed to evaluate the growth, dry matter distribution and organic solutes accumulation in Tabebuia aurea Manso (Benth and Hook) ...

  16. Effects of Bicarbonate Limitation and Salinity Stress on Growth and ...

    African Journals Online (AJOL)

    The objective of this study is to determine the effect of combined salinity stress and carbon limitation on growth and photosynthesis in the green alga Picochlorum okla-homensis isolated from the GSP habitat. Algal cells were grown in batch cultures under bicar-bonate sufficiency (control) or low bicarbonate at salinities of 10 ...

  17. Growth and Water Relations of Sun-cured Tobacco Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Angelino G

    2014-12-01

    Full Text Available We have investigated the effects of saline irrigation on growth and water relations of two sun-cured tobacco genotypes, Xp102 and Px107, which belong to the Xanthia and Perustitza tobacco ecotypes, respectively. We compared three commercial sea salt concentrations of the irrigation water (0.25%, 0.5%, and 1% w/v plus a non-salinized control, corresponding to an electrical conductivity (ECw of 4.4, 8.5, 15.7, 0.5 dS m-1 and osmotic potentials of -0.22, -0.35, -0.73, -0.02 MPa, respectively. The ECsoil increased with the salinity of the irrigation water. At high salinity (1%, the soil where Px107 plants were grown showed a significantly higher salinity compared to the soil of Xp102. For both genotypes, the soil water content increased at increasing salinity and during the growth season. Increasing salinity progressively reduced the leaf turgor pressure and enhanced the cellular osmotic adjustment. The latter resulted to be more pronounced in Px107 compared to Xp102 (0.36 vs. 0.20 MPa. At higher salinity (0.5% and 1%, both genotypes showed reduced leaf surface area, dry matter accumulation, water use, net assimilation rate (NAR and crop growth rate (CGR. Px107 roots were more sensitive than shoot to salinity (3% reduction per dS m-1 and compared to Xp102 roots, which showed a reduced development only at 1% salinity. Assessment of plant salt tolerance according to the Maas and Hoffman model revealed a slope of 1-2% for both genotypes, indicating that these tobaccos are relatively more salt tolerant compared to other species.

  18. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut

    Directory of Open Access Journals (Sweden)

    Sandeep Sharma

    2016-10-01

    Full Text Available Use of Plant growth promoting rhizobacteria (PGPR is a promising strategy to improve the crop production under optimal or sub-optimal conditions. In the present study, five diazotrophic salt tolerant bacteria were isolated from the roots of a halophyte, Arthrocnemum indicum. The isolates were partially characterized in vitro for plant growth promoting traits and evaluated for their potential to promote growth and enhanced salt tolerance in peanut. The 16S rRNA gene sequence homology indicated that these bacterial isolates belong to the genera, Klebisiella, Pseudomonas, Agrobacterium and Ochrobactrum. All isolates were nifH positive and able to produce indole -3-acetic acid (ranging from 11.5 to 19.1 µg ml-1. The isolates showed phosphate solubilisation activity (ranging from 1.4 to 55.6 µg phosphate /mg dry weight, 1-aminocyclopropane-1-carboxylate deaminase activity (0.1 to 0.31 µmol α-kB/µg protein/h and were capable of reducing acetylene in acetylene reduction assay (ranging from 0.95 to 1.8 µmol C2H4 mg protein/h. These isolates successfully colonized the peanut roots and were capable of promoting the growth under non-stress condition. A significant increase in total nitrogen (N content (up to 76% was observed over the non-inoculated control. All isolates showed tolerance to NaCl ranging from 4-8% in nutrient broth medium. Under salt stress, inoculated peanut seedlings maintained ion homeostasis, accumulated less reactive oxygen species (ROS and showed enhanced growth compared to non-inoculated seedlings. Overall, the present study has characterized several potential bacterial strains that showed an enhanced growth promotion effect on peanut under control as well as saline conditions. The results show the possibility to reduce chemical fertilizer inputs and may promote the use of bio-inoculants.

  19. EFFECT OF SALINITY ON GROWTH AND LEAF YIELD OF ...

    African Journals Online (AJOL)

    Results show that salinity significantly decreased general plant growth, leaf chlorophyll content, leaf growth and yield, and retarded flower development. This indicates that spiderplant has a poor capacity for regulating the entry, translocation and compartmentalization of salt. This allows large amounts of salt to be absorbed ...

  20. Emergence and growth of corn and soybean under saline stress

    OpenAIRE

    Blanco,Flávio Favaro; Folegatti,Marcos Vinícius; Gheyi,Hans Raj; Fernandes,Pedro Dantas

    2007-01-01

    Emergence and seedling growth may be severely affected by salinity, mainly for sensitive crops. The objective of the present study was to verify the tolerance of corn and soybean to the irrigation water salinity (ECi) during the emergence and initial development stages. Seeds of corn, hybrid 'AG-6690', and soybean, cv. 'Conquista', were sown in pots containing material from a sandy-loam soil and irrigated with water of increasing salinity levels, from 0.3 to 5.9 dS m-1, giving nine levels of ...

  1. Effect of Underground Saline Water on the Growth Characteristic of Tamarix austromongolica in Halomorphic Soil

    Science.gov (United States)

    Iwama, Kenji; Kobayashi, Koji; Kaneki, Ryoichi; Furukawa, Masayuki; Odani, Hiromichi

    It is important to evaluate the salt tolerance of native plants in order to utilize them for improving halomorphic soil in arid regions. Tamarix austromongolica, a dominant species in Inner Mongolia, China, has the property of salt absorption and expected soil desalinization. The effect of salt concentration in groundwater on the growth of stock diameter and shoot length were evaluated by cultivation experiments, growing the plants from cuttings for two years. Though the plants grew well in 1% salt concentration of groundwater, the evapotranspiration in the second year was reduced because of the growth of the root system. The growth of the plants and evapotranspiration were reduced with increasing groundwater salinity of 3 to 5%, but most plants did not die. In contrast, the plants which were supplied with groundwater of 7% salt concentration in the second year started to die in about a month, and two thirds of them died within five months. Thus the results showed that the tolerant limit of salinity of the plants in groundwater was 7%, and the growth was constrained with groundwater salinity of 3 to 5% concentration. The plants that survived with 7% salinity in the second year, however, were grown in groundwater salt concentration of 3% to 5% in the first year. This result indicated that saline stress might have changed the characteristic of salinity tolerance of the plant.

  2. Effect of Salinity on Rhizobium Growth and Survival †

    OpenAIRE

    Singleton, P. W.; El Swaify, S. A.; Bohlool, B. B.

    1982-01-01

    This study examines the effect of salinity on the growth and survival of Rhizobium spp. in culture media and soil. Eleven isolates from saline and nonsaline environments were compared. The growth (mean doubling time) of all strains and species tested decreased when the electrical conductivity of the culture medium (yeast extract-mannitol) was raised from 1.2 mS cm−1 to 6.7 mS cm−1 (15% seawater equivalent) or to 13.1 mS cm−1 (28% seawater equivalent). Three of eleven strains failed to grow at...

  3. Growth curve registration for evaluating salinity tolerance in barley

    KAUST Repository

    Meng, Rui

    2017-03-23

    Background: Smarthouses capable of non-destructive, high-throughput plant phenotyping collect large amounts of data that can be used to understand plant growth and productivity in extreme environments. The challenge is to apply the statistical tool that best analyzes the data to study plant traits, such as salinity tolerance, or plant-growth-related traits. Results: We derive family-wise salinity sensitivity (FSS) growth curves and use registration techniques to summarize growth patterns of HEB-25 barley families and the commercial variety, Navigator. We account for the spatial variation in smarthouse microclimates and in temporal variation across phenotyping runs using a functional ANOVA model to derive corrected FSS curves. From FSS, we derive corrected values for family-wise salinity tolerance, which are strongly negatively correlated with Na but not significantly with K, indicating that Na content is an important factor affecting salinity tolerance in these families, at least for plants of this age and grown in these conditions. Conclusions: Our family-wise methodology is suitable for analyzing the growth curves of a large number of plants from multiple families. The corrected curves accurately account for the spatial and temporal variations among plants that are inherent to high-throughput experiments.

  4. Dynamic of Saline Soil Cations after NaCl Application on Rice Growth and Yields

    Directory of Open Access Journals (Sweden)

    Wanti Mindari

    2013-09-01

    Full Text Available Saline soil cation dynamic is determined by the proportion of salt cations dissolved either acidic or alkaline. Common base cations in saline soil are in the proportion of Na > Ca > Mg > K. They affects the availability of water, nutrients, and plant growth. The six level of NaCl were 0, 15, 30, 45, 60, and 75 mM and two types of soil (saline and non saline from Gununganyar and Mojokerto were evaluated to soil sample cations taken from depth of 0-5, 5-10, 10-15, and 15-20 cm. Rice growth and yields were measured. The experiment indicated that increasing doses of NaCl increased the soil Na after rice harvest and decreased K, Ca and Mg contents, both of non-saline and saline soil, decreased of rice growth and yield (straw, grain, number of tiller. NaCl up to 30 mM caused highest Ca:Mg ratio, about 8, suppressed nutrient available, inhibited root growth and reduced nutrient uptake.

  5. Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides.

    Science.gov (United States)

    Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Davy, Anthony J; Fernández-Muñoz, Francisco; Castellanos, Eloy M; Luque, Teresa; Figueroa, M Enrique

    2007-09-01

    Atriplex (Halimione) portulacoides is a halophytic, C(3) shrub. It is virtually confined to coastal salt marshes, where it often dominates the vegetation. The aim of this study was to investigate its growth responses to salinity and the extent to which these could be explained by photosynthetic physiology. The responses of young plants to salinity in the range 0-700 mol m(-3) NaCl were investigated in a glasshouse experiment. The performance of plants was examined using classical growth analysis, measurements of gas exchange (infrared gas analysis), determination of chlorophyll fluorescence characteristics (modulated fluorimeter) and photosynthetic pigment concentrations; total ash, sodium, potassium and nitrogen concentrations, and relative water content were also determined. Plants accumulated Na(+) approximately in proportion to external salinity. Salt stimulated growth up to an external concentration of 200 mol m(-3) NaCl and some growth was maintained at higher salinities. The main determinant of growth response to salinity was unit leaf rate. This was itself reflected in rates of CO(2) assimilation, which were not affected by 200 mol m(-3) but were reduced at higher salinities. Reductions in net photosynthetic rate could be accounted for largely by lower stomatal conductance and intercellular CO(2) concentration. Apart from possible effects of osmotic shock at the beginning of the experiment, salinity did not have any adverse effect on photosystem II (PSII). Neither the quantum efficiency of PSII (Phi(PSII)) nor the chlorophyll fluorescence ratio (F(v)/F(m)) were reduced by salinity, and lower mid-day values recovered by dawn. Mid-day F(v)/F(m) was in fact depressed more at low external sodium concentration, by the end of the experiment. The growth responses of the hygro-halophyte A. portulacoides to salinity appear largely to depend on changes in its rate of photosynthetic gas exchange. Photosynthesis appears to be limited mainly through stomatal conductance

  6. SALINITY EFFECT ON SEEDLING GROWTH, WATER, SODIUM ...

    African Journals Online (AJOL)

    AISA

    The effect on plant growth of NaCl concentrations in soil, under semi-controlled conditions, water content .... the tolerance of individual species to salt stress) ..... Response of tomato genotypes to induced salt stress. African. Crop Science Journal 11 : 133 - 142. Albert R. 1975. Salt regulation in halophytes. Oecologia 21 (1) ...

  7. Reduced salinity increases susceptibility of zooxanthellate jellyfish to herbicide toxicity during a simulated rainfall event.

    Science.gov (United States)

    Klein, Shannon G; Pitt, Kylie A; Carroll, Anthony R

    2016-02-01

    Accurately predicting how marine biota are likely to respond to changing ocean conditions requires accurate simulation of interacting stressors, exposure regimes and recovery periods. Jellyfish populations have increased in some parts of the world and, despite few direct empirical tests, are hypothesised to be increasing because they are robust to a range of environmental stressors. Here, we investigated the effects of contaminated runoff on a zooxanthellate jellyfish by exposing juvenile Cassiopea sp. medusae to a photosystem II (PSII) herbicide, atrazine and reduced salinity conditions that occur following rainfall. Four levels of atrazine (0ngL(-1), 10ngL(-1), 2μgL(-1), 20μgL(-1)) and three levels of salinity (35 ppt, 25 ppt, 17 ppt) were varied, mimicking the timeline of light, moderate and heavy rainfall events. Normal conditions were then slowly re-established over four days to mimic the recovery of the ecosystem post-rain and the experiment continued for a further 7 days to observe potential recovery of the medusae. Pulse-amplitude modulated (PAM) chlorophyll fluorescence, growth and bell contraction rates of medusae were measured. Medusae exposed to the combination of high atrazine and lowest salinity died. After 3 days of exposure, bell contraction rates were reduced by 88% and medusae were 16% smaller in the lowest salinity treatments. By Day 5 of the experiment, all medusae that survived the initial pulse event began to recover quickly. Although atrazine decreased YII under normal salinity conditions, YII was further reduced when medusae were exposed to both low salinity and atrazine simultaneously. Atrazine breakdown products were more concentrated in jellyfish tissues than atrazine at the end of the experiment, suggesting that although bioaccumulation occurred, atrazine was metabolised. Our results suggest that reduced salinity may increase the susceptibility of medusae to herbicide exposure during heavy rainfall events. Copyright © 2015 Elsevier

  8. Salinity reduced growth PS2 photochemistry and chlorophyll content in radish Crescimento reduzido por salinidade, fotoquímica PS2 e conteúdo de clorofila em rabanete

    Directory of Open Access Journals (Sweden)

    Muhammad Jamil

    2007-01-01

    Full Text Available When plants are grown under saline conditions, photosynthetic activity decreases leading to reduced plant growth, leaf area, chlorophyll content and chlorophyll fluorescence. Seeds and seedlings of radish (Raphanus sativus L. were grown in NaCl solutions under controlled greenhouse conditions. The NaCl concentrations in complete nutrient solutions were 0 (control, 4.7, 9.4 and 14.1 dS m-1. The salinity reduced germination percentage and also delayed the germination rate as the salt level increased. Lengths and fresh weights of root and shoot decreased with the increasing salt concentration. Furthermore, photochemical efficiency of PS2 (Fv/Fm, photochemical quenching coefficient (qP, non photochemical quenching coefficient (qN, leaf area and chlorophyll content (SPAD value were also reduced (P Quando plantas crescem sob condições de salinidade, sua atividade fotossintética diminui levando a um crescimento reduzido, menor área foliar, conteúdo de clorofila e fluorescência de clorofila. Sementes e plântulas de rabanete (Raphanus sativus L. foram germinadas e conduzidas em soluções de NaCl sob condições controladas de casa de vegetação. As concentrações de NaCl adicionado a solução nutritiva completa foram 0 (Controle, 4,7; 9,4 e 14,1 dS m-1. A salinidade diminui a percentagem de germinação e também atrasou a taxa de germinação com o aumento do nível de sal. Comprimento e peso fresco da parte aérea e da raiz decresceram com o aumento da concentração salina. Além disso, a eficiência fotoquímica de PS2 (Fv/Fm, o coeficiente fotoquímico de 'quenchin" (q p, o coeficiente não fotoquímico de "quenching" (q n, a área foliar e o teor de clorofila (valor SPAD também foram reduzidos (P < 0,001 por estresse de sal. Ao contrário, a relação Fo/Fm aumentou com a concentração salina, ao passo que a salinidade não teve efeito sobre a eficiência de excitação capturada pelo PS2 aberto (Fv'/Fm', taxa de transporte eletr

  9. Effects of salinity stress on seedlings growth, mineral nutrients and ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... The supply of mineral nutrient solution with NaCl did not affect significantly leaf total chlorophyll content and plant organs dry ... plant growth, development and proteins synthesis (Alam et al., 2004; Le Rudulier, ..... wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity ...

  10. Effect of salinity on growth of juvenile silver kob, Argyrosomus ...

    African Journals Online (AJOL)

    As part of the evaluation of new aquaculture species, the effect of environmental factors on growth, food conversion ratio and survival should be tested. In this study silver kob, Argyrosomus inodorus, were reared for 98 days at three salinities, of 15, 25, and 35, at an average water temperature of 18 °C. Fish were fed to ...

  11. Salinity-related growth rates in populations of the European clam Macoma balthica and in field transplant experiments along the Baltic Sea salinity gradient

    NARCIS (Netherlands)

    Jansen, J.M.; Koutstaal, A.; Bonga, S.W.; Hummel, H.

    2009-01-01

    Most benthic invertebrates and plant species that survive in the brackish Baltic Sea are characterized by populations in which growth is reduced and genetic diversity is low, indicating that these species live under marginal conditions. In this study, we tested for a salinity-related growth rate

  12. The Effect of Salinity on Seed Germination and Seedling Growth of Four Medicinal Plant Species

    Directory of Open Access Journals (Sweden)

    H Javadi

    2014-07-01

    Full Text Available To study the effect of salinity stress on seed germination and seedling growth of four medicinal plants, Nigella sativa L., Cannabis sativa L., Trigonella foenum graecum and Cynara scolymus L. an experiment was conducted in the botany laboratory of Islamic Azad University, Birjand branch. A completely randomized design (CRD with 3 replications was used as separately for each species. Treatments were consisted of six salinity (NaCl concentrations (0, 4, 8, 12, 16 and 20 dS m-1. The measured traits were root, shoot and seedling length, dry and fresh weight of seedling, germination rate and percent, seed vigor index, seedling water content and root/ shoot ratio. Salinity stress reduced significantly shoot, root and seedling length of the species. Increasing of salinity stress declined dry and fresh weight of Trigonella foenum and Nigella sativa L. and dry weight of Cannabis sativa L.. Seedling water content and root/ shoot ratio of Nigella sativa L. increased in salinity treatments. Increasing of salinity stress declined germination rate and percent in Nigella sativa L., but in other species (Cannabis sativa L., Trigonella foenum graecum and Cynara scolymus only germination rate decreased. Trigonella foenum graecum germinated completely (%100 in all salinity treatments. Increasing of salinity until 16 dS m-1 reduced seed germination of Nigella sativa. Seed germination of Nigella sativa did not occurred in the highest salinity stress (20 dS m-1. Totally the results showed that in the germination stage, Trigonella foenum graecum and Cannabis sativa were relatively tolerate to salinity stress but Nigella sativa L. was the most sensitive one

  13. Effects of salinity and nitrogen on cotton growth in arid environment

    OpenAIRE

    Chen, Weiping; Hou, Zhenan; Wu, Laosheng; Liang, Yongchao; Wei, Changzhou

    2010-01-01

    The influences of different N fertilization rates and soil salinity levels on the growth and nitrogen uptake of cotton was evaluated with a pot experiment under greenhouse conditions. Results showed that cotton growth measured as plant height was significantly affected by the soil salinity and N-salinity interaction, but not by N alone. Cotton was more sensitive to salinity during the emergence and early growth stages than the later developmental stages. At low to moderate soil salinity, the ...

  14. Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress.

    Science.gov (United States)

    Ashraf, Muhammad Arslan; Akbar, Ali; Parveen, Abida; Rasheed, Rizwan; Hussain, Iqbal; Iqbal, Muhammad

    2018-02-01

    The underlying mechanism of selenium (Se) mediating plant salt tolerance is not well understood and information on how plant growth and development is regulated by phenological Se application (20 and 40 mg/L) under salinity stress is scarce. In present study, we have appraised the impact of phenological Se application on growth, antioxidant defense system and ionic imbalance in maize under salinity. Salinity (12 dS m -1 ) reduced growth, concentration of chlorophyll and K + in root and leaf. Contrarily, salinity increased toxic Na + , malondialdehyde (MDA) and H 2 O 2 concentration that resulted in oxidative damage. Lower level of Se application (20 mg/L) increased growth and chlorophyll by reducing oxidative damage due to high cell concentrations of MDA and H 2 O 2 . Se reduced endogenous levels of H 2 O 2 and MDA under salinity. Moreover, Se regulated antioxidant defense system by increasing the activities of antioxidant enzymes (SOD, POD and CAT) and influenced the concentrations of non-enzymatic antioxidants (phenolics and flavonoids). Se-induced better antioxidant system protected plants from oxidative damage. We have also recorded substantial increase in K + and decrease in Na + concentration in plants treated with 20 mg/L Se under salinity stress. The impact of Se on plant growth and development is linked with the growth stage of exogenous application. Foliar Se at reproductive and both vegetative and reproductive stages improved salinity tolerance in maize compared with vegetative stage. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Electroacupuncture Reduces Hyperalgesia after Injections of Acidic Saline in Rats

    Directory of Open Access Journals (Sweden)

    Leonardo Yung dos Santos Maciel

    2014-01-01

    Full Text Available Background. Injections of acidic saline into the gastrocnemius muscle in rats produce a bilateral long-lasting hyperalgesia similar to fibromyalgia in humans. No previous study investigated the effect of electroacupuncture (EA on this acidic saline model. This study aimed to identify the effects of EA in the hyperalgesia produced by repeated intramuscular injections of acidic saline. Methods. Rats were divided into four groups (n=6, each group: control, acupuncture, EA 15 Hz, and 100 Hz. Left gastrocnemius muscle was injected with 100 μL of pH 4.0 sterile saline twice five days apart. EA, acupuncture, or control therapy was daily administered (20 min for 5 consecutive days under anesthesia. Needles were placed in the St36 and Sp6 acupoints. The assessment of secondary mechanical hyperalgesia, thermal hyperalgesia, and motor performance was performed before injections and before and after the treatment performed on each day. The paw withdrawal threshold was tested using the nonparametric Kruskal-Wallis test and differences within the group Wilcoxon Matched Pairs. The latency and motor performance were tested for ANOVA parametric test for independent measures, and for differences in the group, we used t-test for paired samples. Post hoc Tukey test was used for multiple corrections. P values ​​less than 0.05 were considered statistically significant. Results. Indicate that there was a significant reduction of mechanical withdrawal threshold and paw withdrawal latency 24 hours following the second injection. Moreover, mechanical and thermal hyperalgesia were significantly reversed by EA 15, 100 Hz, and acupuncture. Conclusions. The results suggest that EA high and low frequency as well as acupuncture are effective in reducing hyperalgesia in chronic muscle pain model.

  16. Effect of salinity and ascorbic acid on growth, water and osmotic relations of Lepidium sativum

    Directory of Open Access Journals (Sweden)

    Azadeh Najjar-Khodabakhsh

    2015-06-01

    Full Text Available Soil salinity is a serious environmental problem in arid and semi-arid regions that have negative impacts on crop production. In this research, because of medicinal and nutritional importance of the garden cress (Lepidium sativum plant, the interactive effects of salinity (225 mM NaCl and ascorbic acid (1 mM were evaluated on growth and its water relations. A completely randomized design with four replications was conducted under controlled conditions. The results showed that salinity decreased growth, relative water content, osmotic potential and soluble proteins and increased soluble sugars, amino acids and proline contents. Many of salinity damaged characteristic were improved by adding exogenous ascorbic acid to salty environment. Exogenous ascorbic acid alone, in comparison with control, enhanced the growth of garden cress by increasing relative water content, soluble sugars and soluble proteins contents. The results indicated that usage of ascorbic acid, as an antioxidant, reduced harmful effects of salinity stress and led to growth improvement in garden cress plants.

  17. Salinity and phosphorus interactions on growth, yield and nutrient uptake by berseem clover (Trifolium alexandrinum L.

    Directory of Open Access Journals (Sweden)

    mahmood gholer ata

    2009-06-01

    Full Text Available In order to investigate the effect of different levels of salinity and phosphorus on the growth and yield of berseem clover (Trifolium alexandrinum, an experiment using a factorial experiment conducted carried out based on completely randomized block design with four levels of salinity (S1=0, 12, S2=2, S3=6 and S4=10 dS/m and two levels of phosphorus (P1=10 and P2=30 ppm with four replicates under green house conditions. Different levels of salinity have been provided from NaCl, MgCl2, Na2SO4 and MgSO4 with weight proportional respectively 2:1:1:1. The treatments of phosphorus provided from KH2PO4 sources. The traits such as growth indexes (leaf area, plant height and shoot diameter at three different stages, shoot and root dry matters, root to shoot ratio, total length of root, nutrient elements (N, P, K and Na in shoot and potassium to sodium ratio in shoot were measured. The salinity was applied using saline water with the above-mentioned electrical conductivities. Generally, by increasing salinity and phosphorus levels, all the measured traits were reduced and increased, respectively. Furthermore, at the high level of salinity, increased available phosphorus improves clover yield. So it seems that in saline soils, where there is no possibility for soil leaching and amending, application of phosphorus fertilizers can lead to a good growth and production in clover yield.

  18. Growth, Nitrogen Uptake and Carbon Isotope Discrimination in Barley Genotypes Grown under Saline Conditions

    Directory of Open Access Journals (Sweden)

    Kurdali Fawaz

    2012-08-01

    Full Text Available The effect of different salinity levels of irrigation water (ECw range 1-12 dS/m on dry matter yield, nitrogen uptake, fertilizer nitrogen use efficiency (%NUE, stomatal conductance and carbon isotope discrimination (Δ13C‰ in three barley genotypes originating from different geographic areas (Arabi.Abiad, Syria; Pk-30-136, Pakistan and WI-2291, Australia was investigated in a pot experiment. An increase in salinity resulted in a decrease in Δ13C in all the genotypes. Increasing salinity reduced leaf stomatal conductance which was less pronounced in WI-2291 comparing to other genotypes. At high salinity level, the reduction in Δ13C corresponded to a considerable decrease in the ratio (Ci/Ca of intercellular (Ci and atmospheric (Ca partial pressures of CO2 in all the genotypes indicating that such a decrease was mainly due to the stomatal closure. Moreover, since the reduction in dry matter yield in all the genotypes grown at 12 dS/m did not exceed 50% in comparison with their controls, the photosynthetic apparatus of all studied genotypes seemed to be quit tolerant to salinity. At the moderate salinity level (8 dS/m, the enhancement of leaf dry matter yield in the WI2291 genotype might have been due to positive nutritional effects of the salt as indicated by a significant increase in nitrogen uptake and NUE. Thus, the lower Ci/Ca ratio could result mainly from higher rates of photosynthetic capacity rather than stomatal closure. On the other hand, relationships between dry matter yield or NUE and Δ13C seemed to be depending on plant genotype, plant organ and salinity level. Based on growth, nutritional and Δ13C data, selection of barley genotypes for saline environments was affected by salinity level. Therefore, such a selection must be achieved for each salinity level under which the plants have been grown.

  19. Effect of salinity on growth and yield of Desi and Kabuli chickpea cultivars.

    Science.gov (United States)

    Sohrabi, Yousef; Heidari, Gholamreza; Esmailpoor, Behrooz

    2008-02-15

    To evaluate the effects of different level of Na salinity (0, 3, 6 and 9 dS m(-1)) on growth, yield and yield component of Kabuli (Hashem and Jam) and Desi (Kaka and Pirooz) chickpea cultivars a factorial experiment based on randomized complete block design with four replications was carried out in Research Greenhouse of Mokrian Agricultural Extension Center near Mahabad, Iran at 2006. Seeds of four chickpea cultivars were grown under 0, 3, 6 and 9 dS m(-1) levels of salinity until maturity. Salinity reduced the plant growth, flower, pod and seed number and seed weight. As increase in salinity, the undesirable effect of Na+ was more pronounced and reached the highest value at 9 dS m(-1) in all cultivars. Four chickpea cultivar have different responses to salinity and the Kabuli cultivars seemed to have a greater capacity for salt tolerance compared to Desi cultivars. Hahshem cultivar has the highest salinity tolerance among all cultivars.

  20. Growth response of eight tropical turfgrass species to salinity | Uddin ...

    African Journals Online (AJOL)

    Irrigation seawater of different salinity levels (0, 24, 48 and 72 dSm-1) were applied to experimental plants grown in a plastic pots filled with a mixture of sand and peat ... affinis (narrowleaf carpet grass) (NCG) experienced a 50% shoot growth reduction at the EC of 39.8, 36.5, 26.1, 25.9, 21.7, 22.4, 17.0 and 18.3 dSm-1, ...

  1. Salinity fluctuation of the brine discharge affects growth and survival of the seagrass Cymodocea nodosa.

    Science.gov (United States)

    Garrote-Moreno, A; Fernández-Torquemada, Y; Sánchez-Lizaso, J L

    2014-04-15

    The increase of seawater desalination plants may affect seagrasses as a result of its hypersaline effluents. There are some studies on the salinity tolerance of seagrasses under controlled laboratory conditions, but few have been done in situ. To this end, Cymodocea nodosa shoots were placed during one month at four localities: two close to a brine discharge; and the other two not affected by the discharge, and this experiment was repeated four times. The results obtained showed a decrease in growth and an increased mortality at the localities affected by the brine discharge. An increase was detected in the percentage of horizontal shoots in respect to vertical shoots at the impacted localities. It is probably that not only the average salinity, but also the constant salinity fluctuations and slightly higher temperatures associated with the brine that may have caused physiological stress thus reducing C. nodosa growth and survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity.

    Science.gov (United States)

    Khan, Abdul Latif; Waqas, Muhammad; Khan, Abdur Rahim; Hussain, Javid; Kang, Sang-Mo; Gilani, Syed Abdullah; Hamayun, Muhammad; Shin, Jae-Ho; Kamran, Muhammad; Al-Harrasi, Ahmed; Yun, Byung-Wook; Adnan, Muhammad; Lee, In-Jung

    2013-11-01

    An endophytic fungus was isolated from the roots of tomato (Solanum lycopersicum Mill) and identified as Penicillium janthinellum LK5. The culture filtrate (CF) of P. janthinellum significantly increased the shoot length of gibberellins (GAs) deficient mutant waito-c and normal Dongjin-beyo rice seedlings as compared to control. The CF of P. janthinellum contained GAs (GA3, GA4, GA7 and GA12). To assess endophyte-growth promoting and stress-tolerance potential, the CF along with the propagules of endophyte was applied to tomato-host and abscisic acid (ABA)-deficient mutant Sitiens plants under sodium chloride (NaCl) induced salinity stress. Sitiens plants had retarded growth under normal and salinity stress however its growth was much improved during P. janthinellum-association. The endophyte inoculation reduced the membrane injury by decreasing lipid peroxidation as compared to non-inoculated control under salinity. Endophyte-associated Sitiens plants have significantly higher catalase, peroxidase and glutathione activities as compared to control. Endophyte-infected host and Sitiens plants had low level of sodium ion toxicity and high calcium contents in its root as compared to control. P. janthinellum LK5 helped the Sitiens plants to synthesis significantly higher ABA and reduced the level of jasmonic acid to modulate stress responses. The results suggest that endophytes-association can resist salinity stress by producing gibberellins and activating defensive mechanisms of host and Sitiens plants to achieve improved growth.

  3. Effect of salinity on Rhizobium growth and survival.

    Science.gov (United States)

    Singleton, P W; El Swaify, S A; Bohlool, B B

    1982-10-01

    This study examines the effect of salinity on the growth and survival of Rhizobium spp. in culture media and soil. Eleven isolates from saline and nonsaline environments were compared. The growth (mean doubling time) of all strains and species tested decreased when the electrical conductivity of the culture medium (yeast extract-mannitol) was raised from 1.2 mS cm to 6.7 mS cm (15% seawater equivalent) or to 13.1 mS cm (28% seawater equivalent). Three of eleven strains failed to grow at 13.1 mS cm. Although growth was affected by salinity, four strains selected from the growth rate study could survive in extremely high concentrations of salt. Two strains with growth rates sensitive to salt and two strains with growth rates relatively unaffected by salt were inoculated into solutions with electrical conductivities of up to 43.0 mS cm (92% seawater equivalent). Not only did all four strains survive the initial osmotic shock (at 5 h after inoculation), but it was not until 27 days after inoculation that the sensitive strains exhibited a significant reduction in viable numbers. The salt-tolerant strains survived for more than 65 days with no reduction in viable counts. The interaction between soil moisture tension and soil salinity in relation to Rhizobium survival in gamma-irradiated soil was also examined. Six treatment combinations were used, ranging from -0.1 bars and 0.2 mS cm to -15 bars and 12 mS cm. Sensitive strains declined from 10 to 10 organisms per g of soil after 84 days of incubation at -15 bars and 12 mS cm. Tolerant strains survived for the same period with no loss in viable numbers. The results of these experiments indicate that many strains of Rhizobium can grow and survive at salt concentrations which are inhibitory to most agricultural legumes. The emphasis of research concerning the effects of salinity on symbiotic nitrogen fixation should, therefore, be directed to aspects of the symbiosis other than the survival of the Rhizobium spp.

  4. Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions.

    Science.gov (United States)

    Nguyen, Hoa T; Stanton, Daniel E; Schmitz, Nele; Farquhar, Graham D; Ball, Marilyn C

    2015-02-01

    Halophytic eudicots are characterized by enhanced growth under saline conditions. This study combines physiological and anatomical analyses to identify processes underlying growth responses of the mangrove Avicennia marina to salinities ranging from fresh- to seawater conditions. Following pre-exhaustion of cotyledonary reserves under optimal conditions (i.e. 50% seawater), seedlings of A. marina were grown hydroponically in dilutions of seawater amended with nutrients. Whole-plant growth characteristics were analysed in relation to dry mass accumulation and its allocation to different plant parts. Gas exchange characteristics and stable carbon isotopic composition of leaves were measured to evaluate water use in relation to carbon gain. Stem and leaf hydraulic anatomy were measured in relation to plant water use and growth. Avicennia marina seedlings failed to grow in 0-5% seawater, whereas maximal growth occurred in 50-75% seawater. Relative growth rates were affected by changes in leaf area ratio (LAR) and net assimilation rate (NAR) along the salinity gradient, with NAR generally being more important. Gas exchange characteristics followed the same trends as plant growth, with assimilation rates and stomatal conductance being greatest in leaves grown in 50-75% seawater. However, water use efficiency was maintained nearly constant across all salinities, consistent with carbon isotopic signatures. Anatomical studies revealed variation in rates of development and composition of hydraulic tissues that were consistent with salinity-dependent patterns in water use and growth, including a structural explanation for low stomatal conductance and growth under low salinity. The results identified stem and leaf transport systems as central to understanding the integrated growth responses to variation in salinity from fresh- to seawater conditions. Avicennia marina was revealed as an obligate halophyte, requiring saline conditions for development of the transport systems

  5. Effects of Salinity and N on the Growth, Photosynthesis and N Status of Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2010-06-01

    Full Text Available The effects of NaCl salinity and N on the growth, ion concentrations and photosynthesis (Pn in three canola cultivars (SLM046 Okapi and Licord were investigated. The experiment was conducted with four NaCl levels (0, 50, 100, and 150 mM factoriallycombined with three N levels (100, 200, 300 mg l-1 as NH4 NO3 by adding to the half strength of Hoagland solution. The plants were growth in 121 pots filled with sand and perlite mixture (1:1 for 12 months. Salinity had a significant negative effect on all tratments, although the severity of the effect varied among the cultivars. High concentration of salinity (150 mM decreased the leaf area by 63%, 68% and 76% in cvs SLM046 and Licord and Okapi to that in control (Na0 N10. The plants growth were improved at 200 mg l-1 N concentration in cvs Licord and Okapi, but it was reduced when the N concentration increased up to 300 mg l-1. The growth of SLM046 progressively increased with the increasing both salinity and N levels. Both Pn and transpiration rate were significantly reduced by the increase of salinity in all three cultivars. Increasing of N levels in the solution had no effect on Pn in various salinity levels in cvs SLM046 and Licord, but in Okapi cv. Pn decreased as N level increased. Salinity in the root zone led to a significant decrease in both K concentration and K/Na ratio in the leaves in all cultivars regardless of the N levels. Within each N level, leaf Na concentration increased and K concentration decreased as salinity concentration in the root zone increased from 50 to 150 mM. Nitrate reductase (NR activity in 150 mM treated plants decreased by 27%, 58% and 52% in cvs SLM046, Licord and Okapi respectively. The decreased activity of NR by the increased NaCl was accompanied by a decrease in total N and nitrate uptake. The deleterious effects of salinity on the plants growth appeared to be as the result of the reduction in Pn, K/Na ratio and NR activity in the salinity treated plants. It

  6. Growth responses of Phragmites karka - a candidate for second generation biofuel from degraded saline lands

    Science.gov (United States)

    Zaheer Ahmed, Muhammad; Shoukat, Erum; Abideen, Zainul; Aziz, Irfan; Gulzar, Salman; Ajmal Khan, M.

    2017-04-01

    Global changes like rapidly increasing population, limited fresh water resources, increasing salinity and aridity are the major causes of land degradation. Increasing feed production for bioenergy through direct and indirect land use cause major threat to biodiversity besides competing with food resources. Growing halophytes on saline lands would provide alternate source of energy without compromising food and cash crop farming. Phragmites karkahas recently emerged as a potential bio-fuel crop, which maintains optimal growth at 100 mM NaCl with high ligno-cellulosic biomass. However, temporal and organ specific plant responses under salinity needs to be understood for effective management of degraded saline lands. This study was designed to investigate variation in growth, water relations, ion-flux, damage markers, soluble sugars, stomatal stoichiometry and photosynthetic responses of P. karka to short (0-7 days) and long (15-30 days) term exposure with 0 (control), 100 (moderate) and 300 (high) mM NaCl. A reduced shoot growth ( 45%) during earlier (within 7 days) phase was observed in 300 mM NaCl compared to control and moderate salinity. Reduced leaf elongation rate and leaf senescence from 7th day in 300 mM NaCl (and later in moderate salinity) correspond to increasing hydrogen peroxide and malondialdehyde contents. Leaf turgor loss represents the osmotic effect of NaCl at both concentrations, however turgor recovered completely in moderate salinity within a week. Plant appeared to use both organic solutes (soluble sugars) and ions (Na++K++Cl-) for osmotic adjustment along with improved water use efficiency under saline conditions. Turgor loss in high salinity (300 mM NaCl) was related to increased bulk elastic modulus and decreased hydraulic capacitance which ultimately resulted in low water potential. Leaf Na+ and Cl- accumulation increased earlier (from 7th day) in 300 mM NaCl and later in 100 mM. Higher ion sequestration in different organs was found in the

  7. Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress and mixotrophic growth conditions

    Directory of Open Access Journals (Sweden)

    Marcus eLudwig

    2012-10-01

    Full Text Available Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C

  8. Synechococcus sp. Strain PCC 7002 Transcriptome: Acclimation to Temperature, Salinity, Oxidative Stress, and Mixotrophic Growth Conditions.

    Science.gov (United States)

    Ludwig, Marcus; Bryant, Donald A

    2012-01-01

    Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present.

  9. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective

    Directory of Open Access Journals (Sweden)

    Gayathri Ilangumaran

    2017-10-01

    Full Text Available Salinity affects plant growth and is a major abiotic stress that limits crop productivity. It is well-understood that environmental adaptations and genetic traits regulate salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Harnessing the potential of beneficial microorganisms present in the rhizosphere is an alternative strategy for improving plant stress tolerance. This review intends to elucidate the understanding of salinity tolerance mechanisms attributed by plant growth promoting rhizobacteria (PGPR. Recent advances in molecular studies have yielded insights into the signaling networks of plant–microbe interactions that contribute to salt tolerance. The beneficial effects of PGPR involve boosting key physiological processes, including water and nutrient uptake, photosynthesis, and source-sink relationships that promote growth and development. The regulation of osmotic balance and ion homeostasis by PGPR are conducted through modulation of phytohormone status, gene expression, protein function, and metabolite synthesis in plants. As a result, improved antioxidant activity, osmolyte accumulation, proton transport machinery, salt compartmentalization, and nutrient status reduce osmotic stress and ion toxicity. Furthermore, in addition to indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, other extracellular secretions of the rhizobacteria function as signaling molecules and elicit stress responsive pathways. Application of PGPR inoculants is a promising measure to combat salinity in agricultural fields, thereby increasing global food production.

  10. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective.

    Science.gov (United States)

    Ilangumaran, Gayathri; Smith, Donald L

    2017-01-01

    Salinity affects plant growth and is a major abiotic stress that limits crop productivity. It is well-understood that environmental adaptations and genetic traits regulate salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Harnessing the potential of beneficial microorganisms present in the rhizosphere is an alternative strategy for improving plant stress tolerance. This review intends to elucidate the understanding of salinity tolerance mechanisms attributed by plant growth promoting rhizobacteria (PGPR). Recent advances in molecular studies have yielded insights into the signaling networks of plant-microbe interactions that contribute to salt tolerance. The beneficial effects of PGPR involve boosting key physiological processes, including water and nutrient uptake, photosynthesis, and source-sink relationships that promote growth and development. The regulation of osmotic balance and ion homeostasis by PGPR are conducted through modulation of phytohormone status, gene expression, protein function, and metabolite synthesis in plants. As a result, improved antioxidant activity, osmolyte accumulation, proton transport machinery, salt compartmentalization, and nutrient status reduce osmotic stress and ion toxicity. Furthermore, in addition to indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, other extracellular secretions of the rhizobacteria function as signaling molecules and elicit stress responsive pathways. Application of PGPR inoculants is a promising measure to combat salinity in agricultural fields, thereby increasing global food production.

  11. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective

    Science.gov (United States)

    Ilangumaran, Gayathri; Smith, Donald L.

    2017-01-01

    Salinity affects plant growth and is a major abiotic stress that limits crop productivity. It is well-understood that environmental adaptations and genetic traits regulate salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Harnessing the potential of beneficial microorganisms present in the rhizosphere is an alternative strategy for improving plant stress tolerance. This review intends to elucidate the understanding of salinity tolerance mechanisms attributed by plant growth promoting rhizobacteria (PGPR). Recent advances in molecular studies have yielded insights into the signaling networks of plant–microbe interactions that contribute to salt tolerance. The beneficial effects of PGPR involve boosting key physiological processes, including water and nutrient uptake, photosynthesis, and source-sink relationships that promote growth and development. The regulation of osmotic balance and ion homeostasis by PGPR are conducted through modulation of phytohormone status, gene expression, protein function, and metabolite synthesis in plants. As a result, improved antioxidant activity, osmolyte accumulation, proton transport machinery, salt compartmentalization, and nutrient status reduce osmotic stress and ion toxicity. Furthermore, in addition to indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, other extracellular secretions of the rhizobacteria function as signaling molecules and elicit stress responsive pathways. Application of PGPR inoculants is a promising measure to combat salinity in agricultural fields, thereby increasing global food production. PMID:29109733

  12. Plasticity in sunflower leaf and cell growth under high salinity.

    Science.gov (United States)

    Céccoli, G; Bustos, D; Ortega, L I; Senn, M E; Vegetti, A; Taleisnik, E

    2015-01-01

    A group of sunflower lines that exhibit a range of leaf Na(+) concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na(+) accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt-treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na(+) accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na(+) -including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na(+) -excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw-puzzle shape, whereas in treated plants, they tended to retain closer-to-circular shapes and a lower number of lobes. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Dwarfism of blue mussels in the low saline Baltic Sea — growth to the lower salinity limit

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Larsen, Poul Scheel; Turja, Raisa

    2014-01-01

    in the northern Baltic Sea was used to evaluate the effect of very low salinities, down to 3.4 psu. The laboratory feeding experiments with M. trossulus at 7 psu showed that the growth in shell length was negligible, whereas the body dry weight nearly doubled during the 15 d experiment, with a weight......Mussels within the Baltic Mytilus edulis × M. trossulus hybrid zone have adapted to the low salinities in the Baltic Sea which, however, results in slow-growing dwarfed mussels. To get a better understanding of the nature of dwarfism, we studied the ability of M. trossulus to feed and grow at low...... salinity (7 psu) compared with its performance at relatively high-salinity (20 psu) in controlled laboratory experiments, supplemented with field (Great Belt) growth experiments with M. trossulus and M. edulis in net-bags. Subsequently, the growth of M. trossulus transplanted in cages to various localities...

  14. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    KAUST Repository

    Mahmood, Sajid

    2016-06-17

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  15. GROWTH AND REGROWTH OF NEEM AFTER CUTTING IN SALINE - SODIC SOIL TREATED WITH ORGANIC INPUTS

    Directory of Open Access Journals (Sweden)

    RUMMENIGGE DE MACÊDO RODRIGUES

    2017-01-01

    Full Text Available Soil salinity and sodicity are global problems since both promote the physical, chemical and biological degradation of soil, jeopardising the productive capacity of agricultural fields. Inorganic correctives or organic inputs are applied as an attempt to reduce the problem, alongside the use of salt-tolerant plants. This study aimed at evaluating the effects of organic inputs on the growth of neem (Azadirachta indica strains in saline-sodic soil after cutting. Treatments were arranged in a randomised block design, with four replicates in a 3 × 5 factorial. Organic inputs — bovine manure, common bovine biofertilizer (equal parts of water and fresh bovine manure and chemically enriched biofertilizer (common biofertilizer components combined with plaster, sugarcane molasses and cow’s milk — were applied only once, after soil washing, two days prior to seeding, at the levels of 0, 3, 6, 9 and 12% of the substrate volume. Except effects on the stem diameter, the most efficient input was bovine manure, with strong effects on the height increase and biomass yield of neem plants after cutting, especially in treatments at a level greater than 6%. The organic inputs, despite increasing the soil salinity and sodicity in the interval between washing and cutting, stimulated biometric growth and biomass formation in saline-sodic soil.

  16. Assessment of Salinity Effect on Germination, Growth and Yield of Solanum lycopersicum (L.

    Directory of Open Access Journals (Sweden)

    Joshua D. BUAH

    2016-09-01

    Full Text Available This study was aimed at unraveling the morphological effect of salinity on germination, growth and yield of S. lycopersicum, through inducement of salinity (0, 4, 6, 8, and 10 g NaCl. All the parameters considered: germination percentage, leaves number, stem girth, plant height and fruit quality, were significantly affected by NaCl treatments (salinity compared with the control (no salinity. 100% germination was recorded only in control and 4 g NaCl concentration, though the percentage of germination was faster in control than within the 4 g NaCl. ‘Tomato UC-83-B’ plants’ growth till maturity, shed leaves, chlorosis and leaf burns around edges occurred due to osmotic imbalance and water deficit caused by salinity, which invariably had effect on leaf area, although the reduction in leaf area varied among tested NaCl concentrations. Fruits yield and quality of ‘Tomato UC-83-B’ treated with NaCl was poor and relative to the degree of saline inducements, with 10 g NaCl treatment producing the least fruits. Chlorophyll contents were also significantly reduced by increasing saline concentrations. Ca and K were the predominant elements found in the digested fruit samples observed under Atomic Absorption Spectrometry (AAS at different NaCl concentrations, while Mg, Na and P were significantly less. Salinity is a major abiotic factor that hampered the overall performance of tomato crop in salient ways and must therefore be curbed in order to meet its increasing global demand.

  17. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth.

    Science.gov (United States)

    Jalili, Farzad; Khavazi, Kazem; Pazira, Ebrahim; Nejati, Alireza; Rahmani, Hadi Asadi; Sadaghiani, Hasan Rasuli; Miransari, Mohammad

    2009-04-01

    Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.

  18. Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula.

    Science.gov (United States)

    Li, Liang; Li, Lei; Wang, Xiaoyang; Zhu, Pengyue; Wu, Hongqing; Qi, Shuting

    2017-10-01

    Piriformospora indica, a cultivable root endophytic fungus, induces growth promotion as well as biotic stress resistance and tolerance to abiotic stress in a broad range of host plants. In this study, the potential protection for M Medicago truncatula plants from salinity stress by P. indica was explored. The improved plant growth under severe saline condition was exhibited in P. indica-colonized lines. Moreover, the antioxidant enzymes activities and hyphae density in roots were increased by the endophyte under high salt concentration. Conversely, reduced malondialdehyde (MDA) activity, Na + content and relative electrolyte conductivity (REC) were observed in P. indica colonized plants. Especially, osmoprotectant proline accumulated and the expression of Delta 1-Pyrroline-5-carboxylate synthetase gene (P5CS2) was induced. The defense related genes PR1 and PR10 and the transcription factors MtAlfin1-like and C2H2-type zinc finger protein MtZfp-c2h2 were induced by P. indica colonization as well. Further work indicated that salinity resistance was increased in overexpressing P5CS2, MtAlfin1-like and MtZfp-c2h2 transgenic M. truncatula plants. Interestingly, our data showed that the transcription factors MtAlfin1-like and MtZfp-c2h2 were positively contributed to P. indica colonization. These results demonstrate that tolerance to salinity stress was conferred by P. indica in M. truncatula via accumulation of osmoprotectant, stimulating antioxidant enzymes and the expression of defense-related genes. This work revealed the potential application of P. indica's as a plant growth-promoting fungus for the target improvement either in crop protection or in the salinized soil improvement indirectly. Copyright © 2017. Published by Elsevier Masson SAS.

  19. Growth potential of blue mussels (M. edulis) exposed to different salinities evaluated by a Dynamic Energy Budget model

    DEFF Research Database (Denmark)

    Maar, Marie; Saurel, Camille; Landes, Anja

    2015-01-01

    For bluemussels,Mytilus edulis, onemajor constrain in the Baltic Sea is the low salinities that reduce the efficiency of mussel production. However, the effects of living in low and variable salinity regimes are rarely considered in models describing mussel growth. The aim of the present study...... was to incorporate the effects of low salinity into an eco-physiological model of blue mussels and to identify areas suitable for mussel production. A Dynamic Energy Budget (DEB) model was modified with respect to i) the morphological parameters (DW/WW-ratio, shape factor), ii) change in ingestion rate and iii...

  20. Growth of pacific snook (Centropomus nigrescens juveniles at different salinities (ESP

    Directory of Open Access Journals (Sweden)

    Jorge Günther Nonell

    2016-03-01

    Full Text Available Juveniles of the Pacific Snook, C. nigrescens between 2.5 and 125 g in weight, were grown at three salinities; 0, 18 and 36ppt. The results indicate no statistical differences between growth rates or feed conversion at these salinities. It is concluded that the Pacific snook is well suited for culture in brackish waters of varying salinity.

  1. The effect of salinity on the growth, morphology and physiology of ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... The salinity of water and soil decreases the growth and yield of agricultural products. Salinity affects many physiological and morphological processes of plant by influencing soil solution osmotic potential and ion absorption and accumulation of minerals. To evaluate the effect of salinity on some.

  2. The effect of salinity on the growth, morphology and physiology of ...

    African Journals Online (AJOL)

    The salinity of water and soil decreases the growth and yield of agricultural products. Salinity affects many physiological and morphological processes of plant by influencing soil solution osmotic potential and ion absorption and accumulation of minerals. To evaluate the effect of salinity on some physiological and ...

  3. Early growth stages salinity stress tolerance in CM72 x Gairdner doubled haploid barley population

    OpenAIRE

    Angessa, Tefera Tolera; Zhang, Xiao-Qi; Zhou, Gaofeng; Broughton, Sue; Zhang, Wenying; Li, Chengdao

    2017-01-01

    A doubled haploid (DH) population of barley (Hordeum vulgare L.) generated from salinity tolerant genotype CM72 and salinity sensitive variety Gairdner was studied for salinity stress tolerance at germination, seedling emergence and first leaf full expansion growth stages. Germination study was conducted with deionized water, 150 mM and 300 mM NaCl treatments. Seedling stage salinity tolerance was conducted with three treatments: control, 150 mM NaCl added at seedling emergence and first leaf...

  4. Growth and ion accumulation in dwarf cashew plants at different times of salinity exposure

    Directory of Open Access Journals (Sweden)

    Valdineia Soares Freitas

    2013-12-01

    Full Text Available This work aimed to evaluate the influence of salt stress exposition on growth and ion accumulation in dwarf cashew plants. For this purpose, cashew nuts (CCP 06 clone were sown in plastic trays containing vermiculite moistened with nutrient solution containing NaCl with electrical conductivities ranging from 0.0 to 18.0 dS m-1. Plants were harvested after 30 and 60 days under salt stress. It was determined the shoot dry masses (SDM and root (RDM, the SDM/RDM ratio, Na+, K+, Cl- and NO3 - contents and the Na+ and Cl- fluxes for whole plant in the period between two times of exposure to salt stress. The cashew growth was affected by salinity and by the exposure time to this stress, and the plants subjected to 60 days of stress were the most affected by NaCl. The Na+ and Cl- contents increased in all plant tissues, while the NO3 - content was reduced and K+ content has not changed by salinity. The Na+ and Cl-fluxes increased with salinity; however Cl- seemed to be more harmful to plants, since this ion has been absorbed in a higher ratio than Na+. The growth reduction in dwarf cashew is intensified when exposure to salt stress is longer and it is more associated with uptake and excessive accumulation of Cl- than Na+.

  5. Effect of salinity on survival and growth of giant freshwater prawn Macrobrachium rosenbergii (de Man

    Directory of Open Access Journals (Sweden)

    B.K. Chand

    2015-11-01

    Full Text Available Two independent experiments were performed to determine the effects of salinity on survival and growth of juvenile Macrobrachium rosenbergii, first one was to determine the median lethal salinity (MLS-5096 h and second one was to assess the survival and growth at different sub-lethal salinities under field condition. In MLS-5096 h study 0, 5, 10, 15, 20, 25 and 30 ppt salinities were used to initially find out the salinity tolerance range. Accordingly, a definitive salinity tolerance test was done in next phase to find out exact median lethal salinity by directly transferring the test species to 21, 22, 23, 24, 25, 26 and 27 ppt salinity for 96 h. The median lethal salinity of M. rosenbergii was estimated at 24.6 ppt. In the second experiment, survival and growth performances of the prawn were recorded at different sub-lethal salinities viz., 5, 10, 15 and 20 ppt along with 0 ppt as control during 60 days culture period. The prawn exhibited lowest final average weight at 20 ppt salinity and significantly highest at 10 ppt salinity. Highest SGR and weight gain were obtained at 10 ppt followed by 5 ppt, 15 ppt and 0 ppt salinity but differences among treatment were not significant (P > 0.05. Survival rate of prawn varied between 91% (at 0 ppt and 78% (at 20 ppt. The prawn grew and survived satisfactorily at 0–15 ppt salinities, implying that the species can be cultured commercially at wide salinity range. M. rosenbergii can be considered as an ideal species to promote, in view of current and future climate variables as more and more coastal areas of India are going to be vulnerable to saline water inundation.

  6. Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone

    OpenAIRE

    Bazihizina, Nadia; Barrett-Lennard, Edward G.; Colmer, Timothy D.

    2012-01-01

    Soil salinity is generally spatially heterogeneous, but our understanding of halophyte physiology under such conditions is limited. The growth and physiology of the dicotyledonous halophyte Atriplex nummularia was evaluated in split-root experiments to test whether growth is determined by: (i) the lowest; (ii) the highest; or (iii) the mean salinity of the root zone. In two experiments, plants were grown with uniform salinities or horizontally heterogeneous salinities (10–450mM NaCl in the lo...

  7. Impacts of ambient salinity and copper on brown algae: 1. Interactive effects on photosynthesis, growth, and copper accumulation.

    Science.gov (United States)

    Connan, Solène; Stengel, Dagmar B

    2011-07-01

    The effect of copper enrichment and salinity on growth, photosynthesis and copper accumulation of two temperate brown seaweeds, Ascophyllum nodosum and Fucus vesiculosus, was investigated in laboratory experiments. A significant negative impact of reduced salinity on photosynthetic activity and growth was observed for both species. After 15 days at a salinity of 5, photosynthesis of A. nodosum was entirely inhibited and growth ceased at a salinity of 15. Increased copper concentration negatively affected photosynthetic activity of A. nodosum and F. vesiculosus resulting in chlorosis and reduced seaweed growth; 5 mg L⁻¹ copper caused an inhibition of the photosynthesis and the degradation of seaweed tips. Under reduced salinity, copper toxicity was enhanced and caused an earlier impact on the physiology of seaweed tips. After exposure to copper and different salinities for 15 days, copper contents of seaweeds were closely related to copper concentration in the water; seaweed copper contents reached their maximum after 1 day of exposure; contents only increased again when additional, free copper was added to the water. At high water copper concentrations or low salinity, or a combination of both, copper content of A. nodosum decreased. By contrast, copper content of F. vesiculosus increased, suggesting that different binding sites or uptake mechanisms exist in the two species. The results suggest that when using brown seaweeds in biomonitoring in situ, any change in the environment will directly and significantly affect algal physiology and thus their metal binding capacity; the assessment of the physiological status of the algae in combination with the analysis of thallus metal content will enhance the reliability of the biomonitoring process. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. GROWTH AND MINERAL NUTRITION OF NEEM (Azadirachta indica A. Juss. AND CINNAMOMUM (Melia azedarach Linn. SUBMITTED TO SALINITY

    Directory of Open Access Journals (Sweden)

    Antonio Lucineudo de Oliveira Freire

    2010-08-01

    Full Text Available The objective of this study was to verify the effects of soil salinity on growth and nutrient and sodium accumulation in neem (Azadirachta indica and cinnamomum (Melia azedarach. The experimental delineation was completely randomized in a 2 x 4 factorial arrangement, with two species (neem and cinnamomum, four salinity levels (electrical conductivity 0.49 (non saline soil, 4.15, 6.33 and 10.45 dS m-1 and four replications. Initially, plants were grown in tubes, and 60 days after emergence, they were transferred to pots containing 3 kg of substrate [soil + manure (2:1], according to the saline treatment. After 45 days, plant height, dry matter (leaves, stem, shoot (stem + leaves, roots and total and N, P, K, Ca, Mg, S and Na+ shoot accumulation were evaluated. Salinity reduced the plant height in both species, but the effect was more pronounced in neem. Increases in soil salinity caused an increase in the accumulation of Na + and reduced the accumulation of nutrients in shoots of both species, especially in neem. The cinnamomum was more tolerant to salinity levels of soils than neem.

  9. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system.

    Science.gov (United States)

    Parvin, Shohana; Lee, Ok Ran; Sathiyaraj, Gayathri; Khorolragchaa, Altanzul; Kim, Yu-Jin; Yang, Deok-Chun

    2014-03-01

    Protective effects of exogenous spermidine (Spd), activity of antioxygenic enzymes, and levels of free radicals in a well-known medicinal plant, Panax ginseng was examined. Seedlings grown in salinized nutrient solution (150 mM NaCl) for 7d exhibited reduced relative water content, plant growth, increased free radicals, and showing elevated lipid peroxidation. Application of Spd (0.01, 0.1, and 1mM) to the salinized nutrient solution showed increased plant growth by preventing chlorophyll degradation and increasing PA levels, as well as antioxidant enzymes such as CAT, APX, and GPX activity in the seedlings of ginseng. During salinity stress, Spd was effective for lowering the accumulation of putrescine (Put), with a significant increase in the spermidine (Spd) and spermine (Spm) levels in the ginseng seedlings. A decline in the Put level ran parallel to the higher accumulation of proline (Pro), and exogenous Spd also resulted in the alleviation of Pro content under salinity. Hydrogen peroxide (H2O2) and superoxide (O2(-)) production rates were also reduced in stressed plants after Spd treatment. Furthermore, the combined effect of Spd and salt led to a significant increase in diamine oxidase (DAO), and subsequent decline in polyamine oxidase (PAO). These positive effects were observed in 0.1 and 1mM Spd concentrations, but a lower concentration (0.01 mM) had a very limited effect. In summary, application of exogenous Spd could enhance salt tolerance of P. ginseng by enhancing the activities of enzyme scavenging system, which influence the intensity of oxidative stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The effects of saline irrigation water and cobalt on growth and chemical composition in Nigella sativa

    OpenAIRE

    KHALID A. KHALID; MAHMOUD R. SHEDEED

    2014-01-01

    Khalid KA, Shedeed MR. 2014. The effects of saline irrigation water and cobalt on growth and chemical composition in Nigella sativa.Nusantara Bioscience 6: 146-151. Increasing plant salinity tolerance is a focus of research and industry since salinity and yield are of major concern to maximize medicinal and aromatic plant production in arid and semi-arid areas. Therefore, the present study aimed to decrease the harmful effect of salinity on Nigella sativa L plants by adapting them to saline s...

  11. Effects of Salinity on Growth and Metabolism in Blue Tilapia

    African Journals Online (AJOL)

    adunet

    2013-05-08

    May 8, 2013 ... Glucose and potassium were not altered significantly. HSI and muscle water content decreased when salinity concentration was elevated. Blood .... 3.14 ± 2.52c. 22.2 ± 19.2b compared by using one way-ANOVA and Duncan's multiple range test with p<0.05. RESULTS. Long-term effects of salinity on fish.

  12. Improving Tolerance of Faba Bean during Early Growth Stages to Salinity through Micronutrients Foliar Spray

    Directory of Open Access Journals (Sweden)

    Mohamed M. EL FOULY

    2010-06-01

    Full Text Available Salinity, either of soil or of irrigation water, causes disturbances in plant growth and nutrient balance. Previous work indicates that applying nutrients by foliar application increases tolerance to salinity. A pot experiment with three replicates was carried out in the green house of NRC, Cairo, Egypt, to study the effect of micronutrients foliar application on salt tolerance of faba bean. Two concentrations of a micronutrient compound (0.1% and 0.15% were sprayed in two different treatments prior to or after the salinity treatments. Levels of NaCl (0.00-1000-2000-5000 ppm were supplied to irrigation water. Results indicated that 2000 and 5000 ppm NaCl inhibited growth and nutrient uptake. Spraying micronutrients could restore the negative effect of salinity on dry weight and nutrients uptake, when sprayed either before or after the salinity treatments. It is suggested that micronutrient foliar sprays could be used to improve plant tolerance to salinity.

  13. Variation in antioxidant enzyme activities, growth and some physiological parameters of bitter melon (Momordica charantia) under salinity and chromium stress.

    Science.gov (United States)

    Bahrami, Mahsa; Heidari, Mostafa; Ghorbani, Hadi

    2016-07-01

    In general, salinity and heavy metals interfere with several physiological processes and reduce plant growth. In order to evaluate of three levels of salinity (0, 4 and 8 ds m(-1)) and three concentration of chromium (0, 10 and 20 mg kg(-1) soil) in bitter melon (Momordica charantia), a plot experiment was conducted in greenhouse at university of Shahrood, Iran. The results revealed that chromium treatment had no significant affect on fresh and dry weight, but salinity caused reduction of fresh and dry weight in growth parameter. Salinity and chromium enhanced antioxidant enzymes activities like catalase (CAT), guaiacol peroxidase (GPX) and sodium content in leaves. However salinity and chromium treatments had no effect on potassium, phosphorus in leaves, soluble carbohydrate concentration in leaves and root, but decreased the carotenoid content in leaves. On increasing salinity from control to 8 ds m(-1) chlorophyll a, b and anthocyanin content decreased by 41.6%, 61.1% and 26.5% respectively but chromium treatments had no significant effect on these photosynthetic pigments.

  14. Strigolactones Improve Plant Growth, Photosynthesis, and Alleviate Oxidative Stress under Salinity in Rapeseed (Brassica napus L. by Regulating Gene Expression

    Directory of Open Access Journals (Sweden)

    Ni Ma

    2017-09-01

    Full Text Available Rapeseed (Brassica napus L. is a very important edible oil crop in the world, and the production is inhibited by abiotic stresses, such as salinity. Plant hormones can alleviate the stress by regulating the physiological processes and gene expression. To study the plant responses to salinity in combination with GR24, a synthesized strigolactone, the oilseed rape variety (Zhongshuang 11 replications were grown in the pots in a controlled growth chamber under three levels of salinity (0, 100, and 200 mM NaCl and 0.18 μM GR24 treatments at the seedling stage for 7 days. The results showed that salinity depressed the shoots and roots growth, whereas GR24 improved the growth under salt stress. Leaf chlorophyll contents and gas exchange parameters (net photosynthetic rates, stomatal conductance, intercellular CO2 concentration, and transpiration rate were also reduced significantly with increasing salinity, and these effects could be partially reversed by GR24 application. Additionally, GR24 treatment significantly increased and decreased the photosystem II quantum yield and non-photochemical quenching, respectively, under salinity stress conditions. The activities of peroxidase and superoxide dismutase increased, and lipid peroxidation measured by the level of malondialdehyde reduced due to GR24 application. The transcriptome analysis of root and shoot was conducted. Three hundred and forty-two common differentially expressed genes (DEGs after GR24 treatment and 166 special DEGs after GR24 treatment under salinity stress were identified in root and shoot. The DEGs in root were significantly more than that in shoot. Quantitative PCR validated that the stress alleviation was mainly related to the gene expression of tryptophan metabolism, plant hormone signal transduction, and photosynthesis.

  15. The effects of saline irrigation water and cobalt on growth and chemical composition in Nigella sativa

    Directory of Open Access Journals (Sweden)

    KHALID A. KHALID

    2014-11-01

    Full Text Available Khalid KA, Shedeed MR. 2014. The effects of saline irrigation water and cobalt on growth and chemical composition in Nigella sativa.Nusantara Bioscience 6: 146-151. Increasing plant salinity tolerance is a focus of research and industry since salinity and yield are of major concern to maximize medicinal and aromatic plant production in arid and semi-arid areas. Therefore, the present study aimed to decrease the harmful effect of salinity on Nigella sativa L plants by adapting them to saline soil stress through the use of Cobalt. The effects of saline irrigation water and cobalt on the vegetative growth characters [plant height (cm, leaf number (plant-1, branch number (plant-1, capsule number (plant1, herb dry weight (plant-1 and seed yield (plant-1] and content of fixed oil, soluble sugars, proline, N,P,K and protein of black seed (Nigella sativa L. plants were investigated. In these experiments, two factors were considered: saline irrigation water and Cobalt. The experimental design followed a complete random block design. The averages of data were statistically analyzed using 2-way analysis of variance (ANOVA-2 and the values of least significant difference (LSD at 5%. Saline irrigation water decreased certain growth characters, fixed oil, protein and mineral content (N, P and K as saline irrigation water level increased. Saline irrigation water promoted the accumulation of soluble sugars and proline contents. The plants treated with saline irrigation water containing cobalt resulted in higher plant growth characters and chemical constituent’s values than those treated with saline irrigation water alone.

  16. Effect of salinity and ascorbic acid on growth, water and osmotic relations of Lepidium sativum

    OpenAIRE

    Azadeh Najjar-Khodabakhsh; Mohammad Pazhang; Leila Zarandi-Miandoab; Nader Chaparzadeh

    2015-01-01

    Soil salinity is a serious environmental problem in arid and semi-arid regions that have negative impacts on crop production. In this research, because of medicinal and nutritional importance of the garden cress (Lepidium sativum) plant, the interactive effects of salinity (225 mM NaCl) and ascorbic acid (1 mM) were evaluated on growth and its water relations. A completely randomized design with four replications was conducted under controlled conditions. The results showed that salinity decr...

  17. Early growth stages salinity stress tolerance in CM72 x Gairdner doubled haploid barley population.

    Science.gov (United States)

    Angessa, Tefera Tolera; Zhang, Xiao-Qi; Zhou, Gaofeng; Broughton, Sue; Zhang, Wenying; Li, Chengdao

    2017-01-01

    A doubled haploid (DH) population of barley (Hordeum vulgare L.) generated from salinity tolerant genotype CM72 and salinity sensitive variety Gairdner was studied for salinity stress tolerance at germination, seedling emergence and first leaf full expansion growth stages. Germination study was conducted with deionized water, 150 mM and 300 mM NaCl treatments. Seedling stage salinity tolerance was conducted with three treatments: control, 150 mM NaCl added at seedling emergence and first leaf full expansion growth stages. Results from this study revealed transgressive phenotypic segregations for germination percentage and biomass at seedling stage. Twelve QTL were identified on chromosomes 2H-6H each explaining 10-25% of the phenotypic variations. A QTL located at 176.5 cM on chromosome 3H was linked with fresh weight per plant and dry weight per plant in salinity stress induced at first leaf full expansion growth stage, and dry weight per plant in salinity stress induced at seedling emergence. A stable QTL for germination at both 150 and 300 mM salinity stress was mapped on chromosome 2H but distantly located from a QTL linked with seedling stage salinity stress tolerance. QTL, associated markers and genotypes identified in this study play important roles in developing salinity stress tolerant barley varieties.

  18. THE EFFECTS OF SEED SOAKING WITH PLANT GROWTH REGULATORS ON SEEDLING VIGOR OF WHEAT UNDER SALINITY STRESS

    Directory of Open Access Journals (Sweden)

    Afzal Irfan

    2005-08-01

    Full Text Available Effects of seed soaking with plant growth regulators (IAA, GA3, kinetin or prostart on wheat (Triticum aestivum cv. Auqab-2000 emergence and seedling growth under normal (4 dS/cm and saline (15 dS/cm conditions were studied to determine their usefulness in increasing relative salt-tolerance. During emergence test, emergence percentage and mean emergence time (MET were significantly affected by most of priming treatments, however, root and shoot length, fresh and dry weight of seedlings were significantly increased by 25 ppm kinetin followed by 1% prostart for 2 h treatments under both normal and saline conditions. All pre-sowing seed treatments decreased the electrolyte leakage of steep water as compared to that of non-primed seeds even after 12 h of soaking. Seed soaking with 25 ppm kinetin induced maximum decrease in electrolyte leakage while an increase in electrolyte leakage was observed by 25, 50 or 100 ppm IAA treatments. It is concluded that priming has reduced the severity of the effect of salinity but the amelioration was better due to 25 ppm kinetin and 1% prostart (2 h treatments as these showed best results on seedling growth, fresh and dry weights under non-saline and saline conditions whereas seed soaking with IAA and GA3 were not effective in inducing salt tolerance under present experimental material and conditions.

  19. Modelling Transpiration and Growth of Salinity and Drought Stressed Tomatoes

    OpenAIRE

    Karlberg, Louise

    2002-01-01

    Irrigation with saline waters is an agricultural practicethat is becoming increasingly common as competition for freshwater increases. In this thesis the mechanisms behind salinityand drought stress has been studied using data from fieldexperiments in combination with a modelling tool, theCoupModel. Measurements from field experiments on salinity,boron toxicity and drought stressed tomatoes grown during twoclimatically different seasons in the Arava desert, Israel,showed a linear relationship...

  20. Impact of salinity and growth phase on alkenone distributions in coastal haptophytes

    NARCIS (Netherlands)

    Chivall, D.; M'Boule, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    Batch cultures of Isochrysis galbana (strain CCMP 1323) and Chrysotila lamellosa (strain CCMP 1307) were grown at salinity values of ca. 10 to ca. 35 and the alkenone distributions determined for different growth phases. U-37(K ') values decreased slightly with salinity for C. lamellosa but were

  1. Effects of salinity on germination, growth and yield of five groundnut ...

    African Journals Online (AJOL)

    The effects of salinity on germination, growth and yield parameters as well as phenotypic variance and heritability of five groundnut genotypes (Ex-Dakar, RRB 12, RMP 12, RMP 91 and Esan Local) were investigated. Saline treatments were imposed by irrigating the seeds and plants with varying concentrations of brackish ...

  2. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.)

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Hooijdonk, van J.

    1999-01-01

    Radish (Raphanus sativus L.) plants were grown at five soil salinity levels (1, 2, 4, 9 and 13 dS m-1) to analyse the effects on growth, dry matter partitioning, leaf expansion and water and nutrient use. Salinity was varied by proportionally changing the concentration of all macro nutrients. When

  3. The effects of salinity on growth of goldfish, Carassius auratus and ...

    African Journals Online (AJOL)

    The effects of four different salinities (SW, 50% SW, 100% SW and 150% SW) on specific growth rate, weight gain, food intake and survival of goldfish and crucian carp were investigated for 20 days. Both species were respectively adapted to water source, which has salinity of 8 ppt in the experimental unit for one month and ...

  4. Alleviating negative effects of irrigation-water salinity on growth and vase life of gerbera by foliar spray of calcium chloride and potassium silicate

    OpenAIRE

    A. Mohammadi Torkashvand

    2015-01-01

    The required water for greenhouses in Kishestan, Soume-e-Sara town, Guilan province, Iran, is mainly provided by underground resources that have inappropriate quality. One way to reduce the impact of salinity an plant growth is proper nutrition. This greenhouse research was conducted to evaluate the effect of water salinity and foliar spray of calcium (Ca) and silicon (Si) on growth and vase life of gerbera in a factorial experiment based on compeletly randomized design with two factors. The ...

  5. Effects of Salinity Stress on Gas Exchange, Growth, and Nutrient Concentrations of Two Citrus Rootstocks

    Directory of Open Access Journals (Sweden)

    D. Khoshbakht

    2015-03-01

    Full Text Available A greenhouse study was undertaken to assess the salt tolerance of two citrus rootstocks, namely, Bakraii (Citrus sp. and Trifoliate orange (Poncirus trifoliata. A factorial experiment through a completely randomized design (CRD with three replications and four levels of salt including 0, 20, 40 and 60 mM NaCl was conducted. After eight weeks of treatment, number of leaves, plant height, leaf area, wet and dry weight of leaf, stem and root, length of root, chlorophyll content, net CO2 assimilation rate (ACO2, stomatal conductance (gs, transpiration (E and water use efficiency (WUE and ion concentrations were measured. Salinity decreased growth and net gas exchange. Trifoliate orange showed the most decrease in growth indices and net gas exchange compared with Bakraii. The ability to limit the transfer of sodium to leaves in low levels of salt was observed in Trifoliate orange, but this ability was not observed in high levels of salt. Results showed that accumulation of chloride in leaves and roots were less in Bakraii compared to the Trifoliate orange. The lower Cl- concentration in leaves of Bakraii than trifoliate orange suggests that the salinity tolerance of Bakraii is associated with less transport of Cl- to the leaves. Salinity increased K+ and decreased Mg2+ and Ca2+ concentrations in leaves of both rootstocks. It is proposed that salt stress effect on plant physiological processes such as changes in plant growth, Cl- and Na+ toxicity, and mineral distribution, decreases chlorophyll content and reduces the photosynthetic efficiency of these citrus species.

  6. Effect of Salinity on Growth, Xylem Structure and Anatomical Characteristics of Soybean

    Directory of Open Access Journals (Sweden)

    Aria DOLATABADIAN

    2011-03-01

    Full Text Available This research was conducted in order to evaluation the salinity stress effect on growth parameters and stem anatomical changes of soybean grown under controlled conditions. Soybean seeds were surface sterilized and then sown into plastic pots filled up with perlite and vermiculite. Seeds were irrigated with Broughton and Dilworth solution daily. At full folded cotyledons stage (5 day after sowing, salinity stress was induced by adding NaCl into nutrition solution with final concentration of 0, 25, 50 and 100 mM. Thirty days after sowing plants were harvested and growth parameters and anatomical changes were evaluated. The results showed that, salinity stress was significantly decreased shoot and root weight either fresh weight or dry weight, in addition, total plant weight, plant height and leaf number were decreased due to salinity stress. Interestingly, leaf area was not affected by salinity stress. Stem microscopic study demonstrated that, salinity stress significantly increased cutin mass and trichome density on epidermal cells. On the other hand, cortex thickness was decreased because of salinity stress while xylem thickness had upward increase when soybean plants were grown under salinity stress especially high level of salinity. Additionally, there were changed in xylem formation and arrangement in stressed plants.

  7. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    OpenAIRE

    Habib, Sheikh Hasna; Kausar, Hossain; Saud, Halimi Mohd

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzym...

  8. The effects of salinity on growth of Goldfish, Carassius auratus and ...

    African Journals Online (AJOL)

    adunet

    2013-04-17

    Apr 17, 2013 ... In isosmotic water, food uptake and growth rate increases. Fish converts more feed to energy and uses less energy for standard metabolic rate, including osmoregulation. A lot of the remaining energy is saved for growth. Most of the studies have been conducted to estimate the effect of salinity on growth of.

  9. The effect of salinity on growth rate and osmolyte concentration of ...

    African Journals Online (AJOL)

    Arthrospira strains were isolated from wastewater treatment ponds in Maputo, Mozambique, where they grow as a dense, almost unialgal population. Growth experiments were conducted in batch cultures under constant light and temperature, to assess growth response and tolerance of Arthrospira strains to salinity. Growth ...

  10. Effect of NaCl Salinity on Growth and Mineral Composition of Ziziphus spina-christi (L. Willd.

    Directory of Open Access Journals (Sweden)

    M. Sohail

    2009-10-01

    Full Text Available Ziziphus spina-christi (L. Willd. is a fruit tree species growing wild in arid and semi-arid areas of Asia and Africa where rural populations intensively use its fruits, leaves, bark and wood. However, little is known about the effects of salinity, a widespread problem in these regions, on early growth and mineral composition of this species. This study was conducted under controlled conditions to contribute to filling this gap. Six weeks old seedlings of Z. spina-christi germinated in a full strength Hoagland solution were subjected to 0, 40, 80 and 160 mM NaCl. Compared to the unstressed control salinity levels of 80 and 160 mM reduced plant height, leaf number, leaf chlorophyll, total leaf area and dry matter by > 50%. Salinity levels of 40, 80 and 160 mM enhanced leaf water contents by 14, 16 and 17%, respectively and 160 mM NaCl raised the concentration of Na and Cl ions in leaf tissues 81- and 21-fold. The K/Na ratio, in contrast, was hardly affected by increasing salinity indicating adaptation or tolerance of Z. spina-christi to low or moderate NaCl salinity. These results suggest that Z. spina-christi could be an interesting species for re-vegetation of moderately degraded saline lands.

  11. Influence of NaCl salinity on growth analysis of strawberry cv. Camarosa

    Directory of Open Access Journals (Sweden)

    H. Mirdehghan

    2011-12-01

    Full Text Available In order to study of salinity effect on growth analysis of strawberry, a greenhouse experiment was conducted in Vali-e-Asr University of Rafsanjan in 2010. This study was carried out RCBD design with 4 replications to determine the influence of salinity (30, 60, 90 Mmol and control with distilled water on strawberry growth analysis. Results indicated that relative growth rate (RGR, crop growth rate (CGR, leaf area ratio (LAR and dry matter accumulation were decreased with increasing salinity. The lowest RGR, CGR and LAR were observed in 90 Mmol NaCl salinity. Results also indicated that maximum dry matter accumulations were observed in 1050, 1200 and 1400 degree days in 30, 60 and 90 Mmol NaCl salinity, respectively. Water salinity more than 30 Mmol NaCl L-1 will decreased fresh fruit yield more than 50 percent in hydroponics strawberry production. Dry mass partitioning in NaCl-stressed plants was in favor of crown and petioles and at expense of root, stem and leaf whereas leaf, stem and root DM progressively declined with an increase in salinity.

  12. Growth response of eight tropical turfgrass species to salinity

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Irrigation seawater of different salinity levels (0, 24, 48 and 72 dSm-1) were applied to experimental plants grown in a plastic pots filled with a mixture of sand and peat (9:1). The results were analyzed using SAS and treatment means were compared using LSD Test. The results indicated that Paspalum.

  13. Nitrogen, salinity, substrates and growth of gloxinia and chrysanthemum

    NARCIS (Netherlands)

    Arnold Bik, R.A.

    1970-01-01

    The study was on the harmful effect of salinity on N utilization in the flower crops gloxinia (a salt-sensitive mesophytic semi-shade plant) and chrysanthemum (a salt- tolerant sun plant). For solid substrates (trials 2 and 3) the specific conductivity of the saturation extract (EC. in mmho per

  14. Salinity-induced inhibition of growth in the aquatic pteridophyte Azolla microphylla primarily involves inhibition of photosynthetic components and signaling molecules as revealed by proteome analysis.

    Science.gov (United States)

    Thagela, Preeti; Yadav, Ravindra Kumar; Mishra, Vagish; Dahuja, Anil; Ahmad, Altaf; Singh, Pawan Kumar; Tiwari, Budhi Sagar; Abraham, Gerard

    2017-01-01

    Salinity stress causes adverse physiological and biochemical changes in the growth and productivity of a plant. Azolla, a symbiotic pteridophyte and potent candidate for biofertilizer due to its nitrogen fixation ability, shows reduced growth and nitrogen fixation during saline stress. To better understand regulatory components involved in salinity-induced physiological changes, in the present study, Azolla microphylla plants were exposed to NaCl (6.74 and 8.61 ds/m) and growth, photochemical reactions of photosynthesis, ion accumulation, and changes in cellular proteome were studied. Maximum dry weight was accumulated in control and untreated plant while a substantial decrease in dry weight was observed in the plants exposed to salinity. Exposure of the organism to different concentrations of salt in hydroponic conditions resulted in differential level of Na + and K + ion accumulation. Comparative analysis of salinity-induced proteome changes in A. microphylla revealed 58 salt responsive proteins which were differentially expressed during the salt exposure. Moreover, 42 % spots among differentially expressed proteins were involved in different signaling events. The identified proteins are involved in photosynthesis, energy metabolism, amino acid biosynthesis, protein synthesis, and defense. Downregulation of these key metabolic proteins appears to inhibit the growth of A. microphylla in response to salinity. Altogether, the study revealed that in Azolla, increased salinity primarily affected signaling and photosynthesis that in turn leads to reduced biomass.

  15. ECONOMIC GROWTH AND EQUALITY IN REDUCING POVERTY

    Directory of Open Access Journals (Sweden)

    Zaenal Muttaqin

    2016-02-01

    Full Text Available In some developing countries, the instrument to alleviate the poverty is by using the economic growth. So, the increasing in investment, infrastructure development, and macroeconomics stability always be priority from developing countries. In this article explain that economic growth is not the important factor to alleviate the poverty, because equality sometimes is more important rather than the economic growth. In this context, its measure by inequality growth trade off index (IGTI. This method is to measure the influence of economic growth to reducing the inequality, with this method every country can measure which one is better to reducing the poverty whether the economic growth or equality. With this method, Laos in 2000 show that economic growth is more important than equality, but in the same year in Thailand show that equality is more important than economic growth.DOI: 10.15408/sjie.v1i1.2592

  16. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    Directory of Open Access Journals (Sweden)

    Sheikh Hasna Habib

    2016-01-01

    Full Text Available Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR containing 1-aminocyclopropane-1-carboxylate (ACC deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

  17. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes.

    Science.gov (United States)

    Habib, Sheikh Hasna; Kausar, Hossain; Saud, Halimi Mohd

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

  18. Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone.

    Science.gov (United States)

    Bazihizina, Nadia; Barrett-Lennard, Edward G; Colmer, Timothy D

    2012-11-01

    Soil salinity is generally spatially heterogeneous, but our understanding of halophyte physiology under such conditions is limited. The growth and physiology of the dicotyledonous halophyte Atriplex nummularia was evaluated in split-root experiments to test whether growth is determined by: (i) the lowest; (ii) the highest; or (iii) the mean salinity of the root zone. In two experiments, plants were grown with uniform salinities or horizontally heterogeneous salinities (10-450 mM NaCl in the low-salt side and 670 mM in the high-salt side, or 10 mM NaCl in the low-salt side and 500-1500 mM in the high-salt side). The combined data showed that growth and gas exchange parameters responded most closely to the root-weighted mean salinity rather than to the lowest, mean, or highest salinity in the root zone. In contrast, midday shoot water potentials were determined by the lowest salinity in the root zone, consistent with most water being taken from the least negative water potential source. With uniform salinity, maximum shoot growth was at 120-230 mM NaCl; ~90% of maximum growth occurred at 10 mM and 450 mM NaCl. Exposure of part of the roots to 1500 mM NaCl resulted in an enhanced (+40%) root growth on the low-salt side, which lowered root-weighted mean salinity and enabled the maintenance of shoot growth. Atriplex nummularia grew even with extreme salinity in part of the roots, as long as the root-weighted mean salinity of the root zone was within the 10-450 mM range.

  19. Effects of Ascorbic Acid and Reduced Glutathione on the Alleviation of Salinity Stress in Olive Plants

    NARCIS (Netherlands)

    Aliniaeifard, S.; Hajilou, J.; Tabatabaei, S.J.; Seifi Kalhor, Maryam

    2016-01-01

    The aim of this study was to evaluate the effects of low molecular mass antioxidants and NaCl salinity on growth, ionic balance, proline, and water contents of ‘Zard’ olive trees under controlled greenhouse conditions. The experiment was carried out by spraying 2 mM of ascorbic acid (Asc) and 3

  20. Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass, Spartina densiflora

    Science.gov (United States)

    Redondo-Gómez, Susana; Andrades-Moreno, Luis; Mateos-Naranjo, Enrique; Parra, Raquel; Valera-Burgos, Javier; Aroca, Ricardo

    2011-01-01

    Spartina densiflora is a C4 halophytic species that has proved to have a high invasive potential which derives from its physiological plasticity to environmental factors, such as salinity. It is found in coastal marshes of south-west Spain, growing over sediments with between 1 mmol l−1 and 70 mmol l−1 zinc. A glasshouse experiment was designed to investigate the synergic effect of zinc from 0 mmol l−1 to 60 mmol l−1 at 0, 1, and 3% NaCl on the growth and the photosynthetic apparatus of S. densiflora by measuring chlorophyll fluorescence parameters and gas exchange, and its recovery after removing zinc. Antioxidant enzyme activities and total zinc, sodium, calcium, iron, magnesium, manganese, phosphorus, potassium, and nitrogen concentrations were also determined. Spartina densiflora showed the highest growth at 1 mmol l−1 zinc and 1% NaCl after 90 d of treatment; this enhanced growth was supported by the measurements of net photosynthetic rate (A). Furthermore, there was a stimulatory effect of salinity on accumulation of zinc in tillers of this species. Zinc concentrations >1 mmol l−1 reduced growth of S. densiflora, regardless of salinity treatments. This declining growth may be attributed to a decrease in A caused by diffusional limitation of photosynthesis, owing to the modification of the potassium/calcium ratio. Also, zinc and salinity had a marked overall effect on the photochemical (photosystem II) apparatus, partially mediated by the accumulation of H2O2 and subsequent oxidative damage. However, salinity favoured the recovery of the photosynthetic apparatus to the toxic action of zinc, and enhanced the nutrient uptake. PMID:21841175

  1. Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development.

    Science.gov (United States)

    Bernstein, Nirit; Shoresh, Michal; Xu, Yan; Huang, Bingru

    2010-10-15

    Sensitivity to salinity varies between plant organs and between cells of different developmental stages within a single organ. The physiological and molecular bases for the differential responses are not known. Exposure of plants to salinity is known to induce formation of reactive oxygen species (ROS), which are involved in damage mechanisms but also in cell growth processes. The objective of this study was to elucidate developmental-stage-specific and organ-specific involvement of oxidative defense in the plant response to salinity in maize (Zea mays L.). Plants were grown in nutrient solution containing 1mM NaCl (control) or 80mM NaCl. The oxidative stress response and damage symptoms along the cell developmental gradient in growing and mature tissue of leaves and roots were examined. Unlike leaves, roots did not suffer oxidative damage in either growing or mature cells and demonstrated reduced antioxidant response. This may reflect different requirements of ROS for growth mechanisms of leaf and root cells. In leaves, growing tissue demonstrated higher stimulation of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activity under salinity than mature tissue, whereas mature tissue demonstrated higher stimulation of catalase. These results indicate differential roles for these ROS-scavenging enzymes at different cell developmental stages. Because ROS are required for cell expansion, the higher increase in SOD and APX activities in the growing leaf cells that resulted in reduction of ROS content under salinity could lead to the inhibition of cell growth under salinity. Copyright 2010 Elsevier Inc. All rights reserved.

  2. The effect of salinity increase on the photosynthesis, growth and survival of the Mediterranean seagrass Cymodocea nodosa

    Science.gov (United States)

    Sandoval-Gil, José M.; Marín-Guirao, Lázaro; Ruiz, Juan M.

    2012-12-01

    There are major concerns in the Mediterranean Sea over the effects of hypersaline effluents from seawater desalination plants on seagrass communities. However, knowledge concerning the specific physiological capacities of seagrasses to tolerate or resist salinity increases is still limited. In this study, changes in the photosynthetic characteristics, pigment content, leaf light absorption, growth and survival of the seagrass Cymodocea nodosa were examined across a range of simulated hypersaline conditions. To this end, large plant fragments were maintained under salinities of 37 (control ambient salinity), 39, 41 and 43 (practical salinity scale) in a laboratory mesocosm system for 47 days. At the end of the experimental period, net photosynthesis exhibited a modest, but significant, decline (12-17%) in all tested hypersaline conditions (39-43). At intermediate salinity levels (39-41), the decline in photosynthetic rates was mainly accounted for by substantial increases in respiratory losses (approximately 98% of the control), the negative effects of which on leaf carbon balance were offset by an improved capacity and efficiency of leaves to absorb light, mainly through changes in accessory pigments, but also in optical properties related to leaf anatomy. Conversely, inhibition of gross photosynthesis (by 19.6% compared to the control mean) in the most severe hypersaline conditions (43) reduced net photosynthesis. In this treatment, the respiration rate was limited in order to facilitate a positive carbon balance (similar to that of the control plants) and shoot survival, although vitality would probably be reduced if such metabolic alterations persisted. These results are consistent with the ecology of Mediterranean C. nodosa populations, which are considered to have high morphological and physiological plasticity and a capacity to grow in a wide variety of coastal environments with varying salinity levels. The results from this study support the premise that C

  3. Comparative physiological and growth responses of tomato and pepper plants to fertilizer induced salinity and salt stress under greenhouse conditions

    OpenAIRE

    Eraslan, Figen; Güneş, Aydın; İnal, Ali; Çiçek, Nuray; Alpaslan, Mehmet

    2008-01-01

    Fertilizer induced salinity adversely affects plant growth through its ionic and osmotic effects as in ordinary salinity caused by toxic ions (Na, Cl, etc.). In this study, to determine the ionic and osmotic effects of fertilizer induced salinity and NaCl salinity on growth, ascorbic acid, proline and hydrogen peroxide (H2O2) accumulation and stomatal resistance (SR), relative water content (RWC), malondialdehyde (MDA) contents of tomato and pepper plants subjected to different tr...

  4. [Effects of fertilization on cotton growth and nitrogen use efficiency under salinity stress].

    Science.gov (United States)

    Dai, Jian-Long; Lu, He-Quan; Li, Zhen-Huai; Duan, Liu-Sheng; Dong, He-Zhong

    2013-12-01

    Cotton (Gossypium hirsutum) was raised at different salinity levels (0, 0.15% and 0.30%) by irrigating with fresh- or sea-water. The effects of fertilization (N, NK, NP and NPK) on plant growth, nitrogen (N) uptake and N use efficiency were studied. The results showed that salinity and fertilization both affected the biomass, agronomic N use efficiency, N bioavailability and nitrogen accumulation of plants, and significant interaction was observed between the two factors. Fertilization could improve N use efficiency and nitrogen accumulation of plants under salinity stress, and significantly promoted the cotton yield. Among the fertilization treatments, N combined with P and K had the best effect. The benefit of fertilization was better under low salinity (0.15%) than under moderate salinity (0.3%).

  5. Effect of Salinity Stress on Growth Analysis of Isabgul, French Psyllium and Great Plantain

    Directory of Open Access Journals (Sweden)

    A. Rahimi

    2012-08-01

    Full Text Available Growth indices are useful for interpreting plant reaction to environmental factor. Using Growing Degree Days (GDD for estimating the phonological growth stages is more valid instead of calendar time. In order to study effect of salinity on growth analysis in three different plantago species, a greenhouse experiment was conducted in Vali-e-Asr University of Rafsanjan in 2009. The study was carried out factorial experiment based on RCBD design with 4 replications to determine the influence of salinity (9, 15, 21 dS/m and control with distilled water and three plantago species (Isabgul, French psyllium, Great plantain. Polynomial equations with the 88 to 98 distinction coefficient (R2 were known as the best indicator for interpreting of growth indices fluctuation to GDD. In all three species, the highest dry matter accumulation, leaf area, Crop growth rates (CGR were observed in 900-1000 GDD at all salinity levels and in higher GDD, the decreeing trend of dry matter accumulation, leaf area and CGR were observed in all salinity levels. The lowest relative growth rate, crop growth rate, Leaf area ratio, dry matter accumulation were observed in 21 dS/m NaCl salinity. Results also indicated that maximum dry matter accumulation was observed in 800, 900 and 1100 degree day in Isabgul, French psyllium, Great plantain, respectively. No seed harvested from Isabgul and French psyllium in 21 dS/m. Among three species, great plantain could remain the highest leaf area consequently this species produced higher dry matter (0.4 gr per plant and relative growth rate (0.06 g.g-1.10GDD-1 compared to other species. In general, among three species, great plantain was better species from a growth and seed yield point of view in salinity stress.

  6. Ghrelin reduces hypertonic saline intake under a variety of natriorexigenic conditions

    Science.gov (United States)

    Mietlicki, Elizabeth G.; Daniels, Derek

    2011-01-01

    Ghrelin is a gut peptide that has been studied extensively for its role in food intake and energy balance. More recent studies show that ghrelin reduces water intake in rats and some non-mammalian species. Despite the importance of the regulation of NaCl intake in body fluid homeostasis, the effects of ghrelin on saline intake have not been investigated. Accordingly, we tested the effect of ghrelin on water and 1.8% NaCl intake in two-bottle test conditions under five stimuli that increase hypertonic saline intake: central angiotensin II administration, 24 h fluid deprivation, water deprivation followed by partial rehydration, dietary sodium deficiency, and polyethylene glycol administration combined with dietary sodium deficiency. We found that ghrelin attenuated saline intake stimulated by angiotensin II, by water deprivation followed by partial rehydration, and by dietary sodium deficiency. We did not detect an effect of ghrelin on saline intake after 24 h fluid deprivation without partial rehydration or after the combination of polyethylene glycol and dietary sodium deficiency. The finding that ghrelin reduced hypertonic saline intake under some, but not all, natriorexigenic conditions mirrors the previously published findings that in one-bottle tests of drinking, ghrelin reduces water intake under only some conditions. The results provide evidence for a new role for ghrelin in the regulation of body fluid homeostasis. PMID:21784787

  7. Ghrelin reduces hypertonic saline intake in a variety of natriorexigenic conditions.

    Science.gov (United States)

    Mietlicki, Elizabeth G; Daniels, Derek

    2011-10-01

    Ghrelin is a gut peptide that has been studied extensively for its role in food intake and energy balance. More recent studies show that ghrelin reduces water intake in rats and some non-mammalian species. Despite the importance of the regulation of NaCl intake in body fluid homeostasis, the effects of ghrelin on saline intake have not been investigated. Accordingly, we tested the effect of ghrelin on water and 1.8% NaCl intake in two-bottle test conditions with the following five stimuli that increase hypertonic saline intake: central angiotensin II administration; 24 h fluid deprivation; water deprivation followed by partial rehydration; dietary sodium deficiency; and polyethylene glycol administration combined with dietary sodium deficiency. We found that ghrelin attenuated saline intake stimulated by angiotensin II, by water deprivation followed by partial rehydration and by dietary sodium deficiency. We did not detect an effect of ghrelin on saline intake after 24 h fluid deprivation without partial rehydration or after the combination of polyethylene glycol and dietary sodium deficiency. The finding that ghrelin reduced hypertonic saline intake in some, but not all, natriorexigenic conditions mirrors the previously published findings that in one-bottle tests of drinking, ghrelin reduces water intake in only some conditions. The results provide evidence for a new role for ghrelin in the regulation of body fluid homeostasis.

  8. Chickpea (Cicer arietinum L.) physiological, chemical and growth responses to irrigation with saline water

    DEFF Research Database (Denmark)

    Hirich, Abdelaziz; Omari, Halima El; Jacobsen, Sven-Erik

    2014-01-01

    was carried out on pot experiments. Differences in water uptake and plant growth; as well as proline, soluble sugar, and Na+ and K+ contents of the plant were quantified. The results showed a negative relationship between increasing water salinity and most of the measured plant growth parameters. Irrigation...... and soluble sugars as osmolytes produced by chickpea to mitigate the effect of salinity stress. The added value of these results is that the crop's responses to salinity are quantified. The obtained values can be used to determine 'threshold values'; should the salinity of the irrigation water go above......Chickpea (Cicer arietinum L.) is the third most important food legume grown in the world and a favourite food crop in Morocco. Morocco is a semi-arid country with limited fresh water resources. In order to meet the food demand, increasing attention is being given to the use of non...

  9. Effects of long-term salinity on the growth of the halophyte Spartina ...

    African Journals Online (AJOL)

    The effects of salt stress on the growth of Spartina alterniflora were investigated by imposing seven levels of salt stress (0, 100, 200, 300, 400, 500, and 600 mM NaCl) on potted plants. The seedlings were grown in vermiculite in a greenhouse for six months. Optimal growth of S. alterniflora occurred at salinity levels of 100 ...

  10. Seed germination and seedling growth of bean (Phaseolus vulgaris as influenced by magnetized saline water

    Directory of Open Access Journals (Sweden)

    Fateme Aghamir

    2016-01-01

    Full Text Available Magnetized water is considered eco-friendly physical presowing seed germination.The aim of this study was to evaluate the effects of magnetized watertreatments on bean (Phaseolus vulgaris germination under saline conditions (0, 25, 50, 75, 100 and 120 mM NaCl. This experiment was performed as factorial in a complete randomized design (CRD with three replications. The results revealed that the roots and shoots length, fresh and dry weight of shoots and roots and roots to shoots ratio, chlorophyll content index, water uptake, tissue water contentwere significantly affected by magnetized water.Irrigation with magnetized water significantly increased the physiologic factors such as germination percentage and index, vigor index and salt tolerance index, compared to untreated control seeds.Mean germination time and parameters T1, T10, T25, T50and T90 (required time for germination of one to 90 percent of seeds were reduced significantly in all magnetized water treated plants in comparison to control.The results also demonstrated that magnetized water was conducive to promote the growth of bean seedlings under saline conditions.

  11. The effect of biofertilizer fungi on Ciherang rice growth at some level of soil salinity

    OpenAIRE

    Y.B. SUBOWO

    2014-01-01

    A research about the effect of fungus contained biofertilizer on Ciherang rice that was growth on different level of soil salinity was conducted. One of the effect of global climate changes is the increase of sea water level. It leads to the expansion of sea water submerged land for agriculture. Salt intrution to the agriculture area considerably decrease soil fertility because of the high salinity. Some of microbes especially soil fungi such as Aspergillus sp and Penicillium sp. are able...

  12. Effect of Salinity on Growth, Xylem Structure and Anatomical Characteristics of Soybean

    OpenAIRE

    Aria DOLATABADIAN; Seyed Ali Mohammad MODARRES SANAVY; Faezeh GHANATI

    2011-01-01

    This research was conducted in order to evaluation the salinity stress effect on growth parameters and stem anatomical changes of soybean grown under controlled conditions. Soybean seeds were surface sterilized and then sown into plastic pots filled up with perlite and vermiculite. Seeds were irrigated with Broughton and Dilworth solution daily. At full folded cotyledons stage (5 day after sowing), salinity stress was induced by adding NaCl into nutrition solution with final concentration of ...

  13. Improving Tolerance of Faba Bean during Early Growth Stages to Salinity through Micronutrients Foliar Spray

    OpenAIRE

    Mohamed M. EL FOULY; Zeinab M. MOBARAK; Zeinab A. SALAMA

    2010-01-01

    Salinity, either of soil or of irrigation water, causes disturbances in plant growth and nutrient balance. Previous work indicates that applying nutrients by foliar application increases tolerance to salinity. A pot experiment with three replicates was carried out in the green house of NRC, Cairo, Egypt, to study the effect of micronutrients foliar application on salt tolerance of faba bean. Two concentrations of a micronutrient compound (0.1% and 0.15%) were sprayed in two different treatmen...

  14. The Effect of Salinity on Seed Germination and Seedling Growth of Four Medicinal Plant Species

    OpenAIRE

    H Javadi; M. J Seghatol Eslami; seyyed Gholamreza Moosavi

    2014-01-01

    To study the effect of salinity stress on seed germination and seedling growth of four medicinal plants, Nigella sativa L., Cannabis sativa L., Trigonella foenum graecum and Cynara scolymus L. an experiment was conducted in the botany laboratory of Islamic Azad University, Birjand branch. A completely randomized design (CRD) with 3 replications was used as separately for each species. Treatments were consisted of six salinity (NaCl) concentrations (0, 4, 8, 12, 16 and 20 dS m-1). The measure...

  15. Experimental assessment of the effects of sublethal salinities on growth performance and stress in cultured tra catfish (Pangasianodon hypophthalmus).

    Science.gov (United States)

    Nguyen, Phuc Trong Hong; Do, Huong Thi Thanh; Mather, Peter B; Hurwood, David A

    2014-12-01

    The effects of a range of different sublethal salinities were assessed on physiological processes and growth performance in the freshwater 'tra' catfish (Pangasianodon hypophthalmus) juveniles over an 8-week experiment. Fish were distributed randomly among 6 salinity treatments [2, 6, 10, 14 and 18 g/L of salinity and a control (0 g/L)] with a subsequent 13-day period of acclimation. Low salinity conditions from 2 to 10 g/L provided optimal conditions with high survival and good growth performance, while 0 g/L and salinities >14 g/L gave poorer survival rates (p Tra catfish do not appear to be efficient osmoregulators when salinity levels exceed 10 g/L, and at raised salinity levels, growth performance is compromised. In general, results of this study confirm that providing culture environments in the Mekong River Basin do not exceed 10 g/L salinity and that cultured tra catfish can continue to perform well.

  16. Growth and development of tomato plants Lycopersicon Esculentum Mill. under different saline conditions by fertirrigation with pretreated cheese whey wastewater.

    Science.gov (United States)

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-01-01

    Pretreated cheese whey wastewater (CWW) has been used at different salinity levels: 1.75, 2.22, 3.22, 5.02 and 10.02 dS m(-1) and compared with fresh water (1.44 dS m(-1)). Two cultivars (cv.) of the tomato plant Lycopersicon Esculentum Mill. (Roma and Rio Grande) were exposed to saline conditions for 72 days. Salinity level (treatment) had no significant effects on the fresh weight and dry matter of the leaves, stems and roots. Similar results were found when specific leaf area, leaflet area, ramifications number of 1st order/plant, stem diameter and length, nodes number/stem and primary root length were considered. Conversely, the salinity level significantly influenced the Soil Plant Analysis Development (SPAD) index and the distance between nodes in the plant stem. In the first case, an increase of 21% was obtained in the salinity levels of 5.02 and 10.02 dS m(-1) for cv. Rio Grande, compared with the control run. The results showed that the pretreated CWW can be a source of nutrients for tomato plants, with reduced effects on growth and development.

  17. Interaction effects of water salinity and hydroponic growth medium on eggplant yield, water-use efficiency, and evapotranspiration

    Directory of Open Access Journals (Sweden)

    Farnoosh Mahjoor

    2016-06-01

    Full Text Available Eggplant (Solanum melongena L. is a plant native to tropical regions of Southeast Asia. The water crisis and drought on the one hand and eggplant greenhouse crop development as one of the most popular fruit vegetables for people on the other hand, led to the need for more research on the use of saline water and water stress to optimize salinity level and their impact on eggplant evapotranspiration and encounter better yield and crop quality. The objective of the present study was to investigate the interactions of water salinity and hydroponic growth medium on qualitative and quantitative properties of eggplant and its water-use efficiency. The study used the factorial experiment based on completely randomized design with three replications of four levels of water salinity (electrical conductivity of 0.8 (control, 2.5, 5, and 7 dS m−1 and three growth media (cocopeat, perlite, and a 50–50 mixture of the two by volume. Total yield, yield components, evapotranspiration, and water-use efficiency were determined during two growing periods, one each in 2012 and 2013. All of these indices decreased significantly as water salinity increased. Water with of 0.8 dS m−1 produced an average eggplant yield of 2510 g per plant in 2012 and 2600 g in 2013. The highest yield was observed in cocopeat. Water with 7 dS m−1 reduced yield to 906 g per plant in 2012 and to 960 g in 2013. Lowest yield was observed in perlite. The highest evapotranspiration values occurred in cocopeat at the lowest salinity in both years. Cocopeat and the cocopeat–perlite mixture were equally good substrates. The mixture significantly improved the quantitative and qualitative properties of eggplant yield.

  18. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  19. The effects of salinity on photosynthesis and growth of the single-cell C4 species Bienertia sinuspersici (Chenopodiaceae).

    Science.gov (United States)

    Leisner, Courtney P; Cousins, Asaph B; Offermann, Sascha; Okita, Thomas W; Edwards, Gerald E

    2010-12-01

    Recent research on the photosynthetic mechanisms of plant species in the Chenopodiaceae family revealed that three species, including Bienertia sinuspersici, can carry out C(4) photosynthesis within individual photosynthetic cells, through the development of two cytoplasmic domains having dimorphic chloroplasts. These unusual single-cell C(4) species grow in semi-arid saline conditions and have semi-terete succulent leaves. The effects of salinity on growth and photosynthesis of B. sinuspersici were studied. The results show that NaCl is not required for development of the single-cell C(4) system. There is a large enhancement of growth in culture with 50-200 mM NaCl, while there is severe inhibition at 400 mM NaCl. With increasing salinity, the carbon isotope values (δ(13)C) of leaves increased from -17.3(o)/(oo) (C(4)-like) without NaCl to -14.6(o)/(oo) (C(4)) with 200 mM NaCl, possibly due to increased capture of CO(2) from the C(4) cycle by Rubisco and reduced leakiness. Compared to growth without NaCl, leaves of plants grown under saline conditions were much larger (~2 fold) and more succulent, and the leaf solute levels increased up to ~2000 mmol kg solvent(-1). Photosynthesis on an incident leaf area basis (CO(2) saturated rates, and carboxylation efficiency under limiting CO(2)) and stomatal conductance declined with increasing salinity. On a leaf area basis, there was some decline in Rubisco content with increasing salinity up to 200 mM NaCl, but there was a marked increase in the levels of pyruvate, Pi dikinase, and phosphoenolpyruvate carboxylase (possibly in response to sensitivity of these enzymes and C(4) cycle function to increasing salinity). The decline in photosynthesis on a leaf area basis was compensated for on a per leaf basis, up to 200 mM NaCl, by the increase in leaf size. The influence of salinity on plant development and the C(4) system in Bienertia is discussed.

  20. Diversity, activity, and abundance of sulfate-reducing bacteria in saline nad hypersaline soda lakes

    NARCIS (Netherlands)

    Foti, M.; Sorokin, D.Y.; Lomans, B.P.; Mussman, M.; Zacharova, E.E.; Pimenov, N.V.; Kuenen, J.G.; Muyzer, G.

    2007-01-01

    Soda lakes are naturally occurring highly alkaline and saline environments. Although the sulfur cycle is one of the most active element cycles in these lakes, little is known about the sulfate-reducing bacteria (SRB). In this study we investigated the diversity, activity, and abundance of SRB in

  1. Growth, osmolyte concentration and antioxidant enzymes in the leaves of Sesuvium portulacastrum L. under salinity stress.

    Science.gov (United States)

    Kannan, P Ramesh; Deepa, S; Kanth, Swarna V; Rengasamy, R

    2013-12-01

    In this study, growth and osmolyte concentration in the leaves of halophyte, Sesuvium portulacastrum, were studied with respect to salinity. Therefore, the changes in shoot growth, leaf tissue water content, osmolyte concentration (proline content, glycine betaine) and antioxidant enzymes [polyphenol oxidase (PPO), superoxide dismutase (SOD) and catalase (CAT)] were investigated. The 30-day old S. portulacastrum plants were subjected to 100, 200, 300, 400, 500 and 600 mM NaCl for 28 days. The plant growth was steadily increased up to 500 mM NaCl stress at 28 days. TWC was higher in 300 mM NaCl treated leaves than that of 600 mM NaCl. Salinity stress induced the accumulation of osmolyte concentration when compared to control during the study period. The antioxidant enzymes PPO, CAT and SOD were increased under salinity.

  2. Impact of exogenous salicylic acid on growth and ornamental characteristics of calendula (Calendula officinalis L. under salinity stress

    Directory of Open Access Journals (Sweden)

    Bayat H.

    2012-04-01

    Full Text Available Application of salicylic acid (SA as a phytohormone has been increased due to resistance to stresses such as salt stress. Pot experiments were conducted to determine the effect of exogenous salicylic acid application on growth and ornamental characteristics of calendula grown under salt stress and greenhouse conditions. For this purpose a factorial experiment based on completely randomized design was conducted with 3 levels of SA (0 (control, 1, 2 mM and 3 levels of NaCl (0, 100 and 200 mM with 4 replications. At flowering stage, SA was applied with spraying two times in two week intervals. NaCl was also applied as drench (200 ml per pot in two day intervals. The results showed that salinity decreased the growth, Chlorophyll reading values, flower number per plant and flower diameter. However, foliar applications of SA resulted in greater root, shoot and total dry weight, plant height and leaf area of calendula plants under salt stress. The highest chlorophyll reading values was obtained from 2.00 mM SA application in all NaCl treatments. Salinity decreased number of flower per plant and flower diameter as ornamental characteristics; however SA increased them under salinity stress. Plants treated with 1.00 mM SA had the highest flower diameter at 100 and 200 mM of NaCl. Electrolyte leakage increased by salinity, however foliar application of SA significantly reduced electrolyte leakage under salt stress. Based on the present results, foliar application of SA treatments can ameliorate the negative effects of salinity on the growth and ornamental characteristics of calendula plants.

  3. Optimum salinity for growth of mangrove crab Scylla serrata seed in recirculation systems

    Directory of Open Access Journals (Sweden)

    Yuni Puji Hastuti

    2015-10-01

    Full Text Available ABSTRACT One of the abiotic factors that affects the growth and the survival of crabs is salinity. The optimum salinity media will give maximum impact on mangrove crab Scylla serrata due to the osmoregulation process. This study aimed to examine the effect of salinity on the survival rate (SR and spesific growth rate (SGR of mangrove crab through the reaction of physiological condition. The treatments were rearing mangrove crab at the salinity medium of 15 ppt (A, 20 ppt (B, 25 ppt (C, and 30 ppt (D. Result showed that different salinity performed a significant effect (P<0.05 on the survival rate and specific growth rate of the crabs. The low level of stress, shown by the high value of total hemocyte and the low osmotic pressure, has made salinity of 25 ppt was the optimum condition for the mangrove crab rearing. Keywords: salinity, survival, specific growth rate, mangrove crab  ABSTRAK Salah satu faktor abiotik yang memengaruhi pertumbuhan dan kelangsungan hidup kepiting adalah salinitas. Salinitas media optimum akan memberikan efek yang maksimal pada kepiting bakau Scylla serrata sehubungan dengan proses osmoregulasi tubuhnya. Penelitian ini bertujuan untuk menguji pengaruh salinitas pada kelangsungan hidup dan laju pertumbuhan spesifik kepiting bakau melalui reaksi kondisi fisiologis. Penelitian ini terdiri atas perlakuan salinitas media 15 ppt (A, 20 ppt (B, 25 ppt (C, dan 30 ppt (D. Hasil penelitian menunjukkan bahwa perbedaan salinitas media pemeliharaan kepiting bakau memberikan perbedaan nyata (P<0,05 pada kelangsungan hidup dan laju pertumbuhan spesifik kepiting bakau. Rendahnya tingkat stres pada salinitas 25 ppt dijelaskan dengan tingginya jumlah total hemosit dan rendahnya tekanan osmotik sehingga salinitas 25 ppt merupakan kondisi optimum bagi pemeliharaan kepiting bakau. Keywords: salinitas, kelangsungan hidup, laju pertumbuhan spesifik, kepiting bakau

  4. The Effects of Different Levels of Salinity and Indole-3-Acetic Acid (IAA on Early Growth and Germination of Wheat Seedling

    Directory of Open Access Journals (Sweden)

    Majid Abdoli

    2013-11-01

    Full Text Available Salt stress as a major adverse factor can lower germination, ion toxicity, reduction in enzymatic and photosynthetic efficiency and other physiological disorders and ultimately lower crop productivity in salinity zones. As growth regulators are involved in altering growth processes in plants, it is possible that they might even reduce the detrimental effects of salinity by stimulating growth. But their physiological roles are not well known. In example, about the roles of IAA in salinity conditions are not similar viewpoints. For this purpose a factorial experiment based on completely randomized design was conducted with influence of foliar application of Indole-3-Acetic Acid (IAA in farm on germination percent and seedling growth parameters of wheat (cv. Marvdasht under different levels (0, 40, 80 and 120 mM of NaCl salinity with 3 replications, during 2012 in the laboratory research of the Department of plant breading and agronomy, Faculty of Agriculture, Maragheh University in Maragheh state in Iran. The results of this study indicate, that salinity decreased the plumule, radicle and seedling length and plumule, radicle and seedling dry weight, seed germination and seedling vigor index, whereas increase in mean germination time and no signification plumule/radicle ratio observed in the cultivar tested. Also, application of IAA at cell division stage of grain growth caused significant increase in seedling growth parameters under different salinity levels. The interaction between application of IAA and salinity levels significantly affected final germination percentage. Highest final germination percentage was recorded with IAA with increasing salinity level from 0 up to 120 mM NaCl (98.3, 98.3, 96.7 and 100% without significant differences between them, respectively.

  5. High salinity and UVR synergistically reduce the photosynthetic performance of an intertidal benthic diatom.

    Science.gov (United States)

    Wu, Yaping; Zhu, Yanchen; Xu, Juntian

    2017-09-01

    The intertidal flat is an important intermediate ecosystem characterized by abrupt fluctuations of some environmental factors. As a major contributor to coastal primary productivity, benthic diatoms have to cope up with these fluctuating conditions, such as variations in salinity and light. In this study, we used a typical benthic diatom, Nitzschia sp., to investigate how the photosynthetic performance of a benthic species responded to coupled stresses of high salinity and simulated sunlight. Results showed that their responses were largely dependent on the spectra of light they received. Further, ultraviolet radiation (UVR) interacted with high salinity more effectively than photosynthetically active radiation (PAR), which synergistically reduced the photochemical performance of photosystem II (PSII). The different responses to PAR and UVR were mainly attributed to the repair processes of PSII. Under high salinity, particularly for cells exposed to UVR, the repair rate was significantly lower than those under the control treatment. The present work suggests that UVR, rather than PAR, could be more important in influencing the benthic diatom under high salinity conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of Salinity on the Growth Parameters of Halotolerant ...

    African Journals Online (AJOL)

    USER

    Figure 2.0 Effect of increasing NaCl (0.5 to 4.0 M) on the growth of Dunaliella T35 at 23oC, pH 7.5, 45 μmol m-2 s-1 with 12 h light: 12 h dark photoperiod in a modified Johnson's medium. A to B are the data points used in estimating specific growth rate. Error bars represent the standard deviations (n≥3) of measured.

  7. Physiological and Growth Responses of Six Turfgrass Species Relative to Salinity Tolerance

    Directory of Open Access Journals (Sweden)

    Md. Kamal Uddin

    2012-01-01

    Full Text Available The demand for salinity-tolerant turfgrasses is increasing due to augmented use of effluent or low-quality water (sea water for turf irrigation and the growing turfgrass industry in coastal areas. Experimental plants, grown in plastic pots filled with a mixture of river sand and KOSASR peat (9 : 1, were irrigated with sea water at different dilutions imparting salinity levels of 0, 8, 16, 24, 32, 40, or 48 dS m-1. Salinity tolerance was evaluated on the basis of leaf firing, shoot and root growth reduction, proline content, and relative water content. Paspalum vaginatum was found to be most salt tolerant followed by Zoysia japonica and Zoysia matrella, while Digitaria didactyla, Cynodon dactylon “Tifdwarf,” and Cynodon dactylon “Satiri” were moderately tolerant. The results indicate the importance of turfgrass varietal selection for saline environments.

  8. Effects of Seed Priming on Growth, Chlorophyll Content, Relative Water Content and Dry Matter Distribution of Safflower (Carthamus tinctorius, cv. Gholdasht under Salinity Stress

    Directory of Open Access Journals (Sweden)

    S. Zibai

    2012-12-01

    Full Text Available In order to evaluate the salinity and priming effects on vegetative growth and some physiological traits of safflower, cv. Goldasht, a factorial experiment, with completely randomized blocks design and 4 replications, was conducted in Research Greenhouse of Vali-e-Asr University of Rafsanjan in 2009. Treatments included seed priming at 4 levels (no prime as control, priming with distilled water, priming with NaCl and priming with 20 Mm Ca(NO32 for 24 hours and salinity at 4 levels (0, 8, 16 and 24 dS/m. Results indicated that dry weight of aerial parts, root dry weight, stem length, leaf area and head dry weight were decreased with increasing salinity. Salinity affected significantly the dry matter partitioning. As in higher salinities, more dry matter was translocated to stem and head, which was accompanied with less dry matter translocation to roots and leaves. The root/shoot ratio was significantly decreased with increasing salinity due to higher dry matter translocation to stems. Though, higher salinities decreased significantly the root dry weight. At salinity level of 24 dS/m, this safflower cultivar translocated more dry matter to shoots as compared to roots and leaves. Comparison of means showed that chlorophyll content and Spad index were decreased at higher salinity levels. Leaf area and plant height were significantly reduced only at salinities higher than 16 dS/m. The results of this experiment showed that in general, the Goldasht cultivar of safflower could tolerate salinity stress up to 16 dS/m in the vegetative stage with prominent decrease in stem and root dry weight, which could be due to some resistance mechanisms to salinity. This result must be accurately evaluated in a field experiment.

  9. A ribonuclease inhibitor expresses anti-angiogenic properties and leads to reduced tumor growth in mice.

    OpenAIRE

    Polakowski, I. J.; Lewis, M K; Muthukkaruppan, V. R.; Erdman, B.; Kubai, L.; Auerbach, R

    1993-01-01

    Our experiments were designed to determine whether recombinant ribonuclease inhibitor (RNasin) could inhibit angiogenesis and reduce tumor growth in adult mice. We used the Fajardo disc angiogenesis assay as the primary means of measuring new blood vessel growth. This assay measures the penetration of cells into a polyvinyl alcohol sponge with a central core of ELVAX-coated sponge containing test substances. Cell penetration was reduced to 29.3% of control (phosphate-buffered saline; heat-ina...

  10. Growth and nutrition of baldcypress families planted under varying salinity regimes in Louisiana, USA

    Science.gov (United States)

    Krauss, K.W.; Chambers, J.L.; Allen, J.A.; Soileau, D.M.; DeBosier, A.S.

    2000-01-01

    Saltwater intrusion from the Gulf of Mexico is one important factor in the destruction of baldcypress (Taxodium distichum (L.) Rich.) swamps along the Louisiana Gulf Coast, USA. Recent restoration efforts have focused on identification of baldcypress genotypes with greater tolerance to saline conditions than previously reported. To date, salt tolerance investigations have not been conducted under saline field conditions. In 1996, therefore, three plantations were established with 10 half-sib genotype collections of baldcypress in mesohaline wetlands. Tree survival and growth were measured at the end of two growing seasons, and foliar ion concentrations of Na, Cl, K, and Ca and available soil nutrients were measured during the 1996 growing season. In general, soil nutrient concentrations exceeded averages found in other baldcypress stands in the southeastern United States. Seedlings differed among sites in all parameters measured, with height, diameter, foliar biomass, and survival decreasing as site salinity increased. Average seedling height at the end of two years, for example, was 196.4 cm on the lowest salinity site and 121.6 cm on the highest. Several half-sib families maintained greater height growth increments (ranging from 25.5 to 54.5 cm on the highest salinity site), as well as lower foliar ion concentrations of K, Cl, and Ca. Results indicate that genotypic screening of baldcypress may improve growth and vigor of seedlings planted within wetlands impacted by saltwater intrusion.

  11. Supplementary Material for: Growth curve registration for evaluating salinity tolerance in barley

    KAUST Repository

    Meng, Rui

    2017-01-01

    Abstract Background Smarthouses capable of non-destructive, high-throughput plant phenotyping collect large amounts of data that can be used to understand plant growth and productivity in extreme environments. The challenge is to apply the statistical tool that best analyzes the data to study plant traits, such as salinity tolerance, or plant-growth-related traits. Results We derive family-wise salinity sensitivity (FSS) growth curves and use registration techniques to summarize growth patterns of HEB-25 barley families and the commercial variety, Navigator. We account for the spatial variation in smarthouse microclimates and in temporal variation across phenotyping runs using a functional ANOVA model to derive corrected FSS curves. From FSS, we derive corrected values for family-wise salinity tolerance, which are strongly negatively correlated with Na but not significantly with K, indicating that Na content is an important factor affecting salinity tolerance in these families, at least for plants of this age and grown in these conditions. Conclusions Our family-wise methodology is suitable for analyzing the growth curves of a large number of plants from multiple families. The corrected curves accurately account for the spatial and temporal variations among plants that are inherent to high-throughput experiments.

  12. The Effects of Zinc Application on Growth, Nutrient Uptake and Antioxidant Enzyme Activity in Tomato (Lycopersicum esculentum under Salinity stress

    Directory of Open Access Journals (Sweden)

    M. Askary

    2014-02-01

    Full Text Available In this study, effects of salinity and Zinc sulphate application on growth parameters, nutrient uptake and antioxidant enzyme activity of Tomato (Lycopersicum esculentum in a factorial experiment in completely randomized design with three replications were evaluated. Factors consisted of four salinity levels (0, 45, 90 and 120 mM NaCl and three Zinc sulphate levels (0, 5, and 10 μM. Results showed that salinity decreased fresh and dry weight of plants, Zn and K contents whereas increased the Na content and antioxidant activity by increasing NaCl level. Also, results showed that ZnSO4 had positive effect on growth parameters, Zn and K concentration and antioxidant activity but reduced Na and P concentration. Zinc treatment especially at 10 μM concentration in tomato under salt conditions increased growth indexes, potassium concentration, percent of Inhibition of 1,1-diphenyl-2-picrylhydrazyl radical, catalase and superoxide dismutase activity and decreased sodium and phosphorus concentrations. The highest fresh and dry weight of plants and potassium uptake were measured in plants without salt stress with application of 10 μM ZnSO4 and the lowest on these indicator in plants under 120 mM NaCl without ZnSO4 application. Thus, it was concluded that Zinc could be improve performance and yield in tomato plants under salt stress conditions.

  13. Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress.

    Science.gov (United States)

    Wu, Zhansheng; Yue, Haitao; Lu, Jianjiang; Li, Chun

    2012-06-01

    A plant growth-promoting rhizobacterial strain Rs-2 with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity was isolated from salinized soils using ACC as the sole nitrogen source. Based on its physiological and biochemical properties and 16S rDNA sequence analysis, this strain was identified as Raoultella planticola. The maximum value of nitrogen fixation, dissolved phosphorus and dissolved potassium of Rs-2 were 148.8 μg/ml, 205.0 and 4.31 mg/l, respectively within 192 h liquid culture. The germination rate of cotton seeds (Gossypium hirsutum L.) inoculated with Rs-2 (Rs-2-S) was enhanced by 29.5 % in pot experiments compared with that of the control (CK-S). Subsequently, individual plant height, fresh weight and dry weight of cotton seedlings in Rs-2-S treatment increased by 15.0, 33.7 and 33.3 %, respectively, compared with those in CK-S treatment. Statistical analysis showed that the inoculums of Rs-2 promoted significantly (P cotton growth. Further analysis showed that Rs-2 reduced the quantities of ethylene and abscisic acid in cotton seedlings, and increased indole acetic acid content in cotton seedlings under salinity stress. The accumulation of N, P, K(+), Ca(2+) and Fe(2+) in the cotton plants was increased significantly (P cotton seedlings decreased (P cotton growth and alleviating salinity stress.

  14. Population differentiation for germination and early seedling root growth traits under saline conditions in the annual legume Medicago truncatula (Fabaceae).

    Science.gov (United States)

    Cordeiro, Matilde A; Moriuchi, Ken S; Fotinos, Tonya D; Miller, Kelsey E; Nuzhdin, Sergey V; von Wettberg, Eric J; Cook, Douglas R

    2014-03-01

    Seedling establishment and survival are highly sensitive to soil salinity and plants that evolved in saline environments are likely to express traits that increase fitness in those environments. Such traits are of ecological interest and they may have practical value for improving salt tolerance in cultivated species. We examined responses to soil salinity and tested potential mechanisms of salt tolerance in Medicago truncatula, using genotypes that originated from natural populations occurring on saline and nonsaline soils. Germination and seedling responses were quantified and compared between saline and nonsaline origin genotypes. Germination treatments included a range of sodium chloride (NaCl) concentrations in both offspring and parental environments. Seedling treatments included NaCl, abscisic acid (ABA), and potassium chloride (KCl). Saline origin genotypes displayed greater salinity tolerance for germination and seedling traits relative to nonsaline origin genotypes. We observed population specific differences for the effects of salinity on time to germination and for the impact of parental environment on germination rates. ABA and NaCl treatments had similar negative effects on root growth, although relative sensitivities differed, with saline population less sensitive to NaCl and more sensitive to ABA compared to their nonsaline counterparts. We report population differentiation for germination and seedling growth traits under saline conditions among populations derived from saline and nonsaline environments. These observations are consistent with a syndrome of adaptations for salinity tolerance during early plant development, including traits that are common among saline environments and those that are idiosyncratic to local populations.

  15. Effect of Salinity and Seed Size on Lentil (Lens culinaris Medik Germination and Seedling Growth Properties

    Directory of Open Access Journals (Sweden)

    Y Alizadeh

    2012-02-01

    Full Text Available Both soil and water salinity is one of the main reasons in decreasing germination, seedling growth and establishment in many arid and semiarid parts of world especially in our country. For this reason in order to evaluate the effect of lentil seed size on germination and seedling growth properties that was under effect of salinity stress, a completely randomized design with factorial arrangement and 3 replications conducted using two lentils genotypes (Robatt and Gachsaran, two small and large seed sizes (34.8 and 59 mg in Robatt and 41.5 and 69 mg in Gachsaran per seed, respectively and five drought levels (0, 0.5, 0.8, 1.2 and 1.7 percent of NaCl in 2008s. Results showed that Robatt genotype had higher germination rate and salinity tolerance than Gachsaran. In addition seed size had significant different (P

  16. Effects of salinity on growth and organic solutes accumulation of ...

    African Journals Online (AJOL)

    2013-03-27

    Mar 27, 2013 ... Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil. 3.ed. Instituto Plantarum, Nova. Odessa, Brasil. Meloni DA, Gulotta MR, Martinéz CA, Oliva MA (2004). The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba.

  17. Effects of salinity stress on seedlings growth, mineral nutrients and ...

    African Journals Online (AJOL)

    In this study, six cultivars of tomato (Lycopersicum esculentum L. var. Jaguar, Xewel, Nadira, Lindo, Mongal and Ninja) were evaluated. They were subjected to salt stress during vegetative growth. Three concentrations of salt solution 50, 100 and 200 mM NaCl and the control (Wacquant nutrient solution) were used in ...

  18. AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content.

    Science.gov (United States)

    An, Dong; Chen, Jiu-Geng; Gao, Yi-Qun; Li, Xiang; Chao, Zhen-Fei; Chen, Zi-Ru; Li, Qian-Qian; Han, Mei-Ling; Wang, Ya-Ling; Wang, Yong-Fei; Chao, Dai-Yin

    2017-10-30

    Arabidopsis thaliana high-affinity potassium transporter 1 (AtHKT1) limits the root-to-shoot sodium transportation and is believed to be essential for salt tolerance in A. thaliana. Nevertheless, natural accessions with 'weak allele' of AtHKT1, e.g. Tsu-1, are mainly distributed in saline areas and are more tolerant to salinity. These findings challenge the role of AtHKT1 in salt tolerance and call into question the involvement of AtHKT1 in salinity adaptation in A. thaliana. Here, we report that AtHKT1 indeed drives natural variation in the salt tolerance of A. thaliana and the coastal AtHKT1, so-called weak allele, is actually hyper-functional in reducing flowers sodium content upon salt stress. Our data showed that AtHKT1 positively contributes to saline adaptation in a linear manner. Forward and reverse genetics analysis established that the single AtHKT1 locus is responsible for the variation in the salinity adaptation between Col-0 and Tsu-1. Reciprocal grafting experiments revealed that shoot AtHKT1 determines the salt tolerance of Tsu-1, whereas root AtHKT1 primarily drives the salt tolerance of Col-0. Furthermore, evidence indicated that Tsu-1 AtHKT1 is highly expressed in stems and is more effective compared to Col-0 AtHKT1 at limiting sodium flow to the flowers. Such efficient retrieval of sodium to the reproductive organ endows Tsu-1 with stronger fertility compared to Col-0 upon salt stress, thus improving Tsu-1 adaptation to a coastal environment. To conclude, our data not only confirm the role of AtHKT1 in saline adaptation, but also sheds light on our understanding of the salt tolerance mechanisms in plants.

  19. Growth and physiological response of tall oat grass to salinity stress ...

    African Journals Online (AJOL)

    In order to evaluate the responses of tall oat grass plants to increasing salinity, we measured plant growth, ion contents, photosynthetic gas exchange, lipid peroxidation, and proline accumulation in four salt concentrations. Two tall oatgrass genotypes, ZXY03P-367 and ZXY03P-443, were grown for 14 days in greenhouse ...

  20. Effect of Salinity on the Survival and Growth of Rufiji Tilapia ...

    African Journals Online (AJOL)

    Abstract. Survival and growth of Rufiji tilapia (Oreochromis urolepis urolepis) fry were determined under controlled salinity conditions of 5, 15, 25 and 35 ppt for 56 days. Experiments were carried out in 12 concrete tanks of 1 m3 volume each with three replicates for each treatment. Data was recorded at fourteen days ...

  1. Assessment of the effect of salinity on the early growth stage of the ...

    African Journals Online (AJOL)

    There was found to be a significant (r2 = 0.76) correlation between chlorophyll and NDVI values. Therefore, factors that can be derived through remote sensing such as NDVI and chlorophyll can be used to indirectly demonstrate the impact salinity has on sunflower plants. Therefore, agriculturalists can assess growth rate ...

  2. The Effect of Growth Environment and Salinity on Lipid Production and Composition of Salicornia virginica

    Science.gov (United States)

    Bomani, Bilal Mark McDowell; Link, Dirk; Kail, Brian; Morreale, Bryan; Lee, Eric S.; Gigante, Bethany M.; Hendricks, Robert C.

    2014-01-01

    Finding a viable and sustainable source of renewable energy is a global task. Biofuels as a renewable energy source can potentially be a viable option for sustaining long-term energy needs. Biodiesel from halophytes shows great promise due to their ability to serve not only as a fuel source, but a food source as well. Halophytes are one of the few biomass plant species that can tolerate a wide range of saline conditions. We investigate the feasibility of using the halophyte, Salicornia virginica as a biofuel source by conducting a series of experiments utilizing various growth and salinity conditions. The goal is to determine if the saline content of Salicornia virginica in our indoor growth vs outdoor growth conditions has an influence on lipid recovery and total biomass composition. We focused on using standard lipid extraction protocols and characterization methods to evaluate twelve Salicornia virginica samples under six saline values ranging from freshwater to seawater and two growth conditions. The overall goal is to develop an optimal lipid extraction protocol for Salicornia virginica and potentially apply this protocol to halophytes in general.

  3. Dynamics of growth and water relations of Fodderbeet and Seabeat in response to salinity.

    NARCIS (Netherlands)

    Niazi, B.H.; Rozema, J.; Broekman, R.A.; Salim, M.

    2000-01-01

    A pot experiment was conducted under greenhouse conditions with two subspecies of beet, fodderbeet (Beta vulgaris cv. Majoral) and seabeet (Beta maritima), under saline conditions. Growth and physiological parameters (dry weight, leaf area, water relations and net photosynthesis) were recorded. The

  4. Effect of soil salinity on the growth, amino acids and ion contents of ...

    African Journals Online (AJOL)

    jamil

    2012-10-25

    Oct 25, 2012 ... Effect of soil salinity on the growth, amino acids and ion contents of rice transgenic lines. Muhammad Jamil1*, Muhammad Anees2, Shafiq Ur Rehman3, Muhammad Daud Khan1,. Chang-Hyu Bae4, Sheong Chun Lee4 and Eui Shik Rha4. 1Department of Biotechnology and Genetic Engineering, Kohat ...

  5. Using microbial desalination cells to reduce water salinity prior to reverse osmosis

    KAUST Repository

    Mehanna, Maha

    2010-01-01

    A microbial desalination cell (MDC) is a new method to reduce the salinity of one solution while generating electrical power from organic matter and bacteria in another (anode) solution. Substantial reductions in the salinity can require much larger volumes of the anode solution than the saline water, but any reduction of salinity will benefit the energy efficiency of a downstream reverse osmosis (RO) desalination system. We investigated here the use of an MDC as an RO pre-treatment method using a new type of air-cathode MDC containing three equally sized chambers. A single cycle of operation using a 1 g L -1 acetate solution reduced the conductivity of salt water (5 g L-1 NaCl) by 43 ± 6%, and produced a maximum power density of 480 mW m-2 with a coulombic efficiency of 68 ± 11%. A higher concentration of acetate (2 g L-1) reduced solution conductivity by 60 ± 7%, and a higher salt concentration (20 g L-1 NaCl) reduced solution conductivity by 50 ± 7%. The use of membranes with increased ion exchange capacities further decreased the solution conductivity by 63 ± 2% (20 g L-1 NaCl). These results demonstrate substantial (43-67%) desalination of water is possible using equal volumes of anode solution and salt water. These results show that MDC treatment could be used to substantially reduce salt concentrations and thus energy demands for downstream RO processing, while at the same time producing electrical power. © 2010 The Royal Society of Chemistry.

  6. Effects of salinity and nutrients on the growth and chlorophyll fluorescence of Caulerpa lentillifera

    Science.gov (United States)

    Guo, Hui; Yao, Jianting; Sun, Zhongmin; Duan, Delin

    2015-03-01

    Caulerpa lentillifera is a green algae that distributes worldwide and is cultivated for food. We assessed vegetative propagation of C. lentillifera by measuring the specific growth rate (SGR) and chlorophyll fluorescence of the green algae cultured at different salinities and nutrient levels. The results indicated that C. lentillifera can survive in salinities ranging from 20 to 50, and can develop at salinities of 30 to 40. The maximum SGR for C. lentillifera occurred at a salinity of 35. Both chlorophyll content and the ratio of variable to maximum fluorescence ( F v/ F m) were also at a maximum at a salinity of 35. Photosynthesis was inhibited in salinities greater than 45 and less than 25. Both the maximum SGR and maximum chlorophyll content were found in algae treated with a concentration of 0.5 mmol/L of NO3-N and 0.1 mmol/L of PO4-P. The photosynthetic capacity of photosystem II (PSII) was inhibited in cultures of C. lentillifera at high nutrient levels. This occurred when NO3-N concentrations were greater than 1.0 mmol/L and when PO4-P concentrations were at 0.4 mmol/L. As there is strong need for large-scale cultivation of C. lentillifera, these data contribute important information to ensure optimal results.

  7. The effect of biofertilizer fungi on Ciherang rice growth at some level of soil salinity

    Directory of Open Access Journals (Sweden)

    Y B Subowo

    2014-04-01

    Full Text Available A research about the effect of fungus contained biofertilizer on Ciherang rice that was growth on different level of soil salinity was conducted. One of the effect of global climate changes is the increase of sea water level. It leads to the expansion of sea water submerged land for agriculture. Salt intrution to the agriculture area considerably decrease soil fertility because of the high salinity. Some of microbes especially soil fungi such as Aspergillus sp and Penicillium sp. are able to grow at high salinity environment. Those fungi were also able to degrade lignocellulose, sollubilize in organic phosphate and provide organic phosphat and produce plant growth hormon especially IAA. Such activities benefit to improve soil fertility in high salinity land as a bio-fertilizer.The objective of this research was to know the growth of rice plant that treated with fungus contained bio-fertilizer on land with different level of salinity. The rice were planted in Green house of Cibinong Science Centre, Cibinong.The research was set up as complete random design with five replication. The rice were watered by 5 conditions: 50% of sea water, 100% of sea water, 100% sea water + 2 % NaCl , fresh water + 5 % NaCl and 100% fresh water as the control. Fertilizer was added to the medium twice. Ten grams of fertilizer were used per polybag (10g/7 Kg, 2 weeks after planting and before flowering subsequently. The observed parameters were plant height, number of tiller, leaves colour, biomass dry weight, soil organic carbon content, cellulosic and lignin degrading activities of the fungus, fungus phosphate-solubilizing potency and fungus production of IAA.The watering treatment lead to 5 level of salinity i.e. : 5,93 dS/m (50% sea water, 9,15 dS/m (100% sea water, 10,42 dS/m (sea water + 2% NaCl, 12,43 dS/m (fresh water + 5% NaCl and 0,74 dS/m (fresh water. The result showed that among those 5 watering condition, the rice grew best on 5,93 dS/m (watering 50% of

  8. Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions.

    Science.gov (United States)

    Kumar, Krishna; Manigundan, K; Amaresan, Natarajan

    2017-02-01

    In the present study, a total of 70 Trichoderma spp. were isolated from the rhizosphere soils of vegetable and spice crops that were grown in Andaman and Nicobar Islands, India. Initial screening of Trichoderma spp. for salt tolerant properties showed 32 isolates were able to tolerate 10% NaCl. Furthermore, these isolates were screened for their potential plant growth-promoting characteristics such as IAA production, phosphate solubilization, and siderophore production. Among 32 isolates, nine isolates were able to produce IAA, siderophore, and solubilize phosphate. Jar trial was carried out on maize under axenic conditions at 1.67, 6.25, 11.25, 17.2, and 22.9 dS m -1 salt stress using the best nine isolates. Three isolates (TRC3, NRT2, and THB3) were effective in improving germination percentage, reducing reduction percentage of germination (RPG) and also in increasing the shoot and root length under axenic conditions. These three isolates were further tested under pot trial at 52 (sea water), 27, 15, 7, and 1.67 dS m -1 . TRC3 was found to be the most effective isolate compared to the other isolates and significantly increased the physiological parameters like shoot, root length, leaf area, total biomass, and stem and leaf fresh weight at all stress levels. Similarly, total chlorophyll content also increased by TRC3 over control. All three isolates, NRT2, TRC3, and THB3 showed lower accumulation of malondialdehyde (MDA) content whereas, proline and phenol content were higher than the uninoculated control plants under both normal and saline conditions. The results suggest that these isolates could be utilized for the alleviation of salinity stress in maize. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Survival, growth and reproduction of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758). I. Physiological capabilities in various temperatures and salinities

    Science.gov (United States)

    Schofield, Pamela J.; Peterson, Mark S.; Lowe, Michael R.; Brown-Peterson, Nancy J.; Slack, William T.

    2011-01-01

    The physiological tolerances of non-native fishes is an integral component of assessing potential invasive risk. Salinity and temperature are environmental variables that limit the spread of many non-native fishes. We hypothesised that combinations of temperature and salinity will interact to affect survival, growth, and reproduction of Nile tilapia, Oreochromis niloticus, introduced into Mississippi, USA. Tilapia withstood acute transfer from fresh water up to a salinity of 20 and survived gradual transfer up to 60 at typical summertime (30°C) temperatures. However, cold temperature (14°C) reduced survival of fish in saline waters ≥10 and increased the incidence of disease in freshwater controls. Although fish were able to equilibrate to saline waters in warm temperatures, reproductive parameters were reduced at salinities ≥30. These integrated responses suggest that Nile tilapia can invade coastal areas beyond their point of introduction. However, successful invasion is subject to two caveats: (1) wintertime survival depends on finding thermal refugia, and (2) reproduction is hampered in regions where salinities are ≥30. These data are vital to predicting the invasion of non-native fishes into coastal watersheds. This is particularly important given the predicted changes in coastal landscapes due to global climate change and sea-level rise.

  10. Use of mixed solid waste as a soil amendment for saline-sodic soil remediation and oat seedling growth improvement.

    Science.gov (United States)

    Fan, Yuan; Ge, Tian; Zheng, Yanli; Li, Hua; Cheng, Fangqin

    2016-11-01

    Soil salinization has become a worldwide problem that imposes restrictions on crop production and food quality. This study utilizes a soil column experiment to address the potential of using mixed solid waste (vinegar residue, fly ash, and sewage sludge) as soil amendment to ameliorate saline-sodic soil and enhance crop growth. Mixed solid waste with vinegar residue content ranging from 60-90 %, sewage sludge of 8.7-30 %, and fly ash of 1.3-10 % was added to saline-sodic soil (electrical conductivity (EC1:5) = 1.83 dS m-1, sodium adsorption ratio (SAR1:5) = 129.3 (mmolc L-1)1/2, pH = 9.73) at rates of 0 (control), 130, 260, and 650 kg ha-1. Results showed that the application of waste amendment significantly reduced SAR, while increasing soil soluble K+, Ca2+, and Mg2+, at a dose of 650 kg ha-1. The wet stability of macro-aggregates (>1 mm) was improved 90.7-133.7 % when the application rate of amendment was greater than 260 kg ha-1. The application of this amendment significantly reduced soil pH. Germination rates and plant heights of oats were improved with the increasing rate of application. There was a positive correlation between the percentage of vinegar residue and the K/Na ratio in the soil solutions and roots. These findings suggest that applying a mixed waste amendment (vinegar residue, fly ash, and sewage sludge) could be a cost-effective method for the reclamation of saline-sodic soil and the improvement of the growth of salt-tolerant plants.

  11. Growth and Landscape Performance of Ten Herbaceous Species in Response to Saline Water Irrigation1

    OpenAIRE

    Niu, Genhua; Rodriguez, Denise S.; Aguiniga, Lizzie

    2007-01-01

    Ten herbaceous perennials and groundcovers were grown in raised beds from June to September in a dry, hot desert environment and micro-spray drip irrigated with synthesized saline solutions at electrical conductivity of 0.8 (tap water), 3.2, or 5.4 dS/m. Plant height and two perpendicular widths were recorded monthly to calculate the growth index. Landscape performance was assessed monthly by visual scores. Salinity did not affect the visual scores in Achillea millefolium L., Gaillardia arist...

  12. AM Fungi Influences the Photosynthetic Activity, Growth and Antioxidant Enzymes in Allium sativum L. under Salinity Condition

    Directory of Open Access Journals (Sweden)

    Mahesh BORDE

    2010-12-01

    Full Text Available Potential of Arbuscular mycorrhizal (AM fungi in alleviating adverse salt effects on growth was tested in garlic (Allium sativum L.. Towards this objective we analyzed the AM root colonization and the activities of various antioxidant enzymes like peroxidase, catalase, and superoxide dismutase at 0, 100, 200 and 300 mM salinity levels. The activities of all the antioxidant enzymes studied were found to be increased in AM garlic plants. Antioxidant activity was maximum in 100 and 200 mM NaCl (sodium chloride in AM and non-AM plants. Proline accumulation was induced by salt levels and it was more in leaves as well as roots of AM plants as compared to non-AM plants, this indicating that mycorrhiza reduced salt injury. Growth parameters of garlic plants like leaf area, plant fresh and dry weight and antioxidant enzyme activities were higher at moderate salinity level. This work suggests that the mycorrhiza helps garlic plants to perform better under moderate salinity level by enhancing the antioxidant activity and proline content as compared to non-AM plants.

  13. Effects of salinity on growth and survival in five Artemia franciscana (Anostraca: Artemiidae populations from Mexico Pacific Coast

    Directory of Open Access Journals (Sweden)

    Jorge Castro-Mejía

    2011-03-01

    Full Text Available Salinity is an important factor influencing growth and survival of aquatic organisms such as Artemia, a valuable aquaculture species. This study evaluated the effects of salinity on A. franciscana populations from different water bodies in Mexico’s Pacific Coast. With this purpose, five autochthonous bisexual Artemia populations were tested to assess their survival and growth values against salinities of 40, 60, 80, 100 and 120g/l, under laboratory conditions (25±2ºC; pH 8-10; constant light and aeration. The organisms were fed with 100mL of rice bran and 2L of Tetraselmis suecica (500 000cel/ml. The culture experiments were made in 200L plastic tanks, and survival and growth final values were obtained after 21 culture days. Survival and growth curves were determined by a regression analysis (R². The significant differences between salinities were determined by ANOVA test (p<0.05. The best survival and growth rates were found at salinities of 100-120g/l. When the Mexican Artemia populations were cultivated at 40g/l of salinity, 100% mortality was observed in the juvenile stage. This study determined that survival and growth values of A. franciscana populations increased with salinity. The five A. franciscana populations presented significant differences in their survival rate under various salinity regimes. The studied populations experienced high mortality at salinities under 60g/l and over 200g/l, and especially during the metanauplius stage. The present study confirms that growth rates in Mexican A. franciscana populations from Pacific Coast habitats are not inversely proportional to salinity. These A. franciscana populations should be cultured at 100-120g/l of salinity to obtain better survival and growth rates. This data is useful to improve culture systems in aquaculture biomass production systems. Rev. Biol. Trop. 59 (1: 199-206. Epub 2011 March 01.

  14. Responses of growth, antioxidants and gene expression in smooth cordgrass (Spartina alterniflora) to various levels of salinity.

    Science.gov (United States)

    Courtney, Abigail J; Xu, Jichen; Xu, Yan

    2016-02-01

    Salinity is a major environmental factor limiting the productivity and quality of crop plants. While most cereal crops are salt-sensitive, several halophytic grasses are able to maintain their growth under saline conditions. Elucidating the mechanisms for salinity responses in halophytic grasses would contribute to the breeding of salt-tolerant cereal and turf species belonging to the Poaceae family. Smooth cordgrass (Spartina alterniflora) is a dominant native halophytic grass in the Hackensack Meadowlands, the coastal salt marshes located in northeastern New Jersey. The goals of this study were to examine the growth pattern of S. alterniflora in a salinity gradient and identify an optimal range of salinity for its maximal growth. The regulation of its antioxidant system and gene expression under supraoptimal salinity conditions was also investigated. Our results showed that a salinity of 4 parts per thousand (ppt) (68 mM) was most favorable for the growth of S. alterniflora, followed by a non-salt environment. S. alterniflora responded to salts in the environment by regulating antioxidant enzyme activities and the expression of stress-induced proteins such as ALDH, HVA22 and PEPC. The plant may tolerate salinity up to the concentration of sea water, but any salinity above 12 ppt retarded its growth and altered the expression of genes encoding critical proteins. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  16. Effects of salinity on growth and survival in five Artemia franciscana (Anostraca: Artemiidae) populations from Mexico Pacific Coast.

    Science.gov (United States)

    Castro-Mejía, Jorge; Castro-Barrera, Talía; Hernández-Hernández, Luis Héctor; Arredondo-Figueroa, José Luis; Castro-Mejía, Germán; de Lara-Andrade, Ramón

    2011-03-01

    Salinity is an important factor influencing growth and survival of aquatic organisms such as Artemia, a valuable aquaculture species. This study evaluated the effects of salinity on A. franciscana populations from different water bodies in Mexico's Pacific Coast. With this purpose, five autochthonous bisexual Artemia populations were tested to assess their survival and growth values against salinities of 40, 60, 80, 100 and 120 g/l, under laboratory conditions (25 +/- 2 degrees C; pH 8-10; constant light and aeration). The organisms were fed with 100 mL of rice bran and 2L of Tetraselmis suecica (500 000 cel/ml). The culture experiments were made in 200L plastic tanks, and survival and growth final values were obtained after 21 culture days. Survival and growth curves were determined by a regression analysis (R2). The significant differences between salinities were determined by ANOVA test (p salinities of 100-120 g/l. When the Mexican Artemia populations were cultivated at 40 g/l of salinity, 100% mortality was observed in the juvenile stage. This study determined that survival and growth values of A. franciscana populations increased with salinity. The five A. franciscana populations presented significant differences in their survival rate under various salinity regimes. The studied populations experienced high mortality at salinities under 60 g/l and over 200 g/l, and especially during the metanauplius stage. The present study confirms that growth rates in Mexican A. franciscana populations from Pacific Coast habitats are not inversely proportional to salinity. These A. franciscana populations should be cultured at 100-120 g/l of salinity to obtain better survival and growth rates. This data is useful to improve culture systems in aquaculture biomass production systems.

  17. Comparative gas exchange and growth responses of C3 and C4 beach species grown at different salinities.

    Science.gov (United States)

    De Jong, T M

    1978-01-01

    Comparative laboratory gas exchange and relative growth rate experiments were conducted on three native California coastal strand species at four salinity treatment levels. Relative mesophyll conductance sensitivities to salinity of Atriplex leucophylla (Moq.) D. Dietr. (C4) and Atriplex californica Moq. in D.C. (C3) were nearly identical. Mesophyll conductances of both species were stimulated by moderate levels of salinity. Mesophyll conductances of Abronia maritima Nutt. ex Wats. (C3) were highest in the absence of salinity and depressed by increasing levels of salinity. Increasing levels of salinity generally decreased net photosynthesis and leaf conductances but increased water use efficiencies. The C4 species, Atriplex leucophylla, had higher mesophyll conductances and water use efficiencies at all salinity levels than the C3 species. The effects of salinity on relative growth and net assimilation rates of greenhouse grown plants were not directly correlated with the effects on net photosynthesis measured in the laboratory. Growth of Abronia maritima was greatly stimulated by low levels of salinity whereas photosynthesis was substantially inhibited. The possible significance of C4 photosynthesis in relation to salinity is discussed.

  18. Effect of Salinity on Germination and Seedling Growth of Turf Grasses

    Directory of Open Access Journals (Sweden)

    SH Riahinia

    2012-02-01

    Full Text Available Environmental stresses, such as salinity can play an important role in disturbing different stages of plant growth, development, and especially seed germination in arid and semiarid regions in Iran. Turf grasses are highly dissipation in areas associated with saline soils and/or saline irrigation water. In order to study the effects of salinity on turf grasses germination, an experiment was conducted in factorial arrangement based on completely randomized design with three replications. Ten bulks of turf grasses were evaluated in four levels of salt treatment in Department of Agriculture in Isfahan University of Technology.These seeds included Bromus tomentolus (Semirom, Agropyron deserterom (Tabriz, Secal sp (Feraidonshahr, Stippa barbata (Mote, Agropyron sp (Semirom, Sorghum halopance (Isfahan, Agropyron elongatum (Hamedan, Bromus tomentolus-(Feraidonshahr, Hordeum morinum (Semirom, Secal sp (Pheraidan that collected from different regions of Iran. Salt treatments were, 0.5, 1, 1.5 and 2 percent of NaCl solutions (Equivalent to EC of 7.8, 15.6, 23.4 and 31.2 dS/m and H2O as control. Results showed that germination indices between bulks were significantly different (at 1% level. Increasing salinity caused a significant decrease in germination percentage and delayed mean germination time. Based on the percentage of germination and germination rate, Secale sp (Feraidonshahr and, Bromus tomentolus (Semirom, had the highest and the lowest tolerances, respectively.

  19. Effect of salinity on survival, growth and biochemical parameters in juvenile Lebranch mullet Mugil liza (Perciformes: Mugilidae

    Directory of Open Access Journals (Sweden)

    Viviana Lisboa

    Full Text Available Teleost fish growth may be improved under isosmotic condition. Growth and metabolic performance of juvenile Mugil liza (isosmotic point: 12‰ were evaluated after 40 days in different salinities (0, 6, 12 and 24‰. Tests were performed in quadruplicate (30 fish/tank; 0.48 ± 0.1 g body weight; 3.27 ± 0.1 cm total length under controlled water temperature (28.2 ± 0.1ºC and oxygen content (>90% saturation. Fish were fed on artificial diet (50% crude protein four times a day until apparent satiation. Results showed that salinity influenced juvenile mullet growth. Fish reared at salinity 24‰ grew better than those maintained in freshwater (salinity 0‰. Gill Na+,K+-ATPase activity and whole body oxygen consumption showed an U-shape-type response over the range of salinities tested, with the lower values being observed at the intermediate salinities. Although no significant difference was observed in liver glycogen content at different salinities, it tended to augment with increasing salinity. These findings indicate that energy demand for osmorregulation in juvenile M. liza can be minimized under isosmotic condition. However, the amount of energy spared is not enough to improve fish growth. Results also suggest that M. liza is able to alternate between different energy-rich substrates during acclimation to environmental salinity.

  20. Effects of temperature and salinity on the growth of Alexandrium (Dinophyceae) isolates from the Salish Sea.

    Science.gov (United States)

    Bill, Brian D; Moore, Stephanie K; Hay, Levi R; Anderson, Donald M; Trainer, Vera L

    2016-04-01

    Toxin-producing blooms of dinoflagellates in the genus Alexandrium have plagued the inhabitants of the Salish Sea for centuries. Yet the environmental conditions that promote accelerated growth of this organism, a producer of paralytic shellfish toxins, is lacking. This study quantitatively determined the growth response of two Alexandrium isolates to a range of temperatures and salinities, factors that will strongly respond to future climate change scenarios. An empirical equation, derived from observed growth rates describing the temperature and salinity dependence of growth, was used to hindcast bloom risk. Hindcasting was achieved by comparing predicted growth rates, calculated from in situ temperature and salinity data from Quartermaster Harbor, with corresponding Alexandrium cell counts and shellfish toxin data. The greatest bloom risk, defined at μ >0.25 d(-1) , generally occurred from April through November annually; however, growth rates rarely fell below 0.10 d(-1) . Except for a few occasions, Alexandrium cells were only observed during the periods of highest bloom risk and paralytic shellfish toxins above the regulatory limit always fell within the periods of predicted bloom occurrence. While acknowledging that Alexandrium growth rates are affected by other abiotic and biotic factors, such as grazing pressure and nutrient availability, the use of this empirical growth function to predict higher risk time frames for blooms and toxic shellfish within the Salish Sea provides the groundwork for a more comprehensive biological model of Alexandrium bloom dynamics in the region and will enhance our ability to forecast blooms in the Salish Sea under future climate change scenarios. © 2016 Phycological Society of America This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  1. Talc based exopolysaccharides formulation enhancing growth and production of Hellianthus annuus under saline conditions.

    Science.gov (United States)

    Tewari, S; Arora, K

    2014-12-24

    Stress tolerating strain of Pseudomonas aeruginosa PF07 possessing plant growth promoting activity was screened for the production of exopolysaccharides (EPS). EPS production was monitored in the cell free culture supernatant (CFCS) and extracted EPS was further purified by thin layer chromatography. EPS producing cells were taken to design talc based formulation and its efficacy was checked on oilseed crop sunflower (Hellianthus annuus), under in vivo saline conditions (soil irrigated with 125 mM of saline water). Application of bioformulation significantly enhanced the yield and growth attributes of the plant in comparison to control (untreated seeds) under stress and non—stress conditions. Germination rate, plant length, dry weight and seed weight increased remarkably. The above findings suggest the application and benefits of utilizing EPS formulation in boosting early seedling emergence, enhancing plant growth parameters, increasing seed weight and mitigating stress in saline affected regions. Such bioformulation may enhance RAS/RT (Root Adhering Soil to Root Tissue ratio), texture of the soil, increase porosity, improve uptake of nutrients, and hence may be considered as commercially important formulation for renovation of stressed sites and enhancing plant growth.

  2. Algal massive growth in relation to water quality and salinity at Damietta, north of Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Ibraheem Deyab

    2015-02-01

    Full Text Available Objective: To relate the proliferation and dominance of certain algal species at the Damietta and its relation to water quality. Methods: Water and algal biomass were bimonthly sampled from five selected sites at Damietta Province, Egypt during 2012. Algae were identified and quantified. Waters, algae and sediment were analyzed. Results: The physicochemical properties of water showed limited seasonal but substantial local variation. The high levels of nitrogen and phosphorus and turbidity of water pointed to marked eutrophication, which could enhance massive algal growth. The temporal fluctuation in temperature, exposure to industrial and domestic sewage and salinity results in succession between blooming algal species. Spirulina platensis and Chlorella vulgaris alternated in a moderately saline water and Oscillatoria agardhii and Mougeotia scalaris in a fresh water body during summer and winter respectively. Likewise, Microcystis aureginosa and Ulva lactuca alternated in a moderately saline site during autumn and summer respectively. Cladophora albida dominated a fish pond of brackish water and Dunaliella salina dominated the most saline water over the whole period of study. Conclusions: Growth of the predominant algal species is correlated to water quality. These species are of considerable nutritive value, with moderate contents of protein, carbohydrate, macronutrients and micronutrients, which evaluates them for usage as food (green and macroalgae, fodder or bio-fertilizer (cyanophytes.

  3. Growth and Landscape Performance of Ten Herbaceous Species in Response to Saline Water Irrigation.

    Science.gov (United States)

    Niu, Genhua; Rodriguez, Denise S; Aguiniga, Lizzie

    2007-01-01

    Ten herbaceous perennials and groundcovers were grown in raised beds from June to September in a dry, hot desert environment and micro-spray drip irrigated with synthesized saline solutions at electrical conductivity of 0.8 (tap water), 3.2, or 5.4 dS/m. Plant height and two perpendicular widths were recorded monthly to calculate the growth index. Landscape performance was assessed monthly by visual scores. Salinity did not affect the visual scores in Achillea millefolium L., Gaillardia aristata Pursh, Lantana x hybrida 'New Gold', Lonicera japonica Thunb. 'Halliana', and Rosmarinus officinalis L. 'Huntington Carpet' throughout the experiment. Glandularia canadensis (L.) Nutt. 'Homestead Purple' performed better than Glandularia x hybrida (Grönland & Rümpler) G. L. Nesom & Pruski. Lantana montevidensis (Spreng.) Brig. had lower visual scores at 5.4 dS/m compared to the control and 3.2 dS/m. Most plants of Rudbeckia hirta L. did not survive when irrigated at 3.2 dS/m or 5.4 dS/m. Shoot biomass of A. millefolium, G. aristata, L. x hybrida, L. japonica, R. officinalis, and V. macdougalii was not influenced by the salinity of irrigation water. Therefore, A. millefolium, G. aristata, L. x hybrida, L. japonica, and R. officinalis can be irrigated with non-potable water at salinity up to 5.4 dS/m with little reduction in growth and aesthetic appearance.

  4. The growth performance of Osphronemus goramy reared in saline water with electrical field exposure

    Directory of Open Access Journals (Sweden)

    Kukuh Nirmala

    2010-01-01

    Full Text Available The aim of this study was to know the optimal salinity level on growth rates of giant gouramy Osphronemus goramy  reared in different salinity with electrical field exposure. Four different salinities tested were 0; 3; 6 and 9‰ with the electrical field exposure of 10 Volt. The experiment design was arranged in completely randoumizes design with four treatments and three replications. Stock density was 3 fish/l with mean initial total body length of 7.18±0.30 cm and initial body weight of 5.68±0.67 g. Result of study showed that the treatment of 3‰ shows the best growth performance with specific growth rates of 1.02±0.10% and growth of absolute length of 0.56±0.18 cm. Key words: Salinity, electrical field, growth rate, Osphronemus goramy   ABSTRAK Tujuan penelitian ini adalah untuk mengetahui salinitas optimal untuk pertumbuhan ikan gurame Osphronemus goramy yang dipelihara pada media bersalinitas berbeda dengan paparan medan listrik. Perlakuan meliputi empat salinitas media yang berbeda: 0, 3, 6, dan 9‰ dengan paparan medan listrik 10 Volt. Rancangan percobaan yang digunakan adalah rancangan acak lengkap dengan 4 perlakuan dan 3 ulangan. Padat penebaran ikan adalah 3 ekor/l dengan rata-rata panjang total 7,18±0,30 cm dan bobot rata-rata awal 5,68±0,67 g. Hasil penelitian menunjukkan bahwa pertumbuhan ikan gurame terbaik pada penelitian ini dicapai pada salinitas 3‰ dengan pertumbuhan bobot 1,02±0,10% dan pertumbuhan panjang mutlak 0,56±0,18 cm.   Kata-kata kunci: Salinitas, medan listrik, laju pertumbuhan, Osphronemus goramy

  5. Salinity tolerance of Dodonaea viscosa L. inoculated with plant growth-promoting rhizobacteria: assessed based on seed germination and seedling growth characteristics

    Directory of Open Access Journals (Sweden)

    Yousefi Sonia

    2017-06-01

    Full Text Available The study was conducted to evaluate the potential of different strains of plant growth-promoting rhizobacteria (PGPR to reduce the effects of salinity stress on the medicinal hopbush plant. The bacterium factor was applied at five levels (non-inoculated, inoculated by Pseudomonas putida, Azospirillum lipoferum + Pseudomonas putida, Azotobacter chroococcum + Pseudomonas putida, and Azospirillum lipoferum + Azotobacter chroococcum + Pseudomonas putida, and the salinity stress at six levels: 0, 5, 10, 15, 20, and 50 dS m-1. The results revealed that Pseudomonas putida showed maximal germination percentage and rate at 20 dS m-1 (18.33% and 0.35 seed per day, respectively. The strongest effect among the treatments was obtained with the treatment combining the given 3 bacteria at 15 dS m-1 salinity stress. This treatment increased the root fresh and dry weights by 31% and 87.5%, respectively (compared to the control. Our results indicate that these bacteria applied on hopbush affected positively both its germination and root growth. The plant compatibility with the three bacteria was found good, and the treatments combining Pseudomonas putida with the other one or two bacteria discussed in this study can be applied in nurseries in order to restore and extend the area of hopbush forests and akin dry stands.

  6. Effect of NaCl salinity and soil waterlogging on growth characteristics of forage corn in greenhouse conditions

    OpenAIRE

    N. Najafi; E. Sarhangzadeh

    2012-01-01

    Salinity and waterlogging are two important abiotic stresses to plants growth and yield in the world. These two stresses can occur simultaneously and have additive effects on plants, including corn, growth. In a greenhouse experiment, the effects of NaCl salinity and waterlogging and their interactive effect on the growth characteristics of forage corn (Zea mays cv. single cross 704) were studied. A factorial experiment on the basis of completely randomized design with three replications was ...

  7. Salinity fluctuation influencing biological adaptation: growth dynamics and Na+/K+-ATPase activity in a euryhaline bacterium.

    Science.gov (United States)

    Yang, Hao; Meng, Yang; Song, Youxin; Tan, Yalin; Warren, Alan; Li, Jiqiu; Lin, Xiaofeng

    2017-07-01

    Although salinity fluctuation is a prominent characteristic of many coastal ecosystems, its effects on biological adaptation have not yet been fully recognized. To test the salinity fluctuations on biological adaptation, population growth dynamics and Na + /K + -ATPase activity were investigated in the euryhaline bacterium Idiomarina sp. DYB, which was acclimated at different salinity exposure levels, exposure times, and shifts in direction of salinity. Results showed: (1) bacterial population growth dynamics and Na + /K + -ATPase activity changed significantly in response to salinity fluctuation; (2) patterns of variation in bacterial growth dynamics were related to exposure times, levels of salinity, and shifts in direction of salinity change; (3) significant tradeoffs were detected between growth rate (r) and carrying capacity (K) on the one hand, and Na + /K + -ATPase activity on the other; and (4) beneficial acclimation was confirmed in Idiomarina sp. DYB. In brief, this study demonstrated that salinity fluctuation can change the population growth dynamics, Na + /K + -ATPase activity, and tradeoffs between r, K, and Na + /K + -ATPase activity, thus facilitating bacterial adaption in a changing environment. These findings provide constructive information for determining biological response patterns to environmental change. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. MORPHOLOGICAL AND PHYSIOLOGICAL CHARACTERISTICS OF GROWTH AND DEVELOPMENT OF PLANTS IN HIGH SALINITY

    Directory of Open Access Journals (Sweden)

    O. M. Vasilyuk

    2015-10-01

    Full Text Available The effect of increasing salinity to the morpho-metric parameters of Salix alba L., which dominated in the coastal areas on rivers of Steppe Dnieper, is investigated. We added Mg as salt MgSO4 * 3H2O in the range of concentration: 0.5, 1.0, 1.5, 2.0 and 2.5 g/l in a solution of willow cuttings. In the solution was added and plant growth regulator "Kornevin" the synthetic origin. The negative effect of salt at a concentration from 1.0 g/l to 2.5 g/l in the dynamics of growth and development was found. The correlation between the size and salinity in dynamics of growth and development of plant were demonstrated: in the growth of shoots (R = 0.83, 0.91 and 0.95, in the growth of roots (R = 0.92, 0.68 and 0.84 respectively depended from salt concentration. The length of the leaf blade was from 4% to 8%, from 7% to 43%, from 333% to 11% (R = 0,68, 0,93, 0,61, depending on the concentration of salt and during observing compared with control (distilled water. "Kornevin" and combined effect of salt increased the length of the leaf blade growth by 4-5, 2-4, 3-5 times, the roots by7 and 3-14 times, the shoots by 3-4, 6-7 and 5-7 times in the dynamics of growth compared with control (MgSO4, 2,5 g/l. The recommendations regarding for the advisability of using the plant growth regulator "Kornevin", as very effective plant growth preparation that promoted rooting and activated physiological processes of plant organism, expressed protective effect in conditions of excessive salinity, were provided. Key words: the morpho-metric index, the plant growth regulators, abiotic factors, salinity factor, the adaptation.

  9. Evaluation of Some Physiological Characteristics and Antioxidants Activity in Kochia (Kochia scoparia) in Different of Salinity Levels and Growth Stages

    OpenAIRE

    j nabati; m kafi; A Nezami; P Rezvani Moghaddam; A Masoumi; M Zare Mehrgerdi

    2014-01-01

    Soil salinity threat for agricultural ecosystems in many parts of Iran, and negatively affects crop production. In order to examine salinity tolerance of Kochia a series of experiments were conducted in CRD with four replications, seven levels of salinity (0, 10, 20, 30, 40, 50 and 60 dS.m-1), two growth stages (planting and early seedling) and interval irrigation. Result showed that decrease of root dry weight, root volume, membrane stability index were more increased at planting than early ...

  10. Salinity Differentially Affects Growth and Ecophysiology of Two Mastic Tree (Pistacia lentiscus L. Accessions

    Directory of Open Access Journals (Sweden)

    Giuseppe Cristiano

    2016-07-01

    Full Text Available Pistacia lentiscus (Anacardiaceae; mastic tree is an evergreen sclerophyll species, largely distributed in dry areas of the Mediterranean basin and well-adapted to severe conditions of drought in very unfertile soils. In the present study, we evaluated the growing responses of two accessions of P. lentiscus to three different levels of salinity under nursery conditions. The two mastic tree accessions (Manfredonia and Specchia were collected from individual trees in two different sites in the Apulia region (Southern Italy and subjected to three different levels of salinization by adding 0, 400, and 800 g of salts 100 L−1 of substrate, respectively. The following parameters were recorded: plant height; survival of plants and total root length; total biomass; number of leaves per plant and leaf area; as well as various ecophysiological traits. Salinity reduced the values of all the examined parameters, both morphological and physiological. Results suggested that P. lentiscus can tolerate and accumulate salt at high concentrations in nursery conditions. As a result, it is important to identify germplasm that is highly tolerant to salinity for the production of nursery seedlings that will be planted in saline soils.

  11. Interactive effects of salinity and low potassium on growth, physiology response of Houttuynia cordata Thunb. W01-100

    Directory of Open Access Journals (Sweden)

    Zou Y. T.

    2012-11-01

    Full Text Available Houttuynia cordata Thunb. is a plant enrichment in potassium in plant was reported. Salinity and low potassium availability are important environmental factors restricting plant growth and productivity throughout the world. The interactive effects of salinity and potassium on growth, water content, chlorophyll content, lipid peroxidation content, ion accumulations and K+/Na+ ratio, and organic accumulations as well as oxidative enzymes were investigated in Houttuynia cordata Thunb.. Plants of three-leaf-stage were selected for uniformity, then treated with four levels of Na+ (50, 100, 200 mmol/L and K+(0, 0.6, 1.2, 2.4 mmol/L for 20 days. Plant biomass production, ratio of root and shoot, root numbers, water content and MDA content significantly declined in the combined effect of salinity and K+ deprivation, and increased with salinity. However, salinity in conjunction with K+ deprivation led to an increase on leaf chlorophyll content, which even increased with increasing salinity levels. As expected, K+ content in plant was positive correlated with supplementary K+ concentrations, while Na+ was well correlated with salinity, especially enhanced by the interactive effects of salinity and K+ deprivation. Soluble sugar and proline contents remarkable increased by the highest salinity. SOD activity also substantial increased by the highest salinity, and increased with supplementary K+ concentrations. However, elevated CAT and POD activities were not accompanied with an increase in SOD activity.

  12. Effect of saline irrigation on growth characteristics and mineral composition of two local halophytes under Saudi environmental conditions.

    Science.gov (United States)

    Alshammary, Saad F

    2008-09-01

    A field experiment was carried out to determine the growth characteristics and mineral composition of two local halophytes (Atriplex halimus and Salvadora persica) under saline irrigation at Kind Abdulaziz City for Science and Technology (KACST), Research Station Al-Muzahmyia, Riyadh. The experiment treatments were one soil (sandy), four irrigation waters of different salinities (2000, 8000, 12000 and 16000 mg L(-1) TDS), two halophytes (Salvadora persica and Atriplex halimus) and one irrigation level (irrigation at 50% depletion of moisture at field capacity). Mean fresh biomass yield and fresh plant root weight of A. halimus increased while that of S. persica decreased significantly with increasing irrigation water salinity in all the treatments. Soil salinity increased significantly with increasing water salinity. A positive correlation (r = 0.987) existed between the irrigation water salinity and the soil salinity resulting from saline irrigation. The plant tissue protein contents increased in A. halimus, but decreased in S. persica with increasing irrigation water salinity. The Na ion uptake by plant roots was significantly less than K in A. halimus compared to S. persica which indicated adjustment of plants to high soil salinity and high Na ion concentration for better growth. The order of increasing salt tolerance was A. halimus > S. persica under the existing plant growing conditions. Among the two halophytes, A. halimus showed great potential for establishing gene banks of local species, because it has more forage value due to high protein contents than S. persica for range animals.

  13. Effects of long-term salinity on the growth of the halophyte Spartina ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... levels of salt stress (0, 100, 200, 300, 400, 500, and 600 mM NaCl) on potted plants. The seedlings were grown in vermiculite in a greenhouse for six months. Optimal growth of S. alterniflora occurred at salinity levels of 100 and 200 mM NaCl. Seedlings grew less in freshwater conditions than in the 100.

  14. Growth and photosynthetic responses of the cordgrass Spartina maritima to CO2 enrichment and salinity.

    Science.gov (United States)

    Mateos-Naranjo, E; Redondo-Gómez, S; Andrades-Moreno, L; Davy, A J

    2010-10-01

    Future climatic scenarios combine increasing concentrations of atmospheric CO(2) and rising sea levels. Spartina maritima is a C(4) halophyte that is an important pioneer and ecosystem engineer in salt marshes of the Atlantic coast of southern Europe. A glasshouse experiment investigated the combined effects on its growth and photosynthetic apparatus of approximately doubling CO(2) concentration (from 380 to 700 μmol mol(-1)) at a range of salinity (0, 171 and 510 mM NaCl). We measured relative growth rates, gas exchange, chlorophyll fluorescence parameters, photosynthetic pigment concentrations, and total ash, Na(+), K(2+), Ca(2+) and N concentrations. Elevated CO(2) stimulated growth of S. maritima by c. 65% at all external salinities; this growth enhancement was associated with greater net photosynthetic rate (A) and improved leaf water relations. A increased despite a drop in stomatal conductance in response to 700 μmol mol(-1) CO(2). CO(2) and salinity had a marked overall effect on the photochemical (PSII) apparatus and the synthesis of photosynthetic pigments. Φ(PSII) values at midday decreased significantly with external salinity in plants grown at 380 μmol mol(-1) CO(2); and F(v)/F(m) and Φ(PSII) values were higher at 700 μmol mol(-1) CO(2) in presence of NaCl. Plant nutrient concentrations declined under elevated CO(2), which can be ascribed to the dilution effect caused by an increase in biomass. The results suggest that the productivity S. maritima and the ecosystem services it provides will increase in likely future climatic scenarios. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Effect of soil salinity on the growth, amino acids and ion contents of ...

    African Journals Online (AJOL)

    Rice seedling of different transgenic lines (T-99, T-112, T-115 and T-121) were grown in sand culture with salt concentration of 0, 50, 100 and 150 mM to determine the effect of salinity on growth, amino acid, and ion contents. It was observed that all the lines could tolerate concentration of up to 50 mM of salt solution.

  16. Seed priming for better growth and yield of safflower (Carthamus tinctorius under saline condition

    Directory of Open Access Journals (Sweden)

    Elouaer Mohamed Aymen

    2012-08-01

    Full Text Available Salinity is considered as a major abiotic stress affecting crop production in arid and semi-arid region. In field condition, poor germination and decrease of seedling growth results in poor establishment and occasionally crop failure. Many research studies have shown that seed priming is an efficient method for increasing plant growth and improvement of yield in saline condition. That’s why; this experiment was conducted to evaluate the effects of KCl priming on the growth traits and yield of Tunisian safflower under salinity conditions. Seeds were primed with KCl (5 g/l for 24 h at 20°C. Primed (P and un-primed (NP seeds were directly sown in the field and followed during eight months of plant cycle. Experiments were conducted using various water irrigations concentrations induced by NaCl (0, 3, 6, 9 and 12 g/l. Results showed that plant height of primed seeds was greater than that of un-primed seeds. Numbers of branches per plant, fresh and dry weight, heads number per plant, petals and grains yield of plants derived from primed seeds were higher compared with un-primed seeds.

  17. Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance.

    Science.gov (United States)

    Pattanagul, Wattana; Thitisaksakul, Maysaya

    2008-10-01

    Rice seedlings cv. Khao Dawk Mali 105 (salt-sensitive), Luang Anan (moderately salt-tolerant) and Pokkali (salt-tolerant) were exposed to 0, 50, 100 and 150 mM NaCI for 9 d. Salinity stress caused reduction in leaf relative water contents in all cultivars. Shoot length of cv. Pokkali was least affected by salinity stress whereas increased root length in response to salinity stress was apparent in cvs. Khao Dawk Mali 105 and Luang Anan. Increased salinity level also caused reduction in fresh and dry weights in cvs. Khao Dawk Mali 105 and Luang Anan, but had no effect in cv. Pokkali except at 150 mM. Accumulation of total soluble sugars and sucrose in mature leaves were observed in cv. Khao Dawk Mali 105 exposed to high level of salinity whereas their concentrations in cvs. Luang Anan and Pokkali remained the same as control plants. Accumulation of sucrose in cv. Khao Dawk Mali 105 was suggested to be resulted from the alteration of photosynthate partitioning since the activities of sucrose phosphate synthase were not affected by salinity in this cultivar. On the contrary, salinity stress induced an accumulation of starch in cv. Pokkali. It is suggested that partitioning sugars into starch may involve in salinity tolerance by avoiding metabolic alterations.

  18. Ghrelin reduces hypertonic saline intake under a variety of natriorexigenic conditions

    OpenAIRE

    Mietlicki, Elizabeth G.; Daniels, Derek

    2011-01-01

    Ghrelin is a gut peptide that has been studied extensively for its role in food intake and energy balance. More recent studies show that ghrelin reduces water intake in rats and some non-mammalian species. Despite the importance of the regulation of NaCl intake in body fluid homeostasis, the effects of ghrelin on saline intake have not been investigated. Accordingly, we tested the effect of ghrelin on water and 1.8% NaCl intake in two-bottle test conditions under five stimuli that increase hy...

  19. Alleviation of the Effects of NaCl Salinity in Spinach (Spinacia oleracea L. var. All Green Using Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    Anjali Ratnakar

    2013-08-01

    Full Text Available Exposure to environmental stress due to salinity has been reported to result in adverse effects on the growth of plants. Studies have shown that the use of plant growth regulators (PGRs has an ameliorative effect on plants grown under saline conditions. In the present investigation, effect of gibberellic acid (GA3, 6-furfuryladenine (Kinetin and benzyl adenine (BA on Spinacia oleracea L. var. All Green, cultivated under saline conditions has been studied. After a pre-soaking treatment of six hours in 20 mg L-1 solutions of GA3, Kinetin and BA, the seeds were allowed to germinate and grow for forty-five days under saline conditions. On the analysis of mature leaves, it was observed that both chlorophyll a and b, and total chlorophyll showed an increase in PGR-treated plants compared to the untreated set. With the pretreatment, the reducing and non-reducing sugar content, as well as protein content of the leaves showed an increase in accumulation compared to the untreated plants. The accumulation of the stress metabolite proline, which increases under saline conditions, showed a significant decrease in the plants pretreated with PGRs.

  20. Effect of Jasmonic Acid on Growth and Ion Relations of Oryza sativa L. Grown under Salinity Stress

    Science.gov (United States)

    Rice (Oryza sativa L.) is considered salt sensitive compared to other cereals. Recent transcriptome studies on salinity stress response in barley revealed indicates that exogenous application of jasmonic acid (JA) can ameliorate growth reductions brought about by salinity stress. It is hypothesized ...

  1. Effect of nutrients and salinity pulses on biomass and growth of Vallisneria americana in lower St Johns River, FL, USA.

    Science.gov (United States)

    Boustany, Ronald G; Michot, Thomas C; Moss, Rebecca F

    2015-02-01

    We determined the interactive effects of nutrient loading and salinity pulsing on Vallisneria americana Michx., the dominant submerged aquatic vegetation species in the lower St Johns River (LSJR), FL, USA, and its associated algal community. Five hundred and ninety 6-inch diameter intact plant plugs of Vallisneria were collected from the LSJR in March 2003 and transported to US Geological Survey mesocosm facilities in Lafayette, LA, USA. A 3×3 experimental design consisting of three nutrient levels (control, 1/3 control and 3× control) and three salinity pulsing regimes (no pulse, 1-pulse at 18 ppt and 2-pulse at 12 and 18 ppt) was implemented with three replicates per treatment for a total of 27 experimental tanks. Salinity pulsing significantly reduced all measured Vallisneria growth parameters including above- and below-ground biomass, areal productivity and leaf area index. Nutrient levels had little effect on plants subjected to salinity pulses, but in non-salinity pulse treatments we observed higher mean macrophyte biomass in the low-nutrient loading treatments. Macroalgal components (epiphytes and surface algal mats) were not significantly different ( p=0.2998 and p=0.2444, respectively), but water column chlorophyll a (phytoplankton) was significantly higher ( psalinity pulse treatments except for the 1-pulse, low-nutrient treatment. A single salinity pulse at 18 ppt resulted in 22% pot mortality and two consecutive pulses of 18 and 12 ppt resulted in an additional 14% mortality. Individual leaves and ramets lost 59.7% and 67.8%, respectively, in the combined salinity pulse treatments. Nutrient loading tends to have a long-term effect on Vallisneria through complex community interactions while salinity pulsing frequency and intensity has an immediate and direct influence on growth and distribution.

  2. Growth and chlorophyll fluorescence under salinity stress in sugar beet (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    Fadi Abbas

    2014-02-01

    Full Text Available This study was carried out in the General Commission for Scientific Agricultural Research (GCSAR, Syria, at Der EzZour Agricultural Research Center, from 2008-2010, to examine the effect of salt conditions on some growth attributes and chlorophyll fluorescence in 10 Sugar Beet (Beta vulgaris L. genotypes under salinity stress. Sugar beet plants were irrigated with saline water, having electrical conductivity ranged from 8.6-10 dS.m-1during first year and 8.4-10.4 dS.m-1 during second year. A randomized completely block design with three replicates was used. The results showed that all studied growth attributes, leaf area, leaf number, relative growth rate, and net assimilation rate were decreased in salinity stress conditions compared to the controlled state. The findings indicated that salinity caused a decrement of light utilizing through increased values of fluorescence origin (fo, decreased values of fluorescence maximum (fm, and maximum yield of quantum in photosystem-II (fv/fm. Genotypes differed significantly in all studied attributes except in leaf number. Under salt conditions, Brigitta (monogerm achieved an increase in net assimilation rate, while Kawimera (multigerm achieved the lowest decrement in quantum yield in photosystem-II. Further studies are necessary to correlate the yield with yield components under similar conditions to determine the most tolerant genotype.International Journal of Environment Vol.3(1 2014: 1-9 DOI: http://dx.doi.org/10.3126/ije.v3i1.9937

  3. Growth and nitrogen fixation of legumes at increased salinity under field conditions: implications for the use of green manures in saline environments.

    Science.gov (United States)

    Bruning, Bas; van Logtestijn, Richard; Broekman, Rob; de Vos, Arjen; González, Andrés Parra; Rozema, Jelte

    2015-02-06

    The use of legumes as green manure can potentially increase crop productivity in saline environments and thus contribute to the sustainability of agricultural systems. Here, we present results from a field experiment conducted in the Netherlands that addressed the efficiency of nitrogen (N) fixation by a legume at varying salinities. We grew Melilotus officinalis in an agricultural field using drip irrigation with water salinity varying in electrical conductivity between 1.7 and 20 dS m(-1). In the experiment, nearly 100 % of total plant N in M. officinalis was derived from symbiotic fixation at all but the highest salinity level (20 dS m(-1)). Our results indicated that this species derived substantial amounts of N via symbiotic fixation, the N becoming available in the soil (and thus available to crops) when cultivated legumes senesce and decompose. Based on the growth performance of M. officinalis and its ability to fix N at moderate soil salinity in our field experiments, we identified this species as a promising source for green manure in saline agriculture in temperate regions. Published by Oxford University Press on behalf of the Annals of Botany Company.

  4. No evidence for a critical salinity threshold for growth and reproduction in the freshwater snail Physa acuta.

    Science.gov (United States)

    Kefford, Ben J; Nugegoda, Dayanthi

    2005-04-01

    The growth and reproduction of the freshwater snail Physa acuta (Gastropoda: Physidae) were measured at various salinity levels (growth: distilled water, 50, 100, 500, 1000 and 5000 microS/cm; reproduction: deionized water, 100, 500, 1000 and 3000 microS/cm) established using the artificial sea salt, Ocean Nature. This was done to examine the assumption that there is no direct effect of salinity on freshwater animals until a threshold, beyond which sub-lethal effects, such as reduction in growth and reproduction, will occur. Growth of P. acuta was maximal in terms of live and dry mass at salinity levels 500-1000 microS/cm. The number of eggs produced per snail per day was maximal between 100 and 1000 microS/cm. Results show that rather than a threshold response to salinity, small rises in salinity (from low levels) can produce increased growth and reproduction until a maximum is reached. Beyond this salinity, further increases result in a decrease in growth and reproduction. Studies on the growth of freshwater invertebrates and fish have generally shown a similar lack of a threshold response. The implications for assessing the effects of salinisation on freshwater organisms need to be further considered.

  5. Investigation of Tolerance, Yield and Yield Components of Wheat Cultivars to Salinity of Irrigation Water at Sensitive Stages of Growth

    Directory of Open Access Journals (Sweden)

    B Saadatian

    2013-04-01

    Full Text Available This research in order to study of tolerance ability of wheat cultivates yield and yield components to salinity of irrigation water at sensitive stages of growth, was carried out as a factorial based on a randomized complete block design with 3 replications at greenhouse of Agricultural Faculty of Bu-Ali Sina University, in 2009. Treatments were included wheat cultivars of Alvand, Tous, Sayson and Navid and salinity of irrigation water induced by sodium chloride at five levels of 0, 4, 8, 12 and 16 dS m-1. The results showed that percentage and rate of emergence, plant height, 1000-grain weight, number of seed per spike, number of spike per pot, biological and grain yield reduced by increasing salinity level. At all stress levels Navid cv. had highest emergence percentage. In non-stress and 4 dS m-1, Alvand cv. and at higher levels of stress, Tous cv. had high height in reproductive phase. At control and 4 dS m-1, Sayson cv. and at 8, 12 and 16 dS m-1, Tous cv. in majority of yield and yield components traits had significant superior than other cultivars. Tolerance index of Sayson cv. at 4 and 8 dS m-1 was more than other cultivars but at 12 and 16 dS m-1, maximum value of this index was belonged to Tous cv. At all salinity levels, Alvand cv. had least tolerance index to stress. Number of spike per pot had maximum direct effect on grain yield of wheat cultivars in stress condition. Also indirect effect of biological yield via number of spike per pot than other its indirect effects, had maximum share in wheat seed yield.

  6. Control over hygroscopic growth of saline aqueous aerosol using Pluronic polymer additives.

    Science.gov (United States)

    Haddrell, Allen E; Hargreaves, Graham; Davies, James F; Reid, Jonathan P

    2013-02-25

    The hygroscopic properties of an aerosol originating from a nebulizer solution can affect the extent of peripheral deposition within the respiratory tract, which in turn affects drug efficacy of drugs delivered to the lungs. Thus, the ability to tailor the degree and rate of hygroscopic growth of an aerosol produced by a nebulizer through modification of the formulation would serve to improve drug efficacy through targeted lung deposition. In this study, the kinetic and thermodynamic hygroscopic properties of sodium chloride aerosol mixed with commercially available Pluronic polymers, specifically F77 and F127, are reported using three complementary single aerosol analysis techniques, specifically aerosol optical tweezers, a double ring electrodynamic balance and a concentric cylinder electrodynamic balance. The F77 polymer is shown to have a predictable effect on the hygroscopic properties of the aerosol: the ability of the droplet to uptake water from the air depends on the solute weight percent of sodium chloride present in a linear dose dependant manner. Unlike the smaller F77, a non-linear relationship was observed for the larger molecular weight F127 polymer, with significant suppression of hygroscopic growth (>50% by mass) for solution aerosol containing even only 1 wt% of the polymer and 99 wt% sodium chloride. The suppression of growth is shown to be consistent with the formation of mixed phase aerosol particles containing hydrophilic inorganic rich domains and hydrophobic polymer rich domains that sequester some of the inorganic component, with the two phases responding to changes in relative humidity independently. This independence of coupling with the gas phase is apparent in both the equilibrium state and the kinetics of water evaporation/condensation. By starting with a saline nebulizer solution with a concentration of F127 ∼10(-2)mM, a 12% reduction in the radius of all aerosol produced at a relative humidity (RH) of 84% is possible. The

  7. Effects of Different Salinities on Juvenile Growth of Gammarus aequicauda (Malacostraca: Amphipoda

    Directory of Open Access Journals (Sweden)

    Lídia Delgado

    2011-01-01

    Full Text Available Gammarus aequicauda is a euryhaline amphipod that is a common inhabitant of brackish environments of the Mediterranean Sea. In the Ebro delta, the population density of G. aequicauda is highly variable throughout the year. The main objective of this study is to investigate the effect of salinity on the growth of G. aequicauda juveniles. G. aequicauda embryos and juveniles can survive and grow in the laboratory between 2 psu and 40 psu salinity, depending on the previous acclimation period for the reproductive individuals. Adults acclimated at 34 psu produced embryos and juveniles that survived and developed at salinities between 9 psu and 40 psu; adults acclimated at 9 psu produced embryos and juveniles that could develop in oligohaline conditions. The lower growth rate values were 10.9 μm d−1 and 13.5 μm d−1 at 40 psu and 2 psu, respectively, with the higher values of 18.0 μm d−1 and 18.5 μm d−1 at 19 and 34 psu, respectively.

  8. Interactive effects of salinity and low potassium on growth, physiology response of Houttuynia cordata Thunb. W01-100

    OpenAIRE

    Zou Y. T.; Dai S.; Li J. Y.; Liu Z. Q.; Wu W.

    2012-01-01

    Houttuynia cordata Thunb. is a plant enrichment in potassium in plant was reported. Salinity and low potassium availability are important environmental factors restricting plant growth and productivity throughout the world. The interactive effects of salinity and potassium on growth, water content, chlorophyll content, lipid peroxidation content, ion accumulations and K+/Na+ ratio, and organic accumulations as well as oxidative enzymes were investigated in Houttuynia cordata Thunb.. Plants ...

  9. Exogenously Applied 24-Epibrassinolide (EBL) Ameliorates Detrimental Effects of Salinity by Reducing K+ Efflux via Depolarization-Activated K+ Channels.

    Science.gov (United States)

    Azhar, Nazila; Su, Nana; Shabala, Lana; Shabala, Sergey

    2017-04-01

    This study has investigated mechanisms conferring beneficial effects of exogenous application of 24-epibrassinolides (EBL) on plant growth and performance under saline conditions. Barley seedlings treated with 0.25 mg l-1 EBL showed significant improvements in root hair length, shoot length, shoot fresh weight and relative water content when grown in the presence of 150 mM NaCl in the growth medium. In addition, EBL treatment significantly decreased the Na+ content in both shoots (by approximately 50%) and roots. Electrophysiological experiments revealed that pre-treatment with EBL for 1 and 24 h suppressed or completely prevented the NaCl-induced K+ leak in the elongation zone of barley roots, but did not affect root sensitivity to oxidative stress. Further experiments using Arabidopsis loss-of-function gork1-1 (lacking functional depolarization-activated outward-rectifying K+ channels in the root epidermal cells) and akt1 (lacking inward-rectifying K+ uptake channel) mutants showed that NaCl-induced K+ loss in the elongation zone of roots was reduced by EBL pre-treatment 50- to 100-fold in wild-type Col-0 and akt1, but only 10-fold in the gork1-1 mutant. At the same time, EBL treatment shifted vanadate-sensitive H+ flux towards net efflux. Taken together, these data indicate that exogenous application of EBL effectively improves plant salinity tolerance by prevention of K+ loss via regulating depolarization-activated K+ channels. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Growth, water status and nutrient accumulation of seedlings of Cassia fistula L. in response to soil salinity

    OpenAIRE

    Hardikar, Seema Abhay; Pandey, Amar Nath

    2011-01-01

    Greenhouse experiments were conducted to assess the effect of soil salinity on emergence, growth, water status, proline content and mineral accumulation of seedlings of Cassia fistula L. (Fabaceae). NaCl was added to the soil and salinity was maintained at 0.2, 2.1, 3.9, 6.2, 8.1, 10.0 and 11.9 dSm-1. Salinity caused reduction in water content and water potential of tissues that resulted in internal water deficit to plants. Consequently, seedling growth significant...

  11. Growth response and toxin concentration of cultured Pyrodinium bahamense var. compressum to varying salinity and temperature conditions.

    Science.gov (United States)

    Gedaria, Alice Ilaya; Luckas, Bernd; Reinhardt, Katrin; Azanza, Rhodora V

    2007-09-15

    The growth and toxin production of a Philippine Pyrodinium bahamense isolate in nutrient replete batch cultures were investigated under conditions affected by varying salinity, temperature and combined effects of salinity and temperature. Early exponential growth stage was reached after 7 days with a cell division rate of 0.26 div day(-1). The toxin content reached a peak of 298 fmol cell-1 at mid exponential phase and rapidly declined to 54 fmol cell-1 as it approached the death phase. Only three sets of toxins composed of STX, dcSTX and B1 were detected in which STX made up to 85-98 mol%toxincell-1. P. bahamense was able to grow in salinities and temperatures ranging from 26 per thousand to 36 per thousand and 23 to 36 degrees C, respectively. The optimum growth under varying salinity and temperature conditions was observed at 36 per thousand and 25 degrees C. Toxin content reached a peak of 376 fmol cell-1 at 25 degrees C and was lower (80-116 fmol cell-1) at higher temperatures (32-35 degrees C). Combined effects of salinity and temperature showed that P. bahamense was not able to grow at low salinity and temperature (i.e. below 26 per thousand-28 degrees C). Optimum growth was observed in higher salinities at all temperature conditions.

  12. Effects of saline-alkaline stress on seed germination and seedling growth of Sorghum bicolor (L.) Moench.

    Science.gov (United States)

    Zhao, Yanyun; Lu, Zhaohua; He, Lei

    2014-08-01

    In order to study the adaptation ability of sweet sorghum (Sorghum bicolor L. Moench) in the Yellow River Delta, the sweet sorghum variety Mart was used in this study to determine the roles of different saline-alkaline ratio stress treatment during seed germination to seedling stage. The results showed that Na+ concentration had a significant impact on the seed germination, seedling growth, and plant survival of sweet sorghum. Increasing Na+ concentration led to a decline in germination rate, final germination percentage, survival percentage, plant height, and dry weight per plant, a prolonged mean time of germination, as well as loss of improvement effect of low-Na+ concentration. The interaction effect of Na+ concentration and pH on the mean time of germination and germination rate was not significant (psaline-alkaline stress, the seedling of sweet sorghum was characterized by ecological adaptive features, such as decreased stem ratio and chlorophyll b content in leaves and increased root ratio and chlorophyll a content, in order to maintain the uptakes of water and nutrient, and carbon assimilation. When the stress intensified, the lipid oxidation products, e.g., malondialdehyde (MDA), increased in sweet sorghum seedlings. However, the increasing of soluble protein content and antioxidant enzyme activity (superoxide dismutase (SOD), guaiacol peroxidase (POD), and gatalase (CAT)) was only founded in neutral low-Na+ concentration treatment (A1), which indicated that high-salt concentration and pH all elicited harmful effects and limited the self-healing ability of sweet sorghum seedlings. In all, in order to grow sweet sorghum in the saline-alkaline soils of the Yellow River Delta, the salt concentration and pH value of the soil must be taken into consideration, and seeding density should be increased and supported by appropriate irrigation measures to reduce saline-alkaline stress so as to ensure the survival and growth of sweet sorghum seedlings.

  13. Growth of hatchery raised banana shrimp Penaeus merguiensis (de Man) (Crustacea: Decapoda) juveniles under different salinity

    Digital Repository Service at National Institute of Oceanography (India)

    Saldanha, C.M.; Achuthankutty, C.T.

    occur along the west coast of India during the summer season. It is suggested that this species may be considered for the summer crop along the west coast of India when the salinity in the ponds goes generally higher and the broodstock is also available... in good numbers. A crop rotation of P. monodon with A merguiensis is also recommended as this would reduce pressure on the wild broodstock of the former and may also reduce the chances of recurrence of whitespot baculo virus infection prevalent...

  14. Effects of periodical salinity fluctuation on the growth, molting, energy homeostasis and molting-related gene expression of Litopenaeus vannamei

    Science.gov (United States)

    Zhang, Dan; Guo, Xiantao; Wang, Fang; Dong, Shuanglin

    2016-10-01

    To determine the response of Litopenaeus vannamei to periodical salinity fluctuation, a 30-day experiment was conducted in laboratory. In this experiment, two salinity fluctuation amplitudes of 4 (group S4) and 10 (group S10) were designed. The constant salinity of 30 (group S0) was used as the control. Levels of shrimp growth, molting frequency (MF), cellular energy status (ATP, ADP and AMP), as well as the expression of genes encoding molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), ecdysteroid-regulated protein (ERP), and energy-related AMP-activated protein kinase (AMPK) were determined. The results showed that periodical salinity fluctuation significantly influenced all indicators except MF which ranged from 13.3% in group S10 to15.4% in group S4. In comparison with shrimps cultured at the constant salinity of 30, those in group S4 showed a significant elevation in growth rate, food conversion efficiency, cellular energy status, ERP and MIH gene transcript abundance, and a significant reduction in CHH and AMPK transcript abundance ( P vannamei may be highly capable of tolerating salinity fluctuation. When ambient salinity fluctuated at approx. 4, the increased MF and energy stores in organisms may aid to promoting shrimp growth.

  15. Effects of salinity on survival, feeding behavior and growth of the juvenile swimming crab, Portunus trituberculatus (Miers, 1876)

    Science.gov (United States)

    Shentu, Jikang; Xu, Yongjian; Ding, Zhangni

    2015-05-01

    Effect of salinity on survival, feeding behavior and growth of juvenile swimming crab Portunus trituberculatus was investigated under 5 salinity levels of 5, 10, 20, 30 and 40. The results show that the crab juveniles fed 2 or 3 times at the salinity 20 and 30, each lasted for about 25 minutes, for a total feeding time of 73.2±22.65 minutes per day. At these salinities, there were significantly higher in the frequency of feeding and in total feeding time than those at lower salinities of 5 and 10. All crab juveniles moulted when reared at a salinity of 20 during the 5 days duration of the experiment, which is significantly higher than those at other salinities. All juveniles survived at salinity 20, and the survivorship was not significantly different from that at 30, but was significantly higher than those at other salinities. The crab juveniles reared at a salinity of 20 had the highest value of food ration of 0.190 8±0.011 3 g/gBW, average body weight gain of 0.796±0.128 g, gain rate of 87%-96%, and food conversion ratio of 1.20±0.09. There was no significant difference in the values found between 20 and 30 but these values were significantly lower than that at the other salinities ( P >0.05). Highest activities of digestive enzymes (Amylase, Protease, Lipase) and lowest activities of protective enzymes (SOD, PO, CAT) were also obtained on crab juveniles reared at salinity of 20.

  16. Salinity induced effects on the growth rates and mycelia composition of basidiomycete and zygomycete fungi.

    Science.gov (United States)

    Venâncio, C; Pereira, R; Freitas, A C; Rocha-Santos, T A P; da Costa, J P; Duarte, A C; Lopes, I

    2017-12-01

    Soil salinization, as the combination of primary and secondary events, can adversely affect organisms inhabiting this compartment. In the present study, the effects of increased salinity were assessed in four species of terrestrial fungi: Lentinus sajor caju, Phanerochaete chrysosporium, Rhizopus oryzae and Trametes versicolor. The mycelial growth and biochemical composition of the four fungi were determined under three exposure scenarios: 1) exposure to serial dilutions of natural seawater (SW), 2) exposure to serial concentrations of NaCl (potential surrogate of SW); and 3) exposure to serial concentrations of NaCl after a period of pre-exposure to low levels of NaCl. The toxicity of NaCl was slightly higher than that of SW, for all fungi species: the conductivities causing 50% of growth inhibition (EC 50 ) were within 14.9 and 22.0 mScm -1 for NaCl and within 20.2 and 34.1 mScm -1 for SW. Phanerochaete chrysosporium showed to be the less sensitive species, both for NaCl and SW. Exposure to NaCl caused changes in the biochemical composition of fungi, mainly increasing the production of polysaccharides. When fungi were exposed to SW this pattern of biochemical response was not observed. Fungi pre-exposed to low levels of salinity presented higher EC 50 than fungi non-pre-exposed, though 95% confidence limits overlapped, with the exception of P. chrysosporium. Pre-exposure to low levels of NaCl also induced changes in the biochemical composition of the mycelia of L. sajor caju and R. oryzae, relatively to the respective control. These results suggest that some terrestrial fungi may acquire an increased tolerance to NaCl after being pre-exposed to low levels of this salt, thus, suggesting their capacity to persist in environments that will undergo salinization. Furthermore, NaCl could be used as a protective surrogate of SW to derive safe salinity levels for soils, since it induced toxicity similar or higher than that of SW. Copyright © 2017 Elsevier Ltd. All

  17. Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum.

    Science.gov (United States)

    Slama, Inès; Ghnaya, Tahar; Savouré, Arnould; Abdelly, Chedly

    2008-06-01

    The interaction between soil drying and salinity was studied in the perennial halophyte, Sesuvium portulacastrum. Rooted cuttings were individually cultivated for three months in silty-sandy soil under two irrigation modes: 100 and 25% of field capacity (FC). The amount of the evapotranspirated water was replaced by a nutrient solution containing either 0 or 100 mM NaCl. Whole-plant growth, leaf water content, leaf water potential (Psi(w)), and Na+, K+, and proline concentrations in the tissues were measured. When individually applied, both drought and salinity significantly restricted whole-plant growth, with a more marked effect of the former stress. However, the effects of the two stresses were not additive on whole-plant biomass or on leaf expansion. Root growth was more sensitive to salt than to soil drying, the latter being even magnified by the adverse impact of salinity. Leaf water content was significantly reduced following exposure to water-deficit stress, but was less affected in salt-treated plants. When simultaneously submitted to water-deficit stress and salinity, plants displayed higher values of water and potassium use efficiencies, leaf proline and Na+ concentrations, associated with lower leaf water potential (-1.87 MPa), suggesting the ability of S. portulacastrum to use Na+ and proline for osmotic adjustment.

  18. The Effect of Salinity Stress on the Growth, quantity and quality of Essential oil of Lavender (Lavandula angustifulia Miller

    Directory of Open Access Journals (Sweden)

    sarah khorasaninejad

    2017-02-01

    essential oil are flowers and leaves. Materials and Methods: This experiment was carried out using a randomized complete block design with three replications to study the effect of salinity stress on growth parameters, essential oil constituents and yield of Lavender (Lavandula angustifulia at the Horticultural Sciences Department, Plant Product faculty, Gorgan Agricultural Sciences and Natural Resources University. Lavender plants were obtained from seed plantation. The seeds in this investigation were obtained from the Institution of Forests and Range researches in Tehran. After three weeks stratification (4ºC and germination, five plants were transplanted into similarized pots that were filled with perlite and cocopeat (2:1. Irrigation treatments with hydroponic solution were completed during germination until stage of 6-8 leaf. Then, five levels of salt stress, including 0, 25, 50, 75 and 100 mM NaCl levels were investigated during four months, applied in hydroponic. Length, shoot wet weight, root wet weight and root dry weight were measured at full flowering stage (after five months. The same time in order to evaluate percentage and composition essential oil, each plant were harvested and dried under room condition. After two weeks, Clevenger method was used to extract the essential oil from the plant foliage. The obtained essential oil were measured for calculating of essential oils percentage and then, analyzed by using GC/MS (Gas choromatography-mass spectrometry for identification and quantification of the components. Statistical analysis of data was used with SAS software and charts preparing was done with Excel software. Mean comparison with LSD’s test in 5 percent probability was used. Results and Discussion: Results indicated that salinity stress motivated a significant influence in all of the growth parameters and essential oil yield and percent in P < 0.05. Increasing salt of the soil led to reduce in stem length, shoot wet weight, root wet weight and root

  19. Effect of salinity on biological treatment of wastewater from oil industry

    OpenAIRE

    Andriamasinoro, Herimisa

    2009-01-01

    Master's thesis in Environmental technology High salinity may affect biological wastewater negative by reducing the growth rate of microorganisms. Wastewater from oil industry often contains high salinity which could be problematic to treat. This thesis is to evaluate the effect of salinity on biological treatment by performing laboratory test with variable salinities. In addition, microbiological investigation performed with microscopy and growth culture.

  20. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    Science.gov (United States)

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Application of municipal solid waste compost reduces the negative effects of saline water in Hordeum maritimum L.

    Science.gov (United States)

    Lakhdar, Abdelbasset; Hafsi, Chokri; Rabhi, Mokded; Debez, Ahmed; Montemurro, Francesco; Abdelly, Chedly; Jedidi, Naceur; Ouerghi, Zeineb

    2008-10-01

    The efficiency of composted municipal solid wastes (MSW) to reduce the adverse effects of salinity was investigated in Hordeum maritimum under greenhouse conditions. Plants were cultivated in pots filled with soil added with 0 and 40tha(-1) of MSW compost, and irrigated twice a week with tap water at two salinities (0 and 4gl(-1) NaCl). Harvests were achieved at 70 (shoots) and 130 (shoots and roots) days after sowing. At each cutting, dry weight (DW), NPK nutrition, chlorophyll, leaf protein content, Rubisco (ribulose-bisphosphate carboxylase/oxygenase) capacity, and contents of potential toxic elements were determined. Results showed that compost supply increased significantly the biomass production of non salt-treated plants (+80%). This was associated with higher N and P uptake in both shoots (+61% and +80%, respectively) and roots (+48% and +25%, respectively), while lesser impact was observed for K+. In addition, chlorophyll and protein contents as well as Rubisco capacity were significantly improved by the organic amendment. MSW compost mitigated the deleterious effect of salt stress on the plant growth, partly due to improved chlorophyll and protein contents and Rubisco capacity (-15%, -27% and -14%, respectively, in combined treatment, against -45%, -84% and -25%, respectively, in salt-stressed plants without compost addition), which presumably favoured photosynthesis and alleviated salt affect on biomass production by 21%. In addition, plants grown on amended soil showed a general improvement in their heavy metals contents Cu2+, Pb2+, Cd2+, and Zn2+ (in combined treatment: 190%, 53%, 168% and 174% in shoots and 183%, 42%, 42% and 114% in roots, respectively) but remained lower than phytotoxic values. Taken together, these findings suggest that municipal waste compost may be safely applied to salt-affected soils without adverse effects on plant physiology.

  2. Effect of Salinity on Growth and Physiological Parameters of Four Olive (OleaeuropaeaL. Cultivars underGreenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Farzaneh Olyaei

    2017-02-01

    Full Text Available Introduction: Salinity is a common abiotic stress that seriously affects crop production around the world, particularly in arid and semi-arid regions.The deleterious effects of salinity on plant growth are associated with low osmotic potential of soil solution (water stress, nutritional imbalance, specific ion effect (salt stress, or a combination of these factors. Olive is one of the most important fruit crops in Iran and the world. Despite olive has been classified as moderately salt tolerant plant, poor quality of irrigation water in association with salt build-up soils has reduced the yields, especially in arid and semi-arid regions of Iran. The tolerance of the olive to salt is to a great extent depends on the cultivar. Selecting salinity-resistant cultivars is one of the most important strategies used for mitigating salinity effects on olive. Therefore, this study was performed to assess the salt tolerance of four olive cultivars under greenhouse condition. Materials and Methods: For this purpose, one-year-old rooted cuttings of Iranian olive cultivars (‘Dakal’, ‘Shiraz’, ‘Zard’ and non-Iranian cultivar ‘Amigdal’ were grown in the research greenhouse of Agricultural College, Isfahan University of Technology of Iran. Plants were grown in plastic pots. The pots were 180 mm in diameter and 20 mm in depth with volume of 7 L. The minimum and maximum temperatures during the experiment period were 19 and 35˚C, respectively. After sticking the cuttings, the pots with uniform plants were subjected to the treatment with 0 (control, 100, 150 or 200 mMNaCl. The electrical conductivities of these solutions were 0.003, 10.52, 15.43 and 19.55 dS m-1, respectively. To avoid osmotic shock, the NaCl concentration was gradually increased. The layout was a 4×4 factorial experiment based oncompletely randomized design, with four replications. The experimental measurements were carried out three months after beginning the salt treatments

  3. Effects of Salinity on growth and osmotic regulation substances of callus induced from Reaumuria soongorica

    Science.gov (United States)

    Tan, Huijuan; Li, Xinrong; Liu, Yubing; Zhao, Xin

    2014-05-01

    Reaumuria soongorica (Pall.) Maxim is the strong xerophils plant in the northwest arid and semiarid regions in China. It plays very important roles in stabilizing sand dunes and in construction of agricultural shelter belts in north-west China.The present study aimed to evaluate the response to salinity of R. soongorica, which is more salt-resistant than other valuable shrub species used for afforestation on saline and alkaline desert, at the cellular level. To this purpose, callus was induced from shoot segments of R. soongorica on Murashige and Skoog (MS) medium supplemented with 0.2 mgL-16-benzyladenine (BA) and 2.0 mg mgL-1 2,4-Dichlorophenoxyacetic acid (2 ,4-D). The relative growth rate of callus reached a maximum in the presence of 100 mmol L-1NaCl and growth was inhibited with increasing NaCl concentrations. Examination of the changes of osmotic substances under salt stress showed that accumulation of proline, trehalose, Glycine betain and flavonoids increased with increasing salt concentrations. The results indicate that the response of the callus of R. soongorica to salt stress is similar to that of the whole plant. .

  4. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, Mathias Neumann; Naveed, Muhammad

    2015-01-01

    The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse...... under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth...... of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover...

  5. [Dynamics of seasonal plant growth in halophytic meadows taking into account the temperature factor and soil salinity level].

    Science.gov (United States)

    Pis'man, T I; Slosar', N A

    2012-01-01

    A mathematical model has been constructed to describe the growth dynamics of various plant communities of halophytic meadows depending on the temperature factor and degree of soil salinity. Field investigation of the yields of halophytic meadow plant communities were performed in the coastal area of Kurinka Lake in the Altaiskii district of the Republic of Khakasia in 2004 and 2006. The results of field investigations and model studies show that there is a correlation between plant growth and air temperature for plant communities growing on soils with the lowest and medium salinity levels. It was proven in model studies that for the plant communities that grow on highly saline (3.58%) soils, not only air temperature but also the salinity level of the soil should be taken into account.

  6. Salinity tolerance of cultured Eurasian perch, Perca fluviatilis L.: Effects on growth and on survival as a function of temperature

    DEFF Research Database (Denmark)

    Overton, Julia Lynne; Bayley, M.; Paulsen, Helge

    2008-01-01

    Eurasian perch is generally only considered to be a candidate for freshwater aquaculture even though wild populations are found in estuarine and brackish water habitats. Little knowledge exists on two issues a) the effect of temperature on the salinity tolerance of perch and b) the long......-term effects of brackish water on their overall growth performance. The present study addresses these two questions. Firstly, the effect of temperature (12, 15, 20 and 25°C) on perch survival of a salinity challenge at either 13 or 18‰ was determined. Survival was unaffected by 13‰ at the two lowest...... temperatures whereas higher temperature and higher salinities had a dramatic detrimental effect (at 25°C, 50% mortality was reach at 62h and 39h for 13‰ and 18‰, respectively). Secondly, we examined the effect of salinity on growth, which was assessed by measuring standard length and body weight at regular...

  7. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa).

    Science.gov (United States)

    Sapre, Swapnil; Gontia-Mishra, Iti; Tiwari, Sharad

    2018-01-01

    Plant growth and yield is adversely affected by soil salinity. Salt tolerant plant growth-promoting rhizobacteria (PGPR) strain IG 3 was isolated from rhizosphere of wheat plants. The isolate IG 3 was able to grow in presence of NaCl ranging from 0 to 20% in Luria Bertani medium. The present study was planned to evaluate the role of inoculation of PGPR strain IG 3 and its efficacy in augmenting salt tolerance in oat (Avena sativa) under NaCl stress (100mM). The physiological parameter such as shoot length, root length, shoot dry weight, root dry weight and relative water content (RWC) were remarkably higher in IG 3 inoculated plants in comparison to un-inoculated plants under NaCl stress. Similarly, the biochemical parameters such as proline content, electrolyte leakage and malondialdehyde (MDA) content and activities of antioxidant enzymes were analyzed and found to be notably lesser in IG 3 inoculated oat plants in contrast to un-inoculated plants under salt stress. Inoculation of IG 3 strain to oat seedlings under salt stress positively modulated the expression profile of rbcL and WRKY1 genes. Root colonization of root surface and interior was demonstrated using scanning electron microscopy and tetrazolium staining, respectively. Due these outcomes, it could be implicated that inoculation of PGPR strain IG 3 enhanced plant growth under salt stress condition. This study demonstrates that PGPR play an imperative function in stimulating salt tolerance in plants and can be used as biofertilizer to enhance growth of crops in saline areas. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Evaluation of Some Physiological Characteristics and Antioxidants Activity in Kochia (Kochia scoparia in Different of Salinity Levels and Growth Stages

    Directory of Open Access Journals (Sweden)

    j nabati

    2014-07-01

    Full Text Available Soil salinity threat for agricultural ecosystems in many parts of Iran, and negatively affects crop production. In order to examine salinity tolerance of Kochia a series of experiments were conducted in CRD with four replications, seven levels of salinity (0, 10, 20, 30, 40, 50 and 60 dS.m-1, two growth stages (planting and early seedling and interval irrigation. Result showed that decrease of root dry weight, root volume, membrane stability index were more increased at planting than early seedling stages. Relative water content was increased with increasing salinity levels in all experiments except at interval irrigation. Proline and osmotic potential increased with increasing salinity levels. Catalase, glutathione reductase, DPPH - radical scavenging activities and total phenol were higher with more increased at planting than early seedling. Sodium concentration and sodium to potassium ratio in shoot and root increased with increasing salinity levels. Generally, despite application of high levels of salinity stress kochia was able to survive and tolerate these levels of salinity.

  9. Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-11-01

    Full Text Available The effectiveness of plant growth – promoting bacteria is variable under different biotic and abiotic conditions. Abiotic factors may negatively affect the beneficial properties and efficiency of the introduced PGPR inoculants. The aim of this study was to evaluate the effect of plant growth – promoting rhizobacteria on plant growth and on the control of foot and root rot of tomatoes caused by Fusarium solani under different soil salinity conditions. Among the five tested strains, only Pseudomonas chlororaphis TSAU13, and Pseudomonas extremorientalis TSAU20 were able to stimulate plant growth and act as biological controls of foot and root rot disease of tomato. The soil salinity did not negatively affect the beneficial impacts of these strains, as they were able to colonize and survive on the roots of tomato plants under both saline and non-saline soil conditions. The improved plant height and fruit yield of tomato was also observed for plants inoculated with P. extremorientalis TSAU20. Our results indicated that, saline condition is not crucial factor in obtaining good performance with respect to the plant growth stimulating and biocontrol abilities of PGPR strains. The bacterial inoculant also enhanced antioxidant enzymes activities thereby preventing ROS induced oxidative damage in plants, and the proline concentrations in plant tissue that play an important role in plant stress tolerance.

  10. Evolution and Growth Competition of Salt Fingers in Saline Lake with Slight Wind Shear

    Science.gov (United States)

    Yang, Ray-Yeng; Hwung, Hwung-Hweng; Shugan, Igor

    2010-05-01

    Since the discover of double-diffusive convection by Stommel, Arons & Blanchard (1956), 'evidence has accumulated for the widespread presence of double-diffusion throughout the ocean' and for its 'significant effects on global water-mass structure and the thermohaline convection' (Schmitt, 1998). The salt-fingering form of double-diffusion has particularly attracted interest because of salt-finger convection being now widely recognized as an important mechanism for mixing heat and salt both vertically and laterally in the ocean and saline lake. In oceanographic situations or saline lake where salt fingers may be an important mechanism for the transport of heat and salt in the vertical, velocity shears may also be present. Salt finger convection is analogous to Bénard convection in that the kinetic energy of the motions is obtained from the potential energy stored in the unstable distribution of a stratifying component. On the basis of the thermal analogy it is of interest to discover whether salt fingers are converted into two-dimensional sheets by the wind shear, and how the vertical fluxes of heat and salt are changed by the wind shear. Salt finger convection under the effect of steady wind shear is theoretically examined in this paper. The evolution of developing in the presence of a vertical density gradient disturbance and the horizontal Couette flow is considered near the onset of salt fingers in the saline lake under a moderate rate of wind shear. We use velocity as the basic variable and solve the pressure Poisson equation in terms of the associated Green function. Growth competition between the longitudinal rolls (LR) and the transverse rolls (TR), whose axes are respectively in the direction parallel to and perpendicular to the Couette flow, is investigated by the weakly nonlinear analysis of coupled-mode equations. The results show that the TR mode is characterized in some range of the effective Rayleigh number, and that the stability is dominated by

  11. Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress

    Directory of Open Access Journals (Sweden)

    Kannika Chookietwattana* and Kedsukon Maneewan

    2012-05-01

    Full Text Available For successful application of plant growth promoting bacteria (PGPB in salt-affected soil, bioinoculant with salt-tolerant property is required in order to provide better survival and perform well in the field. The present study aimed to select the most efficient salt-tolerant bacterium containing 1-aminocyclopropane-1-carboxylic acid (ACC deaminase from eighty four bacterial strains and to investigate the effects of the selected bacterium on the germination and growth of tomato (Licopersicon esculentum Mill. cv. Seeda under saline conditions. The Bacillus licheniformis B2r was selected for its ability to utilize ACC as a sole nitrogen source under salinity stress. It also showed a high ACC deaminase activity at 0.6 M NaCl salinity. Tomato plants inoculated with the selected bacterium under various saline conditions (0, 30, 60, 90 and 120 mM NaCl revealed a significant increase in the germination percentage, germination index, root length, and seedling dry weight especially at salinity levels ranging from 30-90 mM NaCl. The work described in this report is an important step in developing an efficient salt-tolerant bioinoculant to facilitate plant growth in saline soil.

  12. Determination of the Optimum Concentration and Time of Salicylic Acid Foliar Application for Improving Barley Growth under Non-Saline and Saline Conditions

    Directory of Open Access Journals (Sweden)

    GH. Ranjbar

    2017-02-01

    Full Text Available In a 2yrs field study the effect of concentration and time of salicylic acid (SA foliar application on growth of barley under non-saline and saline (2 and 12 dS m-1 of NaCl, respectively conditions was evaluated in National Salinity Research Center of Iran, Yazd, central Iran during 2012-2014 growing seasons. The treatments of SA (11 treatments included without SA and SA foliar application at 0.0, 0.35, 0.70, 1.05, 1.40 and 1.75 mM applied at tillering + stem elongation + ear emergence or stem elongation + ear emergence. Salt stress led to significant decreases in seed yield and yield components; however, grain yield of barley plants were considerably increased when subjected to SA. This positive impact of SA was due probably to its effect on grain number. Average of grain yield in 0.0, 0.35, 0.70, 1.05, 1.40 and 1.75 mM SA concentrations were 496.1, 539.7, 538.5, 553.8, 517.4 and 501.3 g m-2 under non-saline and 189.2, 212.5, 219.1, 206.9, 200.3 and 182.3 g m-2 under saline conditions, respectively. Considering the negative correlation between sodium concentration in shoot and grain yield, modulating role of exogenous SA on adverse effect of salinity might be related to a SA-induced lowered Na+ concentration in such organs. The appropriate treatment seems to be SA foliar application at 1.05 mM for non-saline and 0.70 mM for saline conditions applied at stem elongation + ear emergence, as they increased grain yield by 16.6% and 18.6%, respectively. The result of this study revealed that higher concentration or frequency of SA application could be associated with negative impacts on barley.

  13. Effects of salinity on the transcriptome of growing maize leaf cells point at cell-age specificity in the involvement of the antioxidative response in cell growth restriction.

    Science.gov (United States)

    Kravchik, Michael; Bernstein, Nirit

    2013-01-16

    Salinity inhibits growth and development of most plants. The response to salinity is complex and varies between plant organs and stages of development. It involves challenges of ion toxicities and deficiencies as well as osmotic and oxidative stresses. The range of functions affected by the stress is reflected in elaborate changes to the transcriptome. The mechanisms involved in the developmental-stage specificity of the inhibitory responses are not fully understood. The present study took advantage of the well characterized developmental progression that exists along the maize leaf, for identification of salinity induced, developmentally-associated changes to the transcriptome. Differential subtraction screening was conducted for cells of two developmental stages: from the center of the growth zone where the expansion rate is highest, and from older cells at a more distal location of the growing zone where the expansion rate is lower and the salinity restrictive effects are more pronounced. Real-Time PCR analysis was used for validation of the expression of selected genes. The salinity-induced changes demonstrated an age-related response of the growing tissue, with elevation of salinity-damages with increased age. Growth reduction, similar to the elevation of percentage dry matter (%DM), and Na and Cl concentrations were more pronounced in the older cells. The differential subtraction screening identified genes encoding to proteins involved in antioxidant defense, electron transfer and energy, structural proteins, transcription factors and photosynthesis proteins. Of special interest is the higher induced expression of genes involved in antioxidant protection in the young compared to older cells, which was accompanied by suppressed levels of reactive oxygen species (H2O2 and O2-). This was coupled with heightened expression in the older cells of genes that enhance cell-wall rigidity, which points at reduced potential for cell expansion. The results demonstrate a

  14. Influence of genetic background, salinity, and inoculum size on growth of the ichthyotoxic golden alga (Prymnesium parvum)

    Science.gov (United States)

    Rashel, Rakib H.; Patino, Reynaldo

    2017-01-01

    Salinity (5–30) effects on golden alga growth were determined at a standard laboratory temperature (22 °C) and one associated with natural blooms (13 °C). Inoculum-size effects were determined over a wide size range (100–100,000 cells ml−1). A strain widely distributed in the USA, UTEX-2797 was the primary study subject but another of limited distribution, UTEX-995 was used to evaluate growth responses in relation to genetic background. Variables examined were exponential growth rate (r), maximum cell density (max-D) and, when inoculum size was held constant (100 cells ml−1), density at onset of exponential growth (early-D). In UTEX-2797, max-D increased as salinity increased from 5 to ∼10–15 and declined thereafter regardless of temperature but r remained generally stable and only declined at salinity of 25–30. In addition, max-D correlated positively with r and early-D, the latter also being numerically highest at salinity of 15. In UTEX-995, max-D and r responded similarly to changes in salinity − they remained stable at salinity of 5–10 and 5–15, respectively, and declined at higher salinity. Also, max-D correlated with r but not early-D. Inoculum size positively and negatively influenced max-D and r, respectively, in both strains and these effects were significant even when the absolute size difference was small (100 versus 1000 cells ml−1). When cultured under similar conditions, UTEX-2797 grew faster and to much higher density than UTEX-995. In conclusion, (1) UTEX-2797’s superior growth performance may explain its relatively wide distribution in the USA, (2) the biphasic growth response of UTEX-2797 to salinity variation, with peak abundance at salinity of 10–15, generally mirrors golden alga abundance-salinity associations in US inland waters, and (3) early cell density – whether artificially manipulated or naturally attained – can influence UTEX-2797 bloom potential.

  15. Naturally occurring soil salinity does not reduce N-transforming enzymes or organisms

    Science.gov (United States)

    Soil salinity can negatively affect plant production and important biogeochemical cycles which are mainly carried out by soil microbes. The objective of this study was to contribute new information on soil biological N transformations by examining the impact primary salinity reduction has on a) the ...

  16. Effects of temperature and salinity on survival, growth and DNA methylation of juvenile Pacific abalone, Haliotis discus hannai Ino

    Science.gov (United States)

    Kong, Ning; Liu, Xiao; Li, Junyuan; Mu, Wendan; Lian, Jianwu; Xue, Yanjie; Li, Qi

    2017-09-01

    Temperature and salinity are two of the most potent abiotic factors influencing marine mollusks. In this study, we investigated the individual and combined effects of temperature and salinity on the survival and growth of juvenile Pacific abalone, Haliotis discus hannai Ino, and also examined the DNA methylation alteration that may underpin the phenotypic variation of abalone exposed to different rearing conditions. The single-factor data showed that the suitable ranges of temperature and salinity were 16-28°C at a constant salinity of 32, and 24-40 at a constant temperature of 20°C, respectively. The two-factor data indicated that both survival and growth were significantly affected by temperature, salinity and their interaction. The optimal temperature-salinity combination for juveniles was 23-25°C and 30-36. To explore environment-induced DNA methylation alteration, the methylation-sensitive amplified polymorphism (MSAP) technique was used to analyze the genomic methylation profiles of abalone reared in optimal and adverse conditions. Neither temperature nor salinity induced evident changes in the global methylation level, but 67 and 63 differentially methylated loci were identified in temperature and salinity treatments, respectively. The between-group eigen analysis also showed that both temperature and salinity could induce epigenetic differentiation in H. discus hannai Ino. The results of our study provide optimal rearing conditions for juvenile H. discus hannai Ino, and represent the first step toward revealing the epigenetic regulatory mechanism of abalone in response to thermal and salt stresses.

  17. Hypertonic saline reduces vascular leakage in a mouse model of severe dengue.

    Science.gov (United States)

    Tan, Grace Kai Xin; Ng, Jowin Kai Wei; Tan, Kar Wai; Angeli, Veronique; Moochhala, Shabbir; Ooi, Eng Eong; Alonso, Sylvie

    2013-01-01

    Dengue (DEN) is a mosquito-borne viral disease and represents a serious public health threat and an economical burden throughout the tropics. Dengue clinical manifestations range from mild acute febrile illness to severe DEN hemorrhagic fever/DEN shock syndrome (DHF/DSS). Currently, resuscitation with large volumes of isotonic fluid remains the gold standard of care for DEN patients who develop vascular leakage and shock. Here, we investigated the ability of small volume of hypertonic saline (HTS) suspensions to control vascular permeability in a mouse model of severe DEN associated with vascular leakage. Several HTS treatment regimens were considered and our results indicated that a single bolus of 7.5% NaCl at 4 mL per kg of body weight administered at the onset of detectable vascular leakage rapidly and significantly reduced vascular leak for several days after injection. This transient reduction of vascular leakage correlated with reduced intestine and liver damage with restoration of the hepatic functions, and resulted in delayed death of the infected animals. Mechanistically, we showed that HTS did not directly impact on the viral titers but resulted in lower immune cells counts and decreased systemic levels of soluble mediators involved in vascular permeability. In addition, we demonstrated that neutrophils do not play a critical role in DEN-associated vascular leakage and that the therapeutic effect of HTS is not mediated by its impact on the neutrophil counts. Together our data indicate that HTS treatment can transiently but rapidly reduce dengue-associated vascular leakage, and support the findings of a recent clinical trial which evaluated the efficacy of a hypertonic suspension to impact on vascular permeability in DSS children.

  18. Bacteria in combination with fertilizers promote root and shoot growth of maize in saline-sodic soil

    Directory of Open Access Journals (Sweden)

    Muhammad Zafar-ul-Hye

    2015-03-01

    Full Text Available Salinity is the leading abiotic stress hampering maize (Zea maysL. growth throughout the world, especially in Pakistan. During salinity stress, the endogenous ethylene level in plants increases, which retards proper root growth and consequent shoot growth of the plants. However, certain bacteria contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC deaminase, which converts 1-aminocyclopropane-1-carboxylic acid (an immediate precursor of ethylene biosynthesis in higher plants into ammonia and α-ketobutyrate instead of ethylene. In the present study, two Pseudomonas bacterial strains containing ACC-deaminase were tested separately and in combinations with mineral fertilizers to determine their potential to minimize/undo the effects of salinity on maize plants grown under saline-sodic field conditions. The data recorded at 30, 50 and 70 days after sowing revealed that both the Pseudomonas bacterial strains improved root and shoot length, root and shoot fresh weight, and root and shoot dry weight up to 34, 43, 35, 71, 55 and 68%, respectively, when applied without chemical fertilizers: these parameter were enhanced up to 108, 95, 100, 131, 100 and 198%, respectively, when the strains were applied along with chemical fertilizers. It can be concluded that ACC-deaminase Pseudomonas bacterial strains applied alone and in conjunction with mineral fertilizers improved the root and shoot growth of maize seedlings grown in saline-sodic soil.

  19. Bacteria in combination with fertilizers promote root and shoot growth of maize in saline-sodic soil.

    Science.gov (United States)

    Zafar-Ul-Hye, Muhammad; Farooq, Hafiz Muhammad; Hussain, Mubshar

    2015-03-01

    Salinity is the leading abiotic stress hampering maize ( Zea mays L.) growth throughout the world, especially in Pakistan. During salinity stress, the endogenous ethylene level in plants increases, which retards proper root growth and consequent shoot growth of the plants. However, certain bacteria contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which converts 1-aminocyclopropane-1-carboxylic acid (an immediate precursor of ethylene biosynthesis in higher plants) into ammonia and α-ketobutyrate instead of ethylene. In the present study, two Pseudomonas bacterial strains containing ACC-deaminase were tested separately and in combinations with mineral fertilizers to determine their potential to minimize/undo the effects of salinity on maize plants grown under saline-sodic field conditions. The data recorded at 30, 50 and 70 days after sowing revealed that both the Pseudomonas bacterial strains improved root and shoot length, root and shoot fresh weight, and root and shoot dry weight up to 34, 43, 35, 71, 55 and 68%, respectively, when applied without chemical fertilizers: these parameter were enhanced up to 108, 95, 100, 131, 100 and 198%, respectively, when the strains were applied along with chemical fertilizers. It can be concluded that ACC-deaminase Pseudomonas bacterial strains applied alone and in conjunction with mineral fertilizers improved the root and shoot growth of maize seedlings grown in saline-sodic soil.

  20. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.

    Science.gov (United States)

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K

    2010-10-01

    Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but

  1. Growth of common brackish marsh macrophytes under altered hydrology and salinity regimes

    Science.gov (United States)

    Howard, Rebecca J.; Biagas, Janelda M.; Allain, Larry K.

    2016-01-01

    Coastal marsh plants are increasingly subject to physicochemical stressors under rising sea levels, and the maintenance of marsh ecological functions can depend on the ability of individual species and communities to tolerate or adapt to altered conditions. We conducted a greenhouse experiment to identify hydrology and salinity effects on growth of three common brackish marsh macrophytes of coastal Florida, USA: Distichlis spicata, Juncus roemerianus, and Spartina bakeri. The species were potted as monocultures and exposed to three salinities (0, 15, or 28 psu) and two hydrologic conditions (saturated, tidal) over 22 months. Final stem density of J. roemerianus and S. bakeri did not differ among treatments. In D. spicata, however, stem density was lowest at 28 psu and lower in tidal compared to saturated conditions. Mean stem height of all species was lowest at 28 psu. Aboveground biomass of J. roemerianus was not affected by the treatments, but in D. spicata andS. bakeri it was lowest at 28 psu. Results indicated that J. roemerianus was the most adaptable species and may, therefore, be more resilient to climate-change driven stressors. However, plant-plant interactions such as interspecific competition and facilitation can alter the response of individual species to environmental factors.

  2. Growth, Physiological, Biochemical, and Ionic Responses of Morus alba L. Seedlings to Various Salinity Levels

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2017-12-01

    Full Text Available Mulberry (Morus alba L., a moderately salt-tolerant tree species, is considered to be economically important. In this study, 1-year-old mulberry seedlings cultivated in soil under greenhouse conditions were treated with five concentrations of sodium chloride (NaCl; 0%, 0.1%, 0.2%, 0.3%, and 0.5% for 3 and 21 days. Plant growth parameters were not affected by 0.1% NaCl, but significant reductions were observed after treatment with 0.2%, 0.3%, and 0.5% NaCl. The malondialdehyde content and cell membrane stability of mulberry seedlings exposed to 0.1% NaCl did not change, indicating that mulberry is not significantly affected by low-salinity conditions. The Na contents of various organs did not increase significantly in response to 0.1% NaCl, but the K:Na, Mg:Na, and Ca:Na ratios of various organs were affected by NaCl. Marked changes in the levels of major compatible solutes (proline, soluble sugars, and soluble proteins occurred in both the leaves and roots of NaCl-treated seedlings relative to control seedlings. Under severe saline conditions (0.5% NaCl, the ability of mulberry to synthesize enzymatic antioxidants may be impaired.

  3. Effect of Salinity and Low Osmotic Potential on the Germination and Seedling Growth of Rapeseed Cultivars with Different Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Roberta Pace

    2010-03-01

    Full Text Available In mediterranean environments, rapeseed is grown in fall-winter with late-summer sowing and this implies that germination and initial seedling growth may occur in soils with low water content and/or high salinity. Lab experiments were carried out to study the effect of the level and timing of salt and osmotic stress application on the germination and seedling growth of rapeseed (Brassica napus var. oleifera Del. cultivars with different stress tolerance. After a preliminary screening on eighteen cultivars, four hybrids with different stress tolerance during germination were chosen to study germination on Petri dishes at 14 increasing concentrations of PEG 6000 (ψs up to -1.5 MPa and 12 increasing concentrations of NaCl (up to 600 mM. Seedlings from seeds germinated at 0 and 250 mM of NaCl were then grown into boxes for the slant test containing NaCl solutions 0 mM and 100 mM, while seedlings from seeds germinated -0.8 and -0.03 MPa (PEG were grown in pots containing siliceous sand with a water content equivalent to field capacity or half of field capacity. In both experiments seedlings were grown for 11 days under controlled light/temperature conditions. Therefore, for both salt and osmotic stress experiments, the following four combinations for “germination-growth” conditions were obtained for each cultivar: optimum-optimum; optimum-stress; stress-optimum; stress-stress. The following determinations were performed: final percentage germination, time to 50% germination (T50, and base water potential of seeds; dry and fresh weights, and shoot and root lengths of seedlings at the end of the growth period (i.e. 11 days after plant transfer to the growth medium, and correspondent relative growth rates between the start and the end of the growth period. The different degree of stress tolerance observed among rapeseed cultivars for germination was in the order of 150 mMol for NaCl concentration and 0.2-0.3 MPa for osmotic potential. Nonetheless

  4. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production.

    Science.gov (United States)

    Church, Jared; Hwang, Jae-Hoon; Kim, Keug-Tae; McLean, Rebecca; Oh, You-Kwan; Nam, Bora; Joo, Jin Chul; Lee, Woo Hyoung

    2017-11-01

    Microalgae can offer several benefits for wastewater treatment with their ability to produce large amounts of lipids for biofuel production and the high economic value of harvested biomass for biogas and fertilizer. This study found that salt concentration (∼45gL -1 ) had more of an effect than salt type on metabolisms of Chlorella vulgaris for wastewater treatment and biofuel production. Salinity stress decreased the algal growth rate in wastewater by 0.003day -1 permScm -1 and slightly reduced nutrient removal rates. However, salinity stress was shown to increase total lipid content from 11.5% to 16.1% while also increasing the saturated portions of fatty acids in C. vulgaris. In addition, salinity increased the algal settling rate from 0.06 to 0.11mday -1 which could potentially reduce the cost of harvesting for algal biofuel production. Overall, C. vulgaris makes a suitable candidate for high salinity wastewater cultivation and biofuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Rapid short-duration hypothermia with cold saline and endovascular cooling before reperfusion reduces microvascular obstruction and myocardial infarct size

    Directory of Open Access Journals (Sweden)

    Heiberg Einar

    2008-04-01

    Full Text Available Abstract Background The aim of this study was to evaluate the combination of a rapid intravenous infusion of cold saline and endovascular hypothermia in a closed chest pig infarct model. Methods Pigs were randomized to pre-reperfusion hypothermia (n = 7, post-reperfusion hypothermia (n = 7 or normothermia (n = 5. A percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 min. Hypothermia was started after 25 min of ischemia or immediately after reperfusion by infusion of 1000 ml of 4°C saline and endovascular hypothermia. Area at risk was evaluated by in vivo SPECT. Infarct size was evaluated by ex vivo MRI. Results Pre-reperfusion hypothermia reduced infarct size/area at risk by 43% (46 ± 8% compared to post-reperfusion hypothermia (80 ± 6%, p Conclusion Rapid hypothermia with cold saline and endovascular cooling before reperfusion reduces myocardial infarct size and microvascular obstruction. A novel finding is that hypothermia at the onset of reperfusion reduces microvascular obstruction without reducing myocardial infarct size. Intravenous administration of cold saline combined with endovascular hypothermia provides a method for a rapid induction of hypothermia suggesting a potential clinical application.

  6. The effect of salinity on seed germination and growth parameters of field pea (Pisum sativum L.

    Directory of Open Access Journals (Sweden)

    Jovičić Dušica

    2010-01-01

    Full Text Available Field pea (Pisum sativum L. seed contains a large amount of proteins, amino acids, sugars, carbohydrates, vitamins A and C, calcium and phosphorous, and hence it is widely used for many purposes. Although field pea has moderate requirements for its growth, it is sensitive to increased salt content in soil. This research included eight varieties (Javor, Jantar, Partner, Kristal, Pionir, Junior, Trezor, Dukat developed at Institute of Field and Vegetable Crops in Novi Sad. Sodium chloride solutions of various concentrations (0, 50, 100 and 150 mM were added in growing media to simulate saline conditions. The following were subsequently determined: seed germination, seedling length, fresh and dry weight of seedlings and 1000-seed weight. Among the analyzed varieties, variety Jantar expressed a high level of tolerance to increased salt content in growing media under laboratory conditions.

  7. Growth and nutrient concentrations of maize in pressmud treated saline-sodic soils

    Directory of Open Access Journals (Sweden)

    D. Muhammad

    2009-05-01

    Full Text Available n open-air pot experiment was conducted to investigate effects of pressmud (PM on saline-sodic soil reclamation, mitigating the adverse effects of saline irrigation and increase of maize (Zea mays L. growth. Pressmud was added at the rate of 0, 5, 10 and 20 Mg ha-1 to pots containing 6.8 kg air dried surface (0-20 cm soil collected from two sites. The increasing levels of PM enhanced maize plant height, shoots and roots biomass in both soils. However, the Soil 2, with initial EC and SAR of 5.43 dS m-1 and 18.67(m mol L-11/2, respectively, produced comparatively more biomass at all PM levels than Soil 1 [silty-clay loam, EC = 6.22 dS m-1, SAR = 20.72 (m mol L- 1 1/2]. The [P] in shoots was maximum at the highest PM in both the soils but the [K] increased with PM levels in Soil 1 and decreased in Soil 2 due to the dilution effect. The Soil 1 maintained several folds more [Na] in shoots and consequently lower K:Na ratio than Soil 2. The post harvest soil pH, Na, Ca+Mg and SAR in saturation extracts decreased with increasing levels of PM as compared to control. Soil 2 released more volume of leachate as compared to Soil 1 but the leachate EC and [Na] were comparable while [Ca+Mg] were relatively higher in Soil 2. The higher removal of total salts from Soil 2 resulted in lower soil pH, EC and SAR in this soil as compared to Soil 1. The increases in crop growth with each increment of PM up to 20 Mg ha-1 in the present study proved the benefits of PM in increasing crop yields and suggested that doses higher than 20 Mg PM ha-1 could be applied to the saline-sodic soils ofthe area to get maximum possible crop yields depending on soil and water quality

  8. The effects of salinity on growth of Goldfish, Carassius auratus and ...

    African Journals Online (AJOL)

    adunet

    2013-04-17

    Apr 17, 2013 ... more energy to regulate osmotic balance. Therefore, less ... Several other ions contribute to salinity (such as calcium .... Water osmolality, temperature and pH of goldfish in the four salinity treatments (mean±SD). Parameter.

  9. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    Science.gov (United States)

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  10. Immunoneutralization of endogenous glucagon-like peptide-2 reduces adaptive intestinal growth in diabetic rats

    DEFF Research Database (Denmark)

    Hartmann, Bolette; Thulesen, Jesper; Hare, Kristine Juul

    2002-01-01

    in the proximal part of the small intestine (10.84+/-0.44 mm(2)). Antibody treatment had no effect on body weight, blood glucose concentrations and food intake. Thus, blocking of endogenous GLP-2 in a model of adaptive intestinal growth reduces the growth response, providing strong evidence for a physiological......Supraphysiological doses of glucagon-like peptide-2 (GLP-2) have been shown to induce intestinal growth by increasing villus height and crypt depth and by decreasing apoptosis, but a physiological effect of GLP-2 has not yet been demonstrated. Earlier, we found elevated levels of endogenous GLP-2...... in untreated streptozotocin diabetic rats associated with marked intestinal growth. In the present study, we investigated the role of endogenous GLP-2 for this adaptive response. We included four groups of six rats: (1) diabetic rats treated with saline, (2) diabetic rats treated with non-specific antibodies...

  11. Small Hardwoods Reduce Growth of Pine Overstory

    Science.gov (United States)

    Charles X. Grano

    1970-01-01

    Dense understory hardwoods materially decreased the growth of a 53-year-old and a 47-year-old stand of loblolly and shortleaf pines. Over a 14-year period, hardwood eradication with chemicals increased average annual yield from the 53-year-old stand by 14.3 cubic feet, or 123 board-feet per acre. In the 47-year-old stand the average annual treatment advantage was...

  12. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis.

    Science.gov (United States)

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-02-15

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψw) and osmotic potential (Ψπ) were more negative at increased salinity, while turgor pressure (Ψp) was unaffected. Leaf concentrations of K+ and Ca2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Salinity and temperature effects on the growth and chlorophyll-a content of some planktonic aigae

    Directory of Open Access Journals (Sweden)

    Teresa Cristina Siqueira Sigaud

    1993-01-01

    Full Text Available The effect of salinity (0-40 %o and temperature (11-36ºC, at 5ºC intervals variations on maximum growth rate (div d-1, maximum yield (logio cell number and chlorophyll-α content (pg cell-1 of four planktonic algae was examined under laboratory conditions. Phaeodactylum tricornutum grew over the entire range of experimental salinities, at 11-26 ºC. The highest maximum growth rates ( 1.6 div d-1 occurred between 9-30 %o and 16-26 ºC. Optimum salinity range for maximum yield (7.0 was found at 9-35 %c, under 16 ºC. Tetraselmis gracilis reproduced from 4 to 40 %o at 11-31 ºC, with the highest values of maximum growth rate ( 1.6 div d-1 and maximum yield (6.1 occurring at salinities between 14-40 %o at 11-21 ºC and 11-16 ºC, respectively. Minutocellus polymorphic and Chaetoceros sp grew between 9-40 %o and 11-31 ºC. Their highest maximum growth rates (2.1 and 2.6 div d-1, respectively were found at 31ºC, between 20-35 %o and 20-40 %o, respectively. The highest maximum yields for AT. polymorphic (7.2 were recorded between 16-21 ºC at 20-40 %o and for Chaetoceros sp (6.8, between 25-40 %o at 16-31ºC. Chlorophyll-a content per cell was not conspicuously associated to temperature and salinity for the four species. At low salinity extremes, when cell division was inhibited, an increase in the amount of chlorophyll-a per cell was detected.Estudou-se o efeito de variações de salinidade (0-40 %o e temperatura (11-36ºC, em intervalos de 5ºC sobre a taxa máxima de crescimento (div d-1, o rendimento máximo (logio nº cel ml"¹ e o conteúdo de clorofíla-a (pg cel-1 de quatro espécies de algas planctónicas, sob condições de laboratório. Phaeodactylum tricornutum cresceu em toda a amplitude de salinidade experimental e entre 11-26ºC. As mais altas taxas de crescimento (1.6 div d-1 foram obtidas entre 9-30 %o e 16-26ºC. O ótimo de salinidade para o rendimento máximo (7.0 foi observado entre 9- 35%o, à 16ºC. Tetraselmis gracilis se

  14. Growth of fouling diatoms from the Zuari estuary, Goa (west coast of India) under different salinities in the laboratory

    Digital Repository Service at National Institute of Oceanography (India)

    Redekar, P.D.; Wagh, A.B.

    Diatoms take part in the initial process of fouling i.e. primary film formation. In order to understand the growth of the diatoms under different salinity conditions in the laboratory, this work was undertaken. Fouling diatoms on glass slides were...

  15. Role of salinity on food conversion efficiency and growth in juvenile penaeid shrimp Metapenaeus dobsoni (Crustacea/Arthropoda)

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, Brenda; Achuthankutty, C.T.

    Growth parameters of juvenile Metapenaeus dobsoni, fed with fresh squid meat were estimated in 5, 15, 25 and 35 ppt salinities for 4 weeks. Although no significant differences were noticed in food ingestion rates, higher body weight (68.9% over...

  16. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation.

    Science.gov (United States)

    Shrivastava, Pooja; Kumar, Rajesh

    2015-03-01

    Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction - somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants.

  17. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity.

    Science.gov (United States)

    Martínez-Ballesta, M Carmen; Zapata, Lavinia; Chalbi, Najla; Carvajal, Micaela

    2016-06-08

    Carbon nanotubes have been shown to improve the germination and growth of some plant species, extending the applicability of the emerging nano-biotechnology field to crop science. In this work, exploitation of commercial multiwalled carbon nanotubes (MWCNTs) in control and 100 mM NaCl-treated broccoli was performed. Transmission electron microscopy demonstrated that MWCNTs can enter the cells in adult plants with higher accumulation under salt stress. Positive effect of MWCNTs on growth in NaCl-treated plants was consequence of increased water uptake, promoted by more-favourable energetic forces driving this process, and enhanced net assimilation of CO2. MWCNTs induced changes in the lipid composition, rigidity and permeability of the root plasma membranes relative to salt-stressed plants. Also, enhanced aquaporin transduction occurred, which improved water uptake and transport, alleviating the negative effects of salt stress. Our work provides new evidences about the effect of MWCNTs on plasma membrane properties of the plant cell. The positive response to MWCNTs in broccoli plants opens novel perspectives for their technological uses in new agricultural practices, especially when 1plants are exposed to saline environments.

  18. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum.

    Science.gov (United States)

    Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M; Baskin, Carol C

    2008-01-01

    The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from 'salt steppes' in the Mediterranean region of Spain. Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 degrees C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 0.1 to 0.75 M NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by > or = 2.0 M NaCl. Elongation of radicles from salt solutions desert of north-west China.

  19. A less saline Baltic Sea promotes cyanobacterial growth, hampers intracellular microcystin production, and leads to strain-specific differences in allelopathy.

    Science.gov (United States)

    Brutemark, Andreas; Vandelannoote, Angélique; Engström-Öst, Jonna; Suikkanen, Sanna

    2015-01-01

    Salinity is one of the main factors that explain the distribution of species in the Baltic Sea. Increased precipitation and consequent increase in freshwater inflow is predicted to decrease salinity in some areas of the Baltic Sea. Clearly such changes may have profound effects on the organisms living there. Here we investigate the response of the commonly occurring cyanobacterium Dolichospermum spp. to three salinities, 0, 3 and 6. For the three strains tested we recorded growth, intracellular toxicity (microcystin) and allelopathic properties. We show that Dolichospermum can grow in all the three salinities tested with highest growth rates in the lowest salinity. All strains showed allelopathic potential and it differed significantly between strains and salinities, but was highest in the intermediate salinity and lowest in freshwater. Intracellular toxin concentration was highest in salinity 6. In addition, based on monitoring data from the northern Baltic Proper and the Gulf of Finland, we show that salinity has decreased, while Dolichospermum spp. biomass has increased between 1979 and 2013. Thus, based on our experimental findings it is evident that salinity plays a large role in Dolichospermum growth, allelopathic properties and toxicity. In combination with our long-term data analyses, we conclude that decreasing salinity is likely to result in a more favourable environment for Dolichospermum spp. in some areas of the Baltic Sea.

  20. A less saline Baltic Sea promotes cyanobacterial growth, hampers intracellular microcystin production, and leads to strain-specific differences in allelopathy.

    Directory of Open Access Journals (Sweden)

    Andreas Brutemark

    Full Text Available Salinity is one of the main factors that explain the distribution of species in the Baltic Sea. Increased precipitation and consequent increase in freshwater inflow is predicted to decrease salinity in some areas of the Baltic Sea. Clearly such changes may have profound effects on the organisms living there. Here we investigate the response of the commonly occurring cyanobacterium Dolichospermum spp. to three salinities, 0, 3 and 6. For the three strains tested we recorded growth, intracellular toxicity (microcystin and allelopathic properties. We show that Dolichospermum can grow in all the three salinities tested with highest growth rates in the lowest salinity. All strains showed allelopathic potential and it differed significantly between strains and salinities, but was highest in the intermediate salinity and lowest in freshwater. Intracellular toxin concentration was highest in salinity 6. In addition, based on monitoring data from the northern Baltic Proper and the Gulf of Finland, we show that salinity has decreased, while Dolichospermum spp. biomass has increased between 1979 and 2013. Thus, based on our experimental findings it is evident that salinity plays a large role in Dolichospermum growth, allelopathic properties and toxicity. In combination with our long-term data analyses, we conclude that decreasing salinity is likely to result in a more favourable environment for Dolichospermum spp. in some areas of the Baltic Sea.

  1. Effects of the multiple stressors copper and reduced salinity on the metabolism of the hermatypic coral Porites lutea.

    Science.gov (United States)

    Alutoin, S; Boberg, J; Nyström, M; Tedengren, M

    2001-09-01

    This study investigates the physiological responses in the hermatypic coral Porites lutea when exposed to a combination of reduced salinity (from ambient 30 psu to 20 psu) and two concentrations of copper (CuS04), 10 microg 1(-1) and 30 microg 1(-1). Corals were exposed for 14 h and changes in metabolism in terms of primary production rate per chlorophyll a and respiration per surface area (cm2) were used as measures of stress. The results showed no significant changes in respiration rate in any of the treatments compared with controls, or between treatments. The primary production rate, however, displayed a more complex pattern. Corals exposed to reduced salinity, 30 microg 1(-1) copper, and the combination of the two stressors significantly reduced the production rate, whereas corals exposed to 10 microg 1(-1) only, remained unaffected. However, adding 10 microg 1(-1) copper to reduced salinity did not affect the production rate thus indicating an antagonistic effect.

  2. Influences of salinity and shade on seedling photosynthesis and growth of two mangrove species, Rhizophora mangle and Bruguiera sexangula, introduced to Hawaii

    Science.gov (United States)

    Krauss, K.W.; Allen, J.A.

    2003-01-01

    Rhizophora mangle was first introduced to Hawaii in 1902 to promote shoreline stabilization. Intertidal competition with native and introduced salt marsh species was low, and beyond the early 1920s, mangrove forests expanded rapidly. An additional mangrove species, Bruguiera sexangula, was introduced in 1922 and currently co-occurs with R. mangle in only a few stands on the north shore and windward sides of Oahu. Where the two species overlap, R. mangle, having colonized intertidal zones first, forms nearly monospecific forest stands. To determine why R. mangle remains the dominant mangrove, we initiated a greenhouse study to compare seedling growth and photosynthetic light response of both species growing at two light levels and contrasting salinity regimes (2, 10, 32 PSU). The asymptotic nature of B. sexangula' s assimilation response is indicative of stomatal regulation, whereas only light level appears to regulate photosynthesis in R. mangle. Shifts in patterns of biomass allocation and physiological response indicate two contrasting strategies relative to sunlight and salinity. B. sexangula's strategy is characterized by slow growth with little variation under favorable conditions and morphological plasticity under stressful conditions, which allows for adjustments in carbon gain efficiency (morphological strategy). On the other hand, R. mangle's strategy involves faster growth under a wide range of environmental conditions with physiological enhancement of carbon assimilation (physiological strategy). Low salinity combined with reduced light, or simply low sunlight alone, appears to favor R. mangle and B. sexangula equally. High salinity places greater, but not overwhelming, stress on B. sexangula seedlings, but tends to favor R. mangle at higher light levels.

  3. Influence of Salinity and Nitrogen Levels on Growth, Yield and Nutrients Uptake of Tomato in Hydroponics Culture

    OpenAIRE

    M. Zahedifar; A. M. Ronaghi; MOOSAVI, S.A.A.; S. Safarzadeh Shirazi

    2010-01-01

    This experiment was conducted to determine the effect of salinity and nitrogen on growth and yield of tomato and concentration and total uptake of some nutrients in different parts of plant in hydroponics culture. Nitrogen (N) was used at 0, 1.5 and 3% levels as NH4Cl and NH4H2PO4 and salinity consisted of 0, 30 and 60 mM as NaCl and CaCl2 (2:1 w/w). A completely randomized design experiment was carried out under greenhouse conditions. Results showed that fruit fresh weight increased with N a...

  4. Effects of direct and gradual salinity exposure on carrot (Daucus carota L.) seeds and recovery response

    Science.gov (United States)

    Salinity is a major cause of abiotic stress in arid and semi-arid climates that substantially reduces crop yield. This study evaluated the effects of salinity on germination and early seedling growth of two carrot cultivars in vitro under varying salinity levels. Salinity was induced by incorporatin...

  5. Potassium deficiency alters growth, photosynthetic performance, secondary metabolites content, and related antioxidant capacity in Sulla carnosa grown under moderate salinity.

    Science.gov (United States)

    Hafsi, Chokri; Falleh, Hanen; Saada, Mariem; Ksouri, Riadh; Abdelly, Chedly

    2017-09-01

    Salinity and K + deficiency are two environmental constraints that generally occur simultaneously under field conditions, resulting in severe limitation of plant growth and productivity. The present study aimed at investigating the effects of salinity, either separately applied or in combination with K + deficiency, on growth, photosynthetic performance, secondary metabolites content, and related antioxidant capacity in Sulla carnosa. Seedlings were grown hydroponically under sufficient (6000 μM) or low (60 μM) K + supply with 100 mM NaCl (C + S and D + S treatments, respectively). Either alone or combined with K + deficiency, salinity significantly restricted the plant growth. K + deficiency further increased salt impact on the photosynthetic activity of S. carnosa, but this species displayed mechanisms that play a role in protecting photosynthetic machinery (including non photochemical quenching and antioxidant activity). In contrast to plants subjected to salt stress alone, higher accumulation of phenolic compounds was likely related to antioxidative defence mechanism in plants grown under combined effects of two stresses. As a whole, these data suggest that K + deficiency increases the deleterious effects of salt stress. The quantitative and qualitative alteration of phenolic composition and the enhancement of related antioxidant capacity may be of crucial significance for S. carnosa plants growing under salinity and K + deficient conditions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. S-methylmethionine is involved in the salinity tolerance of Arabidopsis thaliana plants at germination and early growth stages.

    Science.gov (United States)

    Ogawa, Saori; Mitsuya, Shiro

    2012-01-01

    Methionine (Met) is biosynthesized by the activated methyl cycle and S-methylmethionine (SMM) cycle in one-carbon (C1) metabolism in plants. It is converted to S-adenosylmethionine (SAM) which serves as a precursor for many metabolites including glycinebetaine, methylated polyols, polyamines and ethylene which accumulate in plants in response to salinity. We have investigated how the Met biosynthetic pathway is regulated under saline conditions at the transcriptional level in Arabidopsis thaliana plants. Within Met biosynthesis-related genes, the expression of homocysteine methyltransferase (HMT) and methionine methyltransferase (MMT) genes in SMM cycle had altered toward increasing Met production by the presence of NaCl. We have determined the salinity tolerance of an Arabidopsis mmt mutant with an insertional mutation in the single copy of the AtMMT gene. Although the mmt mutant showed comparable germination and shoot growth with wild type under normal conditions, NaCl treatment caused severe repression of germination rate and shoot growth in the mmt mutant compared with in the wild type. These results indicate that the utilization of SMM is important for the salinity tolerance of Arabidopsis plants at the germination and early growth stages. Copyright © Physiologia Plantarum 2011.

  7. Effects of arbuscular mycorrhiza inoculation on growth and yield of tomato (Lycopersicum esculentum Mill. under salinity stress

    Directory of Open Access Journals (Sweden)

    D.R.R. Damaiyanti

    2015-10-01

    Full Text Available Objective of the research was to study the effect mycorrhiza on growth and yield of tomato. The experiment was conducted in screen house 14 m x 10.5 m, in Pasuruan on November 2013 until March 2014, The experiment was conducted as a factorial randomized complete design. The first factor was dose of mycorrhiza (without mycorrhiza, 5 g mycorrhiza, 10 g mycorrhiza, and 20 g mycorrhiza. The second factor was the salinity stress level (without NaCl, 2500 ppm NaCl, 5000 ppm NaCl, and 7500 ppm NaCl. The results showed that salinity stress at the level 7500 ppm decreased the amount of fruit by 30.84% and fresh weight per hectare decreased by 51.72%. Mycorrhizal application was not able to increase the growth and yield in saline stress conditions; it was shown by the level of infection and the number of spores on the roots of tomato plants lower the salinity level 5000 ppm and 7500 ppm. But separately, application of 20 g mycorrhiza enhanced plant growth, such as plant height, leaf area, leaf number and proline. Application of 20 g mycorrhiza increased the yield by 35.99%.

  8. Effect of Zinc Element on Growth, Yield Components and some Physiological Characteristics of Maize under NaCl Salinity Stress

    Directory of Open Access Journals (Sweden)

    A Karmollachaab

    2013-12-01

    Full Text Available In order to investigate the effect of zinc element application on growth and some Morphophysiological of maize (single cross 704 an experiment was conducted during 2010 at greenhouse. Experimented design was complete randomize factorial with four replications. Treatments of experiment were soil salinity (4, 8 dS.m-1 and 0 as a control and different zinc concentration including 0, 10 and 20 mg.kg-1. Results showed that salinity stress had significantly different effects on all measured parameters while effect on zinc concentration was not significant and resulted in significant reduction for all phonological and physiological traits of Maize while proline and sodium contents were increased. At non stress condition, application of zinc had no significant effect on ear length, number of grains in ear, 1000 grains weight, proline and sodiumconcentration comparing to control. Plant height, total dry weight, relative water content percent and zinc potassium concentration increasing at zinc treatments in non-salinity stress condition. Application of zinc at salinity stress treatment led to increasing zinc and potassium concentration of plants, improving growth and yield components of Maize and significant decrease in proline and sodium content of plants. Positive effect of zinc application on growth of Maize was clearer on stress condition than control.

  9. Sulfate reducing processes at extreme salinity and temperature. extending its application window

    NARCIS (Netherlands)

    Vallero, M.V.G.

    2003-01-01

    The characteristics of various sulfate-rich wastewaters, such as temperature, pH and salinity, are determined by the (industrial) process from which they originate, and can be far from the physiological optima of the sulfur cycle microorganisms. The main goal of the research described in this thesis

  10. Microenvironments of reduced salinity harbour biofilms in Dead Sea underwater springs

    NARCIS (Netherlands)

    Häusler, S.; Noriega-Ortega, B.E.; Polerecky, L.|info:eu-repo/dai/nl/370827929; Meyer, V.; de Beer, D.; Ionescu, D.

    2014-01-01

    The Dead Sea is a hypersaline lake where only few types of organisms can grow. Recently, abundant and diverse microbial life was discovered in biofilms covering rocks and permeable sediments around underwater freshwater springs and seeps. We used a newly developed salinity mini-sensor (spatial

  11. Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress

    Directory of Open Access Journals (Sweden)

    Hipólito Hernández-Hernández

    2018-01-01

    Full Text Available Chitosan is a natural polymer, which has been used in agriculture to stimulate crop growth. Furthermore, it has been used for the encapsulation of nanoparticles in order to obtain controlled release. In this work, the effect of chitosan–PVA and Cu nanoparticles (Cu NPs absorbed on chitosan–PVA on growth, antioxidant capacity, mineral content, and saline stress in tomato plants was evaluated. The results show that treatments with chitosan–PVA increased tomato growth. Furthermore, chitosan–PVA increased the content of chlorophylls a and b, total chlorophylls, carotenoids, and superoxide dismutase. When chitosan–PVA was mixed with Cu NPs, the mechanism of enzymatic defense of tomato plants was activated. The chitosan–PVA and chitosan–PVA + Cu NPs increased the content of vitamin C and lycopene, respectively. The application of chitosan–PVA and Cu NPs might induce mechanisms of tolerance to salinity.

  12. Survival and growth of invasive Indo-Pacific lionfish at low salinities

    Science.gov (United States)

    Schofield, Pamela J.; Huge, Dane H.; Rezek, Troy C.; Slone, Daniel H.; Morris, James A.

    2015-01-01

    Invasive Indo-Pacific lionfish [Pterois volitans (Linnaeus, 1758) and P. miles (Bennett, 1828)] are now established throughout the Western North Atlantic. Several studies have documented negative effects of lionfish on marine fauna including significant changes to reef fish community composition. Established populations of lionfish have been documented in several estuaries, and there is concern that the species may invade other low-salinity environments where they could potentially affect native fauna. To gain a better understanding of their low-salinity tolerance, we exposed lionfish to four salinities [5, 10, 20 and 34 (control)]. No lionfish mortality was observed at salinities of 34, 20 or 10, but all fish died at salinity = 5 within 12 days. Lionfish survived for at least a month at a salinity of 10 and an average of about a week at 5. Fish started the experiment at an average mass of 127.9 g, which increased at a rate of 0.55 g per day while they were alive, regardless of salinity treatment. Our research indicated lionfish can survive salinities down to 5 for short periods and thus may penetrate and persist in a variety of estuarine habitats. Further study is needed on effects of salinity levels on early life stages (eggs, larvae).

  13. Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in presence of salinity and heavy metals.

    Science.gov (United States)

    Desale, Prithviraj; Patel, Bhargav; Singh, Sukrit; Malhotra, Aakshi; Nawani, Neelu

    2014-08-01

    Salinity and heavy metal stress are challenging problems in agriculture. Here we report the plant growth promoting ability of three moderate halophiles, Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6, in presence of both salinity and heavy metal stress. Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6 can tolerate 25, 21, and 29% NaCl, respectively and grow in presence of 1 mM cobalt, cadmium, and nickel and 0.04 mM mercury and 0.03 mM silver. Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6 produced 152.5, 95.3, and 167.3 µg/ml indole acetic acid (IAA) and could solubilize 61, 53, and 75 parts per million (ppm) phosphate, respectively in the presence of 15% NaCl. The production of IAA and solubilization of phosphate was well retained in the presence of salinity and heavy metals like 1 mM cadmium, 0.7 mM nickel, 0.04 mM mercury, and 0.03 mM silver. Besides, the strains showed amylase and protease activities and could produce hydrogen cyanide and ammonia in presence of salinity and heavy metals. A mixture of three strains enhanced the root growth of Sesuvium portulacastrum under saline and heavy metal stress, where the root length increased nearly 4.5 ± 0.6 times and root dry weight increased 5.4 ± 0.5 times as compared to control. These strains can thus be useful in microbial assisted phytoremediation of polluted saline soils. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa

    Science.gov (United States)

    Panuccio, M. R.; Jacobsen, S. E.; Akhtar, S. S.; Muscolo, A.

    2014-01-01

    Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. PMID:25139769

  15. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa.

    Science.gov (United States)

    Panuccio, M R; Jacobsen, S E; Akhtar, S S; Muscolo, A

    2014-08-19

    Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. Published by Oxford

  16. Responses of spinach to salinity and nutrient deficiency in growth, physiology and nutritional value

    Science.gov (United States)

    Salinity and nutrient depleted soil are major constraints to crop production, especially for vegetable crops. The effects of salinity and nutrient deficiency on spinach were evaluated in sand cultures under greenhouse conditions. Plants were watered every day with Hoagland nutrition solution, depriv...

  17. Effects of salinity on growth of plant species from terrestrializing fens

    NARCIS (Netherlands)

    Stofberg, S.F.; Klimkovska, A.; Paulissen, M.P.C.P.; Witte, J.Ph.M.; Zee, van der S.E.A.T.M.

    2015-01-01

    Terrestrializing lowland fens may be temporarily exposed to elevated surface water salinity, which may have serious consequences for nature conservation. We investigated the response of five fresh water fen plant species to elevated salinity. In a controlled greenhouse experiment, these species were

  18. Effects of salinity on growth of plant species from terrestrializing fens

    NARCIS (Netherlands)

    Stofberg, S.F.; Klimkowska, A.; Paulissen, M.P.C.P.; Witte, J.P.M.; van der Zee, S.E.A.T.M.

    2015-01-01

    Terrestrializing lowland fens may be temporarily exposed to elevated surface water salinity, which may have serious consequences for nature conservation. We investigated the response of five fresh water fen plant species to elevated salinity.In a controlled greenhouse experiment, these species were

  19. Effect of salinity on cell growth and β-carotene production in ...

    African Journals Online (AJOL)

    Urmia Lake, the second largest hyper-saline lake by area in the world, has fluctuated in salinity over time, but recently, it has reached a maximum of 360 g/l. Dunaliella is a type of halophile green-orange microalgae especially found in lake and salty fields and is known for its antioxidant activity; because of its ability to create ...

  20. The Changes in the Physiological Growth and the React of the Salinity and Number of Irrigation Water of Two Cumin Cultivars (Cuminum cyminum L.

    Directory of Open Access Journals (Sweden)

    M kafi

    2017-01-01

    Full Text Available Introduction Water shortage in Iran has always been a limiting factor for crop cultivation. Drought stress at different growth stages, especially flowering and grain filling stages decreases the yield of the plants. Drought stress may limit yield of medicinal and aromatic plants by reducing the harvest index (HI. This can occur even in the absence of a strong reduction in total medicinal and aromatic plants dry matter accumulation, if a brief period of stress coincides with the critical developmental stage around flowering stage. Water stress is the most influential factor affecting crop yield particularly in irrigated agriculture in arid and semi-arid regions. It is necessary to get maximum yield in agriculture by using the least available water in order to get maximum profit per unit area because existing agricultural land and irrigation water are rapidly diminishing due to rapid industrialization and urban development. In general, 15% of the Iran lands are saline and sodic (Parsa, 2000 and it dues to the use of widespread of water resources and the soil salinity of the farms. Unfortunately this factor (soil salinity gradually becomes more serious, in fact even in none-saline water irrigation with salt accumulation in the soil in long period of time it may increase and the result will be the limitation of the products (Sharma, 1996. The analyzing of the growth and product is a method for discovering the factors which are effecting on the plants. The purpose of the analyzing of the plants growth is the reaction of the plants to the environmental factors (Sangwan et al., 1994. Cumin (Cuminum cyminum is one of the most important economic and medicinal plants that can growth in arid and semi-arid conditions. Cumin is mostly grown in China, Uzbekistan, Tajikistan, Iran, Turkey, Morocco, Egypt, Syria, Mexico, Chile and India. In the ancient Egyptian civilization cumin was used as spice and as preservative in mummification. The purpose of this study

  1. Effects of Vinegar Bad and Flyash on the Growth of Sorghum and the Improvement of Saline Soils

    Directory of Open Access Journals (Sweden)

    FAN Na

    2017-10-01

    Full Text Available Based on the sorghum growth and salinity soil improvement, the effects of vinegar bad and flyash on the growth of sorghum and the improvement of saline soils were studied. The experiment was carried out with random block design, in 4 treatment, which were pure vinegar bad(treatment 1, vinegar bad and fly ash 1:1 ratio(treatment 2, vinegar bad and fly ash 2:1 ratio(treatment 3 and control respectively. The results showed that the contents of available nutrient in the four periods of sorghum growth increased firstly and then decreased, and the effect of vinegar bad and flyash treatment was better than that of control. Among them, the ratio 1:1 of vinegar and fly ash had the best effect. The results showed that compared with the control, the soil bulk density of treatment 1~3 was decreased by 19.6%, 28.6% and 11.32%, respectively. The spike length of treatment 1~3 was 6.25%, 9.06%, 3.93% higher than that of the control, respectively. The yield per plant of treatment 1~3 was increased by 10.53%, 13.26% and 8.89%, respectively. In summary, vinegar bad, flyash could improve the physical and chemical properties of saline soil, improve the environment of deep soil for plant growth, thereby increase the yield of sorghum.

  2. Synergic effect of salinity and CO2 enrichment on growth and photosynthetic responses of the invasive cordgrass Spartina densiflora.

    Science.gov (United States)

    Mateos-Naranjo, Enrique; Redondo-Gómez, Susana; Alvarez, Rosario; Cambrollé, Jesús; Gandullo, Jacinto; Figueroa, M Enrique

    2010-06-01

    Spartina densiflora is a C(4) halophytic species that has proved to have a high invasive potential which derives from its clonal growth and its physiological plasticity to environmental factors, such as salinity. A greenhouse experiment was designed to investigate the synergic effect of 380 and 700 ppm CO(2) at 0, 171, and 510 mM NaCl on the growth and the photosynthetic apparatus of S. densiflora by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. PEPC activity and total ash, sodium, potassium, calcium, magnesium, and zinc concentrations were determined, as well as the C/N ratio. Elevated CO(2) stimulated growth of S. densiflora at 0 and 171 mM NaCl external salinity after 90 d of treatment. This growth enhancement was associated with a greater leaf area and improved leaf water relations rather than with variations in net photosynthetic rate (A). Despite the fact that stomatal conductance decreased in response to 700 ppm CO(2) after 30 d of treatment, A was not affected. This response of A to elevated CO(2) concentration might be explained by an enhanced PEPC carboxylation capacity. On the whole, plant nutrient concentrations declined under elevated CO(2), which can be ascribed to the dilution effect caused by an increase in biomass and the higher water content found at 700 ppm CO(2). Finally, CO(2) and salinity had a marked overall effect on the photochemical (PSII) apparatus and the synthesis of photosynthetic pigments.

  3. The effects of environmental salinity on the growth and physiology of totoaba Totoaba macdonaldi and shortfin corvina Cynoscion parvipinnis.

    Science.gov (United States)

    González-Félix, M L; Perez-Velazquez, M; Cañedo-Orihuela, H

    2017-08-01

    Totoaba Totoaba macdonaldi and shortfin corvina Cynoscion parvipinnis, were acclimated and reared together at salinities of 0, 2, 5, 10, 20 and 35 for 56 days. Initial overall mean ± s.d. body masses of 67·6 ± 7·1 g T. macdonaldi and 37·3 ± 3·1 g C. parvipinnis increased to final overall masses of 217·4 ± 30·3 and 96·5 ± 16·5 g, respectively, at the end of the study. Totoaba macdonaldi was not able to tolerate salinities of 0 and 2 and C. parvipinnis of 0. In contrast, both species had 100% survival at salinities ≥ 10. Somatic growth was highest not at natural seawater salinity of 35, but at 10. Plasma osmolality ranged from 172·5 to 417·0 mOsmol kg -1 for T. macdonaldi and from 207·0 to 439·5 mOsmol kg -1 for C. parvipinnis and varied in direct proportion to salinity. The estimated isosmotic salinities of T. macdonaldi and C. parvipinnis were 12·3 and 13·4, respectively. Cynoscion parvipinnis reared at two had significantly lower plasma lysozyme activity (95·0 Units ml -1 ) than fish held at salinities from 5 to 35 (ranging from 215·0 to 355·0 Units ml -1 ), but without clear trends over this range. Blood neutrophil oxidative radical production (NBT) (ranging from 3·9 to 6·7 mg ml -1 ) had some significant differences among salinities, but these did not follow a clear pattern. For T. macdonaldi, neither lysozyme activity nor NBT was affected by salinity. Ash content of whole fishes varied directly and moisture content inversely, with salinity for both species. © 2017 The Fisheries Society of the British Isles.

  4. Effect of Seed Priming on Growth and Some Physiological Characteristics of Sesame (Sesamum indicum L. under salinity Stress Condition caused by Alkali Salts

    Directory of Open Access Journals (Sweden)

    H. Bekhrad

    2016-02-01

    Full Text Available Introduction Sesame (Sesamun indicum L. is an important oil seed crop. Its seed has excellent nutritional value with a high and unique protein composition, making it a perfect food. Salinity is a serious problem in many regions of the world including Iran. Salinity stress is one of the widespread environmental constraints affecting crop productivity. Salinity generally induces osmotic stress and causes direct ion injury by disrupting ion homeostasis and the ion balance within plant cells (25. Seed priming is one of the ways to reduce negative effects of salt which is used for increasing germination percentage and seed resistance in salty zones. Seed priming is a pre-germination treatment that provides a moisture level sufficient to start pre-germination metabolic processes. It entails the partial germination of seeds by soaking them in water (or in a solution of salts for specified period of time, and then re-dry them just before radicle emerges (24. Priming stimulates many of the metabolic processes involved with the early phases of germination. Given that part of the germination processes have been initiated, seedlings from primed seed grow faster, grow more vigorously, and perform better in adverse conditions (24. The objective of this study was to investigate the effects of salinity stress caused by alkali salts on growth and some physiologic characteristics of sesame. Materials and Methods This study was conducted in a greenhouse in Vali-e-Asr University of Rafsanjan as factorial arrangement in randomized complete block design with three replications. Experimental factors included priming (control (unprimed, hydropriming, halopriming with NaCl and NaHCO3 and level of salinity with sodium bicarbonate salt (Zero, 15, 30 and 45 mM. Seeds were planted in pots filled with perlite and cocopite (1:1. The pots were irrigated with a nutrient solution (with half strength Hoagland's solution. After the fourth true leaves appeared, salinty stress in

  5. Investigation on the Protective Role of Nitric Oxide in Reducing Damages Induced by Salinity Stress in Calendula officinalis L.

    Directory of Open Access Journals (Sweden)

    maryam jabbarzadeh

    2017-02-01

    Full Text Available Introduction: Salinity is one of the most important environmental factors that regulates plant growth and development, and limits plant production. Researchers have shown that some plant growth regulators such as nitric oxide improve the plants resistance to environmental stresses such as heat, cold, drought and salinity. Sodium nitroprusside (SNP commonly has been used as nitric oxide (NO donor in plants. NO is a diffusible gaseous free radical. Low concentrations of NO inhibit the production of reactive oxygen species and protect plants against ROS damages. The aim of this study was to evaluate the role of SNP as NO donor on salt tolerance of Calendula officinalis and its effects on some morphological, physiological and biochemical characteristics of this plant. Materials and Methods: In this study, the effects of salinity (0, 25, 50, 75 and 100 mM and sodium nitroprusside (0.0, 0.25, 0.50 and 0.75 mM on morphological and physiological characteristics of Calendula officinalis L. were investigated. Total leaf area and number of leaves were determined in the end of the experiment. Electrolyte leakage was used to asses’ membrane permeability. This procedure was based on Lutts et al.,1995. Soluble sugars were extracted and estimated by the method of Irigoyen et al., 1992. Chlorophyll a, b and carotenoid content were calculated from the absorbance of extract at 653, 666 and 470 nm using the formula of Dere et al., 1998. Proline was extracted by the method of Bates et al., 1973. DPPH radical- scavenging activity of sample was performed as described previously of Cleep et al., 2012. The SAS software was used for the analysis of variance (ANOVA, comparisons with P

  6. Differential effects of salinity and osmotic stress on the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5.

    Science.gov (United States)

    De Oliveira, Marcos Vinicius V; Intorne, Aline C; Vespoli, Luciano de S; Madureira, Hérika C; Leandro, Mariana R; Pereira, Telma N S; Olivares, Fábio L; Berbert-Molina, Marília A; De Souza Filho, Gonçalo A

    2016-04-01

    Plant growth-promoting bacteria (PGPB) represent a promising alternative to the massive use of industrial fertilizers in agriculture. Gluconacetobacter diazotrophicus is a PGPB that colonizes several plant species. Although this bacterium is able to grow at high sucrose concentrations, its response to environmental stresses is poorly understood. The present study evaluated G. diazotrophicus PAL5 response to stresses caused by sucrose, PEG 400, NaCl, KCl, Na2SO4 and K2SO4. Morphological, ultrastructural and cell growth analysis revealed that G. diazotrophicus PAL5 is more sensitive to salt than osmotic stress. Growth inhibition and strong morphological changes were caused by salinity, in consequence of Cl ion-specific toxic effect. Interestingly, low osmotic stress levels were beneficial for bacterial multiplication, which was able to tolerate high sucrose concentrations, Na2SO4 and K2SO4. Our data show that G. diazotrophicus PAL5 has differential response to osmotic and salinity stress, which may influence its use as inoculant in saline environments.

  7. Intraspecific variation in growth of marsh macrophytes in response to salinity and soil type: Implications for wetland restoration

    Science.gov (United States)

    Howard, R.J.

    2010-01-01

    Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.

  8. The effect of sodium chloride salinity on the growth, water status and ion content of Phragmites communis trin.

    Science.gov (United States)

    Gorai, Mustapha; Vadel, Ahmedou M; Neffati, Mohamed; Khemira, Habib

    2007-07-01

    The present study deal with the physiological behavior of Phragmites communis under salt stress. The effects of salinity on growth, dry weight partitioning, water status and ion content were studied on seedlings of P. communis fed with nutrient solutions containing 0 to 600 mM NaCl. The plants grew best when irrigated with distilled water; biomass production and Relative Growth Rate (RGR) decreased with increasing salinity. Nevertheless, plants were able to produce and allocate dried matter to all their organs even at the highest salt level (600 mM NaCl). The leaves showed the lowest growth activity. Increasing salinity was accompanied by a decrease in seedling water content; aerial parts were more dehydrated than roots. Examination of the K+/Na+ selectivity revealed that salt tolerance of reed plants may be due to its capacity to limit Na+ transport and to enhance K+ transport into aerial parts resulting in a high K/Na ratio. Our results suggest an exclusive behavior towards Na+ as shown by the decreasing Na+ gradients from leaves to roots. It is concluded that Na+ exclusion mechanism appeared to be operative and contributes to salt tolerance of Phragmites.

  9. Hypertonic saline/epinephrine treatment in hospitalized infants with viral bronchiolitis reduces hospitalization stay: 2 years experience.

    Science.gov (United States)

    Tal, Guy; Cesar, Karine; Oron, Anat; Houri, Sion; Ballin, Ami; Mandelberg, Avigdor

    2006-03-01

    We recently published preliminary evidence on the effectiveness of hypertonic saline in infants with viral bronchiolitis. To further establish the efficacy of nebulized hypertonic saline in these infants. In a continuing, second-year randomized, doubleblind controlled trial, an additional 41 infants (age 2.6 +/- 1 months) hospitalized with viral bronchiolitis were recruited during the winter of 2001-2002. The infants received inhalation of 1.5 mg epinephrine dissolved either in 4 ml normal (0.9%) saline (Group I, n=20) or 4 ml hypertonic (3%) saline (Group II, n=22). The therapy was repeated three times daily until discharge. Pooling our 2 years of experience (2000-2002), a total of 93 hospitalized infants with viral bronchiolitis were recruited; 45 were assigned to Group I and 48 to Group II. The clinical scores at baseline were 7.6 +/- 0.7 for Group I vs. 7.4 +/- 1.3 for Group II (P = NS). However, the clinical scores at days 1 and 2 after inhalation differed significantly between the two groups, invariably favoring Group II: 7 +/- 1 vs. 6.25 +/- 1.1 (Psaline to 1.5 mg epinephrine reduced the hospitalization stay from 3.5 +/- 1.7 days in Group I to 2.6 +/- 1.4 in Group II (Psaline to the inhalation mixture decreased hospitalization stay from 3.6 +/- 1.6 to 2.8 +/- 1.3 days (Psaline/1.5 mg epinephrine benefits hospitalized infants with viral bronchiolitis.

  10. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase.

    Science.gov (United States)

    Ali, Shimaila; Charles, Trevor C; Glick, Bernard R

    2014-07-01

    Plant growth and productivity is negatively affected by soil salinity. However, it is predicted that plant growth-promoting bacterial (PGPB) endophytes that contain 1-aminocyclopropane-1-carboxylate (ACC) deaminase (E.C. 4.1.99.4) can facilitate plant growth and development in the presence of a number of different stresses. In present study, the ability of ACC deaminase containing PGPB endophytes Pseudomonas fluorescens YsS6, Pseudomonas migulae 8R6, and their ACC deaminase deficient mutants to promote tomato plant growth in the absence of salt and under two different levels of salt stress (165 mM and 185 mM) was assessed. It was evidence that wild-type bacterial endophytes (P. fluorescens YsS6 and P. migulae 8R6) promoted tomato plant growth significantly even in the absence of stress (salinity). Plants pretreated with wild-type ACC deaminase containing endophytic strains were healthier and grew to a much larger size under high salinity stress compared to plants pretreated with the ACC deaminase deficient mutants or no bacterial treatment (control). The plants pretreated with ACC deaminase containing bacterial endophytes exhibit higher fresh and dry biomass, higher chlorophyll contents, and a greater number of flowers and buds than the other treatments. Since the only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity, it is concluded that this enzyme is directly responsible for the different behavior of tomato plants in response to salt stress. The use of PGPB endophytes with ACC deaminase activity has the potential to facilitate plant growth on land that is not normally suitable for the majority of crops due to their high salt contents. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Salt Appetite Is Reduced by a Single Experience of Drinking Hypertonic Saline in the Adult Rat

    Science.gov (United States)

    Greenwood, Michael P.; Greenwood, Mingkwan; Paton, Julian F. R.; Murphy, David

    2014-01-01

    Salt appetite, the primordial instinct to favorably ingest salty substances, represents a vital evolutionary important drive to successfully maintain body fluid and electrolyte homeostasis. This innate instinct was shown here in Sprague-Dawley rats by increased ingestion of isotonic saline (IS) over water in fluid intake tests. However, this appetitive stimulus was fundamentally transformed into a powerfully aversive one by increasing the salt content of drinking fluid from IS to hypertonic saline (2% w/v NaCl, HS) in intake tests. Rats ingested HS similar to IS when given no choice in one-bottle tests and previous studies have indicated that this may modify salt appetite. We thus investigated if a single 24 h experience of ingesting IS or HS, dehydration (DH) or 4% high salt food (HSD) altered salt preference. Here we show that 24 h of ingesting IS and HS solutions, but not DH or HSD, robustly transformed salt appetite in rats when tested 7 days and 35 days later. Using two-bottle tests rats previously exposed to IS preferred neither IS or water, whereas rats exposed to HS showed aversion to IS. Responses to sweet solutions (1% sucrose) were not different in two-bottle tests with water, suggesting that salt was the primary aversive taste pathway recruited in this model. Inducing thirst by subcutaneous administration of angiotensin II did not overcome this salt aversion. We hypothesised that this behavior results from altered gene expression in brain structures important in thirst and salt appetite. Thus we also report here lasting changes in mRNAs for markers of neuronal activity, peptide hormones and neuronal plasticity in supraoptic and paraventricular nuclei of the hypothalamus following rehydration after both DH and HS. These results indicate that a single experience of drinking HS is a memorable one, with long-term changes in gene expression accompanying this aversion to salty solutions. PMID:25111786

  12. Salt appetite is reduced by a single experience of drinking hypertonic saline in the adult rat.

    Directory of Open Access Journals (Sweden)

    Michael P Greenwood

    Full Text Available Salt appetite, the primordial instinct to favorably ingest salty substances, represents a vital evolutionary important drive to successfully maintain body fluid and electrolyte homeostasis. This innate instinct was shown here in Sprague-Dawley rats by increased ingestion of isotonic saline (IS over water in fluid intake tests. However, this appetitive stimulus was fundamentally transformed into a powerfully aversive one by increasing the salt content of drinking fluid from IS to hypertonic saline (2% w/v NaCl, HS in intake tests. Rats ingested HS similar to IS when given no choice in one-bottle tests and previous studies have indicated that this may modify salt appetite. We thus investigated if a single 24 h experience of ingesting IS or HS, dehydration (DH or 4% high salt food (HSD altered salt preference. Here we show that 24 h of ingesting IS and HS solutions, but not DH or HSD, robustly transformed salt appetite in rats when tested 7 days and 35 days later. Using two-bottle tests rats previously exposed to IS preferred neither IS or water, whereas rats exposed to HS showed aversion to IS. Responses to sweet solutions (1% sucrose were not different in two-bottle tests with water, suggesting that salt was the primary aversive taste pathway recruited in this model. Inducing thirst by subcutaneous administration of angiotensin II did not overcome this salt aversion. We hypothesised that this behavior results from altered gene expression in brain structures important in thirst and salt appetite. Thus we also report here lasting changes in mRNAs for markers of neuronal activity, peptide hormones and neuronal plasticity in supraoptic and paraventricular nuclei of the hypothalamus following rehydration after both DH and HS. These results indicate that a single experience of drinking HS is a memorable one, with long-term changes in gene expression accompanying this aversion to salty solutions.

  13. Growth and Physiology of Senegalia senegal (L. Britton Seedlings as Influenced by Seed Origin and Salinity and Fertility Treatments

    Directory of Open Access Journals (Sweden)

    Mame Sokhna Sarr

    2017-10-01

    Full Text Available Multipurpose trees such as Senegalia senegal are widespread in arid and semi-arid lands that have natural or induced saline soils and poor soil fertility. Such environmental problems impact growth and have the potential to influence plant physiological adaptations. Identifying superior genotypes better adapted to these environmental stresses will be of great importance for tree selection for reclamation of degraded drylands. The main objective of this study was to examine the growth performance, and physiological and morphological adaptations to salinity, and fertility treatments of different Senegalia senegal families. We used five families (DB16, DB14, K4B19, K17B19, NB1 selected from 60 families of a Senegalia senegal progeny trial in Dahra, Senegal. Seedlings were grown under greenhouse conditions by watering all plants for three weeks and then stopping all watering for three more weeks. In a randomized complete block design, a two-level factorial combination was used for salinity (zero and 183.1 mM NaCl added and fertility (zero and 100 kg/ha N-P-K added treatments. A significant family × salt × fertilizer interaction was found for all biomass parameters (leaf dry matter, stem dry matter, root dry matter, and leaf area. The fertilizer application resulted in a significant increase of total biomass of all families, ranging from 63% to 237% for NB1 and K17B19, respectively. In contrast, salt only decreased total biomass of NB1 and K17B19 increased growth. Despite similar net photosynthetic rates before treatment started, fertilizer and salinity induced different effects between families. Prior to drought stress, fertilizer did not affect photosynthesis of DB16, while salt significantly decreased stomatal conductance of all families. DB16 and N1B1, despite significant differences of stomata size and density, significantly decreased transpiration, and thereby increased their intrinsic water use efficiency. Under drought, relative growth rate

  14. Effect of Plant Growth Promoting Bacteria Associated with Halophytic Weed (Psoralea corylifolia L) on Germination and Seedling Growth of Wheat Under Saline Conditions.

    Science.gov (United States)

    Sorty, Ajay M; Meena, Kamlesh K; Choudhary, Khushboo; Bitla, Utkarsh M; Minhas, P S; Krishnani, K K

    2016-11-01

    Halotolerant bacteria associated with Psoralea corylifolia L., a luxuriantly growing annual weed in salinity-affected semi-arid regions of western Maharashtra, India were evaluated for their plant growth-promoting activity in wheat. A total of 79 bacteria associated with different parts viz., root, shoot and nodule endophytes, rhizosphere, rhizoplane, and leaf epiphytes, were isolated and grouped based on their habitat. Twelve bacteria isolated for their potential in plant growth promotion were further selected for in vitro studies. Molecular identification showed the presence of the genera Bacillus, Pantoea, Marinobacterium, Acinetobacter, Enterobacter, Pseudomonas, Rhizobium, and Sinorhizobium (LC027447-53; LC027455; LC027457, LC027459, and LC128410). The phylogenetic studies along with carbon source utilization profiles using the Biolog® indicated the presence of novel species and the in planta studies revealed promising results under salinity stress. Whereas the nodule endophytes had minute plant growth-promoting (PGP) activity, the cell free culture filtrates of these strains enhanced seed germination of wheat (Triticum aestivum L). The maximum vigor index was monitored in isolate Y7 (Enterobacter sp strain NIASMVII). Indole acetic acid (IAA) production by the isolates ranged between 0.22 and 25.58 μg mL -1 . This signifies the need of exploration of their individual metabolites for developing next-generation bio-inoculants through co-inoculation with other compatible microbes. This study has potential in utilization of the weed-associated microbiome in terms of alleviation of salinity stress in crop plants.

  15. Influence of water salinity on genes implicated in somatic growth, lipid metabolism and food intake in Pejerrey (Odontesthes bonariensis).

    Science.gov (United States)

    Bertucci, Juan Ignacio; Tovar, Mario Oswaldo; Blanco, Ayelén Melisa; Gómez-Requeni, Pedro; Unniappan, Suraj; Canosa, Luis Fabián

    2017-08-01

    Pejerrey, Odontesthes bonariensis, is an euryhaline fish of commercial importance in Argentina. This work aimed to determine if water salinity affects the expression of genes involved in somatic growth (gh; ghr-I; ghr-II; igf-I), lipid metabolism (Δ6-desaturase) and food intake (nucb2/nesfatin-1). First, we identified the full-length cDNA sequences of Δ6-desaturase (involved in lipid metabolism) and nesfatin-1 (an anorexigen). Then, pejerrey juveniles were reared during 8weeks in three different water salinity conditions: 2.5g/L (S2.5), 15g/L (S15) and 30g/L (S30) of NaCl. Brain, pituitary, liver and muscle samples were collected in order to analyze mRNA expression. The expression of gh and ghr-II mRNAs increased in the pituitary of fish reared at S2.5 and S30 compared with the S15 group. The expression of ghr-I was higher in the liver of S30 group compared to S2.5 and S15. Igf-I mRNA expression in liver increased with the increment of water salinity, while it decreased in the muscle of S15 and S30 groups. Δ6-desaturase expression increased in S2.5 group compared to S15 in both liver and muscle. S30 caused a decrease in the Δ6-desaturase expression in liver compared to S15. The S30 treatment produced an increase in nucb2/nesfatin-1 mRNA expression in the brain and liver compared to S2.5 and S15. The changes in gene expression observed could help pejerrey perform better during salinity challenges. The S30 condition would likely promote pejerrey somatic growth in the long term. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effects of water salinity and nitrogen fertilization on the growth and yield of ‘BRS Gabriela’ castor beans

    Directory of Open Access Journals (Sweden)

    João Batista dos Santos

    2016-10-01

    Full Text Available The castor bean has attracted the attention of many farmers as an alternative crop for the National Program of Biofuel and its extensive use in the ricinochemical industry. The crop requires large planting areas to meet the demands of the fuel market. The aim of the present study was to evaluate the effects of irrigation water salinity and nitrogen fertilization on the growth and production of castor beans, ‘BRS Gabriela’, in a protected environment. The present study was conducted at the Center of Technology and Natural Resources of the Federal University of Campina Grande. The experimental design was completely randomized in a 5 × 4 factorial with three replications and one plant per plot. The treatments consisted of irrigation water with five electrical conductivity (ECw levels of 0.7, 1.7, 2.7, 3.7, and 4.7 dS m-1 associated with four nitrogen levels of 60, 80, 100, and 120 mg of N kg-1 of soil. The interaction between water salinity and nitrogen rates did not exert significant effects on the variables studied. Increased salinity of irrigation water affected the growth in height and stem diameter of castor beans in all periods, and leaf area from 90 days after sowing. Increased nitrogen levels had a positive effect on leaf area at 60, 90, 120, and 150 days after sowing. The total mass of seeds, one hundred seed mass, yield, and number of fruits per plant decreased with the increase in water salinity, and the total mass of seeds was the most affected variable.

  17. Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of Sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities.

    Science.gov (United States)

    Vargas-Chacoff, L; Saavedra, E; Oyarzún, R; Martínez-Montaño, E; Pontigo, J P; Yáñez, A; Ruiz-Jarabo, I; Mancera, J M; Ortiz, E; Bertrán, C

    2015-12-01

    In this study we assessed the influence of three different environmental salinities (5, 15 and 31 psu during 90 days) on growth, osmoregulation, energy metabolism and digestive capacity in juveniles of the Notothenioid fish Eleginops maclovinus. At the end of experimental time samples of plasma, liver, gill, intestine, kidney, skeletal muscle, stomach and pyloric caeca were obtained. Growth, weight gain, hepatosomatic index and specific growth rate increased at 15 and 31 psu and were lower at 5 psu salinity. Gill Na(+), K(+)-ATPase (NKA) activity presented a "U-shaped" relationship respect to salinity, with its minimum rates at 15 psu, while this activity correlated negatively with salinity at both anterior and posterior intestinal portions. No significant changes in NKA activity were observed in kidney or mid intestine. Large changes in plasma, metabolite levels and enzymatic activities related to energy metabolism in liver, gill, intestine, kidney and muscle were generally found in the groups exposed to 5 and 31 psu compared to the 15 psu group. Only the pepsin activity (digestive enzymes) assessed enhanced with environmental salinity, while pyloric caeca trypsin/chymotrypsin ratio decreased. This study suggests that juvenile of E. maclovinus presents greater growth near its iso-osmotic point (15 psu) and hyperosmotic environment (31 psu). Acclimation to low salinity increased the osmoregulatory expenditure as seen by the gill and anterior intestine results, while at high salinity, branchial osmoregulatory activity was also enhanced. This requires the mobilization of lipid stores and amino acids, thereby holding the growth of fish back. The subsequent reallocation of energy sources was not sufficient to maintain the growth rate of fish exposed to 5 psu. Thus, E. maclovinus juveniles present better growth efficiencies in salinities above the iso-osmotic point and hyperosmotic environment of this species, showing their best performance at 15 psu as seen by the main

  18. Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca oleracea).

    Science.gov (United States)

    de Lacerda, Laís Pessôa; Lange, Liséte Celina; Costa França, Marcel Giovanni; Zonta, Everaldo

    2015-01-01

    In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature.

  19. Assessment of the effect of salinity on the early growth stage of the ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... 3School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida,. Gainesville, FL USA. Accepted 24 January, 2008. Salinity is one of the ... could be obtained using appropriate tools and tech- niques, which cannot be observed by naked eye (Jensen. 2000 ...

  20. A note on reduced rock lobster growth rates and related ...

    African Journals Online (AJOL)

    A series of environmental perturbations in the southern Benguela upwelling system off the Cape west coast as had dramatic effects on the productivity of the rock lobster Jasus lalandii, a keystone predator of the nearshore ecosystem. Reduced lobster growth rates adversely affected annual recruitment to the legal size ...

  1. The salicylic acid effect on the tomato (lycopersicum esculentum Mill. germination, growth and photosynthetic pigment under salinity stress (NaCl

    Directory of Open Access Journals (Sweden)

    Shahba Zahra

    2010-09-01

    Full Text Available Soil salinity is a serious environmental problem that has negative effect on plant growth, production and photosynthesis. Fresh and dry plant weights decreases with salinity treatments. The very important role of salicylic acid (SA in response to different stress and modification and decline damages due to stresses has established in different studies. In this research tomato seeds planted in pots containing perlite in a growth chamber under controlled conditions of 27±2°c and 23±2°c temperature , 16h lightness and 8h darkness respectively, 15 Klux light intensity and 75% humidity; NaCl concentration of 0, 25, 50, 75 and 100 mM and salicylic acid concentration of 0, 0.5, 1 and 1.5 mM were used in the form of factorial experiment in a complete randomized design (CRD. Results show that germination was decreased with salinity increasing. At low levels of salinity, SA leads to decrease in germination and had no effect in high levels of salinity. The length of shoot were not effected by salinity but decrease with increase in SA concentration. Low salinity concentrations led to significant increase in root length and high concentrations don’t have significant difference with control. SA also had no effect on it. The highest amount of a, b, c and total chlorophyll and carotenoid was show in 50 mM salinity levels.

  2. Reduced growth due to belowground sink limitation is not fully explained by reduced photosynthesis.

    Science.gov (United States)

    Campany, Courtney E; Medlyn, Belinda E; Duursma, Remko A

    2017-08-01

    Sink limitation is known to reduce plant growth, but it is not known how plant carbon (C) balance is affected, limiting our ability to predict growth under sink-limited conditions. We manipulated soil volume to impose sink limitation of growth in Eucalyptus tereticornis Sm. seedlings. Seedlings were grown in the field in containers of different sizes and planted flush to the soil alongside freely rooted (Free) seedlings. Container volume negatively affected aboveground growth throughout the experiment, and light saturated rates of leaf photosynthesis were consistently lower in seedlings in containers (-26%) compared with Free seedlings. Significant reductions in photosynthetic capacity in containerized seedlings were related to both reduced leaf nitrogen content and starch accumulation, indicating direct effects of sink limitation on photosynthetic downregulation. After 120 days, harvested biomass of Free seedlings was on average 84% higher than seedlings in containers, but biomass distribution in leaves, stems and roots was not different. However, the reduction in net leaf photosynthesis over the growth period was insufficient to explain the reduction in growth, so that we also observed an apparent reduction in whole-plant C-use efficiency (CUE) between Free seedlings and seedlings in containers. Our results show that sink limitation affects plant growth through feedbacks to both photosynthesis and CUE. Mass balance approaches to predicting plant growth under sink-limited conditions need to incorporate both of these feedbacks. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Emergence and growth of corn and soybean under saline stress Emergência e crescimento do milho e da soja sob estresse salino

    Directory of Open Access Journals (Sweden)

    Flávio Favaro Blanco

    2007-10-01

    Full Text Available Emergence and seedling growth may be severely affected by salinity, mainly for sensitive crops. The objective of the present study was to verify the tolerance of corn and soybean to the irrigation water salinity (ECi during the emergence and initial development stages. Seeds of corn, hybrid 'AG-6690', and soybean, cv. 'Conquista', were sown in pots containing material from a sandy-loam soil and irrigated with water of increasing salinity levels, from 0.3 to 5.9 dS m-1, giving nine levels of ECi obtained by the addition of an equivalent proportion of sodium and calcium chloride, except for ECi = 0.3 dS m-1 (tap water. Emergence of corn was not affected by salinity but seedling development was reduced for ECi above 1.5 dS m-1. Emergence and growth of soybean were reduced by water salinity and the crop was more tolerant during the emergence (ECi = 2.7 dS m-1 than in the initial development (ECi = 1.0 dS m-1 stage. Salinity of soil solution (ECs was linearly correlated to ECi and affected the growth of corn and soybean for ECs higher than 3 and 2 dS m-1, respectively.A emergência e o crescimento inicial podem ser severamente afetados pela salinidade, principalmente para culturas sensíveis. O objetivo do presente estudo foi verificar a tolerância do milho e da soja à salinidade da água de irrigação (CEi nas fases de emergência e desenvolvimento inicial das plantas. Sementes de milho, híbrido 'AG-6690', e soja, cv. 'Conquista', foram semeadas em vasos contendo material de solo franco-arenoso e irrigadas com água de níveis crescentes de salinidade, variando de 0,3 a 5,9 dS m-1, totalizando nove níveis de CEi obtidos pela adição de cloreto de sódio e de cálcio em proporções equivalentes, exceto para CEi = 0,3 dS m-1 (água de torneira. A emergência do milho não foi afetada pela salinidade da água, mas o desenvolvimento das plantas foi reduzido para CEi acima de 1,5 dS m-1. A emergência e o crescimento da soja foram reduzidos pela

  4. Effects of Arbuscular Mycorrhiza Inoculation on Growth and Yield of Tomato (Lycopersicum Esculentum Mill.) Under Salinity Stress

    OpenAIRE

    Damaiyanti, D R R; Aini, N; Soelistyono, R

    2015-01-01

    Objective of the research was to study the effect mycorrhiza on growth and yield of tomato. The experiment was conducted in screen house 14 m x 10.5 m, in Pasuruan on November 2013 until March 2014, The experiment was conducted as a factorial randomized complete design. The first factor was dose of mycorrhiza (without mycorrhiza, 5 g mycorrhiza, 10 g mycorrhiza, and 20 g mycorrhiza). The second factor was the salinity stress level (without NaCl, 2500 ppm NaCl, 5000 ppm NaCl, and 7500 ppm NaCl...

  5. Analysis of environmental factors influencing salinity patterns, oyster growth, and mortality in lower Breton Sound Estuary, Louisiana using 20 years of data

    Science.gov (United States)

    LaPeyre, Megan K.; Geaghan, James; Decossas, Gary A.; La Peyre, Jerome F.

    2016-01-01

    Freshwater inflow characteristics define estuarine functioning by delivering nutrients, sediments, and freshwater, which affect biological resources and ultimately system production. Using 20 years of water quality, weather, and oyster growth and mortality data from Breton Sound Estuary (BSE), Louisiana, we examined the relationship of riverine, weather, and tidal influence on estuarine salinity, and the relationship of salinity to oyster growth and mortality. Mississippi River discharge was found to be the most important factor determining salinity patterns over oyster grounds within lower portions of BSE, with increased river flow associated with lowered salinities, while easterly winds associated with increased salinity were less influential. These patterns were consistent throughout the year. Salinity and temperature (season) were found to critically control oyster growth and mortality, suggesting that seasonal changes to river discharge affecting water quality over the oyster grounds have profound impacts on oyster populations. The management of oyster reefs in estuaries (such as BSE) requires an understanding of how estuarine hydrodynamics and salinity are influenced by forcing factors such as winds, river flow, and by the volume, timing, and location of controlled releases of riverine water.

  6. Parthenogenetic reproduction of Diaphanosoma celebensis (Crustacea: Cladocera): influence of salinity on feeding, survival, growth and neonate production

    Digital Repository Service at National Institute of Oceanography (India)

    Achuthankutty, C.T.; Shrivastava, Y.; Mahambre, G.G.; Goswami, S.C.; Madhupratap, M.

    to 30 psu. Salinity variations also affected the size and age of primiparous females. Resting egg formation and sexual reproduction did not occur at the tested salinities. The results indicate that D. celebensis is adapted to low saline, estuarine...

  7. Variations in the growth, oil quantity and quality, and mineral nutrients of chamomile genotypes under salinity stress

    Directory of Open Access Journals (Sweden)

    Omid Askari-Khorasgani

    2017-03-01

    Full Text Available Understanding how plants respond to salinity, which severely restricts plant growth, productivity, and survival, is highly important in agriculture. Using three genotypes of Matricaria recutita L. (Shiraz, Ahvaz, and Isfahan with different sensitivity to NaCl, the effect of long-term (about 110 days NaCl treatments (2.5, 6, 9, and 12 dS*m-1 on crop growth, oil quality and quantity, and nutrient variations were investigated to underpin its agricultural management in the future. The adaptation strategy and plant responses were influenced by salinity level, genotype, and genotype × salinity interactions. With higher productivity compared to the Isfahan genotype, the Shiraz and Ahvaz genotypes had efficient Na+ exclusion at root surface as an avoidance strategy; however, under higher NaCl concentration, their higher performance were mainly attributed to the Na+ sequestration in root vacuoles and higher Ca2+/Na+, Mg2+/Na+, and root/shoot ratios as tolerance strategies. The higher oil yield and chamazulene percentage in the Isfahan genotype were not affected by salinity level and were only genotype dependent. Under 12 dS*m-1 NaCl, roots of the Shiraz and Ahvaz genotypes accumulated markedly higher Ca2+ (2.5% and 1.5% respectively and Mg2+ (1.6% and 1.3% respectively, required for membrane stability and chlorophyll synthesis, respectively, more than the Isfahan genotype (0.2% Ca and 0.1% Mg2+ and considerably more than the control plants to keep low concentrations of ion toxicity of Na2+ and Cl- in shoots. Overall, greater salt tolerance found in the Shiraz and Ahvaz genotypes could be due to a variety of mechanisms, including higher efficiency of nutrient uptake (Ca2+, Mg2+, and Zn2+, utilization (N, P, Ca2+, and Mg2+, compartmentation (Na in roots, and maintenance of higher root/shoot ratios. Taking flower and oil yield as well as chamazulene percentage into consideration, the findings recommended cultivation of the Ahvaz genotype in the absence of

  8. Effect of saline water irrigation on seed germination and early seedling growth of the halophyte quinoa

    DEFF Research Database (Denmark)

    Panuccio, M.R.; Jacobsen, Sven-Erik; Saleem Akhtar, Saqib

    2014-01-01

    Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Inves- tigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screen- ing the potential of available halophytes as new crops. This study has...... was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development.......Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Inves- tigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screen- ing the potential of available halophytes as new crops. This study has...... with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects...

  9. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress.

    Science.gov (United States)

    Hu, Longxing; Li, Huiying; Chen, Liang; Lou, Yanhong; Amombo, Erick; Fu, Jinmin

    2015-08-04

    Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.

  10. Growth limitation of three Arctic sea ice algal species

    DEFF Research Database (Denmark)

    Sogaard, D.H.; Hansen, P.J.; Rysgaard, Søren

    2011-01-01

    The effect of salinity, pH, and dissolved inorganic carbon (TCO(2)) on growth and survival of three Arctic sea ice algal species, two diatoms (Fragilariopsis nana and Fragilariopsis sp.), and one species of chlorophyte (Chlamydomonas sp.) was assessed in controlled laboratory experiments. Our...... results suggest that the chlorophyte and the two diatoms have different tolerance to fluctuations in salinity and pH. The two species of diatoms exhibited maximum growth rates at a salinity of 33, and growth rates at a salinity of 100 were reduced by 50% compared to at a salinity of 33. Growth ceased...... at a salinity of 150. The chlorophyte species was more sensitive to high salinities than the two diatom species. Growth rate of the chlorophyte was greatly reduced already at a salinity of 50 and it could not grow at salinities above 100. At salinity 33 and constant TCO(2) concentration, all species exhibited...

  11. Effect of salinity and priming on seedling growth in rapeseed (Brassica napus var oleifera Del. - doi: 10.4025/actasciagron.v35i4.17655

    Directory of Open Access Journals (Sweden)

    Paolo Benincasa

    2013-05-01

    Full Text Available Experiments were performed to examine the effect of salt stress and GA3-priming on initial growth of two rapeseed cultivars, one tolerant and one sensitive to salt stress during germination. Seedlings from seeds germinated in salty (as NaCl and non salty substrate were grown in salty and non salty hydroponics. Salt stress reduced seedling growth of the two genotypes consistently with their degree of stress tolerance during germination. Seedlings from stress sensitive seeds germinated under high salinity showed a rapid recover of growth in non stressing conditions. The effect of salt stress on shoot/root ratio was controversial, increased for lab and decreased for greenhouse experiments, probably due to different timing of stress application and additional experimental conditions. Salt stress decreased leaf photosynthesis and increased thermal dissipation in sensitive seedlings (decrease of ΦPSII and qP, increase of NPQ. The GA3-priming did not affect seedling growth of the stress sensitive cultivar subjected to stress, while it greatly improved the performance of the stress tolerant cultivar.

  12. Summer nutrients structure and phytoplankton growth under the influence of freshwater-saline water mixing in the Changjiang River Estuary

    Science.gov (United States)

    Liu, Ying; Wang, Kui; Chen, Jianfang

    2015-04-01

    The spatial distribution of NO3-, PO43-, SiO32- in summer were studied in the Changjiang (Yangtze River) Estuary and the adjacent East China Sea(ECS), the nutrients distribution was mainly controlled by the Changjiang dilution water and offshore seawater mixing. NO3-, PO43-, SiO32- were high west and low east, presenting two tongues shape nearshore. Combined with the nutrient structure difference along the estuary gradient, the potential relative nutrient limitation of surface water at each station was distinguished. Coastal water was featured with excess nitrogen, in summer DIN/P ratio was up to 160 in the frequent algae blooms area, while Si/N reached as low as 0.5, which could be caused by luxury consumption of P and Si by diatom bloom. For better understanding the process of nutrients structure variation and influence on phytoplankton growth under the Changjiang dilution water and seawater mixing, we also conducted field incubation simulating different fresh-saline water mixing scale, by 100%, 75%, 50%, 25% and 0% for about 3 days. The results were as follows: (1) The lower the percentage of freshwater, the lower the growth rate and pH increase rate of phytoplankton during the exponential growth period; (2) Macronutrients were apparently consumed. PO43- in the 100%, 75% and 50% dilution treatments were depleted within 48 h, suggesting that PO43- limit phytoplankton growth below salinity of 26. (3) For the 100% treatment the DIN/P ratio doubled as PO43- was consumed rapidly, while DIN decreased slowly. The DIN/Si ratio decreased to about 0.7 times the original level during the first 48 h, reflecting the lower initial DIN/Si value compared to the diatom uptake ratio (dDIN/dSi) during the incubation period. The incubation presented the phytoplankton growth extent and rate difference during fresh-saline water mixing, which makes nutrients gradient, and this mixing process may cause local blooms to change the nutrient structure, then might result in phytoplankton

  13. Utilization of organic fertilizer to increase paddy growth and productivity using System of Rice Intensification (SRI method in saline soil

    Directory of Open Access Journals (Sweden)

    V . O . Subardja

    2016-01-01

    Full Text Available Soil salinity has negative effect on soil biodiversity as well as microbial activities. Hence, rice growth also effected by salinity. Application of organic fertilizer and adoption of System of Rice Intensification (SRI cultivation might improve the (biological soil properties and increase rice yield. The aim of this study was to evaluate the effect of two different rice cultivation methods namely conventional rice cultivation method and System of Rice Intensification (SRI rice cultivation method and two kinds organic fertilizer on improvement of soil biological properties and rice yield. In this study, a split plot experimental design was applied where rice cultivation method (conventional and SRI was the main plot and two kinds of organic fertilizer (market waste and rice straw was the sub plot. The treatments had four replicates. The results showed that SRI cultivation with market waste organic fertilizer could increase soil biological properties (population of microbe, fungi and soil respiration. The same treatment also increased rice growth and production. Combination of SRI and market waste organic fertilizer yielded the highest rice production (7.21 t/ha.

  14. Does Economic Growth Reduce Childhood Undernutrition in Ethiopia?

    Science.gov (United States)

    Biadgilign, Sibhatu; Shumetie, Arega; Yesigat, Habtamu

    2016-01-01

    Policy discussions and debates in the last couple of decades emphasized efficiency of development policies for translating economic growth to development. One of the key aspects in this regard in the developing world is achieving improved nutrition through economic development. Nonetheless, there is a dearth of literature that empirically verifies the association between economic growth and reduction of childhood undernutrition in low- and middle-income countries. Thus, the aim of the study is to assess the interplay between economic growth and reduction of childhood undernutrition in Ethiopia. The study used pooled data of three rounds (2000, 2005 and 2010) from the Demographic and Health Surveys (DHS) of Ethiopia. A multilevel mixed logistic regression model with robust standard errors was utilized in order to account for the hierarchical nature of the data. The dependent variables were stunting, underweight, and wasting in children in the household. The main independent variable was real per capita income (PCI) that was adjusted for purchasing power parity. This information was obtained from World Bank. A total of 32,610 children were included in the pooled analysis. Overall, 11,296 (46.7%) [46.0%-47.3%], 8,197(33.8%) [33.2%-34.4%] and 3,175(13.1%) [12.7%-13.5%] were stunted, underweight, and wasted, respectively. We found a strong correlation between prevalence of early childhood undernutrition outcomes and real per capita income (PCI). The proportions of stunting (r = -0.1207, peconomic growth substantially reduced stunting [β = -0.0016, SE = 0.00013, pEconomic growth reduces child undernutrition in Ethiopia. This verifies the fact that the economic growth of the country accompanied with socio-economic development and improvement of the livelihood of the poor. Direct nutrition specific and nutrition sensitive interventions could also be recommended in order to have an impact on the massive reduction of childhood undernutrition in the country.

  15. MSCs transfected with hepatocyte growth factor or vascular endothelial growth factor improve cardiac function in the infarcted porcine heart by increasing angiogenesis and reducing fibrosis.

    Science.gov (United States)

    Lu, Fanglin; Zhao, Xianxian; Wu, Jun; Cui, Yong; Mao, Yanjun; Chen, Kebiao; Yuan, Yang; Gong, Dejun; Xu, Zhiyun; Huang, Shengdong

    2013-09-10

    Cell transplantation and gene therapy have been demonstrated to have beneficial effects after a myocardial infarction (MI). Here, we used a large animal model of MI to investigate the beneficial effects of mesenchymal stem cells (MSCs) transfected with hepatocyte growth factor (HGF) or vascular endothelial growth factor (VEGF) genes. A porcine MI model was created by balloon occlusion of the distal left anterior descending artery for 90 min followed by reperfusion. At 1 week after MI, the pigs were infused via the coronary vein with saline (n=8), MSCs + AdNull(n=8), MSC+VEGF(n=10), or MSC+HGF(n=10). Cardiac function and myocardial perfusion were evaluated by using echocardiography and gated cardiac perfusion imaging before and 4 weeks after transplantation. Morphometric and histological analyses were performed. All cell-implanted groups had better cardiac function than the saline control group. There were further functional improvements in the MSC+HGF group, accompanied by smaller infarct sizes, increased cell survival, and less collagen deposition. Blood vessel densities in the damaged area and cardiac perfusion were significantly greater in the MSC+AdNull group than in the saline control group, and further increased in the MSC+VEGF/HGF groups. Tissue fibrosis was significantly less extensive in the MSC and MSC+VEGF groups than in the saline control group and was most reduced in the MSC+HGF group. MSCs (alone or transfected with VEGF/HGF) delivered into the infarcted porcine heart via the coronary vein improved cardiac function and perfusion, probably by increasing angiogenesis and reducing fibrosis. MSC+HGF was superior to MSC+VEGF, possibly owing to its enhanced antifibrotic effect. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Application of organic amendments to a coastal saline soil in north China: effects on soil physical and chemical properties and tree growth.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available The ability of the following four organic amendments to ameliorate saline soil in coastal northern China was investigated from April 2010 to October 2012 in a field experiment: green waste compost (GWC, sedge peat (SP, furfural residue (FR, and a mixture of GWC, SP and FR (1∶1∶1 by volume (GSF. Compared to a non-amended control (CK, the amendments, which were applied at 4.5 kg organic matter m(-3, dramatically promoted plant growth; improved soil structure; increased the cation exchange capacity (CEC, organic carbon, and available nutrients; and reduced the salt content, electrical conductivity (EC, and exchangeable sodium percentage (ESP. At the end of the experiment in soil amended with GSF, bulk density, EC, and ESP had decreased by 11, 87, and 71%, respectively, and total porosity and organic carbon had increased by 25 and 96% respectively, relative to the CK. The GSF treatment resulted in a significantly lower Na(++K(+ content than the other treatments. CEC and the contents of available N, P, and K were significantly higher in the GSF-treated soil than in the CK and were the highest in all treatments. The FR treatment resulted in the lowest pH value and Ca(2+ concentration, which decreased by 8% and 39%, respectively, relative to the CK. Overall, the results indicate that a combination of green waste compost, sedge peat and furfural residue (GSF treatment has substantial potential for ameliorating saline soils in the coastal areas of northern China, and it works better than each amendment alone. Utilization of GWC and FR can be an alternative organic amendment to substitute the nonrenewable SP in saline soil amelioration.

  17. Application of organic amendments to a coastal saline soil in north China: effects on soil physical and chemical properties and tree growth.

    Science.gov (United States)

    Wang, Linlin; Sun, Xiangyang; Li, Suyan; Zhang, Tao; Zhang, Wei; Zhai, Penghui

    2014-01-01

    The ability of the following four organic amendments to ameliorate saline soil in coastal northern China was investigated from April 2010 to October 2012 in a field experiment: green waste compost (GWC), sedge peat (SP), furfural residue (FR), and a mixture of GWC, SP and FR (1∶1∶1 by volume) (GSF). Compared to a non-amended control (CK), the amendments, which were applied at 4.5 kg organic matter m(-3), dramatically promoted plant growth; improved soil structure; increased the cation exchange capacity (CEC), organic carbon, and available nutrients; and reduced the salt content, electrical conductivity (EC), and exchangeable sodium percentage (ESP). At the end of the experiment in soil amended with GSF, bulk density, EC, and ESP had decreased by 11, 87, and 71%, respectively, and total porosity and organic carbon had increased by 25 and 96% respectively, relative to the CK. The GSF treatment resulted in a significantly lower Na(+)+K(+) content than the other treatments. CEC and the contents of available N, P, and K were significantly higher in the GSF-treated soil than in the CK and were the highest in all treatments. The FR treatment resulted in the lowest pH value and Ca(2+) concentration, which decreased by 8% and 39%, respectively, relative to the CK. Overall, the results indicate that a combination of green waste compost, sedge peat and furfural residue (GSF treatment) has substantial potential for ameliorating saline soils in the coastal areas of northern China, and it works better than each amendment alone. Utilization of GWC and FR can be an alternative organic amendment to substitute the nonrenewable SP in saline soil amelioration.

  18. The interaction between foliar GA3application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance.

    Science.gov (United States)

    Khalloufi, Mouna; Martínez-Andújar, Cristina; Lachaâl, Mokhtar; Karray-Bouraoui, Najoua; Pérez-Alfocea, Francisco; Albacete, Alfonso

    2017-07-01

    The agriculture industry is frequently affected by various abiotic stresses limiting plant productivity. To decrease the negative effect of salinity and improve growth performance, some strategies have been used, such as exogenous application of plant growth regulators (i.e. gibberellic acid, GA 3 ), or arbuscular mycorrhizal fungi (AMF) inoculation. To gain insights about the cross-talk effect of exogenous GA 3 application and AMF inoculation on growth under salinity conditions, tomato plants (Solanum lycopersicum, cv. TT-115) were inoculated or not with the AMF Rhizophagus irregularis and exposed to different treatments during two weeks: 0M GA 3 +0mM NaCl, 10 -6 M GA 3 +0mM NaCl, 0M GA 3 +100mM NaCl and 10 -6 M GA 3 +100mM NaCl. Results have revealed that AMF inoculation or GA 3 application alone, but especially their interaction, resulted in growth improvement under salinity conditions. The growth improvement observed in AMF-inoculated tomato plants under salinity conditions was mainly associated to ionic factors (higherK concentration and K/Na ratio) while the alleviating effect of GA 3 application and its interaction with AMF appear to be due to changes in the hormonal balance. Foliar GA 3 application was found to increase the active gibberellins (GAs), resulting in a positive correlation between GA 3 and the growth-related parameters. Furthermore, cytokinins, indoleacetic acid and abscisic acid concentrations increased in AMF inoculated or GA 3 treated plants but, notably, in AMF plants treated with GA 3 , which showed improved growth under salinity conditions. This suggests that there is an interactive positive effect between GAs and AMF which alleviates growth impairment under salinity conditions by modifying the hormonal balance of the plant. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Irrigation of Secondary Sewage Effluent: Salinity and Nitrogen Effects on Growth and Nitrogen Fixation of Nodulated and Non-nodulated Soybeans.

    OpenAIRE

    Bhuiyan, Md. Mizanur R.; Yamakawa, Takeo; Kikuchi, Masamichi; Ikeda, Motoki; 山川, 武夫; 菊池, 政道; 池田, 元輝

    1998-01-01

    Salinity and nitrogenous components are the most critical water qualities in secondary sewage effluent (SSE) when used as an alternative resource for agricultural irrigation water. In this study a pot experiment was conducted to investigate the effects of salinity and inorganic nitrogen in the irrigation water on the growth and nitrogen fixation of soybean (Glycine max, (L.) Merrill) isoline T201 and T202. Nitrogen in the irrigation water as the plant nutrient contributed slightly to dry matt...

  20. Effect of salinity stress on chlorophyll content, proline, water soluble carbohydrate, germination, growth and dry weight of three seedling barley (Hordeum vulgare L. ) cultivars

    OpenAIRE

    Movafegh, Somayeh; Razeghi, Jadid; Kiabi, Shadi

    2012-01-01

    Salinity is a serious environmental constraint to crop production in many parts of the world and the development of crops with improved salt tolerance is proposed as part of solution to this problem. This research was performed out in order to study the effects of different salinity levels on germination, growth, dry weight, proline, water soluble carbohydrate and chlorophyll content of three barley (Hordeum vulgare L.) cultivars named Jonoob (INC-54), Reyhan (INC-45) & Nosrat (INC -47).The e...

  1. Responses of three tomato cultivars to sea water salinity 1. Effect of ...

    African Journals Online (AJOL)

    The effect of sea water salinity (1500, 2500 and 3500 ppm) on the growth of tomato (Lycopersicon esculentum) cultivars (Trust, Grace and Plitz) was studied. The sea water salinity delayed seed germination and reduced germination percentage especially with increasing salinity level. Chlorophyll b content was higher than ...

  2. Addition of CaCO3 to culture media at the salinity of 3 g/L for freshwater tambaqui growth

    Directory of Open Access Journals (Sweden)

    Yuni Puji Hastuti

    2016-02-01

    Full Text Available ABSTRACT Increasing of freshwater tambaqui Colossoma macropomum demand makes the farmers increase the production of the consumption fish and seed. Acceleration of the production cycle can increase total production level, and reduce the level of osmotic work can be used to improve fish growth. This study aimed to analyze the effect of the addition of calcium carbonate (CaCO3 in the saline medium of 3 g/L on the growth of freshwater tambaqui juvenile. Tambaqui used has a body length of 1.93 ± 0.1 cm and weight of 0.26 ± 0.03 g. The experiment used 15 units of aquarium at size of 30×15×25 cm3 and filled with 9 L of saline water, then added lime CaCO3 according to treatment. The treatments were control (0 mg/L CaCO3, A (50 mg/L CaCO3, B (100 mg/L CaCO3, C (150 mg/L CaCO3, and D (200 mg/L CaCO3. The study was conducted for 30 days of maintenance. Fishes were fed on bloodworms ad libitum or provided three times a day. The results showed that survival, daily growth rate, and absolute length growth of the CaCO3 treatments significantly higher (P<0.05 that that of control.  Furthermore, survival, daily growth rate, and absolute length growth among the CaCO3 treatments were the same.  Thus, addition CaCO3 of 50 mg/L saline water of 3 g/L can be applied to increase culture performance of freshwater tambaqui. Keywords: freshwater tambaqui, CaCO3, salinity  ABSTRAK Permintaan terhadap ikan bawal air tawar Colossoma macropomum yang semakin meningkat membuat pembudidaya menambah produksi ikan konsumsi dan benih. Percepatan siklus produksi dapat meningkatkan total produksi budidaya, dan energi dari optimasi kerja osmotik dapat dialokasikan untuk pertumbuhan. Penelitian ini bertujuan untuk menganalisis pengaruh penambahan kalsium karbonat (CaCO3 pada media bersalinitas terhadap pertumbuhan benih ikan bawal air tawar. Benih ikan bawal yang digunakan memiliki panjang 1,93±0,1 cm dengan bobot 0,26±0,03 g. Akuarium yang digunakan berukuran 30×15×25 cm

  3. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    OpenAIRE

    Sung-Jin Chang; Moon Seop Hyun; Sung Myung; Min-A Kang; Jung Ho Yoo; Kyoung G. Lee; Bong Gill Choi; Youngji Cho; Gaehang Lee; Tae Jung Park

    2016-01-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from R...

  4. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    Science.gov (United States)

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A.; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  5. Lycopene reduces ovarian tumor growth and intraperitoneal metastatic load.

    Science.gov (United States)

    Holzapfel, Nina Pauline; Shokoohmand, Ali; Wagner, Ferdinand; Landgraf, Marietta; Champ, Simon; Holzapfel, Boris Michael; Clements, Judith Ann; Hutmacher, Dietmar Werner; Loessner, Daniela

    2017-01-01

    Mutagens like oxidants cause lesions in the DNA of ovarian and fallopian tube epithelial cells, resulting in neoplastic transformation. Reduced exposure of surface epithelia to oxidative stress may prevent the onset or reduce the growth of ovarian cancer. Lycopene is well-known for its excellent antioxidant properties. In this study, the potential of lycopene in the prevention and treatment of ovarian cancer was investigated using an intraperitoneal animal model. Lycopene prevention significantly reduced the metastatic load of ovarian cancer-bearing mice, whereas treatment of already established ovarian tumors with lycopene significantly diminished the tumor burden. Lycopene treatment synergistically enhanced anti-tumorigenic effects of paclitaxel and carboplatin. Immunostaining of tumor and metastatic tissues for Ki67 revealed that lycopene reduced the number of proliferating cancer cells. Lycopene decreased the expression of the ovarian cancer biomarker, CA125. The anti-metastatic and anti-proliferative effects were accompanied by down-regulated expression of ITGA5, ITGB1, MMP9, FAK, ILK and EMT markers, decreased protein expression of integrin α5 and reduced activation of MAPK. These findings indicate that lycopene interferes with mechanisms involved in the development and progression of ovarian cancer and that its preventive and therapeutic use, combined with chemotherapeutics, reduces the tumor and metastatic burden of ovarian cancer in vivo.

  6. Periodicity in stem growth and litterfall in tidal freshwater forested wetlands: influence of salinity and drought on nitrogen recycling

    Science.gov (United States)

    Cormier, Nicole; Krauss, Ken W.; Conner, William H.

    2013-01-01

    Many tidally influenced freshwater forested wetlands (tidal swamps) along the south Atlantic coast of the USA are currently undergoing dieback and decline. Salinity often drives conversion of tidal swamps to marsh, especially under conditions of regional drought. During this change, alterations in nitrogen (N) uptake from dominant vegetation or timing of N recycling from the canopy during annual litter senescence may help to facilitate marsh encroachment by providing for greater bioavailable N with small increases in salinity. To monitor these changes along with shifts in stand productivity, we established sites along two tidal swamp landscape transects on the lower reaches of the Waccamaw River (South Carolina) and Savannah River (Georgia) representing freshwater (≤0.1 psu), low oligohaline (1.1–1.6 psu), and high oligohaline (2.6–4.1 psu) stands; the latter stands have active marsh encroachment. Aboveground tree productivity was monitored on all sites through monthly litterfall collection and dendrometer band measurements from 2005 to 2009. Litterfall samples were pooled by season and analyzed for total N and carbon (C). On average between the two rivers, freshwater, low oligohaline, and high oligohaline tidal swamps returned 8,126, 3,831, and 1,471 mg N m−2 year−1, respectively, to the forest floor through litterfall, with differences related to total litterfall volume rather than foliar N concentrations. High oligohaline sites were most inconsistent in patterns of foliar N concentrations and N loading from the canopy. Leaf N content generally decreased and foliar C/N generally increased with salinization (excepting one site), with all sites being fairly inefficient in resorbing N from leaves prior to senescence. Stands with higher salinity also had greater flood frequency and duration, lower basal area increments, lower tree densities, higher numbers of dead or dying trees, and much reduced leaf litter fall (103 vs. 624 g m−2 year−1) over the

  7. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity.

    Science.gov (United States)

    Ozaslan, Cumali; Farooq, Shahid; Onen, Huseyin; Bukun, Bekir; Ozcan, Selcuk; Gunal, Hikmet

    2016-01-01

    Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in

  8. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity.

    Directory of Open Access Journals (Sweden)

    Cumali Ozaslan

    Full Text Available Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents, four different soil salinity levels (0, 3, 6, and 12 dSm-1 and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand

  9. Maximum standard metabolic rate corresponds with the salinity of maximum growth in hatchlings of the estuarine northern diamondback terrapin (Malaclemys terrapin terrapin): Implications for habitat conservation

    Science.gov (United States)

    Rowe, Christopher L.

    2018-01-01

    I evaluated standard metabolic rates (SMR) of hatchling northern diamondback terrapins (Malaclemys terrapin terrapin) across a range of salinities (salinity = 1.5, 4, 8, 12, and 16 psu) that they may encounter in brackish habitats such as those in the Maryland portion of the Chesapeake Bay, U.S.A. Consumption of O2 and production of CO2 by resting, unfed animals served as estimates of SMR. A peak in SMR occurred at 8 psu which corresponds closely with the salinity at which hatchling growth was previously shown to be maximized (salinity ∼ 9 psu). It appears that SMR is influenced by growth, perhaps reflecting investments in catabolic pathways that fuel anabolism. This ecophysiological information can inform environmental conservation and management activities by identifying portions of the estuary that are bioenergetically optimal for growth of hatchling terrapins. I suggest that conservation and restoration efforts to protect terrapin populations in oligo-to mesohaline habitats should prioritize protection or creation of habitats in regions where average salinity is near 8 psu and energetic investments in growth appear to be maximized.

  10. Hypertonic saline solution reduces mesenteric microcirculatory dysfunctions and bacterial translocation in a rat model of strangulated small bowel obstruction.

    Science.gov (United States)

    Luiz Zanoni, Fernando; Costa Cruz, José Walber Miranda; Martins, Joilson Oliveira; Benabou, Simon; Vicente Greco, Karin; Ramos Moreno, Ana Carolina; Baquerizo Martinez, Marina; Ferraro Calderaro, Franco; Rocha e Silva, Mauricio; Sannomiya, Paulina

    2013-07-01

    We examined the effects of hypertonic saline (HS) on inflammatory, metabolic variables, and bacterial translocation (BT) in rats submitted to intestinal obstruction and ischemia (IO). Male Wistar rats were submitted to IO and treated, 2 h thereafter, with lactated Ringer's (LR) (4 mL/kg per 5 min, i.v.) or HS (7.5% NaCl, 4 mL/kg per 5 min, i.v.). Twenty-four hours after IO, rats were also submitted to enterectomy/enteroanastomosis to resection of necrotized small bowel. Leukocyte-endothelial interactions were investigated by intravital microscopy and the expression of P-selectin and intercellular adhesion molecule 1 by immunohistochemistry. Bacterial cultures of mesenteric lymph nodes, liver, spleen, and blood were used to evaluate BT. Levels of chemokines (cytokine-induced neutrophil chemoattractants 1 and 2), insulin, and corticosterone were determined by enzyme-linked immunosorbent assay. Intestinal histology, serum urea and creatinine levels, and hepatic enzymes activities were performed to evaluate local and remote damage. Relative to IO and LR-treated rats, which exhibited increases in the number of rolling (1.5-fold), adhered (3.5-fold) and migrated (9.0-fold) leukocytes, and increased expression of P-selectin (3-fold) and intercellular adhesion molecule 1 (3-fold) on mesenteric microcirculation, treatment with HS followed by enterectomy reduced leukocyte-endothelial interactions and expression of both adhesion molecules to values attained in sham rats. Serum chemokines were normalized after treatment with both solutions followed by enterectomy. Hypertonic saline-treated rats demonstrated a significant reduction in BT to 50% in liver and spleen samples and bacteremia (14%), compared with 82% of BT in liver and spleen samples of IO and LR-treated rats and bacteremia (57%). Local intestinal damage was attenuated, and renal and hepatic function preserved by treatment with HS followed by enterectomy. Survival rate increased to 86% up to 15 days. Data presented

  11. Feeding ω-3 PUFA enriched rotifers to Galaxias maculatus (Jenyns, 1842 larvae reared at different salinity conditions: effects on growth parameters, survival and fatty acids profile

    Directory of Open Access Journals (Sweden)

    Patricio Dantagnan

    2013-07-01

    Full Text Available Despite the well known importance of ω-3 polyunsaturated fatty acids (PUFA in marine and freshwater fish larvae, there are few studies on how essential fatty acid requirements and composition on whole body can be altered by changes in water salinity. The present study aimed to determine the effect of salinity on ω-3 PUFA requirements, larval growth survival and fatty acid composition of Galaxias maculatus larvae cultured at two different salinities (0 and 15 g L-1 for 20 days while fed rotifers containing two different levels of ω-3 PUFA (1.87 and 3.16%. The results denoted a marked difference in ω-3 PUFA requirements and in the pattern of fatty acid deposition in the whole body of larvae reared at different salinities, depending of ω-3 PUFA in diets. Thus, to improve growth and survival larvae of G. maculatus reared at 0 g L-1 require higher levels of ω-3 PUFA, principally 18:3 ω-3. Larvae reared at salinities of 15 g L-1 require low levels of ω-3 PUFA for optimal survival, especially 18:3 ω-3. Eicosapentaenoic acid and docosahexaenoic acid content in the whole body of larvae was also affected by water salinity.

  12. EFFECT OF SOIL SULFUR FERTILIZER AND SOME FOLIAR FERTILIZERS ON GROWTH AND YIELD OF BROCCOLI IN SALINE SOIL

    Directory of Open Access Journals (Sweden)

    Ali Husain JASIM

    2015-12-01

    Full Text Available Factorial experiment was conducted in the open fields of Agricultural College, Al-Qasim Green University during the agricultural seasons of 2013/2014 and 2014/2015 to study the effect of adding two levels of agricultural sulfur (control and add 100 kg.ha-1 and four levels of nutrient spray (without spray, high-potash fertilizer, high-phosphorus fertilizer and humic acid on growth and yield of broccoli under drip irrigation and polyethylene soil mulching in saline soil (9.6 dS.m-1. Randomized complete block design with three replicates was used. The results showed that agricultural sulfur led to increase number of leaves, leaf area, leaves chlorophyll content, diameter and weight of flower head compared to control. Spraying foliar fertilizer and its interaction with sulfur fertilizer also led to increase all of parameters above (except leaves chlorophyll content significantly compared to control treatment.

  13. Effects of salinity on growth and survival in five Artemia franciscana (Anostraca: Artemiidae populations from Mexico Pacific Coast

    Directory of Open Access Journals (Sweden)

    Jorge Castro-Mejía

    2011-03-01

    Full Text Available Salinity is an important factor influencing growth and survival of aquatic organisms such as Artemia, a valuable aquaculture species. This study evaluated the effects of salinity on A. franciscana populations from different water bodies in Mexico’s Pacific Coast. With this purpose, five autochthonous bisexual Artemia populations were tested to assess their survival and growth values against salinities of 40, 60, 80, 100 and 120g/l, under laboratory conditions (25±2ºC; pH 8-10; constant light and aeration. The organisms were fed with 100mL of rice bran and 2L of Tetraselmis suecica (500 000cel/ml. The culture experiments were made in 200L plastic tanks, and survival and growth final values were obtained after 21 culture days. Survival and growth curves were determined by a regression analysis (R². The significant differences between salinities were determined by ANOVA test (pLa salinidad es el factor más importante que modifica el crecimiento y la sobrevivencia de las poblaciones mexicanas de Artemia en el mundo. El efecto de este factor en las poblaciones costeras del Pacífico Mexicano ha sido poco estudiado. Cinco poblaciones bisexuales de Artemia provenientes de cuerpos de aguas costeras del Pacífico Mexicano, se estudiaron para determinar el efecto que tiene la salinidad de 40, 60, 80, 100 y 120g/l sobre la sobrevivencia y el crecimiento, en condiciones de laboratorio (25±2ºC, pH 8-10; luz y aireación continua. Los experimentos de cultivo fueron realizados en tanques de plástico de 200l. Los valores finales de sobrevivencia y crecimiento fueron determinados después de 21 días de cultivo. Los organismos fueron alimentados con 100ml de salvado de arroz y 2l de Tetraselmis suecica (500cel/ml. Las curvas de sobrevivencia y crecimiento fueron determinadas usando un análisis de regresión (R². Las diferencias significativas entre los valores promedio a las distintas salinidades fueron determinadas por una prueba de ANDEVA (p<0

  14. Growth and yield components of wheat genotypes as influenced by potassium and farm yard manure on a saline sodic soil

    Directory of Open Access Journals (Sweden)

    Muhammad Ashraf, Muhammad Afzal

    2011-11-01

    Full Text Available The adequate supply of mineral nutrients through chemical fertilizers and manure may help to sustain the crop productivity and ensure plant survival under salinity stress. A field study was conducted on saline sodic soil (ECe = 13 dS m-1, SAR 23.3 (mmol L-11/2, pH = 8.6 of surface 15 cm layer to quantify the effects of potassium (K and farm yard manure (FYM on two wheat genotypes differing in salinity tolerance. Three K levels (0, 80, 120 kg ha-1 and two FYM levels (0, 10 t ha-1 were tested using randomized compete block design (RCBD with three replications. The application of K along with FYM reduced Na+ uptake and accumulation in plant tissue. The K concentration and K+/ Na+ ratio were significantly improved in both wheat genotypes with the supplementation of K and FYM. The grain yield was improved by 40-156% in salt tolerant genotype and 46-206% in salt sensitive genotype with added K and FYM. Similar trend was observed in yield components. Ameliorative effects of added K and FYM were more marked in salt sensitive genotype (Auqab-2000 than in salt tolerant (Inqlab-91. Grain yield of salt sensitive and salt tolerant wheat genotypes was positively correlated with leaf K+ concentration determined at various treatments. Addition of K along with FYM decreased sodium adsorption ratio (SAR and electrical conductivity (EC of soil particularly in upper layers. Therefore, it is concluded that K along with FYM could help to alleviate deleterious effects of salts and thus improve the productivity of salt affected soils.

  15. ‏ ‏Growth and Some Physiological Characteristics of Savory ‎‎(Satureja hortensis L. as Affected by Salinity Stress‎

    Directory of Open Access Journals (Sweden)

    ‎ Lamia Vojodi Mehrabani

    2017-05-01

    Full Text Available The present experement was conducted as a factorial experiment based on RCBD with four NaCl levels (0, 50, 100 and 150 mM levels and two savory native clones (Tabriz and Hamadan with three replications, to investigate the effects of Nacl salinity on some physiological (essential oils, chlorophyll, proline, soluble sugars, ion leakage, Na+ and K+ content and growth characteristics of savory. The results revealed that there was significant interaction effects between salinity and clone on chlorophyll a content of the plant. The highest chlorophyll a content in both clones was recorded in the control plants. Root dry weight, Na+ and K+ content, K+/Na+ ratio, soluble sugars and ion lekage were affected by NaCl salinity. The highest amounts of stem and leaf dry weights, essential oils contents, proline and chlorophyll b content, were influenced by both clone and salinity levels. The highest stem dry weight, essential oil and proline contents belonged to Tabriz clone. The highest leaf dry weight and chlorophyll a+b contents were produced by Hamadan clone. The highest amont for some other traits, like root, stem and leaf dry weights, as well as for K+and K+/Na+ ratios, were observed in the control treatment. The highest Na+ accumulation were recorded in 150 mM NaCl treatment. It was also observed that with increasing salinity levels, proline content was concomitantly increased. The hieghest ion leakage, soluble sugars and proline amounts were belonged to 100 and 150 mM salinity levels. Considering the variation patterns for the traits studied, it seems that the salinity levels in both clones routinely affected the growth and physiological characteristics of the plants. It can be concluded that to achieve economical yields of savory and proper physiologyical traits we have to select salt tolerant clones to suit saline environments.

  16. Comportamento hídrico e crescimento do feijão vigna cultivado em solos salinizados Hydric behaviour and growth of cowpea cultivated in salinized soils

    Directory of Open Access Journals (Sweden)

    José B. M. Coelho

    2013-04-01

    Full Text Available A salinização dos solos reduz a capacidade das plantas de absorver água o que, em geral, provoca diminuição na sua taxa de crescimento. As respostas das plantas ao estresse salino são melhor correlacionadas com o potencial osmótico do que com a condutividade elétrica do extrato de saturação do solo. Com o objetivo de avaliar os efeitos do estresse salino no crescimento, evapotranspiração e potencial osmótico foliar do feijoeiro vigna [Vigna unguiculata L. (Walp.] conduziu-se um experimento em casa de vegetação da Universidade Federal Rural de Pernambuco (Recife, PE, Brasil. Os tratamentos constaram de um arranjo fatorial 2 x 4 composto de duas texturas de solo e quatro níveis de salinidade do solo (4, 8 e 12 dS m-1 a 25 ºC além da testemunha sem a adição de sais com cinco repetições. Concluiu-se que a salinidade do solo causa redução no consumo de água, no potencial osmótico foliar, na altura das plantas, no número de folhas e na biomassa seca da parte aérea do feijoeiro vigna.Soil salinization reduces the capacity of plants to absorb water, and in general causes decrease in plant growth. Plant responses to salt stress are better correlated with osmotic potential compared to electrical conductivity of soil saturation extract. In order to evaluate the effect of salt stress on growth, water use and leaf osmotic potential of cowpea [Vigna unguiculata L. (Walp.], an experiment was carried out in a greenhouse of the Federal Rural University of Pernambuco (Recife-PE, Brazil. The Treatments were in a factorial arrangement of 2 x 4, comprising of two soil textures and four levels of soil salinity (4, 8 and 12 dS m-1 at 25 °C, and the control without salt addition with five replications. It was concluded that soil salinity causes reduction in water consumption, leaf osmotic potential, plant height, number of leaves and dry biomass of shoot of cowpea.

  17. Growth and nitrogen fixation of legumes at increased salinity under field conditions: implications for the use of green manures in saline environments

    NARCIS (Netherlands)

    Bruning, B.; van Logtestijn, R.S.P; Broekman, R.A.; de Vos, A.C.; Parra González, A.; Rozema, J.

    2015-01-01

    The use of legumes as green manure can potentially increase crop productivity in saline environments and thus contribute to the sustainability of agricultural systems. Here, we present results from a field experiment conducted in the Netherlands that addressed the efficiency of nitrogen (N) fixation

  18. Growth and nitrogen fixation of legumes at increased salinity under field conditions: implications for the use of green manures in saline environments

    NARCIS (Netherlands)

    Bruning, B.; van Logtestijn, R.; Broekman, R.; de Vos, A.; Parra Gonzàlez, A.; Rozema, J.

    2015-01-01

    The use of legumes as green manure can potentially increase crop productivity in saline environmentsand thus contribute to the sustainability of agricultural systems. Here, we present results from a field experimentconducted in the Netherlands that addressed the efficiency of nitrogen (N) fixation

  19. Growth of Octopus vulgaris (Cuvier, 1797 in tanks in the Ebro Delta (NE Spain: effects of temperature, salinity and culture density

    Directory of Open Access Journals (Sweden)

    Marina Delgado

    2010-11-01

    Full Text Available To assess the possibility of O. vulgaris ongrowing using tanks or cages in the bays of the Ebro Delta, we performed several growth trials of common octopus held in tanks. Effects of environmental factors (temperature and salinity and zootechnical aspects (culture density were studied. The thermal ranges that defined positive growth periods in the bays of the Ebro Delta were 19.5ºC to 23ºC (spring-summer and 23.5ºC to 12.3ºC (autumn-winter, the latter being the most suitable period for ongrowing. Salinity did not affect survival (100% or growth within the range tested (34-29 psu, though feeding rates (AFR, SFR were directly related to salinity. On the other hand, after 60 days, final culture density increased three-fold (D1: 12.36 → 44.37 kg m–3; D2: 24.13 → 67.76 kg m–3, with optimal survival results ( > 90% for the two densities tested. Growth and feeding rates showed a slight inverse relationship with density. Finally, growth and feeding rates showed a clear dependence on temperature in the two experiments (density and salinity. Our results conclude that industrial production of O. vulgaris in tanks is promising: this system offers an alternative to cages and allows for a more exhaustive control of culture.

  20. The effect of water stress and salinity on growth and physiology of tomato (Lycopersicon esculentum Mil.

    Directory of Open Access Journals (Sweden)

    Giannakoula Anastasia E.

    2013-01-01

    Full Text Available Carotenoids like lycopene are important pigments found in photosynthetic pigment-protein complexes in plants. They are responsible for the bright colors of fruits and vegetables and perform various functions in photosynthesis. Our research has shown that the application of moderate salt stress on tomato plants can enhance lycopene and potentially other antioxidant concentrations in fruits. The increase in lycopene in response to salt stress in the tomato fruits varied from 20% to 80%. Although the specific biological mechanisms involved in increasing fruit lycopene deposition has not been clearly elucidated, evidence suggests that increasing antioxidant concentrations is a primary physiological response of the plant to salt stress. Additionally drought stress during cultivation increased the antioxidant capacity of tomato fruit while maintaining the lycopene concentration. In addition, the effects of silicium were investigated, added to the nutrient solution either at low concentration or at an increased concentration. The present study clearly indicates that an enhanced silicium supply to tomato increases markedly the lycopene contents, irrespective of the salinity status in the tomato fruit.

  1. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  2. The interactive effect of salinity and urea on growth, some related ...

    African Journals Online (AJOL)

    The interactive effects of Nacl and urea was investigated on growth, relative metabolites as well as antioxidant enzymes of Chlorella sp. and Scenedesmus sp. Lower salt concentration (100 mM NaCl) have no effect on dry weight and pigment content of chlorella sp. while, they decreased by increasing salt concentrations ...

  3. Irrigation of grapevines with saline water. II. Mathematical simulation of vine growth and yield

    NARCIS (Netherlands)

    Ben-Asher, J.; Dam, van J.C.; Feddes, R.A.; Jhorar, R.K.

    2006-01-01

    Soil, water, atmosphere and plant (SWAP) model simulates deterministic transport of water and solutes, incorporating a semi-analytical sink function. It enables one to simulate detailed (SAWPd) or simple (SWAPs) crop growth patterns in response to flow patterns in the root zone. The objectives of

  4. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    Science.gov (United States)

    Tuteja, Narendra; Banu, Mst Sufara Akhter; Huda, Kazi Md Kamrul; Gill, Sarvajeet Singh; Jain, Parul; Pham, Xuan Hoi; Tuteja, Renu

    2014-01-01

    The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum) and its novel function in salinity stress tolerance in plant. The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS) accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  5. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    Directory of Open Access Journals (Sweden)

    Narendra Tuteja

    Full Text Available BACKGROUND: The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum and its novel function in salinity stress tolerance in plant. RESULTS: The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. CONCLUSIONS: To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  6. Pea p68, a DEAD-Box Helicase, Provides Salinity Stress Tolerance in Transgenic Tobacco by Reducing Oxidative Stress and Improving Photosynthesis Machinery

    Science.gov (United States)

    Tuteja, Narendra; Banu, Mst. Sufara Akhter; Huda, Kazi Md. Kamrul; Gill, Sarvajeet Singh; Jain, Parul; Pham, Xuan Hoi; Tuteja, Renu

    2014-01-01

    Background The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum) and its novel function in salinity stress tolerance in plant. Results The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS) accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. Conclusions To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance. PMID:24879307

  7. Principal component analysis of hormone profiling data suggests an important role for cytokinins in regulating leaf growth and senescence of salinized tomato.

    Science.gov (United States)

    Albacete, Alfonso; Ghanem, Michel Edmond; Dodd, Ian C; Pérez-Alfocea, Francisco

    2010-01-01

    High throughput analytical methods allow phytohormonal profiling, but the magnitude of the data generated makes it difficult to draw firm conclusions about the physiological roles of different compounds. Principal component analysis (PCA) was used as a mathematical tool to evaluate relationships between physiological and hormonal variables in two experiments with salinised tomato. When tomato plants (cv Boludo F1) were grafted onto a recombinant inbred line (RIL) population derived from a Solanum lycopersicum x S. cheesmaniae cross and grown under moderate salinity (75 mM NaCl) for 100 days under greenhouse conditions, PCA revealed an important role for leaf xylem cytokinins (CKs) in controlling leaf growth and photosystem II efficiency (Fv/Fm) and thus crop productivity under salinity. PCA analysis from a similar experiment, with ungrafted tomato grown under highly saline (100 mM NaCl) conditions, that evaluated the temporal sequence of leaf growth (as relative growth rate, LRGR) and senescence and hormone concentrations, revealed a similar influence of CKs on both processes, since Fv/Fm and LRGR were strongly loaded along the two principal components and placed in the same cluster as leaf trans-zeatin and/or related to other CK-related parameters. The conservative behaviour of the eigen vectors for Fv/Fm and the analyzed phytohormones in different compartments (xylem, leaf and root) between different experiments suggests an important role for CKs in regulating leaf senescence, while CKs and other hormones seem to regulate leaf growth under salinity.

  8. Effects of NaCl salinity on nitrate uptake and partitioning of N and C in Festuca rubra L. in relation to growth rate

    NARCIS (Netherlands)

    Rubinigg, M; Elzenga, JTM; Stulen, G

    2002-01-01

    The effect of salinity on nitrate net uptake rate was studied in the moderately salt tolerant halophyte Festuca rubra L., in relation to changes in relative growth rate, root weight ratio and nitrogen and carbon partitioning. Plants were grown for 21 days on nutrient solution containing 50, 100 and

  9. The effect of salinity on seed germination and growth parameters of field pea (Pisum sativum L.)

    OpenAIRE

    Jovičić Dušica; Vujaković Milka; Milošević Mirjana; Karagić Đura; Taški-Ajduković Ksenija; Ignjatov Maja; Mikić Aleksandar

    2010-01-01

    Field pea (Pisum sativum L.) seed contains a large amount of proteins, amino acids, sugars, carbohydrates, vitamins A and C, calcium and phosphorous, and hence it is widely used for many purposes. Although field pea has moderate requirements for its growth, it is sensitive to increased salt content in soil. This research included eight varieties (Javor, Jantar, Partner, Kristal, Pionir, Junior, Trezor, Dukat) developed at Institute of Field and Vegetable Crops in Novi Sad. Sodium chloride sol...

  10. Effect of Silicon on Wheat Growth and Development in Drought and Salinity Stress

    OpenAIRE

    Tibbitts, Spencer A.

    2018-01-01

    Silicon is a major component of most soils, and is found in significant concentration in plant tissue. Plants vary widely in the amount of silicon they take up, with some plants excluding it, and others using transporters to move the silicon from the soil into their roots. Early plant physiology studies were unable to determine conclusively whether silicon was essential to plant growth, but for some plants, most notably rice, it has proved to be important enough to justify fertilizing silicon...

  11. Growth of cowpea plants inoculated with Rhizobium in a saline-sodic soil after application of gypsum

    Directory of Open Access Journals (Sweden)

    Angela Jessyka Pereira Brito Fontenele

    Full Text Available Two experiments were carried out with the aim of evaluating the growth of cowpea cultivated in saline-sodic soils corrected with gypsum: one experiment in the laboratory, to identify the best level of gypsum for the correction of the saline-sodic soils of the state of Pernambuco, Brazil; and the other in a greenhouse, after correction of the soils. As the test plant, the cowpea cultivar pele de moça, inoculated with Rhizobium strain BR3267 was used. The experiments were arranged in a randomised block design in a 2 x 5 factorial arrangement, two soils and five levels of the gypsum requirement (GR, equivalent to 50, 100, 150, 200 and 250% of the GR of the soil, as determined by the Schoonover M-1 method, with five replications. The following were evaluated: electrical conductivity of the soil saturation extract (EC, soil exchangeable sodium and percentage of soil exchangeable sodium (ESP, number of nodules (NN, nodule dry weight (NDW, shoot dry weight (SDW, shoot height (PH and nitrogen concentration (N in the shoots. Application of 100% of the GR, followed by the enough water for leaching, was effective for the correction of soil sodicity. The application of increasing levels of soil GR resulted in an increase in the number of nodules, dry weight of the nodules and shoots, and the height and levels of N absorbed by the plants in soil S2. In soil S1, the use of levels of 200 and 250% of soil the GR caused a decrease in all the variables under study.

  12. Differences in extreme low salinity timing and duration differentially affect eastern oyster (Crassostrea virginica) size class growth and mortality in Breton Sound, LA

    Science.gov (United States)

    LaPeyre, Megan K.; Eberline, Benjamin S.; Soniat, Thomas M.; La Peyre, Jerome F.

    2013-01-01

    Understanding how different life history stages are impacted by extreme or stochastic environmental variation is critical for predicting and modeling organism population dynamics. This project examined recruitment, growth, and mortality of seed (25–75 mm) and market (>75 mm) sized oysters along a salinity gradient over two years in Breton Sound, LA. In April 2010, management responses to the Deepwater Horizon oil spill resulted in extreme low salinity (25 °C) significantly and negatively impacted oyster recruitment, survival and growth in 2010, while low salinity (poor cultch quality. In both 2010 and 2011, Perkinsus marinusinfection prevalence remained low throughout the year at all sites and almost all infection intensities were light. Oyster plasma osmolality failed to match surrounding low salinity waters in 2010, while oysters appeared to osmoconform throughout 2011 indicating that the high mortality in 2010 may be due to extended valve closing and resulting starvation or asphyxiation in response to the combination of low salinity during high temperatures (>25 °C). With increasing management of our freshwater inputs to estuaries combined with predicted climate changes, how extreme events affect different life history stages is key to understanding variation in population demographics of commercially important species and predicting future populations.

  13. The Effects of Seed Pre-priming with Salicylic Acid under Salinity Stress on Germination and Growth Characteristics of Foeniculum vulgare Mill (Fennel

    Directory of Open Access Journals (Sweden)

    R Moradi

    2011-01-01

    Full Text Available Abstract Salicylic acid (SA or orthohydroxybenzoic acid play a major role in regulation of many physiological processes e.g. growth, development, ion absorption and germination of plats. In order to evaluate the effects of prepriming Fennel seed with salicylic acid in salinity stress condition, on germination and growth characteristics of Fennel, an experiment was conducted in a factorial arrangement based on completely randomized design with three replications. The experimental treatments were salicylic acid with 7 levels (0, 0.1, 0.5, 1, 1.5, 2 and 4 mM and salinity with 5 levels (0, 0.3, 0.5, 1 and 1.5 percentage. All salicylic acid and salinity treatments had significant effect on percentage and speed germination, length of radicle and hypocotyle, dry weight of radicle, hypocotyle and seedling and radicle / hypocotyle ratio (R/H. One mM salicylic acid had the highest percentage and speed of germination, length of radicle and hypocotyle and dry weight of radicle, hypocotyle and seedling. The highest radicle/hypocotyle ratio was obtained at 1.5 mM salicylic acid. Four mM salicylic acid didn't have significant effect on all maintained parameters. With no salinity stress (control, salicylic acid didn’t have any significant effect on all parameters, but when there was salinity stress; prepriming increased all studied characteristics significantly. Therefore, based on our results it seems that salinity resistance of Fennel seeds at germination stage will increase by treating seeds with on mM salicylic acid. Keywords: Fennel, Germination, Orthohydroxybenzoic acid, Salinity stress

  14. Glutamate dehydrogenase and Na+-K+ ATPase expression and growth response of Litopenaeus vannamei to different salinities and dietary protein levels

    Science.gov (United States)

    Li, Erchao; Arena, Leticia; Lizama, Gabriel; Gaxiola, Gabriela; Cuzon, Gerard; Rosas, Carlos; Chen, Liqiao; van Wormhoudt, Alain

    2011-03-01

    Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture. The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp ( L. vannamei) were investigated. This involved an examination of growth performance, glutamate dehydrogenase (GDH) and Na+-K+ ATPase mRNA expression,, and GDH activity in muscles and gills. Three experimental diets were formulated, containing 25%, 40%, and 50% dietary protein, and fed to the shrimp at a salinity of 25. After 20 days, no significant difference was observed in weight gain, though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels. Subsequently, shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5, respectively, and sampled at weeks 1 and 2. Shrimp fed with 40% protein at 25 in salinity (optimal conditions) were used as a control. Regardless of the salinities, shrimp fed with 50% dietary protein had significantly higher growth performance than other diets; no significant differences were found in comparison with the control. Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks. Ambient salinity change also stimulated the hepatosomatic index, which increased in the first week and then recovered to a relatively normal level, as in the control, after 2 weeks. These findings indicate that in white shrimp, the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism. Increased dietary protein level could improve the osmoregulation capacity of L. vannamei with more energy resources allocated to GDH activity and expression.

  15. The Effects of Zinc and Iron Oxide Nano-Particles on The Growth and Ion Content of Two Corn Cultivars in Different Soil Salinity

    Directory of Open Access Journals (Sweden)

    2014-07-01

    Full Text Available This study was conducted in order to evaluate the effects of foliar application of nano-particles and ordinary bulk materials of zinc and iron oxide was studied in two corn genotypes (S.C 704 and seed mass in different soil salinity (0,75,150 mM NaCl. The experiment was arranged as factorial in a randomized complete block design with four replications. The results showed that in saline condition Leaf area, shoot and root dry matter, photochemical efficiency, the concentration of K, Fe and Zn in shoot decreased and that of Na and the Na/K ratio increased under saline condition. The interactions of salinity and genotype were significant on leaf area, shoot and root dry matter, Na/K ratio and photochemical efficiency. The application of nano-particles of iron and zinc oxide increased shoot dry matter to a greater degree as compared with ordinary bulk materials. Under saline condition, the application of iron oxide in the form of nano-particles had higher effect on iron uptake by corn plants. However, with an increase in salinity level the superiority of nano form decreased. The application of Nano-particles of iron and zinc as compared to ordinary bulk materials was more effective in alleviating the negative effects of salt stress on the accumulation of zinc in tested plants. This was not evidence in terms of iron accumulation. The results from this experiment showed that the application of nano-particles of iron and zinc promoted plant growth to a greater degree in comparison to ordinary materials of these nutrients. However, the application of nano particles had no advantage in alleviating the effects of salinity on plant growth.

  16. Effects of temperature, salinity and composition of the dinoflagellate assemblage on the growth of Gambierdiscus carpenteri isolated from the Great Barrier Reef.

    Science.gov (United States)

    Sparrow, Leanne; Momigliano, Paolo; Russ, Garry R; Heimann, Kirsten

    2017-05-01

    Increases in reported incidence of ciguatera fish poisoning (hereafter ciguatera) have been linked to warmer sea temperatures that are known to trigger coral bleaching events. The drivers that trigger blooms of ciguatera-causing dinoflagellates on the Great Barrier Reef (GBR) are poorly understood. This study investigated the effects of increased temperatures and lowered salinities, often associated with environmental disturbance events, on the population growth of two strains of the potentially ciguatera-causing dinoflagellate, Gambierdiscus carpenteri (NQAIF116 and NQAIF380). Both strains were isolated from the central GBR with NQAIF116 being an inshore strain and NQAIF380 an isolate from a stable environment of a large coral reef aquarium exhibit in ReefHQ, Townsville, Australia. Species of Gambierdiscus are often found as part of a mixed assemblage of benthic toxic dinoflagellates on macroalgal substrates. The effect of assemblage structure of dinoflagellates on the growth of Gambierdiscus populations has, however, not been explored. The study, therefore investigated the growth of G. carpenteri within mixed assemblages of benthic dinoflagellates. Population growth was monitored over a period of 28days under three salinities (16, 26 and 36) and three temperature (24, 28 and 34°C) conditions in a fully crossed experimental design. Temperature and salinity had a significant effect on population growth. Strain NQAIF380 exhibited significantly higher growth at 28°C compared to strain NQAIF116, which had highest growth at 24°C. When strain NQAIF116 was co-cultured with the benthic dinoflagellates, Prorocentrum lima and Ostreopsis sp., inhibitory effects on population growth were observed at a salinity of 36. In contrast, growth stimulation of G. carpenteri (strain NQAIF116) was observed at a salinity of 26 and particularly at 16 when co-cultured with Ostreopsis-dominated assemblages. Range expansion of ciguatera-causing dinoflagellates could lead to higher

  17. Effect of Salinity on Germination and Seedling Growth of Four Medicinal Plants

    Directory of Open Access Journals (Sweden)

    A Dadkhah

    2012-07-01

    Full Text Available This experiment was conducted in germinator in order to study the effects of water potential on seed germination, rate of germination and seedlings growth of four medicinal plants (Coriandrum sativum, Plantago psyllium, Discorinia sophia and Portulaca oleracea. Four water potential inclouding distilled water as control (0, -0.37, -0.59 and –0.81 Mpa which made by different salts (NaCl, CaCl2 and NaCl+CaCl2 in 5 to 1 molar ratio. The experiment was carried out based on completly randomized design with six replications. Results showed that the effects of water potential, type of salt on germination percentage, rate of germination, root and shoot length were significant. With decreasing water potential, germination percentage and rate of germination declined but the response of plant were differ. Germination of Portulaca oleracea was not affected by decreasing water potential where as other significantly decreased. The effect of salt composition was significant on rate and percentage germination. The percentage of germination at lower water potential (–0.37 MPa which made by NaCl + CaCl2 significantly was higher than the same water potential made by only NaCl and CaCl2. Although, percentage and rate germination of Portulaca oleracea were not affected by different water potential, seedling growth of Portulaca oleracea significantly decreased.

  18. Effects of salinity on growth, water content and distribution of Na + ...

    African Journals Online (AJOL)

    Adaptation of mature leaves to the salt stress was found to be associated with succulence, which was achieved by the absorption of large quantities of water and K +. In leaves, uptake of K + was not affected by the NaCl concentration in the medium. As a result, absorption of Na + and K+ reduces the water potential, and ...

  19. Effects of humic acid-based buffer + cation on chemical characteristics of saline soils and maize growth

    Directory of Open Access Journals (Sweden)

    W. Mindari

    2014-10-01

    Full Text Available Humic acid is believed to maintain the stability of the soil reaction, adsorption / fixation / chelate of cation, thereby increasing the availability of water and plant nutrients. On the other hand, the dynamics of saline soil cation is strongly influenced by the change of seasons that disrupt water and plant nutrients uptake. This experiment was aimed to examine the characteristics of the humic acid from compost, coal, and peat and its function in the adsorption of K+ and NH4+ cations, thus increasing the availability of nutrients and of maize growth. Eighteen treatments consisted of three humic acid sources (compost, peat and coal, two cation additives (K+ and NH4+, and three doses of humic acid-based buffer (10, 20, and 30 g / 3kg, were arranged in a factorial completely randomized with three replicates. The treatments were evaluated against changes in pH, electric conductivity (EC, cation exchange capacity (CEC, chlorophyll content, plant dry weight and plant height. The results showed that the addition of K+ and NH4+ affected pH, CEC, K+, NH4+, and water content of the buffer. Application of humic acid-based buffer significantly decreased soil pH from > 7 to about 6.3, decreased soil EC to 0.9 mS / cm, and increased exchangeable Na from 0.40 to 0.56 me / 100g soil, Ca from 15.57 to 20.21 me/100 g soil, Mg from 1.76 to 6.52 me/100 g soil, and K from 0.05-0.51 me / 100g soil. Plant growth (plant height, chlorophyll content, leaf area, and stem weight at 35 days after planting increased with increasing dose of humic acid. The dose of 2.0g peat humic acid + NH4+ / 3 kg of soil or 30g peat humic acid + K+ / 3 kg of oil gave the best results of maize growth.

  20. Effects of temperature, salinity, and irradiance on the growth of harmful algal bloom species Phaeocystis globosa Scherffel (Prymnesiophyceae) isolated from the South China Sea

    Science.gov (United States)

    Xu, Ning; Huang, Bozhu; Hu, Zhangxi; Tang, Yingzhong; Duan, Shunshan; Zhang, Chengwu

    2017-05-01

    Blooms of Phaeocystis globosa have been frequently reported in Chinese coastal waters, causing serious damage to marine ecosystems. To better understand the ecological characteristics of P. globosa in Chinese coastal waters that facilitate its rapid expansion, the effects of temperature, salinity and irradiance on the growth of P. globosa from the South China Sea were examined in the laboratory. The saturating irradiance for the growth of P. globosa ( I s) was 60 μmol/(m2•s), which was lower than those of other harmful algal species (70-114 μmol/(m2•s)). A moderate growth rate of 0.22/d was observed at 2 μmol/(m2•s) (the minimum irradiance in the experiment), and photo-inhibition did not occur at 230 μmol/(m2•s) (the maximum irradiance in the experiment). Exposed to 42 different combinations of temperatures (10-31°C) and salinities (10-40) under saturating irradiance, P. globosa exhibited its maximum specific growth rate of 0.80/d at the combinations of 24°C and 35, and 27°C and 40. The optimum growth rates (>0.80/d) were observed at temperatures ranging from 24 to 27°C and salinities from 35 to 40. While P. globosa was able to grow well at temperatures from 20°C to 31°C and salinities from 20 to 40, it could not grow at temperatures lower than 15°C or salinities lower than 15. Factorial analysis revealed that temperature and salinity has similar influences on the growth of this species. This strain of P. globosa not only prefers higher temperatures and higher salinity, but also possesses a flexible nutrient competing strategy, adapted to lower irradiance. Therefore, the P. globosa population from South China Sea should belong to a new ecotype. There is also a potentially high risk of blooms developing in this area throughout the year.

  1. Towards evidence based emergency medicine: Best BETs from the Manchester Royal Infirmary. Bet 1. Nebulised hypertonic saline significantly decreases length of hospital stay and reduces symptoms in children with bronchiolitis.

    Science.gov (United States)

    Horner, Daniel

    2009-07-01

    A short-cut review was carried out to establish whether nebulised hypertonic saline reduces length of stay and symptoms in children with bronchiolitis. One Cochrane review was found, which addressed this question. This review is summarised. The clinical bottom line is that nebulised hypertonic saline does reduce length of stay and symptoms in children with bronchiolitis.

  2. Competition from native hydrophytes reduces establishment and growth of invasive dense-flowered cordgrass (Spartina densiflora).

    Science.gov (United States)

    Abbas, Ahmed M; Lambert, Adam M; Rubio-Casal, Alfredo E; De Cires, Alfonso; Figueroa, Enrique M; Castillo, Jesús M

    2015-01-01

    Experimental studies to determine the nature of ecological interactions between invasive and native species are necessary for conserving and restoring native species in impacted habitats. Theory predicts that species boundaries along environmental gradients are determined by physical factors in stressful environments and by competitive ability in benign environments, but little is known about the mechanisms by which hydrophytes exclude halophytes and the life history stage at which these mechanisms are able to operate. The ongoing invasion of the South American Spartina densiflora in European marshes is causing concern about potential impacts to native plants along the marsh salinity gradient, offering an opportunity to evaluate the mechanisms by which native hydrophytes may limit, or even prevent, the expansion of invasive halophytes. Our study compared S. densiflora seedling establishment with and without competition with Phragmites australis and Typha domingensis, two hydrophytes differing in clonal architecture. We hypothesized that seedlings of the stress tolerant S. densiflora would be out-competed by stands of P. australis and T. domingensis. Growth, survivorship, biomass patterns and foliar nutrient content were recorded in a common garden experiment to determine the effect of mature P. australis and T. domingensis on the growth and colonization of S. densiflora under fresh water conditions where invasion events are likely to occur. Mature P. australis stands prevented establishment of S. densiflora seedlings and T. domingensis reduced S. densiflora establishment by 38%. Seedlings grown with P. australis produced fewer than five short shoots and all plants died after ca. 2 yrs. Our results showed that direct competition, most likely for subterranean resources, was responsible for decreased growth rate and survivorship of S. densiflora. The presence of healthy stands of P. australis, and to some extent T. domingensis, along river channels and in brackish

  3. Competition from native hydrophytes reduces establishment and growth of invasive dense-flowered cordgrass (Spartina densiflora

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abbas

    2015-10-01

    Full Text Available Experimental studies to determine the nature of ecological interactions between invasive and native species are necessary for conserving and restoring native species in impacted habitats. Theory predicts that species boundaries along environmental gradients are determined by physical factors in stressful environments and by competitive ability in benign environments, but little is known about the mechanisms by which hydrophytes exclude halophytes and the life history stage at which these mechanisms are able to operate. The ongoing invasion of the South American Spartina densiflora in European marshes is causing concern about potential impacts to native plants along the marsh salinity gradient, offering an opportunity to evaluate the mechanisms by which native hydrophytes may limit, or even prevent, the expansion of invasive halophytes. Our study compared S. densiflora seedling establishment with and without competition with Phragmites australis and Typha domingensis, two hydrophytes differing in clonal architecture. We hypothesized that seedlings of the stress tolerant S. densiflora would be out-competed by stands of P. australis and T. domingensis. Growth, survivorship, biomass patterns and foliar nutrient content were recorded in a common garden experiment to determine the effect of mature P. australis and T. domingensis on the growth and colonization of S. densiflora under fresh water conditions where invasion events are likely to occur. Mature P. australis stands prevented establishment of S. densiflora seedlings and T. domingensis reduced S. densiflora establishment by 38%. Seedlings grown with P. australis produced fewer than five short shoots and all plants died after ca. 2 yrs. Our results showed that direct competition, most likely for subterranean resources, was responsible for decreased growth rate and survivorship of S. densiflora. The presence of healthy stands of P. australis, and to some extent T. domingensis, along river channels

  4. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations.

    Science.gov (United States)

    Bazihizina, Nadia; Colmer, Timothy D; Barrett-Lennard, Edward G

    2009-09-01

    Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na(+) and Cl(-) concentrations were 1.9- to 2.3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K(+) concentrations were 1.2- to 2.0-fold higher in the non-uniform treatment. Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments.

  5. The effects of irrigation water salinity, potassium nitrate fertilization, proline spraying and leaching fraction on the growth and chemical composition of corn grown in calcareous soil

    OpenAIRE

    M.G, Nessim; Hussein, Magda A.; Moussa, A.A

    2009-01-01

    Two pot experiments were conducted to study the effect of irrigation with saline water in relation to KNO3 fertilization, proline spraying and leaching fraction on the growth and Na+, K+, Cl-, NO3 - and proline contents of corn (Zea mays L.) plant grown on a nonsaline calcareous soil. The treatments included irrigation waters of different salinity (0.54, 3.36, 5.88 or 7.95 dS/m), three rates of KNO3 (0, 4 and 8 g/pot) fertilizer and foliar application with three rates of prolin...

  6. Influence of salinity, competition and food supply on the growth of Gobiosoma robustum and Microgobius gulosus from Florida Bay, U. S. A.

    Science.gov (United States)

    Schofield, P.J.

    2004-01-01

    The code Gobiosoma robustum and clown Microgobius gulosus gobies were grown in the laboratory over 27 days at two salinities (5 and 35), two food levels [low (a fixed proportion of initial mass) and high (saturation)] and both with and without the presence of the other species. Both species exhibited greatest growth at the high food level and the low (5) salinity. Neither species was affected by the presence of the other species, and there were no overall differences in growth between the two species. Thus, the observed competitive superiority of G. robustum over M. gulosus does not seem to confer an advantage relative to feeding success. Furthermore, as growth of G. robustum was greater at the lower salinity, it is clear that some factor other than salinity is restricting this species from north-eastern Florida Bay. Additional work on the importance of predation and food resources in various regions of Florida Bay is needed to further evaluate the underlying mechanisms responsible for the bay-wide distribution of these species. ?? 2004 The Fisheries Society of the British Isles.

  7. Application of AM Fungi with Bradyrhizobium japonicum in improving growth, nutrient uptake and yield of Vigna radiata L. under saline soil

    Directory of Open Access Journals (Sweden)

    Nisha Kadian

    2014-08-01

    Full Text Available A pot experiment was conducted under polyhouse conditions, to evaluate the effect of two different arbuscular mycorrhizal fungi (G. mosseae and A. laevis in combination with Bradyrhizobium japonicum on growth and nutrition of mungbean plant grown under different salt stress levels (4 dS m−1, 8dS m−1 and 12 dS m−1. It was found that under saline conditions, mycorrhizal fungi protect the host plant against the detrimental effect of salinity. The AM inoculated plants showed positive effects on plant growth, dry biomass production, chlorophyll content, mineral uptake, electrolyte leakage, proline, protein content and yield of mungbean plants in comparison to non-mycorrhizal ones but the extent of response varied with the increasing level of salinity. In general, the reduction in Na uptake along with associated increase in P, N, K, electrolyte leakage and high proline content were also found to be better in inoculated ones. The overall results demonstrate that the co-inoculation of microbes with AM fungi promotes salinity tolerance by enhancing nutrient acquisition especially phosphorus (P, producing plant growth hormones, improving rhizospheric and condition of soil by altering the physiological and biochemical properties of the mungbean plant.

  8. Effects of Trophic Modes, Carbon Sources, and Salinity on the Cell Growth and Lipid Accumulation of Tropic Ocean Oilgae Strain Desmodesmus sp. WC08.

    Science.gov (United States)

    Zhao, Zhenyu; Ma, Shasha; Li, Ang; Liu, Pinghuai; Wang, Meng

    2016-10-01

    The effects of trophic modes, carbon sources, and salinity on the growth and lipid accumulation of a marine oilgae Desmodesmus sp. WC08 in different trophic cultures were assayed by single factor experiment based on the blue-green algae medium (BG-11). The results implied that biomass and lipid accumulation culture process were optimized depending on the tophic modes, sorts, and concentration of carbon sources and salinity in the cultivation. There was no significant difference in growth or lipid accumulation with Na2CO3 amendment or NaHCO3 amendment. However, Na2CO3 amendment did enhance the biomass and lipid accumulation to some extent. The highest Desmodesmus sp. WC08 biomass and lipid accumulation was achieved in the growth medium with photoautotrophic cultivation, 0.08 g L(-1) Na2CO3 amendment and 15 g L(-1) sea salt, respectively.

  9. Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture.

    Science.gov (United States)

    Ashraf, Muhammad Arslan; Ashraf, Muhammad

    2016-04-01

    Hydroponic experiment was conducted to appraise variation in the salt tolerance potential of two wheat cultivars (salt tolerant, S-24, and moderately salt sensitive, MH-97) at different growth stages. These two wheat cultivars are not genetically related as evident from randomized polymorphic DNA analysis (random amplified polymorphic DNA (RAPD)) which revealed 28% genetic diversity. Salinity stress caused a marked reduction in grain yield of both wheat cultivars. However, cv. S-24 was superior to cv. MH-97 in maintaining grain yield under saline stress. Furthermore, salinity caused a significant variation in different physiological attributes measured at different growth stages. Salt stress caused considerable reduction in different water relation attributes of wheat plants. A significant reduction in leaf water, osmotic, and turgor potentials was recorded in both wheat cultivars at different growth stages. Maximal reduction in leaf water potential was recorded at the reproductive stage in both wheat cultivars. In contrast, maximal turgor potential was observed at the boot stage. Salt-induced adverse effects of salinity on different water relation attributes were more prominent in cv. MH-97 as compared to those in cv. S-24. Salt stress caused a substantial decrease in glycine betaine and alpha tocopherols. These biochemical attributes exhibited significant salt-induced variation at different growth stages in both wheat cultivars. For example, maximal accumulation of glycine betaine was evident at the early growth stages (vegetative and boot). However, cv. S-24 showed higher accumulation of this organic osmolyte, and this could be the reason for maintenance of higher turgor than that of cv. MH-97 under stress conditions. Salt stress significantly increased the endogenous levels of toxic ions (Na(+) and Cl(-)) and decreased essential cations (K(+) and Ca(2+)) in both wheat cultivars at different growth stages. Furthermore, K(+)/Na(+) and Ca(2+)/Na(+) ratios

  10. Salinity effects on fruit yield in vegetable crops : a simulation study

    NARCIS (Netherlands)

    Heuvelink, E.; Bakker, M.J.; Stanghellini, C.

    2003-01-01

    Salinity can reduce crop growth and yield through its impact on plant water relations by: (1) increased fruit dry matter content, (2) reduced leaf expansion and (3) stomatal closure. In this simulation study the tomato model TOMSIM was used to predict salinity impact on fruit fresh yield, based on

  11. Growth and osmoregulation in Salmo salar L. juveniles 1+, 1½ + and 2+ reared under restrained salinity

    Directory of Open Access Journals (Sweden)

    José Fernando Magalhães Gonçalves

    2013-02-01

    Full Text Available The freshwater phase of Atlantic salmon Salmo salar L vary between one and eight years. The reduction of the freshwater phase is desirable to reduce freshwater usage, human resources and to increase year round availability of pan-sized salmon. Three trials were conducted to investigate the possibility of supply the market in a year-round basis, with pan-sized Atlantic salmon Salmo salar L. (250-300 g in Portugal (southern limit of the natural distribution of this species. This study primarily aimed to compare the osmoregulatory ability and growth of different fish sizes, smolts 1+ (trial 1, 1.5+ (trial 2 and 2+ (trial 3, in freshwater and seawater conditions. Additionally, effects of photoperiod were determined in smolts 1.5+ (trial 2 for both freshwater and seawater groups. The increments in the plasma osmolality and chlorine concentrations after seawater transfer suggest an identical development in the hypo-osmoregulation capacity among the different age classes. In all trials, weight gain was smaller after 30 d of saltwater transfer when compared to fish reared in freshwater. However, the growth depression was temporary. Seawater group showed a compensatory growth in the immediate months, which permitted an improvement in growth rates. At the end of trials there were minor differences on growth performance between freshwater and seawater groups. Specific growth rates varied between 0.7 and 1.0 % day-1, according to the age and /or size and transfer season.

  12. Living up to its name? The effect of salinity on development, growth, and phenotype of the "marine" toad (Rhinella marina).

    Science.gov (United States)

    Wijethunga, Uditha; Greenlees, Matthew; Shine, Richard

    2016-02-01

    The highly permeable integument of amphibians renders them vulnerable to chemical characteristics of their environment, especially during the aquatic larval stage. As the cane toad (Rhinella marina, Bufonidae) invades southwards along the east coast of Australia, it is encountering waterbodies with highly variable conditions of temperature, pH, and salinity. Understanding the tolerance of toads to these conditions can clarify the likely further spread of the invader, as well as the adaptability of the species to novel environmental challenges. We measured salinity in waterbodies in the field and conducted laboratory trials to investigate the impacts of salinity on toad viability. Eggs and tadpoles from the southern invasion front tolerated the most saline conditions we found in potential spawning ponds during surveys [equivalent to 1200 ppm (3.5 % the salinity of seawater)]. Indeed, high-salinity treatments increased tadpole body sizes, accelerated metamorphosis, and improved locomotor ability of metamorphs (but did not affect metamorph morphology). At very low salinity [40 ppm (0.1 % seawater)], eggs hatched but larvae did not develop past Gosner stage 37. Our study shows that the egg and larval life stages of cane toads can tolerate wide variation in the salinity of natal ponds and that this aspect of waterbody chemistry is likely to facilitate rather than constrain continued southward expansion of the toad invasion front in eastern Australia.

  13. The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae

    NARCIS (Netherlands)

    Chivall, D.; M'Boule, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The isotopic fractionation of hydrogen during the biosynthesis of alkenones produced by marine haptophyte algae has been shown to depend on salinity and, as such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. The relationship between fractionation and salinity

  14. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting.

    Science.gov (United States)

    Pierce, A L; Fox, B K; Davis, L K; Visitacion, N; Kitahashi, T; Hirano, T; Grau, E G

    2007-01-01

    In fish, pituitary growth hormone family peptide hormones (growth hormone, GH; prolactin, PRL; somatolactin, SL) regulate essential physiological functions including osmoregulation, growth, and metabolism. Teleost GH family hormones have both differential and overlapping effects, which are mediated by plasma membrane receptors. A PRL receptor (PRLR) and two putative GH receptors (GHR1 and GHR2) have been identified in several teleost species. Recent phylogenetic analyses and binding studies suggest that GHR1 is a receptor for SL. However, no studies have compared the tissue distribution and physiological regulation of all three receptors. We sequenced GHR2 from the liver of the Mozambique tilapia (Oreochromis mossambicus), developed quantitative real-time PCR assays for the three receptors, and assessed their tissue distribution and regulation by salinity and fasting. PRLR was highly expressed in the gill, kidney, and intestine, consistent with the osmoregulatory functions of PRL. PRLR expression was very low in the liver. GHR2 was most highly expressed in the muscle, followed by heart, testis, and liver, consistent with this being a GH receptor with functions in growth and metabolism. GHR1 was most highly expressed in fat, liver, and muscle, suggesting a metabolic function. GHR1 expression was also high in skin, consistent with a function of SL in chromatophore regulation. These findings support the hypothesis that GHR1 is a receptor for SL. In a comparison of freshwater (FW)- and seawater (SW)-adapted tilapia, plasma PRL was strongly elevated in FW, whereas plasma GH was slightly elevated in SW. PRLR expression was reduced in the gill in SW, consistent with PRL's function in freshwater adaptation. GHR2 was elevated in the kidney in FW, and correlated negatively with plasma GH, whereas GHR1 was elevated in the gill in SW. Plasma IGF-I, but not GH, was reduced by 4 weeks of fasting. Transcript levels of GHR1 and GHR2 were elevated by fasting in the muscle. However

  15. Oxygen consumption remains stable while ammonia excretion is reduced upon short time exposure to high salinity in Macrobrachium acanthurus (Caridae: Palaemonidae, a recent freshwater colonizer

    Directory of Open Access Journals (Sweden)

    Carolina A. Freire

    2017-10-01

    Full Text Available ABSTRACT Palaemonid shrimps occur in the tropical and temperate regions of South America and the Indo-Pacific, in brackish/freshwater habitats, and marine coastal areas. They form a clade that recently (i.e., ~30 mya invaded freshwater, and one included genus, Macrobrachium Bate, 1868, is especially successful in limnic habitats. Adult Macrobrachium acanthurus (Wiegmann, 1836 dwell in coastal freshwaters, have diadromous habit, and need brackish water to develop. Thus, they are widely recognized as euryhaline. Here we test how this species responds to a short-term exposure to increased salinity. We hypothesized that abrupt exposure to high salinity would result in reduced gill ventilation/perfusion and decreased oxygen consumption. Shrimps were subjected to control (0 psu and experimental salinities (10, 20, 30 psu, for four and eight hours (n = 8 in each group. The water in the experimental containers was saturated with oxygen before the beginning of the experiment; aeration was interrupted before placing the shrimp in the experimental container. Dissolved oxygen (DO, ammonia concentration, and pH were measured from the aquaria water, at the start and end of each experiment. After exposure, the shrimp’s hemolymph was sampled for lactate and osmolality assays. Muscle tissue was sampled for hydration content (Muscle Water Content, MWC. Oxygen consumption was not reduced and hemolymph lactate did not increase with increased salinity. The pH of the water decreased with time, under all conditions. Ammonia excretion decreased with increased salinity. Hemolymph osmolality and MWC remained stable at 10 and 20 psu, but osmolality increased (~50% and MWC decreased (~4% at 30 psu. The expected reduction in oxygen consumption was not observed. This shrimp is able to tolerate significant changes in water salt concentrations for a few hours by keeping its metabolism in aerobic mode, and putatively shutting down branchial salt uptake to avoid massive salt

  16. The influence of cadmium contamination and salinity on the survival, growth and phytoremediation capacity of the saltmarsh plant Salicornia ramosissima.

    Science.gov (United States)

    Pedro, Carmen A; Santos, Márcia S S; Ferreira, Susana M F; Gonçalves, Sílvia C

    2013-12-01

    The major aim of this study was to evaluate the capacity of Salicornia ramosissima on Cadmium phytoremediation under distinct salinities and, consequently, the toxic effects on the plant's development. A greenhouse experiment was performed, using two Cd concentrations (50 and 100 μg l(-1)) in different salinities (0, 5 and 10). Mortality and weight variation, observed at the end of the experiment, showed significant differences between some treatments, meaning that these variables were affected by the salinity and Cd concentrations. The highest Cd accumulation was detected in the roots, and decreased with the increase of salinity and Cd concentration. S. ramosissima is a potential candidate for Cd phytoremediation at salinities close to 0 and its capabilities in Cd phytoaccumulation and phytoestabilization proved to be quite interesting. The optimization of phytoremediation processes by S. ramosissima could turn possible the use of this plant in the recovery of contaminated ecosystems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The effects of fipronil and the photodegradation product fipronil desulfinyl on growth and gene expression in juvenile blue crabs, Callinectes sapidus, at different salinities

    Science.gov (United States)

    Goff, Andrew D.; Saranjampour, Parichehr; Ryan, Lauren M.; Hladik, Michelle; Covi, Joseph A.; Armbrust, Kevin L.; Brander, Susanne M.

    2017-01-01

    Endocrine disrupting compounds (EDCs) are now widely established to be present in the environment at concentrations capable of affecting wild organisms. Although many studies have been conducted in fish, less is known about effects in invertebrates such as decapod crustaceans. Decapods are exposed to low concentrations of EDCs that may cause infertility, decreased growth, and developmental abnormalities. The objective herein was to evaluate effects of fipronil and its photodegradation product fipronil desulfinyl. Fipronil desulfinyl was detected in the eggs of the decapod Callinectes sapidus sampled off the coast of South Carolina. As such, to examine specific effects on C. sapidus exposed in early life, we exposed laboratory-reared juveniles to fipronil and fipronil desulfinyl for 96 hours at three nominal concentrations (0.01, 0.1, 0.5 μg/L) and two different salinities (10, 30 ppt). The size of individual crabs (weight, carapace width) and the expression of several genes critical to growth and reproduction were evaluated. Exposure to fipronil and fipronil desulfinyl resulted in significant size increases in all treatments compared to controls. Levels of expression for vitellogenin (Vtg), an egg yolk precursor, and the ecdysone receptor (EcR), which binds to ecdysteroids that control molting, were inversely correlated with increasing fipronil and fipronil desulfinyl concentrations. Effects on overall growth and on the expression of EcR and Vtg differ depending on the exposure salinity. The solubility of fipronil is demonstrated to decrease considerably at higher salinities. This suggests that fipronil and its photodegradation products may be more bioavailable to benthic organisms as salinity increases, as more chemical would partition to tissues. Our findings suggest that endocrine disruption is occurring through alterations to gene expression in C. sapidus populations exposed to environmental levels of fipronil, and that effects may be dependent upon the

  18. The effects of fipronil and the photodegradation product fipronil desulfinyl on growth and gene expression in juvenile blue crabs, Callinectes sapidus, at different salinities.

    Science.gov (United States)

    Goff, Andrew D; Saranjampour, Parichehr; Ryan, Lauren M; Hladik, Michelle L; Covi, Joseph A; Armbrust, Kevin L; Brander, Susanne M

    2017-05-01

    Endocrine disrupting compounds (EDCs) are now widely established to be present in the environment at concentrations capable of affecting wild organisms. Although many studies have been conducted in fish, less is known about effects in invertebrates such as decapod crustaceans. Decapods are exposed to low concentrations of EDCs that may cause infertility, decreased growth, and developmental abnormalities. The objective herein was to evaluate effects of fipronil and its photodegradation product fipronil desulfinyl. Fipronil desulfinyl was detected in the eggs of the decapod Callinectes sapidus sampled off the coast of South Carolina. As such, to examine specific effects on C. sapidus exposed in early life, we exposed laboratory-reared juveniles to fipronil and fipronil desulfinyl for 96h at three nominal concentrations (0.01, 0.1, 0.5μg/l) and two different salinities (10, 30ppt). The size of individual crabs (weight, carapace width) and the expression of several genes critical to growth and reproduction were evaluated. Exposure to fipronil and fipronil desulfinyl resulted in significant size increases in all treatments compared to controls. Levels of expression for vitellogenin (Vtg), an egg yolk precursor, and the ecdysone receptor (EcR), which binds to ecdysteroids that control molting, were inversely correlated with increasing fipronil and fipronil desulfinyl concentrations. Effects on overall growth and on the expression of EcR and Vtg differ depending on the exposure salinity. The solubility of fipronil is demonstrated to decrease considerably at higher salinities. This suggests that fipronil and its photodegradation products may be more bioavailable to benthic organisms as salinity increases, as more chemical would partition to tissues. Our findings suggest that endocrine disruption is occurring through alterations to gene expression in C. sapidus populations exposed to environmental levels of fipronil, and that effects may be dependent upon the salinity at

  19. Identifying suitable land for alternative crops in a drying climate: soil salinity, texture and topographic conditions for the growth of old man saltbush (Atriplex nummularia)

    Science.gov (United States)

    Holmes, K. W.; Barrett-Lennard, E. G.; Altman, M.

    2011-12-01

    Experiments conducted under controlled conditions clearly show that the growth and survival of plants on saltland is affected by both the levels of salinity and waterlogging (or depth to water-table) in the soil. Different plant species thrive under varying combinations of these growth constraints. However in natural settings, short distance spatial variability in soil properties and subtle topographic features often complicate the definition of saline and soil hydrological conditions; additional factors may also overprint the trends identified under controlled conditions, making it difficult to define the physical settings where planting is economically viable. We investigated the establishment and growth of old man saltbush (Atriplex nummularia) in relation to variable soil-landscape conditions across an experimental site in southwestern Australia where the combination of high salinity and occasional seasonal waterlogging ruled out the growth of traditional crops and pastures. Saltbush can be critical supplemental feed in the dry season, providing essential nutrients for sheep in combination with sufficient water and dry feed (hay). We applied a range of modeling approaches including classification and regression trees and generalized linear models to statistically characterize these plant-environment relationships, and extend them spatially using full cover raster covariate datasets. Plant deaths could be consistently predicted (97% correct classification of independent dataset) using a combination of topographic variables, salinity, soil mineralogical information, and depth to the water table. Plant growth patterns were more difficult to predict, particularly after several years of grazing, however variation in plant volume was well-explained with a linear model (r2 = 0.6, P water movement in the landscape. The final selected covariates for modeling were a digital elevation model and derivatives, soil mineralogy, competitors for water (adjacent trees) and soil

  20. Reduced heart rate and cardiac output differentially affect angiogenesis, growth, and development in early chicken embryos (Gallus domesticus).

    Science.gov (United States)

    Branum, Sylvia R; Yamada-Fisher, Miho; Burggren, Warren

    2013-01-01

    An increase in both vascular circumferential tension and shear stress in the developing vasculature of the chicken embryo has been hypothesized to stimulate angiogenesis in the developing peripheral circulation chorioallantoic membrane (CAM). To test this hypothesis, angiogenesis in the CAM, development, and growth were measured in the early chicken embryo, following acute and chronic topical application of the purely bradycardic drug ZD7288. At hour 56, ZD7288 reduced heart rate (f(H)) by ~30% but had no significant effect on stroke volume (~0.19 ± 0.2 μL), collectively resulting in a significant fall in cardiac output (CO) from ~27 ± 3 to 18 ± 2 μL min(-1). Mean f(H) at 72 h of development was similarly significantly lowered by acute ZD7288 treatment (250 μM) to 128 ± 0.3 beats min(-1), compared with 174.5 ± 0.3 and 174.7 ± 0.8 beats min(-1) in control and Pannett-Compton (P-C) saline-treated embryos, respectively. Chronic dosing with ZD7288-and the attendant decreases in f(H) and CO-did not change eye diameter or cervical flexion (key indicators of development rate) at 120 h but significantly reduced overall growth (wet and dry body mass decreased by 20%). CAM vessel density index (reflecting angiogenesis) measured 200-400 μm from the umbilical stalk was not altered, but ZD7288 reduced vessel numbers-and therefore vessel density-by 13%-16% more distally (500-600 μm from umbilical stalk) in the CAM. In the ZD7288-treated embryos, a decrease in vessel length was found within the second branch order (~300-400 μm from the umbilical stock), while a decrease in vessel diameter was found closer to the umbilical stock, beginning in the first branch order (~200-300 μm). Paradoxically, chronic application of P-C saline also reduced peripheral CAM vessel density index at 500 and 600 μm by 13% and 7%, respectively, likely from washout of local angiogenic factors. In summary, decreased f(H) with reduced CO did not slow development rate but reduced embryonic

  1. Índices fisiológicos e de crescimento de um porta-enxerto de aceroleira sob estresse salino Physiological and growth indices of a West Indian Cherry rootstock under saline stress

    Directory of Open Access Journals (Sweden)

    Marcelo T. Gurgel

    2003-12-01

    Full Text Available Na literatura há registros de variações na fisiologia e no desenvolvimento de genótipos diversos em condições de estresse salino. Não se encontrando informações nesse sentido, sobre aceroleira, conduziu-se este trabalho com o objetivo de se avaliar os efeitos da salinidade sobre o clone BV1, através de variáveis fisiológicas e de crescimento, na fase de formação de porta-enxerto. Os estudos foram realizados no Campo Experimental de Pacajus (EMBRAPA, na cidade de Pacajus, CE, testando-se seis níveis de salinidade da água de irrigação (condutividade elétrica, variando de 0,5 a 5,5 dS m-1, preparada mantendo-se a proporção 7:2:1 entre Na:Ca:Mg, respectivamente. O sistema radicular da aceroleira é mais sensível à salinidade que a parte aérea, assim como a fitomassa seca total quando comparada com a área foliar. A eficiência da aceroleira em produzir matéria nova por unidade de matéria preexistente, aumenta com a elevação do nível de salinidade da água de irrigação. A velocidade de crescimento e a fotossíntese líquida da aceroleira decrescem com o aumento do estresse salino.It is known that the physiological behavior of the plants under saline stress conditions vary among genotypes. Considering non existence of references about effect of salinity in West Indian Cherry plants, the objective of this study was to evaluate such effects on the growth and physiology of the clone BV1 rootstock. The studies were carried out at the Experimental Center of Pacajus (EMBRAPA, in the city of Pacajus - CE. The treatments studied were six levels of salinity of the irrigation water (electrical conductivity varying from 0.5 to 5.5 dS m-1. The results obtained show that the efficiency of the West Indian Cherry to produce new matter in relation to preexisting increases with the elevation of salinity. The root system of the West Indian Cherry is more affected than the aerial parts by water salinity. The growth velocity and the net

  2. Ozone pollution effects on gas exchange, growth and biomass yield of salinity-treated winter wheat cultivars.

    Science.gov (United States)

    Zheng, Yanhai; Cheng, Da; Simmons, Matthew

    2014-11-15

    A sand-culture experiment was conducted in four Open-Top-Chambers to assess the effects of O3 on salinity-treated winter wheat. Two winter wheat cultivars, salt-tolerant Dekang961 and salt-sensitive Lumai15, were grown under saline (100 mM NaCl) and/or O3 (80±5 nmol mol(-1)) conditions for 35 days. Significant (Pgrowth and biomass yield in the no-salinity treatment. Significant (Psalinity treatment. Soluble sugar and proline contents significantly increased in both cultivars in combined salinity and O3 exposure. O3-induced down-regulation in the gradients of A-C(i) and A-PPFD response curves were much larger in Dekang961 than in Lumai15 under saline conditions. Significant (Psalinity×cultivars and salinity×O3 stresses. The results clearly demonstrated that O3 injuries were closely correlated with plant stomatal conductance (g(s)); the salt-tolerant wheat cultivar might be damaged more severely than the salt-sensitive cultivar by O3 due to its higher g(s) in saline conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Detecting the Spatio-temporal Distribution of Soil Salinity and Its Relationship to Crop Growth in a Large-scale Arid Irrigation District Based on Sampling Experiment and Remote Sensing

    Science.gov (United States)

    Ren, D.; Huang, G., Sr.; Xu, X.; Huang, Q., Sr.; Xiong, Y.

    2016-12-01

    Soil salinity analysis on a regional scale is of great significance for protecting agriculture production and maintaining eco-environmental health in arid and semi-arid irrigated areas. In this study, the Hetao Irrigation District (Hetao) in Inner Mongolia Autonomous Region, with suffering long-term soil salinization problems, was selected as the case study area. Field sampling experiments and investigations related to soil salt contents, crop growth and yields were carried out across the whole area, during April to August in 2015. Soil salinity characteristics in space and time were systematically analyzed for Hetao as well as the corresponding impacts on crops. Remotely sensed map of soil salinity distribution for surface soil was also derived based on the Landsat OLI data with a 30 m resolution. The results elaborated the temporal and spatial dynamics of soil salinity and the relationships with irrigation, groundwater depth and crop water consumption in Hetao. In addition, the strong spatial variability of salinization was clearly presented by the remotely sensed map of soil salinity. Further, the relationship between soil salinity and crop growth was analyzed, and then the impact degrees of soil salinization on cropping pattern, leaf area index, plant height and crop yield were preliminarily revealed. Overall, this study can provide very useful information for salinization control and guide the future agricultural production and soil-water management for the arid irrigation districts analogous to Hetao.

  4. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil.

    Science.gov (United States)

    Sun, Haijun; Lu, Haiying; Chu, Lei; Shao, Hongbo; Shi, Weiming

    2017-01-01

    The impacts of biochar addition on nitrogen (N) leaching, (ammonia) NH3 volatilization from coastal saline soils are not well understood. In this soil column study, the effects of wheat straw biochar application at rates of 0.5%, 1%, 2% and 4% by weight to a coastal saline soil on N leaching, NH3 volatilization, soil pH and N retention were investigated. Results showed that 0.5% and 1% biochar amendments reduce the NH4+-N, NO3--N and total N concentrations of leachate and thereby significantly decrease their cumulative lost loads by 11.6-24.0%, 13.2-29.7%, and 14.6-26.0%, respectively, in compared with the control. The biochar-induced soil N leaching mitigation efficiency was weakened when the biochar application rates increased to 2% and 4%. However, the impact of biochar addition on cumulative NH3 volatilizations were negative and significantly 25.6-53.6% higher NH3 volatilizations in soils with 2% and 4% biochar amended than control were detected, which was mainly attributed to the averaged 0.53-0.88units higher soil pH as results of biochar addition. On average, the total N concentrations of soil were kept same with 1.01-1.06gkg-1 under control and biochar treatments. Therefore, biochar application to the coastal saline soils with appropriate rates (i.e., 0.5% and 1% in current study) can reduce N leaching, keep soil N retention, and not increase NH3 volatilization, which was beneficial for sustainable use of saline soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance.

    Science.gov (United States)

    Yaish, Mahmoud W; Antony, Irin; Glick, Bernard R

    2015-06-01

    Endophytic bacteria were isolated from date palm (Phoenix dactylifera L.) seedling roots, characterized and tested for their ability to help plants grow under saline conditions. Molecular characterization showed that the majority of these strains belonged to the genera Bacillus and Enterobacter and had different degrees of resistance to various antibiotics. Some of these strains were able to produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and the plant growth regulatory hormone indole-3-acetic acid (IAA). Some strains were also able to chelate ferric iron (Fe(3+)) and solubilize potassium (K(+)), phosphorus (PO 4 (3-) ) and zinc (Zn(2+)), and produce ammonia. The results also showed that ACC deaminase activity and IAA production was slightly increased in some strains in response to an increase in NaCl concentration in the growth media. Consistent with these results, selected strains such as PD-R6 (Paenibacillus xylanexedens) and PD-P6 (Enterobacter cloacae) were able to enhance canola root elongation when grown under normal and saline conditions as demonstrated by a gnotobiotic root elongation assay. These results suggest that the isolated and characterized endophytic bacteria can alter ethylene and IAA levels and also facilitate nutrient uptake in roots and therefore have the potential role to promote the growth and development of date palm trees growing under salinity stress.

  6. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression.

    Science.gov (United States)

    Ruiz-Carrasco, Karina; Antognoni, Fabiana; Coulibaly, Amadou Konotie; Lizardi, Susana; Covarrubias, Adriana; Martínez, Enrique A; Molina-Montenegro, Marco A; Biondi, Stefania; Zurita-Silva, Andrés

    2011-11-01

    Chenopodium quinoa (Willd.) is an Andean plant showing a remarkable tolerance to abiotic stresses. In Chile, quinoa populations display a high degree of genetic distancing, and variable tolerance to salinity. To investigate which tolerance mechanisms might account for these differences, four genotypes from coastal central and southern regions were compared for their growth, physiological, and molecular responses to NaCl at seedling stage. Seeds were sown on agar plates supplemented with 0, 150 or 300mM NaCl. Germination was significantly reduced by NaCl only in accession BO78. Shoot length was reduced by 150mM NaCl in three out of four genotypes, and by over 60% at 300mM (except BO78 which remained more similar to controls). Root length was hardly affected or even enhanced at 150mM in all four genotypes, but inhibited, especially in BO78, by 300mM NaCl. Thus, the root/shoot ratio was differentially affected by salt, with the highest values in PRJ, and the lowest in BO78. Biomass was also less affected in PRJ than in the other accessions, the genotype with the highest increment in proline concentration upon salt treatment. Free putrescine declined dramatically in all genotypes under 300mM NaCl; however (spermidine+spermine)/putrescine ratios were higher in PRJ than BO78. Quantitative RT-PCR analyses of two sodium transporter genes, CqSOS1 and CqNHX, revealed that their expression was differentially induced at the shoot and root level, and between genotypes, by 300mM NaCl. Expression data are discussed in relation to the degree of salt tolerance in the different accessions. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. Nursery performance of the pink shrimp Farfantepenaeus paulensis (Crustacea: Decapoda: Penaeidae postlarvae in different salinities

    Directory of Open Access Journals (Sweden)

    Rafael F. Costa

    2010-06-01

    Full Text Available Nursery performance, development, and RNA:DNA ratio were investigated in Farfantepenaeus paulensis (Pérez-Farfante, 1967 postlarvae acclimated from a salinity of 30‰ to higher (35‰ or lower (16, 22 and 29‰ salinities and reared for 20 days. Overall, higher final weight, yield and growth rate were observed at a salinity of 29‰. RNA:DNA ratio indicated reduced growth potential at a salinity of 35‰. Low salinities resulted in more developed individuals. Thus, early postlarval F. paulensis should not be stocked in salinities higher than that of the original hatchery, otherwise in lower salinities postlarvae should be older and/or have an extended nursery phase. Results may assist in the development of nursery rearing protocols for F. paulensis, an alternative species for aquaculture in subtropical areas.

  8. Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought.

    Science.gov (United States)

    Li, Xiaojuan; Guo, Chengjin; Gu, Juntao; Duan, Weiwei; Zhao, Miao; Ma, Chunying; Du, Xiaoming; Lu, Wenjing; Xiao, Kai

    2014-02-01

    Establishing crop cultivars with strong tolerance to P and N deprivation, high salinity, and drought is an effective way to improve crop yield and promote sustainable agriculture worldwide. A vacuolar H+-pyrophosphatase (V-H+-PPase) gene in wheat (TaVP) was functionally characterized in this study. TaVP cDNA is 2586-bp long and encodes a 775-amino-acid polypeptide that contains 10 conserved membrane-spanning domains. Transcription of TaVP was upregulated by inorganic phosphate (Pi) and N deprivation, high salinity, and drought. Transgene analysis revealed that TaVP overexpression improved plant growth under normal conditions and specifically under Pi and N deprivation stresses, high salinity, and drought. The improvement of growth of the transgenic plants was found to be closely related to elevated V-H+-PPase activities in their tonoplasts and enlarged root systems, which possibly resulted from elevated expression of auxin transport-associated genes. TaVP-overexpressing plants showed high dry mass, photosynthetic efficiencies, antioxidant enzyme activities, and P, N, and soluble carbohydrate concentrations under various growth conditions, particularly under the stress conditions. The transcription of phosphate and nitrate transporter genes was not altered in TaVP-overexpressing plants compared with the wild type, suggesting that high P and N concentrations regulated by TaVP were caused by increased root absorption area instead of alteration of Pi and NO3- acquisition kinetics. TaVP is important in the tolerance of multiple stresses and can serve as a useful genetic resource to improve plant P- and N-use efficiencies and to increase tolerance to high salinity and drought.

  9. Washing in hypotonic saline reduces the fraction of irreversibly-damaged cells in stored blood: a proof-of-concept study.

    Science.gov (United States)

    Xia, Hui; Khanal, Grishma; Strachan, Briony C; Vörös, Eszter; Piety, Nathaniel Z; Gifford, Sean C; Shevkoplyas, Sergey S

    2017-09-01

    During hypothermic storage, a substantial fraction of red blood cells (RBCs) transforms from flexible discocytes to rigid sphero-echinocytes and spherocytes. Infusion of these irreversibly-damaged cells into the recipient during transfusion serves no therapeutic purpose and may contribute to adverse outcomes in some patients. In this proof-of-concept study we describe the use of hypotonic washing for selective removal of the irreversibly-damaged cells from stored blood. Stored RBCs were mixed with saline of various concentrations to identify optimal concentration for inducing osmotic swelling and selective bursting of spherical cells (sphero-echinocytes, spherocytes), while minimising indiscriminate lysis of other RBCs. Effectiveness of optimal treatment was assessed by measuring morphology, rheological properties, and surface phosphatidylserine (PS) exposure for cells from several RBCs units (n=5, CPD>AS-1, leucoreduced, 6 weeks storage duration) washed in hypotonic vs isotonic saline. Washing in mildly hypotonic saline (0.585 g/dL, osmolality: 221.7±2.3 mmol/kg) reduced the fraction of spherical cells 3-fold from 9.5±3.4% to 3.2±2.8%, while cutting PS exposure in half from 1.48±0.86% to 0.59±0.29%. Isotonic washing had no effect on PS exposure or the fraction of spherical cells. Both isotonic and hypotonic washing increased the fraction of well-preserved cells (discocytes, echinocytes 1) substantially, and improved the ability of stored RBCs to perfuse an artificial microvascular network by approximately 25%, as compared with the initial sample. This study demonstrated that washing in hypotonic saline could selectively remove a significant fraction of the spherical and PS-exposing cells from stored blood, while significantly improving the rheological properties of remaining well-preserved RBCs. Further studies are needed to access the potential effect from hypotonic washing on transfusion outcomes.

  10. High salinity tolerance in eggs and fry of a brackish Esox lucius population

    DEFF Research Database (Denmark)

    Jørgensen, A.T.; Hansen, B.W.; Vismann, B.

    2010-01-01

    Knowledge on the biology and physiology of pike, Esox lucius L., populations inhabiting saline environments is scarce. An experimental setup was used to examine egg development and fry behaviour and growth under varying salinity levels in a brackish-water pike population from the western Baltic Sea....... Eggs and fry developed at 8.5 psu, which is higher than hitherto reported for other populations. Fry exhibited stress behaviour and reduced growth when subjected to salinities above 13 psu. This indicates that early life stages of E. lucius tolerate ambient salinity conditions equivalent to the natural...

  11. Indicators: Salinity

    Science.gov (United States)

    Salinity is the dissolved salt content of a body of water. Excess salinity, due to evaporation, water withdrawal, wastewater discharge, and other sources, is a chemical sterssor that can be toxic for aquatic environments.

  12. Insulin infusion reduces hepatocyte growth factor in lean humans

    DEFF Research Database (Denmark)

    de Courten, Barbora; de Courten, Maximilian; Dougherty, Sonia

    2013-01-01

    OBJECTIVE: Plasma Hepatocyte Growth Factor (HGF) is significantly elevated in obesity and may contribute to vascular disease, metabolic syndrome or cancer in obese individuals. The current studies were done to determine if hyperinsulinemia increases plasma HGF. MATERIALS/METHODS: Twenty-two parti...

  13. Ocean acidification reduces growth and calcification in a marine dinoflagellate

    NARCIS (Netherlands)

    Van de Waal, D.B.; John, U.; Ziveri, P.; Reichart, G.J.; Hoins, M.; Sluijs, A.; Rost, B.

    2013-01-01

    Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate

  14. Drought causes reduced growth of trembling aspen in western Canada.

    Science.gov (United States)

    Chen, Lei; Huang, Jian-Guo; Alam, Syed Ashraful; Zhai, Lihong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G

    2017-07-01

    Adequate and advance knowledge of the response of forest ecosystems to temperature-induced drought is critical for a comprehensive understanding of the impacts of global climate change on forest ecosystem structure and function. Recent massive decline in aspen-dominated forests and an increased aspen mortality in boreal forests have been associated with global warming, but it is still uncertain whether the decline and mortality are driven by drought. We used a series of ring-width chronologies from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada, in an attempt to clarify the impacts of drought on aspen growth by using Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Results indicated that prolonged and large-scale droughts had a strong negative impact on trembling aspen growth. Furthermore, the spatiotemporal variability of drought indices is useful for explaining the spatial heterogeneity in the radial growth of trembling aspen. Due to ongoing global warming and rising temperatures, it is likely that severer droughts with a higher frequency will occur in western Canada. As trembling aspen is sensitive to drought, we suggest that drought indices could be applied to monitor the potential effects of increased drought stress on aspen trees growth, achieve classification of eco-regions and develop effective mitigation strategies to maintain western Canadian boreal forests. © 2017 John Wiley & Sons Ltd.

  15. Ocean acidification reduces growth and calcification in a marine dinoflagellate

    NARCIS (Netherlands)

    Waal, D.B. van de; John, U.; Ziveri, P.; Reichart, G.-J.; Hoins, M.; Sluijs, A.; Rost, B.

    2013-01-01

    Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous

  16. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.).

    Science.gov (United States)

    Talbi Zribi, O; Abdelly, C; Debez, A

    2011-11-01

    The interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity were investigated in barley (Hordeum vulgare L. cv. Manel). Seedlings were grown hydroponically under low or sufficient phosphorus (P) supply (5 or 180 μmol KH(2) PO(4) plant(-1) week(-1) , respectively), with or without 100 mm NaCl. Phosphorus deficiency or salinity significantly decreased whole plant growth, leaf water content, leaf osmotic potential and gas exchange parameters, with a more marked impact of P stress. The effect of both stresses was not additive since the response of plants to combined salinity and P deficiency was similar to that of plants grown under P deficiency alone. In addition, salt-treated plants exposed to P deficiency showed higher salt tolerance compared to plants grown with sufficient P supply. This was related to plant ability to significantly increase root:shoot DW ratio, root length, K(+)/Na(+) ratio, leaf proline and soluble sugar concentrations and total non-enzymatic antioxidant capacity, together with restricting Na(+) accumulation in the upper leaves. As a whole, our results indicate that under concomitant exposure to both salt and P deficiency, the impact of the latter constraint is pre-dominant. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Growth and yield of corn irrigated with saline water Crescimento e produção do milho irrigadocom água salina

    Directory of Open Access Journals (Sweden)

    Flávio Favaro Blanco

    2008-12-01

    Full Text Available Corn (Zea mays L. is an important crop in Brazil and is cultivated in all regions, including the semi-arid area of Brazil, where the occurrence of irrigation water with high concentration of salts is common. Evaluating the growth and yield of the maize hybrid 'AG 6690' irrigated with water of different salinity levels was the objective of this experiment. Sowing was performed in pots with 12 seeds on May 23, 2003, and seedlings were thinned to two plants per pot. Irrigation was accomplished when the mean soil matric potential of each treatment was approximately -30 kPa using water with seven different electrical conductivities (ECi, varying from 0.3 to 4.5 dS m-1, which were obtained by addition of NaCl and CaCl2 in the equivalent proportion of 1:1. The dry weights of all parts of the corn plants as well as their evapotranspiration and water use efficiency were reduced by salinity. Grain yield decreased by 21 and 20% for each unit increase of ECi and electrical conductivity of soil solution (ECs above the respective threshold values of 1.7 and 4.3 dS m-1, respectivelly. Plants were able to maintain the leaf area index unaltered under moderate saline conditions.O milho (Zea mays L. é uma importante cultura no Brasil, sendo cultivado em todas as regiões, incluindo a região do semi-árido, onde é comum a ocorrência de águas com alta concentração de sais. Avaliar o crescimento e a produção do milho, híbrido 'AG 6690', irrigado com águas de diferentes níveis de salinidade foi o objetivo deste trabalho. O plantio foi realizado em vasos com 12 sementes por vaso, em 23 de maio de 2003, e realizado o desbaste deixando-se apenas duas plantas por vaso. A irrigação foi realizada sempre que o potencial mátrico médio do solo de cada tratamento aproximava-se de -30 kPa, utilizando-se águas com sete diferentes condutividades elétricas (ECi variando entre 0,3 e 4,5 dS m-1, as quais foram alcançadas pela adição de NaCl e CaCl2 na propor

  18. Uncontrollable chronic stress reduces growth disparities in farmed Atlantic salmon

    DEFF Research Database (Denmark)

    Vindas, Marco A; Madaro, Angelico; Fraser, Thomas W.K.

    2017-01-01

    Individual variation in behavior and physiological traits in a wide variety of animals has been the focus of numerous studies in recent years. In this context, early life experiences shape responses that individuals have to subsequent environments, i.e. developmental plasticity. In this experiment......, we subjected 10-month old fish to an unpredictable chronic stress (UCS) regime or no stress (control) for 3weeks. These individuals then underwent the parr-smolt transformation, when salmonids become adapted for the seawater environment, and were subsequently transferred into seawater before...... of individuals by their serotonergic activity (high and low) resulted in the elucidation of growth and gene expression differences. UCS groups were found to have less growth disparities throughout the experiment, compared to control fish. Furthermore, we found brain serotonergic signaling and corticotropic...

  19. Effect of various Na/K ratios in low-salinity well water on growth performance and physiological response of Pacific white shrimp Litopenaeus vannamei

    Science.gov (United States)

    Liu, Hongyu; Tan, Beiping; Yang, Jinfang; Lin, Yingbo; Chi, Shuyan; Dong, Xiaohui; Yang, Qihui

    2014-09-01

    To investigate the influence of sodium to potassium (Na/K) ratios on the growth performance and physiological response of the Pacific white shrimp ( Litopenaeus vananmei), various concentrations of KCl were added to low-salinity well water (salinity 4) in an 8-week culture trial. Six treatments with Na/K ratios of 60:1, 42:1, 33:1, 23:1, 17:1, and 14:1 were replicated in triplicate. The highest weight-gain rate (3 506±48)% and survival rate (89.38±0.88)% was observed in well water with Na/K ratios of 23:1 and 42:1, respectively, while the feed conversion ratio (1.02±0.01), oxygen consumption, and ammonia-N excretion rate was the lowest in the medium with a Na/K ratio of 23:1. Gill Na+-K+-ATPase activity, as an indicator of osmoregulation, peaked in the treatment where the Na/K ratio was 17:1. The total hemocyte count, respiratory burst, and immune-related enzyme activities (ALP, LSZ, PO, and SOD) of L. vananmei were affected significantly by Na/K ratios ( Pvannamei cultures is feasible. Na/K ratios ranging from 23:1 to 33:1 might improve survival and growth. Immunity and disease resistance are also closely related to the Na/K ratio of the low-salinity well water. The findings may contribute to the development of more efficient K + remediation strategies for L. vananmei culture in low-salinity well water.

  20. The incidence of nerve root injury by high-speed drill can be reduced by chilled saline irrigation in a rabbit model.

    Science.gov (United States)

    Tamai, K; Suzuki, A; Takahashi, S; Akhgar, J; Rahmani, M S; Hayashi, K; Ohyama, S; Nakamura, H

    2017-04-01

    We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury. Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations. In the control group, the mean temperature around the nerve root was 52.0°C (38.0°C to 75.5°C) after 60 seconds of drilling, and nerve root injuries were found in one out of 13 (7.7%) immediately, three out of 14 (21.4%) at three days, and 11 out of 25 (44.0%) at seven days post-operatively. While the RT group showed a significantly lower temperature around the nerve root compared with the control group (mean 46.5°C; 34.5°C to 66.9°C, p irrigation resulted in a significantly lower temperature than the control group (mean 39.0°C; 35.3°C to 52.3°C; p irrigation had a more prominent effect than RT in reducing the incidence of the thermal injury during extended drilling. Cite this article: Bone Joint J 2017;99-B:554-60. ©2017 The British Editorial Society of Bone & Joint Surgery.

  1. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture

    NARCIS (Netherlands)

    Rozema, J.; Schat, H.

    2013-01-01

    Halophytes of the lower coastal salt marsh show increased salt tolerance, and under high salinity they grow faster than upper marsh species. We could not show reduced growth rate of halophytes compared with glycophytes when grown under non-saline conditions. This indicates limited energy costs

  2. Crescimento do meloeiro cultivado sob diferentes níveis de salinidade, com e sem cobertura do solo Growth of muskmelon under different levels of salinity, with and without soil covering

    Directory of Open Access Journals (Sweden)

    José F. de Medeiros

    2007-06-01

    area and dry weight of plants. In case of hybrid Trusty the dry weight reduced when water of higher salinity was used. Highest absolute growth rate was verified between 35 and 45 days after planting, and in this period the absolute growth rate decreased with an increase in salinity. The relative growth and liquid assimilation rates were not affected by water salinity, soil covering or hybrid.

  3. Effects of phosphorus on the growth and chlorophyll fluorescence of a Dunaliella salina strain isolated from saline soil under nitrate limitation

    Directory of Open Access Journals (Sweden)

    Tassnapa Wongsnansilp

    2016-12-01

    Full Text Available An isolated Dunaliella salina (D. salina KU XI from saline soils in northeastern Thailand was cultured in f/2 medium in column photobioreactor. The variations of the growth, chlorophyll and beta-carotene content and the maximum quantum yield of PS II photochemistry (Fv/Fm under different NaH2PO4 concentrations were studied. Based on the results, the growth kinetics of D. salina KU XI was established, which could simulate the algae growth rate under different phosphate concentrations and temperatures. The phosphorus could significantly affect the growth and pigments accumulations of this isolated strain. Increasing NaH2PO4 concentration improved the biomass, the total chlorophyll and beta-carotene content, retarded the decrease of Fv/Fm value. The optimal phosphate concentration for the growth of D. salina KU XI was above 72.6 μM. The maximum biomass and beta-carotene were 0.24 g L-1 and 17.4 mg L-1 respectively when NaH2PO4 was 290.4 μM. The algae growth was restrained by phosphate or nitrate when NaH2PO4 below 12.1 μM or above 72.6 μM. It indicated that properly supplementing nitrate in the late growth stage with high phosphate concentration was favored for enhancing the growth and biomass production.

  4. Growth Conditions To Reduce Oxalic Acid Content of Spinach

    Science.gov (United States)

    Johnson-Rutzke, Corinne

    2003-01-01

    A controlled-environment agricultural (CEA) technique to increase the nutritive value of spinach has been developed. This technique makes it possible to reduce the concentration of oxalic acid in spinach leaves. It is desirable to reduce the oxalic acid content because oxalic acid acts as an anti-nutritive calcium-binding component. More than 30 years ago, an enzyme (an oxidase) that breaks down oxalic acid into CO2 and H2O2 was discovered and found to be naturally present in spinach leaves. However, nitrate, which can also be present because of the use of common nitratebased fertilizers, inactivates the enzyme. In the CEA technique, one cuts off the supply of nitrate and keeps the spinach plants cool while providing sufficient oxygen. This technique provides the precise environment that enables the enzyme to naturally break down oxalate. The result of application of this technique is that the oxalate content is reduced by 2/3 in one week.

  5. Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth

    Science.gov (United States)

    Fan, John C. C.; Tsaur, Bor-Yeu; Gale, Ronald P.; Davis, Frances M.

    1986-12-30

    Dislocation densities are reduced in growing semiconductors from the vapor phase by employing a technique of interrupting growth, cooling the layer so far deposited, and then repeating the process until a high quality active top layer is achieved. The method of interrupted growth, coupled with thermal cycling, permits dislocations to be trapped in the initial stages of epitaxial growth.

  6. The effect of temporal variability in salinity on the invasive red alga Gracilaria vermiculophylla

    DEFF Research Database (Denmark)

    Nejrup, Lars Brammer; Pedersen, Morten Foldager

    2012-01-01

    become abundant in many shallow, soft-bottom estuaries. Salinity is important for the local and regional distribution of algae. The distribution of G. vermiculophylla in Europe suggests that it thrives well in hyposaline environments and that it may be more fit than some native algae under...... such conditions. Little, however, is known about the ecophysiology of G. vermiculophylla and it is therefore difficult to predict its spread and future distribution. Laboratory experiments with G. vermiculophylla showed that steady-state salinity above 15 psu was optimal for growth and that the growth rate...... was reduced at salinities below 15 psu. Variable salinity reduced the growth rate and larger oscillations were more stressful than small ones. Exposure to very low salinity (0–5 psu) was stressful for the alga and algae exposed to these low levels for 2–4 days were unable to recover fully. Gracilaria...

  7. Plant growth under salinity and inundation stress: implications for sea-level rise on tidal wetland function

    Science.gov (United States)

    Climate change and sea-level rise (SLR) may increase salinity or inundation duration for tidal wetland organisms. To test the effects of these stressors on wetland productivity, we transplanted seedlings of seven common plant species to polyhaline, mesohaline and oligohaline tida...

  8. Significance of salinity and silicon levels for growth of a formerly estuarine eelgrass (Zostera marina) population (Lake Grevelingen, the Netherlands)

    NARCIS (Netherlands)

    Kamermans, P.; Hemminga, M.A.; De Jong, D.J.

    1999-01-01

    Since the early 1980s, the eelgrass, Zostera marina L., population in the saline Lake Gevelingen, The Netherlands, is rapidly declining. An earlier study, in which long-term data on eelgrass coverage in this former estuary were correlated with several environmental variables, showed only one

  9. Growth and silica content of the diatoms Thalassiosira weissflogii and Navicula salinarum at different salinities and enrichments with aluminium

    NARCIS (Netherlands)

    Vrieling, EG; Poort, L; Beelen, TPM; Gieskes, WWC

    The dependence of the cellular (biogenic) and frustule-associated (mineralized) silica content of the diatoms Navicula salinarum and Thalassiosira weissflogii on salinity and aluminium conditions was studied in order to make it possible to manipulate silicification in vitro and maximize it to levels

  10. Crescimento inicial do cafeeiro irrigado com água salina e salinização do solo Initial growth of coffee plants irrigated with saline water and soil salinization

    Directory of Open Access Journals (Sweden)

    Vladimir B. Figueirêdo

    2006-03-01

    Full Text Available A cultura do cafeeiro (Coffea arabica L. vem-se expandindo para regiões ainda pouco exploradas, em que o uso da irrigação com água salina possa ser fator limitante. Nesse contexto, avaliou-se o crescimento inicial do cafeeiro, conduzido em casa de vegetação do Departamento de Engenharia da Universidade Federal de Lavras (UFLA, submetendo-o a níveis crescentes de salinidade da água de irrigação. O delineamento utilizado foi inteiramente casualizado com 6 tratamentos (S0 = 0,0 dS m-1, S1 = 0,6 dS m-1, S2 = 1,2 dS m-1, S3 = 1,8 dS m-1, S4 = 2,4 dS m-1 e S5 = 3,0 dS m-1 e 4 repetições. A reposição de água foi realizada com base na curva característica do solo, pela leitura da tensão de água por blocos de resistência, retornando o conteúdo de água à capacidade de campo. Verificou-se que os tratamentos influenciaram significativamente as características da planta e que a salinidade da água a partir de 1,2 dS m-1 prejudicou o crescimento e, em alguns casos, provocou a morte das plantas. A área foliar foi a variável mais prejudicada. Ao final do experimento o solo foi classificado como salino-sódico.The coffee crop is expanding to new areas with not enough studies about its response to saline irrigation water. The initial growth of coffee plant was evaluated, in greenhouse at the Engineering Department of the Federal University of Lavras (UFLA, under different levels of irrigation water salinity. The completely randomized design was used with 6 treatments (S0 = 0.0 dS m-1, S1 = 0.6 dS m-1, S2 = 1.2 dS m-1, S3 = 1.8 dS m-1, S4 = 2.4 dS m-1 and S5 = 3.0 dS m-1 and 4 replications. The irrigation was accomplished according to soil water retention curve and resistance block reading, restoring the soil water content to its field capacity. It was verified that water salinity affected the plants characteristics significantly. The water salinity above 1.2 dS m-1 caused damage to plant development resulting, in some cases, in death of

  11. Reducing atelectasis attenuates bacterial growth and translocation in experimental pneumonia

    NARCIS (Netherlands)

    van Kaam, Anton H.; Lachmann, Robert A.; Herting, Egbert; de Jaegere, Anne; van Iwaarden, Freek; Noorduyn, L. Arnold; Kok, Joke H.; Haitsma, Jack J.; Lachmann, Burkhard

    2004-01-01

    Besides being one of the mechanisms responsible for ventilator-induced lung injury, atelectasis also seems to aggravate the course of experimental pneumonia. In this study, we examined the effect of reducing the degree of atelectasis by natural modified surfactant and/or open lung ventilation on

  12. Brassinolide Increases Potato Root GrowthIn Vitroin a Dose-Dependent Way and Alleviates Salinity Stress.

    Science.gov (United States)

    Hu, Yueqing; Xia, Shitou; Su, Yi; Wang, Huiqun; Luo, Weigui; Su, Shengying; Xiao, Langtao

    2016-01-01

    Brassinosteroids (BRs) are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL) affects potato root in vitro growth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01  μ g/L) promoted root elongation and lateral root development, whereas high BL concentrations (1-100  μ g/L) inhibited root elongation. There was a significant ( P plants treated with 50  μ g/L BL showed enhanced salt stress tolerance through in vitro growth. Under this scenario, BL treatment enhanced the proline content and antioxidant enzymes' (superoxide dismutase, peroxidase, and catalase) activity and reduced malondialdehyde content in potato shoots. Application of BL maintain K + and Na + homeostasis by improving tissue K + /Na + ratio. Therefore, we suggested that the effects of BL on root development from stem fragments explants as well as on primary root development are dose-dependent and that BL application alleviates salt stress on potato by improving root activity, root/shoot ratio, and antioxidative capacity in shoots and maintaining K + /Na + homeostasis in potato shoots and roots.

  13. Study of the Effect of Dexamethasone and Normal Saline in Reducing Headache after Spinal Anesthesia in Cesarean Section

    Directory of Open Access Journals (Sweden)

    K Tavakol

    2007-10-01

    Full Text Available Introduction & Objective: Post dural puncture headache (PDPH is a bothersome complication of spinal anesthesia specially in young parturient women after cesarean, which causes not only psychotic and somatic problems, but also increases hospital costs due to delay in patients discharge from hospital. The purpose of this study was to determine the effect of dexamethasone in improvement of complications of PDPH after spinal anesthesia in cesarean section. Materials & Methods: This is a randomised clinical trial in which 35 cases of parturient women, aged 21-44 years, who developed pain in head (PDPH, lumbar, shoulder, or more than one site due to spinal anesthesia after cesarean section in spite of consumption of NSAID drug, opoid, bed rest, rehydration. They received intravenously drip dexamethasone 0.2mg/kg (maximum 16mg in one liter of normal saline for 2 hours. Visual analogue scale (0=no pain, 10=most unbearable pain for patients before and after dexamethasone therapy was used and recorded. Results: The most common complaints of patients were headache (87.5%, low back pain (56.2%, shoulder and neck pain (25%. Results showed that mean of VAS pain score before tretment was 6.5±1.8 and decreased to 1.6±1.2 after treatment indicating a decrease of 77% in pain among the subjects. Conclusion: The advantage of dexamethasone therapy in comparisn with routine supportive therapy is the greater rapidity in pain relief and earlier release of patients from hospital.

  14. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa.

    Science.gov (United States)

    Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R; Zhou, Rong; Hegedus, Dwayne D

    2016-01-01

    Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30-50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content.

  15. Inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression the corresponding acdS gene in transgenic plants increases salinity tolerance in Camelina sativa.

    Directory of Open Access Journals (Sweden)

    Zohreh Heydarian

    2016-12-01

    Full Text Available Camelina sativa (camelina is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30-50 percent under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content.

  16. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity.

    Science.gov (United States)

    Kim, Min-Ji; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Jeong, Eun-Ju; Kim, Jong-Guk; Lee, In-Jung

    2017-07-01

    This study was aimed to identify plant growth-promoting bacterial isolates from soil samples and to investigate their ability to improve plant growth and salt tolerance by analysing phytohormones production and phosphate solubilisation. Among the four tested bacterial isolates (I-2-1, H-1-4, H-2-3, and H-2-5), H-2-5 was able to enhance the growth of Chinese cabbage, radish, tomato, and mustard plants. The isolated bacterium H-2-5 was identified as Bacillus amyloliquefaciens H-2-5 based on 16S rDNA sequence and phylogenetic analysis. The secretion of gibberellins (GA4, GA8, GA9, GA19, and GA20) from B. amyloliquefaciens H-2-5 and their phosphate solubilisation ability may contribute to enhance plant growth. In addition, the H-2-5-mediated mitigation of short term salt stress was tested on soybean plants that were affected by sodium chloride. Abscisic acid (ABA) produced by the H-2-5 bacterium suppressed the NaCl-induced stress effects in soybean by enhancing plant growth and GA4 content, and by lowering the concentration of ABA, salicylic acid, jasmonic acid, and proline. These results suggest that GAs, ABA production, and the phosphate solubilisation capacity of B. amyloliquefaciens H-2-5 are important stimulators that promote plant growth through their interaction and also to improve plant growth by physiological changes in soybean at saline soil.

  17. Co-expression of tonoplast Cation/H(+) antiporter and H(+)-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions.

    Science.gov (United States)

    Bao, Ai-Ke; Du, Bao-Qiang; Touil, Leila; Kang, Peng; Wang, Qiang-Long; Wang, Suo-Min

    2016-03-01

    Salinity and drought are major environmental factors limiting the growth and productivity of alfalfa worldwide as this economically important legume forage is sensitive to these kinds of abiotic stress. In this study, transgenic alfalfa lines expressing both tonoplast NXH and H(+)-PPase genes, ZxNHX and ZxVP1-1 from the xerophyte Zygophyllum xanthoxylum L., were produced via Agrobacterium tumefaciens-mediated transformation. Compared with wild-type (WT) plants, transgenic alfalfa plants co-expressing ZxNHX and ZxVP1-1 grew better with greater plant height and dry mass under normal or stress conditions (NaCl or water-deficit) in the greenhouse. The growth performance of transgenic alfalfa plants was associated with more Na(+), K(+) and Ca(2+) accumulation in leaves and roots, as a result of co-expression of ZxNHX and ZxVP1-1. Cation accumulation contributed to maintaining intracellular ions homoeostasis and osmoregulation of plants and thus conferred higher leaf relative water content and greater photosynthesis capacity in transgenic plants compared to WT when subjected to NaCl or water-deficit stress. Furthermore, the transgenic alfalfa co-expressing ZxNHX and ZxVP1-1 also grew faster than WT plants under field conditions, and most importantly, exhibited enhanced photosynthesis capacity by maintaining higher net photosynthetic rate, stomatal conductance, and water-use efficiency than WT plants. Our results indicate that co-expression of tonoplast NHX and H(+)-PPase genes from a xerophyte significantly improved the growth of alfalfa, and enhanced its tolerance to high salinity and drought. This study laid a solid basis for reclaiming and restoring saline and arid marginal lands as well as improving forage yield in northern China. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Reduced Tonoplast Fast-Activating and Slow-Activating Channel Activity Is Essential for Conferring Salinity Tolerance in a Facultative Halophyte, Quinoa1[C][W][OA

    Science.gov (United States)

    Bonales-Alatorre, Edgar; Shabala, Sergey; Chen, Zhong-Hua; Pottosin, Igor

    2013-01-01

    Halophyte species implement a “salt-including” strategy, sequestering significant amounts of Na+ to cell vacuoles. This requires a reduction of passive Na+ leak from the vacuole. In this work, we used quinoa (Chenopodium quinoa) to investigate the ability of halophytes to regulate Na+-permeable slow-activating (SV) and fast-activating (FV) tonoplast channels, linking it with Na+ accumulation in mesophyll cells and salt bladders as well as leaf photosynthetic efficiency under salt stress. Our data indicate that young leaves rely on Na+ exclusion to salt bladders, whereas old ones, possessing far fewer salt bladders, depend almost exclusively on Na+ sequestration to mesophyll vacuoles. Moreover, although old leaves accumulate more Na+, this does not compromise their leaf photochemistry. FV and SV channels are slightly more permeable for K+ than for Na+, and vacuoles in young leaves express less FV current and with a density unchanged in plants subjected to high (400 mm NaCl) salinity. In old leaves, with an intrinsically lower density of the FV current, FV channel density decreases about 2-fold in plants grown under high salinity. In contrast, intrinsic activity of SV channels in vacuoles from young leaves is unchanged under salt stress. In vacuoles of old leaves, however, it is 2- and 7-fold lower in older compared with young leaves in control- and salt-grown plants, respectively. We conclude that the negative control of SV and FV tonoplast channel activity in old leaves reduces Na+ leak, thus enabling efficient sequestration of Na+ to their vacuoles. This enables optimal photosynthetic performance, conferring salinity tolerance in quinoa species. PMID:23624857

  19. Hinokitiol Enhanced Vegetative Growth Parameters of Tomato cv. �Falkato� Compared with Salicylic Acid and Paclobutrazol under In Vitro Salinity Condition

    Directory of Open Access Journals (Sweden)

    Behrooz ESMAEILPOUR

    2012-02-01

    Full Text Available The aim of this study was to assess the potential in vitro effect of hinokitiol on improvement of tomato seedling resistance to salinity stress. Effect of hinokitiol was compared with two anti-stress compounds, salicylic acid and paclobutrazol. Leaf numbers, shoot and root fresh weight and root fresh weight were recorded after about 8 weeks. Salt stress was accomplished by application of two levels of pure NaCl (50 and 100 mM on MS basal medium. The treatments consisted of different concentrations of hinokitiol (0, 1, 5 and 10 ppm, paclobutrazol (0, 1, 2 and 4 ?M and salicylic acid (0, 0.01, 0.1 and 1 mM. Results revealed that salinity blocked seed germination in media containing only 100 mM of pure NaCl without any treatment. In general all three compounds increased tomato seedling growth, indicating these compounds are able to alleviate the negative effect of salinity on tomato plants. However, Hinokitiol was the most efficient compound. Compared with SA, application of hinokitiol significantly increased leaf numbers, shoot length and shoot and root dry weight. Also, media containing different concentrations of hinokitiol produced higher root and shoot fresh weight than control and other treatments. Future physiological studies are needed to clarify the mechanism of induction of salt tolerance activity by hinokitiol.

  20. Cloning of growth hormone, somatolactin, and their receptor mRNAs, their expression in organs, during development, and on salinity stress in the hermaphroditic fish, Kryptolebias marmoratus.

    Science.gov (United States)

    Rhee, Jae-Sung; Kim, Bo-Mi; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2012-04-01

    Salinity is an important parameter that affects survival and metabolism in fish. In fish, pituitary growth hormone (GH) regulates physiological functions including adaptation to different salinity as well as somatic growth. GH is stimulated by growth hormone-releasing hormone (GHRH) and exerts its function via binding to growth hormone receptor (GHR). As Kryptolebias marmoratus is a euryhaline fish, this species would be a useful model species for studying the adaptation to osmotic stress conditions. Here, we cloned GH, -GHR, somatolactin (SL), and somatolactin receptor (SLR) genes, and analyzed their expression patterns in different tissues and during early developmental stages by using real-time RT-PCR. We also further examined expression of them after acclimation to different salinity. Tissue distribution studies revealed that Km-GH and -SL mRNAs were remarkably expressed in brain and pituitary, whereas Km-GHR and -SLR mRNAs were predominantly expressed in liver, followed by gonad, muscle, pituitary, and brain. During embryonic developmental stages, the expression of their mRNA was increased at stage 3 (9 dpf). The Km-GH and -SL mRNA transcripts were constantly elevated until stage 5 (5h post hatch), whereas Km-GHR and -SLR mRNA levels decreased at this stage. After we transferred K. marmoratus from control (12 psu) to hyper-osmotic condition (hyperseawater, HSW; 33 psu), Km-GH, -SL, and GHR mRNA levels were enhanced. In hypo-osmotic conditions like freshwater (FW), Km-GH and -SL expressions were modulated 24 h after exposure, and Km-SLR transcripts were significantly upregulated. This finding suggests that Km-GH and -SL may be involved in the osmoregulatory mechanism under hyper-osmotic as well as hypo-osmotic stress. This is the first report on transcriptional modulation and relationship of GH, GHR, SL, and SLR during early development and after salinity stress. This study will be helpful to a better understanding on molecular mechanisms of adaptation response

  1. An enriched environment reduces the stress level and locomotor activity induced by acute morphine treatment and by saline after chronic morphine treatment in mice.

    Science.gov (United States)

    Xu, Jia; Sun, Jinling; Xue, Zhaoxia; Li, Xinwang

    2014-06-18

    This study investigated the relationships among an enriched environment, stress levels, and drug addiction. Mice were divided randomly into four treatment groups (n=12 each): enriched environment without restraint stress (EN), standard environment without restraint stress (SN), enriched environment with restraint stress (ES), and standard environment with restraint stress (SS). Mice were reared in the respective environment for 45 days. Then, the ES and SS groups were subjected to restraint stress daily (2 h/day) for 14 days, whereas the EN and SN groups were not subjected to restraint stress during this stage. The stress levels of all mice were tested in the elevated plus maze immediately after exposure to restraint stress. After the 2-week stress testing period, mice were administered acute or chronic morphine (5 mg/kg) treatment for 7 days. Then, after a 7-day withdrawal period, the mice were injected with saline (1 ml/kg) or morphine (5 mg/kg) daily for 2 days to observe locomotor activity. The results indicated that the enriched environment reduced the stress and locomotor activity induced by acute morphine administration or saline after chronic morphine treatment. However, the enriched environment did not significantly inhibit locomotor activity induced by morphine challenge. In addition, the stress level did not mediate the effect of the enriched environment on drug-induced locomotor activity after acute or chronic morphine treatment.

  2. Nebulized hypertonic saline treatment reduces both rate and duration of hospitalization for acute bronchiolitis in infants: an updated meta-analysis.

    Science.gov (United States)

    Chen, Yen-Ju; Lee, Wen-Li; Wang, Chuang-Ming; Chou, Hsin-Hsu

    2014-12-01

    Nebulized hypertonic saline (HS) treatment reduced the length of hospitalization in infants with acute bronchiolitis in a previous meta-analysis. However, there was no reduction in the admission rate. We hypothesized that nebulized HS treatment might significantly decrease both the duration and the rate of hospitalization if more randomized controlled trials (RCTs) were included. We searched MEDLINE, PubMed, CINAHL, and the Cochrane Central Register of Controlled Trials (CENTRAL) without a language restriction. A meta-analysis was performed based on the efficacy of nebulized HS treatment in infants with acute bronchiolitis. We used weighted mean difference (WMD) and risk ratio as effect size metrics. Eleven studies were identified that enrolled 1070 infants. Nebulized HS treatment significantly decreased the duration and rate of hospitalization compared with nebulized normal saline (NS) [duration of hospitalization: WMD = -0.96, 95% confidence interval (CI) = -1.38 to -0.54, p bronchiolitis infants post-treatment (Day 1: WMD = -0.77, 95% CI = -1.30 to -0.24, p = 0.005; Day 2: WMD = -0.85, 95% CI = -1.30 to -0.39, p bronchiolitis in infants. Copyright © 2014. Published by Elsevier B.V.

  3. Crescimento de meloeiro e acúmulo de nutrientes na planta sob irrigação com águas salinas Cantaloupe growth and accumulation of nutrients in the plant under saline water irrigation

    Directory of Open Access Journals (Sweden)

    Michelangelo de O. Silva

    2008-12-01

    Full Text Available Neste trabalho, utilizaram-se 4 tipos de solo da região de Mossoró, RN, tradicionalmente cultivados com meloeiro, irrigados com soluções preparadas para corresponderem a oito valores de condutividade elétrica (CE = 100, 250, 500, 750, 1250, 1750, 2250 e 3000 µS cm-1, e dois de relação de adsorção de sódio [RAS = 4 e 12 (mmol L-1½], combinados como tratamentos de salinidade; assim, o experimento foi arranjo fatorial 4 x 8 x 2 (quatro solos, oito CE e duas RAS, em três repetições, contabilizando-se 192 unidades experimentais. O delineamento experimental foi em blocos casualizados, com uma repetição por bloco. Avaliaram-se variáveis de planta (produção de matéria fresca e seca da parte aérea e composição mineral. A produção de matéria fresca e seca de meloeiro foi reduzida com o aumento da salinidade da água nos dois cultivos sucessivos, causando morte das plantas no segundo cultivo, poucos dias após o transplantio. O incremento da salinidade da água promoveu elevação nos conteúdos acumulados de Ca, Mg, Na, K e Cl nas planta de meloeiro.This study was conducted in a greenhouse at the Environmental Sciences Department of the Federal Rural University for the Semi-Árid. Four soil types, traditionally used for cantaloupe production in the Mossoró Region, were used and irrigated with solutions corresponding to eight electrical conductivities (EC = 100; 250; 500; 750; 1,250; 1,750; 2,250 and 3,000 µS cm-1 and two sodium adsorption ratios [SAR = 4 and 12 (mmol L-1½], combined as salinity treatments. The experiment was a factorial arrangement of 4 x 8 x 2 (four soils, eight EC and two SAR, with three replicates, and 192 experimental units, in a randomized block design. Plant characteristics (fresh and dry matter production and mineral composition were evaluated. Fresh and dry cantaloupe production was reduced with increased water salinity in two successive crops, leading to plant death a few days after transplanting in

  4. Bulk Moisture and Salinity Sensor

    Science.gov (United States)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  5. Effects of Humic Acid-based Cation Buffer on Chemical Characteristics of Saline Soil and Growth of Maize

    OpenAIRE

    Mindari, W; N. Aini; Z Kusuma; Syekhfani, S

    2014-01-01

    Humic acid is believed to maintain the stability of the soil reaction, adsorption / fixation / cationic chelate, thereby increasing the availability of water and plant nutrients. On the other hand, the dynamics of saline soil cation is strongly influenced by the change of seasons that disrupt water and nutrient uptake of plants. This experiment was aimed to examine the characteristics of the humic acid from compost, coal, and peat and its function in the adsorption of cations (K+ and NH4+), t...

  6. Effect of Thiamine, Ascorbic acid and Gibberellic acid (GA3 on Growth Characteristics, Pigment Content and Reduced Sugars of Petunia

    Directory of Open Access Journals (Sweden)

    moslem salehi

    2017-02-01

    analyzed using statistical package SAS and means were compared using LSD test at the level of statistical significance of P˂0.05. Results and Discussion: The results indicated that GA3 affected all the measured characteristics except carotenoids in comparison with thiamine and ascorbic acid. Meanwhile, the combined application of GA3 and ascorbic acid affected stem growth, root growth and flower diameter. Simultaneous use of GA3 and thiamine was effective on pigments, reducing sugar, carotenoids and flower number. The simultaneous application of three chemicals resulted in a considerable increase in growth and development traits, such as stem and root growth, flower number and diameter, pigments and reducing sugar compared to control. Generally, gibberellic acid will increase vegetative growth with impress cellular processes, including stimulation cell division and cell elongation. It was reported that the uses of ascorbic acid and gibberellic acid in Thyme (Thymus vulgaris increased plant height and root length. Ascorbic acid makes a set of functions such as cell division and enlargements, cell wall development and other developmental processes in plants. Ascorbic acid affects plasma membrane proton pump and according to the acidic theory stimulates weaking cell wall and consequently will increase cell wall development and cell enlargement. It was found that thiamine significantly increased flower number in chrysanthemum . Conclusion: The results indicated that the synergistic effects of this material can be used to enhance the growth and development of petunia. On the other hand, in arid and semiarid areas of the country, that drought and salinity stresses somewhat inevitable, these materials, especially vitamins are effective in reducing stress and increase flowering period.

  7. Osmotic and hydraulic adjustment of mangrove saplings to extreme salinity.

    Science.gov (United States)

    Méndez-Alonzo, Rodrigo; López-Portillo, Jorge; Moctezuma, Coral; Bartlett, Megan K; Sack, Lawren

    2016-12-01

    Salinity tolerance in plant species varies widely due to adaptation and acclimation processes at the cellular and whole-plant scales. In mangroves, extreme substrate salinity induces hydraulic failure and ion excess toxicity and reduces growth and survival, thus suggesting a potentially critical role for physiological acclimation to salinity. We tested the hypothesis that osmotic adjustment, a key type of plasticity that mitigates salinity shock, would take place in coordination with declines in whole-plant hydraulic conductance in a common garden experiment using saplings of three mangrove species with different salinity tolerances (Avicennia germinans L., Rhizophora mangle L. and Laguncularia racemosa (L.) C.F. Gaertn., ordered from higher to lower salinity tolerance). For each mangrove species, four salinity treatments (1, 10, 30 and 50 practical salinity units) were established and the time trajectories were determined for leaf osmotic potential (Ψs), stomatal conductance (gs), whole-plant hydraulic conductance (Kplant) and predawn disequilibrium between xylem and substrate water potentials (Ψpdd). We expected that, for all three species, salinity increments would result in coordinated declines in Ψs, gs and Kplant, and that the Ψpdd would increase with substrate salinity and time of exposure. In concordance with our predictions, reductions in substrate water potential promoted a coordinated decline in Ψs, gs and Kplant, whereas the Ψpdd increased substantially during the first 4 days but dissipated after 7 days, indicating a time lag for equilibration after a change in substratum salinity. Our results show that mangroves confront and partially ameliorate acute salinity stress via simultaneous reductions in Ψs, gs and Kplant, thus developing synergistic physiological responses at the cell and whole-plant scales. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Brassinolide Increases Potato Root Growth In Vitro in a Dose-Dependent Way and Alleviates Salinity Stress

    Directory of Open Access Journals (Sweden)

    Yueqing Hu

    2016-01-01

    Full Text Available Brassinosteroids (BRs are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL affects potato root in vitro growth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01 μg/L promoted root elongation and lateral root development, whereas high BL concentrations (1–100 μg/L inhibited root elongation. There was a significant (P<0.05 positive correlation between root activity and BL concentrations within a range from 0.01 to 100 μg/L, with the peak activity of 8.238 mg TTC·g−1 FW·h−1 at a BL concentration of 100 μg/L. Furthermore, plants treated with 50 μg/L BL showed enhanced salt stress tolerance through in vitro growth. Under this scenario, BL treatment enhanced the proline content and antioxidant enzymes’ (superoxide dismutase, peroxidase, and catalase activity and reduced malondialdehyde content in potato shoots. Application of BL maintain K+ and Na+ homeostasis by improving tissue K+/Na+ ratio. Therefore, we suggested that the effects of BL on root development from stem fragments explants as well as on primary root development are dose-dependent and that BL application alleviates salt stress on potato by improving root activity, root/shoot ratio, and antioxidative capacity in shoots and maintaining K+/Na+ homeostasis in potato shoots and roots.

  9. Influence of salinity and boron on germination, seedling growth and transplanting mortality of guayule: a combined growth chamber and greenhouse study

    Science.gov (United States)

    Guayule (Parthenium argentatum A.Gray), a drought tolerant plant, originating from southwestern United States and northern Mexico, is considered to be a promising rubber-producing plant for arid and semiarid areas. To evaluate the potential of guayule as an alternative crop for saline boron-laden so...

  10. Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity.

    Science.gov (United States)

    Ullah, Sami; Bano, Asghari

    2015-04-01

    The present investigation was aimed to scrutinize the salt tolerance potential of plant-growth-promoting rhizobacteria (PGPR) isolated from rhizospheric soil of selected halophytes (Atriplex leucoclada, Haloxylon salicornicum, Lespedeza bicolor, Suaeda fruticosa, and Salicornica virginica) collected from high-saline fields (electrical conductivity 4.3-5.5) of District Mardan, Pakistan. Five PGPR strains were identified using 16S rRNA amplification and sequence analysis. Bacillus sp., isolated from rhizospheric soil of Atriplex leucoclada, and Arthrobacter pascens, isolated from rhizospheric soil of Suaeda fruticosa, are active phosphate solubilizers and bacteriocin and siderophore producers; hence, their inoculation and co-inoculation on maize ('Rakaposhi') under induced salinity stress enhanced shoot and root length and shoot and root fresh and dry mass. The accumulation of osmolytes, including sugar and proline, and the elevation of antioxidant enzymes activity, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, were enhanced in the maize variety when inoculated and co-inoculated with Bacillus sp. and Arthrobacter pascens. The PGPR (Bacillus sp. and A. pascens) isolated from the rhizosphere of the mentioned halophytes species showed reliability in growth promotion of maize crop in all the physiological parameters; hence, they can be used as bio-inoculants for the plants growing under salt stress.

  11. Crescimento do pinhão-manso irrigado com águas salinas em ambiente protegido Growth of Jatropha irrigated with saline water in greenhouse

    Directory of Open Access Journals (Sweden)

    Aparecida R. Nery

    2009-10-01

    Full Text Available Considerando as potencialidades de uso do pinhão manso (Jatropha curcas L. como fonte energética e a carência de resultados de pesquisa relativos ao seu cultivo, realizou-se este trabalho com o fim primordial de se estudar os efeitos da salinidade da água de irrigação sobre o crescimento das plantas, em ambiente protegido. A pesquisa foi desenvolvida entre abril e outubro de 2007, no Centro de Tecnologia e Recursos Naturais (CTRN da UFCG-PB. As plantas foram cultivadas em lisímetros de drenagem (200 L, contendo 230 kg de material de solo devidamente adubado, não-salino, não-sódico, classificado como Argissolo Acinzentado eutrófico. Os tratamentos consistiram de cinco níveis de condutividade elétrica da água de irrigação - CEa (0,6; 1,2; 1,8; 2,4 e 3,0 dS m-1, a 25 ºC, no delineamento experimental em blocos casualizados, com quatro repetições, sendo cada parcela constituída pela média de duas plantas cultivadas em lisímetros separados. Avaliaram-se altura de planta, diâmetro caulinar, número de folhas e área foliar aos 37, 58, 79, 100, 121, 142 e 163 dias após a semeadura; ao final do período de estudos, o pinhão-manso irrigado com água de CEa de 3,0 dS m-1 teve a altura de planta, o diâmetro caulinar, o número de folhas e a área foliar reduzidos em 9,07, 17,63, 23,41 e 42,58%, respectivamente.The objective of this work was to evaluate the effects of irrigation water salinity on the growth of Jatropha curcas L. in greenhouse. The research was carried out during April and October of 2007, in a greenhouse of the Department of Agricultural Engineering of the Natural Resources and Technology Center (CTRN of Federal University of Campina Grande, Paraíba, Brazil. The plants were grown in drainage lysimeters (200 L with 230 kg of non-saline, non-sodic soil adequately fertilized, classified as Gray Argisol eutrophic. The treatments consisted of five levels of electrical conductivity of the irrigation water - CEw (0.6, 1

  12. Produção do algodoeiro em função da salinidade e tratamento de sementes com regulador de crescimento Cotton yield as a function of salinity and seeds treatment with growth regulator

    Directory of Open Access Journals (Sweden)

    Francisco de Assis de Oliveira

    2012-06-01

    Full Text Available Este trabalho foi realizado com o objetivo de avaliar o efeito de diferentes níveis de salinidade da água de irrigação e sementes tratadas com regulador de crescimento na produção do algodoeiro. O delineamento experimental adotado foi inteiramente ao acaso, arranjados em esquema fatorial 5 x 2 com quatro repetições. Os tratamentos resultaram da combinação de cinco níveis de condutividade elétrica da água de irrigação (S1-0,5; S2-2,0; S3-3,5; S4-5,0 e S5-6,5 dS m-1 em sementes tratadas e não tratadas com regulador de crescimento. As variáveis avaliadas foram: produção de algodão em caroço, produção de sementes e de fibra, peso de 100 sementes e porcentagem de fibra. Não houve interação entre os níveis de salinidades e as sementes tratadas com regulador de crescimento. Os parâmetros produtivos do algodoeiro são reduzidos com uso de água de salinidade a partir de 3,5 dS m-1, independente das sementes serem tratadas com regulador de crescimento. As características agronômicas: peso de 100 sementes, porcentagem de fibra e produção de algodão em caroço não são influenciadas pelo cloreto de mepiquat. O tratamento das sementes com regulador de crescimento não afeta o efeito adverso da salinidade.This study was conducted to evaluate the effect of different salinity levels of irrigation water and seed treated with growth regulator on the yield of cotton. It was used an entirely statistical randomized design, in a factorial scheme 5 x 2, with four replications. The treatments resulted from the combination of four salinity levels of irrigation water (S1-0.5; S2-2.0; S3-3.5; S4-5.0 and S5-6.5 dS m-1 in treated and untreated seeds with growth regulator. The variables were: production of cotton, seed and fiber, 100 seed weight and percentage of fiber. There was not interaction between salinity levels and seed treated. The parameters of cotton production are reduced with the use of water salinity from 3.5 dS m-1

  13. Salinity tolerance of 'Valencia' orange trees on rootstocks with contrasting salt tolerance is not improved by moderate shade.

    Science.gov (United States)

    García-Sánchez, F; Syvertsen, J P; Martínez, V; Melgar, J C

    2006-01-01

    The effects of shading in combination with salinity treatments were studied in citrus trees on two rootstocks with contrasting salt tolerance to determine if shading could reduce the negative effects of salinity stress. Well-nourished 2-year-old 'Valencia' orange trees grafted on Cleopatra mandarin (Cleo, relatively salt tolerant) or Carrizo citrange (Carr, relatively salt sensitive), were grown either under a 50% shade cloth or left unshaded in full sunlight. Half the trees received no salinity treatment and half were salinized with 50 mM Cl- during two 9 week salinity periods in the spring and autumn interrupted by an 11 week rainy period. The shade treatment reduced midday leaf temperature and leaf-to-air vapour pressure deficit regardless of salinity treatments. In non-salinized trees, shade increased midday CO2 assimilation rate (A(CO2)) and stomatal conductance, but had no effect on leaf transpiration (E(lf)). Shade also increased leaf chlorophyll and photosynthetic water use efficiency (A(CO2)/E(lf)) in leaves on both rootstocks and increased total plant dry weight in Cleo. The salinity treatment reduced leaf growth and leaf gas exchange parameters. Shade decreased Cl- concentrations in leaves of salinized Carr trees, but had no effect on leaf or root Cl- of trees on Cleo. There were no significant differences in leaf gas exchange parameters of shaded and unshaded salinized plants but the growth reduction from salinity stress was actually greater for shaded than for unshaded trees. Shaded trees on both rootstocks had higher leaf Na+ than unshaded trees after the first salinity period, and this shade-induced elevated leaf Na+ persisted after the second salinity period in trees on Carr. Thus, shading did not alleviate the negative effects of salinity on growth and Na+ accumulation.

  14. Effect of reduced light and low oxygen concentration on germination, growth and establishment of some plants

    DEFF Research Database (Denmark)

    Yasin, Muhammad

    Many abiotic factors effect plants germination, growth, and development. This Ph.D. study elucidates the effect of reduced light, low oxygen and seed dormancy on germination and growth of some weed species, field crops and vegetables. One study describes the growth and developmental responses of ...... improved the germination of the problematic invader Alliaria petiolate of North American forests. A method was developed to break seed dormancy of the herb garlic mustard using chemicals....

  15. Evaluation of Quantitative and Qualitative Characteristic of Forage Kochia (Kochia scoparia in Different Salinity Levels and Time

    Directory of Open Access Journals (Sweden)

    J Nabati

    2015-04-01

    Full Text Available Increase salinity in soil and water resourses in agricultural lands has created major challenges in crops production. Kochia can grow under saline conditions and used as fodder in dry and saline areas. Therefore, three experiments was conducted in complete randomize design with four replication, to study effects of different levels of salinity (0, 10, 20, 30, 40, 50 and 60 dS m-1 at different growth stages (planting and early seedling and salinity appllication intervally. Results of applying saline water at the beginning of growth showed that kochia seedling was able to survive up to 30 dS m-1 sodium chloride. The results showed that increasing salinity at planting and early seedling satge reduced plant height, branches number, shoot fresh and dry weight, and increased digestible dry matter, digestive value, and crude protein yield. On the other hand with increasing salinity digestibility of dry matter, organic matter digestibility, crude protein and ash percentage were increased. Total phenol was not significantly affected by salinity in all treatments. Application of salinity intermittently at early seedling except of digestive value and ash percentage had no significant affect on other treats. Generally, results showed that the kochia seedlings are sensitive to salinity higher than 30 dS m-1 and also kochia be able to keep biomass production with salinity appllication intervally.

  16. Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments.

    Science.gov (United States)

    Kaye, Jonathan Z; Baross, John A

    2004-10-01

    Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30 degrees C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30 degrees C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30 degrees C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30 degrees C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.

  17. Effects of dietary chlorogenic acid on growth performance, antioxidant capacity of white shrimp Litopenaeus vannamei under normal condition and combined stress of low-salinity and nitrite.

    Science.gov (United States)

    Wang, Yun; Li, Zheng; Li, Jian; Duan, Ya-Fei; Niu, Jin; Wang, Jun; Huang, Zhong; Lin, Hei-Zhao

    2015-04-01

    An eight-week feeding trial followed by an acute combined stress test of low-salinity and nitrite were performed to evaluate effects of chlorogenic acid (CGA) on growth performance and antioxidant capacity of white shrimp Litopenaeus vannamei. Shrimp were randomly allocated in 12 tanks (30 shrimp per tank) and triplicate tanks were fed with a control diet or diets containing different levels of CGA (100, 200 and 400 mg kg(-1) feed) as treatment groups. Growth performance including weight gain (WG), biomass gain (BG), feed conversion ratio (FCR), and feed intake were determined after feeding for 56 days. Antioxidant capacity were evaluated by determining the activity of total antioxidant status (TAS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) as well as the gene expression of GSH-Px and CAT in the hepatopancreas of shrimp at the end of feeding trial and again at the end of the combined stress test. The results indicated that supplemention of CGA had no significant effects on the growth performance and the activities of TAS, SOD, GSH-Px and CAT in hepatopancreas of shrimp cultured under normal conditions for 56 days. However, compared with the control group, CGA (200, 400 mg kg(-1) feed) significantly improved the resistance of L. vannamei against the combined stress of low-salinity and nitrite, as indicated by the significant (P vannamei and could be a potential feed additive that can enhance shrimp resistance against environmental stresses. The recommended application dosage is 200 mg kg(-1) and further studies are needed to clarify the action model of CGA efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil].

    Science.gov (United States)

    Jiao, Hai-hua; Cui, Bing-jian; Wu, Shang-hua; Bai, Zhi-hui; Huang, Zhan-bin

    2015-09-01

    In order to explore the effect of Mirabilis jalapa Linn. growth on the structure characteristics of the microbial community and the degradation of petroleum hydrocarbon (TPH) in the petroleum-contaminated saline-alkali soil, Microbial biomass and species in the rhizosphere soils of Mirabilis jalapa Linn. in the contaminated saline soil were studied with the technology of phospholipid fatty acids (PLFAs) analysis. The results showed that comparing to CK soils without Mirabilis jalapa Linn., the ratio of PLFAs species varied were 71. 4%, 69. 2% and 33. 3% in the spring, summer and autumn season, respectively. In addition, there was distinct difference of the biomasses of the microbial community between the CK and rhizosphere soils and among the difference seasons of growth of Mirabilis jalapa Linn.. Compare to CK soil, the degradation rates of total petroleum hydrocarbon (TPH) was increased by 47. 6%, 28. 3%, and 18. 9% in spring, summer, and autumn rhizosphere soils, respectively. Correlation analysis was used to determine the correlation between TPH degradation and the soil microbial community. 77. 8% of the total soil microbial PLFAs species showed positive correlation to the TPH degradation (the correlation coefficient r > 0), among which, 55. 6% of PLFAs species showed high positive correlation(the correlation coefficient was r≥0. 8). In addition, the relative content of SAT and MONO had high correlation with TPH degradation in the CK sample soils, the corelation coefficient were 0. 92 and 0. 60 respectively; However, the percent of positive correlation was 42. 1% in the rhizosphere soils with 21. 1% of them had high positive correlation. The relative content of TBSAT, MONO and CYCLO had moderate or low correlation in rhizosphere soils, and the correlation coefficient were 0. 56, 0. 50, and 0. 07 respectively. Our study showed that the growth of mirabilis Mirabilis jalapa Linn. had a higher influence on the species and biomass of microbial community in the

  19. Salinity Energy.

    Science.gov (United States)

    Schmitt, Walter R.

    1987-01-01

    Discussed are the costs of deriving energy from the earth's natural reserves of salt. Argues that, as fossil fuel supplies become more depleted in the future, the environmental advantages of salinity power may prove to warrant its exploitation. (TW)

  20. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris.

    Science.gov (United States)

    Pandit, Priti Raj; Fulekar, Madhusudan H; Karuna, Mallampalli Sri Lakshmi

    2017-05-01

    Two microalgae strains including Chlorella vulgaris and Acutodesmus obliquus were grown on BG11 medium with salinity stress ranging from 0.06 to 0.4 M NaCl. Highest lipid content in C. vulgaris and A. obliquus was 49 and 43% in BG11 amended with 0.4 M NaCl. The microalgal strains C. vulgaris and A. obliquus grow better at 0.06 M NaCl concentration than control condition. At 0.06 M NaCl, improved dry biomass content in C. vulgaris and A. obliquus was 0.92 and 0.68 gL-1, respectively. Stress biomarkers like reactive oxygen species, antioxidant enzyme catalase, and ascorbate peroxidase were also lowest at 0.06 M NaCl concentration revealing that both the microalgal strains are well acclimatized at 0.06 M NaCl concentration. The fatty acid composition of the investigated microalgal strains was also improved by increased NaCl concentration. At 0.4 M NaCl, palmitic acid (37%), oleic acid (15.5%), and linoleic acid (20%) were the dominant fatty acids in C. vulgaris while palmitic acid (54%) and stearic acid (26.6%) were major fatty acids found in A. obliquus. Fatty acid profiling of C. vulgaris and A. obliquus significantly varied with salinity concentration. Therefore, the study showed that salt stress is an effective stress that could increase not only the lipid content but also improved the fatty acid composition which could make C. vulgaris and A. obliquus potential strains for biodiesel production.

  1. Beyond reduced-impact logging: silvicultural treatments to increase growth rates of tropical trees

    NARCIS (Netherlands)

    Peña-Claros, M.; Fredericksen, T.S.; Alarcón, A.; Blate, G.M.; Choque, U.; Leaño, C.; Licona, J.C.; Mostacedo, B.; Pariona, W.; Villegas, Z.; Putz, F.E.

    2008-01-01

    Use of reduced-impact logging (RIL) techniques has repeatedly been shown to reduce damage caused by logging. Unfortunately, these techniques do not necessarily ameliorate the low growth rates of many commercial species or otherwise assure recovery of the initial volume harvested during the next

  2. Minimally invasive assessment of the effect of mannitol and hypertonic saline therapy on traumatic brain edema using measurements of reduced scattering coefficient (μs').

    Science.gov (United States)

    Xie, Jieru; Qian, Zhiyu; Yang, Tianming; Li, Weitao; Hu, Guangxia

    2010-10-01

    Minimally invasive functional near infrared spectroscopy (fNIRs) technology was utilized to assess the effects of mannitol and hypertonic saline (HS) in treating traumatic brain edema (TBE). Rats with TBE models were given mannitol or HS in different dosages for different groups. The reduced scattering coefficient (μ(s)') of the local cortex of rats was simultaneously monitored and recorded in vivo and real time by the minimally invasive fNIRs system. Brain water content (BWC) was measured by the wet and dry weight method at 1, 6, 24, 72, and 120 h after injury and treatment. Effects of treating TBE with different dehydration agents were then assessed by recording μ(s)' and BWC before and after administration of dehydration. In this study, the dynamic changes of brain edema and the effects of dehydration therapy were continuously monitored. Results implied that μ(s)' of the local cortex in rats is a good indicator for assessing effects of treatment of TBE. By recording changes in the value of μ(s)', the following conclusions were obtained: HS is more effective than mannitol in reducing cerebral edema. The effect of dehydration of HS is only related to osmotic gradient and has no correlation with concentration.

  3. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth

    Energy Technology Data Exchange (ETDEWEB)

    Stagg, Brian C., E-mail: briancstagg@gmail.com; Uehara, Hironori; Lambert, Nathan; Rai, Ruju; Gupta, Isha; Radmall, Bryce; Bates, Taylor; Ambati, Balamurali K. [John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132 (United States)

    2014-11-26

    Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.

  4. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins.

    Science.gov (United States)

    Stoks, Robby; De Block, Marjan

    2011-02-24

    Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored. Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance. WE PROVIDE EVIDENCE FOR A NOVEL COST OF RAPID GROWTH: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adult stage and highlights the importance of physiological costs in the evolution of life-histories at macro-scales.

  5. CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum.

    Science.gov (United States)

    Vivek, Padmanabhan Jayanthi; Tuteja, Narendra; Soniya, Eppurathu Vasudevan

    2013-01-01

    In plants, transient changes in calcium concentrations of cytosol have been observed during stress conditions like high salt, drought, extreme temperature and mechanical disturbances. Calcium-dependent protein kinases (CDPKs) play important roles in relaying these calcium signatures into downstream effects. In this study, a stress-responsive CDPK gene, ZoCDPK1 was isolated from a stress cDNA generated from ginger using rapid amplification of cDNA ends (RLM-RACE) - PCR technique and characterized its role in stress tolerance. An important aspect seen during the analysis of the deduced protein is a rare coupling between the presence of a nuclear localization sequence in the junction domain and consensus sequence in the EF-hand loops of calmodulin-like domain. ZoCDPK1 is abundantly expressed in rhizome and is rapidly induced by high-salt stress, drought, and jasmonic acid treatment but not by low temperature stress or abscissic acid treatment. The sub-cellular localization of ZoCDPK1-GFP fusion protein was studied in transgenic tobacco epidermal cells using confocal laser scanning microscopy. Over-expression of ginger CDPK1 gene in tobacco conferred tolerance to salinity and drought stress as reflected by the high percentage of seed germination, higher relative water content, expression of stress responsive genes, higher leaf chlorophyll content, increased photosynthetic efficiency and other photosynthetic parameters. In addition, transgenic tobacco subjected to salinity/drought stress exhibited 50% more growth during stress conditions as compared to wild type plant during normal conditions. T3 transgenic plants are able to grow to maturity, flowers early and set viable seeds under continuous salinity or drought stress without yield penalty. The ZoCDPK1 up-regulated the expression levels of stress-related genes RD21A and ERD1 in tobacco plants. These results suggest that ZoCDPK1 functions in the positive regulation of the signaling pathways that are involved in the

  6. CDPK1 from Ginger Promotes Salinity and Drought Stress Tolerance without Yield Penalty by Improving Growth and Photosynthesis in Nicotiana tabacum

    Science.gov (United States)

    Vivek, Padmanabhan Jayanthi; Tuteja, Narendra; Soniya, Eppurathu Vasudevan

    2013-01-01

    In plants, transient changes in calcium concentrations of cytosol have been observed during stress conditions like high salt, drought, extreme temperature and mechanical disturbances. Calcium-dependent protein kinases (CDPKs) play important roles in relaying these calcium signatures into downstream effects. In this study, a stress-responsive CDPK gene, ZoCDPK1 was isolated from a stress cDNA generated from ginger using rapid amplification of cDNA ends (RLM-RACE) – PCR technique and characterized its role in stress tolerance. An important aspect seen during the analysis of the deduced protein is a rare coupling between the presence of a nuclear localization sequence in the junction domain and consensus sequence in the EF-hand loops of calmodulin-like domain. ZoCDPK1 is abundantly expressed in rhizome and is rapidly induced by high-salt stress, drought, and jasmonic acid treatment but not by low temperature stress or abscissic acid treatment. The sub-cellular localization of ZoCDPK1-GFP fusion protein was studied in transgenic tobacco epidermal cells using confocal laser scanning microscopy. Over-expression of ginger CDPK1 gene in tobacco conferred tolerance to salinity and drought stress as reflected by the high percentage of seed germination, higher relative water content, expression of stress responsive genes, higher leaf chlorophyll content, increased photosynthetic efficiency and other photosynthetic parameters. In addition, transgenic tobacco subjected to salinity/drought stress exhibited 50% more growth during stress conditions as compared to wild type plant during normal conditions. T3 transgenic plants are able to grow to maturity, flowers early and set viable seeds under continuous salinity or drought stress without yield penalty. The ZoCDPK1 up-regulated the expression levels of stress-related genes RD21A and ERD1 in tobacco plants. These results suggest that ZoCDPK1 functions in the positive regulation of the signaling pathways that are involved in the

  7. The Effects of Light, Temperature, and Nutrition on Growth and Pigment Accumulation of Three Dunaliella salina Strains Isolated from Saline Soil.

    Science.gov (United States)

    Wu, Zhe; Duangmanee, Promchup; Zhao, Pu; Juntawong, Niran; Ma, Chunhong

    2016-01-01

    Developing algal industries in saline-alkali areas is necessary. However, suitable strains and optimal production conditions must be studied before widespread commercial use. The effects of light, temperature, KNO3, and CO(NH2)2 on beta-carotene and biomass accumulation were compared and evaluated in order to provide scientific guidance for commercial algal production in northeastern Thailand. An orthogonal design was used for evaluating optimal conditions for the algal production of three candidate Dunaliella salina strains (KU XI, KU 10 and KU 31) which were isolated from saline soils and cultured in the column photobioreactor. The optimal light and temperature for algae growth were 135.3 μmol m(-2) s(-1) and 22°C, while the conditions of 245.6 μmol m(-2) s(-1) and 22°C induced the highest level of beta-carotene production (117.99 mg L(-1)). The optimal concentrations of KNO3, CO(NH2)2, and NaHCO3 for algae growth were 0.5 g L(-1), 0.36 g L(-1), and 1.5 g L(-1), respectively, while 0, 0.12 g L(-1) and 1.5 g L(-1) were best suited for beta-carotene accumulation. The highest beta-carotene rate per cell appeared with the highest light intensity (12.21 pg) and lowest temperature (12.47 pg), and the lowest total beta-carotene content appeared at the lowest temperature (15°C). There was not a significant difference in biomass accumulation among the three Dunaliella strains; however, the beta-carotene accumulation of KU XI was higher than that of the other two strains. Light and temperature were both relevant factors that contributed to the growth and beta-carotene accumulation of the three D. salina strains, and NaHCO3 had significantly positive effects on growth. The degree of impact of the different factors on cell growth was temperature > NaHCO3 > light intensity > KNO3 > CO (NH2)2 > strains; the impact on beta-carotene accumulation was temperature > light intensity > KNO3 > CO (NH2)2 > strains > NaHCO3.

  8. Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.)

    Science.gov (United States)

    Kumar, Dinesh; Naranjo, Miguel A.; Agrawal, Veena; Boscaiu, Monica; Vicente, Oscar

    2017-01-01

    Nerium oleander is an ornamental species of high aesthetic value, grown in arid and semi-arid regions because of its drought tolerance, which is also considered as relatively resistant to salt; yet the biochemical and molecular mechanisms underlying oleander’s stress tolerance remain largely unknown. To investigate these mechanisms, one-year-old oleander seedlings were exposed to 15 and 30 days of treatment with increasing salt concentrations, up to 800 mM NaCl, and to complete withholding of irrigation; growth parameters and biochemical markers characteristic of conserved stress-response pathways were then determined in stressed and control plants. Strong water deficit and salt stress both caused inhibition of growth, degradation of photosynthetic pigments, a slight (but statistically significant) increase in the leaf levels of specific osmolytes, and induction of oxidative stress—as indicated by the accumulation of malondialdehyde (MDA), a reliable oxidative stress marker—accompanied by increases in the levels of total phenolic compounds and antioxidant flavonoids and in the specific activities of ascorbate peroxidase (APX) and glutathione reductase (GR). High salinity, in addition, induced accumulation of Na+ and Cl- in roots and leaves and the activation of superoxide dismutase (SOD) and catalase (CAT) activities. Apart from anatomical adaptations that protect oleander from leaf dehydration at moderate levels of stress, our results indicate that tolerance of this species to salinity and water deficit is based on the constitutive accumulation in leaves of high concentrations of soluble carbohydrates and, to a lesser extent, of glycine betaine, and in the activation of the aforementioned antioxidant systems. Moreover, regarding specifically salt stress, mechanisms efficiently blocking transport of toxic ions from the roots to the aerial parts of the plant appear to contribute to a large extent to tolerance in Nerium oleander. PMID:28922384

  9. Nebulized Hypertonic Saline Treatment Reduces Both Rate and Duration of Hospitalization for Acute Bronchiolitis in Infants: An Updated Meta-analysis

    Directory of Open Access Journals (Sweden)

    Yen-Ju Chen

    2014-12-01

    Full Text Available Nebulized hypertonic saline (HS treatment reduced the length of hospitalization in infants with acute bronchiolitis in a previous meta-analysis. However, there was no reduction in the admission rate. We hypothesized that nebulized HS treatment might significantly decrease both the duration and the rate of hospitalization if more randomized controlled trials (RCTs were included. We searched MEDLINE, PubMed, CINAHL, and the Cochrane Central Register of Controlled Trials (CENTRAL without a language restriction. A meta-analysis was performed based on the efficacy of nebulized HS treatment in infants with acute bronchiolitis. We used weighted mean difference (WMD and risk ratio as effect size metrics. Eleven studies were identified that enrolled 1070 infants. Nebulized HS treatment significantly decreased the duration and rate of hospitalization compared with nebulized normal saline (NS [duration of hospitalization: WMD = −0.96, 95% confidence interval (CI = −1.38 to −0.54, p < 0.001; rate of hospitalization: risk ratio = 0.59, 95% CI = 0.37–0.93, p = 0.02]. Furthermore, nebulized HS treatment had a beneficial effect in reducing the clinical severity (CS score of acute bronchiolitis infants post-treatment (Day 1: WMD = −0.77, 95% CI = −1.30 to −0.24, p = 0.005; Day 2: WMD = −0.85, 95% CI = −1.30 to −0.39, p < 0.001; Day 3: WMD = −1.14, 95% CI = −1.69 to −0.58, p < 0.001. There was no decrease in the rate of readmission (risk ratio = 1.08, 95% CI = 0.68–1.73, p = 0.74. Nebulized HS treatment significantly decreased both the rate and the duration of hospitalization. Due to the efficacy and cost-effectiveness, HS should be considered for the treatment of acute bronchiolitis in infants.

  10. Crescimento de híbridos e variedades porta-enxerto de citros sob salinidade = Growth of hybrids and rootstock varieties of citrus under salinity.

    Directory of Open Access Journals (Sweden)

    Pedro Dantas Fernandes

    2011-04-01

    Full Text Available A salinidade da água e do solo afeta o crescimento, o desenvolvimento e a produção de espécies frutíferas, dentre as quais os citros. O uso de porta-enxertos tolerantes pode garantir a sustentabilidade do agronegócio citrícola em tais condições. Assim, estudou-se a sensibilidade à salinidade durante a fase de formação de portaenxertoscompreendendo variedades e híbridos selecionados. O experimento foirealizado em casa-de-vegetação, considerando cinco níveis de salinidade da água de irrigação [testemunha, irrigação com água de abastecimento local, condutividade elétrica da água (CEa de 0,41 dS m-1 e água com CEa de 1,0; 2,0; 3,0 e 4,0 dS m-1] e sete genótipos, utilizando delineamento em blocos casualizados, com cinco repetiçõesem esquema fatorial e quatro plantas úteis por parcela, durante o período de 150 dias. Avaliaram-se variáveis de crescimento e fisiológicas. A redução mais expressiva foi observada na fitomassa seca total da parte aérea com aumento unitário da CEa. Observou-se redução linear no crescimento com aumento da salinidade nos híbridosLVK x LVA-009 e TSK x TRENG-256. Dentre os genótipos avaliados, o limoeiro ‘Volkameriano’ foi o menos sensível ao estresse salino.Water and soil salinity affects the growth, development and production of fructiferous species, such as citrus. The use of tolerant rootstocks can guarantee the agribusiness of citrus under such conditions. Thus, the sensibility to salinity during the phase of rootstock formation of varieties and selected hybrids was studied. The experiment was carried out in a greenhouse, with five levels of irrigation water salinity [control, tap water with electrical conductivity (ECw of 0.41 dS m-1, and water with ECw of 1.0, 2.0, 3.0 and 4.0 dS m-1] and seven genotypes, in a randomized block designand five replications each consisting of four plants, during 150 day period. Growth and physiologic variables were evaluated. Significant effects

  11. Crescimento de meloeiro sob estresse salino e doses de potássio Growth of melon cultivated under saline stress and potassium doses

    Directory of Open Access Journals (Sweden)

    Marcelo T. Gurgel

    2010-01-01

    five doses of K2O (218, 273, 328, 383 and 438 kg ha-1. Plants were collected at 21, 28, 35, 49 and 63 days after sowing, and were separated in branches (shoot + leaves, flowers and fruits, and the total dry matter of the aerial parts obtained by summation. The absolute and relative growth rates and the production of fruits were also evaluated. The absolute growth rate of the plant was maximum between 35 and 49 days. The highest total biomass was obtained with 438 kg ha-1 K2O and use of high salinity water at the end of crop cycle.

  12. Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil.

    Science.gov (United States)

    Bauddh, Kuldeep; Singh, Rana P

    2012-11-01

    We have previously reported that Ricinus communis (castor) is more tolerant to soil cadmium (Cd) and more efficient for Cd phytoremediation than Brassica juncea (Indian mustard) (Bauddh and Singh, 2012). In the present study, R. communis was found more tolerant to salinity and drought in presence of Cd and removed more Cd in a given time than Indian mustard. R. communis produced 23 and twelve folds higher biomass in terms of fresh weight and dry weight, respectively than that in B. juncea during three months when grown in Cd contaminated soil in presence of 100mM NaCl salinity and ten day water withdrawal based drought at 90 day after sowing (DAS). Castor plants showed stronger self-protection ability in form of proline bioaccumulation (r(2)=0.949) than Indian mustard (r(2)=0.932), whereas a lower r(2) for malondialdehyde (MDA) and total soluble protein in R. communis (r(2)=0.914 and r(2)=0.915, respectively) than that of B. juncea (r(2)=0.947 and r(2)=0.927, respectively) indicated a greater damage to cell membrane in Indian mustard during the multiple stress conditions. Though, the amount of Cd accumulated in the roots and shoots of Indian mustard was higher as per unit biomass than that in castor, total removal of the metal from soil was much higher in castor on per plant basis in the same period in presence of the stresses. R. communis accumulated about seventeen and 1.5 fold higher Cd in their roots and shoots, respectively than that of B. juncea in 90 DAS under the multiple stresses. Salinity alone enhanced Cd uptake, whereas drought stress reduced its uptake in both the plants. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Phytoplankton growth balanced by clam and zooplankton grazing and net transport into the low-salinity zone of the San Francisco Estuary

    Science.gov (United States)

    Kimmerer, Wim J.; Thompson, Janet K.

    2014-01-01

    We estimated the influence of planktonic and benthic grazing on phytoplankton in the strongly tidal, river-dominated northern San Francisco Estuary using data from an intensive study of the low salinity foodweb in 2006–2008 supplemented with long-term monitoring data. A drop in chlorophyll concentration in 1987 had previously been linked to grazing by the introduced clam Potamocorbula amurensis, but numerous changes in the estuary may be linked to the continued low chlorophyll. We asked whether phytoplankton continued to be suppressed by grazing and what proportion of the grazing was by benthic bivalves. A mass balance of phytoplankton biomass included estimates of primary production and grazing by microzooplankton, mesozooplankton, and clams. Grazing persistently exceeded net phytoplankton growth especially for larger cells, and grazing by microzooplankton often exceeded that by clams. A subsidy of phytoplankton from other regions roughly balanced the excess of grazing over growth. Thus, the influence of bivalve grazing on phytoplankton biomass can be understood only in the context of limits on phytoplankton growth, total grazing, and transport.

  14. Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) adapted to saline-alkaline soils and their effect on wheat growth.

    Science.gov (United States)

    Liu, Xiaolin; Li, Xiangyue; Li, Yan; Li, Runzhi; Xie, Zhihong

    2017-03-01

    The Jerusalem artichoke (JA; Helianthus tuberosus), known to be tolerant to saline-alkaline soil conditions, has been cultivated for many years in the Yellow River delta, Shandong Province coastal zone, in China. The aim of our study was to isolate nitrogen-fixing bacteria colonizing the rhizosphere of JA and to characterize other plant growth promotion properties. The ultimate goal was to identify isolates that could be used as inoculants benefiting an economic crop, in particular for improving wheat growth production in the Yellow River delta. Bacterial strains were isolated from the rhizosphere soil of JA on the basis of growth on nitrogen-free Ashby medium. Identification and phylogenetic analysis was performed after nucleotide sequencing of 16S rRNA gene. Plant-growth-promoting traits, such as nitrogen fixation activity, phosphate solubilization activity, indole-3-acetic acid production, were determined using conventional methods. Eleven strains were isolated and 6 of them were further examined for their level of salt tolerance and their effect on plant growth promotion. Inoculation of Enterobacter sp. strain N10 on JA and wheat led to significant increases in both root and shoot dry mass and shoot height. Enterobacter sp. strain N10 appeared to be the best plant-growth-promoting rhizobacteria to increase wheat productivity in future field applications.

  15. Optimizing silicon application to improve salinity tolerance in wheat

    Directory of Open Access Journals (Sweden)

    A. Ali

    2009-05-01

    Full Text Available Salinity often suppresses the wheat performance. As wheat is designated as silicon (Si accumulator, hence Si application may alleviate the salinity induced damages. With the objective to combat the salinity stress in wheat by Si application (0, 50, 100, 150 and 200 mg L-1 using calcium silicate, an experiment was conducted on two contrasting wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5 in salinized (10 dS m-1 and non-salinized (2 dS m-1 solutions. Plants were harvested 32 days after transplanting and evaluation was done on the basis of different morphological and analytical characters. Silicon supplementation into the solution culture improved wheat growth and K+/Na+ with reduced Na+ and enhanced K+ uptake. Concomitant improvement in shoot growth was observed; nonetheless the root growth remained unaffected by Si application. Better results were obtained with 150 and 200 mg L-1 of Si which were found almost equally effective. It was concluded that SARC-5 is better than Auqab-2000 against salt stress and Si inclusion into the solution medium is beneficial for wheat and can improve the crop growth both under optimal and salt stressful conditions.

  16. High ammonium availability amplifies the adverse effect of low salinity on eelgrass Zostera marina

    DEFF Research Database (Denmark)

    Villazán, Beatriz; Salo, Tiina Elina; Brun, Fernando G.

    2015-01-01

    enrichment was followed by an increase in pigments, photosynthesis and various growth variables and a decrease in stored carbon concentrations (sucrose and starch). Low salinity had an overall negative effect on plant fitness; pigment concentration, photosynthesis and growth were reduced while mortality......Climate change intensifies the frequency and intensity of rainfall events, which increases the discharge of freshwater and nutrients to coastal areas. This may lower salinity and increase nutrient availability and, thus, affect estuarine eelgrass populations. We studied the interactive effect...... of increasing NH4+ levels and low salinity on estuarine eelgrass Zostera marina, grown in microcosm at various combinations of NH4+ enrichment (0, 10 and 25 µM) and salinity (5, 12.5 and 20). Increasing NH4+ had a positive effect on eelgrass performance as long as salinity was kept at ambient level (20). N...

  17. Salinity: Electrical conductivity and total dissolved solids

    Science.gov (United States)

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  18. Branchial expression and localization of the insulin-like growth factor 1 (IGF-1) receptor and changes in plasma IGF-1 and IGF-1 binding protein in striped bass during salinity acclimation

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk; Madsen, Steffen; Borski, Russell

    2006-01-01

    In euryhaline teleosts the insulin-like growth factor 1 (IGF-1)/growth hormone axis is known to affect salinity tolerance and gill Na,K-ATPase activity. However, virtually nothing is known on expression and cellular localization of the IGF-1 receptor (IGF-1R) in the teleost gill during salinity...... acclimation. In the present study, primers for the IGF type 1 receptor from striped bass (Morone saxatilis) were designed for a real-time quantitative PCR assay. Two salinity transfer experiments were performed and the time-course of gill IGF-1R expression was examined in parallel with changes in plasma IGF-1...... in the striped bass. Transfer from freshwater (FW) to seawater (SW) induced an overall increase in gill IGF-1R mRNA expression (Peffect on gill IGF-1R expression, while plasma IGF-1...

  19. Draft Genome Sequence of Halomonas elongata Strain K4, an Endophytic Growth-Promoting Bacterium Enhancing Salinity Tolerance In Planta

    KAUST Repository

    Lafi, Feras Fawzi

    2016-11-04

    Halomonas elongata strain K4 is an endophytic bacterial strain that was isolated from roots of Cyperus conglomeratus collected at the Red Sea coast in Thuwal, Saudi Arabia. Here, we present a draft genome sequence of this strain, highlighting a number of pathways involved in plant growth promotion under salt stress.

  20. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.

    Directory of Open Access Journals (Sweden)

    Christopher M Brennan

    Full Text Available The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA, the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.

  1. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins.

    Directory of Open Access Journals (Sweden)

    Robby Stoks

    Full Text Available BACKGROUND: Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored. METHODOLOGY/PRINCIPAL FINDING: Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance. CONCLUSIONS/SIGNIFICANCE: WE PROVIDE EVIDENCE FOR A NOVEL COST OF RAPID GROWTH: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adult stage and highlights the importance of physiological costs in the evolution of life-histories at macro-scales.

  2. Brassinolide Increases Potato Root Growth In Vitro in a Dose-Dependent Way and Alleviates Salinity Stress

    OpenAIRE

    Yueqing Hu; Shitou Xia; Yi Su; Huiqun Wang; Weigui Luo; Shengying Su; Langtao Xiao

    2016-01-01

    Brassinosteroids (BRs) are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL) affects potato root in vitro growth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01??g/L) promoted root elongation and lateral root development, whereas high BL concentrations (1?100??g/L) inhibited root elongation. There was a significant (P < 0.05) positive correlation between r...

  3. Effect of calcium and magnesium silicate on the growth of the castor oil plant subjected to salinity levels

    OpenAIRE

    de Brito Neto, Jose Felix [UNESP; Macedo Beltrao, Napoleao de Esberard; Gonsiorkiewicz Rigon, Joao Paulo [UNESP; Capuani, Silvia [UNESP

    2012-01-01

    Salt stress decreases the osmotic potential of soil solution causing water stress, causing toxic effects in the plants resulting in injuries on the metabolism and nutritional disorders, thus compromising the plant growth, resulting in lower production. The calcium silicate and magnesium can perform the same function as limestone, besides providing silicon to plants, may also contribute to the resistance of plants to salt stress. Thus, the objective of this study was to evaluate the effect of ...

  4. Crescimento de genótipos diplóides de bananeira submetidos ao estresse salino Growth of dipoid banana genotypes under saline stress

    Directory of Open Access Journals (Sweden)

    Gilberto de S. E. S. Junior

    2012-11-01

    Full Text Available Neste trabalho foram avaliados dez genótipos diplóides de bananeira (Musa spp quanto a tolerância à salinidade, estresse abiótico que limita a produtividade da cultura. As plantas foram cultivadas durante 21 dias, em solução acrescida ou não de 100 mol m-3 de NaCl e analisadas variáveis de crescimento que incluem área foliar, biomassa fresca e seca, alocação de biomassa e taxa de crescimento. O experimento foi conduzido em delineamento inteiramente casualizado em fatorial 10 x 2 e três repetições. Na maioria dos genótipos estudados a salinidade provocou reduções em quase todas as variáveis analisadas. O genótipo Lidi destacou-se por apresentar melhor adaptação ao estresse salino, em todas as variáveis biométricas e capacidade de manutenção, sob estresse, da biomassa seca e fresca (limbo, caule, pseudocaule + raiz, área foliar, além de taxa de crescimento absoluto, entre outros. A produção relativa da biomassa seca da parte aérea foi superior a 70%, caracterizando este genótipo como tolerante e promissor para ser integrado a programas de melhoramento. Os genótipos Ouro e Tungia, por sua vez, sofreram grande redução da taxa de crescimento absoluto e a produção relativa da biomassa seca foi inferior a 50% caracterizando este genótipo como sensivel à salinidade.Ten diploid banana genotypes (Musa spp. were evaluated with regard to salt tolerance, abiotic stress which limits the productivity of the crop. The plants were grown during 21 days, in a nutrient solution with and without the addition of NaCl (0 and 100 mol m-3. Growth variables including leaf area, fresh and dry biomass, biomass allocation and growth rate were analysed. The experiment was implemented in a completely randomized design in factorial (10 x 2 arrangement and three replicates per treatment. Salinity caused in most genotypes reductions in almost all variables. Genotype Lidi stood out by having better adaptation to saline stress in all measured

  5. The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions.

    Science.gov (United States)

    Li, Weiqiang; Liu, Xiaojing; Ajmal Khan, M; Yamaguchi, Shinjiro

    2005-06-01

    Suaeda salsa, a leaf succulent shrub in the family Chenopodiaceae, is one of the most important halophytes in China. Suaeda salsa produces dimorphic seeds (soft brown seeds and hard black seeds). Seeds of S. salsa were collected from the coastal salt flats near Huanghua City, China. Experiments were conducted to determine the salinity-alleviating effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of S. salsa. Brown seeds had a higher germination rate than black seeds in all experiments. Black seeds were more sensitive to salt in the absence of light in comparison to brown seeds. Brown seeds absorbed water more quickly in comparison to black seeds and were found to be more tolerant of salt stress. Our results showed that 1-aminocyclopropane-1-carboxylate (ACC, the immediate precursor of ethylene), nitrite, GA(4) and BA improved seed germination in the presence of salt. However, nitrate, GA(1), GA(3) failed to alleviate salt stress. ABA inhibited seed germination and seedling growth. Possible mechanisms involved in the alleviation of salt stress in S. salsa seeds and the ecological adaptation of the seeds to the environment are discussed.

  6. Environmental tolerances of rare and common mangroves along light and salinity gradients.

    Science.gov (United States)

    Dangremond, Emily M; Feller, Ilka C; Sousa, Wayne P

    2015-12-01

    Although mangroves possess a variety of morphological and physiological adaptations for life in a stressful habitat, interspecific differences in survival and growth under different environmental conditions can shape their local and geographic distributions. Soil salinity and light are known to affect mangrove performance, often in an interactive fashion. It has also been hypothesized that mangroves are intrinsically shade intolerant due to the high physiological cost of coping with saline flooded soils. To evaluate the relationship between stress tolerance and species distributions, we compared responses of seedlings of three widespread mangrove species and one narrow endemic mangrove species in a factorial array of light levels and soil salinities in an outdoor laboratory experiment. The more narrowly distributed species was expected to exhibit a lower tolerance of potentially stressful conditions. Two of the widespread species, Avicennia germinans and Lumnitzera racemosa, survived and grew well at low-medium salinity, regardless of light level, but performed poorly at high salinity, particularly under high light. The third widespread species, Rhizophora mangle, responded less to variation in light and salinity. However, at high salinity, its relative growth rate was low at every light level and none of these plants flushed leaves. As predicted, the rare species, Pelliciera rhizophorae, was the most sensitive to environmental stressors, suffering especially high mortality and reduced growth and quantum yield under the combined conditions of high light and medium-high salinity. That it only thrives under shaded conditions represents an important exception to the prevailing belief that halophytes are intrinsically constrained to be shade intolerant.

  7. Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice

    Science.gov (United States)

    Das, Priyanka; Nutan, Kamlesh K.; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2015-01-01

    Soil salinity is one of the main constraints affecting production of rice worldwide, by reducing growth, pollen viability as well as yield of the plant. Therefore, detailed understanding of the response of rice towards soil salinity at the physiological and molecular level is a prerequisite for its effective management. Various approaches have been adopted by molecular biologists or breeders to understand the mechanism for salinity tolerance in plants and to develop salt tolerant rice cultivars. Genome wide analysis using ‘omics-based’ tools followed by identification and functional validation of individual genes is becoming one of the popular approaches to tackle this task. On the other hand, mutation breeding and insertional mutagenesis has also been exploited to obtain salinity tolerant crop plants. This review looks into various responses at cellular and whole plant level generated in rice plants toward salinity stress thus, evaluating the suitability of intervention of functional genomics to raise stress tolerant plants. We have tried to highlight the usefulness of the contemporary ‘omics-based’ approaches such as genomics, proteomics, transcriptomics and phenomics towards dissecting out the salinity tolerance trait in rice. In addition, we have highlighted the importance of integration of various ‘omics’ approaches to develop an understanding of the machinery involved in salinity response in rice and to move forward to develop salt tolerant cultivars of rice. PMID:26442026

  8. Understanding Salinity Responses and Adopting ‘Omics-based’ Approaches to Generate Salinity Tolerant Cultivars of Rice

    Directory of Open Access Journals (Sweden)

    Priyanka eDas

    2015-09-01

    Full Text Available Soil salinity is one of the main constraints affecting production of rice worldwide, by reducing growth, pollen viability as well as yield of the plant. Therefore, detailed understanding of the response of rice towards soil salinity at the physiological and molecular level is a prerequisite for its effective management. Various approaches have been adopted by molecular biologists or breeders to understand the mechanism for salinity tolerance in plants and to develop salt tolerant rice cultivars. Genome wide analysis using ‘omics-based’ tools followed by identification and functional validation of individual genes is becoming one of the popular approaches to tackle this task. On the other hand, mutation breeding and insertional mutagenesis has also been exploited to obtain salinity tolerant crop plants. This review looks into various responses at cellular and whole plant level generated in rice plants towards salinity stress thus, evaluating the suitability of intervention of functional genomics to raise stress tolerant plants. We have tried to highlight the usefulness of the contemporary ‘omics-based’ approaches such as genomics, proteomics, transcriptomics and phenomics towards dissecting out the salinity tolerance trait in rice. In addition, we have highlighted the importance of integration of various ‘omics’ approaches to develop an understanding of the machinery involved in salinity response in rice and to move forward to develop salt tolerant cultivars of rice.

  9. Postweaning growth check in pigs is markedly reduced by intermittent suckling and extended lactation

    NARCIS (Netherlands)

    Berkeveld, M.; Langendijk, P.; Beers-Schreurs, van H.M.G.; Koets, A.P.; Taverne, M.A.M.; Verheijden, J.H.M.

    2007-01-01

    The objective of this study was to determine whether intermittent suckling (IS) combined with an extended lactation can reduce postweaning growth check in pigs. Three weaning regimens [ conventional weaning (CW), IS with 6-h separation intervals (IS6), and IS with 12-h separation intervals (IS12)

  10. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification.

    Science.gov (United States)

    Mos, Benjamin; Byrne, Maria; Dworjanyn, Symon A

    2016-02-01

    Decreasing oceanic pH (ocean acidification) has emphasised the influence of carbonate chemistry on growth of calcifying marine organisms. However, calcifiers can also change carbonate chemistry of surrounding seawater through respiration and calcification, a potential limitation for aquaculture. This study examined how seawater exchange rate and stocking density of the sea urchin Tripneustes gratilla that were reproductively mature affected carbonate system parameters of their culture water, which in turn influenced growth, gonad production and gonad condition. Growth, relative spine length, gonad production and consumption rates were reduced by up to 67% by increased density (9-43 individuals.m(-2)) and reduced exchange rates (3.0-0.3 exchanges.hr(-1)), but survival and food conversion efficiency were unaffected. Analysis of the influence of seawater parameters indicated that reduced pH and calcite saturation state (ΩCa) were the primary factors limiting gonad production and growth. Uptake of bicarbonate and release of respiratory CO2 by T. gratilla changed the carbonate chemistry of surrounding water. Importantly total alkalinity (AT) was reduced, likely due to calcification by the urchins. Low AT limits the capacity of culture water to buffer against acidification. Direct management to counter biogenic acidification will be required to maintain productivity and reproductive output of marine calcifiers, especially as the ocean carbonate system is altered by climate driven ocean acidification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Non-square quantum well growth for reduced threshold current in ...

    African Journals Online (AJOL)

    This paper presents calculations demonstrating that non-square quantum well growth (well shaping) can result in reduced threshold current for tensilely strained quantum well bipolar diode lasers operating at 1.52ìm m. Calculations of subband structure, optical matrix elements and laser gain are performed for arbitrarily ...

  12. Modelling salinity inhibition effects during biodegradation of perchlorate.

    Science.gov (United States)

    Park, C; Marchand, E A

    2006-07-01

    To determine the mathematical kinetic rates and mechanisms of acclimated perchlorate (ClO)-reducing microbial cultures by incorporating a term to relate the inhibitory effect of high salinity during biological reduction of concentrated perchlorate solutions. Salt toxicity associated with the biodegradation of concentrated perchlorate (200, 500, 1100, 1700 and 2400 mg l(-1) as ClO) was investigated using two microbial cultures isolated from a domestic wastewater treatment plant [return activated sludge (RAS) and anaerobic digester sludge (ADS)]. Experiments were performed in wastewaters containing various sodium chloride concentrations, ranging from 0% to 4.0% (w/v) NaCl (ionic strength: 0.14-0.82 mol l(-1), total dissolved solids: 5.3-42.6 g l(-1)) at near-neutral values of pH (6.7-7.8). Perchlorate biodegradation was stimulated through stepwise acclimation to high salinity. The ADS culture was capable of reducing perchlorate at salinities up to 4% NaCl, while the RAS culture exhibited complete inhibition of perchlorate degradation at 4% NaCl, probably resulting from either a toxic effect or enzyme inactivation of the perchlorate-reducing microbes. Further, a kinetic growth model was developed based on experimental data in order to express an inhibition function to relate specific growth rate and salinity. Biological reduction of concentrated perchlorate wastewaters using either acclimated RAS or ADS cultures is feasible up to 3% or 4% NaCl, respectively. In addition, the kinetic model including a salinity inhibition term should be effective in many practical applications such as improving reactor design and management, furthering the understanding of high salinity inhibition, and enhancing bioremediation under high salinity loading conditions. Applications of these findings in water treatment practice where ion exchange or membrane technologies are used to remove perchlorate from water can have the potential to increase the overall attractiveness of these

  13. MULCHES AND OTHER COVER MATERIALS TO REDUCE WEED GROWTH IN CONTAINER-GROWN NURSERY STOCK.

    Science.gov (United States)

    Rys, F; Van Wesemael, D; Van Haecke, D; Mechant, E; Gobin, B

    2014-01-01

    Due to the recent EU-wide implementation of Integrated Pest Management (IPM), alternative methods to reduce weed growth in container-grown nursery stock are needed to cut back the use of herbicides. Covering the upper layer of the substrate is known as a potential method to prevent or reduce weed growth in plant containers. As a high variety of mulches and other cover materials are on the market, however, it is no longer clear for growers which cover material is most efficient for use in containers. Therefore, we examined the effect on weed growth of different mulches and other cover materials, including Pinus maritima, P. sylvestris, Bio-Top Basic, Bio-Top Excellent, coco chips fine, hemp fibres, straw pellets, coco disk 180LD and jute disk. Cover materials were applied immediately after repotting of Ligustrum ovalifolium or planting of Fagus sylvatica. At regular times, both weed growth and side effects (e.g., plant growth, water status of the substrate, occurrence of mushrooms, foraging of birds, complete cover of the substrate and fixation) were assessed. All examined mulches or other cover materials were able to reduce weed growth on the containers during the whole growing season. Weed suppression was even better than that of a chemical treated control. Although all materials showed some side effects, the impact on plant growth is most important to the grower and depends not only on material characteristics (e.g., biodegradation, nutrient leaching and N-immobilisation) but also on container size and climatic conditions. In conclusion, mulches and other cover materials can be a valuable tool within IPM to lower herbicide use. To enable a deliberate choice of which cover material is best used in a specific situation more research is needed on lifespan and stability as well as on economic characteristics of the materials.

  14. Abnormal gut integrity is associated with reduced linear growth in rural Malawian children.

    Science.gov (United States)

    Weisz, Ariana J; Manary, Micah J; Stephenson, Kevin; Agapova, Sophia; Manary, Faith G; Thakwalakwa, Chrissie; Shulman, Robert J; Manary, Mark J

    2012-12-01

    The aim of the present study was to investigate the relation of environmental enteropathy, as measured by the dual sugar absorption test, to linear growth faltering in 2- to 5-year-old Malawian children. Dietary quality, food insecurity, anthropometry, and site-specific sugar testing were measured in 418 children, and anthropometry was reassessed 3 months later. A linear regression model predicting linear growth was created. Better growth was associated with less urinary lactulose excretion, more clean water usage, not sleeping with animals, and no previous history of malnutrition. Eighty-seven percent of children studied demonstrated evidence of environmental enteropathy. In conclusion, abnormal gut integrity is associated with reduced linear growth in a population of rural African preschool-age children.

  15. Toxin YafQ Reduces Escherichia coli Growth at Low Temperatures.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Toxin/antitoxin (TA systems reduce metabolism under stress; for example, toxin YafQ of the YafQ/DinJ Escherichia coli TA system reduces growth by cleaving transcripts with in-frame 5'-AAA-G/A-3' sites, and antitoxin DinJ is a global regulator that represses its locus as well as controls levels of the stationary sigma factor RpoS. Here we investigated the influence on cell growth at various temperatures and found that deletion of the antitoxin gene, dinJ, resulted in both reduced metabolism and slower growth at 18°C but not at 37°C. The reduction in growth could be complemented by producing DinJ from a plasmid. Using a transposon screen to reverse the effect of the absence of DinJ, two mutations were found that inactivated the toxin YafQ; hence, the toxin caused the slower growth only at low temperatures rather than DinJ acting as a global regulator. Corroborating this result, a clean deletion of yafQ in the ΔdinJ ΔKmR strain restored both metabolism and growth at 18°C. In addition, production of YafQ was more toxic at 18°C compared to 37°C. Furthermore, by overproducing all the E. coli proteins, the global transcription repressor Mlc was found that counteracts YafQ toxicity only at 18°C. Therefore, YafQ is more effective at reducing metabolism at low temperatures, and Mlc is its putative target.

  16. Fucoidan reduces secretion and expression of vascular endothelial growth factor in the retinal pigment epithelium and reduces angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Michaela Dithmer

    Full Text Available Fucoidan is a polysaccharide isolated from brown algae which is of current interest for anti-tumor therapy. In this study, we investigated the effect of fucoidan on the retinal pigment epithelium (RPE, looking at physiology, vascular endothelial growth factor (VEGF secretion, and angiogenesis, thus investigating a potential use of fucoidan for the treatment of exudative age-related macular degeneration. For this study, human RPE cell line ARPE-19 and primary porcine RPE cells were used, as well as RPE/choroid perfusion organ cultures. The effect of fucoidan on RPE cells was investigated with methyl thiazolyl tetrazolium--assay, trypan blue exclusion assay, phagocytosis assay and a wound healing assay. VEGF expression was evaluated in immunocytochemistry and Western blot, VEGF secretion was evaluated in ELISA. The effect of fucoidan on angiogenesis was tested in a Matrigel assay using calcein-AM vital staining, evaluated by confocal laser scanning microcopy and quantitative image analysis. Fucoidan displays no toxicity and does not diminish proliferation or phagocytosis, but reduces wound healing in RPE cells. Fucoidan decreases VEGF secretion in RPE/choroid explants and RPE cells. Furthermore, it diminishes VEGF expression in RPE cells even when co-applied with bevacizumab. Furthermore, fucoidan reduces RPE-supernatant- and VEGF-induced angiogenesis of peripheral endothelial cells. In conclusion, fucoidan is a non-toxic agent that reduces VEGF expression and angiogenesis in vitro and may be of interest for further studies as a potential therapy against exudative age-related macular degeneration.

  17. Is Africa’s current growth reducing inequality? Evidence from some selected african countries

    Directory of Open Access Journals (Sweden)

    Alege P.O.

    2015-06-01

    Full Text Available Is Africa’s current growth reducing inequality? What are the implications of growth on output performances in Africa? Does the effect of Africa’s growth on sectorial output have any implication for inequality in Africa? The study investigates the effect of shocks on a set of macroeconomic variables on inequality (measured by life expectancy and the implication of this on sectors that are perceived to provide economic empowerment in form of employment for people living in the African countries in our sample. Studies already find that growth in many African countries has not been accompanied with significant improvement in employment. Therefore inequality is subject to a counter cyclical trend in production levels when export destination countries experience a recession. The study also provides insight on the effect of growth on sectorial output for three major sectors in the African economy with the intent of analyzing the impact of growth on sectorial development. The method used in this study is Panel Vector Autoregressive (PVAR estimation and the obvious advantage of this method lies in the fact that it allows us to capture both static and dynamic interdependencies and to treat the links across units in an unrestricted fashion. Data is obtained from World Bank (WDI Statistics for the period 1985 to 2012 (28 years for 10 African Countries. Our main findings confirm strong negative relationship between GDP growth and life expectancy and also for GDP and the services and manufacturing sector considering the full sample.

  18. Larval tolerance to salinity in three species of Australian anuran: an indication of saline specialisation in Litoria aurea.

    Directory of Open Access Journals (Sweden)

    Brian D Kearney

    Full Text Available Recent anthropogenic influences on freshwater habitats are forcing anuran populations to rapidly adapt to high magnitude changes in environmental conditions or face local extinction. We examined the effects of ecologically relevant elevated salinity levels on larval growth, metamorphosis and survival of three species of Australian anuran; the spotted marsh frog (Limnodynastes tasmaniensis, the painted burrowing frog (Neobatrachus sudelli and the green and golden bell frog (Litoria aurea, in order to better understand the responses of these animals to environmental change. Elevated salinity (16% seawater negatively impacted on the survival of L. tasmaniensis (35% survival and N sudelli (0% survival, while reduced salinity had a negative impact on L. aurea. (16% seawater: 85% survival; 0.4% seawater: 35% survival. L. aurea tadpoles survived in salinities much higher than previously reported for this species, indicating the potential for inter-populations differences in salinity tolerance. In L. tasmaniensis and L. aurea, development to metamorphosis was fastest in low and high salinity treatments suggesting it is advantageous for tadpoles to invest energy in development in both highly favourable and developmentally challenging environments. We propose that this response might either maximise potential lifetime fecundity when tadpoles experience favourable environments, or, facilitate a more rapid escape from pond environments where there is a reduced probability of survival.

  19. Extensive cardinal parameter model to predict growth of pseudomonads in salt-reduced lightly preserved seafood

    DEFF Research Database (Denmark)

    Martinez Rios, Veronica; Dalgaard, Paw

    Interest in and demand for preserved seafood with reduced salt/sodium content is increasing. As a consequence of the reduced salt content potential growth of psychrotolerant pseudomonads to unacceptable high concentration where they cause product spoilage is an increasing challenge. Innovation...... is needed to reformulate these salt-reduced products and this must be done in such a way that other product characteristics compensate for less inhibiting effect due to salt. Numerous simple predictive models are available to predict growth of pseudomonads in foods at different temperatures. A few models...... and including terms for temperature, pH, aw/NaCl, lactic- and sorbic acids (Martinez-Rios et al., Int. J. Food Microbiol. 216. 110-120, 2016). MIC-values for acetic-, benzoic- and citric acids were determined in broth and terms modelling their antimicrobial effect were added to the model. The new and expanded...

  20. Growth and photosynthetic limitation analysis of the Cd-accumulator Salicornia ramosissima under excessive cadmium concentrations and optimum salinity conditions.

    Science.gov (United States)

    Pérez-Romero, Jesús Alberto; Redondo-Gómez, Susana; Mateos-Naranjo, Enrique

    2016-12-01

    Cadmium (Cd) is a non-essential element for plants, and its excess impairs plant performance. Physiological impacts of Cd excess are well known in non-tolerant plants, however this information is scarce for Cd-tolerant plants. A glasshouse experiment was designed to investigate the effect of five different Cd levels (0, 0.05, 0.20, 0.65 and 1.35 mM Cd) on the growth, photosynthetic apparatus (PSII chemistry), gas exchange characteristics, photosynthetic pigments profiles, water relations and nutritional balance of the Cd-accumulator Salicornia ramosissima. Ours results confirmed the accumulation capacity of S. ramosissima, as indicated the bioaccumulation factor (BC) greater than 1.0 for all Cd levels. Furthermore, after 21 days of treatment S. ramosissima growth was not highly affected by Cd. Total photosynthetic limitation increased from 38% at 0.05 mM Cd to 70% at 1.35 mM Cd. CO2 diffusion restriction imposed the main contribution to total photosynthetic limitation. Mesophyll conductance reduction was of major importance (with between 69 and 86%), followed by stomatal conductance (with between 9 and 20%). Maximum carboxylation rate (Vc,max), remained stable until 0.2 mM Cd, and chlorophyll fluorescence parameters (Fv/Fm, qP) and pigments concentrations were not significantly decreased by increased Cd supply. Finally, S. ramosissima water relations (intrinsic water use efficiency and relative water content) and nutritional level did not highly vary between Cd treatments. Thus, our finding suggested that Cd tolerance S. ramosissima is in certain degree supported by the tolerance of its carbon assimilation enzyme (RuBisCO) and with the high functionality and integrity of the PSII reaction center under Cd excess. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Placental growth factor reduces blood pressure in a uteroplacental ischemia model of preeclampsia in non-human primates

    Science.gov (United States)

    Makris, Angela; Yeung, Kristen R; Lim, Shirlene M; Sunderland, Neroli; Heffernan, Scott; Thompson, John F; Iliopoulos, Jim; Killingsworth, Murray C; Yong, Jim; Xu, Bei; Ogle, Robert F; Thadhani, Ravi; Karumanchi, S. Ananth; Hennessy, Annemarie

    2016-01-01

    An imbalance in the angiogenesis axis during pregnancy manifests as clinical preeclampsia due to endothelial dysfunction. Circulating sFLT-1 (soluble fms-like tyrosine kinase 1) increases and PlGF (placental growth factor) reduces prior to and during disease. We investigated the clinical and biochemical effects of replenishing the reduced circulating PlGF with recombinant human PlGF (rhPlGF) and thus restoring the angiogenic balance. Hypertensive proteinuria was induced in a non-human primate (Papio hamadryas) by uterine artery ligation at 136 days gestation (of an 182 day pregnancy). Two weeks after uteroplacental ischemia (UPI), rhPlGF (rhPlGF, n=3) or normal saline (control, n=4) was administered by subcutaneous injection (100μg/kg/day) for 5 days. Blood pressure (BP) was monitored by intra-arterial radiotelemetry, sFLT-1 and PlGF by ELISA. UPI resulted in experimental preeclampsia evidenced by increased BP, proteinuria and endotheliosis on renal biopsy and elevated sFLT-1. PlGF significantly reduced after UPI. rhPlGF reduced SBP in the treated group (-5.2mmHg+0.8mmHg;from 132.6+6.6mmHg to 124.1+7.6mmHg) compared to an increase in SBP in controls (6.5mmHg+3mmHg; from 131.3+1.5mmHg to 138.6+1.5mmHg). Proteinuria reduced in the treated group (-72.7±55.7mg/mmol) but increased in the control group. Circulating sFLT-1 was not affected by the administration of PlGF, however a reduction in placental sFLT-1 mRNA expression was demonstrated. There was no significant difference in the weights or lengths of the neonates in the rhPlGF or control group, however, this study was not designed to assess fetal safety or outcomes. Increasing circulating PlGF by the administration of rhPlGF improves clinical parameters in a primate animal model of experimental preeclampsia. PMID:27091894

  2. Thiol-reducing agents prevent sulforaphane-induced growth inhibition in ovarian cancer cells.

    Science.gov (United States)

    Kim, Seung Cheol; Choi, Boyun; Kwon, Youngjoo

    2017-01-01

    The inhibitory potential of sulforaphane against cancer has been suggested for different types of cancer, including ovarian cancer. We examined whether this effect is mediated by mitogen-activated protein kinase (MAPK) and reactive oxygen species (ROS), important signaling molecules related to cell survival and proliferation, in ovarian cancer cells. Sulforaphane at a concentration of 10 μM effectively inhibited the growth of cancer cells. Use of specific inhibitors revealed that activation of MAPK pathways by sulforaphane is unlikely to mediate sulforaphane-induced growth inhibition. Sulforaphane did not generate significant levels of intracellular ROS. Pretreatment with thiol reducers, but not ROS scavengers, prevented sulforaphane-induced growth inhibition. Furthermore, diamide, a thiol-oxidizing agent, enhanced both growth inhibition and cell death induced by sulforaphane, suggesting that the effect of sulforaphane on cell growth may be related to oxidation of protein thiols or change in cellular redox status. Our data indicate that supplementation with thiol-reducing agents should be avoided when sulforaphane is used to treat cancer.

  3. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton.

    Science.gov (United States)

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A Egrinya; Li, Weijiang

    2012-03-01

    A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100 mM) or non-uniform NaCl concentrations (0/200 and 50/150 mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na(+) concentrations in leaves. The [Na(+)] in the '0' side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the '0' side phloem was girdled, suggesting that the increased [Na(+)] in the '0' side roots was possibly due to transportation of foliar Na(+) to roots through phloem. Plants under non-uniform salinity extruded more Na(+) from the root than those under uniform salinity. Root Na(+) efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na(+) efflux and H(+) influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na(+) extrusion was probably due to active Na(+)/H(+) antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na(+) concentration, transport of excessive foliar Na(+) to the low salinity side, and enhanced Na(+) efflux from the low salinity root.

  4. Maternally-derived antibody to fibroblast growth factor-23 reduced dietary phosphate requirements in growing chicks.

    Science.gov (United States)

    Bobeck, Elizabeth A; Burgess, Kimberly S; Jarmes, Taylor R; Piccione, Michelle L; Cook, Mark E

    2012-04-13

    Phosphate in manure of monogastric animals pollutes the environment if improperly applied to soil. Strategies that reduce phosphate inputs into animal production systems reduce environmental pollution. Using a novel vaccine to fibroblast growth factor-23 (FGF-23), we induced neutralizing antibodies that reduced the phosphate requirement of growing chickens. Breeding hens were injected with a FGF-23 peptide (AFLPGMNP) conjugate. Antibody was passively transferred from hen to chick and chick response to deficient dietary phosphate intake was determined. Chicks without passive anti-FGF-23 antibody had a 43% and 21% reduction in blood phosphate and bone ash, respectively, when fed a phosphate deficient diet and compared to chicks fed a phosphate replete diet (P0.05). Neutralization of FGF-23 offers a new approach to reduce phosphate requirements of farmed animals and may provide a new means to reduce phosphate pollution related to animal farming. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Reduced growth in hybrid tilapia ( Oreochromis mossambicus ×O. Niloticus) at intermediate stocking density

    Science.gov (United States)

    Wang, Yan; Cui, Yi-Bo; Yang, Yun-Xia; Cai, Fa-Sheng

    2002-12-01

    Hybrid tilapia were reared at densities of 1, 5 or 10 fish per tank for four weeks. Mortality was 0 at 1 and 10 fish per tank, but was 25% at 5 fish per tank. Specific growth rate was highest at 1 fish per tank, and lowest at 5 fish per tank. The lower growth rate at the intermediate stocking density was associated with reduced feed efficiency, but there was no reduction in feed intake or digestibility. The results suggested increased metabolic cost caused by aggressive behaviour at intermediate stocking density, which can be suppressed by a further increase in density.

  6. Dehydrins from wheat x Thinopyrum ponticum amphiploid increase salinity and drought tolerance under their own inducible promoters without growth retardation.

    Science.gov (United States)

    Qin, Yu-Xiang; Qin, Fangyuan

    2016-02-01

    Dehydrins confer abiotic stress tolerance in seedlings, but few dehydrins have been studied by transgenic analysis under their own promoters in relation to abiotic stress tolerance. Also the inducible promoters for transgenic engineering are limited. In this study, we isolated from wheat three salt-induced YSK2 dehydrin genes and their promoters. The cDNA sequences were 711, 785, and 932 bp in length, encoding proteins containing 133, 166 and 231 amino acids, respectively, and were named TaDHN1, TaDHN2, and TaDHN3. TaDHN2 doesn't contain introns, while the other two genes each contain one. Semi-quantitative reverse transcription PCR analysis revealed all three dehydrin genes are substantially induced by ABA and NaCl, but only TaDHN2 is induced in seedlings by PEG and by cold (4 °C). Regulatory sequences upstream of the first translation codon (775, 1615 and 889 bp) of the three dehydrin genes were also cloned. Cis-element prediction indicated the presence of ABRE and other abiotic-stress-related elements. Histochemical analysis using GUS expression demonstrated that all three promoters were induced by ABA, cold or NaCl. Ectopic over-expression of TaDHN1 or TaDHN3 in Arabidopsis under their own inducible promoters enhanced NaCl- and drought-stress tolerance without growth retardation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Reducing ppGpp level rescues an extreme growth defect caused by mutant EF-Tu.

    Directory of Open Access Journals (Sweden)

    Jessica M Bergman

    Full Text Available Transcription and translation of mRNA's are coordinated processes in bacteria. We have previously shown that a mutant form of EF-Tu (Gln125Arg in Salmonella Typhimurium with a reduced affinity for aa-tRNA, causes ribosome pausing, resulting in an increased rate of RNase E-mediated mRNA cleavage, causing extremely slow growth, even on rich medium. The slow growth phenotype is reversed by mutations that reduce RNase E activity. Here we asked whether the slow growth phenotype could be reversed by overexpression of a wild-type gene. We identified spoT (encoding ppGpp synthetase/hydrolase as a gene that partially reversed the slow growth rate when overexpressed. We found that the slow-growing mutant had an abnormally high basal level of ppGpp that was reduced when spoT was overexpressed. Inactivating relA (encoding the ribosome-associated ppGpp synthetase also reduced ppGpp levels and significantly increased growth rate. Because RelA responds specifically to deacylated tRNA in the ribosomal A-site this suggested that the tuf mutant had an increased level of deacylated tRNA relative to the wild-type. To test this hypothesis we measured the relative acylation levels of 4 families of tRNAs and found that proline isoacceptors were acylated at a lower level in the mutant strain relative to the wild-type. In addition, the level of the proS tRNA synthetase mRNA was significantly lower in the mutant strain. We suggest that an increased level of deacylated tRNA in the mutant strain stimulates RelA-mediated ppGpp production, causing changes in transcription pattern that are inappropriate for rich media conditions, and contributing to slow growth rate. Reducing ppGpp levels, by altering the activity of either SpoT or RelA, removes one cause of the slow growth and reveals the interconnectedness of intracellular regulatory mechanisms.

  8. Biofouling leads to reduced shell growth and flesh weight in the cultured mussel Mytilus galloprovincialis.

    Science.gov (United States)

    Sievers, Michael; Fitridge, Isla; Dempster, Tim; Keough, Michael J

    2013-01-01

    Competitive interactions between cultured mussels and fouling organisms may result in growth and weight reductions in mussels, and compromised aquaculture productivity. Mussel ropes were inoculated with Ciona intestinalis, Ectopleura crocea or Styela clava, and growth parameters of fouled and unfouled Mytilus galloprovincialis were compared after two months. Small mussels (≈ 50 mm) fouled by C. intestinalis and E. crocea were 4.0 and 3.2% shorter in shell length and had 21 and 13% reduced flesh weight, respectively, compared to the controls. Large mussels (≈ 68 mm) fouled by S. clava, C. intestinalis and E. crocea were 4.4, 3.9 and 2.1% shorter than control mussels, respectively, but flesh weights were not significantly reduced. A series of competitive feeding experiments indicated that S. clava and C. intestinalis did not reduce mussels' food consumption, but that E. crocea, through interference competition, did. Fouling by these species at the densities used here reduced mussel growth and flesh weight, likely resulting in economic losses for the industry, and requires consideration when developing biofouling mitigation strategies.

  9. Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers.

    Science.gov (United States)

    Reininger, Vanessa; Sieber, Thomas N

    2012-01-01

    Mycorrhizal roots are frequently colonized by fungi of the Phialocephala fortinii s.l.-Acephala applanata species complex (PAC). These ascomycetes are common and widespread colonizers of tree roots. Some PAC strains reduce growth increments of their hosts but are beneficial in protecting roots against pathogens. Nothing is known about the effects of PAC on mycorrhizal fungi and the PAC-mycorrhiza association on plant growth, even though these two fungal groups occur closely together in natural habitats. We expect reduced colonization rates and reduced negative effects of PAC on host plants if roots are co-colonized by an ectomycorrhizal fungus (ECM). Depending on the temperature regime interactions among the partners in this tripartite ECM-PAC-plant system might also change. To test our hypotheses, effects of four PAC genotypes (two pathogenic and two non-pathogenic on the Norway spruce), mycorrhization by Laccaria bicolor (strain S238N) and two temperature regimes (19°C and 25°C) on the biomass of the Douglas-fir (Pseudotsuga menziesii) and Norway spruce (Picea abies) seedlings were studied. Mycorrhization compensated the adverse effects of PAC on the growth of the Norway spruce at both temperatures. The growth of the Douglas-fir was not influenced either by PAC or mycorrhization at 19°C, but at 25°C mycorrhization had a similar protective effect as in the Norway spruce. The compensatory effects probably rely on the reduction of the PAC-colonization density by mycorrhizae. Temperature and the PAC strain only had a differential effect on the biomass of the Norway spruce but not on the Douglas-fir. Higher temperature reduced mycorrhization of both hosts. We conclude that ectomycorrhizae form physical and/or physiological barriers against PAC leading to reduced PAC-colonization of the roots. Additionally, our results indicate that global warming could cause a general decrease of mycorrhization making primary roots more accessible to other symbionts and pathogens.

  10. Mycorrhiza reduces adverse effects of dark septate endophytes (DSE on growth of conifers.

    Directory of Open Access Journals (Sweden)

    Vanessa Reininger

    Full Text Available Mycorrhizal roots are frequently colonized by fungi of the Phialocephala fortinii s.l.-Acephala applanata species complex (PAC. These ascomycetes are common and widespread colonizers of tree roots. Some PAC strains reduce growth increments of their hosts but are beneficial in protecting roots against pathogens. Nothing is known about the effects of PAC on mycorrhizal fungi and the PAC-mycorrhiza association on plant growth, even though these two fungal groups occur closely together in natural habitats. We expect reduced colonization rates and reduced negative effects of PAC on host plants if roots are co-colonized by an ectomycorrhizal fungus (ECM. Depending on the temperature regime interactions among the partners in this tripartite ECM-PAC-plant system might also change. To test our hypotheses, effects of four PAC genotypes (two pathogenic and two non-pathogenic on the Norway spruce, mycorrhization by Laccaria bicolor (strain S238N and two temperature regimes (19°C and 25°C on the biomass of the Douglas-fir (Pseudotsuga menziesii and Norway spruce (Picea abies seedlings were studied. Mycorrhization compensated the adverse effects of PAC on the growth of the Norway spruce at both temperatures. The growth of the Douglas-fir was not influenced either by PAC or mycorrhization at 19°C, but at 25°C mycorrhization had a similar protective effect as in the Norway spruce. The compensatory effects probably rely on the reduction of the PAC-colonization density by mycorrhizae. Temperature and the PAC strain only had a differential effect on the biomass of the Norway spruce but not on the Douglas-fir. Higher temperature reduced mycorrhization of both hosts. We conclude that ectomycorrhizae form physical and/or physiological barriers against PAC leading to reduced PAC-colonization of the roots. Additionally, our results indicate that global warming could cause a general decrease of mycorrhization making primary roots more accessible to other symbionts

  11. Mycorrhiza Reduces Adverse Effects of Dark Septate Endophytes (DSE) on Growth of Conifers