WorldWideScience

Sample records for salinity oxygen phosphate

  1. Temperature, salinity, oxygen, silicate, phosphate, nitrite, and pH data collected in Okhotsk Sea by multiple platforms from 1985-03-20 to 1989-09-07 (NODC Accession 0075740)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen, silicate, phosphate, nitrite, and pH data collected in the Okhotsk Sea by multiple Soviet Union platforms in March 1985 and...

  2. Temperature, salinity, oxygen, phosphate, silicate, nitrite, alkalinity, and pH data collected by multiple former Soviet Union institutions from Okhotsk Sea from 1981-09-23 to 1988-06-17 (NODC Accession 0081217)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen, phosphate, silicate, nitrite, alkalinity, and pH data collected by multiple former Soviet Union institutions from Okhotsk...

  3. Temperature, Salinity, Oxygen, Phosphate, Silicate, Nitrite, pH and Alkalinity data collected in the Black Sea, Tyrrhenian Sea and Western Basin from R/Vs GORIZONT and OKEANOGRAF, 1960 - 1969 (NODC Accession 0074609)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Salinity, Oxygen, Phosphate, Silicate, Nitrite, pH and Alkalinity data collected in the Black Sea, Tyrrhenian Sea and Western Basin of the Mediterranean...

  4. Temperature, salinity, dissolved oxygen, phosphate, nitrite, pH, alkalinity, bottom depth, and meteorology data collected from Arctic Seas and North Western Pacific by various Soviet Union institutions from 1925-11-16 to 1989-05-18 (NODC Accession 0075099)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, dissolved oxygen, phosphate, nitrite, pH, alkalinity, bottom depth, and meteorology data collected from Arctic Seas and North Western Pacific...

  5. Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian Sea and White Sea from R/Vs Artemovsk, Atlantida, Okeanograf, Professor Rudovits, and ice observations, 1957 - 1995 (NODC Accession 0073674)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian...

  6. Temperature profile, salinity, dissolved oxygen, phosphate and other measurements collected using bottle and CTD casts from the New Horizon and NOAA Ship David Starr Jordan in the North East Pacific Ocean as part of the California Cooperative Fisheries Investigation (CALCOFI) project, from 23 March - 2004-07-28 (NODC Accession 0002180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, dissolved oxygen, phosphate, conductivity, phytoplankton, and other data were collected using CalBOBL, manta net, pairovet, bottle, and CTD...

  7. Salinity-dependent limitation of photosynthesis and oxygen exchange in microbial mats

    DEFF Research Database (Denmark)

    Garcia-Pichel, F.; Kühl, Michael; Nübel, U.

    1999-01-01

    was specific for each community and in accordance with optimal performance at the respective salinity of origin. This pattern was lost after long-term exposure to varying salinities when responses to salinity were found to approach a general pattern of decreasing photosynthesis and oxygen exchange capacity...... with increasing salinity. Exhaustive measurements of oxygen export in the light, oxygen consumption in the dark and gross photosynthesis indicated that a salinity-dependent limitation of all three parameters occurred. Maximal values for all three parameters decreased exponentially with increasing salinity...

  8. The Oxygen Isotopic Composition of Phosphate: A Tracer for Phosphate Sources and Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Mclaughlin, K. [Southern California Coastal Water Research Project, Costa Mesa, University of California, CA (United States); Young, M. B.; Paytan, A.; Kendall, C. [U.S. Geological Survey, University of California, CA (United States)

    2013-05-15

    Phosphorus (P) is a limiting macro-nutrient for primary productivity and anthropogenic P-loading to aquatic ecosystems is one of the leading causes of eutrophication in many ecosystems throughout the world. Because P has only one stable isotope, traditional isotope techniques are not possible for tracing sources and cycling of P in aquatic systems. However, much of the P in nature is bonded to four oxygen (O) atoms as orthophosphate (PO{sub 4}{sup 3-}). The P-O bonds in orthophosphate are strongly resistant to inorganic hydrolysis and do not exchange oxygen with water without biological mediation (enzyme-mediated recycling). Thus, the oxygen isotopic composition of dissolved inorganic phosphate ({delta}{sup 18}O{sub p}) may be used as a tracer for phosphate sources and cycling in aquatic ecosystems. Recently, several studies have been conducted utilizing {delta}{sup 18}O{sub p} as a tracer for phosphate sources and cycling in various aquatic environments. Specifically, work to date indicates that {delta}{sup 18}O{sub p} is useful for determining sources of phosphate to aquatic systems if these sources have unique isotopic signatures and phosphate cycling within the system is limited compared to input fluxes. In addition, because various processes imprint specific fractionation effects, the {delta}{sup 18}O{sub p} tracer can be utilized to determine the degree of phosphorous cycling and processing through the biomass. This chapter reviews several of these studies and discusses the potential to utilize the {delta}{sup 18}O{sub p} of phosphate in rivers and streams. (author)

  9. The Effect of Phytase on the Oxygen Isotope Composition of Phosphate

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Bernasconi, S. M.; Frossard, E.

    2013-12-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi) (1-2). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. The enzymatic hydrolysis leads, via a nucleophilic attack, to the incorporation of one oxygen atom from the water into the newly formed Pi molecule. During the incorporation, an isotopic fractionation occurs, which might be used to identify the origin of Pi in the environment (3-6). While the effect of phosphomonoesterases and phosphodiesterases on the oxygen isotope composition of phosphate has been examined, there are, so far, no studies dealing with the effect of phytases (4-6). Phytases catalyze the hydrolysis of myo-inositol-hexakis-phosphate (IP6), which is an important component of organic P in many ecosystems (7). Enzymatic assays with phytase from wheat germ and Aspergillus niger were prepared under sterile and temperature controlled conditions in order to determine the effect of phytases on the oxygen isotope composition of phosphate, which has been liberated from IP6 via enzymatic hydrolysis. Assays with phytase from wheat germ lead to a turnover of the substrate close to 100%, while assays with phytase from Aspergillus niger lead to a turnover of the substrate close to 80%. In the case of the assays with phytase from wheat germ, our results indicate that one sixth of the total 24 oxygen which are associated to the phosphates in IP6 are exchanged with oxygen from water. From this we conclude that the incorporation of one oxygen atom from water occurs only at four phosphate molecules of IP6, while two phosphate molecules do not experience an incorporation of oxygen. This suggests that during the enzymatic hydrolysis, four P-O bonds and two C-O bonds are broken. Provided that, the isotopic fractionation can be calculated with an isotopic mass balance resulting in -8.4‰ (×3.6 SD). This is a value very similar to those reported

  10. The effect of temperature and salinity on oxygen consumption in the ...

    African Journals Online (AJOL)

    The aquatic oxygen consumption of the estuarine brachyuran crab, Cyclograpsus punctatus, was investigated after a 24-hour acclimation period at different temperature (12.5, 20, 30°C) and salinity (9, 17.5, 35, and 44‰) combinations . Salinity had no significant effect on oxygen consumption at 12.5 and 20°C in both large ...

  11. Quantifying salinity and season effects on eastern oyster clearance and oxygen consumption rates

    Science.gov (United States)

    Casas, S.M.; Lavaud, Romain; LaPeyre, Megan K.; Comeau, L. A.; Filgueira, R.; LaPeyre, Jerome F.

    2018-01-01

    There are few data on Crassostrea virginica physiological rates across the range of salinities and temperatures to which they are regularly exposed, and this limits the applicability of growth and production models using these data. The objectives of this study were to quantify, in winter (17 °C) and summer (27 °C), the clearance and oxygen consumption rates of C. virginica from Louisiana across a range of salinities typical of the region (3, 6, 9, 15 and 25). Salinity and season (temperature and reproduction) affected C. virginica physiology differently; salinity impacted clearance rates with reduced feeding rates at low salinities, while season had a strong effect on respiration rates. Highest clearance rates were found at salinities of 9–25, with reductions ranging from 50 to 80 and 90 to 95% at salinities of 6 and 3, respectively. Oxygen consumption rates in summer were four times higher than in winter. Oxygen consumption rates were within a narrow range and similar among salinities in winter, but varied greatly among individuals and salinities in summer. This likely reflected varying stages of gonad development. Valve movements measured at the five salinities indicated oysters were open 50–60% of the time in the 6–25 salinity range and ~ 30% at a salinity of 3. Reduced opening periods, concomitant with narrower valve gap amplitudes, are in accord with the limited feeding at the lowest salinity (3). These data indicate the need for increased focus on experimental determination of optimal ranges and thresholds to better quantify oyster population responses to environmental changes.

  12. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2013-01-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  13. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae

    2013-03-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  14. Effect of Nitrogen and Triple Super Phosphate Levels on Physiological Characteristics of Kochia scoparia in Salinity Stress

    Directory of Open Access Journals (Sweden)

    saeed khaninejad

    2014-09-01

    Full Text Available Decreasing yield and forage quality in saline water irrigating conditions, is one of the problems of forage production. Therefore, using the chemical fertilizers can be considered as a useful solution. This study was conducted to assess the effects of different levels of phosphorus and nitrogen fertilizers with saline water on physiological characteristics of Kochia, through a split plot factorial experiments with three replications .The main experimental units consisted of the levels of salinity of irrigating water, 5.2 and 16.5 dS m-1, and the subsidiary experimental units consisted of three nitrogen levels in form of 46%N (0, 100, 200 kg ha-1 and three phosphorus levels in form of triple super phosphate (0, 75, 150 kg ha-1, arranged in factorial form in experimental units. Results showed that the effect of salinity on studied physiological properties was not significant. Green area index (GAI and membrane stability index (MSI were significantly increased with using nitrogen fertilizers on 5.2 dS/m salinity level to control group ,while phosphorus did not affect on them. In all properties, fertilizers application on 16.5 dS/m salinity level not only had no considerable effect on stress tolerance, but also increased the harmful effects of salinity. GAI had a high correlation (0.71 with dry forage yield related to the studied factors. Generally, 75 kg Triple Super Phosphate fertilizer from 100 kg Urea improved studied physiological properties without side effects.

  15. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels

    Science.gov (United States)

    Lenfant, Claude; Torrance, John; English, Eugenia; Finch, Clement A.; Reynafarje, Cesar; Ramos, Jose; Faura, Jose

    1968-01-01

    The relationship between oxygen dissociation and 2,3-diphosphoglycerate (2,3-DPG) in the red cell has been studied in subjects moving from low to high altitude and vice versa. Within 24 hr following the change in altitude there was a change in hemoglobin affinity for oxygen; this modification therefore represents an important rapid adaptive mechanism to anoxia. A parallel change occurred in the organic phosphate content of the red cell. While this study does not provide direct evidence of a cause-effect relationship, the data strongly suggest that with anoxia, the observed rise in organic phosphate content of the red cell is responsible for increased availability of oxygen to tissues. Images PMID:5725278

  16. The diversity and abundance of bacteria and oxygenic phototrophs in saline biological desert crusts in Xinjiang, northwest China.

    Science.gov (United States)

    Li, Ke; Liu, Ruyin; Zhang, Hongxun; Yun, Juanli

    2013-07-01

    Although microorganisms, particularly oxygenic phototrophs, are known as the major players in the biogeochemical cycles of elements in desert soil ecosystems and have received extensive attention, still little is known about the effects of salinity on the composition and abundances of microbial community in desert soils. In this study, the diversity and abundance of bacteria and oxygenic phototrophs in biological desert crusts from Xinjiang province, which were under different salinity conditions, were investigated by using clone library and quantitative PCR (qPCR). The 16S rRNA gene phylogenetic analysis showed that cyanobacteria, mainly Microcoleus vagnitus of the order Oscillatoriales, were predominant in the low saline crusts, while other phototrophs, such as diatom, were the main microorganism group responsible for the oxygenic photosynthesis in the high saline crusts. Furthermore, the higher salt content in crusts may stimulate the growth of other bacteria, including Deinococcus-Thermus, Bacteroidetes, and some subdivisions of Proteobacteria (β-, γ-, and δ-Proteobacteria). The cpcBA-IGS gene analysis revealed the existence of novel M. vagnitus strains in this area. The qPCR results showed that the abundance of oxygenic phototrophs was significantly higher under lower saline condition than that in the higher saline crusts, suggesting that the higher salinity in desert crusts could suppress the numbers of total bacteria and phototrophic bacteria but did highly improve the diversity of salt-tolerant bacteria.

  17. A Phosphate Minimum in the Oxygen Minimum Zone (OMZ) off Peru

    Science.gov (United States)

    Paulmier, A.; Giraud, M.; Sudre, J.; Jonca, J.; Leon, V.; Moron, O.; Dewitte, B.; Lavik, G.; Grasse, P.; Frank, M.; Stramma, L.; Garcon, V.

    2016-02-01

    The Oxygen Minimum Zone (OMZ) off Peru is known to be associated with the advection of Equatorial SubSurface Waters (ESSW), rich in nutrients and poor in oxygen, through the Peru-Chile UnderCurrent (PCUC), but this circulation remains to be refined within the OMZ. During the Pelágico cruise in November-December 2010, measurements of phosphate revealed the presence of a phosphate minimum (Pmin) in various hydrographic stations, which could not be explained so far and could be associated with a specific water mass. This Pmin, localized at a relatively constant layer ( 20minimum with a mean vertical phosphate decrease of 0.6 µM but highly variable between 0.1 and 2.2 µM. In average, these Pmin are associated with a predominant mixing of SubTropical Under- and Surface Waters (STUW and STSW: 20 and 40%, respectively) within ESSW ( 25%), complemented evenly by overlying (ESW, TSW: 8%) and underlying waters (AAIW, SPDW: 7%). The hypotheses and mechanisms leading to the Pmin formation in the OMZ are further explored and discussed, considering the physical regional contribution associated with various circulation pathways ventilating the OMZ and the local biogeochemical contribution including the potential diazotrophic activity.

  18. The effect of phosphomonoesterases on the oxygen isotope composition of phosphate

    Science.gov (United States)

    von Sperber, Christian; Kries, Hajo; Tamburini, Federica; Bernasconi, Stefano M.; Frossard, Emmanuel

    2014-01-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. During the enzymatic hydrolysis an isotopic fractionation (ε) occurs leaving an imprint on the oxygen isotope composition of the released Pi which might be used to trace phosphorus in the environment. Therefore, enzymatic assays with acid phosphatases from wheat germ and potato tuber and alkaline phosphatase from Escherichia coli were prepared in order to determine the oxygen isotope fractionation caused by these enzymes. Adenosine 5‧ monophosphate and glycerol phosphate were used as substrates. The oxygen isotope fractionation caused by acid phosphatases is 20-30‰ smaller than for alkaline phosphatases, resulting in a difference of 5-7.5‰ in δ18O of Pi depending on the enzyme. We attribute the enzyme dependence of the isotopic fractionation to distinct reaction mechanisms of the two types of phosphatases. The observed difference is large enough to distinguish between the two enzymatic processes in environmental samples. These findings show that the oxygen isotope composition of Pi can be used to trace different enzymatic processes, offering an analytical tool that might contribute to a better understanding of the P-cycle in the environment.

  19. Comparing human peritoneal fluid and phosphate-buffered saline for drug delivery: do we need bio-relevant media?

    Science.gov (United States)

    Bhusal, Prabhat; Rahiri, Jamie Lee; Sua, Bruce; McDonald, Jessica E; Bansal, Mahima; Hanning, Sara; Sharma, Manisha; Chandramouli, Kaushik; Harrison, Jeff; Procter, Georgina; Andrews, Gavin; Jones, David S; Hill, Andrew G; Svirskis, Darren

    2018-06-01

    An understanding of biological fluids at the site of administration is important to predict the fate of drug delivery systems in vivo. Little is known about peritoneal fluid; therefore, we have investigated this biological fluid and compared it to phosphate-buffered saline, a synthetic media commonly used for in vitro evaluation of intraperitoneal drug delivery systems. Human peritoneal fluid samples were analysed for electrolyte, protein and lipid levels. In addition, physicochemical properties were measured alongside rheological parameters. Significant inter-patient variations were observed with regard to pH (p < 0.001), buffer capacity (p < 0.05), osmolality (p < 0.001) and surface tension (p < 0.05). All the investigated physicochemical properties of peritoneal fluid differed from phosphate-buffered saline (p < 0.001). Rheological examination of peritoneal fluid demonstrated non-Newtonian shear thinning behaviour and predominantly exhibited the characteristics of an entangled network. Inter-patient and inter-day variability in the viscosity of peritoneal fluid was observed. The solubility of the local anaesthetic lidocaine in peritoneal fluid was significantly higher (p < 0.05) when compared to phosphate-buffered saline. Interestingly, the dissolution rate of lidocaine was not significantly different between the synthetic and biological media. Importantly, and with relevance to intraperitoneal drug delivery systems, the sustained release of lidocaine from a thermosensitive gel formulation occurred at a significantly faster rate into peritoneal fluid. Collectively, these data demonstrate the variation between commonly used synthetic media and human peritoneal fluid. The differences in drug release rates observed illustrate the need for bio-relevant media, which ultimately would improve in vitro-in vivo correlation.

  20. The calcium phosphate coating of soy lecithin nanoemulsion with performance in stability and as an oxygen carrier

    Science.gov (United States)

    Han, Kyu B.

    This work studied the relationship between surfactant, oil, and water, by building ternary phase diagrams, the goal of which was to identify the oil-in-water phase composition. The resulting nano-sized emulsion was coated with dicalcium phosphate by utilizing the ionic affinity between calcium ions and the emulsion surface. Since the desired function of the particle is as an oxygen carrier, the particle stability, oxygen capacity, and oxygen release rate were investigated. The first step in the process was to construct ternary phase diagrams with 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) and soy derived lecithin. The results showed that the lecithin surfactant formed an oil-in-water phase region that was 36 times greater than that of DOPA. With the desired phase composition set, the lecithin emulsion was extruded, resulting in a well-dispersed nanosized particle. A pH titration study of the emulsion found an optimized calcium phosphate coating condition at pH 8.8, at which, the calcium ion had a greater affinity for the emulsion surface than phosphate. A Hill plot was used to show calcium cooperativeness on the emulsion surface which suggested one calcium ion binds to one lecithin molecule. The lecithin emulsion particles were then coated with calcium phosphate using a layering technique that allowed for careful control of the coating thickness. The overall particle hydrodynamic radius was consistent with the growth of the calcium phosphate coating, from 8 nm to 28 nm. This observation was further supported with cryo-TEM measurements. The stability of the coated emulsion was tested in conditions that simulate practical thermal, physical, and time-dependent conditions. Throughout the tests, the coated emulsion exhibited a constant mono-dispersed particle size, while the uncoated emulsion size fluctuated greatly and exhibited increased polydispersion. The fast mixing method with the stopped-flow apparatus was employed to test the product as an oxygen carrier, and it

  1. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    Science.gov (United States)

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  2. Oxygen isotope variations in phosphate of biogenic apatites. Pt.1

    International Nuclear Information System (INIS)

    Kolodny, Y.; Luz, B.; Navon, O.

    1983-01-01

    The major advantage of the oxygen in phosphate isotope paleothermometry is that it is a system which records temperatures with great sensitivity while bone (and teeth) building organisms are alive, and the record is nearly perfectly preserved after death. Fish from seven water bodies of different temperatures (3-23 0 C) and different delta 18 O (values - 16 to + 3) of the water were analysed. The delta 18 O values of the analysed PO 4 vary from 6 to 25. The system passed the following tests: (a) the temperature deduced from isotopic analyses of the sequence of fish from Lake Baikal are in good agreement with the temperatures measured in the thermally stratified lake; (b) the isotopic composition of fish bone phosphate is not influenced by the isotopic composition of the phosphate which is fed to the fish, but only by temperature and water composition. Isotopic analysis of fossil fish in combination with analysis of mammal bones should be a useful tool in deciphering continental paleoclimates. (orig.)

  3. Microinjection studies of phosphate permeability in rats during mild saline diuresis: influence of acute thyroparathyroidectomy and parathormone administration

    International Nuclear Information System (INIS)

    Poujeol, P.; Rouffignac, C. de.

    1975-01-01

    The tubular permeability to phosphate of the different segments of the rat nephron and the influence of parathyroid hormone on such a permeability were investigated. Tracer microinjections of 32 P and 3 H inulin were performed in control, acutely thyroparathyroidectomized (TPTX) and TPTX + PTH animals undergoing saline diuresis. In order to estimate the 32 P reabsorption capacity of the proximal convoluted tubule (PCT), the loop of Henle and the terminal part of the nephron, microinjections were performed in early proximal, late proximal and early distal tubules respectively. The results reported confirm that the renal phosphate reabsorption is under PTH control [fr

  4. Oceanographic temperature, salinity, oxygen, phosphate, total phosphorus, silicate, nitrite, pH, alkalinity measurements collected using bottle on multiple platforms in the Pacific, Atlantic, Arctic, Mediterranean from 1910 to 1982 (NODC Accession 0038350)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, nutrients, oxygen, and other measurements found in dataset OSD taken from the AGASSIZ; A., ALBACORE and other platforms in the Coastal N...

  5. Impacts of Salinity and Oxygen on Particle-Associated Microbial Communities in the Broadkill River, Lewes DE

    Directory of Open Access Journals (Sweden)

    Kristin M. Yoshimura

    2018-03-01

    Full Text Available Particulate matter in estuarine systems hosts microbial communities that can impact biogeochemical cycles. While the bacterial community composition on suspended particles has been previously investigated, especially with regards to how salinity may structure these communities, the archaeal fraction of the microbial community has not received the same attention. Here we investigate both the bacterial and archaeal community composition on two sizes of particles along a riverine discharge gradient in the Broadkill River, DE, USA, to determine whether the archaeal community is selected by similar environmental stressors as the bacteria. We measured salinity, nutrients, and diatom abundances, and use particle size as a proxy for oxygen concentrations. We show that salinity is a strong environmental factor that controls both bacterial and archaeal community composition and oxygen is an additional factor, impacting archaea more than bacteria.

  6. The source of phosphate in the oxidation zone of ore deposits: Evidence from oxygen isotope compositions of pyromorphite

    Science.gov (United States)

    Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor

    2013-12-01

    Pyromorphite (Pb5[PO4]3Cl) is an abundant mineral in oxidized zones of lead-bearing ore deposits and due to its very low solubility product effectively binds Pb during supergene alteration of galena (PbS). The capacity of a soil or near-surface fluid to immobilize dissolved Pb depends critically on the availability of phosphate in this soil or fluid. Potential phosphorus sources in soil include (i) release during biological processes, i.e. leaching from litter/lysis of microbial cells (after intracellular enzyme activity) in soil and hydrolysis from soil organic matter by extracellular enzymes and (ii) inorganic phosphate from the dissolution of apatite in the adjacent basement rocks. Intracellular enzyme activity in plants/microorganisms associated with kinetic fractionation produces an oxygen isotope composition distinctly different from inorganic processes in soil. This study presents the first oxygen isotope data for phosphate (δ18OP) in pyromorphite and a comprehensive data set for apatite from crystalline rocks. We investigated 38 pyromorphites from 26 localities in the Schwarzwald (Southwest Germany) and five samples from localities outside the Schwarzwald in addition to 12 apatite separates from gneissic and granitic host rocks. Pyromorphites had δ18OP values between +10‰ and +19‰, comparable to literature data on δ18OP in the readily available P fraction in soil (resin-extractable P) from which minerals potentially precipitate in soils. δ18OP values below the range of equilibrium isotope fractionation can be attributed either to apatites that formed geochemically (δ18OP of apatites:+6‰ to +9‰) or less likely to biological processes (extracellular enzyme activity). However, for most of our samples isotopic equilibrium with ambient water was indicated, which suggests biological activity. Therefore, we conclude that the majority of pyromorphites in oxidized zones of ore bodies formed from biologically cycled phosphate. This study highlights that

  7. Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures

    DEFF Research Database (Denmark)

    Christensen, Emil Aputsiaq Flindt; Svendsen, Morten Bo Søndergaard; Steffensen, John Fleng

    2017-01-01

    with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20...... of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity......The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased...

  8. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    Science.gov (United States)

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  9. Preservation Method and Phosphate Buffered Saline Washing Affect the Acute Myeloid Leukemia Proteome

    Directory of Open Access Journals (Sweden)

    Rebecca Wangen

    2018-01-01

    Full Text Available Acute myeloid leukemia (AML primary cells can be isolated from peripheral blood, suspended with media containing bovine serum and cryoprotectant, and stored in liquid nitrogen before being processed for proteomic analysis by mass spectrometry (MS. The presence of bovine serum and human blood proteins in AML samples can hamper the identifications of proteins, and thereby reduce the proteome coverage of the study. Herein, we have established the effect of phosphate buffered saline (PBS washing on AML patient samples stored in media. Although PBS washes effectively removed serum and blood contaminants, the saline wash resulted in cell burst and remarkable protein material loss. We also compared different methods to preserve the AML proteome from THP-1 and Molm-13 cell lines before MS analysis: (1 stored in media containing bovine serum and dimethyl sulfoxide (DMSO; (2 stored as dried cell pellets; and (3 stored as cell lysates in 4% sodium dodecyl sulfate (SDS. MS analysis of differently preserved AML cell samples shows that preservation with DMSO produce a high number of fragile cells that will burst during freezing and thawing. Our studies encourage the use of alternative preservation methods for future MS analysis of the AML proteome.

  10. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  11. The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity

    Science.gov (United States)

    Bali, Enikő; Audétat, Andreas; Keppler, Hans

    2011-04-01

    The solubility of U and Th in aqueous solutions at P-T-conditions relevant for subduction zones was studied by trapping uraninite or thorite saturated fluids as synthetic fluid inclusions in quartz and analyzing their composition by Laser Ablation-ICPMS. Uranium is virtually insoluble in aqueous fluids at Fe-FeO buffer conditions, whereas its solubility increases both with oxygen fugacity and with salinity to 960 ppm at 26.1 kbar, Re-ReO2 buffer conditions and 14.1 wt% NaCl in the fluid. At 26.1 kbar and 800°C, uranium solubility can be reproduced by the equation: log {{U}} = 2.681 + 0.1433log f{{O}}2 + 0.594{{Cl,}} where fO2 is the oxygen fugacity, and Cl is the chlorine content of the fluid in molality. In contrast, Th solubility is generally low (uranium increases strongly both with oxygen fugacity and with salinity. We show that reducing or NaCl-free fluids cannot produce primitive arc magmas with U/Th ratio higher than MORB. However, the dissolution of several wt% of oxidized, saline fluids in arc melts can produce U/Th ratios several times higher than in MORB. We suggest that observed U/Th ratios in arc magmas provide tight constraints on both the salinity and the oxidation state of subduction zone fluids.

  12. Physical, chemical, and other data collected using GEOSECS oxygen probe, deep sea reversing thermometers, and bottle cast(s) from the MOANA WAVE from as a part of the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project from 11 February to 27 May 1975 (NODC Accession 7700524)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Depth, temperature, salinity, dissolved oxygen, chlorophyll a, phosphate, nitrate, nitrite, silicate, and pressure data were collected using GEOSECS oxygen probe,...

  13. Loss of peroxisomes causes oxygen insensitivity of the histochemical assay of glucose-6-phosphate dehydrogenase activity to detect cancer cells

    NARCIS (Netherlands)

    Frederiks, Wilma M.; Vreeling-Sindelárová, Heleen; van Noorden, Cornelis J. F.

    2007-01-01

    Oxygen insensitivity of carcinoma cells and oxygen sensitivity of non-cancer cells in the histochemical assay of glucose-6-phosphate dehydrogenase (G6PD) enables detection of carcinoma cells in unfixed cell smears or cryostat sections of biopsies. The metabolic background of oxygen insensitivity is

  14. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water

    International Nuclear Information System (INIS)

    Luz, B.; Kolodny, V.; Horowitz, M.

    1984-01-01

    The delta 18 O of mammalian bone-phosphate varies linearly with delta 18 O of environmental water, but is not in isotopic equilibrium with that water. This situation is explained by a model of delta 18 O in body water in which the important fluxes of exchangeable oxygen through the body are taken into account. Fractionation of oxygen isotopes between body and environmental drinking water is dependent on the rates of drinking and respiration. Isotopic fractionation can be estimated from physiological data and the estimates correlate very well with observed fractionation. Species whose water consumption is large relative to its energy expenditure is sensitive to isotopic ratio changes in environmental water. (author)

  15. Aggregation and adhesion of gold nanoparticles in phosphate buffered saline

    Energy Technology Data Exchange (ETDEWEB)

    Du Shangfeng, E-mail: s.du@bham.ac.uk; Kendall, Kevin; Toloueinia, Panteha; Mehrabadi, Yasamin; Gupta, Gaurav; Newton, Jill [University of Birmingham, School of Chemical Engineering (United Kingdom)

    2012-03-15

    In applications in medicine and more specifically drug delivery, the dispersion stability of nanoparticles plays a significant role on their final performances. In this study, with the use of two laser technologies, dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA), we report a simple method to estimate the stability of nanoparticles dispersed in phosphate buffered saline (PBS). Stability has two features: (1) self-aggregation as the particles tend to stick to each other; (2) disappearance of particles as they adhere to surrounding substrate surfaces such as glass, metal, or polymer. By investigating the effects of sonication treatment and surface modification by five types of surfactants, including nonylphenol ethoxylate (NP9), polyvinyl pyrrolidone (PVP), human serum albumin (HSA), sodium dodecyl sulfate (SDS) and citrate ions on the dispersion stability, the varying self-aggregation and adhesion of gold nanoparticles dispersed in PBS are demonstrated. The results showed that PVP effectively prevented aggregation, while HSA exhibited the best performance in avoiding the adhesion of gold nanoparticle in PBS onto glass and metal. The simple principle of this method makes it a high potential to be applied to other nanoparticles, including virus particles, used in dispersing and processing.

  16. Impact of equilibrating time on phosphate adsorption and desorption behaviour in some selected saline sodic soils

    International Nuclear Information System (INIS)

    Khan, Q.U.; HAN; Khan, M.J.; Rehman, S.; Khan, S.U.

    2012-01-01

    To investigate the effect of equilibrating time on phosphate adsorption and desorption on saline sodic soils a study was carried using three soil series from Dera Ismail Khan (Pakistan) district, namely Zindani, Tikken and Gishkori. These soils are alkaline calcareous in nature with greater Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) values which classify them as saline sodic soils. The equilibrating time for the adsorption study was 8, 12, 16, 20, 24, 48 and 72 hours for two levels (5 mg L/sup -1/ and 100 mg L/sup -1/). For desorption study 1, 2, 3, 4 and 5 hours after 24 hours for low and high dilution. Adsorption and desorption isotherms of phosphate were developed for these soils. The Gishkori soil showed the greatest rate of adsorption as compared with the other two soils. Applying Langmuir and Freundlich models to P adsorption data revealed that Freundlich equation (R2 = 0.99) showed a better fit over the Langmuir equation (R2 =0. 97) in the three soils. The desorption curves varied similarly from each other. The amount of P adsorbed was different from that released back to the soil solution. The amount of adsorption increased with the time. Statistical analysis showed that the rate of adsorption for both 5 and 100 mg P L/sup -1/ was significantly different at P<0.05 at 16 and 20 hours and at P<0.01 beyond 20 hours. However, the rate of desorption was not significantly influenced by the equilibrating time as compared with the theoretical values of the three series. As the P - desorption curve did not coincide the P - adsorption curve, hence the availability of P to plant was adversely affected on its application. (author)

  17. Oxygen isotope fractionation between bird bone phosphate and drinking water

    Science.gov (United States)

    Amiot, Romain; Angst, Delphine; Legendre, Serge; Buffetaut, Eric; Fourel, François; Adolfssen, Jan; André, Aurore; Bojar, Ana Voica; Canoville, Aurore; Barral, Abel; Goedert, Jean; Halas, Stanislaw; Kusuhashi, Nao; Pestchevitskaya, Ekaterina; Rey, Kevin; Royer, Aurélien; Saraiva, Antônio Álamo Feitosa; Savary-Sismondini, Bérengère; Siméon, Jean-Luc; Touzeau, Alexandra; Zhou, Zhonghe; Lécuyer, Christophe

    2017-06-01

    Oxygen isotope compositions of bone phosphate (δ18Op) were measured in broiler chickens reared in 21 farms worldwide characterized by contrasted latitudes and local climates. These sedentary birds were raised during an approximately 3 to 4-month period, and local precipitation was the ultimate source of their drinking water. This sampling strategy allowed the relationship to be determined between the bone phosphate δ18Op values (from 9.8 to 22.5‰ V-SMOW) and the local rainfall δ18Ow values estimated from nearby IAEA/WMO stations (from -16.0 to -1.0‰ V-SMOW). Linear least square fitting of data provided the following isotopic fractionation equation: δ18Ow = 1.119 (±0.040) δ18Op - 24.222 (±0.644); R 2 = 0.98. The δ18Op-δ18Ow couples of five extant mallard ducks, a common buzzard, a European herring gull, a common ostrich, and a greater rhea fall within the predicted range of the equation, indicating that the relationship established for extant chickens can also be applied to birds of various ecologies and body masses. Applied to published oxygen isotope compositions of Miocene and Pliocene penguins from Peru, this new equation computes estimates of local seawater similar to those previously calculated. Applied to the basal bird Confuciusornis from the Early Cretaceous of Northeastern China, our equation gives a slightly higher δ18Ow value compared to the previously estimated one, possibly as a result of lower body temperature. These data indicate that caution should be exercised when the relationship estimated for modern birds is applied to their basal counterparts that likely had a metabolism intermediate between that of their theropod dinosaur ancestors and that of advanced ornithurines.

  18. Electronic and Structural Parameters of Phosphorus-Oxygen Bonds in Inorganic Phosphate Crystals

    Science.gov (United States)

    Atuchin, V. V.; Kesler, V. G.; Pervukhina, N. V.

    Wide set of experimental results on binding energy of photoelectrons emitted from P 2p, P 2s, and O 1s core levels has been observed for inorganic phosphate crystals and the parameters were compared using energy differences Δ(O 1s - P 2p) and Δ (O 1s - P 2s) as most robust characteristics. Linear dependence of the binding energy difference on mean chemical bond length L(P-O) between phosphorus and oxygen atoms has been found. The functions are of the forms: Δ (O 1s - P 2p) (eV) = 375.54 + 0.146 · L(P-O) (pm) and Δ (O 1s - P 2s) (eV) = 320.77 + 0.129 · L(P-O) (pm). The dependencies are general for inorganic phosphates and may be used in quantitative component analysis of X-ray photoemission spectra of complex oxide compounds including functional groups with different coordination of P and O atoms.

  19. Efficacy of nebulised L-adrenaline with 3% hypertonic saline versus normal saline in bronchiolitis

    Directory of Open Access Journals (Sweden)

    Shabnam Sharmin

    2016-08-01

    Full Text Available Background: Bronchiolitis is one of the most common respiratory diseases requiring hospitalization. Nebulized epineph­rine and salbutamol therapy has been used in different centres with varying results. Objective: The objective of the study was to compare the efficacy of nebulised adrenaline diluted with 3% hypertonic saline with nebulised adrenaline diluted with normal saline in bronchiolitis. Methods: Fifty three infants and young children with bronchiolitis, age ranging from 2 months to 2 years, presenting in the emergency department of Manikganj Sadar Hospital were enrolled in the study. After initial evaluation, patients were randomized to receive either nebulized adrenaline I .5 ml ( 1.5 mg diluted with 2 ml of3% hypertonic saline (group I ornebulised adrenaline 1.5 ml (1.5 mg diluted with 2 ml of normal saline (group II. Patients were evaluated again 30 minutes after nebulization. Results: Twenty eight patients in the group I (hypertonic saline and twenty five in groupII (normal saline were included in the study. After nebulization, mean respiratory rate decreased from 63.7 to 48.1 (p<.01, mean clinical severity score decreased from 8.5 to 3.5 (p<.01 and mean oxygen satw·ation increased 94.7% to 96.9% (p<.01 in group I. In group II, mean respiratory rate decreased from 62.4 to 47.4 (p<.01, mean clinical severity score decreased from 7.2 to 4.1 (p<.01 and mean oxygen saturation increased from 94. 7% to 96. 7% (p<.01. Mean respiratory rate decreased by 16 in group I versus 14.8 (p>.05 in group 11, mean clinical severity score decreased by 4.6 in group versus 3 (p<.05 in group, and mean oxygen saturation increased by 2.2% and 1.9% in group and group respectively. Difference in reduction in clinical severity score was statistically significant , though the changes in respiratory rate and oxygen saturation were not statistically significant. Conclusion: The study concluded that both nebulised adrenaline diluted with 3% hypertonic saline and

  20. Phosphorus cycling in forest ecosystems: insights from oxygen isotopes in phosphate

    Science.gov (United States)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Frossard, Emmanuel

    2015-04-01

    The current view on the phosphorus (P) cycle in forest ecosystems relies mostly on measurements and correlations of pools, and to a lower extent on measurement of fluxes. We have no direct insight into the processes phosphate goes through at the ecosystem level, and into the relative importance of organic and mineral pools in sustaining P nutrition of trees. The analysis of oxygen isotopes associated to P (18Op) is expected to bring this type of information. The German Priority Program SPP 1685 aims to test the overall hypothesis that the P-depletion of soils drives forest ecosystems from P acquiring systems (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Our contribution to this project will consist in studying the relative importance of biological and geochemical processes in controlling the P cycle in temperate beech forest ecosystems in Germany along a gradient of decreasing soil P availability. We will follow the fate of phosphate from litter fall to the uptake of P by plants via P release by decomposition of organic matter or after release from P-containing minerals, by using a multi-isotope approach (O in water and phosphate plus 33P). To address our research question we will rely on measurements in experimental forest sites and on laboratory incubations of the organic layer or the mineral soil. We present here the first results issued from the 2014 sampling on three study sites, where we characterized the P pools in surface soil horizons by a sequential extraction (modified after Tiessen and Moir, 2007) and we analysed the 18Op of the resin extractable- and microbial-P fractions. Contrary to what was previously found (e.g. Tamburini et al. 2012) the isotopic composition of these fractions in most of the samples does not reflect the equilibrium value (as the result of the dominance of the pyrophosphatase activity on the other enzymatic processes, Blake et al. 2005). Depending on the P availability

  1. A laboratory study of ikaite (CaCO3·6H2O) precipitation as a function of pH, salinity, temperature and phosphate concentration

    OpenAIRE

    Hu, Yu-Bin; Wolf-Gladrow, Dieter A.; Dieckmann, Gerhard S.; Völker, Christoph; Nehrke, Gernot

    2014-01-01

    Ikaite (CaCO3·6H2O) has only recently been discovered in sea ice, in a study that also provided first direct evidence of CaCO3 precipitation in sea ice. However, little is as yet known about the impact of physico-chemical processes on ikaite precipitation in sea ice. Our study focused on how the changes in pH, salinity, temperature and phosphate (PO4) concentration affect the precipitation of ikaite. Experiments were set up at pH from 8.5 to 10.0, salinities from 0 to 105 (in both artificial ...

  2. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    Science.gov (United States)

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  3. Ice-Tethered Profiler observations: Vertical profiles of temperature, salinity, oxygen, and ocean velocity from an Ice-Tethered Profiler buoy system

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains repeated vertical profiles of ocean temperature and salinity versus pressure, as well as oxygen and velocity for some instruments. Data were...

  4. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research?

    Science.gov (United States)

    Longinelli, Antonio

    1984-02-01

    Oxygen isotope analyses of water in blood of humans and domestic pigs indicate that the oxygen isotope fractionation effects between ingested water and body water are the same in all specimens of the same species. The δ18O of body water has been shown to vary linearly with the mean δ18O of local meteoric water. This conclusion also holds for the bone phosphate. Thus, δ18O( PO3-4) values of unaltered fossil bones from humans and domestic pigs can be used to reconstruct the δ18O values of local meteoric waters during the life-times of the mammals. Such data can be used for paleohydrological and paleoclimatological studies both on land and at sea.

  5. Physico-chemical conditions for plankton in Lake Timsah, a saline lake on the Suez Canal

    Science.gov (United States)

    El-Serehy, H. A. H.; Sleigh, M. A.

    1992-02-01

    Lake Timsah receives high salinity water from the Suez Canal, mainly from the south, and freshwater from a Nile canal and other sources, producing a salinity stratification with surface salinities of 20-40‰ and over 40‰ in deeper water. Water temperature at a depth of 50-70 cm fell to below 20 °C in winter and rose to above 30 °C in summer; oxygen concentration at the same depth ranged between 6-10 mg l -1 and the pH was 8·1-8·3, and at mid-day this water was supersaturated with oxygen through 6-8 months of the year. The main chemical nutrients reached their highest levels in winter (December-February) and their lowest levels in summer (May-August), silicate varying between 1-7 μ M, phosphate between 0·1 and 0·8 μ M and nitrate between 4-10 μ M; nitrite varied in a more complex manner, usually between 0·25 and 0·4 μ M. The atomic ratio of N/P was generally well above the Redfield ratio level, except for a few months in midwinter. These nutrient concentrations are high in comparison with those of unpolluted seas of the region, but are typical of the more eutrophic coastal waters in most parts of the world.

  6. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.M., E-mail: mmahmoudradwan@yahoo.com [Ceramics Dept, National Research Centre, Cairo (Egypt); Abd El-Hamid, H.K. [Ceramics Dept, National Research Centre, Cairo (Egypt); Mohamed, A.F. [The Holding Company for Production of Vaccines, Sera and Drugs (EGYVAC) (Egypt)

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C{sub 2}S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C{sub 2}S (27–30 nm) was prepared by solid state reaction at 1450 °C, while biphasic compound TCP/HAp (7–15 nm) was synthesized from an aqueous solution of Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4}·12H{sub 2}O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C{sub 2}S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. - Highlights: • The dissolution and hydration of β-C{sub 2}S and TCP/HAp in distilled water and saline solution were studied. • TCP/HAp did not show mechanical strength, while β-C{sub 2}S showed good mechanical strength. • The use of saline solution did enhances the dissolution & hydration rate. • An increase in pH values was detected when using saline solution. • Both materials showed a moderate cytotoxicity in no significant way.

  7. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.

    Science.gov (United States)

    He, Guangli; Hu, Weihua; Li, Chang Ming

    2015-11-01

    We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Oxygen consumption remains stable while ammonia excretion is reduced upon short time exposure to high salinity in Macrobrachium acanthurus (Caridae: Palaemonidae, a recent freshwater colonizer

    Directory of Open Access Journals (Sweden)

    Carolina A. Freire

    2017-10-01

    Full Text Available ABSTRACT Palaemonid shrimps occur in the tropical and temperate regions of South America and the Indo-Pacific, in brackish/freshwater habitats, and marine coastal areas. They form a clade that recently (i.e., ~30 mya invaded freshwater, and one included genus, Macrobrachium Bate, 1868, is especially successful in limnic habitats. Adult Macrobrachium acanthurus (Wiegmann, 1836 dwell in coastal freshwaters, have diadromous habit, and need brackish water to develop. Thus, they are widely recognized as euryhaline. Here we test how this species responds to a short-term exposure to increased salinity. We hypothesized that abrupt exposure to high salinity would result in reduced gill ventilation/perfusion and decreased oxygen consumption. Shrimps were subjected to control (0 psu and experimental salinities (10, 20, 30 psu, for four and eight hours (n = 8 in each group. The water in the experimental containers was saturated with oxygen before the beginning of the experiment; aeration was interrupted before placing the shrimp in the experimental container. Dissolved oxygen (DO, ammonia concentration, and pH were measured from the aquaria water, at the start and end of each experiment. After exposure, the shrimp’s hemolymph was sampled for lactate and osmolality assays. Muscle tissue was sampled for hydration content (Muscle Water Content, MWC. Oxygen consumption was not reduced and hemolymph lactate did not increase with increased salinity. The pH of the water decreased with time, under all conditions. Ammonia excretion decreased with increased salinity. Hemolymph osmolality and MWC remained stable at 10 and 20 psu, but osmolality increased (~50% and MWC decreased (~4% at 30 psu. The expected reduction in oxygen consumption was not observed. This shrimp is able to tolerate significant changes in water salt concentrations for a few hours by keeping its metabolism in aerobic mode, and putatively shutting down branchial salt uptake to avoid massive salt

  9. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy

    NARCIS (Netherlands)

    Liu, Yuelian; Layrolle, Pierre; de Bruijn, Joost Dick; van Blitterswijk, Clemens; de Groot, K.

    2001-01-01

    Titanium alloy implants were precoated biomimetically with a thin and dense layer of calcium phosphate and then incubated either in a supersaturated solution of calcium phosphate or in phosphate-buffered saline, each containing bovine serum albumin (BSA) at various concentrations, under

  10. Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary

    NARCIS (Netherlands)

    Bollmann, A.; Laanbroek, H.J.

    2002-01-01

    The influence of environmental factors on the community structure of ammoniaoxidizing bacteria (AOB) was investigated in the Schelde estuary. Simultaneously with the increase of oxygen and salinity, a shift of the dominant AOB was observed. Molecular analysis based on 16S rRNA genes showed that

  11. Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary

    NARCIS (Netherlands)

    Bollmann, A.; Laanbroek, H.J.

    2002-01-01

    The influence of environmental factors on the community structure of ammonia-oxidizing bacteria (AOB) was investigated in the Schelde estuary. Simultaneously with the increase of oxygen and salinity, a shift of the dominant AOB was observed. Molecular analysis based on 16S rRNA genes showed that the

  12. World Ocean Atlas 2005, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  13. Red blood cell aging markers during storage in citrate-phosphate-dextrose-saline-adenine-glucose-mannitol.

    Science.gov (United States)

    Antonelou, Marianna H; Kriebardis, Anastasios G; Stamoulis, Konstantinos E; Economou-Petersen, Effrosini; Margaritis, Lukas H; Papassideri, Issidora S

    2010-02-01

    It has been suggested that red blood cell (RBC) senescence is accelerated under blood bank conditions, although neither protein profile of RBC aging nor the impact of additive solutions on it have been studied in detail. RBCs and vesicles derived from RBCs in both citrate-phosphate-dextrose (CPD)-saline-adenine-glucose-mannitol (SAGM) and citrate-phosphate-dextrose-adenine (CPDA) were evaluated for the expression of cell senescence markers (vesiculation, protein aggregation, degradation, activation, oxidation, and topology) through immunoblotting technique and immunofluorescence or immunoelectron microscopy study. A group of cellular stress proteins exhibited storage time- and storage medium-related changes in their membrane association and exocytosis. The extent, the rate, and the expression of protein oxidation, Fas oligomerization, caspase activation, and protein modifications in Band 3, hemoglobin, and immunoglobulin G were less conspicuous and/or exhibited significant time retardation under storage in CPD-SAGM, compared to the CPDA storage. There was evidence for the localization of activated caspases near to the membrane of both cells and vesicles. We provide circumstantial evidence for a lower protein oxidative damage in CPD-SAGM-stored RBCs compared to the CPDA-stored cells. The different expression patterns of the senescence markers in the RBCs seem to be accordingly related to the oxidative stress management of the cells. We suggest that the storage of RBCs in CPD-SAGM might be more alike the in vivo RBC aging process, compared to storage in CPDA, since it is characterized by a slower stimulation of the recognition signaling pathways that are already known to trigger the erythrophagocytosis of senescent RBCs.

  14. Oceanographic profile temperature, salinity, oxygen measurements collected using bottle from multiple platforms in the Azov, Black Seas from 1924-1990 (NODC Accession 0002717)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen measurements collected using bottle from multiple platforms in the Azov, Black Seas from 1924-1990

  15. The characterization of mechanical and surface properties of poly (glycerol-sebacate-lactic acid) during degradation in phosphate buffered saline

    Energy Technology Data Exchange (ETDEWEB)

    Sun Zhijie [Center for biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China)], E-mail: zhijiesun2005@yahoo.com.cn; Wu Lan; Lu Xili; Meng Zhaoxu; Zheng Yufeng [Center for biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Dong Deli [Department of Pharmacology, Harbin Medical University, Bio-pharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081 (China)

    2008-11-15

    The present study synthesized a poly (glycerol-sebacate-lactic acid) (PGSL) with 1:1:0.5 mole ratio of glycerol, sebacate and lactic acid and investigated the degradation characteristics of the polymer in phosphate buffered saline (PBS) at 37 deg. C in vitro by means of mass loss tests, geometry, differential scanning calorimeter (DSC) measurements, tensile analysis and scanning electron microscopy (SEM). The maintained geometry, linear mass loss, and minor crack formation on the surface during degradation characterized both the bulk degradation and surface erosion of the polymer. By day 30 of degradation, the mass lost reached 16%. The elastic modulus, tensile strength and elongation at breakage of PGSL were correlative to the period of degradation.

  16. Temperature, salinity, dissolved oxygen, nutrients, and currents data from the Chesapeake Bay region from multiple platforms, July 1949 - July 1965 (NODC Accession 7000995)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are currently only available in analog form. A digital scan of the pages containing measured values for temperature, salinity, dissolved oxygen,...

  17. Interleaved MRI/MRS study of muscle perfusion, oxygenation and high energy phosphate metabolism in normal subjects and Becker's myopathic patients

    International Nuclear Information System (INIS)

    Toussaint, J.F.; Brillault-Salvat, C.; Giacomini, E.; Bloch, G.; Duboc, D.; Jehenson, P.

    1998-01-01

    We present the first results of a study comparing patients suffering from Becker's myopathy and normal volunteers. We simultaneously assessed perfusion, oxygenation and high-energy phosphate metabolism using an interleaved NMR/NMRS approach. Muscle metabolism does not seem to differ in Becker's patients, except for myoglobin reoxygenation rates. (authors)

  18. Oceanographic profile temperature, salinity, oxygen, nutrients, and plankton measurements collected using bottle from the Parizeau in the North Pacific Ocean (NODC Accession 0002242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen and other profile data received at NODC on 09/09/04 by Sydney Levitus from the Institute of Ocean Sciences (Sidney, B.C.), digitized...

  19. Faunal and oxygen isotopic evidence for surface water salinity changes during sapropel formation in the eastern Mediterranean

    International Nuclear Information System (INIS)

    Williams, D.F.; Thunell, R.C.

    1979-01-01

    The discovery of the widespread anaerobic deposits (sapropels) in late Cenozoic sediments of the eastern Mediteranean has prompted many workers to propose the periodic occurrence of extremely low surface salinites in the Mediterranean. Oxygen isotopic determinations and total faunal analyses were made at 1000-year intervals across two equivalent sapropels in two piston cores from the Levantine Basin. The sapropel layers were deposited approximately 9000 y.B.P. (Sapropel A) and 80, 000 y. B.P. (Sapropel B). Significant isotopic anomalies were recorded by the foraminiferal species within Sapropels A and B in both cores. The surface dwelling species record a larger 18 O depletion than the mesopelagic species suggesting that surface salinities were reduced by 2-3per 1000 during sapropel formation. The faunal changes associated with the sapropels also indicate that the oceanographic conditions which lead to anoxic conditions in the eastern Mediteranean involve the formation of a low salinity surface layer. The source of the low salinity water might be meltwater produced by disintegration of the Fennoscandian Ice Sheet which drained into the Black Sea, into the Aegean Sea and finally into the eastern Mediterranean. (Auth.)

  20. Physiological impact of salinity increase at organisms and red blood cell levels in the European flounder (Platichthys flesus

    DEFF Research Database (Denmark)

    Jensen, F.B.; Lecklin, T.; Busk, M.

    2002-01-01

    Erythrocyte, Hyperosmotic shrinkage, Oxygen affinity, Oxygenation-dependent RVI, Salinity challenge, Volume regulation......Erythrocyte, Hyperosmotic shrinkage, Oxygen affinity, Oxygenation-dependent RVI, Salinity challenge, Volume regulation...

  1. Oxygen, salinity, and other data from bottle casts in the Northwest Atlantic Ocean from 25 February 1973 to 04 May 1981 (NODC Accession 0000344)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oxygen, salinity, temperature, and depth data were collected using bottle casts in the Northwest Atlantic Ocean from February 25, 1973 to May 4, 1981. Data were...

  2. Phosphate Solubilising Fungi from Mangroves of Bhitarkanika, Orissa

    Directory of Open Access Journals (Sweden)

    NIBHA GUPTA

    2008-06-01

    Full Text Available Mangroves have evolved several adaptations to swampy and saline environments. It is situated at the inter-phase between marine and terrestrial environment, which is highly productive providing nutrients to surrounding micro biota. Similar adaptive characteristics in the form and function may occur with the associated microflora in such environments. Several free living and symbiotic microorganisms occurred in such saline habitats and some of them are reported for their beneficial activity in mangrove ecosystem like biomineralization of organic matter and bio-transformation of minerals. In view of this, 106 fungi isolated from rhizosphere and phyllosphere of mangrove plants grown in Bhitarkanika, Orissa were screened on plate culture containing Pikovaskaya medium for the phosphate solubilization. Selected fungi were evaluated for their phosphate solubilization potential under different cultural conditions. A total of 36 fungi were isolated that showed variable halo zone on medium containing tricalcium phosphate when grown under different pH and temperature. The highest zone was formed by Aspergillus PF8 (63 mm and Aspergillus PF127 (46.5 mm. The observation on tricalcium phosphate solubilization activity of Paecilomyces, Cladobotrytis, Helminthosporium is rare. However, a detailed and elaborative studies are needed to confirm better mineral solubilization potential of these fungi.

  3. Electrocapillary Phenomena at Edible Oil/Saline Interfaces.

    Science.gov (United States)

    Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao

    2017-03-01

    Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil oil oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.

  4. Effect of phosphate supplementation on oxygen delivery at high altitude

    Science.gov (United States)

    Jain, S. C.; Singh, M. V.; Rawal, S. B.; Sharma, V. M.; Divekar, H. M.; Tyagi, A. K.; Panwar, M. R.; Swamy, Y. V.

    1987-09-01

    In the present communication, effect of low doses of phosphate supplementation on short-term high altitude adaptation has been examined. Studies were carried out in 36 healthy, male, sea-level residents divided in a double blind fashion into drug and placebo treated groups. 3.2 mmol of phosphate were given orally to each subject of the drug treated group once a day for 4 days on arrival at an altitude of 3,500 m. Sequential studies were done in the subjects in both groups on the 3rd, 7th, 14th and 21st day of their altitude stay. Haemoglobin, haematocrit, erythrocyte and reticulocyte counts increased to the similar extent in both groups. Blood pH, pO2 and adenosine tri-phosphate (ATP) did not differ between the two groups. On 3rd day of the altitude stay, inorganic phosphate and 2,3-diphosphoglycerate (2,3 DPG) levels in the drug treated group increased significantly as compared to the placebo group. No significant difference in inorganic phosphate and 2,3 DPG was observed later on in the two groups. Psychological and clinical tests also indicated that the drug treated subjects felt better as compared to the placebo treated subjects. The present study suggests that low doses of phosphate increases circulating 2,3-DPG concentration which in turn brings about beneficial effect towards short term high altitude adaptation.

  5. Effects of salinity on sucrose metabolism during tomato fruit ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... (fructose and glucose) accumulated to higher levels and the content of ... But the effects of salinity treatment on sucrose phosphate synthase activities were ... analysis. Sink strength was expressed as the dry matter accumu-.

  6. Effects of salinity on sucrose metabolism during tomato fruit ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... But the effects of salinity treatment on sucrose phosphate synthase activities were weak under the ... The growth of different sink organs depends firstly on the use of ..... isoforms, location and regulatory mechanisms by endo-.

  7. The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions

    Science.gov (United States)

    Thomsen, Soeren; Kanzow, Torsten; Krahmann, Gerd; Greatbatch, Richard J.; Dengler, Marcus; Lavik, Gaute

    2016-01-01

    The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent (PCUC) in January and February 2013 is investigated using a multiplatform four-dimensional observational approach. Research vessel, multiple glider, and mooring-based measurements were conducted in the Peruvian upwelling regime near 12°30'S. The data set consists of >10,000 glider profiles and repeated vessel-based hydrography and velocity transects. It allows a detailed description of the eddy formation and its impact on the near-coastal salinity, oxygen, and nutrient distributions. In early January, a strong PCUC with maximum poleward velocities of ˜0.25 m/s at 100-200 m depth was observed. Starting on 20 January, a subsurface anticyclonic eddy developed in the PCUC downstream of a topographic bend, suggesting flow separation as the eddy formation mechanism. The eddy core waters exhibited oxygen concentration of deficit of ˜17 μmol/L, and potential vorticity close to zero, which seemed to originate from the bottom boundary layer of the continental slope. The eddy-induced across-shelf velocities resulted in an elevated exchange of water masses between the upper continental slope and the open ocean. Small-scale salinity and oxygen structures were formed by along-isopycnal stirring, and indications of eddy-driven oxygen ventilation of the upper oxygen minimum zone were observed. It is concluded that mesoscale stirring of solutes and the offshore transport of eddy core properties could provide an important coastal open ocean exchange mechanism with potentially large implications for nutrient budgets and biogeochemical cycling in the oxygen minimum zone off Peru.

  8. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    Science.gov (United States)

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH - or • OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  9. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-07-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ -12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking

  10. Temperature, salinity, oxygen and nutrients bottle and CTD data collected in the northern North Atlantic, Nordic and Arctic Seas from 1901 to 2011 (NODC Accession 0105532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen and nutrients bottle and CTD data collected in the Arctic Ocean, Barents Sea, Greenland Sea, Kara Sea, North Atlantic Ocean,...

  11. Dissolved oxygen, salinity, temperature, and depth data from bottle casts in the North Atlantic Ocean from 07 February 1987 to 18 February 1991 (NODC Accession 0000290)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dissolved oxygen, salinity, temperature, and depth data were collected using bottle casts in the North Atlantic Ocean from February 7, 1987 to February 18, 1991....

  12. Determination of dissolved oxygen in saline waters applying mathematical methods and as a membrane electrode sensor; Determinacion de oxigeno disuelto en aguas salinas aplicando modelos matematicos y como sensor electrodo de membrana

    Energy Technology Data Exchange (ETDEWEB)

    Mayari, R.; Espinosa, M. C.; Ruiz, M. [Centro Nacional de Investigaciones Ceintificas. La Habana (Cuba); Romero, E. [Universidad de Huelva (Spain)

    2000-07-01

    This work shows as specific methodology for the determination of dissolved oxygen in saline waters that allows to consider the variations of temperature and of concentration of salts. Both factors influence the solubility of the gases in water, making possible in place measurements, in bodies of water with content of salts unto of the concentration of sea water, with greater dependability. The mathematical models obtained are shown, the errors due to equipment, as well as the results obtained when applying this methodology in saline waters with diverse levels of contamination this allows to discern when the decrease of dissolved oxygen levels is due to an increase in the salinity or to an increase in the contamination of the water body. (Author) 7 refs.

  13. Role of oxygen free radicals in the induction of sister chromatid exchanges by cigarette smoke

    International Nuclear Information System (INIS)

    Lee, C.K.; Brown, B.G.; Rice, W.Y. Jr.; Doolittle, D.J.

    1989-01-01

    Cigarette smoke has been reported to contain free radicals and free radical generators in both the gas and particulate phases. Studies in our laboratory have shown that both cigarette smoke condensate (CSC) and smoke bubbled through phosphate buffered saline solution (smoke-PBS) increased sister chromatid exchanges (SCE) in Chinese hamster ovary cells in a dose-dependent manner. Since oxygen free radicals have been shown to cause SCEs and other chromosomal damage, we investigated the role of these radicals in the induction of SCEs by CSC and smoke-PBS. Addition of the antioxidant enzymes catalase and superoxide dismutase or the oxygen-radical scavenger ascorbic acid failed to reduce the SCE frequency in the presence of either CSC or smoke-PBS. Additional studies indicated that the quantity of hydrogen peroxide produced in CSC or smoke-PBS is too small to account for the observed SCE induction. It appears, therefore, that SCE induction by CSC or smoke-PBS does not involve the participation of oxygen free radicals

  14. Dissolved oxygen, salinity, temperature, and depth data from bottle casts in the North Atlantic Ocean from 05 February 1973 to 19 August 1980 (NODC Accession 0000289)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dissolved oxygen, salinity, temperature, and depth data were collected using bottle casts in the North Atlantic Ocean from February 5, 1973 to August 19, 1980. These...

  15. Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1970 through 1975 (NODC Accession 0002125)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1970...

  16. Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1976 through 1982 (NODC Accession 0002126)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1976...

  17. Oxygen isotope variations in phosphate of biogenic apatites. Pt. 2. Phosphorite rocks

    Energy Technology Data Exchange (ETDEWEB)

    Kolodny, Y; Luz, B; Shemesh, A [Hebrew Univ., Jerusalem (Israel). Dept. of Geology

    1983-09-01

    Phosphorites from sedimentary sequences ranging in age from Archaen to Recent were analysed for delta/sup 18/O in both the PO/sub 4/ (delta/sup 18/Osub(p)) and CO/sub 3/ (delta/sup 18/Osub(c)) in the apatite lattice. The oxygen isotope record is considerably better preserved in phosphates than in either carbonates or cherts. The use of the Longinelli and Nuti temperature equation yields temperatures for Recent phosphorites that are in good agreement with those measured in the field. The delta/sup 18/Osub(p) values of ancient phosphorites decrease with increasing age. These changes with time are not likely to be due to post-depositional exchange. Changes in delta/sup 18/O values of seawater and variations of temperatures with time can account for the delta/sup 18/Osub(p) time trend, but the latter explanation is preferred. In Ancient phosphorites delta/sup 18/Osub(c) in structurally bound carbonate in apatite is not a reliable geochemical indicator.

  18. Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf.

    Science.gov (United States)

    Abed, Raeid M M; Kohls, Katharina; de Beer, Dirk

    2007-06-01

    The effects of salinity fluctuation on bacterial diversity, rates of gross photosynthesis (GP) and oxygen consumption in the light (OCL) and in the dark (OCD) were investigated in three submerged cyanobacterial mats from a transect on an intertidal flat. The transect ran 1 km inland from the low water mark along an increasingly extreme habitat with respect to salinity. The response of GP, OCL and OCD in each sample to various salinities (65 per thousand, 100 per thousand, 150 per thousand and 200 per thousand) were compared. The obtained sequences and the number of unique operational taxonomic units showed clear differences in the mats' bacterial composition. While cyanobacteria decreased from the lower to the upper tidal mat, other bacterial groups such as Chloroflexus and Cytophaga/Flavobacteria/Bacteriodetes showed an opposite pattern with the highest dominance in the middle and upper tidal mats respectively. Gross photosynthesis and OCL at the ambient salinities of the mats decreased from the lower to the upper tidal zone. All mats, regardless of their tidal location, exhibited a decrease in areal GP, OCL and OCD rates at salinities > 100 per thousand. The extent of inhibition of these processes at higher salinities suggests an increase in salt adaptation of the mats microorganisms with distance from the low water line. We conclude that the resilience of microbial mats towards different salinity regimes on intertidal flats is accompanied by adjustment of the diversity and function of their microbial communities.

  19. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis

    Directory of Open Access Journals (Sweden)

    Ajantha Nadesalingam

    2018-03-01

    Full Text Available Tonicity of saline (NaCl is important in regulating cellular functions and homeostasis. Hypertonic saline is administered to treat many inflammatory diseases, including cystic fibrosis. Excess neutrophil extracellular trap (NET formation, or NETosis, is associated with many pathological conditions including chronic inflammation. Despite the known therapeutic benefits of hypertonic saline, its underlying mechanisms are not clearly understood. Therefore, we aimed to elucidate the effects of hypertonic saline in modulating NETosis. For this purpose, we purified human neutrophils and induced NETosis using agonists such as diacylglycerol mimetic phorbol myristate acetate (PMA, Gram-negative bacterial cell wall component lipopolysaccharide (LPS, calcium ionophores (A23187 and ionomycin from Streptomyces conglobatus, and bacteria (Pseudomonas aeruginosa and Staphylococcus aureus. We then analyzed neutrophils and NETs using Sytox green assay, immunostaining of NET components and apoptosis markers, confocal microscopy, and pH sensing reagents. This study found that hypertonic NaCl suppresses nicotinamide adenine dinucleotide phosphate oxidase (NADPH2 or NOX2-dependent NETosis induced by agonists PMA, Escherichia coli LPS (0111:B4 and O128:B12, and P. aeruginosa. Hypertonic saline also suppresses LPS- and PMA- induced reactive oxygen species production. It was determined that supplementing H2O2 reverses the suppressive effect of hypertonic saline on NOX2-dependent NETosis. Many of the aforementioned suppressive effects were observed in the presence of equimolar concentrations of choline chloride and osmolytes (d-mannitol and d-sorbitol. This suggests that the mechanism by which hypertonic saline suppresses NOX2-dependent NETosis is via neutrophil dehydration. Hypertonic NaCl does not significantly alter the intracellular pH of neutrophils. We found that hypertonic NaCl induces apoptosis while suppressing NOX2-dependent NETosis. In contrast, hypertonic

  20. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    Science.gov (United States)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  1. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Barten, H.

    1986-01-01

    Results are described of a study of the thermochemical stability of anhydrous phosphates and arsenates. The results of phase studies deal with compound formation and characterization, coexisting phases and limiting physical or chemical properties. The uranyl phosphates evolve oxygen at higher temperatures and the arsenates lose arsenic oxide vapour. These phenomena give the possibility to describe their thermodynamic stabilities. Thus oxygen pressures of uranyl phosphates have been measured using a static, non-isothermal method. Having made available the pure anhydrous compounds in the course of this investigation, molar thermodynamic quantities have been measured as well. These include standard enthalpies of formation from solution calorimetry and high-temperature heat-capacity functions derived from enthalpy increments measured. Some attention is given to compounds with uranium in valencies lower than six which have been met during the investigation. An evaluation is made of the thermodynamics of the compounds studied, to result in tabulized high-temperature thermodynamic functions. Relative stabilities within the systems are discussed and comparisons of the uranyl phosphates and the arsenates are made. (Auth.)

  2. Oxygen isotope analysis of shark teeth phosphates from Bartonian (Eocene) deposits in Mangyshlak peninsula, Kazakhstan

    Science.gov (United States)

    Pelc, Andrzej; Hałas, Stanisław; Niedźwiedzki, Robert

    2011-01-01

    We report the results of high-precision (±0.05‰) oxygen isotope analysis of phosphates in 6 teeth of fossil sharks from the Mangyshlak peninsula. This precision was achieved by the offline preparation of CO2 which was then analyzed on a dual-inlet and triple-collector IRMS. The teeth samples were separated from Middle- and Late Bartonian sediments cropping out in two locations, Usak and Kuilus. Seawater temperatures calculated from the δ18O data vary from 23-41°C. However, these temperatures are probably overestimated due to freshwater inflow. The data point at higher temperature in the Late Bartonian than in the Middle Bartonian and suggest differences in the depth habitats of the shark species studied.

  3. The effect of biofertilizer fungi on Ciherang rice growth at some level of soil salinity

    Directory of Open Access Journals (Sweden)

    Y B Subowo

    2014-04-01

    Full Text Available A research about the effect of fungus contained biofertilizer on Ciherang rice that was growth on different level of soil salinity was conducted. One of the effect of global climate changes is the increase of sea water level. It leads to the expansion of sea water submerged land for agriculture. Salt intrution to the agriculture area considerably decrease soil fertility because of the high salinity. Some of microbes especially soil fungi such as Aspergillus sp and Penicillium sp. are able to grow at high salinity environment. Those fungi were also able to degrade lignocellulose, sollubilize in organic phosphate and provide organic phosphat and produce plant growth hormon especially IAA. Such activities benefit to improve soil fertility in high salinity land as a bio-fertilizer.The objective of this research was to know the growth of rice plant that treated with fungus contained bio-fertilizer on land with different level of salinity. The rice were planted in Green house of Cibinong Science Centre, Cibinong.The research was set up as complete random design with five replication. The rice were watered by 5 conditions: 50% of sea water, 100% of sea water, 100% sea water + 2 % NaCl , fresh water + 5 % NaCl and 100% fresh water as the control. Fertilizer was added to the medium twice. Ten grams of fertilizer were used per polybag (10g/7 Kg, 2 weeks after planting and before flowering subsequently. The observed parameters were plant height, number of tiller, leaves colour, biomass dry weight, soil organic carbon content, cellulosic and lignin degrading activities of the fungus, fungus phosphate-solubilizing potency and fungus production of IAA.The watering treatment lead to 5 level of salinity i.e. : 5,93 dS/m (50% sea water, 9,15 dS/m (100% sea water, 10,42 dS/m (sea water + 2% NaCl, 12,43 dS/m (fresh water + 5% NaCl and 0,74 dS/m (fresh water. The result showed that among those 5 watering condition, the rice grew best on 5,93 dS/m (watering 50% of

  4. Alleviation of adverse impact of salinity on faba bean (vicia faba l.) by arbuscular mycorrhizal fungialleviation of adverse impact of salinity on faba bean (vicia faba l.) by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Abeer, H.; Didamony, E.L.

    2014-01-01

    The present study was conducted to assess the effect of different concentrations of sodium chloride (NaCl) in presence and absence of AMF on growth, physio-biochemical and enzymatic activity in faba bean (Vicia faba). Different concentrations of NaCl showed reduction in growth and yield parameters, which indicates the deleterious effects of salinity on the plant. The total spore count and colonization by arbuscular mycorrhizal fungi (AMF) is also decreasing at higher concentrations of NaCl. Application of AMF mitigates the effect of NaCl stress and improved the growth and yield in the present study. NaCl also decreased the nodulation as well as nodule activity and pigments content, however the supplementation of by AMF to plants treated with sodium chloride showed enhancement in nodule activity and pigment content. Polyamines (Putresciene, Spermidine, Spermine), acid and alkaline phosphates increased with increasing concentration of sodium chloride and application of by AMF showed further increase in the above phytoconstituents, proving the protective role of these phytoconstituents against salt stress. Salinity stress is responsible for the generation of reactive oxygen species, which lead to the membrane damage through lipid peroxidation in the present study. Maximum lipid peroxidation was observed at higher concentration of sodium chloride and AMF treatment minimized the effect of salinity on lipid peroxidation. To combat with the reactive oxygen species, plants upregulate the enzymatic antioxidants like superoxide dismutase, catalase, peroxidase and ascorbate peroxidase. As the concentration of sodium chloride increases the enzyme activity also increases and further increase was observed with supplementation of AMF to salt treated plants. Arbuscular mycorrhizal fungi also restores the potassium and calcium contents and maintain their ratio that was hampered with increasing concentration of sodium chloride in the present study. In conclusion, application of AMF

  5. Microbial efficacy of phosphate solubilization in agro-saline soils of various areas of sindh region

    International Nuclear Information System (INIS)

    Noor, A.A.; Shah, F.A.

    2013-01-01

    Microorganisms are the most prominent entities for solubilization of phosphate in various soils of different areas of Sindh Province including Tando Muhammad Khan, Tando Allah Yar, Nawabshah, Rato Dero-Larkana, Shikarpur and Umer Kot. These soils, having varying concentrations of chemicals, different climatic conditions, pH and varying numbers of microorganisms for PSA (Phosphate Solubilization Activity). This presentation shows the isolation of different fungi and bacteria capable Psa including fungi (Fusarium sp. Aspergillus sp. Penicillium sp. and Rhizopus sp.) and bacteria (Bacillus sp. Pseudomonas sp. and Arthrobacter sp.). From the observations, it was revealed that fungi Aspergillus sp. and Bacillus sp. showed greater phosphate solubilization activity as compared to other fungi and bacteria showing 60 and 53.33% Psa (Phosphate Solubilizing Activity) respectively. (author)

  6. Alkaline Phosphatase Activity : an overlooked player on the phosphate behavior in macrotidal estuaries

    Science.gov (United States)

    Delmas, Daniel; Labry, Claire; Youenou, Agnes; Quere, Julien; Auguet, Jean Christophe; Montanie, Helene

    2014-05-01

    The non-conservative behavior of phosphate within the estuarine salinity gradient is essentially assigned to physico-chemical processes, such as desorption at low salinity and to benthic exchanges. Microbial phosphatase activity (APA), generally related to phosphate deficiency, is seldom studied in phosphate rich estuarine waters. In order to address the impact of microbial activity (bacterial abundance, production BSP, APA) on phosphate behavior, we studied these activities on a seasonal basis within the salinity gradient of two macrotidal estuaries presenting different levels of suspended solids. Whatever the season the Charente estuary is characterized by high levels of Suspended Particulate Matter (SPM > 1g.L-1), particularly in the Maximum Turbidity Zone (MTZ) located at the 5-10 psu. In this area characterized by high BSP and APA there is a significant increase of PO4 levels especially during summer. In the Aulne estuary the particle load is significantly lower (1/10) but high BSP and APA are equally recorded. In the highly turbid waters of the Charente estuary, active phytoplankton is virtually absent as pheopigments constitute up to 80% of the total pigments, particularly in the MTZ, therefore APA may essentially have a bacterial origin. In the Aulne estuary attached bacteria are dominant, both in numbers and production, and their distribution along the haline gradient perfectly follows those of APA and phosphate levels. These observations, associated with the very close relationships observed between APA, SPM and BSP, suggest that APA derive mainly from bacterial (attached) origin and operate at the expense of particulate phosphorus and hence contribute to PO4 regeneration, especially in spring and summer. Finally, as APA increased as PO4, whereas the reverse is observed in both fresh and marine waters, an original scheme for APA regulation, related to the large dominance of attached bacteria can be described for the estuarine waters.

  7. Historical temperature, salinity, oxygen, nutrients and meteorological data collected in the Arctic Ocean and Atlantic Ocean by various countries from 20 Jul 1870 to 17 Jul 1995 (NODC Accession 0085914)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen, nutrients and meteorological data collected in the Arctic Ocean and Atlantic Ocean by various countries from 1870 to 1995,...

  8. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Marco Antonio Russo

    2009-12-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  9. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Vito Sardo

    2011-02-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  10. Optimizing conditions for calcium phosphate mediated transient transfection

    Directory of Open Access Journals (Sweden)

    Ling Guo

    2017-03-01

    Conclusions: Calcium phosphate mediated transfection is the most low-cost approach to introduce recombinant DNA into culture cells. However, the utility of this procedure is limited in highly-differentiated cells. Here we describe the specific HBS-buffered saline, PH, glycerol shock, vortex strength, transfection medium, and particle concentrations conditions necessary to optimize this transfection method in highly differentiated cells.

  11. Heat- and exercise-induced hyperthermia: effects on high-energy phosphates.

    Science.gov (United States)

    Francesconi, R; Mager, M

    1979-08-01

    To assess the role of high-energy phosphate compounds in the etiology of heat injury with respect to the release of intracellular constituents, the susceptibility of selected tissues to heat injury, and the shock-like demise of the animals, rats were exercised on a treadmill (9.14 m/min) in a hot environment (34.5-35 degrees C) to a rectal temperature (Tre) of 42.5-43 degrees C. In the heart, kidney, left lateral lobe of the liver, and gastrocnemius muscle extricated from animals immediately upon termination of the treadmill run, levels of glucose-6-phosphate (G-6-P), adenosine triphosphate (ATP), and creatine phosphate (CP) were unchanged when compared with sedentary controls. In animals which had been resuscitated by infusion of isotonic saline into a jugular catheter, levels of CP were significantly (p less than 0.025) elevated in gastrocnemius muscle. In rats which were unconscious and succumbing to the effects of hyperthermic injury, levels of hepatic G-6-P and ATP were significantly reduced (p less than 0.05, p less than 0.02, respectively). These results indicate that the combination of exhaustive excercise/heat injury had the most deleterious effects upon hepatic metabolism. However, while resuscitation with physiological saline may be accompanied by an increased synthesis of CP, hyperthermic exhaustion and the concomitant efflux of cellular constituents cannot be attributed to a depletion or even a decrement of high-energy phosphates in vital tissues.

  12. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica.

    Directory of Open Access Journals (Sweden)

    Nicolas von Alvensleben

    Full Text Available Microalgae are ideal candidates for waste-gas and -water remediation. However, salinity often varies between different sites. A cosmopolitan microalga with large salinity tolerance and consistent biochemical profiles would be ideal for standardised cultivation across various remediation sites. The aims of this study were to determine the effects of salinity on Picochlorum atomus growth, biomass productivity, nutrient uptake and biochemical profiles. To determine if target end-products could be manipulated, the effects of 4-day nutrient limitation were also determined. Culture salinity had no effect on growth, biomass productivity, phosphate, nitrate and total nitrogen uptake at 2, 8, 18, 28 and 36 ppt. 11 ppt, however, initiated a significantly higher total nitrogen uptake. While salinity had only minor effects on biochemical composition, nutrient depletion was a major driver for changes in biomass quality, leading to significant increases in total lipid, fatty acid and carbohydrate quantities. Fatty acid composition was also significantly affected by nutrient depletion, with an increased proportion of saturated and mono-unsaturated fatty acids. Having established that P. atomus is a euryhaline microalga, the effects of culture salinity on the development of the freshwater cyanobacterial contaminant Pseudanabaena limnetica were determined. Salinity at 28 and 36 ppt significantly inhibited establishment of P. limnetica in P. atomus cultures. In conclusion, P. atomus can be deployed for bioremediation at sites with highly variable salinities without effects on end-product potential. Nutrient status critically affected biochemical profiles--an important consideration for end-product development by microalgal industries. 28 and 36 ppt slow the establishment of the freshwater cyanobacterium P. limnetica, allowing for harvest of low contaminant containing biomass.

  13. Seasonal Carbonate Chemistry Covariation with Temperature, Oxygen, and Salinity in a Fjord Estuary: Implications for the Design of Ocean Acidification Experiments

    Science.gov (United States)

    Reum, Jonathan C. P.; Alin, Simone R.; Feely, Richard A.; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008–2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal

  14. The influence of fish ponds and salinization on groundwater quality in the multi-layer coastal aquifer system in Israel

    Science.gov (United States)

    Tal, A.; Weinstein, Y.; Yechieli, Y.; Borisover, M.

    2017-08-01

    This study focuses on the impact of surface reservoirs (fish ponds) on a multi aquifer coastal system, and the relation between the aquifer and the sea. The study was conducted in an Israeli Mediterranean coastal aquifer, which includes a sandy phreatic unit and two confined calcareous sandstone units. The geological description is based on 52 wells, from which 33 samples were collected for stable isotope analysis and 25 samples for organic and inorganic parameters. Hydraulic head and chemical measurements suggest that there is an hydraulic connection between the fish ponds above the aquifer and the phreatic unit, whereas the connection with the confined units is very limited. The phreatic unit is characterized by a low concentration of oxygen and high concentrations of ammonium and phosphate, while the confined units are characterized by higher oxygen and much lower ammonium and phosphate concentrations. Organic matter fluorescence was found to be a tool to distinguish the contribution of the pond waters, whereby a pond water signature (characterized by proteinaceous (tryptophan-like) and typical humic-matter fluorescence) was found in the phreatic aquifer. The phreatic unit is also isotopically enriched, similar to pond waters, with δ18O of -1‰ and δD of -4.6‰, indicating enhanced evaporation of the pond water before infiltration, whereas there is a depleted isotopic composition in the confined units (δ18O = -4.3‰, δD = -20.4‰), which are also OM-poor. The Phreeqc model was used for quantitative calculation of the effect of pond losses on the different units. The Dissolved Inorganic Nitrogen (DIN) in the upper unit increases downstream from the ponds toward the sea, probably due to organic matter degradation, suggesting contribution of DIN from shallow groundwater flow to the sea. 87Sr/86Sr and Mg/Ca in the brackish and saline groundwater of the lower confined units increase toward seawater value, suggesting that the salinization process in the region

  15. Radical-induced dephosphorylation of fructose phosphates in aqueous solution

    International Nuclear Information System (INIS)

    Zegota, H.; Sonntag, C. von

    1981-01-01

    Oxygen free N 2 O-saturated aqueous solutions of D-fructose-1-phosphate and D-fructose-6-phosphate were γ-irradiated. Inorganic phosphate and phosphate free sugars (containing four to six carbon atoms) were identified and their G-values measured. D-Fructose-1-phosphate yields (G-values in parentheses) inorganic phosphate (1.6), hexos-2-ulose (0.12), 6-deoxy-2,5-hexodiulose (0.16), tetrulose (0.05) and 3-deoxytetrulose (0.15). D-Fructose-6-phosphate yields inorganic phosphate (1.7), hexos-5-ulose (0.1), 6-deoxy-2,5-hexodiulose (0.36), 3-deoxy-2,5-hexodiulose and 2-deoxyhexos-5-ulose (together 0.18). On treatment with alkaline phosphatase further deoxy sugars were recognized and in fructose-1-phosphate G(6-deoxy-2,5-hexodiulose) was increased to a G-value of 0.4. Dephosphorylation is considered to occur mainly after OH attack at C-5 and C-1 in fructose-1-phosphate and at C-5 and C-6 in fructose-6-phosphate. Reaction mechanisms are discussed. (orig.)

  16. Regional acidification trends in Florida shellfish estuaries: A 20+ year look at pH, oxygen, temperature, and salinity

    Science.gov (United States)

    Robbins, Lisa L.; Lisle, John T.

    2018-01-01

    Increasing global CO2 and local land use changes coupled with increased nutrient pollution are threatening estuaries worldwide. Local changes of estuarine chemistry have been documented, but regional associations and trends comparing multiple estuaries latitudinally have not been evaluated. Rapid climate change has impacted the annual and decadal chemical trends in estuaries, with local ecosystem processes enhancing or mitigating the responses. Here, we compare pH, dissolved oxygen, temperature, and salinity data from 10 Florida shellfish estuaries and hundreds of shellfish bed stations. Over 80,000 measurements, spanning from 1980 to 2008, taken on Atlantic Ocean and West Florida coast showed significant regional trends of consistent pH decreases in 8 out of the 10 estuaries, with an average rate of decrease on the Gulf of Mexico side estuaries of Florida of 7.3 × 10−4 pH units year−1, and average decrease on the Atlantic Coast estuaries of 5.0 × 10−4 pH units year−1. The rates are approximately 2–3.4 times slower than observed in pH decreases associated with ocean acidification in the Atlantic and Pacific. Other significant trends observed include decreasing dissolved oxygen in 9 out of the 10 estuaries, increasing salinity in 6 out of the 10, and temperature increases in 3 out of the 10 estuaries. The data provide a synoptic regional view of Florida estuary trends which reflect the complexity of changing climate and coastal ocean acidification superimposed on local conditions. These data provide context for understanding, and interpreting the past and predicting future of regional water quality health of shellfish and other organisms of commercial and ecological significance along Florida’s coasts.

  17. Regional acidification trends in Florida shellfish estuaries: A 20+ year look at pH, oxygen, temperature and salinity

    Science.gov (United States)

    Robbins, Lisa L.; Lisle, John T.

    2018-01-01

    Increasing global CO2 and local land use changes coupled with increased nutrient pollution are threatening estuaries worldwide. Local changes of estuarine chemistry have been documented, but regional associations and trends comparing multiple estuaries latitudinally have not been evaluated. Rapid climate change has impacted the annual and decadal chemical trends in estuaries, with local ecosystem processes enhancing or mitigating the responses. Here, we compare pH, dissolved oxygen, temperature, and salinity data from 10 Florida shellfish estuaries and hundreds of shellfish bed stations. Over 80,000 measurements, spanning from 1980 to 2008, taken on Atlantic Ocean and West Florida coast showed significant regional trends of consistent pH decreases in 8 out of the 10 estuaries, with an average rate of decrease on the Gulf of Mexico side estuaries of Florida of 7.3 × 10−4 pH units year−1, and average decrease on the Atlantic Coast estuaries of 5.0 × 10−4 pH units year−1. The rates are approximately 2–3.4 times slower than observed in pH decreases associated with ocean acidification in the Atlantic and Pacific. Other significant trends observed include decreasing dissolved oxygen in 9 out of the 10 estuaries, increasing salinity in 6 out of the 10, and temperature increases in 3 out of the 10 estuaries. The data provide a synoptic regional view of Florida estuary trends which reflect the complexity of changing climate and coastal ocean acidification superimposed on local conditions. These data provide context for understanding, and interpreting the past and predicting future of regional water quality health of shellfish and other organisms of commercial and ecological significance along Florida’s coasts.

  18. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium

    Science.gov (United States)

    Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M.; Kültz, Dietmar

    2013-01-01

    SUMMARY The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish. PMID:24072791

  19. The Influence of Environmental Salinity, Temperature, Ionizing Irradiation and Yellow or Silver Stage on Lipid Metabolism in the Gills of the European Eel

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Abraham, S.

    1979-01-01

    The influence of temperature on the incorporation of [32P]phosphate and [14C]acetate into gill lipids in vivo depends also on environmental salinity. - 2. Ionizing irradiation (1000 r) results in a relatively enhanced incorporation of [32P]phosphate into phosphatidyl choline and of [14C]acetate i......]acetate into triglycerides and wax esters in vivo. - 3. When gill tissue is removed from the animal and incubated in vitro, a pronounced dependence of lipid metabolism on previous environmental salinity is not observed...

  20. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    Science.gov (United States)

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  1. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    Science.gov (United States)

    Reum, Jonathan C P; Alin, Simone R; Feely, Richard A; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.

  2. Alteration in Solid State Phosphorous With Depth in Sediments Along the Salinity Transition Zone of a Major Chesapeake Bay Tributary

    Science.gov (United States)

    Hartzell, J. L.; Jordan, T. E.

    2006-05-01

    Determining the fate of particulate phosphorus in estuaries is essential for addressing the widespread problem of estuarine eutrophication, and is key to understanding P cycling and developing accurate global P budgets. Prominent reservoirs of P in surficial sediments include particulate P associated with iron or organic C. However, the importance of these reservoirs changes with the decomposition of organic matter and the reduction of iron. Also, the importance of iron bound P may decrease with increasing salinity due to the formation of iron sulfides. To investigate estuarine P burial and its relationship to salinity, we collected sediment cores of one-meter depth along the salinity gradient of the Patuxent River estuary (Maryland, USA), a major tributary of Chesapeake Bay. The sediments were analyzed using a sequential sedimentary extraction procedure that quantifies five separate reservoirs of particulate P. Total phosphorus concentrations in freshwater sediments were significantly higher than those in more saline sediments at all depths. Conversely, porewater phosphate concentrations were significantly lower in freshwater sediments than in the more saline sediments. Total P in the saline sediment cores decreased with depth, correlating to a reduction in iron-bound P. However, we did not find a concurrent increase in authigenic apatite with depth. Our findings indicate that mechanisms controlling changes in P sorption to sediments change profoundly with salinity and may contribute to increased bioavailability of phosphates with increasing salinity.

  3. Energy conversion from aluminium and phosphate rich solution via ZnO activation of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, Gymama, E-mail: gslaught@umbc.edu; Sunday, Joshua; Stevens, Brian

    2015-08-01

    Electrochemical power sources have motivated intense research efforts in the development of alternative ‘green’ power sources for ultra-low powered bioelectronic devices. Biofuel cells employ immobilized enzymes to convert the available chemical energy of organic fuels directly into electricity. However, biofuel cells are limited by short lifetime due to enzyme inactivation and frequent need to incorporate mediators to shuttle electrons to the final electron acceptor. In this context, other electrochemical power sources are necessary in energy conversion and storage device applications. Here we report on the fabrication and characterization of a membrane-free aluminium/phosphate cell based on the activation of aluminium (Al) using ZnO nanocrystal in an Al/phosphate cell as a ‘green’ alternative to the traditional enzymatic biofuel cells. The hybrid cell operates in neutral phosphate buffer solution and physiological saline buffer. The ZnO modifier in the phosphate rich electrolyte activated the pitting of Al resulting in the production of hydrogen, as the reducing agent for the reduction of H{sub 2}PO{sub 4}{sup −} ions to HPO{sub 3}{sup 2−} ions at a formal potential of −0.250 V vs. Ag/AgCl. Specifically, the fabricated cell operating in phosphate buffer and physiological saline buffer exhibit an open-circuit voltage of 0.810 V and 0.751 V and delivered a maximum power density of 0.225 mW cm{sup −2} and 1.77 mW cm{sup −2}, respectively. Our results demonstrate the feasibility of generating electricity by activating Al as anodic material in a hybrid cell supplied with phosphate rich electrolyte. Our approach simplifies the construction and operation of the electrochemical power source as a novel “green” alternative to the current anodic substrates used in enzymatic biofuel cells for low power bioelectronics applications. - Graphical abstract: Display Omitted - Highlights: • ZnO activation of metallic Al for generating electricity for

  4. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell

    KAUST Repository

    Nam, Joo-Youn; Logan, Bruce E.

    2011-01-01

    sparged with CO2 or containing a phosphate buffer. The salinity of the catholyte achieved a high solution conductivity, and therefore the electrode spacing did not appreciably affect performance. The coulombic efficiency with the cathode placed near

  5. Removal of phosphate and nitrate from aqueous solution using ...

    African Journals Online (AJOL)

    sunny t

    water, 3.5 g of NaCl were dissolved to obtain 3.5 g/l salinity final solution. When the ... The nitrate adsorption was highly pH dependent, which affects the ... adsorption mechanism that the optimum pH for phosphate removal by .... Biosorption of copper(ii) from aqueous ... Accumulation and detoxification of toxic elements by ...

  6. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate

    International Nuclear Information System (INIS)

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2012-01-01

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A 2 and protein kinase C-α, and NADPH oxidase activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-α and cPLA 2 -α in this pathway. -- Highlights: ► Ceramide 1-phosphate (C1P) stimulates reactive oxygen species (ROS) formation. ► The enzyme responsible for ROS generation by C1P in macrophages is NADPH oxidase. ► NADPH oxidase lies downstream of cPLA 2 -α and PKC-α in this pathway. ► ROS generation is essential for the stimulation of macrophage proliferation by C1P.

  7. A Simple Phosphate-Buffered-Saline-Based Extraction Method Improves Specificity of HIV Viral Load Monitoring Using Dried Blood Spots.

    Science.gov (United States)

    Makadzange, A Tariro; Boyd, F Kathryn; Chimukangara, Benjamin; Masimirembwa, Collen; Katzenstein, David; Ndhlovu, Chiratidzo E

    2017-07-01

    Although Roche COBAS Ampliprep/COBAS TaqMan (CAP/CTM) systems are widely used in sub-Saharan Africa for early infant diagnosis of HIV from dried blood spots (DBS), viral load monitoring with this system is not practical due to nonspecific extraction of both cell-free and cell-associated viral nucleic acids. A simplified DBS extraction technique for cell-free virus elution using phosphate-buffered saline (PBS) may provide an alternative analyte for lower-cost quantitative HIV virus load (VL) testing to monitor antiretroviral therapy (ART). We evaluated the CAP/CTM v2.0 assay in 272 paired plasma and DBS specimens using the cell-free virus elution method and determined the level of agreement, sensitivity, and specificity at thresholds of target not detected (TND), target below the limit of quantification (BLQ) (1,000 copies/ml, the sensitivities, specificities, positive predictive values (PPV), and negative predictive values (NPV) were 92.7%, 100%, 100%, and 94.3%, respectively. PBS elution of DBS offers a sensitive and specific method for monitoring plasma viremia among adults and children on ART at the WHO-recommended threshold of >1,000 copies/ml on the Roche CAP/CTM system. Copyright © 2017 Makadzange et al.

  8. Hydrogen-bonding patterns involving a cyclic phosphate

    Indian Academy of Sciences (India)

    Administrator

    Phosphates, which always have electronegative oxygen atoms, bear no exception in their involvement in ... water makes the study of structural patterns due to H-bonding much too complicated. We ... H-bonding features found in all the above.

  9. A model for phosphate glass topology considering the modifying ion sub-network

    DEFF Research Database (Denmark)

    Hermansen, Christian; Mauro, J.C.; Yue, Yuanzheng

    2014-01-01

    In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent with availa......In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent...... with available structural data by NMR and molecular dynamics simulation and dynamic data such glass transition temperature (Tg) and liquid fragility (m). Alkali phosphate glasses are exemplary systems for developing constraint model since the modifying cation network plays an important role besides the primary...... phosphate network. The proposed topological model predicts the changing trend of the Tg and m with increasing alkali oxide content for alkali phosphate glasses, including an anomalous minimum at around 20 mol% alkali oxide content. We find that the minimum in Tg and m is caused by increased connectivity...

  10. Salinity information in coral δ18O records

    Science.gov (United States)

    Conroy, J. L.; Thompson, D. M.; Dassié, E. P.; Stevenson, S.; Konecky, B. L.; DeLong, K. L.; Sayani, H. R.; Emile-Geay, J.; Partin, J. W.; Abram, N. J.; Martrat, B.

    2017-12-01

    Coral oxygen isotopic ratios (δ18O) are typically utilized to reconstruct sea surface temperature (SST), or SST-based El Niño-Southern Oscillation metrics (e.g., NIÑO3.4), despite the influence of both SST and the oxygen isotopic composition of seawater (δ18Osw) on coral δ18O. The ideal way to isolate past δ18Osw variations is to develop independent and univariate SST and δ18Osw responders, for instance, via paired coral δ18O and Sr/Ca analyses. Nonetheless, many coral δ18O records without paired Sr/Ca records already exist in the paleoclimatic literature, and these may be able to provide some insight into past δ18Osw and salinity changes due to the nature of the significant positive relationship between instrumental salinity and δ18Osw. Here we use coral δ18O records from the new PAGES Iso2k database to assess the regions in which coral δ18O has the greatest potential to provide salinity information based on the strength of the relationship between instrumental salinity and coral δ18O values. We find from annual pseudocoral similations that corals in the western tropical Pacific share a substantial fraction of their variance with δ18Osw rather than SST. In contrast, in the Indian Ocean and eastern tropical Pacific it is SST that predominantly explains coral δ18O variance. In agreement with this variance decomposition, we find that coral δ18O time series from the western tropical Pacific are significantly correlated with mid to late 20th century salinity. However, variations in the strength of the δ18Osw-salinity relationship across the western tropical Pacific will likely have a significant influence on coral δ18O-based salinity reconstructions. Additionally, in some cases a strong, negative correlation between SST and δ18Osw might not allow their influences to be adequately separated in coral δ18O records without the use of coupled Sr/Ca estimates of the temperature contribution. Overall, we find a range of modern salinity and SST

  11. Groundwater salinity in coastal aquifer of Karachi, Pakistan

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.; Ahmad, E.; Tasneem, M.A.; Sajjad, M.I.; Khan, H.A.

    2002-01-01

    Potable groundwater salinity has become a problem of great concern in the Karachi Metropolis, which is not only the most populous and biggest industrial base but also the largest coastal dwelling of Pakistan. Stable isotope techniques [O/sup 18/ content of Oxygen in the water molecular and C/sup 13/ content of the Total Dissolved Inorganic Carbon (TDIC)] have been used, in conjunction with physiochemical tools (temperature, dissolved oxygen, pH, redox electrical conductivity, salinity), to examine the quality of potable water and the source of salinity. Surface water samples (12 No.) were collected from polluted streams, namely: Layeri River, Malir River; Hub River/Hub Lake and the Indus River. Shallow groundwater samples (7 No. ) were collected from operating dug wells. Relatively deep groundwater samples (12 No.) were collected from operating dug wells, relatively deep groundwater samples (12 No.) were collected from pumping wells/tube-wells. Physicochemical analysis of water samples was completed in the field. In the laboratory, water samples were analyzed for O/sup 18/ content of oxygen in the water molecule and C/sup 13/ content of the TDIC, using specific gas extraction systems and a modified GD-150 gas source mass spectrometer. It is concluded from this preliminary investigation that the potable aquifer system in coastal Karachi hosts a mixture of precipitation (rainwater only) from hinterlands, trapped seawater in relatively deep aquifer system, as well as intruded seawater under natural infiltration conditions and/or induced recharge conditions (in shallow aquifers). (author)

  12. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    Directory of Open Access Journals (Sweden)

    Jonathan C P Reum

    Full Text Available Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall. pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm at all depths and seasons sampled except for the near-surface waters (< 10 m in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1. We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31, was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight

  13. Historical temperature, salinity, oxygen, nutrients, and meteorological data collected by various Russian and former Soviet Union institutions from North Pacific Ocean and Okhotsk Sea from 1930-07-23 to 2004-04-18 (NODC Accession 0083635)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen, nutrients, and meteorological data collected by various Russian and former Soviet Union institutions from North Pacific...

  14. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from CAPE HATTERAS from 1988-10-01 to 1991-09-30 (NODC Accession 9500082)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bottle biochemistry data from 16 casts containing Depth/ Temperature/ Salinity/ Oxygen/ phosphate/ nitrate/ nitrite/ chlorophyll/ phaeophytin/ pressure/ bacteria...

  15. Freshwater and Saline Loads of Dissolved Inorganic Nitrogen to Hood Canal and Lynch Cove, Western Washington

    Science.gov (United States)

    Paulson, Anthony J.; Konrad, Christopher P.; Frans, Lonna M.; Noble, Marlene; Kendall, Carol; Josberger, Edward G.; Huffman, Raegan L.; Olsen, Theresa D.

    2006-01-01

    contribution of DIN from shallow shoreline septic systems to the upper layer was higher in Lynch Cove (23 percent) than in the entire Hood Canal. Net transport of DIN into Lynch Cove by marine currents was measured during August and October 2004-a time of high biological productivity. The net transport of lower-layer water into Lynch Cove was significantly diminished relative to the flow entering Hood Canal at its entrance. Even though the net transport of saline water into the lower layer of Lynch Cove was only 119 cubic meters per second, estuarine currents between 33 and 47 m were estimated to have carried more than 35 times the total freshwater load of DIN to the upper layer from surface and ground water, shallow shoreline septic systems, and direct atmospheric rainfall. The subsurface maximums in measured turbidity, chlorophyll a, particulate organic carbon, and particulate organic nitrogen strongly suggest that the upward mixing of nitrate-rich deeper water is a limiting factor in supplying DIN to the upper layer that enhances marine productivity in Lynch Cove. The presence of phosphate in the upper layer in the absence of dissolved inorganic nitrogen also suggests that the biological productivity that leads to low dissolved-oxygen concentrations in the lower layer of Lynch Cove is limited by the supply of nitrogen rather than by phosphate loads. Although the near-shore zones of the shallow parts of Lynch Cove were sampled, a biogeochemical signal from terrestrial nitrogen was not found. Reversals in the normal estuarine circulation suggest that if the relative importance of the DIN load of freshwater terrestrial and atmospheric sources and the DIN load from transport of saline water by the estuarine circulation in controlling dissolved-oxygen concentrations in Lynch Cove is to be better understood, then the physical forces driving Hood Canal circulation must be better defined.

  16. Extreme hyperphosphatemia and hypocalcemic coma associated with phosphate enema.

    Science.gov (United States)

    Hsu, Heng Jung; Wu, Mai-Szu

    2008-01-01

    Fleet enema (sodium phosphate, C.B. Fleet Co., Inc., Lynchburg, Virginia) is widely used for bowel preparation or constipation relief in the hospital and over the counter. The potential risks, including hyperphosphatemia and hypocalcemic coma should be kept in mind of primary care physician. The patients with older age, bowel obstruction, small intestinal disorders, poor gut motility, and renal disease are contraindicated or should be administered with caution. We present a patient with old age and chronic renal failure who developed severe hyperphosphatemia and hypocalcemic tetany with coma after sodium phosphate enema. We recommend the use of alternative enema preparations, such as simple tap water or saline solution enemas, which can prevent fatal complications in high risk patients.

  17. Physiological performance of the soybean crosses in salinity stress

    Science.gov (United States)

    Wibowo, F.; Armaniar

    2018-02-01

    Plants grown in saline soils will experience salinity stress. Salinity stresses, one of which causes oxidative stress, that cause an imbalance in the production ROS compounds (Reactive Oxygen Species), antioxidants and chlorophyll. Where the reaction of this compound can affect plant growth and plant production. This study aims to inform performance and action gene to soybean physiological character that potential to tolerant from salinity soil that characterized by the presence of SOD and POD antioxidant compounds and chlorophyll. This research used a destructive analysis from crossbred (AxN) and (GxN). A = Anjasmoro varieties and G = Grobogan varieties as female elders and N = Grobogan varieties as male elders (N1, N2, N3, N4, N5) that have been through the stage of saline soil selection. Research result can be concluded that GxN cross is more potential for Inheritance of the offspring. This can be seen from the observed skewness of character SOD, POD compounds, Chlorophyll a and chlorophyll b.

  18. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    Science.gov (United States)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  19. Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge

    KAUST Repository

    Wang, Zhongwei; van Loosdrecht, Mark C.M.; Saikaly, Pascal

    2017-01-01

    Salinity can affect the performance of biological wastewater treatment in terms of nutrient removal. The effect of salt on aerobic granular sludge (AGS) process in terms of granulation and nutrient removal was examined in this study. Experiments were conducted to evaluate the effect of salt (15 g/L NaCl) on granule formation and nutrient removal in AGS system started with flocculent sludge and operated at DO of 2.5 mg/L (phase I). In addition, experiments were conducted to evaluate the effect of gradually increasing the salt concentration (2.5 g/L to 15 g/L NaCl) or increasing the DO level (2.5 mg/L to 8 mg/L) on nutrient removal in AGS system started with granular sludge (phase II) taken from an AGS reactor performing well in terms of N and P removal. Although the addition of salt in phase I did not affect the granulation process, it significantly affected nutrient removal due to inhibition of ammonia oxidizing bacteria (AOB) and phosphate accumulating organisms (PAOs). Increasing the DO to 8 mg/L or adapting granules by gradually increasing the salt concentration minimized the adverse effect of salt on nitrification (phase II). However, these strategies were not successful for mitigating the effect of salt on biological phosphorus removal. No nitrite accumulation occurred in all the reactors suggesting that inhibition of biological phosphorus removal was not due to the accumulation of nitrite as previously reported. Also, glycogen accumulating organisms were shown to be more tolerant to salt than PAO II, which was the dominant PAO clade detected in this study. Future studies comparing the salinity tolerance of different PAO clades are needed to further elucidate the effect of salt on PAOs.

  20. Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge

    KAUST Repository

    Wang, Zhongwei

    2017-08-13

    Salinity can affect the performance of biological wastewater treatment in terms of nutrient removal. The effect of salt on aerobic granular sludge (AGS) process in terms of granulation and nutrient removal was examined in this study. Experiments were conducted to evaluate the effect of salt (15 g/L NaCl) on granule formation and nutrient removal in AGS system started with flocculent sludge and operated at DO of 2.5 mg/L (phase I). In addition, experiments were conducted to evaluate the effect of gradually increasing the salt concentration (2.5 g/L to 15 g/L NaCl) or increasing the DO level (2.5 mg/L to 8 mg/L) on nutrient removal in AGS system started with granular sludge (phase II) taken from an AGS reactor performing well in terms of N and P removal. Although the addition of salt in phase I did not affect the granulation process, it significantly affected nutrient removal due to inhibition of ammonia oxidizing bacteria (AOB) and phosphate accumulating organisms (PAOs). Increasing the DO to 8 mg/L or adapting granules by gradually increasing the salt concentration minimized the adverse effect of salt on nitrification (phase II). However, these strategies were not successful for mitigating the effect of salt on biological phosphorus removal. No nitrite accumulation occurred in all the reactors suggesting that inhibition of biological phosphorus removal was not due to the accumulation of nitrite as previously reported. Also, glycogen accumulating organisms were shown to be more tolerant to salt than PAO II, which was the dominant PAO clade detected in this study. Future studies comparing the salinity tolerance of different PAO clades are needed to further elucidate the effect of salt on PAOs.

  1. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  2. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota; Julkowska, Magdalena; Montero Sommerfeld, Hector; Horst, Anneliek ter; Haring, Michel A; Testerink, Christa

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  3. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  4. Inhibition of mitochondrial glycerol-3-phosphate dehydrogenase by alpha-tocopheryl succinate

    Czech Academy of Sciences Publication Activity Database

    Rauchová, Hana; Vokurková, Martina; Drahota, Zdeněk

    2014-01-01

    Roč. 53, AUG (2014), s. 409-413 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : brown adipose tissue mitochondria * oxygen consumption * glycerol-3-phosphate * succinate * reactive oxygen species Subject RIV: ED - Physiology Impact factor: 4.046, year: 2014

  5. Physical and chemical oceanographic profile data, and meteorological data collected in the Atlantic and Arctic Oceans, and adjoining seas by multiple platforms from 14 August 1951 to 27 October 1994 (NODC Accession 0073741)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen, silicate, phosphate, nitrite, nitrate, alkalinity, and pH data collected in Arctic Ocean, Barents Sea, East Siberian Sea, Greenland...

  6. Gulf of Mexico Regional Climatology (NCEI Accession 0123320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gulf of Mexico Regional Climatology is a set of objectively analyzed climatological fields of temperature, salinity, oxygen, phosphate, silicate, and nitrate at...

  7. Application of wastewater with high organic load for saline-sodic soil reclamation focusing on soil purification ability

    Directory of Open Access Journals (Sweden)

    M.A. Kameli

    2017-04-01

    Full Text Available Fresh water source scarcity in arid and semiarid area is limitation factor for saline-sodic soil reclamation. The reusing of agricultural drainage and industrial wastewater are preferred strategies for combating with this concern. The objective of current study was evaluation in application of industrial sugar manufacture wastewater due to high soluble organic compounds in saline-sodic and sodic soil. Also soil ability in wastewater organic compounds removal was second aim of present study. Saline-sodic and sodic soil sample was leached in soil column by diluted wastewater of amirkabir sugar manufacture in Khuzestan Province of Iran at constant water head. Sodium, electric conductivity and chemical oxygen demand of soil column leachate were measured per each pore volume. The experimental kinetics of wastewater organic compounds on two saline-sodic and sodic soil were also investigated by three pseudo second order, intra particle diffusion and elovich model. The results of current study showed that electric conductivity of saline-sodic soil was decreased to 90% during 3 initial pore volumes, from other side exchangeable sodium percent of saline-sodic and sodic soil decreased 30 and 71 percent, respectively. There were no significant different between wastewater chemical oxygen demand removal by saline-sodic and sodic soil in both batch and column studies. Wastewater chemical oxygen demand was decreased to 35% during pass through soil column. The results showed that the adsorption kinetics of wastewater organic compounds were best fitted by the pseudo-second order model with 99 percent correlation coefficient (r2=0.99%.

  8. Seasonal variation of the environmental parameters along Fort Cochin Beach

    Digital Repository Service at National Institute of Oceanography (India)

    Jayalakshmy, K.V.; Raveendran, O.; Sreeja, S.

    Monthly observations on heterotrophic bacteria, organic carbon, temperature, salinity, dissolved oxygen, inorganic phosphate, nitrate, nitrite and ammonia from surface water and from water table level during high tide, mid tide and low tide were...

  9. Preparation and thermogravimetric study of some uranyl phosphates

    International Nuclear Information System (INIS)

    Schaekers, J.M.

    1970-10-01

    The preparation of uranyl ammonium phosphate trihydrate (UAP = UO 2 NH 4 PO 4 .3H 2 O), acid uranyl phosphate tetrahydrate(AUP = UO 2 HPO 4 .4H 2 O) and neutral uranyl phosphate tetrahydrate (NUPT = (UO 2 ) 3 (PO 4 ) 2 .4H 2 O) was investigated during the data from the literature. The thermal decomposition in different atmospheres, such as air, oxygen, nitrogen and argon, was studied in the temperature range 25-1000 0 C. It was found that the pyrophosphate U 2 O 3 P 2 O 7 is a stable decomposition product of UAP as well as of AUP. A mixture of U 3 O 8 and U 2 O 3 P 2 O 7 is obtained when the NUPT is decomposed in an oxygen-free atmosphere. NUPT however is stable in an oxidising atmosphere. Hydrogen and carbon reductions were also carried out, and UO 2 or (UO) 2 P 2 O 7 as well as mixtures of these two products can be obtained, depending on the starting material and the reduction temperature. The different reduction and decomposition reactions were studied by means of thermogravimetric analysis, and activation energies were calculated where possible. I.R. spectral analysis was also used to identify various products with the same composition [af

  10. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut

    Directory of Open Access Journals (Sweden)

    Sandeep Sharma

    2016-10-01

    Full Text Available Use of Plant growth promoting rhizobacteria (PGPR is a promising strategy to improve the crop production under optimal or sub-optimal conditions. In the present study, five diazotrophic salt tolerant bacteria were isolated from the roots of a halophyte, Arthrocnemum indicum. The isolates were partially characterized in vitro for plant growth promoting traits and evaluated for their potential to promote growth and enhanced salt tolerance in peanut. The 16S rRNA gene sequence homology indicated that these bacterial isolates belong to the genera, Klebisiella, Pseudomonas, Agrobacterium and Ochrobactrum. All isolates were nifH positive and able to produce indole -3-acetic acid (ranging from 11.5 to 19.1 µg ml-1. The isolates showed phosphate solubilisation activity (ranging from 1.4 to 55.6 µg phosphate /mg dry weight, 1-aminocyclopropane-1-carboxylate deaminase activity (0.1 to 0.31 µmol α-kB/µg protein/h and were capable of reducing acetylene in acetylene reduction assay (ranging from 0.95 to 1.8 µmol C2H4 mg protein/h. These isolates successfully colonized the peanut roots and were capable of promoting the growth under non-stress condition. A significant increase in total nitrogen (N content (up to 76% was observed over the non-inoculated control. All isolates showed tolerance to NaCl ranging from 4-8% in nutrient broth medium. Under salt stress, inoculated peanut seedlings maintained ion homeostasis, accumulated less reactive oxygen species (ROS and showed enhanced growth compared to non-inoculated seedlings. Overall, the present study has characterized several potential bacterial strains that showed an enhanced growth promotion effect on peanut under control as well as saline conditions. The results show the possibility to reduce chemical fertilizer inputs and may promote the use of bio-inoculants.

  11. Relevance of histamine and tryptase concentrations in nasal secretions after nasal challenges with phosphate buffered saline and allergen

    Directory of Open Access Journals (Sweden)

    D. Wang

    1995-01-01

    Full Text Available In this prospective study, a quantitative determination of histamine and tryptase in nasal secretions after nasal phosphate buffered saline (PBS and allergen challenge was performed in 18 atopic patients who were compared with ten non-allergic healthy volunteers. The aim of the study was to determine the normal and pathological concentrations of these important mediators in nasal secretions. The second objective was to test the relevance of these two mast cell secreted mediators after nasal challenge. Results showed that the concentrations of tryptase in almost all samples were under the minimal detection limit (< 0.5 μU/g and only a sigrtificant increase of tryptase (median, 28 μU/g occurred immediately after nasal allergen challenge in the patient group. Histamine concentration significantly increased after every nasal PBS challenge (median, 69 ng/g after first PBS challenge and 165 ng/g after second PBS challenge in the control group, as well as in the patient group after both PBS (median, 69 ng/g and allergen (median, 214 ng/g challenge. On the other hand, a rapid onset of sneezing and increase in nasal airway resistance was experienced only in the patient group after nasal allergen challenge, but did not occur after PBS challenge even though the histamine concentrations significantly increased in both groups. This study suggests that tryptase is a more preferable marker than histamine in quantitative monitoring of mast cell activation especially during the early phase nasal allergic reaction.

  12. Effect of salinity on survival, growth and biochemical parameters in juvenile Lebranch mullet Mugil liza (Perciformes: Mugilidae

    Directory of Open Access Journals (Sweden)

    Viviana Lisboa

    Full Text Available Teleost fish growth may be improved under isosmotic condition. Growth and metabolic performance of juvenile Mugil liza (isosmotic point: 12‰ were evaluated after 40 days in different salinities (0, 6, 12 and 24‰. Tests were performed in quadruplicate (30 fish/tank; 0.48 ± 0.1 g body weight; 3.27 ± 0.1 cm total length under controlled water temperature (28.2 ± 0.1ºC and oxygen content (>90% saturation. Fish were fed on artificial diet (50% crude protein four times a day until apparent satiation. Results showed that salinity influenced juvenile mullet growth. Fish reared at salinity 24‰ grew better than those maintained in freshwater (salinity 0‰. Gill Na+,K+-ATPase activity and whole body oxygen consumption showed an U-shape-type response over the range of salinities tested, with the lower values being observed at the intermediate salinities. Although no significant difference was observed in liver glycogen content at different salinities, it tended to augment with increasing salinity. These findings indicate that energy demand for osmorregulation in juvenile M. liza can be minimized under isosmotic condition. However, the amount of energy spared is not enough to improve fish growth. Results also suggest that M. liza is able to alternate between different energy-rich substrates during acclimation to environmental salinity.

  13. Dissolved oxygen (DO) is essential for respiration in aquatic fauna ...

    African Journals Online (AJOL)

    spamer

    more, thermal and salinity stratification inhibits ex- change of ... 2000) and larval densities (Harris and. Cyrus 1999) ...... dissolved oxygen and effects of short-term oxygen stress ... in the shrimp Crangon crangon exposed to hypoxia, anoxia.

  14. From energy-rich phosphate compounds to warfare agents: A review on the chemistry of organic phosphate compounds

    Directory of Open Access Journals (Sweden)

    Luciano Albino Giusti

    2008-12-01

    Full Text Available The chemistry of the phosphorus-oxygen bond is widely used in biological systems in many processes, such as energy transduction and the storage, transmission and expression of genetic information, which are essential to living beings in relation to a wide variety of functions. Compounds containing this bond have been designed for many purposes, ranging from agricultural defense systems, in order to increase food production, to nerve agents, for complaining use in warfare. In this review, features related to the chemistry of organic phosphate compounds are discussed, with particular emphasis on the role of phosphate compounds in biochemical events and in nerve agents. To this aim, the energy-rich phosphate compounds are focused, particularly the mode of their use as energy currency in cells. Historical and recent studies carried out by research groups have tried to elucidate the mechanism of action of enzymes responsible for energy transduction through the use of biochemical studies, enzyme models, and artificial enzymes. Finally, recent studies on the detoxification of nerve agents based on phosphorous esters are presented, and on the utilization of chromogenic and fluorogenic chemosensors for the detection of these phosphate species.

  15. [Influence of an infusion of 5- or 20% glucose solution on blood glucose and inorganic phosphate concentrations in dairy cows].

    Science.gov (United States)

    Aldaek, T A A; Failing, K; Wehrend, A; Klymiuk, M C

    2011-01-01

    The study was performed to evaluate the influence of an intravenous infusion of 5% and 20% dextrose solution on the plasma concentration of glucose and inorganic phosphate in healthy, dairy cows. Ten healthy, lactating, nonpregnant 3 to 6 year-old Holstein-Friesian cows were included in this investigation. The daily milk yield was 20.3±2.7 liters. Blood plasma concentrations of inorganic phosphate and glucose were determined before, during, immediately and 60 minutes after infusion of 0.9% physiological saline, 5% or 20% dextrose solution. A statistically significant influence of dextrose infusion on blood glucose concentration was observed. After 20% dextrose infusion (200 g dextrose) the blood glucose concentration increased by approximately 13.26 mmol/l. The administration of 5% dextrose solution (50 g dextrose) yielded an increase of blood glucose concentration by 3.31 mmol/l. There was no significant correlation between plasma inorganic phosphate concentrations and infusion of 0.9% saline, 5% or 20% dextrose solution. Intravenous administration of 1000 ml of 5% or 20% dextrose solution does not induce a lasting plasma phosphate reduction and is suitable for elevating the blood glucose concentration.

  16. Oxidation of caffeine by phosphate radical anion in aqueous ...

    Indian Academy of Sciences (India)

    Unknown

    reactions in our body generate reactive oxygen species mainly comprising free radicals .... caffeine might be acting as a sensitizer to transfer energy to PDP to produce phosphate ... The lifetime of the excited singlet 21 state of caffeine is of the.

  17. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell

    KAUST Repository

    Nam, Joo-Youn

    2011-11-01

    High rates of hydrogen gas production were achieved in a two chamber microbial electrolysis cell (MEC) without a catholyte phosphate buffer by using a saline catholyte solution and a cathode constructed around a stainless steel mesh current collector. Using the non-buffered salt solution (68 mM NaCl) produced the highest current density of 131 ± 12 A/m3, hydrogen yield of 3.2 ± 0.3 mol H2/mol acetate, and gas production rate of 1.6 ± 0.2 m3 H2/m 3·d, compared to MECs with catholytes externally sparged with CO2 or containing a phosphate buffer. The salinity of the catholyte achieved a high solution conductivity, and therefore the electrode spacing did not appreciably affect performance. The coulombic efficiency with the cathode placed near the membrane separating the chambers was 83 ± 4%, similar to that obtained with the cathode placed more distant from the membrane (84 ± 4%). Using a carbon cloth cathode instead of the stainless steel mesh cathode did not significantly affect performance, with all reactor configurations producing similar performance in terms of total gas volume, COD removal, rcat and overall energy recovery. These results show MEC performance can be improved by using a saline catholyte without pH control. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  18. Temperature, Salinity, nutrients and isotopes from the Polarstern in Fram Strait and Denmark Strait, 1998 (NODC Accession 0058497)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes data for the following parameters: dissolved barium [NOT ARCHIVED], dissolved oxygen, phosphate, siliceous acid, nitrate, nitrite, and oxygen...

  19. Prediction efficiency of the hydrographical parameters as related to distribution patterns of the Pleuromamma species in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Jayalakshmy, K.V.; Saraswathy, M.

    . Multiple regression model of P. indica abundance on the parameters: temperature, salinity, dissolved oxygen and phosphate-phosphorus could explain more than 85% of the variation in the predicted abundance, while those of 8 species obtained from...

  20. Circulation and distribution of some hydrographical properties during the late winter in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.P.; Sastry, J.S.

    Charts showing dynamic topography, mass distribution, temperature, salinity, dissolved oxygen and inorganic phosphate in the upper layers of the Bay of Bengal for the late winter period were analysed and presented. The near surface circulation has...

  1. Ecophysiological adaptations to variable salinity environments in the crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Sodium regulation, respiration and excretion.

    Science.gov (United States)

    Urzúa, Ángel; Urbina, Mauricio A

    2017-08-01

    The estuarine crab Hemigrapsus crenulatus is a key benthic species of estuarine and intertidal ecosystems of the South Pacific, habitats that experience wide fluctuations in salinity. The physiological strategies that allow this crab to thrive under variable salinities, and how they change during the benthic stages of their life cycle, were evaluated under laboratory conditions. Oxygen consumption, ammonia excretion and the regulatory capacity of Na + through the normal range of environmental salinities (i.e. 5, 10, 15, 20, 25, 30) were evaluated in three size classes, ranging from juveniles to adults. In all sizes, the oxygen consumption, ammonia excretion and regulatory capacity of Na + decreased as salinity increased, with the highest values at 5 and the lowest values at 30 salinity. Bigger crabs showed a higher capacity to regulate Na + , as well as higher respiration and excretion rates compared to smaller crabs, suggesting that they are better equipped to exploit areas of the estuary with low salinity. Regardless of its size, H. crenulatus is a strong hyper regulator in diluted media (i.e. 5-20) while a conformer at salinities higher than 20. The regulatory capacity of Na + was positively related with oxygen consumption and ammonia excretion rates. These relationships between sodium regulation, respiration and excretion are interpreted as adaptive physiological mechanisms that allow H. crenulatus to maintain the osmotic and bioenergetic balance over a wide range of environmental salinities. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Oxygen dependency of germinating Brassica seeds

    Science.gov (United States)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  3. Production and zooplankton community structure in the lagoon and surrounding sea at Kavaratti atoll (Lakshadweep)

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    Higher values for the environmental parameters were generally obtained for the lagoon stations. Average values of pH, temperature, salinity, dissolved oxygen and phosphate-phosphorus, nitrate-nitrogen, silicate and silicon in the lagoon were 7.5, 31...

  4. Temperature, salinity, nutrients, oxygen, chlorophyll and other measurements found in dataset SISMER taken from the VAUBAN, JEAN CHARCOT (FNOY) and other platforms in the South Pacific, Coastal North Atlantic and other locations from 1983 to 2007 (NODC Accession 0046621)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, nutrients, oxygen, chlorophyll and other measurements found in CTD and OSD datasets taken from the VAUBAN, JEAN CHARCOT (FNOY) and other...

  5. Physiological response in the European flounder (Platichthys flesus) to variable salinity and oxygen conditions

    DEFF Research Database (Denmark)

    Lundgreen, Kim; Kiilerich, Pia; Tipsmark, Christian Kølbæk

    2008-01-01

    . Muscle water content was the same at all three salinities, indicating complete cell volume regulation. Gill Na+/K+-ATPase activity did not change with salinity, but hypoxia caused a 25 % decrease in branchial Na+/K+-ATPase activity at all three salinities. Furthermore, hypoxia induced a significant...... the erythrocytic nucleoside triphosphate content, a common mechanism for increasing blood O2 affinity. It is concluded that moderate hypoxia induced an energy saving decrease in branchial Na+/K+-ATPase activity, which did not compromise extracellular osmoregulation....

  6. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  7. Enhanced oxygen delivery induced by perfluorocarbon emulsions in capillary tube oxygenators.

    Science.gov (United States)

    Vaslef, S N; Goldstick, T K

    1994-01-01

    Previous studies showed that a new generation of perfluorocarbon (PFC) emulsions increased tissue PO2 in the cat retina to a degree that could not be explained by the small increase in arterial O2 content seen after the infusion of low doses of 1 g PFC/kg body weight. It seems that increased O2 delivery at the tissue level after PFC infusion is caused by a local effect in the microcirculation. The authors studies this effect in vitro at steady state in a closed loop circuit, consisting of one of two types of capillary tube oxygenators, deoxygenator(s), a reservoir bag filled with anticoagulated bovine blood or saline (control), and a roller pump, to see if the addition of PFC would have an effect on the PO2 difference (delta PO2) across the capillary tube membrane oxygenator at a blood flow rate of 3 l/min. Perfluorocarbon was added in three incremental doses, each giving about 0.7 vol% of PFC. The delta PO2 across the oxygenator was measured before and after each dose. The mean percent increases in delta PO2 in blood for two types of oxygenators were 19.2 +/- 8% (mean +/- SD, n = 6, P = 0.002) and 9.9 +/- 4% (n = 3, P = 0.05), respectively, whereas the mean percent change in delta PO2 in saline was -4.9 +/- 2% (n = 2, P = 0.2). Inlet PO2s to the oxygenator were only minimally increased. The authors conclude that O2 delivery was significantly enhanced after injection of PFC in blood in this capillary tube model. A near wall excess of PFC particles may account for the augmentation of O2 diffusion in this model.

  8. Oceanographic profile temperature, salinity, oxygen, and nutrients measurements collected using bottle from the LCM Red in the Alaskan Coastal waters, from the Gerda in the Atlantic Ocean, and from DeSteiguer in the Pacific Ocean (NODC Accession 0002231)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen and other profile data received at NODC on 06/10/04 by Olga Baranova, digitized from "William J. Teague, Zachariah R. Hallock, Jan M....

  9. Biosuper as a phosphate fertilizer in a calcareous soil with low ...

    African Journals Online (AJOL)

    SERVER

    2007-06-04

    Jun 4, 2007 ... Key words: Zea mays, phosphorus uptake, phosphorus fertilization, corn, Thiobacillus, rock phosphate. ... improve plant nutrients availability in calcareous soils and .... lus elicits the reaction of sulphur with water and oxygen, ...

  10. Influence of the environmental factors on the intensity of the oxygen, ammonium, and phosphate metabolism in the agar-containing seaweed Ahnfeltia tobuchiensis (Ahnfeltiales, Rhodophyta)

    Science.gov (United States)

    Cherbadgy, I. I.; Sabitova, L. I.

    2011-02-01

    A complex study of the influence of various environmental factors on the rate of the oxygen (MO 2), ammonium (MNH 4), and phosphate (MPO 4) metabolism in Ahnfeltia tobuchiensis has been carried out in situ in the Izmena Bay of Kunashir Island. The following environmental factors have been included into the investigation: the photosynthetically active radiation (PAR); the ammonium (NH4); the phosphate (PO4); and the tissue content of carbon (C), nitrogen (N), phosphorus (P), and chlorophyll a (Chl). The population of agar-containing seaweed A. tobuchiensis forms a layer with a thickness up to 0.5 m, which occupies about 23.3 km2; the population's biomass is equal to 125000 tons. The quantitative assessment of the organic matter production and nutrient consumption during the oxygen metabolism (MO 2) has been carried out for the whole population. It has been shown that the daily rate depends on the PAR intensity, the seawater concentrations of PO4 and NH4, and the tissue content of N and P ( r 2 = 0.78, p < 0.001). The daily NH4 consumption averages 0.21 μmol/(gDW h) and depends on the NH4 and O2 concentrations in the seawater and on the C and Chl a content in the algal tissues ( r 2 = 0.64, p < 0.001). The daily PO4 consumption averages 0.01 μmol/(gDW h) and depends on the NH4 concentration in the seawater and on the P content in the algal tissues ( r 2 = 0.40, p < 0.001).

  11. Phosphorus dynamics in soils irrigated with reclaimed waste water or fresh water - A study using oxygen isotopic composition of phosphate

    Science.gov (United States)

    Zohar, I.; Shaviv, A.; Young, M.; Kendall, C.; Silva, S.; Paytan, A.

    2010-01-01

    Transformations of phosphate (Pi) in different soil fractions were tracked using the stable isotopic composition of oxygen in phosphate (??18Op) and Pi concentrations. Clay soil from Israel was treated with either reclaimed waste water (secondary, low grade) or with fresh water amended with a chemical fertilizer of a known isotopic signature. Changes of ??18Op and Pi within different soil fractions, during a month of incubation, elucidate biogeochemical processes in the soil, revealing the biological and the chemical transformation impacting the various P pools. P in the soil solution is affected primarily by enzymatic activity that yields isotopic equilibrium with the water molecules in the soil solution. The dissolved P interacts rapidly with the loosely bound P (extracted by bicarbonate). The oxides and mineral P fractions (extracted by NaOH and HCl, respectively), which are considered as relatively stable pools of P, also exhibited isotopic alterations in the first two weeks after P application, likely related to the activity of microbial populations associated with soil surfaces. Specifically, isotopic depletion which could result from organic P mineralization was followed by isotopic enrichment which could result from preferential biological uptake of depleted P from the mineralized pool. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with reclaimed waste water compared to the fertilizer treated soil. ?? 2010 Elsevier B.V.

  12. Study on substrate metabolism process of saline waste sludge and its biological hydrogen production potential.

    Science.gov (United States)

    Zhang, Zengshuai; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2017-07-01

    With the increasing of high saline waste sludge production, the treatment and utilization of saline waste sludge attracted more and more attention. In this study, the biological hydrogen production from saline waste sludge after heating pretreatment was studied. The substrate metabolism process at different salinity condition was analyzed by the changes of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS), and dissolved organic matters (DOM). The excitation-emission matrix (EEM) with fluorescence regional integration (FRI) was also used to investigate the effect of salinity on EPS and DOM composition during hydrogen fermentation. The highest hydrogen yield of 23.6 mL H 2 /g VSS and hydrogen content of 77.6% were obtained at 0.0% salinity condition. The salinity could influence the hydrogen production and substrate metabolism of waste sludge.

  13. Towards the development of a salinity impact category for South ...

    African Journals Online (AJOL)

    DRINIE

    2003-07-03

    Jul 3, 2003 ... nature from existing categories to warrant a separate salinity impact category. A conceptual method is ... compounds to the environment from all stages of a product's life- cycle are ... Marine. - Terrestrial. • Photo-oxidant formation. • Acidification .... algae. Reduced light input. Oxygen depletion near bottom.

  14. An experiment with forced oxygenation of the deepwater of the anoxic By Fjord, Western Sweden

    DEFF Research Database (Denmark)

    Stigebrandt, Anders; Liljebladh, Bengt; De Brabandere, Loreto

    2015-01-01

    inorganic nitrogen component. The amount of phosphate in the water column decreased by a factor of 5 due to the increase in flushing and reduction in the leakage of phosphate from the sediments when the sediment surface became oxidized. Oxygenation of the sediments did not increase the leakage of toxic...... in the By Fjord and the adjacent Havsten Fjord, with oxygenated deepwater, could be detected during the experiment....

  15. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    Science.gov (United States)

    Mezger, E. M.; de Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  16. Transport of Astyanax altiparanae Garutti and Britski, 2000 in saline water

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Salaro

    2015-08-01

    Full Text Available Two experiments were performed. The first aimed to assess the tolerance of fingerlings Astyanax altiparanae to water salinity. Fish were exposed to salinity of 0, 3, 6, 9, 12 or 15 g NaCl L-1 for 96 hours. The fish mortality was 0%, in the levels of 0, 3 and 6 g L-1; 75% in the level of 9 g L-1and 100% at 12 and 15 g L-1 of common salt. The second experiment aimed to assess the parameters of water quality, mortality and blood glucose during transport. For this, A. altiparanae were stored in plastic bags at 22, 30 and 37 g of fish L-1 stocking densities and salinity of 0, 3, 6 and 9 g L-1, for. Fish showed similar mortality levels in the different salinities and stocking densities. The increase in fish density reduced the dissolved oxygen levels and salinity decreased the pH. The blood glucose levels were higher in those fish with 0 g L-1 salinity and higher stocking densities. The addition of salt to the water reduces the stress responses of A. altiparanae during transport.

  17. Reduced oxygen at high altitude limits maximum size.

    Science.gov (United States)

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  18. Inactivation kinetics of Vibrio vulnificus in phosphate-buffered saline at different freezing and storage temperatures and times.

    Science.gov (United States)

    Seminario, Diana M; Balaban, Murat O; Rodrick, Gary

    2011-03-01

    Vibrio vulnificus (Vv) is a pathogen that can be found in raw oysters. Freezing can reduce Vv and increase the shelf life of oysters. The objective of this study was to develop predictive inactivation kinetic models for pure cultures of Vv at different frozen storage temperatures and times. Vv was diluted in phosphate-buffered saline (PBS) to obtain about 10(7) CFU/mL. Samples were frozen at -10, -35, and -80 °C (different freezing rates), and stored at different temperatures. Survival of Vv was followed after freezing and storage at -10 °C (0, 3, 6, and 9 d) and at -35 and -80 °C (every week for 6 wk). For every treatment, time-temperature data was obtained using thermocouples in blank vials. Predictive models were developed using first-order, Weibull and Peleg inactivation kinetics. Different freezing temperatures did not significantly (α = 0.05) affect survival of Vv immediately after freezing. The combined effect of freezing and 1 wk frozen storage resulted in 1.5, 2.6, and 4.9 log10 reductions for samples stored at -80, -35, and -10 °C, respectively. Storage temperature was the critical parameter in survival of Vv. A modified Weibull model successfully predicted Vv survival during frozen storage: log10 Nt = log 10No - 1.22 - ([t/10{-1.163-0.0466T}][0.00025T(2) + 0.049325]). N(o) and N(t) are initial and time t (d) survival counts, T is frozen storage temperature, Celsius degree. Vibrio vulnificus can be inactivated by freezing. Models to predict survival of V. vulnificus at different freezing temperatures and times were developed. This is the first step towards the prediction of V. vulnificus related safety of frozen oysters.

  19. The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance

    KAUST Repository

    Razali, Rozaimi; Bougouffa, Salim; Morton, Mitchell J. L.; Lightfoot, Damien; Alam, Intikhab; Essack, Magbubah; Arold, Stefan T.; Kamau, Allan; Schmö ckel, Sandra M.; Pailles, Yveline; Shahid, Mohammed; Michell, Craig; Al-Babili, Salim; Ho, Yung Shwen; Tester, Mark A.; Bajic, Vladimir B.; Negrã o, Só nia

    2017-01-01

    Solanum pimpinellifolium, a wild relative of cultivated tomato, offers a wealth of breeding potential for several desirable traits such as tolerance to abiotic and biotic stresses. Here, we report the genome and annotation of S. pimpinellifolium LA0480. The LA0480 genome size (811 Mb) and the number of annotated genes (25,970) are within the range observed for other sequenced tomato species. We developed and utilized the Dragon Eukaryotic Analyses Platform (DEAP) to functionally annotate the LA0480 protein-coding genes. Additionally, we used DEAP to compare protein function between S. pimpinellifolium and cultivated tomato. Our data suggest enrichment in genes involved in biotic and abiotic stress responses. Moreover, we present phenotypic data from one field experiment that demonstrate a greater salinity tolerance for fruit- and yield-related traits in S. pimpinellifolium compared with cultivated tomato. To understand the genomic basis for these differences in S. pimpinellifolium and S. lycopersicum, we analyzed 15 genes that have previously been shown to mediate salinity tolerance in plants. We show that S. pimpinellifolium has a higher copy number of the inositol-3-phosphate synthase and phosphatase genes, which are both key enzymes in the production of inositol and its derivatives. Moreover, our analysis indicates that changes occurring in the inositol phosphate pathway may contribute to the observed higher salinity tolerance in LA0480. Altogether, our work provides essential resources to understand and unlock the genetic and breeding potential of S. pimpinellifolium, and to discover the genomic basis underlying its environmental robustness.

  20. The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance

    KAUST Repository

    Razali, Rozaimi

    2017-11-14

    Solanum pimpinellifolium, a wild relative of cultivated tomato, offers a wealth of breeding potential for several desirable traits such as tolerance to abiotic and biotic stresses. Here, we report the genome and annotation of S. pimpinellifolium LA0480. The LA0480 genome size (811 Mb) and the number of annotated genes (25,970) are within the range observed for other sequenced tomato species. We developed and utilized the Dragon Eukaryotic Analyses Platform (DEAP) to functionally annotate the LA0480 protein-coding genes. Additionally, we used DEAP to compare protein function between S. pimpinellifolium and cultivated tomato. Our data suggest enrichment in genes involved in biotic and abiotic stress responses. Moreover, we present phenotypic data from one field experiment that demonstrate a greater salinity tolerance for fruit- and yield-related traits in S. pimpinellifolium compared with cultivated tomato. To understand the genomic basis for these differences in S. pimpinellifolium and S. lycopersicum, we analyzed 15 genes that have previously been shown to mediate salinity tolerance in plants. We show that S. pimpinellifolium has a higher copy number of the inositol-3-phosphate synthase and phosphatase genes, which are both key enzymes in the production of inositol and its derivatives. Moreover, our analysis indicates that changes occurring in the inositol phosphate pathway may contribute to the observed higher salinity tolerance in LA0480. Altogether, our work provides essential resources to understand and unlock the genetic and breeding potential of S. pimpinellifolium, and to discover the genomic basis underlying its environmental robustness.

  1. Variação sazonal de oxigênio dissolvido, temperatura e salinidade na costa sul brasileira (28º-35ºS; 48º-54ºW Seasonal variation of dissolved oxygen, temperature and salinity in southern Brazilian coast (28 - 35ºS; 48 - 54ºW

    Directory of Open Access Journals (Sweden)

    Argeo Magliocca

    1982-01-01

    Full Text Available The seasonal and spacial distributions of dissolved oxygen, temperature and salinity of surface and bottom waters over the continental shelf south of Torres, southern Brazil, were investigated from April 1968 to March 1969. The maxima and minima values of oxygen concentration in the upper layers were observed during the winter and summer along the coast (10-35 nm, respectively. Near the bottom this characteristics changes reflecting the northward advection of low oxygen water along the coast. For the sections along the continental shelf covering distances up to 100 nautical miles, the association of high oxygen concentration with low temperatures and low oxygen concentration with higher temperatures was also observed for distances no longer than 60 ran. Further east and below the surface layer, this tendency is modified by the advection of oceanic water from tropical and subantarctic origin. Near the coast, the oxygen maxima (5.0 ml/l is associated with salinity values ranging from 30 to 33‰ (temperature values between 12 and 15ºC, indicating that (its occurrence is probably due to the fresh water run-off from La Plata River. Some results of the changes in the nutrient concentrations during 1972 are also described.

  2. Tolerance Induction of Temperature and Starvation with Tricalcium Phosphate on Preservation and Sporulation in Bacillus amyloliquefaciens Detected by Flow Cytometry.

    Science.gov (United States)

    Shahrokh Esfahani, Samaneh; Emtiazi, Giti; Shafiei, Rasoul; Ghorbani, Najmeh; Zarkesh Esfahani, Seyed Hamid

    2016-09-01

    The Bacillus species have many applications in the preparation of various enzymes, probiotic, biofertilizer, and biomarkers for which the survival of resting cells and spore formation under different conditions are important. In this study, water and saline along with different mineral substances such as calcium carbonate, calcium phosphate, and silica were used for the detection of survival and preservation of Bacillus amyloliquefaciens. The results showed intensive death of resting cells at 8 °C, but significant survival at 28 °C after one month. However, preservation by minerals significantly decreased the rate of death and induced sporulation at both the temperatures. The resting cells were maintained at room temperature (about 60 % of the initial population survived after a month) in the presence of tricalcium phosphate. The results showed that temperature has more effect on sporulation compare with starvation. The sporulation in normal saline at 28 °C was 70 times more than that at 8 °C; meanwhile, addition of tricalcium phosphate increases sporulation by 90 times. Also, the FTIR data showed the interaction of tricalcium phosphate with spores and resting cells. The discrimination of sporulation from non-sporulation state was performed by nucleic acid staining with thiazole orange and detected by flow cytometry. The flow cytometric studies confirmed that the rates of sporulation in pure water were significantly more at 28 °C. This is the first report on the detection of bacterial spore with thiazole orange by flow cytometry and also on the interaction of tricalcium phosphate with spores by FTIR analyses.

  3. Historical temperature, salinity, oxygen, pH, and meteorological data collected from Former Soviet Union platforms Lomonosov, Murmanets, and Akademik Shokalsky in 1933 - 1962 years from Arctic Ocean, Barents Sea, Bering Sea, Chukchi Sea, East Siberian Sea, Kara Sea, and Laptev Sea (NODC Accession 0108117)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen, pH, and meteorological data collected from Former Soviet Union platforms Lomonosov,Murmanets, and Akademik Shokalsky in...

  4. Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers

    International Nuclear Information System (INIS)

    Seneschal, Karine; Smektala, Frederic; Bureau, Bruno; Floch, Marie Le; Jiang Shibin; Luo, Tao; Lucas, Jacques; Peyghambarian, Nasser

    2005-01-01

    New phosphate glasses have been developed in order to incorporate high rare-earth ions concentrations. These glasses present a great chemical stability and a high optical quality. The phosphate glass network is open, very flexible, with a linkage of the tetrahedrons very disordered and contains a larger number of non-bridging oxygens (66%). The great stability and resistance against crystallization associated with the possibility to incorporate high doping concentration of rare-earth ions in these phosphate glasses make them very good candidates for the realization of ultra short single mode amplifiers with a high gain at 1.55 μm

  5. Water-body preferences of dominant calanoid copepod species in ...

    African Journals Online (AJOL)

    The distribution of five dominant calanoid copepods was related to different water masses in the Angola-Benguela Front system. Five water bodies were identified by principal component analysis, on the basis of abiotic parameters such as temperature, salinity, dissolved oxygen, phosphate, silicate, nitrate and nitrite.

  6. Oxygen binding to nitric oxide marked hemoglobin

    International Nuclear Information System (INIS)

    Louro, S.R.W.; Ribeiro, P.C.; Bemski, G.

    1979-04-01

    Electron spin resonance spectra of organic phosphate free human hemoglobin marked with nitric oxide at the sixth coordination position of one of the four hemes allow to observe the transition from the tense (T) to the relaxed (R) conformation, as a function of parcial oxygen pressure. The spectra are composites of contributions from α sub(T), α sub(R) and β chains spectra, showing the presence of only two conformations: T and R. In the absence of organic phosphates NO binds to α and β chains with the same probability, but in the presence of phosphates NO combines preferentially with α chains. The dissociation of NO proceeds at least an order of magnitude faster in T than in R configuration. (author) [pt

  7. The Diffusive Boundary-Layer of Sediments - Oxygen Microgradients Over a Microbial Mat

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; MARAIS, DJD

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sedimen-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate...

  8. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Barten, H.

    1986-11-01

    The results are described of a study of the thermochemical stability of anhydrous uranyl phosphates and arsenates. A number of aspects of chemical technological importance are indicated in detail. The synthesized anhydrous uranyl phosphates and arsenates were very hygroscopic, so that experiments on these compounds had to be carried out under moisture-free conditions. Further characterisation of these compounds are given, including a study of their thermal stabilities and phase relations. The uranyl phosphates reduced reversibly at temperatures of the order of 1100 to 1600 0 C. This makes it possible to express their relative stabilities quantitatively, in terms of the oxygen pressures of the reduction reactions. The thermal decomposition of uranyl arsenates did not occur by reduction, as for the phosphates, but by giving off arsenic oxide vapour. The results of measurements of enthalpies of solution led to the determination of the enthalpies of formation, heat capacity and the standard entropies of the uranyl arsenates. The thermochemical functions at high-temperatures could consequently be calculated. Attention is paid to the possible formation of uranium arsenates, whose uranium has a valency lower than six, hitherto not reported in literature. It was not possible to prepare arsenates of tetravalent uranium. However, three new compounds were observed, one of these, UAsO 5 , was studied in some detail. (Auth.)

  9. Phosphate interference during in situ treatment for arsenic in groundwater.

    Science.gov (United States)

    Brunsting, Joseph H; McBean, Edward A

    2014-01-01

    Contamination of groundwater by arsenic is a problem in many areas of the world, particularly in West Bengal (India) and Bangladesh, where reducing conditions in groundwater are the cause. In situ treatment is a novel approach wherein, by introduction of dissolved oxygen (DO), advantages over other treatment methods can be achieved through simplicity, not using chemicals, and not requiring disposal of arsenic-rich wastes. A lab-scale test of in situ treatment by air sparging, using a solution with approximately 5.3 mg L(-1) ferrous iron and 200 μg L(-1) arsenate, showed removal of arsenate in the range of 59%. A significant obstacle exists, however, due to the interference of phosphate since phosphate competes for adsorption sites on oxidized iron precipitates. A lab-scale test including 0.5 mg L(-1) phosphate showed negligible removal of arsenate. In situ treatment by air sparging demonstrates considerable promise for removal of arsenic from groundwater where iron is present in considerable quantities and phosphates are low.

  10. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    Science.gov (United States)

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  11. Dimensional stability under wet curing of mortars containing high amounts of nitrates and phosphates

    International Nuclear Information System (INIS)

    Benard, P.; Cau Dit Coumes, C.; Garrault, S.; Nonat, A.; Courtois, S.

    2008-01-01

    Investigations were carried out in order to solidify in cement some aqueous streams resulting from nuclear decommissioning processes and characterized by a high salinity (300 g/L), as well as important concentrations of nitrate (150-210 g/L) and phosphate ions (0-50 g/L). Special attention was paid to the influence of these compounds on the dimensional variations under wet curing of simulated solidified waste forms. The length changes of mortars containing nitrate salts only (KNO 3 , NaNO 3 ) were shown to be governed by a concentration effect which involved osmosis: the higher their concentration in the mixing solution, the higher the swelling. The expansion of mortars containing high amounts of phosphates (≥ 30 g/L in the mixing solution) was preceded by a shrinkage which increased with the phosphate concentration, and which could be suppressed by seeding the cement used with hydroxyapatite crystals. This transitory shrinkage was attributed to the conversion into hydroxyapatite of a precursor readily precipitated in the cement paste after mixing

  12. Algal and cyanobacterial saline biofilms of the Grande Coastal Lagoon, Lima, Peru

    OpenAIRE

    Montoya, Haydee

    2009-01-01

    Tropical coastal wetland ecosystems are widely distributed in arid regions. The Grande coastal lagoon in Peru's central plain is shallow, eutrophic and alkaline, exposed to the annual hydrological regime with flooding and desiccation periods, when a salt crust is formed. The brackish to hypersaline habitats showed salinity gradients from 2-90 ppt (NaCl) to saturation, pH values from 7.0 to 10.5, temperatures from 18 to 31 C, phosphate concentrations from 0.5 to 50 mg 1-1. Dominance of halophi...

  13. Can we screen phosphorus movement in the landscape through the analysis of δ"1"8O isotopic abundance in phosphate?

    International Nuclear Information System (INIS)

    Heiling, M.; Aigner, M.; Slaets, J.; Dercon, G.

    2016-01-01

    The SWMCNL explored the possibility of using δ18O isotopic signature in phosphate for screening phosphorus (P) movement in the landscape. Phosphorus is essential for crop production, but extensive use of P fertilizer and animal manure can lead to eutrophication of rivers and lakes. To study these effects, numerous studies on P movement in the soil plant system and P transformation processes have been performed in the past decades. Assessing losses of P through erosion processes, however, is challenging – particularly at the landscape level and on a longer timescale. Using the isotopic signature of stable oxygen isotope ("1"8O) in the phosphate ion as a tracer could be a cost-effective way to study P movements. This approach is already applied as a paleotemperature proxy (the fractionation between phosphate and water is temperature dependent) and can be used for quantifying P losses through leaching into surface and groundwater, as oxygen exchange between phosphate and water is slow in the absence of biological activity.

  14. Temperature, salinity, transmissivity, pressure, plankton, oxygen, nutrients, chlorophyll, and primary productivity data collected using CTD, bottle, and plankton net from the R/V Italica in the Ross Sea and Magellan Strait during 10th Italian Antarctic Expedition from 1994-11-13 to 1995-04-02 (NCEI Accession 0068289)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, transmissivity, pressure, plankton, oxygen, nutrients, chlorophyll, and primary productivity data collected using CTD, bottle, and plankton...

  15. On the Use of Molecular Weight Cutoff Cassettes to Measure Dynamic Relaxivity of Novel Gadolinium Contrast Agents: Example Using Hyaluronic Acid Polymer Complexes in Phosphate-Buffered Saline

    Directory of Open Access Journals (Sweden)

    Nima Kasraie

    2011-01-01

    Full Text Available The aims of this study were to determine whether standard extracellular contrast agents of Gd(III ions in combination with a polymeric entity susceptible to hydrolytic degradation over a finite period of time, such as Hyaluronic Acid (HA, have sufficient vascular residence time to obtain comparable vascular imaging to current conventional compounds and to obtain sufficient data to show proof of concept that HA with Gd-DTPA ligands could be useful as vascular imaging agents. We assessed the dynamic relaxivity of the HA bound DTPA compounds using a custom-made phantom, as well as relaxation rates at 10.72 MHz with concentrations ranging between 0.09 and 7.96 mM in phosphate-buffered saline. Linear dependences of static longitudinal relaxation rate (R1 on concentration were found for most measured samples, and the HA samples continued to produce high signal strength after 24 hours after injection into a dialysis cassette at 3T, showing superior dynamic relaxivity values compared to conventional contrast media such as Gd-DTPA-BMA.

  16. Application of phosphating techniques to aluminium and carbon steel surfaces using nitro guanidine as oxidizing agent

    International Nuclear Information System (INIS)

    Briseno M, S.A.

    1995-01-01

    Phosphate coatings are inorganic crystalline deposits laid down uniformly on properly prepared surfaces by a chemical reaction with the treated base metal. The reaction consists in dissolving some surface metal by acid attack and then causing surface neutralization of the phosphate solution with consequent precipitation of the phosphate coating. Phosphate coatings do not provide appreciable corrosion protection in themselves. They are useful mainly as a base for paints, ensuring good adherence of paint to steel and decreasing the tendency for corrosion to under cut the paint film at scratches or other defects. In this work firstly were realized phosphate on standard carbon steel, employing technical of cold phosphate (at 40 Centigrade degrees and with a treatment time of 30 minutes) and hot phosphate (at 88 Centigrade degrees and with a treatment time of 15 minutes), where with this last were obtained the best results. Both methods used phosphate solutions of Zn/Mn and using as catalyst Nitro guanidine. Aluminium surfaces were phosphate used solutions of Cr and as catalyst Sodium bi fluoride. The phosphating on this surface were realized at temperature of 50 Centigrade degrees and with a treatment time of 10 minutes. In this work were obtained a new phosphate coatings on steel surfaces, these coatings were realized with a phosphate solution manufactured with the precipitates gathered during the hot phosphating on carbon steel. These coatings show excellent physical characteristics and of corrosion resistance. Were determined the physical testings of the coatings phosphate obtained on carbon steel and aluminium surfaces. These testing were: roughness, thickness, microhardness and adhesion. The best results were showed in carbon steel phosphate with precipitated solutions. The technical of analysis for activation with thermic neutrons was used to determine the phosphate coatings composition. Finally, corrosion testings were realized by means of two methods

  17. Disturbance of inorganic phosphate metabolism in diabetes mellitus: clinical manifestations of phosphorus-depletion syndrome during recovery from diabetic ketoacidosis

    Directory of Open Access Journals (Sweden)

    Lervang H

    2010-09-01

    Full Text Available Jørn Ditzel, Hans-Henrik LervangDepartment of Endocrinology, and Center for Prevention of Struma and Metabolic Diseases, Aalborg University Hospital, Aarhus University, DenmarkAbstract: The acute effects of intracellular phosphate depletion and hypophosphatemia on organs and tissues in and during recovery from diabetic ketoacidosis (DKA have been reviewed. When insufficient phosphate and/or oxygen are available for high energy phosphate synthesis, cell homeostasis cannot be maintained and cell integrity may be impaired. The clinical consequences are recognized as occasional cause of morbidity and mortality. Although phosphate repletion has not been routinely recommended in the treatment of DKA, physicians should be aware of these clinical conditions and phosphate repletion in such situations should be considered.Keywords: high energy phosphates, hypoxia, fructose 1,6-diphosphate

  18. Effect of hemodialysis on factors influencing oxygen transport.

    Science.gov (United States)

    Hirszel, P; Maher, J F; Tempel, G E; Mengel, C E

    1975-06-01

    Ten patients underwent 4 study hemodialyses, one with standard dialysis conditions, one with an isophosphate dialysate, one with simultaneous ammonium chloride loading, and other, after pretreatment, with sodium bicarbonate. Measurement of hemoglobin oxygen affinity (P-50), erythrocyte 2,3-DPG, blood-gasses, and serum chemistries revealed biochemically effective hemodialyses and slight changes in oxygen transport parameters. The P-50 (in vivo) values decreased slightly but significantly (p greater than 0.05) with dialysis. When corrected to pH 7.4, eliminating the Bohr effect, P-50 increased (p greater than 0.05). With unmodified dialysis elevated values of 2,3-DPG (in comparison to normal) decreased, a change that did not correlate with delta-p-50, delta-serum phosphate, or delta-serum creatinine. With standard and isophosphate dialyses Po-2 decreased significantly. The decrease correlated with delta-hydrogen ion concentration and did not occur with dialyses designed to maintain pH constant. Thus, hemodialysis influences many factors that affect oxygen transport in different and counterbalancing directions. These changes are not totally explained by alterations in 2,3-DPG, pH or serum phosphate. Maintenance of acidosis or hyperphosphatemia during dialysis is not recommended.

  19. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ-Grown Dental Biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Ibsen, Casper Jon Steenberg; Birkedal, Henrik

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary......-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either...... calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects...

  20. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    Science.gov (United States)

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  1. The Baltic Sea natural long-term variability of salinity

    Science.gov (United States)

    Schimanke, Semjon; Markus Meier, H. E.

    2015-04-01

    The Baltic Sea is one of the largest brackish sea areas of the world. The sensitive state of the Baltic Sea is sustained by a fresh-water surplus by river discharge and precipitation on one hand as well as inflows of highly saline and oxygen-rich water masses from the North Sea on the other. Major inflows which are crucial for the renewal of the deep water occur very intermittent with a mean frequency of approximately one per year. Stagnation periods (periods without major inflows) lead for instance to a reduction of oxygen concentration in the deep Baltic Sea spreading hypoxic conditions. Depending on the amount of salt water inflow and fresh-water supply the deep water salinity of the Baltic Sea varies between 11 to 14 PSU on the decadal scale. The goal of this study is to understand the contribution of different driving factors for the decadal to multi-decadal variability of salinity in the Baltic Sea. Continuous measurement series of salinity exist from the 1950 but are not sufficiently long for the investigation of long-term fluctuations. Therefore, a climate simulation of more than 800 years has been carried out with the Rossby Center Ocean model (RCO). RCO is a biogeochemical regional climate model which covers the entire Baltic Sea. It is driven with atmospheric data dynamical downscaled from a GCM mimicking natural climate variability. The analysis focus on the role of variations in river discharge and precipitation, changes in wind speed and direction, fluctuations in temperature and shifts in large scale pressure patterns (e.g. NAO). Hereby, the length of the simulation will allow to identify mechanisms working on decadal to multi-decadal time scales. Moreover, it will be discussed how likely long stagnation periods are under natural climate variability and if the observed exceptional long stagnation period between 1983-1993 might be related to beginning climate change.

  2. Effect of elevated pCO2 on metabolic responses of porcelain crab (Petrolisthes cinctipes) Larvae exposed to subsequent salinity stress.

    Science.gov (United States)

    Miller, Seth H; Zarate, Sonia; Smith, Edmund H; Gaylord, Brian; Hosfelt, Jessica D; Hill, Tessa M

    2014-01-01

    Future climate change is predicted to alter the physical characteristics of oceans and estuaries, including pH, temperature, oxygen, and salinity. Investigating how species react to the influence of such multiple stressors is crucial for assessing how future environmental change will alter marine ecosystems. The timing of multiple stressors can also be important, since in some cases stressors arise simultaneously, while in others they occur in rapid succession. In this study, we investigated the effects of elevated pCO2 on oxygen consumption by larvae of the intertidal porcelain crab Petrolisthes cinctipes when exposed to subsequent salinity stress. Such an exposure mimics how larvae under future acidified conditions will likely experience sudden runoff events such as those that occur seasonally along portions of the west coast of the U.S. and in other temperate systems, or how larvae encounter hypersaline waters when crossing density gradients via directed swimming. We raised larvae in the laboratory under ambient and predicted future pCO2 levels (385 and 1000 µatm) for 10 days, and then moved them to seawater at ambient pCO2 but with decreased, ambient, or elevated salinity, to monitor their respiration. While larvae raised under elevated pCO2 or exposed to stressful salinity conditions alone did not exhibit higher respiration rates than larvae held in ambient conditions, larvae exposed to elevated pCO2 followed by stressful salinity conditions consumed more oxygen. These results show that even when multiple stressors act sequentially rather than simultaneously, they can retain their capacity to detrimentally affect organisms.

  3. Development of a flow method for the determination of phosphate in estuarine and freshwaters-Comparison of flow cells in spectrophotometric sequential injection analysis

    International Nuclear Information System (INIS)

    Mesquita, Raquel B.R.; Ferreira, M. Teresa S.O.B.; Toth, Ildiko V.; Bordalo, Adriano A.; McKelvie, Ian D.; Rangel, Antonio O.S.S.

    2011-01-01

    Highlights: → Sequential injection determination of phosphate in estuarine and freshwaters. → Alternative spectrophotometric flow cells are compared. → Minimization of schlieren effect was assessed. → Proposed method can cope with wide salinity ranges. → Multi-reflective cell shows clear advantages. - Abstract: A sequential injection system with dual analytical line was developed and applied in the comparison of two different detection systems viz; a conventional spectrophotometer with a commercial flow cell, and a multi-reflective flow cell coupled with a photometric detector under the same experimental conditions. The study was based on the spectrophotometric determination of phosphate using the molybdenum-blue chemistry. The two alternative flow cells were compared in terms of their response to variation of sample salinity, susceptibility to interferences and to refractive index changes. The developed method was applied to the determination of phosphate in natural waters (estuarine, river, well and ground waters). The achieved detection limit (0.007 μM PO 4 3- ) is consistent with the requirement of the target water samples, and a wide quantification range (0.024-9.5 μM) was achieved using both detection systems.

  4. Development of a flow method for the determination of phosphate in estuarine and freshwaters-Comparison of flow cells in spectrophotometric sequential injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Raquel B.R. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Lg. Abel Salazar 2, 4099-003 Porto (Portugal); Ferreira, M. Teresa S.O.B. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Toth, Ildiko V. [REQUIMTE, Departamento de Quimica, Faculdade de Farmacia, Universidade de Porto, Rua Anibal Cunha, 164, 4050-047 Porto (Portugal); Bordalo, Adriano A. [Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Lg. Abel Salazar 2, 4099-003 Porto (Portugal); McKelvie, Ian D. [School of Chemistry, University of Melbourne, Victoria 3010 (Australia); Rangel, Antonio O.S.S., E-mail: aorangel@esb.ucp.pt [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, R. Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2011-09-02

    Highlights: {yields} Sequential injection determination of phosphate in estuarine and freshwaters. {yields} Alternative spectrophotometric flow cells are compared. {yields} Minimization of schlieren effect was assessed. {yields} Proposed method can cope with wide salinity ranges. {yields} Multi-reflective cell shows clear advantages. - Abstract: A sequential injection system with dual analytical line was developed and applied in the comparison of two different detection systems viz; a conventional spectrophotometer with a commercial flow cell, and a multi-reflective flow cell coupled with a photometric detector under the same experimental conditions. The study was based on the spectrophotometric determination of phosphate using the molybdenum-blue chemistry. The two alternative flow cells were compared in terms of their response to variation of sample salinity, susceptibility to interferences and to refractive index changes. The developed method was applied to the determination of phosphate in natural waters (estuarine, river, well and ground waters). The achieved detection limit (0.007 {mu}M PO{sub 4}{sup 3-}) is consistent with the requirement of the target water samples, and a wide quantification range (0.024-9.5 {mu}M) was achieved using both detection systems.

  5. High-precision determination of 18O/16O ratios of silver phosphate by EA-pyrolysis-IRMS continuous flow technique.

    Science.gov (United States)

    Lécuyer, Christophe; Fourel, François; Martineau, François; Amiot, Romain; Bernard, Aurélien; Daux, Valérie; Escarguel, Gilles; Morrison, John

    2007-01-01

    A high-precision, and rapid on-line method for oxygen isotope analysis of silver phosphate is presented. The technique uses high-temperature elemental analyzer (EA)-pyrolysis interfaced in continuous flow (CF) mode to an isotopic ratio mass spectrometer (IRMS). Calibration curves were generated by synthesizing silver phosphate with a 13 per thousand spread in delta(18)O values. Calibration materials were obtained by reacting dissolved potassium dihydrogen phosphate (KH(2)PO(4)) with water samples of various oxygen isotope compositions at 373 K. Validity of the method was tested by comparing the on-line results with those obtained by classical off-line sample preparation and dual inlet isotope measurement. In addition, silver phosphate precipitates were prepared from a collection of biogenic apatites with known delta(18)O values ranging from 12.8 to 29.9 per thousand (V-SMOW). Reproducibility of +/- 0.2 per thousand was obtained by the EA-Py-CF-IRMS method for sample sizes in the range 400-500 microg. Both natural and synthetic samples are remarkably well correlated with conventional (18)O/(16)O determinations. Silver phosphate is a very stable material and easy to degas and, thus, could be considered as a good candidate to become a reference material for the determination of (18)O/(16)O ratios of phosphate by high-temperature pyrolysis. Copyright 2006 John Wiley & Sons, Ltd.

  6. Oxygen isotope fractionation between human phosphate and water revisited

    DEFF Research Database (Denmark)

    Daux, Valérie; Lécuyer, Christophe; Héran, Marie-Anne

    2008-01-01

    to investigate the impact of solid food consumption on the oxygen isotope composition of the total ingested water (drinking water+solid food water). The results, along with those from three, smaller published data sets, can be considered as random estimates of a unique delta18OW/delta18OP linear relationship...... collected at 12 sites located at latitudes ranging from 4 degrees N to 70 degrees N together with the corresponding oxygen composition of tap waters (delta18OW) from these areas. In addition, the delta18O of some raw and boiled foods were determined and simple mass balance calculations were performed......: delta18OW=1.54(+/-0.09)xdelta18OP-33.72(+/-1.51)(R2=0.87: p [H0:R2=0]=2x10(-19)). The delta18O of cooked food is higher than that of the drinking water. As a consequence, in a modern diet the delta18O of ingested water is +1.05 to 1.2 per thousand higher than that of drinking water in the area. In meat...

  7. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study

    International Nuclear Information System (INIS)

    Kao, Yu-Hsuan; Wang, Sheng-Wei; Liu, Chen-Wuing; Wang, Pei-Ling; Wang, Chung-Ho; Maji, Sanjoy Kumar

    2011-01-01

    Arsenic (As) contamination of groundwater, accompanied by critical salinization, occurs in the southwestern coastal area of Taiwan. Statistical analyses and geochemical calculations indicate that a possible source of aqueous arsenic is the reductive dissolution of As-bearing iron oxyhydroxides. There are few reports of the influence of sulfate-sulfide redox cycling on arsenic mobility in brackish groundwater. We evaluated the contribution of sulfate reduction and sulfide re-oxidation on As enrichment using δ 34 S [SO 4 ] and δ 18 O [SO 4 ] sulfur isotopic analyses of groundwater. Fifty-three groundwater samples were divided into groups of high-As content and salinized (Type A), low-As and non-salinized (Type B), and high-As and non-salinized (Type C) groundwaters, based on hydro-geochemical analysis. The relatively high enrichment of 34 S [SO 4 ] and 18 O [SO 4 ] present in Type A, caused by microbial-mediated reduction of sulfate, and high 18 O enrichment factor (ε [SO 4 -H 2 O] ), suggests that sulfur disproportionation is an important process during the reductive dissolution of As-containing iron oxyhydroxides. Limited co-precipitation of ion-sulfide increased the rate of As liberation under anaerobic conditions. In contrast to this, Type B and Type C groundwater samples showed high δ 18 O [SO 4 ] and low δ 34 S [SO 4 ] values under mildly reducing conditions. Base on 18 O mass balance calculations, the oxide sources of sulfate are from infiltrated atmospheric O 2 , caused by additional recharge of dissolved oxygen and sulfide re-oxidation. The anthropogenic influence of extensive pumping also promotes atmospheric oxygen entry into aquifers, altering redox conditions, and increasing the rate of As release into groundwater. - Highlights: → Seawater intrusion and elevated As are the main issues of groundwater in Taiwan. → Sulfur and oxygen isotopes of sulfate were analyzed to evaluate the As mobility. → Reductive dissolution of Fe minerals and

  8. Salinity effects on behavioural response to hypoxia in the non-native Mayan cichlid Cichlasoma urophthalmus from Florida Everglades wetlands.

    Science.gov (United States)

    Schofield, P J; Loftus, W F; Fontaine, J A

    2009-04-01

    This study quantified the hypoxia tolerance of the Mayan cichlid Cichlasoma urophthalmus over a range of salinities. The species was very tolerant of hypoxia, using aquatic surface respiration (ASR) and buccal bubble holding when oxygen tensions dropped to <20 mmHg (c. 1.0 mg l(-1)) and 6 mmHg, respectively. Salinity had little effect on the hypoxia tolerance of C. urophthalmus, except that bubble holding was more frequent at the higher salinities tested. Levels of aggression were greatest at the highest salinity. The ASR thresholds of C. urophthalmus were similar to native centrarchid sunfishes from the Everglades, however, aggression levels for C. uropthalmus were markedly higher.

  9. Oxygen binding properties of hemoglobin from the white rhinoceros (beta 2-GLU) and the tapir.

    Science.gov (United States)

    Baumann, R; Mazur, G; Braunitzer, G

    1984-04-01

    The beta-chain of rhinoceros hemoglobin contains glutamic acid at position beta 2, and important site for the binding of organic phosphates. We have investigated the oxygen binding properties of this hemoglobin and its interaction with ATP, 2,3-diphosphoglycerate, CO2 and chloride. The results show that the presence of GLU at position beta 2 nearly abolishes the effect of organic phosphates and CO2, whereas the oxygen-linked binding of chloride is not affected. Thus rhinoceros hemoglobin has only protons and chloride anions as major allosteric effectors for the control of its oxygen affinity. From the results obtained with hemoglobin solutions it can be calculated that the blood oxygen affinity of the rhinoceros must be rather high with a P50 of about 20 torr at pH 7.4 and 37 degrees C, which conforms with observations obtained for other large mammals.

  10. Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants.

    Science.gov (United States)

    Garg, Bharti; Gill, Sarvajeet S; Biswas, Dipul K; Sahoo, Ranjan K; Kunchge, Nandkumar S; Tuteja, Renu; Tuteja, Narendra

    2017-01-01

    To cope with the problem of salinity- and weed-induced crop losses, a multi-stress tolerant trait is need of the hour but a combinatorial view of such traits is not yet explored. The overexpression of PDH45 (pea DNA helicase 45) and EPSPS (5-enoylpruvyl shikimate-3-phosphate synthase) genes have been reported to impart salinity and herbicide tolerance. Further, the understanding of mechanism and pathways utilized by PDH45 and EPSPS for salinity and herbicide tolerance will help to improve the crops of economical importance. In the present study, we have performed a comparative analysis of salinity and herbicide tolerance to check the biochemical parameters and antioxidant status of tobacco transgenic plants. Collectively, the results showed that PDH45 overexpressing transgenic lines display efficient tolerance to salinity stress, while PDH45+EPSPS transgenics showed tolerance to both the salinity and herbicide as compared to the control [wild type (WT) and vector control (VC)] plants. The activities of the components of enzymatic antioxidant machinery were observed to be higher in the transgenic plants indicating the presence of an efficient antioxidant defense system which helps to cope with the stress-induced oxidative-damages. Photosynthetic parameters also showed significant increase in PDH45 and PDH45+EPSPS overexpressing transgenic plants in comparison to WT, VC and EPSPS transgenic plants under salinity stress. Furthermore, PDH45 and PDH45+EPSPS synergistically modulate the jasmonic acid and salicylic acid mediated signaling pathways for combating salinity stress. The findings of our study suggest that pyramiding of the PDH45 gene with EPSPS gene renders host plants tolerant to salinity and herbicide by enhancing the antioxidant machinery thus photosynthesis.

  11. Origin of uraniferous phosphate beds in Wilkins Peak member of Green River Formation, Wyoming

    International Nuclear Information System (INIS)

    Mott, L.V.; Drever, J.I.

    1983-01-01

    The distribution of uranium and phosphorus was studied in four drill cores from the Wilkins Peak Member of the Green River Formation in Wyoming. Of the studied occurrences of anomalously high uranium concentrations, 13% were associated with localized organic matter, and the remainder were associated with stratiform phosphate-rich beds. The uranium probably substitutes for calcium in apatite in these beds. It is proposed that the apatite forms by replacement of calcite during times of flooding of the normally highly saline lake. The flood waters bring in phosphorus and cause a decrease in both pH and ratio of bicarbonate to phosphate, which favors the replacement. Uranium is incorporated in the apatite as the apatite forms or soon after. No special source, other than weathering of volcanic ash, is required for the phosphorus or the uranium. The uraniferous phosphatic beds do not appear to have any economic potential at the present time. Misleadingly high concentrations of both uranium and phosphorus are observed in outcrop samples as a result of selective leaching of other components

  12. Oxygen stable isotopes variation in water precipitation in Poland – anthropological applications

    Directory of Open Access Journals (Sweden)

    Lisowska-Gaczorek Aleksandra

    2017-03-01

    Full Text Available The main objective of oxygen isotope analysis is to determine the probable place of origin of an individual or the reconstruction of migration paths. The research are methodologically based on referencing oxygen isotope ratios of apatite phosphates (δ18Op to the range of environmental background δ18O, most frequently determined on the basis of precipitation.

  13. Glucose-6-phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress.

    Directory of Open Access Journals (Sweden)

    Juan M Sandoval

    Full Text Available The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH, which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH. Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P, suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH, better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress.

  14. Acclimation of juvenile Mugil liza Valenciennes, 1836 (Mugiliformes: Mugilidae to different environmental salinities

    Directory of Open Access Journals (Sweden)

    Viviana Lisboa

    Full Text Available Survival and physiological parameters associated with metabolism and osmoregulation were evaluated in juveniles of the Lebranche mullet Mugil liza acclimated to different water salinities (5, 10, 20, 30, and 40‰ for 15 days. Room temperature (25ºC and photoperiod (12L:12D were fixed. Fish were fed twice-a-day with commercial diet (28% crude protein until satiation. After acclimation, whole body oxygen consumption was measured and fish were euthanized and sampled for blood, gills, and liver. Whole body oxygen consumption and plasma osmolality did not change in the range of salinities tested. The isosmotic point was estimated as 412.7 mOsmol kg-1 (13.5‰. Gill Na+,K+-ATPase activity tended to be lower at 20 and 30‰, while liver glycogen content was significantly higher at 20‰ than at 5 and 40‰. These results indicate that juvenile M. liza is able to acclimate for a short-period of time (15 days to a wide range of salinities (5-40‰. This condition is achieved through adjustments in gill Na+,K+-ATPase activity and carbohydrate metabolism to regulate plasma osmolality and aerobic/energy metabolism. Therefore, our findings support the idea of catching juveniles M. liza in sea water and rear them in estuarine and marine waters.

  15. Chemical interaction of fresh and saline waters with compacted bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.; Melamed, A.; Pitkaenen, P.

    1996-01-01

    The interaction of compacted sodium bentonite with fresh and saline ground-water simulant was studied. The parameters varied in the experiments were the compositions of the solutions and oxygen and carbon dioxide content in the surroundings. The main interests of the study were the chemical changes in the experimental solution, bentonite porewater and bentonite together with the microstructural properties of bentonite. The major processes with fresh water were the diffusion of sodium, potassium, sulphate, bicarbonate and chloride from bentonite to the solution, and the diffusion of calcium and magnesium from the solution into bentonite. The major processes in the experiments with saline water were the diffusion of the sodium, magnesium, sulphate and bicarbonate from bentonite into the solution, and the diffusion of calcium from the solution into bentonite

  16. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-06-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC{sub 50} values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC{sub 50} obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC{sub 50}). This LC{sub 50} value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC{sub 50}. For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC{sub 50} and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC{sub 50} of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC{sub 50} values. In contrast, LC{sub 50} determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature.

  17. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-01-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC 50 values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC 50 obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC 50 ). This LC 50 value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC 50 . For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC 50 and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC 50 of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC 50 values. In contrast, LC 50 determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature

  18. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    Science.gov (United States)

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Dissolved oxygen and aeration in ictalurid catfish aquaculture

    Science.gov (United States)

    Feed-based production of ictalurid catfish in ponds is the largest aquaculture sector in the United States. The feed biochemical oxygen demand (FBOD) typically is 1.1-1.2 kg O2/kg feed. Feed also results in a substantial increase of carbon dioxide, ammonia nitrogen, and phosphate to ponds, and this ...

  20. Laboratory study on coprecipitation of phosphate with ikaite in sea ice

    OpenAIRE

    Hu, Yu-Bin; Dieckmann, Gerhard S.; Wolf-Gladrow, Dieter A.; Nehrke, Gernot

    2014-01-01

    Ikaite (CaCO3�6H2O) has recently been discovered in sea ice, providing first direct evidence of CaCO3 precipitation in sea ice. However, the impact of ikaite precipitation on phosphate (PO4) concentration has not been considered so far. Experiments were set up at pH from 8.5 to 10.0, salinities from 0 to 105, temperatures from 24°C to 0°C, and PO4 concentrations from 5 to 50 mmol kg-1 in artificial sea ice brine so as to understand how ikaite precipitation affects the PO4 concentr...

  1. Oceanographic temperature, salinity and oxygen profiles and other measurements from CTD casts by the National Park Service (NPS) and United States Geological Survey (USGS) for the Inventory and Monitoring Program of the Southeast Alaska Network (SEAN) from multiple platforms in Glacier Bay, Alaska from 1993-07-01 to 2016-10-04 (NODC Accession 0074611)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains temperature, salinity, pressure, photosynthetically active radiation (PAR), optical backscatterance (OBS turbidity), dissolved oxygen, and...

  2. Bioactivity and cytocompatibility of dicalcium phosphate/poly (amino acid) biocomposite with degradability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yunfei [College of Chemistry, Sichuan University, Chengdu 610064 (China); Shan Wenpeng; Li Xiangde [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wei Jie, E-mail: biomater2006@yahoo.com.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Li Hong [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Ma Jian [Hospital of Stomatology, Tongji University, Shanghai 200072 (China); Yan Yonggang, E-mail: yan_yonggang@vip.163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2012-01-15

    A bioactive composite of dicalcium phosphate (DCP) and poly (amino acid) (PAA) was fabricated, and the in vitro bioactivity, degradability, and cellular responses to the DCP/PAA composite (DPC) were investigated as compared to PAA. Apatite formation on DPC surfaces occurred after immersion into simulated body fluid (SBF) for 7 days, but not on the surface of PAA. The weight loss ratio of DPC could reach 18.6 {+-} 0.3 wt% after soaking into phosphate buffered saline (PBS) for 2 months, which was higher than PAA (11.0 {+-} 0.2 wt%). Cell attachment and proliferation of MG-63 cells on DPC was obviously higher than on PAA. Moreover, the cells spread and formed confluent layer on the DPC surfaces. The alkaline phosphatase activity (ALP) of the cells on DPC was significantly greater than PAA at day 5 and day 7. The results suggested that introducing DCP into PAA makes the composite bioactive and more degradable, and meanwhile enhances osteoblast-like cells attach, proliferation and osteogenic differentiation.

  3. Effects of proline on photosynthesis, root reactive oxygen species ...

    African Journals Online (AJOL)

    Effects of 0.2 mM proline applied to saline nutrient solution on biomass, chlorophyll content, photosynthetic parameters, reactive oxygen species and antioxidant enzymes activities of two melon cultivars (cv. Yuhuang and cv. Xuemei) were examined. Results indicate that exogenous proline increased the fresh and dry ...

  4. Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils.

    Science.gov (United States)

    Barua, Shilajit; Tripathi, Sudipta; Chakraborty, Ashis; Ghosh, Sagarmoy; Chakrabarti, Kalyan

    2012-01-20

    Use of eco-friendly area specific salt tolerant bioinoculants is better alternatives to chemical fertilizer for sustainable agriculture in coastal saline soils. We isolated diverse groups of diazotrophic bacteria from coastal saline soils of different forest and agricultural lands in the Sundarbans, West Bengal, India, to study their effect on crop productivity in saline soils. Phenotypic, biochemical and molecular identifications of the isolates were performed. The isolates produced indole acetic acid, phosphatase, and solubilized insoluble phosphates. Sequence analysis of 16S rDNA identified the SUND_BDU1 strain as Agrobacterium and the strains SUND_LM2, Can4 and Can6 belonging to the genus Bacillus. The ARA activity, dinitrogen fixation and presence of nifH genes indicated they were diazotrophs. Field trials with these strains as bioinoculants were carried out during 2007-2009, with rice during August-December followed by Lady's finger during April-June. Microplots, amended with FYM inoculated with four bioinoculants individually were compared against sole FYM (5 t ha(-1)) and a sole chemical fertilizer (60:30:30 kg ha(-1) NPK) treated plot. The strain Can6 was by far the best performer in respect of yield attributes and productivity of studied crops. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Yu-Hsuan [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Wang, Sheng-Wei [Agricultural Engineering Research Center, Chungli 320, Taiwan, ROC (China); Liu, Chen-Wuing, E-mail: lcw@gwater.agec.ntu.edu.tw [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Wang, Pei-Ling [Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC (China); Wang, Chung-Ho [Institute of Earth Sciences, Academia Sinica, Taipei 115, Taiwan, ROC (China); Maji, Sanjoy Kumar [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China)

    2011-10-15

    Arsenic (As) contamination of groundwater, accompanied by critical salinization, occurs in the southwestern coastal area of Taiwan. Statistical analyses and geochemical calculations indicate that a possible source of aqueous arsenic is the reductive dissolution of As-bearing iron oxyhydroxides. There are few reports of the influence of sulfate-sulfide redox cycling on arsenic mobility in brackish groundwater. We evaluated the contribution of sulfate reduction and sulfide re-oxidation on As enrichment using {delta}{sup 34}S{sub [SO{sub 4]}} and {delta}{sup 18}O{sub [SO{sub 4]}} sulfur isotopic analyses of groundwater. Fifty-three groundwater samples were divided into groups of high-As content and salinized (Type A), low-As and non-salinized (Type B), and high-As and non-salinized (Type C) groundwaters, based on hydro-geochemical analysis. The relatively high enrichment of {sup 34}S{sub [SO{sub 4]}} and {sup 18}O{sub [SO{sub 4]}} present in Type A, caused by microbial-mediated reduction of sulfate, and high {sup 18}O enrichment factor ({epsilon}{sub [SO{sub 4-H{sub 2O]}}}), suggests that sulfur disproportionation is an important process during the reductive dissolution of As-containing iron oxyhydroxides. Limited co-precipitation of ion-sulfide increased the rate of As liberation under anaerobic conditions. In contrast to this, Type B and Type C groundwater samples showed high {delta}{sup 18}O{sub [SO{sub 4]}} and low {delta}{sup 34}S{sub [SO{sub 4]}} values under mildly reducing conditions. Base on {sup 18}O mass balance calculations, the oxide sources of sulfate are from infiltrated atmospheric O{sub 2}, caused by additional recharge of dissolved oxygen and sulfide re-oxidation. The anthropogenic influence of extensive pumping also promotes atmospheric oxygen entry into aquifers, altering redox conditions, and increasing the rate of As release into groundwater. - Highlights: {yields} Seawater intrusion and elevated As are the main issues of groundwater in Taiwan

  6. Influence of oceanographic fronts and low oxygen on the distribution ...

    African Journals Online (AJOL)

    The horizontal and vertical distributions of eggs and larvae of sardine Sardinops sagax, anchovy Engraulis encrasicolus and horse mackerel Trachurus trachurus capensis were examined in relation to distribution patterns of temperature, salinity and dissolved oxygen. Samples were collected during February–March 2002 ...

  7. Phosphate adsorption on aluminum-impregnated mesoporous silicates : surface structure and behavior of adsorbents

    Science.gov (United States)

    Eun Woo Shin; James S. Han; Min Jang; Soo-Hong Min; Jae Kwang Park; Roger M. Rowell

    2004-01-01

    Phosphorus from excess fertilizers and detergents ends up washing into lakes, creeks, and rivers. This overabundance of phosphorus causes excessive aquatic plant and algae growth and depletes the dissolved oxygen supply in the water. In this study, aluminum-impregnated mesoporous adsorbents were tested for their ability to remove phosphate from water. The surface...

  8. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  9. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    2006-09-01

    Full Text Available Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP, adenosine diphosphate (ADP, and phosphocreatine (CrP have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 mumol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 mumol min(-1 g(-1, model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded

  10. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  11. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  12. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles.

    Science.gov (United States)

    Cramer, Grant R; Ergül, Ali; Grimplet, Jerome; Tillett, Richard L; Tattersall, Elizabeth A R; Bohlman, Marlene C; Vincent, Delphine; Sonderegger, Justin; Evans, Jason; Osborne, Craig; Quilici, David; Schlauch, Karen A; Schooley, David A; Cushman, John C

    2007-04-01

    Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.

  13. NMR studies of hydrogen diffusion in hydrogen uranyl phosphate tetrahydrate (HUP)

    International Nuclear Information System (INIS)

    Metcalfe, K.

    1988-01-01

    1 H NMR spin-lattice relaxation times, T 1 (Zeeman) and T 1p (rotating frame) and spin-spin relaxation times, T 2 , and 31 P NMR solid-echoes are reported for phase I and II of hydrogen uranyl phosphate tetrahydrate (HUP) at temperatures in the range 200-323 K. The spectral density functions extracted from the measured relaxation times for phases I and II are consistent with a 2D diffusion mechanism for hydrogen motion. 31 P second moments determined from the solid-echoes show that all the hydrogens diffuse rapidly in phase I, and that the hydrogen-bond site nearest to the phosphate oxygen is not occupied in phase II. The mechanism for diffusion in phase II is discussed. 30 refs.; 6 figs.; 2 tabs

  14. Fluid resuscitation does not improve renal oxygenation during hemorrhagic shock in rats

    OpenAIRE

    Legrand, Matthieu; Mik, Egbert; Balestra, Gianmarco; Lutter, Rene; Pirracchio, Romain; Payen, Didier; Ince, Can

    2010-01-01

    textabstractBackground: The resuscitation strategy for hemorrhagic shock remains controversial, with the kidney being especially prone to hypoxia. Methods: The authors used a three-phase hemorrhagic shock model to investigate the effects of fluid resuscitation on renal oxygenation. After a 1-h shock phase, rats were randomized into four groups to receive either normal saline or hypertonic saline targeting a mean arterial pressure (MAP) of either 40 or 80 mmHg. After such resuscitation, rats w...

  15. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions

    KAUST Repository

    Ochsenkuhn, Michael A.

    2017-08-17

    The endosymbiosis between Symbiodinium dinoflagellates and stony corals provides the foundation of coral reef ecosystems. The survival of these ecosystems is under threat at a global scale, and better knowledge is needed to conceive strategies for mitigating future reef loss. Environmental disturbance imposing temperature, salinity, and nutrient stress can lead to the loss of the Symbiodinium partner, causing so-called coral bleaching. Some of the most thermotolerant coral-Symbiodinium associations occur in the Persian/Arabian Gulf and the Red Sea, which also represent the most saline coral habitats. We studied whether Symbiodinium alter their metabolite content in response to high-salinity environments. We found that Symbiodinium cells exposed to high salinity produced high levels of the osmolyte 2-O-glycerol-α-d-galactopyranoside (floridoside), both in vitro and in their coral host animals, thereby increasing their capacity and, putatively, the capacity of the holobiont to cope with the effects of osmotic stress in extreme environments. Given that floridoside has been previously shown to also act as an antioxidant, this osmolyte may serve a dual function: first, to serve as a compatible organic osmolyte accumulated by Symbiodinium in response to elevated salinities and, second, to counter reactive oxygen species produced as a consequence of potential salinity and heat stress.

  16. Corrosion protection of metals by phosphate coatings and ecologically beneficial alternatives. Properties and mechanisms

    International Nuclear Information System (INIS)

    Weng Duan.

    1995-01-01

    The corrosion and protection characteristics of inorganic zinc and manganese phosphate coatings in aqueous solution have been examined by physical methods, accelerated corrosion tests and electrochemical polarization and impedance measurements. Some water-soluble organic films have been evaluated for the temporary protection of metal parts as the ecologically beneficial alternatives to phosphate coatings. The results show that zinc phosphate is a better insulator than manganese phosphate, but the porosity of the former is inferior to that of the latter. In neutral and alkaline solutions the anodic current of both zinc and manganese phosphates decreases and their open potential moves in a positive direction. In acidic medium both the polarization current and the open potential are close to those of the substrate. Confirmed by the impedance measurements, the corrosion of phosphated steel in acidic solution is controlled by a dissolution reaction, in neutral medium is first reaction controlled then diffusion controlled, and in alkaline environment only diffusion controlled. The insulation of acrylate+copolymer, epoxy and inhibitor+bonding materials is superior to that of zinc or manganese phosphates. In general, most of the alternatives can afford a better temporary protection for metal parts compared to inorganic phosphate coatings. The corrosion failure of inorganic phosphate coatings is mainly induced by the electrochemical dissolution of the substrate. This electrochemical process initiates at the bottom of the pores within the coating. In neutral solution, the hydrolysis of corrosion products decrease the pH value of the solution in the anodic zone, resulting in an acidic dissolution of phosphate coatings. At the same time, the depolarization of oxygen increases the pH value in the cathodic zone, causing an alkaline hydrolysis of phosphates. (author) figs., tabs., 149 refs

  17. Dissolved oxygen, CDOM, Chl a, temperature, salinity and other variables collected from profile and continuous observations using CTD and other instruments from NOAA Ship Gordon Gunter off the U.S. East Coast during the 2015 East Coast Ocean Acidification (ECOA) Cruise from 2015-06-20 to 2015-07-23 (NCEI Accession 0157080)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains CTD profile data of dissolved oxygen, CDOM, chlorophyll a, temperature and salinity data that were collected during the East Coast...

  18. Behaviour of uranium during mixing in the Delaware and Chesapeake estuaries

    International Nuclear Information System (INIS)

    Sarin, M.M.; Church, T.M.

    1994-01-01

    Unequivocal evidence is presented for the removal of uranium in two major estuarine systems of the north-eastern United States: the Delaware and Chesapeake Bays. In both the estuaries, during all seasons but mostly in summer, dissolved uranium shows distinctly non-conservative behaviour at salinities ≤ 5. At salinities above 5, there are no deviations from the ideal dilution line. In these two estuaries as much as 22% of dissolved uranium is removed at low salinities, around salinity 2. This pronounced removal of uranium observed at low salinities has been investigated in terms of other chemical properties measured in the Delaware Estuary. In the zone of uranium removal, dissolved oxygen is significantly depleted and pH goes through a minimum down to 6.8. In the same low salinity regime, total alkalinity shows negative deviation from the linear dilution line and phosphate is removed. Humic acids, dissolved iron and manganese are also rapidly removed during estuarine mixing in this low salinity region. Thus, it appears that removal of uranium is most likely related to those properties of alkalinity and acid-base system of the upper estuary that may destabilize the uranium-carbonate complex. Under these conditions, uranium may associate strongly with phosphates or humic substances and be removed onto particulate phases and deposited within upper estuarine sediments. (author)

  19. Removing oxygen from a solvent extractant in an uranium recovery process

    International Nuclear Information System (INIS)

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1984-01-01

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous and accumulation of complex iron phosphates or cruds

  20. 2,3-diphosphoglycerate, nucleotide phosophate, and organic and inorganic phosphate levels during the early phases of diabetic ketoacidosis.

    Science.gov (United States)

    Kanter, Y; Gerson, J R; Bessman, A N

    1977-05-01

    The relation between serum and red blood cell (RBC) inorganic phosphate levels, RBC 2,3-diphosphoglycerate (2,3-DPG) levels, RBC nucleotide phosphate (Pn), and RBC total phosphate (Pt) levels were studied during the early phases of treatment and recovery from diabetic ketoacidosis (DKA). A steady drop in serum inorganic phosphate was found during the first 24 hours of insulin treatment and was most profound at 24 hours. No statistically significant changes (P less than 0.05) were found in red cell inorganic phosphate or nucleotide phosphate levels during the 24-hour study period. The levels of total red cell phosphate were lower in this group of patients than in nonacidotic diabetic subjects and decreased slightly after 24 hours of treatment. The red cell 2,3-DPG levels were low at the initiation of therapy and remained low during the 24-hour study period. Glucose, bicarbonate, lactate, and ketone levels fell in linear patterns with treatment. In view of the current evidence for the effects of low 2,3-DPG on oxygen delivery and the relation of low serum phosphate levels to RBC glycolysis and 2,3-DPG formation, this study reemphasizes the need for phosphate replacement during the early phases of treatment of DKA.

  1. Laboratory study on coprecipitation of phosphate with ikaite in sea ice

    Science.gov (United States)

    Hu, Yu-Bin; Dieckmann, Gerhard S.; Wolf-Gladrow, Dieter A.; Nehrke, Gernot

    2014-10-01

    Ikaite (CaCO3·6H2O) has recently been discovered in sea ice, providing first direct evidence of CaCO3 precipitation in sea ice. However, the impact of ikaite precipitation on phosphate (PO4) concentration has not been considered so far. Experiments were set up at pH from 8.5 to 10.0, salinities from 0 to 105, temperatures from -4°C to 0°C, and PO4 concentrations from 5 to 50 µmol kg-1 in artificial sea ice brine so as to understand how ikaite precipitation affects the PO4 concentration in sea ice under different conditions. Our results show that PO4 is coprecipitated with ikaite under all experimental conditions. The amount of PO4 removed by ikaite precipitation increases with increasing pH. Changes in salinity (S ≥ 35) as well as temperature have little impact on PO4 removal by ikaite precipitation. The initial PO4 concentration affects the PO4 coprecipitation. These findings may shed some light on the observed variability of PO4 concentration in sea ice.

  2. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.

    Science.gov (United States)

    Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E

    2018-01-18

    Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO 4 ) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO 4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO 4 /KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO 4 /KPi electrolyte interface.

  3. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification.

    Science.gov (United States)

    Mokas, Sophie; Larivière, Richard; Lamalice, Laurent; Gobeil, Stéphane; Cornfield, David N; Agharazii, Mohsen; Richard, Darren E

    2016-09-01

    Medial vascular calcification is a common complication of chronic kidney disease (CKD). Although elevated inorganic phosphate stimulates vascular smooth muscle cell (VSMC) osteogenic transdifferentiation and calcification, the mechanisms involved in their calcification during CKD are not fully defined. Because hypoxic gene activation is linked to CKD and stimulates bone cell osteogenic differentiation, we used in vivo and in vitro rodent models to define the role of hypoxic signaling during elevated inorganic phosphate-induced VSMC calcification. Cell mineralization studies showed that elevated inorganic phosphate rapidly induced VSMC calcification. Hypoxia strongly enhanced elevated inorganic phosphate-induced VSMC calcification and osteogenic transdifferentiation, as seen by osteogenic marker expression. Hypoxia-inducible factor-1 (HIF-1), the key hypoxic transcription factor, was essential for enhanced VSMC calcification. Targeting HIF-1 expression in murine VSMC blocked calcification in hypoxia with elevated inorganic phosphate while HIF-1 activators, including clinically used FG-4592/Roxadustat, recreated a procalcifying environment. Elevated inorganic phosphate rapidly activated HIF-1, even in normal oxygenation; an effect mediated by HIF-1α subunit stabilization. Thus, hypoxia synergizes with elevated inorganic phosphate to enhance VSMC osteogenic transdifferentiation. Our work identifies HIF-1 as an early CKD-related pathological event, prospective marker, and potential target against vascular calcification in CKD-relevant conditions. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  4. Temperature, salinity, and dissolved oxygen profile data collected via CTD casts from R/V Bell Shimada in the Pacific Ocean along the U.S. West Coast during the West Coast Ocean Acidification cruise 2012 as Part of the North American Carbon Program from September 5, 2012 to September 16, 2012 (NODC Accession 0099810)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — One ASCII listing contains 1-dbar averaged CTD data. File cc112.lst contains 1-dbar averaged profiles of pressure, temperature, salinity, and oxygen data. Each...

  5. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2011-01-01

    Full Text Available Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models.

    First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies.

    Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol

  6. Coupled geochemical/hydrogeological modelling to assess the origin of salinity at the Tono area (Japan)

    International Nuclear Information System (INIS)

    Guimera, Jordi; Ruiz, Eduardo; Luna, Miguel; Arcos, David; Jordana, Salvador; Saegusa, Hiromitsu

    2005-01-01

    Numerical models are powerful tools for the characterization of groundwater flow, especially when integrating geochemical and hydrogeological data. This paper describes modeling exercises performed in the area surrounding the Mizunami Underground Research Laboratory (MIU) Construction Site in central Japan. A particular issue being investigated at the MIU Site is the presence of saline water detected at depth in certain boreholes. The main objective of this study is to develop conceptual physical models for the origin of this salinity and to test these conceptual models using numerical modeling techniques. One scenario being investigated is that the saline fluids represent residual Miocene age seawater which has been slightly altered by water-rock interactions. It is likely that during Miocene times, seawater inundated the Tono area. This hypothesis is partially supported by carbon and oxygen isotopic data of the calcite fracture filling materials. (author)

  7. Effects of the amplitude and frequency of salinity fluctuations on antioxidant responses in juvenile tongue sole, Cynoglossus semilaevis

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, S.A.; Tian, X.; Dong, S.; Fang, Z.; Solanki, B.V.; Shanthanagouda, H.A.

    2016-11-01

    To understand the tolerance of tongue sole, Cynoglossus semilaevis, to varying salinities, the effects of the amplitude (2, 4, 6 and 8 g/L) and frequency (2, 4 and 8 days) of salinity fluctuations on the activities of antioxidant responses, including acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD) from antioxidant system in liver, muscle, gills and kidney were investigated in this study. The results showed that the antioxidant responses of tongue sole were highly tissue-specific during the varying salinity fluctuations. In all tissues, ACP and AKP activity was found to be highest at moderate salinity fluctuations compared to the control, low and high salinity treatments (p<0.05). SOD and CAT activities had significant effect due to salinity fluctuations in all tissues (p<0.05), except in hepatic and renal tissues. Variations in branchial SOD activity proved that salinity fluctuations had greater impact on tongue sole at moderate and high fluctuating salinities compared to the control and low fluctuating salinities, whereas the branchial CAT activities showed contrasting trend. Further, cortisol levels were significantly affected in lower and higher salinity fluctuations. However, plasma cortisol levels remained low in moderate salinity fluctuations and control (p<0.05). Taken together, the results indicated that salinity fluctuations could effectively stimulate and enhance the antioxidant enzyme activity in the liver, kidney, gills and muscle of the juvenile tongue sole, thus effectively eliminating the excessive reactive oxygen species and minimizing the body damage in tongue sole or could be for any other euryhaline teleosts. (Author)

  8. Restoration of blood 2,3-diphosphoglycerate levels in multi-transfused patients: effect of organic and inorganic phosphate.

    Science.gov (United States)

    Iapichino, G; Radrizzani, D; Solca, M; Franzosi, M G; Pallavicini, F B; Spina, G; Scherini, A

    1984-01-01

    Blood stored in acid-citrate-dextrose (ACD) shows a progressive decrease in 2,3-diphosphoglycerate (DPG) content. Since the decrease in DPG increases hemoglobin oxygen affinity, which in turn may reduce tissue and venous PO2 and peripheral oxygen delivery, many efforts have been made to preserve or restore DPG levels in stored blood. An in vivo rejuvenating technique, employing fructose-1,6-diphosphate (FDP) at a mean dosage of 1 mmol kg-1 day-1 of phosphate, to increase the DPG circulating level in multi-transfused patients is proposed. Eighteen patients, who received at least one-third of their estimated blood volume (3990 +/- 480 (SEM) ml of ACD stored blood) in blood transfusion, were treated: nine with inorganic phosphate, and nine with FDP. Basal DPG was very low in both groups: 12.61 +/- 1.34 (SEM) and 10.42 +/- 0.98 (SEM) mumol g-1, respectively (normal value is 14.5 mumol g-1, at pH 7.40). However, DPG values increased significantly and promptly in patients receiving FDP, whereas in cases of inorganic phosphate administration, it was not significantly raised over the basal value until the third day. Phosphatemia remained normal and constant with FDP, but it rose significantly on the third day of treatment with inorganic phosphate. FDP appears to consistently and rapidly increase DPG levels after transfusion with blood stored in ACD, and to be particularly safe.

  9. Effect of Acidulated Phosphate Fluoride (APF on the Mcroleakage of Composite Flow and Fssure Sealant Restorations

    Directory of Open Access Journals (Sweden)

    Arash Poorsattar Bejeh Mir

    2012-09-01

    Full Text Available Background and Aims: A large number of investigations have revealed that physical and chemical alterations and weight loss could occur in composite materials exposed to acidic phosphate fluoride (APF gel. The purpose of this study was to assess the microleakage of a fissure sealant and a flow composite exposed to acidulated phosphate fluoride (APF gel. Materials and Methods: In this in vitro study, 60 intact human extracted premolar teeth were used. After preparing the occlusal groove, the teeth were divided into two groups (n=30. Teeth were filled with either Helioseal fissure sealant (Vivadent, Germany or Tetric flow composite (Vivadent, Germany. After that, each group was divided into two subgroups (n=15: 1.23% APF gel (Sultan, U.S.A was applied in the case subgroups, while control subgroups were preserved in normal saline solution. All of teeth were covered with 2 layers of nail varnish except for the filling zone and 1mm around the border of filling. After submerging in 0.5% fushin solution, specimens were sectioned bucco-lingually. Then dye penetration through the filling and fissure sealant was assessed by means of a stereo-microscope. The depth of dye penetration was scored. The data were analyzed using One-way ANOVA and Levene test. Results: The mean values of dye penetration were 1.26±1.09, 1.4±1.05, 1.2±1.37, and 1.4±1.35 for fissure sealant+gel, composite+gel, composite+normal saline, and normal saline groups, respectively. No significant difference was found in inter-groups (P=0.96. Conclusion: Considering the result of the present research, APF gel had no significant effect on the microleakage of Tetric flow composite filling and Helioseal fissure sealant and thus, it can be applied for routine usage.

  10. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ Grown Dental Biofilms.

    Science.gov (United States)

    Schlafer, Sebastian; Ibsen, Casper J S; Birkedal, Henrik; Nyvad, Bente

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects of repeated ex vivo treatment with calcium-phosphate-osteopontin particles were observed. Particle treatment resulted in a 32% lower amount of biofilm formed (p Biofilm pH was significantly higher upon particle treatment, both shortly after the addition of glucose and after 30 min of incubation with glucose (p biofilms as well as the remineralizing potential of the particles. © 2016 S. Karger AG, Basel.

  11. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids.

    Science.gov (United States)

    Xu, Ren-kou; Zhu, Yong-guan; Chittleborough, David

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was notcorrelated with pKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  12. Environmental Flow for Sungai Johor Estuary

    Science.gov (United States)

    Adilah, A. Kadir; Zulkifli, Yusop; Zainura, Z. Noor; Bakhiah, Baharim N.

    2018-03-01

    Sungai Johor estuary is a vital water body in the south of Johor and greatly affects the water quality in the Johor Straits. In the development of the hydrodynamic and water quality models for Sungai Johor estuary, the Environmental Fluid Dynamics Code (EFDC) model was selected. In this application, the EFDC hydrodynamic model was configured to simulate time varying surface elevation, velocity, salinity, and water temperature. The EFDC water quality model was configured to simulate dissolved oxygen (DO), dissolved organic carbon (DOC), chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), nitrate nitrogen (NO3-N), phosphate (PO4), and Chlorophyll a. The hydrodynamic and water quality model calibration was performed utilizing a set of site specific data acquired in January 2008. The simulated water temperature, salinity and DO showed good and fairly good agreement with observations. The calculated correlation coefficients between computed and observed temperature and salinity were lower compared with the water level. Sensitivity analysis was performed on hydrodynamic and water quality models input parameters to quantify their impact on modeling results such as water surface elevation, salinity and dissolved oxygen concentration. It is anticipated and recommended that the development of this model be continued to synthesize additional field data into the modeling process.

  13. Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile

    Science.gov (United States)

    Silva, Nelson; Rojas, Nora; Fedele, Aldo

    2009-07-01

    Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.

  14. The Diffusive Boundary-Layer of Sediments - Oxygen Microgradients Over a Microbial Mat

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; MARAIS, DJD

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sedimen-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate...... and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above...

  15. Temperature, salinity, and oxygen profiles from CTD casts from the OCEANUS and other platforms from the North Atlantic Ocean as part of the International Decade of Ocean Exploration / International Ocean Studies / First Dynamic Response and Kinematics Experiment in the Drake Passage (IDOE/ISOS/FDRAKE) from 19 January 1983 to 17 May 1983 (NODC Accession 8600397)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and oxygen profiles were collected from CTD casts from the OCEANUS and other platforms in the North Atlantic Ocean from 19 January 1983 to 17...

  16. Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses

    International Nuclear Information System (INIS)

    Natura, U.; Ehrt, D.

    2001-01-01

    Fluoride phosphate (FP) glasses with low phosphate content are high-transparent in the deep ultraviolet (UV) range and attractive candidates for UV-optics. Their optical properties are complementary to fluoride crystals. The anomalous partial dispersion makes them desirable for optical lens designs to reduce the secondary spectrum. Their UV transmission is limited by trace impurities introduced by raw materials and decreases when exposed to UV-radiation (lamps, lasers). The experiments of the paper published previously in this journal were used in order to separate radiation induced absorption bands in the fluoride phosphate glass FP10. In this paper the generation mechanism of the phosphorus-oxygen related hole center POHC 2 is investigated in detail in glasses of various compositions (various phosphate and impurity contents) in order to predict the transmission loss in case of long-time irradiation. Experiments were carried out using ArF- and KrF-excimer lasers (ns-pulses). POHC 2 generation strongly depends on the phosphate content and on the content of Pb 2+ . A model was developed on these terms. Rate equations are formulated, incorporating the influence of the Pb 2+ -content on the defect generation, a two-step creation term including an energy transfer process and a one-photon bleaching term. This results in a set of coupled nonlinear differential equations. Absorption coefficients and lifetimes of the excited states were calculated as well. Experimental results compared well with the numerical analysis of the theoretical rate equations

  17. On the stability of silicon field effect capacitors with phosphate buffered saline electrolytic gate and self assembled monolayer gate insulator

    International Nuclear Information System (INIS)

    Hemed, Nofar Mintz; Inberg, Alexandra; Shacham-Diamand, Yosi

    2013-01-01

    We herein report on the stability of Electrolyte/Insulator/Semiconductor (EIS) devices with Self-Assembled Monolayer (SAM) gate insulator layers, i.e. Electrolyte/SAM/Semiconductor (ESS) devices. ESS devices can be functionalized creating highly specific sensors that can be integrated on standard silicon platform. However, biosensors by their nature are in contact with biological solutions that contain ions and molecules that may affect the device characteristics and cause electrical instability. In this paper we present a list of potential hazards to ESS devices and a study of the device stability under common testing conditions analyzing possible causes for the instabilities. ESS capacitors under open circuit conditions (i.e. open circuit bias of ∼0.6 V vs. Ag/AgCl reference electrode) were periodically characterized. We measured the complex impedance of the capacitors versus bias and extracted the effective capacitance vs. voltage (C–V) curves using two methods. We observed a parallel shift of the C–V curves toward negative bias; showing an effective accumulation of positive charge. The quantitative analysis of the drift vs. time was found to depend on the effective capacitance evaluation method. This effect is discussed and a best-known method is proposed. The devices surface composition was tested before and after the stress experiment by X-ray Photoelectron Spectroscopy (XPS) and sodium accumulation was observed. To further explore the flat-band voltage drift effect and to challenge the assumption that alkali ions are involved in the drift we conceived a novel alkali-free phosphate buffer saline (AF-PBS) where the sodium and potassium ions are replaced by ammonium ion and tested the capacitor under similar conditions to standard PBS. We found that the drift of the AF-PBS solution was much less at the first hour but was similar to that of the conventional PBS for longer stress times; hence, AF-PBS does not solve the long-term instability problem

  18. Using BOLD imaging to measure renal oxygenation dynamics in rats injected with diuretics

    International Nuclear Information System (INIS)

    Kusakabe, Yoshinori; Matsushita, Taro; Honda, Saori; Okada, Sakie; Murase, Kenya

    2010-01-01

    We used blood oxygenation level-dependent magnetic resonance imaging (BOLD MRI) to measure renal oxygenation dynamics in rats injected with diuretics and evaluated diuretic effect on renal oxygenation. We performed BOLD MRI studies in 32 rats using a 1.5-tesla MR imaging system for animal experiments. We intravenously injected rats with saline (n=7), furosemide (n=7), acetazolamide (n=6), or mannitol (n=6). For controls, 6 rats were not injected with drugs. We estimated the apparent transverse relaxation rate (R 2 *) from the apparent transverse relaxation time (T 2 *)-weighted images and measured the time course of R 2 * at 4-min intervals over approximately 30 min. Compared with preadministration values, the R 2 * value did not change significantly in either the cortex or medulla in the control and mannitol groups but decreased significantly in the saline group; the R 2 * value significantly decreased in the medulla but did not change significantly in the cortex in the furosemide group; and the R 2 * value significantly increased in the medulla and significantly decreased in the cortex in the acetazolamide group. Our study results suggest that BOLD MRI is useful for evaluating the dynamics of renal oxygenation in response to various diuretics in the renal cortex and in the medulla. (author)

  19. Metabolic Prosthesis for Oxygenation of Ischemic Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias [ORNL

    2009-01-01

    This communication discloses new ideas and preliminary results on the development of a "metabolic prosthesis" for local oxygenation of ischemic tissue under physiological neutral conditions. We report for the first time the selective electrolysis of physiological saline by repetitively pulsed charge-limited electrolysis for the production of oxygen and suppression of free chlorine. For example, using 800 A amplitude current pulses and <200 sec pulse durations, we demonstrated prompt oxygen production and delayed chlorine production at the surface of a shiny 0.85 mm diameter spherical platinum electrode. The data, interpreted in terms of the ionic structure of the electric double layer, suggest a strategy for in situ production of metabolic oxygen via a new class of "smart" prosthetic implants for dealing with ischemic disease such as diabetic retinopathy. We also present data indicating that drift of the local pH of the oxygenated environment can be held constant using a feedback-controlled three electrode electrolysis system that chooses anode and cathode pair based on pH data provided by local microsensors. The work is discussed in the context of diabetic retinopathy since surgical techniques for multielectrode prosthetic implants aimed at retinal degenerative diseases have been developed.

  20. Morpho-physiological response of Acacia auriculiformis as influenced by seawater induced salinity stress

    Energy Technology Data Exchange (ETDEWEB)

    Haque, A.; Rahman, M.; Nihad, S.A.I.; Howlader, R.A.; Akand, M.H.

    2016-07-01

    Aim of the study: To evaluate the morpho-physiological changes of Acacia auriculiformis in response to seawater induced salinity stress along with its tolerance limit. Area of study: Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh. Material and methods: Three saline treatments (4, 8, 12 dS m-1) were applied to six-month aged Acacia auriculiformis seedlings from January 2014 to June 2014 and the tap water was used as control treatment. To observe salinity effects, the following parameters were measured by using various established techniques: plant height and leaf number, plant biomass, shoot and root distribution as well as shoot and root density, water uptake capacity (WUC), water saturation deficit (WSD) and water retention capacity (WRC), exudation rate, and cell membrane stability. Main results: Diluted seawater caused a notable reduction in shoot and root distribution in addition to shoot and root density, though plant height, leaf number and plant biomass were found to be decreased to some extent compared to control plants. Water status of the plant also altered when plants were subjected to salinity stress. Nevertheless, membrane stability revealed good findings towards salinity tolerance. Research highlights: Considering the above facts, despite salinity exerts some negative effects on overall plant performance, interestingly the percent reduction value doesn’t exceed 50% as compared to control plants, and the plants were successful to tolerate salinity stress till the end of the experiment (150 days) through adopting some tolerance mechanisms. Abbreviations used: BSMRAU (Bangabandhu Sheikh Mujibur Rahman Agricultural University); RCBD (randomized complete block design); DATI (days after treatment imposition); RWC (relative water content); WUC (water uptake capacity); WSD (water saturation deficit); WRC (water retention capacity); FW (fresh weight); DW (dry weight); TW (turgid weight); ROS (reactive oxygen species). (Author)

  1. Oxygen isotopic composition of mammal bones as a new tool for studying ratios of paleoenvironmental water and paleoclimates

    International Nuclear Information System (INIS)

    Longinelli, A.

    1984-04-01

    The purpose of this study is to try to establish quantitative relationships between the average oxygen isotopic composition of local meteoric water, the oxygen isotopic composition of mammal body water and the oxygen isotopic composition of phosphate in mammal bones. These relationships, after calibration of the method on living specimens, would allow quantitative paleoclimatological research based on the measurement of delta 18 O(PO 4 3- ) of fossil mammal bones

  2. Effect of salinity on 2H/1H fractionation in lipids from continuous cultures of the coccolithophorid Emiliania huxleyi

    Science.gov (United States)

    Sachs, Julian P.; Maloney, Ashley E.; Gregersen, Josh; Paschall, Christopher

    2016-09-01

    Salinity and temperature dictate the buoyancy of seawater, and by extension, ocean circulation and heat transport. Yet there remain few widely applicable proxies for salinity with the precision necessary to infer all but the largest hydrographic variations in the past. In the last decade the hydrogen isotope composition (2H/1H or δ2H) of microalgal lipids has been shown to increase systematically with salinity, providing a foundation for its use as a paleosalinity proxy. Culture and field studies have indicated a wide range of sensitivities for this response, ranging from about 0.6-3.3‰ ppt-1 depending on the lipid, location and/or culturing conditions. Lacking in these studies has been the controlled conditions necessary to isolate the response to salinity while keeping all other growth parameters constant. Here we show that the hydrogen isotope composition of lipids in the marine coccolithophorid Emiliania huxleyi grown in chemostats increased by 1.6 ± 0.3‰ ppt-1 (p huxleyi, which can be attributed to the fact that previous experiments were performed with batch cultures in which growth rates and other parameters differed between salinity treatments. The underlying cause of this response to salinity remains unknown, but may result from changes in (1) the proportion of lipid hydrogen derived from NADPH versus water, (2) the proportion of lipid hydrogen derived from NADPH from Photosystem I versus the oxidative pentose phosphate pathway (and other metabolic sources), or (3) the δ2H value of intracellular water.

  3. Method for oxygen reduction in a uranium-recovery process. [US DOE patent application

    Science.gov (United States)

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1981-11-04

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous iron and accumulation of complex iron phosphates or cruds.

  4. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.

    Science.gov (United States)

    Yagi, Shintaro; Fukushi, Keisuke

    2012-10-15

    The sorption behavior and mechanism of phosphate on monohydrocalcite (CaCO(3)·H(2)O: MHC) were examined using batch sorption experiments as a function of phosphate concentrations, ionic strengths, temperatures, and reaction times. The mode of PO(4) sorption is divisible into three processes depending on the phosphate loading. At low phosphate concentrations, phosphate is removed by coprecipitation of phosphate during the transformation of MHC to calcite. The sorption mode at the low-to-moderate phosphate concentrations is most likely an adsorption process because the sorption isotherm at the conditions can be fitted reasonably with the Langmuir equation. The rapid sorption kinetics at the conditions is also consistent with the adsorption reaction. The adsorption of phosphate on MHC depends strongly on ionic strength, but slightly on temperature. The maximum adsorption capacities of MHC obtained from the regression of the experimental data to the Langmuir equation are higher than those reported for stable calcium carbonate (calcite or aragonite) in any conditions. At high phosphate concentrations, the amount of sorption deviates from the Langmuir isotherm, which can fit the low-to-moderate phosphate concentrations. Speciation-saturation analyses of the reacted solutions at the conditions indicated that the solution compositions which deviate from the Langmuir equation are supersaturated with respect to a certain calcium phosphate. The obtained calcium phosphate is most likely amorphous calcium phosphate (Ca(3)(PO(4))(2)·xH(2)O). The formation of the calcium phosphate depends strongly on ionic strength, temperature, and reaction times. The solubility of MHC is higher than calcite and aragonite because of its metastability. Therefore, the higher solubility of MHC facilitates the formation of the calcium phosphates more than with calcite and aragonite. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. PHYSIOLOGICAL AND BIOCHEMICAL MARKERS OF SALINITY TOLERANCE IN PLANTS

    Directory of Open Access Journals (Sweden)

    Mustafa YILDIZ

    2011-02-01

    Full Text Available Salt stress limits plant productivity in arid and semi arid regions. Salt stress causes decrease in plant growth by adversely affecting physiological processes, especially photosynthesis. Salinity tolerance is defined as the ability of plant to maintain normal rowth and development under salt conditions. Salt stress results in accumulation of low molecular weight compounds, termed compatible solutes, which do not interfere with the normal biochemical reactions. These compatible solutes such as carbohydrates, polyols, amino acids and amides, quaternary ammonium compounds, polyamines andsoluble proteins may play a crucial role in osmotic adjustment, protection of macromolecules, maintenance of cellular pH and detoxification of free radicals. On the other hand, plants subjected to environmental stresses such as salinity produce reactive oxygen species (ROS and these ROS are efficiently eliminated by antioxidant enzyme systems. In plant breeding studies, the use of some physiological and biochemical markers for improving the salt tolerance in plants is crucial. In this review, the possibility of using some physiological and biochemical markers as selection criteria for salt tolerance is discussed.

  6. A potentiodynamic study of the reduction of oxygen on copper

    International Nuclear Information System (INIS)

    King, F.; Litke, C.D.

    1994-07-01

    The reduction of oxygen on copper has been studied in 0.1 mol·dm -3 NaCl solutions using potentiodynamic techniques. Experiments were carried out in unbuffered and phosphate-buffered solutions at pH 7. Additional experiments in NaCl solution were performed at pH 10, with the bulk pH adjusted by adding NaOH. Some voltammetric studies in deaerated electrolytes were carried out to examine the nature of the surface films formed on the electrode. The reduction of oxygen on copper is dominated by the 4-electron reduction to OH - . Limited quantities of peroxide were detected by the ring electrode at disc potentials in the joint- and kinetic-control regions. No peroxide was detected in the transport-limiting region. The rate of reduction of oxygen is influenced by the nature of the surface film on the electrode. At interfacial pH values of ∼10, a catalytic surface film forms, thought to be submonolayer Cu(OH) ads or submonolayer Cu 2 O. simultaneously, a peak is observed on the current-potential curve. This peak is observed in neutral solutions with atmospheres of 50% O 2 /N 2 and 100% O 2 and in pH 10 solution with atmospheres >∼10% O 2 /N 2 . The peak is not observed in phosphate-buffered solution because of the buffering action on the interfacial pH. At potentials positive of the peak potential, a thin Cu 2 O layer forms in unbuffered solutions on which the rate of oxygen reduction is partially inhibited. (author). 44 refs., 17 figs

  7. Short-Term Exposure of Mytilus coruscus to Decreased pH and Salinity Change Impacts Immune Parameters of Their Haemocytes.

    Science.gov (United States)

    Wu, Fangli; Xie, Zhe; Lan, Yawen; Dupont, Sam; Sun, Meng; Cui, Shuaikang; Huang, Xizhi; Huang, Wei; Liu, Liping; Hu, Menghong; Lu, Weiqun; Wang, Youji

    2018-01-01

    With the release of large amounts of CO 2 , ocean acidification is intensifying and affecting aquatic organisms. In addition, salinity also plays an important role for marine organisms and fluctuates greatly in estuarine and coastal ecosystem, where ocean acidification frequently occurs. In present study, flow cytometry was used to investigate immune parameters of haemocytes in the thick shell mussel Mytilus coruscus exposed to different salinities (15, 25, and 35‰) and two pH levels (7.3 and 8.1). A 7-day in vivo and a 5-h in vitro experiments were performed. In both experiments, low pH had significant effects on all tested immune parameters. When exposed to decreased pH, total haemocyte count (THC), phagocytosis (Pha), esterase (Est), and lysosomal content (Lyso) were significantly decreased, whereas haemocyte mortality (HM) and reactive oxygen species (ROS) were increased. High salinity had no significant effects on the immune parameters of haemocytes as compared with low salinity. However, an interaction between pH and salinity was observed in both experiments for most tested haemocyte parameters. This study showed that high salinity, low salinity and low pH have negative and interactive effects on haemocytes of mussels. As a consequence, it can be expected that the combined effect of low pH and changed salinity will have more severe effects on mussel health than predicted by single exposure.

  8. Phosphate Recovery From Sewage Sludge Containing Iron Phosphate

    NARCIS (Netherlands)

    Wilfert, P.K.

    2018-01-01

    The scope of this thesis was to lay the basis for a phosphate recovery technology that can be applied on sewage sludge containing iron phosphate. Such a technology should come with minimal changes to the existing sludge treatment configuration while keeping the use of chemicals or energy as small as

  9. The side effects of nitrification inhibitors on leaching water and soil salinization in a field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Diez, J. A.; Arauzo, M.; Hernaiz, P.; Sanz, A.

    2010-07-01

    In experiments carried out in greenhouses, some authors have shown that ammonium sulphate induces greater soil acidity and salinity than other sources of N. Moreover, nitrification inhibitors (NI) tend to cause ammonium to accumulate in soil by retarding its oxidation to nitrate. This accumulated ammonium would also have an effect on soil salinity. Consequently, the aim of this paper was to evaluate the soil and leaching water salinization effects associated with adding NI, dicyandiamide (DCD) and dimethylpyrazole-phosphate (DMPP) to ammonium sulphate nitrate (ASN) fertilizer. This experiment was carried out in the field with an irrigated maize crop. Drainage and Na concentration were measured during both seasons (2006 and 2007) and leached Na was determined. The treatments with NI (DCD and DMPP) were associated with greater Na concentrations in soil solutions and consequently higher rates of Na leaching (in 2007, ASN-DCD 1,292 kg Na ha{sup -}1, ASN-DMPP 1,019 kg Na ha{sup -}1). A treatment involving only ASN also increased the Na concentration in soil and the amount of Na leached in relation to the Control (in 2007, ASN 928 kg Na ha{sup -}1 and Control 587 kg Na ha{sup -}1). The increase in the ammonium concentration in the soil due to the NI treatments could have been the result of the displacement of Na ions from the soil exchange complex through a process which finally led to an increase in soil salinity. Treatments including ammonium fertilizer formulated with NI produced a greater degree of soil salinization due to the presence of ammonium from the fertilizer and accumulated ammonium from the nitrification inhibition. (Author) 31 refs.

  10. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  11. NMR studies of renal phosphate metabolites in vivo: Effects of hydration and dehydration

    International Nuclear Information System (INIS)

    Wolff, S.D.; Eng, C.; Balaban, R.S.

    1988-01-01

    The present study characterizes the 31 P-nuclear magnetic resonance (NMR) spectrum of rabbit kidneys in vivo and evaluates the effect of hydration on phosphorous metabolites including the organic solute glycerophosphorylcholine (GPC). Cortical phosphorylethanolamine is the predominant component of the phosphomonoester region of the 31 P spectrum. The contribution of blood to the spectrum is mainly from 2,3 diphosphoglycerate, which comprises ∼30% of the inorganic phosphate region. Acute infusion of 0.9% saline decreases the sodium content of the inner medulla by >50% in 15 min as shown by 23 Na imaging. Despite this medullary Na dilution, no change in renal GPC content was observed for >1 h even with the addition of furosemide or furosemide and antidiuretic hormone. However, 20 h of chronic dehydration with 0.45% saline did result in a 30% decrease in renal GPC content when compared with dehydrated animals. These findings are consistent with GPC not playing a role in the short-term regulation of the medullary intracellular milieu in response to acute reductions in medullary Na content

  12. Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics

    Directory of Open Access Journals (Sweden)

    Sijia Wei

    2017-05-01

    Full Text Available Palmella stage is critical for some unicellular algae to survive in extreme environments. The halotolerant algae Dunaliella salina is a good single-cell model for studying plant adaptation to high salinity. To investigate the molecular adaptation mechanism in salinity shock-induced palmella formation, we performed a comprehensive physiological, proteomics and phosphoproteomics study upon palmella formation of D. salina using dimethyl labeling and Ti4+-immobilized metal ion affinity chromatography (IMAC proteomic approaches. We found that 151 salinity-responsive proteins and 35 salinity-responsive phosphoproteins were involved in multiple signaling and metabolic pathways upon palmella formation. Taken together with photosynthetic parameters and enzyme activity analyses, the patterns of protein accumulation and phosphorylation level exhibited the mechanisms upon palmella formation, including dynamics of cytoskeleton and cell membrane curvature, accumulation and transport of exopolysaccharides, photosynthesis and energy supplying (i.e., photosystem II stability and activity, cyclic electron transport, and C4 pathway, nuclear/chloroplastic gene expression regulation and protein processing, reactive oxygen species homeostasis, and salt signaling transduction. The salinity-responsive protein–protein interaction (PPI networks implied that signaling and protein synthesis and fate are crucial for modulation of these processes. Importantly, the 3D structure of phosphoprotein clearly indicated that the phosphorylation sites of eight proteins were localized in the region of function domain.

  13. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    Science.gov (United States)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  14. Phosphogenesis and active phosphorite formation in sediments from the Arabian Sea oxygen minimum zone

    NARCIS (Netherlands)

    Schenau, S.J.; Slomp, C.P.; Lange, G.J. de

    2000-01-01

    In this study, porewater chemistry, solid-phase analysis and microscopic observations were combined to evaluate phosphogenesis in three boxcores located within the intensive oxygen minimum zone of the Arabian Sea. Three parameters, namely a decrease of the dissolved phosphate and fluoride

  15. Visualising phase change in a brushite-based calcium phosphate ceramic

    Science.gov (United States)

    Bannerman, A.; Williams, R. L.; Cox, S. C.; Grover, L. M.

    2016-09-01

    The resorption of brushite-based bone cements has been shown to be highly unpredictable, with strong dependence on a number of conditions. One of the major factors is phase transformation, with change to more stable phases such as hydroxyapatite affecting the rate of resorption. Despite its importance, the analysis of phase transformation has been largely undertaken using methods that only detect crystalline composition and give no information on the spatial distribution of the phases. In this study confocal Raman microscopy was used to map cross-sections of brushite cylinders aged in Phosphate Buffered Saline, Foetal Bovine Serum, Dulbecco’s - Minimum Essential Medium (with and without serum). Image maps showed the importance of ageing medium on the phase composition throughout the ceramic structure. When aged without serum, there was dissolution of the brushite phase concomitant to the deposition of octacalcium phosphate (OCP) around the periphery of the sample. The deposition of OCP was detectable within five days and reduced the rate of brushite dissolution from the material. The use of serum, even at a concentration of 10vol% prevented phase transformation. This paper demonstrates the value of confocal Raman microscopy in monitoring phase change in biocements; it also demonstrates the problems with assessing material degradation in non-serum containing media.

  16. Phosphate-a poison for humans?

    Science.gov (United States)

    Komaba, Hirotaka; Fukagawa, Masafumi

    2016-10-01

    Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. δ18O of apatite phosphate in small pelagic fish: insights from wild-caught and tank-grown specimens

    Science.gov (United States)

    Lambert, T.; Javor, B.; Paytan, A.

    2011-12-01

    Oxygen isotope ratios of mineralized structures in fish reflect the temperature and isotopic composition of the water in which they grow. For bulk samples (e.g., whole scales, bones, and otoliths), understanding how this signal is integrated across time and space is critical, especially for organisms exposed to high variability in growth conditions. Here, we assess the response of fish scale δ18O (from apatite phosphate) to experimentally manipulated water conditions. Wild-caught sardines were grown at controlled temperatures (13°C, 17°C, and 21°C) for 11 months. Higher growth temperatures correlated to lower δ18O values, representing a combination of scale apatite deposited before and after the temperature manipulation. Models that account for both biomineral allometry and exposure to varying water properties (e.g., by overlaying migration routes, isoscapes, and temperature maps) have the potential to quantify the varying contributions of minerals grown under different conditions. We use this method to predict δ18O of apatite phosphate for small pelagic fish found in California coastal waters, then compare expected values to those obtained from collected samples. Since phosphate oxygen is relatively resistant to diagenesis, this modern calibration establishes a framework for paleo studies.

  18. Pentose Phosphate Shunt Modulates Reactive Oxygen Species and Nitric Oxide Production Controlling Trypanosoma cruzi in Macrophages

    Directory of Open Access Journals (Sweden)

    Sue-jie Koo

    2018-02-01

    Full Text Available Metabolism provides substrates for reactive oxygen species (ROS and nitric oxide (NO generation, which are a part of the macrophage (Mφ anti-microbial response. Mφs infected with Trypanosoma cruzi (Tc produce insufficient levels of oxidative species and lower levels of glycolysis compared to classical Mφs. How Mφs fail to elicit a potent ROS/NO response during infection and its link to glycolysis is unknown. Herein, we evaluated for ROS, NO, and cytokine production in the presence of metabolic modulators of glycolysis and the Krebs cycle. Metabolic status was analyzed by Seahorse Flux Analyzer and mass spectrometry and validated by RNAi. Tc infection of RAW264.7 or bone marrow-derived Mφs elicited a substantial increase in peroxisome proliferator-activated receptor (PPAR-α expression and pro-inflammatory cytokine release, and moderate levels of ROS/NO by 18 h. Interferon (IFN-γ addition enhanced the Tc-induced ROS/NO release and shut down mitochondrial respiration to the levels noted in classical Mφs. Inhibition of PPAR-α attenuated the ROS/NO response and was insufficient for complete metabolic shift. Deprivation of glucose and inhibition of pyruvate transport showed that Krebs cycle and glycolysis support ROS/NO generation in Tc + IFN-γ stimulated Mφs. Metabolic profiling and RNAi studies showed that glycolysis-pentose phosphate pathway (PPP at 6-phosphogluconate dehydrogenase was essential for ROS/NO response and control of parasite replication in Mφ. We conclude that IFN-γ, but not inhibition of PPAR-α, supports metabolic upregulation of glycolytic-PPP for eliciting potent ROS/NO response in Tc-infected Mφs. Chemical analogs enhancing the glucose-PPP will be beneficial in controlling Tc replication and dissemination by Mφs.

  19. Triphenyl phosphate allergy from spectacle frames

    DEFF Research Database (Denmark)

    Carlsen, L; Andersen, K E; Egsgaard, Helge

    1986-01-01

    A case of triphenyl phosphate allergy from spectacle frames is reported. Patch tests with analytical grade triphenyl phosphate, tri-m-cresyl phosphate, and tri-p-cresyl phosphate in the concentrations 5%, 0.5% and 0.05% pet. showed positive reactions to 0.05% triphenyl phosphate and 0.5% tri......-m-cresyl phosphate, but no reaction to tri-p-cresyl phosphate. Gas chromatography of the tricresyl phosphate 5% pet. patch test material supplied from Trolab showed that it contained a mixture of a wide range of triaryl phosphates, including 0.08% triphenyl phosphate which is above the threshold for detecting...

  20. Perbedaan Efektivitas Zeolit Dan Manganese Greensand Untuk Menurunkan Kadar Fosfat Dan Chemical Oxygen Demand Limbah Cair “Laundry Zone” Di Tembalang

    OpenAIRE

    Lavina, Dahona Lenthe; Sulistyani, Sulistyani; Rahadjo, Mursid

    2016-01-01

    Laundry business is a business in clothes washing services. Preliminary test results show that the levels of phosphate and COD laundry liquid wastes is 12,36 mg/l and 5.920 mg/l. These levels exceeded the water quality standard of waste that phosphate concentration of 2 mg/l and COD concentration of 100 mg/l. This research aimed to determine the difference effectiveness of zeolite and manganese greensand to decrease phosphate and chemical oxygen demand on waste "laundry zone" in Tembalang. T...

  1. Effect of salinization, Rbizobium inoculation, genotypic variation and P-application on drymatter yield and utilization of P by pea (Pisum sativum L.) and lentil (Lens Culinaris Medic)

    International Nuclear Information System (INIS)

    Dravid, M.S.

    1990-01-01

    Irrigation with saline water significantly reduced the drymatter production and uptake of phosphorus in both pea and lentil crops. Between the two crops pea was found relativley more tolerant to a given level of salinity. Soil application of phosphate in association with rbizobium inoculated seeds enhanced drymatter production, total P uptake, P derived from fertilizer and its utilization in both the crops. Amongst the cultivars tested, KPSD-5 of pea and PL-639 of lentil extracted native soil phosphorus more efficiently while cultivar Pusa-10 of pea and cultivar PL-406 of lentil showed more affinity towards applied phosphorus. (author). 8 refs., 2 tabs

  2. Post-irradiation repairing processes of glucose-6-phosphate dehydrogenase and catalase from Hansenula Polymorpha yeast

    International Nuclear Information System (INIS)

    Postolache, Carmen; Postolache, Cristian; Dinu, Diana; Dinischiotu, Anca; Sahini, Victor Emanuel

    2002-01-01

    The post-irradiation repairing mechanisms of two Hansenula Polymorpha yeast enzymes, glucose-6-phosphate dehydrogenase and catalase, were studied. The kinetic parameters of the selected enzymes were investigated over one month since the moment of γ-irradiation with different doses in the presence of oxygen. Dose dependent decrease of initial reaction rates was noticed for both enzymes. Small variation of initial reaction rate was recorded for glucose-6-phosphate dehydrogenase over one month, with a decreasing tendency. No significant electrophoretic changes of molecular forms of this enzyme were observed after irradiation. Continuous strong decrease of catalase activity was evident for the first 20 days after irradiation. Partial recovery process of the catalytic activity was revealed by this study. (authors)

  3. The effect of hyperbaric oxygen treatment on aspiration pneumonia.

    Science.gov (United States)

    Sahin, Sevtap Hekimoglu; Kanter, Mehmet; Ayvaz, Suleyman; Colak, Alkin; Aksu, Burhan; Guzel, Ahmet; Basaran, Umit Nusret; Erboga, Mustafa; Ozcan, Ali

    2011-08-01

    We have studied whether hyperbaric oxygen (HBO) prevents different pulmonary aspiration materials-induced lung injury in rats. The experiments were designed in 60 Sprague-Dawley rats, ranging in weight from 250 to 300 g, randomly allotted into one of six groups (n = 10): saline control, Biosorb Energy Plus (BIO), hydrochloric acid (HCl), saline + HBO treated, BIO + HBO treated, and HCl + HBO treated. Saline, BIO, HCl were injected into the lungs in a volume of 2 ml/kg. A total of seven HBO sessions were performed at 2,4 atm 100% oxygen for 90 min at 6-h intervals. Seven days later, rats were sacrificed, and both lungs in all groups were examined biochemically and histopathologically. Our findings show that HBO inhibits the inflammatory response reducing significantly (P fibrosis, granuloma, and necrosis formation in different pulmonary aspiration models. Pulmonar aspiration significantly increased the tissue HP content, malondialdehyde (MDA) levels and decreased (P < 0.05) the antioxidant enzyme (SOD, GSH-Px) activities. HBO treatment significantly (P < 0.05) decreased the elevated tissue HP content, and MDA levels and prevented inhibition of SOD, and GSH-Px (P < 0.05) enzymes in the tissues. Furthermore, there is a significant reduction in the activity of inducible nitric oxide synthase, TUNEL and arise in the expression of surfactant protein D in lung tissue of different pulmonary aspiration models with HBO therapy. It was concluded that HBO treatment might be beneficial in lung injury, therefore, shows potential for clinical use.

  4. The effects of dexamethasone on post-asphyxial cerebral oxygenation in the preterm fetal sheep

    Science.gov (United States)

    Lear, Christopher A; Koome, Miriam E; Davidson, Joanne O; Drury, Paul P; Quaedackers, Josine S; Galinsky, Robert; Gunn, Alistair J; Bennet, Laura

    2014-01-01

    Exposure to clinical doses of the glucocorticoid dexamethasone increases brain activity and causes seizures in normoxic preterm fetal sheep without causing brain injury. In contrast, the same treatment after asphyxia increased brain injury. We hypothesised that increased injury was in part mediated by a mismatch between oxygen demand and oxygen supply. In preterm fetal sheep at 0.7 gestation we measured cerebral oxygenation using near-infrared spectroscopy, electroencephalographic (EEG) activity, and carotid blood flow (CaBF) from 24 h before until 72 h after asphyxia induced by 25 min of umbilical cord occlusion. Ewes received dexamethasone intramuscularly (12 mg 3 ml–1) or saline 15 min after the end of asphyxia. Fetuses were studied for 3 days after occlusion. During the first 6 h of recovery after asphyxia, dexamethasone treatment was associated with a significantly greater fall in CaBF (P < 0.05), increased carotid vascular resistance (P < 0.001) and a greater fall in cerebral oxygenation as measured by the difference between oxygenated and deoxygenated haemoglobin (delta haemoglobin; P < 0.05). EEG activity was similarly suppressed in both groups. From 6 to 10 h onward, dexamethasone treatment was associated with a return of CaBF to saline control levels, increased EEG power (P < 0.005), greater epileptiform transient activity (P < 0.001), increased oxidised cytochrome oxidase (P < 0.05) and an attenuated increase in [delta haemoglobin] (P < 0.05). In conclusion, dexamethasone treatment after asphyxia is associated with greater hypoperfusion in the critical latent phase, leading to impaired intracerebral oxygenation that may exacerbate neural injury after asphyxia. PMID:25384775

  5. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    Full Text Available Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques. Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013 in northern Iran (Gorgan Agricultural Research Station to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non-saline

  6. Low oxygen levels slow embryonic development of Limulus polyphemus

    DEFF Research Database (Denmark)

    Funch, Peter; Wang, Tobias; Pertoldi, Cino

    2016-01-01

    The American horseshoe crab Limulus polyphemus typically spawns in the upper intertidal zone, where the developing embryos are exposed to large variations in abiotic factors such as temperature, humidity, salinity, and oxygen, which affect the rate of development. It has been shown that embryonic...... pronounced hypoxia in later embryonic developmental stages, but also in earlier, previously unexplored, developmental stages....... development is slowed at both high and low salinities and temperatures, and that late embryos close to hatching tolerate periodic hypoxia. In this study we investigated the influence of hypoxia on both early and late embryonic development in L. polyphemus under controlled laboratory conditions. Embryos were...

  7. Wear Particles Promote Reactive Oxygen Species-Mediated Inflammation via the Nicotinamide Adenine Dinucleotide Phosphate Oxidase Pathway in Macrophages Surrounding Loosened Implants

    Directory of Open Access Journals (Sweden)

    Weishen Chen

    2015-03-01

    Full Text Available Background/Aims: Prosthesis loosening is closely associated with chronic inflammatory cytokine secretion by macrophages, which are activated by wear particles or inflammatory stimulants such as lipopolysaccharide (LPS. Reactive oxygen species (ROS are critical regulators of inflammation, but their enzymatic sources in response to wear particles and their effects on peri-implant LPS-tolerance remain unclear. Methods: Three ROS-related enzymes—nicotinamide adenine dinucleotide phosphate oxidase (NOX-1 and -2 and catalase—were investigated in interface membrane tissues and in titanium (Ti particle-stimulated macrophages in vitro. The generation of ROS and downstream inflammatory effects were measured with or without pre-incubation with apocynin, an NOX inhibitor. Results: Pre-exposure to Ti particles attenuated NF-κB activation in LPS-stimulated macrophages, indicating that wear particles suppress immune response, which may lead to chronic inflammation. NOX-1 and -2 were highly expressed in aseptically loosened interface membranes and in macrophages stimulated with Ti particles; the particles induced a moderate amount of ROS generation, NF-κB activation, and TNF-a secretion in macrophages, and these effects were suppressed by apocynin. Conclusion: Wear particles induce ROS generation through the NOX signaling pathway, resulting in persistent inflammation and delayed loosening. Thus, the suppression of NOX activity may be a useful strategy for preventing prosthesis loosening.

  8. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2014-06-01

    Full Text Available Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.

  9. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.

    Science.gov (United States)

    Ezawa, Tatsuhiro; Saito, Katsuharu

    2018-04-27

    Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  10. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    OpenAIRE

    C. von Sperber; F. Tamburini; B. Brunner; S. M. Bernasconi; E. Frossard

    2015-01-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields plant available inorganic phosphate (Pi) and less phosphorylated ...

  11. Proteomic and biochemical basis for enhanced growth yield of Enterobacter sp. LCR1 on insoluble phosphate medium.

    Science.gov (United States)

    Kumar, Arvind; Rai, Lal Chand

    2015-01-01

    Proteomics and biochemical analyses were used to unravel the basis for higher growth yield of Enterobacter sp. LCR1 on insoluble phosphate medium compared to soluble. Proteomic analysis using 2-DE, MALDI-TOF/MS and LC-MS revealed the involvement of nine proteins. Down-regulation of fructose bisphosphate aldolase with decreased concentrations of glucose-6-phosphate and fructose-6-phosphate indicated diminished glycolysis. However, up-regulation of phosphoglycerate mutase, increase in the activities of 6-phosphogluconate dehydratase, 2-keto-3-deoxy-6-phosphogluconate aldolase and 6-phosphogluconate dehydrogenase suggested induction of Entner-Doudoroff and pentose phosphate pathways. These pathways generate sufficient energy from gluconic acid, which is also used for biosynthesis as indicated by up-regulation of elongation factor Tu, elongation factor G and protein disulfide isomerase. Increased reactive oxygen species (ROS) formation resulting from organic acid oxidation leads to overexpressed manganese superoxide dismutase and increased activities of catalase and ascorbate peroxidase. Thus the organism uses gluconate instead of glucose for energy, while alleviating extra ROS formation by oxidative defense enzymes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Lack of conventional oxygen-linked proton and anion binding sites does not impair allosteric regulation of oxygen binding in dwarf caiman hemoglobin

    Science.gov (United States)

    Fago, Angela; Malte, Hans; Storz, Jay F.; Gorr, Thomas A.

    2013-01-01

    In contrast to other vertebrate hemoglobins (Hbs) whose high intrinsic O2 affinities are reduced by red cell allosteric effectors (mainly protons, CO2, organic phosphates, and chloride ions), crocodilian Hbs exhibit low sensitivity to organic phosphates and high sensitivity to bicarbonate (HCO3−), which is believed to augment Hb-O2 unloading during diving and postprandial alkaline tides when blood HCO3− levels and metabolic rates increase. Examination of α- and β-globin amino acid sequences of dwarf caiman (Paleosuchus palpebrosus) revealed a unique combination of substitutions at key effector binding sites compared with other vertebrate and crocodilian Hbs: β82Lys→Gln, β143His→Val, and β146His→Tyr. These substitutions delete positive charges and, along with other distinctive changes in residue charge and polarity, may be expected to disrupt allosteric regulation of Hb-O2 affinity. Strikingly, however, P. palpebrosus Hb shows a strong Bohr effect, and marked deoxygenation-linked binding of organic phosphates (ATP and DPG) and CO2 as carbamate (contrasting with HCO3− binding in other crocodilians). Unlike other Hbs, it polymerizes to large complexes in the oxygenated state. The highly unusual properties of P. palpebrosus Hb align with a high content of His residues (potential sites for oxygenation-linked proton binding) and distinctive surface Cys residues that may form intermolecular disulfide bridges upon polymerization. On the basis of its singular properties, P. palpebrosus Hb provides a unique opportunity for studies on structure-function coupling and the evolution of compensatory mechanisms for maintaining tissue O2 delivery in Hbs that lack conventional effector-binding residues. PMID:23720132

  13. Physicochemical characteristics and sorption capacities of heavy metal ions of activated carbons derived by activation with different alkyl phosphate triesters

    Science.gov (United States)

    Wang, Jing; Liu, Hai; Yang, Shaokun; Zhang, Jian; Zhang, Chenglu; Wu, Haiming

    2014-10-01

    Five alkyl phosphate triesters (APTEs), including trimethyl phosphate (TMP), triethyl phosphate (TEP), triisopropyl phosphate (TPP), tributyl phosphate (TBP) and trioctyl phosphate (TOP), were used as activating agents for preparing activated carbons (AC-APTEs) with high surface acidity and metal ion sorption capacity. N2 adsorption/desorption isotherms, surface morphologies, elemental compositions, results of Boehm's titration and sorption capacities of heavy metal ions of the carbons were investigated. AC-APTEs contained much more acidic groups and exhibited much less surface area (phosphoric acid activation. For the AC-APTEs, AC-TOP had the highest surface area (488 m2/g), AC-TMP showed the highest yield (41.1%), and AC-TBP possessed the highest acidic groups (2.695 mmol/g), oxygen content (47.0%) and metal ion sorption capacities (40.1 mg/g for Ni(II) and 53.5 mg/g for Cd(II)). For the carbons, AC-APTEs showed much larger Ni(II) and Cd(II) sorption capacities than AC-PPA, except AC-TPP. The differences of the carbons in the physicochemical and sorption properties suggested surface chemistry of the carbons was the main factor influencing their sorption capacities whereas the pore structure played a secondary role.

  14. Formulation of single super phosphate fertilizer from rock phosphate of Hazara, Pakistan

    Directory of Open Access Journals (Sweden)

    Matiullah Khan

    2012-05-01

    Full Text Available Phosphorus deficiency is wide spread in soils of Pakistan. It is imperative to explore the potential and economics of indigenous Hazara rock phosphate for preparation of single super phosphate fertilizer. For the subject study rock phosphate was collected from Hazara area ground at 160 mesh level with 26% total P2O5 content for manual preparation of single super phosphate fertilizer. The rock phosphate was treated with various concentrations of sulfuric acid (98.9%, diluted or pure in the field. The treatments comprised of 20 and 35% pure acid and diluted with acid-water ratios of 1:5, 1:2, 1:1 and 2:1 v/v for acidulation at the rate of 60 liters 100 kg-1 rock phosphate. The amount was prior calculated in the laboratory for complete wetting of rock phosphate. A quantity of 150 kg rock phosphate was taken as treatment. The respective amount of acid was applied with the spray pump of stainless steel or poured with bucket. After proper processing, chemical analysis of the products showed a range of available P2O5 content from 9.56 to 19.24% depending upon the amount of acid and its dilution. The results reveal at that 1:1 dilutions gave the highest P2O5 content (19.24%, lowest free acid (6 % and 32% weight increase. The application of acid beyond or below this combination either pure or diluted gave hygroscopic product and higher free acids. The cost incurred upon the manual processing was almost half the prevailing rates in the market. These results lead to conclude that application of sulfuric acid at the rate of 60 liters 100 kg-1 with the dilution of 50% (v/v can yield better kind of SSP from Hazara rock phosphate at lower prices.

  15. Chemical oceanography of the Arabian Sea: Part vi - Relationship between nutrients and dissolved oxygen in the central basin

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.; Singbal, S.Y.S.

    of tertiary nitrite maximum associated with lowering of oxygen concentrations in near-bottom waters. Relationships between reserved phosphate and reserved nitrate and Sigma 1 were used to classify the water masses...

  16. Integrated assessment of the phosphate industry

    International Nuclear Information System (INIS)

    Ryan, M.T.; Cotter, S.J.

    1980-05-01

    The phosphate industry in the United States includes three major activities, namely, mining and milling of phosphate rock, phosphate product manufacture, and phosphate product use. Phosphatic materials contain uranium, thorium, and their decay products in greater than background amounts. This assessment of the radiological impacts associated with the redistribution of radioactive components of phosphate materials may provide insight into the effects of uranium extraction from phosphate materials for use in the nuclear fuel cycle

  17. Measurement of salinity of fluids in earth formations by comparison of inelastic and capture gamma ray spectra

    International Nuclear Information System (INIS)

    1979-01-01

    A method of borehole logging by detecting and counting gamma rays from inelastic scattering of fast neutrons by carbon, oxygen, silicon and calcium, gamma rays from capture of thermal neutrons by calcium, chlorine and silicon and comparing the former with the latter thereby deriving an estimate of the salinity of the fluids in the borehole, is given (UK)

  18. Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Premachandra, D; Webster, W A J; Bräu, L

    2016-11-01

    In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB - ) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the

  19. Balancing tissue perfusion demands: cardiovascular dynamics of Cancer magister during exposure to low salinity and hypoxia.

    Science.gov (United States)

    McGaw, Iain J; McMahon, Brian R

    2003-01-01

    Decapod crustaceans inhabit aquatic environments that are frequently subjected to changes in salinity and oxygen content. The physiological responses of decapod crustaceans to either salinity or hypoxia are well documented; however, there are many fewer reports on the physiological responses during exposure to these parameters in combination. We investigated the effects of simultaneous and sequential combinations of low salinity and hypoxia on the cardiovascular physiology of the Dungeness crab, Cancer magister. Heart rate, as well as haemolymph flow rates through the anterolateral, hepatic, sternal and posterior arteries were measured using a pulsed-Doppler flowmeter. Summation of flows allowed calculation of cardiac output and division of this by heart rate yielded stroke volume. When hypoxia and low salinity were encountered simultaneously, the observed changes in cardiac properties tended to be a mix of both factors. Hypoxia caused a bradycardia, whereas exposure to low salinity was associated with a tachycardia. However, the hypoxic conditions had the dominant effect on heart rate. Although hypoxia caused an increase in stroke volume of the heart, the low salinity had a more pronounced effect, causing an overall decrease in stroke volume. The patterns of haemolymph flow through the arterial system also varied when hypoxia and low salinity were offered together. The resulting responses were a mix of those resulting from exposure to either parameter alone. When low salinity and hypoxia were offered sequentially, the parameter experienced first tended to have the dominant effect on cardiac function and haemolymph flows. Low salinity exposure was associated with an increase in heart rate, a decrease in stroke volume and cardiac output, and a concomitant decrease in haemolymph flow rates. Subsequent exposure to hypoxic conditions caused a slight decrease in rate, but other cardiovascular variables were largely unaffected. In contrast, when low salinity followed

  20. Effects of education on low-phosphate diet and phosphate binder intake to control serum phosphate among maintenance hemodialysis patients: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Eunsoo Lim

    2018-03-01

    Full Text Available Background : For phosphate control, patient education is essential due to the limited clearance of phosphate by dialysis. However, well-designed randomized controlled trials about dietary and phosphate binder education have been scarce. Methods : We enrolled maintenance hemodialysis patients and randomized them into an education group (n = 48 or a control group (n = 22. We assessed the patients' drug compliance and their knowledge about the phosphate binder using a questionnaire. Results : The primary goal was to increase the number of patients who reached a calcium-phosphorus product of lower than 55. In the education group, 36 (75.0% patients achieved the primary goal, as compared with 16 (72.7% in the control group (P = 0.430. The education increased the proportion of patients who properly took the phosphate binder (22.9% vs. 3.5%, P = 0.087, but not to statistical significance. Education did not affect the amount of dietary phosphate intake per body weight (education vs. control: -1.18 ± 3.54 vs. -0.88 ± 2.04 mg/kg, P = 0.851. However, the dietary phosphate-to-protein ratio tended to be lower in the education group (-0.64 ± 2.04 vs. 0.65 ± 3.55, P = 0.193. The education on phosphate restriction affected neither the Patient-Generated Subjective Global Assessment score (0.17 ± 4.58 vs. -0.86 ± 3.86, P = 0.363 nor the level of dietary protein intake (-0.03 ± 0.33 vs. -0.09 ± 0.18, P = 0.569. Conclusion : Education did not affect the calcium-phosphate product. Education on the proper timing of phosphate binder intake and the dietary phosphate-to-protein ratio showed marginal efficacy.

  1. Study of phosphate release from Bogor botanical gardens’ sediment into pore water using diffusive gradient in thin film (DGT)

    Science.gov (United States)

    Tirta, A. P.; Saefumillah, A.; Foliatini

    2017-04-01

    Eutrophication is one of the environmental problems caused by the excessive nutrients in aquatic ecosystems. In most lakes, phosphate is a limiting nutrient for algae photosynthesis. Even though the concentration of phosphate from external loading into the water body has been reduced, eutrophication could still be occured due to internal mobilization of phosphate from the sediment pore water into the overlying water. Therefore, the released phosphate from sediments and their interaction in the pore water must be included in the monitoring of phosphate concentration in aquatic system. The released phosphate from sediment into pore water has been studied by DGT device with ferrihydrite as binding gel and N-N‧-methylenebisacrylamide as crosslinker. The results showed that DGT with 15% acrylamide; 0.1 % N-N‧-methylenebisacrylamide and ferrihydrite as binding gel was suitable for the measurement of the released phosphate from sediment into pore water. The result of the deployed DGT in oxic and anoxic conditions in seven days incubation showed the released phosphate process from the sediment into pore water was affected by incubation time and the existence of oxygen in the environment. The released phosphate from the sediment into pore water in anoxic condition has a higher value than oxic condition. The experimental results of the deployed DGT in natural sediment core at a depth of 1 to 15 cm from the surface of the water for 7 days showed that the sediment has a different phosphate mass profile based on depth. The concentration of phosphate tends to be increased with depth. The maximum CDGT of phosphate released in oxic and anoxic conditions at 7th day period of incubation are 29.23 μg/L at 14 cm depth and 30.19 μg/L at 8 cm depth, respectively.

  2. Finding a solution: Heparinised saline versus normal saline in the maintenance of invasive arterial lines in intensive care.

    Science.gov (United States)

    Everson, Matthew; Webber, Lucy; Penfold, Chris; Shah, Sanjoy; Freshwater-Turner, Dan

    2016-11-01

    We assessed the impact of heparinised saline versus 0.9% normal saline on arterial line patency. Maintaining the patency of arterial lines is essential for obtaining accurate physiological measurements, enabling blood sampling and minimising line replacement. Use of heparinised saline is associated with risks such as thrombocytopenia, haemorrhage and mis-selection. Historical studies draw variable conclusions but suggest that normal saline is at least as effective at maintaining line patency, although recent evidence has questioned this. We conducted a prospective analysis of the use of heparinised saline versus normal saline on unselected patients in the intensive care of our hospital. Data concerning duration of 471 lines insertion and reason for removal was collected. We found a higher risk of blockage for lines flushed with normal saline compared with heparinised saline (RR = 2.15, 95% CI 1.392-3.32, p  ≤ 0.001). Of the 56 lines which blocked initially (19 heparinised saline and 37 normal saline lines), 16 were replaced with new lines; 5 heparinised saline lines and 11 normal saline lines were reinserted; 5 of these lines subsequently blocked again, 3 of which were flushed with normal saline. Our study demonstrates a clinically important reduction in arterial line longevity due to blockages when flushed with normal saline compared to heparinised saline. We have determined that these excess blockages have a significant clinical impact with further lines being inserted after blockage, resulting in increased risks to patients, wasted time and cost of resources. Our findings suggest that the current UK guidance favouring normal saline flushes should be reviewed.

  3. Enhanced deep ocean ventilation and oxygenation with global warming

    Science.gov (United States)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  4. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  5. Preparation of Oxygen Meter Based Biosensor for Determination of Triglyceride in Serum

    Directory of Open Access Journals (Sweden)

    M. BHAMBI

    2006-05-01

    Full Text Available A method is described for preparation of a dissolved oxygen meter (make Aqualytic, Germany based triglyceride biosensor employing a polyvinyl chloride (PVC membrane bound lipase, glycerol kinase (GK and glycerol-3-phosphate oxidase The biosensor measures dissolved O2 utilized in the oxidation of triglyceride (TG by membrane bound lipase, glycerol kinase (GK and glycerol-3-phosphate oxidase (GPO, which is directly proportional to (TG concentration. The biosensor showed optimum response within 10-15 sec at pH 7.5 and 39.5 ºC. A linear relationship was obtained between the (TG concentration from 5mM to 20mM and oxygen consumed (mg/L. The biosensor was employed for determination of triglyceride in serum. The within and between batch coefficient of variation (CV were < 2.18 % and < 1.7% respectively. The minimum detection limit of the biosensor was 0.35 mM. A study of interference revealed that ascorbic acid, cholesterol and bilirubin caused 13%, 15%, and 12% interference, respectively.The biosensor is portable and can be used outside the laboratory.

  6. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    Science.gov (United States)

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. The Influence of Physical Forcing on Bottom-water Dissolved Oxygen within the Caloosahatchee River Estuary, FL

    Science.gov (United States)

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of dissolved oxygen (DO), salinity, temperature, nutrients (nitrogen and phosphorus), and chlorophyll a in the Caloosahatchee Riv...

  8. Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia

    Science.gov (United States)

    Charache, Samuel; Grisolia, Santiago; Fiedler, Adam J.; Hellegers, Andre E.

    1970-01-01

    Blood of patients with sickle cell anemia (SS) exhibits decreased affinity for oxygen, although the oxygen affinity of hemoglobin S is the same as that of hemoglobin A. SS red cells contain more 2,3-diphosphoglycerate (DPG) than normal erythrocytes. The oxygen affinity of hemolyzed red cells is decreased by added DPG, and hemolysates prepared from SS red cells do not differ from normal hemolysates in this regard. Reduction of oxygen affinity to the levels found in intact SS red cells required DPG concentrations in excess of those found in most SS patients. The same was true of oxygen affinity of patients with pyruvate kinase deficiency. Other organic phosphates, as well as inorganic ions, are known to alter the oxygen affinity of dilute solutions of hemoglobin. These substances, the state of aggregation of hemoglobin molecules, and cytoarchitectural factors probably play roles in determining oxygen affinity of both normal and SS red cells. PMID:5443181

  9. Effects of whole body UV-irradiation on oxygen delivery from the erythrocyte

    International Nuclear Information System (INIS)

    Humpeler, E.; Mairbaeurl, H.; Hoenigsmann, H.

    1982-01-01

    In 16 healthy caucasian volunteers (mean age: 22.2 years) the influence of whole body UV-irradiation on the oxygen transport properties of erythrocytes was investigated. Four hours after irradiation with UV (using the minimal erythema dose, MED) no variation of haemoglobin concentration, hematocrit, mean corpuscular haemoglobin concentration, pH or standard bicarbonate could be found, whereas inorganic plasma phosphate (Psub(i)), calcium, the intraerythrocytic 2,3-diphosphoglycerate (2,3-DPG), the activity of erythrocytic phosphofructokinase (PFK) and pyruvatekinase (PK) increased significantly. The half saturation tension of oxygen (P 50 -value) tended to increase. The increase of Psub(i) causes - via a stimulation of the glycolytic pathway - an increase in 2,3-DPG concentration and thus results in a shift of the oxygen dissociation curve. It is therefore possible to enhance tissue oxygenation by whole body UV-irradiation. (orig.)

  10. Hemodialysis for near-fatal sodium phosphate toxicity in a child receiving sodium phosphate enemas.

    Science.gov (United States)

    Becknell, Brian; Smoyer, William E; O'Brien, Nicole F

    2014-11-01

    This study aimed to demonstrate the importance of considering hemodialysis as a treatment option in the management of sodium phosphate toxicity. This is a case report of a 4-year-old who presented to the emergency department with shock, decreased mental status, seizures, and tetany due to sodium phosphate toxicity from sodium phosphate enemas. Traditional management of hyperphosphatemia with aggressive hydration and diuretics was insufficient to reverse the hemodynamic and neurological abnormalities in this child. This is the first report of the use of hemodialysis in a child without preexisting renal failure for the successful management of near-fatal sodium phosphate toxicity. Hemodialysis can safely be used as an adjunctive therapy in sodium phosphate toxicity to rapidly reduce serum phosphate levels and increase serum calcium levels in children not responding to conventional management.

  11. SEASONAL ASSESSMENT OF HYDROGRAPHIC VARIABLES AND PHYTOPLANKTON COMMUNITY IN THE ARABIAN SEA WATERS OF KERALA, SOUTHWEST COAST OF INDIA

    Directory of Open Access Journals (Sweden)

    Sushanth Vishwanath Rai

    2014-12-01

    Full Text Available The seasonal variation of the hydrographic variables and phytoplankton species in the Arabian Sea waters of the Kerala coast, Southern India was investigated during different seasons. The variables such as pH, temperature, salinity, turbidity and chlorophyll-a contents of water were found to be high during pre-monsoon season and the dissolved oxygen content was minimal. The concentration of nutrients viz., nitrate, phosphate, silicate varied independently. In the study a total of 53 species of phytoplankton were recorded. Their density was higher during the post-monsoon season than during other seasons and the diatoms were found to be the dominant species. The major phytoplankton in terms of frequency and abundance were the species namely, Biddulphia mobiliensis, Chaetoceros curvisetus, Licmophora abbreviata, Skeletonema costatum, Prorocentrum micans and Oscillatoria sp. They showed significant positive correlation with pH, temperature, salinity, nitrate, phosphate and chlorophyll-a contents, whereas turbidity, dissolved oxygen and silicate exhibited significant negative correlation. The Principal Component Analysis (PCA developed two principal components with 84.74% of total variability in the water quality which separated pre- and post-monsoon periods from the monsoon season on axis I, and pre-monsoon and monsoon periods from post-monsoon on axis II.

  12. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)

    KAUST Repository

    Wang, Xi

    2011-10-01

    Several alternative cathode catalysts have been proposed for microbial fuel cells (MFCs), but effects of salinity (sodium chloride) on catalyst performance, separate from those of conductivity on internal resistance, have not been previously examined. Three different types of cathode materials were tested here with increasingly saline solutions using single-chamber, air-cathode MFCs. The best MFC performance was obtained using a Co catalyst (cobalt tetramethoxyphenyl porphyrin; CoTMPP), with power increasing by 24 ± 1% to 1062 ± 9 mW/m2 (normalized to the projected cathode surface area) when 250 mM NaCl (final conductivity of 31.3 mS/cm) was added (initial conductivity of 7.5 mS/cm). This power density was 25 ± 1% higher than that achieved with Pt on carbon cloth, and 27 ± 1% more than that produced using an activated carbon/nickel mesh (AC) cathode in the highest salinity solution. Linear sweep voltammetry (LSV) was used to separate changes in performance due to solution conductivity from those produced by reductions in ohmic resistance with the higher conductivity solutions. The potential of the cathode with CoTMPP increased by 17-20 mV in LSVs when the NaCl addition was increased from 0 to 250 mM independent of solution conductivity changes. Increases in current were observed with salinity increases in LSVs for AC, but not for Pt cathodes. Cathodes with CoTMPP had increased catalytic activity at higher salt concentrations in cyclic voltammograms compared to Pt and AC. These results suggest that special consideration should be given to the type of catalyst used with more saline wastewaters. While Pt oxygen reduction activity is reduced, CoTMPP cathode performance will be improved at higher salt concentrations expected for wastewaters containing seawater. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  13. Saline agriculture: A technology for economic utilization and improvement of saline environments (abstract)

    International Nuclear Information System (INIS)

    Aslam, Z.; Malik, K.A.; Khurshid, S.J.; Awan, A.R.; Akram, M.; Hashmi, Z.; Ali, Y.; Gulnaz, A.; Hussain, M.; Hussain, F.

    2005-01-01

    The salinity problem is one of the severe constraints for agriculture in Pakistan. In a socio-economic and salinity and drainage survey over an area of about 25000 acres of salt-affected land recently, crop production is found to be very low. Livestock is underfed and malnourished. Pakistan has spent and allocated over one billion US dollars on Salinity Control and Reclamation Projects (SCARP), of course, with dubious results. Over the years, a Saline Agriculture Technology has been developed as a cheap alternative at NIAB for comfortably living with salinity and to profitably utilize saline land rather than its reclamation. The soil improvement is a fringe benefit in this approach. The Saline Agriculture Technology has been tested at laboratory level, at field stations and at farms of some progressive farmers. Now we are sharing this technology with farming communities through a 'Saline Agriculture Farmer Participatory Development Project in Pakistan', with assistance from the National Rural Support Programme. The new project has been launched simultaneously in all four provinces of Pakistan on 25000 acres of salt-affected land. Under this project seeds of salt tolerant crop varieties wheat, cotton, rice, castor, brassica and barley and saplings of trees/shrubs, e.g. Acacia ampliceps, A. nilotica, Casuarina glauca, ber, jaman, etc selected for development work in various institutions of Pakistan are being provided to farmers. Know-how on new irrigation techniques like bed-and-corrugation and bed-and-furrow, agronomic practices like laser land leveling, planting on beds and in auger holes and soil/water amendment practices (use of gypsum and mineral acids) are being shared with farmers. These interventions are quite efficient, save water up to 40% and enable farmers to utilize bad quality water. In general, farmers are being familiarized with prevalent animal diseases, nutritional problems and prophylactic techniques. They are being helped in developing Saline

  14. Possible Association of Ferrous Phosphates and Ferric Sulfates in S-rich Soil on Mars

    Science.gov (United States)

    Mao, J.; Schroeder, C.; Haderlein, S.

    2012-12-01

    NASA Mars Exploration Rover (MER) Spirit explored Gusev Crater to look for signs of ancient aqueous activity, assess past environmental conditions and suitability for life. Spirit excavated light-toned, S-rich soils at several locations. These are likely of hydrothermal, possibly fumarolic origin. At a location dubbed Paso Robles the light-toned soil was also rich in P - a signature from surrounding rock. While S is mainly bound in ferric hydrated sulfates [1], the mineralogy of P is ill-constrained [2]. P is a key element for life and its mineralogy constrains its availability. Ferrous phases observed in Paso Robles Mössbauer spectra may represent olivine and pyroxene from surrounding basaltic soil [1] or ferrous phosphate minerals [3]. Phosphate is well-known to complex and stabilize Fe 2+ against oxidation to Fe 3+ . Schröder et al. [3] proposed a formation pathway of ferrous phosphate/ferric sulfate associations: sulfuric acid reacts with basalt containing apatite, forming CaSO4 and phosphoric acid. The phosphoric and/or excess sulfuric acid reacts with olivine, forming Fe2+-phosphate and sulfate. The phosphate is less soluble and precipitates. Ferrous sulfate remains in solution and is oxidized as pH increases. To verify this pathway, we dissolved Fe2+-chloride and Na-phosphate salts in sulfuric acid inside an anoxic glovebox. The solution was titrated to pH 6 by adding NaOH when a first precipitate formed, which was ferrous phosphate according to Mössbauer spectroscopy (MB). At that point the solution was removed from the glovebox and allowed to evaporate in the presence of atmospheric oxygen, leading to the oxidation of Fe2+. The evaporation rate was controlled by keeping the suspensions at different temperatures; pH was monitored during the evaporation process. The final precipitates were analyzed by MB and X-Ray Fluorescence (XRF), comparable to MER MB and Alpha Particle X-ray Spectrometer instrument datasets, and complementary techniques such as X

  15. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.

    Science.gov (United States)

    James, Antoni W; Nachiappan, Vasanthi

    2014-01-01

    In the current study, when phosphate transporters pho88 and pho86 were knocked out they resulted in significant accumulation (84% and 43%) of triacylglycerol (TAG) during phosphate starvation. However in the presence of phosphate, TAG accumulation was only around 45% in both pho88 and pho86 mutant cells. These observations were confirmed by radio-labeling, fluorescent microscope and RT-PCR studies. The TAG synthesizing genes encoding for acyltransferases namely LRO1 and DGA1 were up regulated. This is the first report for accumulation of TAG in pho88Δ and pho86Δ cells under phosphate starvation conditions. Copyright © 2013. Published by Elsevier Ltd.

  16. Simultaneous phosphate and CODcr removals for landfill leachate using modified honeycomb cinders as an adsorbent

    International Nuclear Information System (INIS)

    Yue Xiu; Li Xiaoming; Wang Dongbo; Shen Tingting; Liu Xian; Yang Qi; Zeng Guangming; Liao Dexiang

    2011-01-01

    In this study, honeycomb cinders were employed to remove phosphate and Chemical Oxygen Demand (COD cr ) simultaneously for landfill leachate treatment. Operating conditions of honeycomb cinders pretreatment, pH, temperature, honeycomb cinders dosage, reaction time, and settling time, were evaluated and optimized. The results revealed that the removal efficiencies of both phosphate and COD cr could be increased up to 99.9% and 66.7% under the optimal conditions, respectively. Moreover, the structures of raw/modified honeycomb cinders and resulting precipitates were detected by Scanning Electron Microscope (SEM), Energy Dispersive Spectrometers (EDS) analysis and X-ray Diffraction (XRD). The results suggested that the adsorption method using honeycomb cinders might be an effective strategy as a pretreatment technology for landfill leachate treatment.

  17. Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems

    KAUST Repository

    Kim, Younggy

    2013-01-01

    A new bioelectrochemical system is proposed for simultaneous removal of salinity and organic matter. In this process, exoelectrogenic microorganisms oxidize organic matter and transfer electrons to the anode, hydrogen is evolved at the cathode by supplying additional voltage, and salt is removed from the wastewater due to the electric potential generated and the use of two ion-exchange membranes. Salinity removal (initial conductivity ~40mS/cm) increased from 21 to 84% by increasing the substrate (sodium acetate) from 2 to 8g/L. A total of 72-94% of the chemical oxygen demand was degraded in the anode and cathode chambers, with 1-4% left in the anode chamber and the balance lost through the anion-exchange membrane into the concentrate waste chamber. The maximum hydrogen production rate was 3.6m3-H2/m3-electrolyte per day at an applied potential of 1.2V. The Coulombic efficiency was ~100%, while the cathode recovery varied from 57 to 100%, depending on the extent of methanogenesis. Exoelectrogenic microbes generated high current densities (7.8mA/cm2) at ≤36g/L of total dissolved solids, but >41g/L eliminated current. These results provide a new method for achieving simultaneous removal of salinity and organic matter from a saline wastewater with H2 production. © 2012 Elsevier B.V.

  18. Respiratory ATP cost and benefit of arbuscular mycorrhizal symbiosis with Nicotiana tabacum at different growth stages and under salinity.

    Science.gov (United States)

    Del-Saz, Néstor Fernández; Romero-Munar, Antonia; Alonso, David; Aroca, Ricardo; Baraza, Elena; Flexas, Jaume; Ribas-Carbo, Miquel

    2017-11-01

    Growth and maintenance partly depend on both respiration and ATP production during oxidative phosphorylation in leaves. Under stress, ATP is needed to maintain the accumulated biomass. ATP production mostly proceeds from the cytochrome oxidase pathway (COP), while respiration via the alternative oxidase pathway (AOP) may decrease the production of ATP per oxygen consumed, especially under phosphorus (P) limitation and salinity conditions. Symbiosis with arbuscular mycorrhizal (AM) fungi is reputed by their positive effect on plant growth under stress at mature stages of colonization; however, fungal colonization may decrease plant growth at early stages. Thus, the present research is based on the hypothesis that AM fungus colonization will increase both foliar respiration and ATP production at mature stages of plant growth while decreasing them both at early stages. We used the oxygen-isotope-fractionation technique to study the in vivo respiratory activities and ATP production of the COP and AOP in AM and non-AM (NM) tobacco plants grown under P-limiting and saline conditions in sand at different growth stages (14, 28 and 49days). Our results suggest that AM symbiosis represents an ATP cost detrimental for shoot growth at early stages, whilst it represents a benefit on ATP allowing for faster rates of growth at mature stages, even under salinity conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Nitrogen Recovered By Sorghum Plants As Affected By Saline Irrigation Water And Organic/Inorganic Resources Using 15N Technique

    International Nuclear Information System (INIS)

    ABOU-ELKHAIR, R.A.; EL-MOHTASEM, M.O.; SOLIMAN, S.M.; GALAL, Y.G.M.; ABD EL-LATIF, E.M.

    2009-01-01

    A pot experiment was conducted in the green house of Soil and Water Department, Nuclear Research Centre, Atomic Energy Authority, Egypt, to follow up the effect of saline irrigation water, inorganic and organic fertilizers on sorghum growth and N fractions that recovered by plant organs. Two types of artificial water salinity were used; one has 3 dS m -1 salinity level with 4 and 8 SAR and the second one has 3 and 6 dS m -1 salinity levels with 6 SAR . Leucenae residue and chicken manure were applied as organic sources at rate of 2% v/v. Sorghum was fertilized with recommended doses of super phosphate and potassium sulfate at rate of 150 kg P and 50 kg K per feddan, respectively. Labelled ammonium sulfate with 5% 15 N atom excess was applied to sorghum at rate of 100 kg N fed -1 . Dry matter yield (stalks and roots) was negatively affected by increasing water salinity levels or SAR ratios. Similar trend was recorded with N uptake by either stalks or roots of sorghum plants. On the other hand, both the dry matter yield and N uptake were positively and significantly affected by incorporation of organic sources in comparison to the untreated control. In this regard, the dry matter yield and N uptake induced by incorporation of chicken manure was superior over those recorded with leucenae residues. It means, in general, that the incorporation of organic sources into the soil may maximize the plant ability to combat the hazards effects caused by irrigation with saline water. Nitrogen derived from fertilizer (% Ndff), soil (% Ndfs) and organic resources (% Ndfr) showed frequent trends as affected by water salinity and organic resources but in most cases, severe reduction of these values was recorded when plants were irrigated with saline water. In the same time, plants were more dependent on N derived from organic sources than those derived from mineral fertilizer. Superiority of one organic source over the other was related to water salinity levels and SAR ratios

  20. Chemical evidence of the changes of the Antarctic Bottom Water ventilation in the western Ross Sea between 1997 and 2003

    Science.gov (United States)

    Rivaro, Paola; Massolo, Serena; Bergamasco, Andrea; Castagno, Pasquale; Budillon, Giorgio

    2010-05-01

    Data from three Italian CLIMA project cruises between 1997 and 2003 were used to obtain sections of the hydrographic and chemical properties of the main water masses across the shelf break off Cape Adare (western Ross Sea, Antarctica). Dissolved oxygen, nitrate and phosphate data were combined on the basis of the Redfield ratio to obtain the quasi-conservative tracers NO (9[NO 3]+[O 2]), PO (135[PO 4]+[O 2]) and phosphate star PO4* ( PO4*=[PO 4]+[O 2]/175-1.95). In 1997 and 2003 the presence of the High Salinity Shelf Water at the bottom depth near the sill was traced by both physical and chemical measurements. In 2001 the Modified Shelf Water, characterized by warmer temperature and by a lower dissolved oxygen content than High Salinity Shelf Water, was observed at the shelf edge. The distribution of the chemical tracers together with the hydrographic observations showed recently formed Antarctic Bottom Water on the continental slope during all of the cruises. These observations were confirmed by the extended optimum multiparameter analysis. The calculated thickness of the new Antarctic Bottom Water, as well as the tracer content, were variable in time and in space. The estimated volume of the new Antarctic Bottom Water and the export of dissolved oxygen and nutrient associated with the overflowing water were different over the examined period. In particular, a lower (˜55%) export was evidenced in 2001 compared to 1997.

  1. Dextrose saline compared with normal saline rehydration of hyperemesis gravidarum: a randomized controlled trial.

    Science.gov (United States)

    Tan, Peng Chiong; Norazilah, Mat Jin; Omar, Siti Zawiah

    2013-02-01

    To compare 5% dextrose-0.9% saline against 0.9% saline solution in the intravenous rehydration of hyperemesis gravidarum. Women at their first hospitalization for hyperemesis gravidarum were enrolled on admission to the ward and randomly assigned to receive either 5% dextrose-0.9% saline or 0.9% saline by intravenous infusion at a rate 125 mL/h over 24 hours in a double-blind trial. All participants also received thiamine and an antiemetic intravenously. Oral intake was allowed as tolerated. Primary outcomes were resolution of ketonuria and well-being (by 10-point visual numerical rating scale) at 24 hours. Nausea visual numerical rating scale scores were obtained every 8 hours for 24 hours. Persistent ketonuria rates after the 24-hour study period were 10 of 101 (9.9%) compared with 11 of 101 (10.9%) (P>.99; relative risk 0.9, 95% confidence interval 0.4-2.2) and median (interquartile range) well-being scores at 24 hours were 9 (8-10) compared with 9 (8-9.5) (P=.73) in the 5% dextrose-0.9% saline and 0.9% saline arms, respectively. Repeated measures analysis of variance of the nausea visual numerical rating scale score as assessed every 8 hours during the 24-hour study period showed a significant difference in favor of the 5% dextrose-0.9% saline arm (P=.046) with the superiority apparent at 8 and 16 hours, but the advantage had dissipated by 24 hours. Secondary outcomes of vomiting, resolution of hyponatremia, hypochloremia and hypokalemia, length of hospitalization, duration of intravenous antiemetic, and rehydration were not different. Intravenous rehydration with 5% dextrose-0.9% saline or 0.9% saline solution in women hospitalized for hyperemesis gravidarum produced similar outcomes. ISRCTN Register, www.controlled-trials.com/isrctn, ISRCTN65014409. I.

  2. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    Energy Technology Data Exchange (ETDEWEB)

    Baldisserri, Carlo, E-mail: carlo.baldisserri@istec.cnr.it; Costa, Anna Luisa [ISTEC-CNR (Italy)

    2016-04-15

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco’s modified Eagle’s medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu{sup 2+} ions or 15 nm CuO nanoparticles. Addition of either Cu{sup 2+} ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu{sup 2+} concentration in Cu{sup 2+}-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu{sup 2+}-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu{sup 2+}-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu{sup 2+} ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  3. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    Science.gov (United States)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  4. 21 CFR 137.175 - Phosphated flour.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Phosphated flour. 137.175 Section 137.175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and phosphated...

  5. Determinants of oxygen and carbon dioxide transfer during extracorporeal membrane oxygenation in an experimental model of multiple organ dysfunction syndrome.

    Science.gov (United States)

    Park, Marcelo; Costa, Eduardo Leite Vieira; Maciel, Alexandre Toledo; Silva, Débora Prudêncio E; Friedrich, Natalia; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Schettino, Guilherme; Azevedo, Luciano Cesar Pontes

    2013-01-01

    Extracorporeal membrane oxygenation (ECMO) has gained renewed interest in the treatment of respiratory failure since the advent of the modern polymethylpentene membranes. Limited information exists, however, on the performance of these membranes in terms of gas transfers during multiple organ failure (MOF). We investigated determinants of oxygen and carbon dioxide transfer as well as biochemical alterations after the circulation of blood through the circuit in a pig model under ECMO support before and after induction of MOF. A predefined sequence of blood and sweep flows was tested before and after the induction of MOF with fecal peritonitis and saline lavage lung injury. In the multivariate analysis, oxygen transfer had a positive association with blood flow (slope = 66, Pmembrane PaCO(2) (slope = -0.96, P = 0.001) and SatO(2) (slope = -1.7, Ptransfer had a positive association with blood flow (slope = 17, Pmembrane PaCO(2) (slope = 1.2, Ptransfers were significantly determined by blood flow. Oxygen transfer was modulated by the pre-membrane SatO(2) and CO(2), while carbon dioxide transfer was affected by the gas flow, pre-membrane CO(2) and hemoglobin.

  6. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    Science.gov (United States)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  7. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  8. Interspecific variation and plasticity in hemoglobin nitrite reductase activity and its correlation with oxygen affinity in vertebrates

    DEFF Research Database (Denmark)

    Jensen, Frank B.; Kolind, Rasmus A. H.; Jensen, Natashia S.

    2017-01-01

    -dependent manner. The initial second order rate constant of the deoxyHb-mediated nitrite reduction showed a strong curvilinear correlation with oxygen affinity among all ectothermic vertebrates, and the relationship also applied to plastic variations of Hb properties via organic phosphates. The relationship...... determines oxygen affinity. In the present study we investigated nitrite reductase activity and O2 affinity in Hbs from ten different vertebrate species under identical conditions to disclose interspecific variations and allow an extended test for a correlation between the rate constant for nitrite reduction...... and O2 affinity. We also tested plastic changes in Hb properties via addition of T-structure-stabilizing organic phosphates (ATP and GTP). The decay in deoxyHb during its reaction with nitrite was exponential-like in ectotherms (Atlantic hagfish, carp, crucian carp, brown trout, rainbow trout, cane toad...

  9. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  10. Measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1981-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)P 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is to be determined. (author)

  11. N2-fixation in fababean (vicia faba l.) grown in saline and non saline conditions using 15N tracer technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Kurdali, F.

    2002-09-01

    A pot experiment was conducted to study the performance of growing fababean and barley under saline conditions, in terms of, dry matter yield, total nitrogen and, percentages and amount of N derived from soil, fertilizer and atmosphere using 15 N isotope dilution method. Three saline treatments were performed: First, plants were grown in saline soil and irrigated with saline water (Ws Ss), Second, Plants were grown in saline soil and irrigated with saline water (Ws Ss); and Third, Plants grown in non saline soil and irrigated with saline water (Ws Sn). Furthermore, a control treatment was performed by using non-saline soil and non-saline water (Wn Sn). The different salinity treatments reduced plant growth and the reduction was more pronounced in fababean than in barley. However, under conditions of either saline soil-soft irrigation water or non saline soil-salty irrigation water, the relative growth reduction did not exceed 50% of the control; whereas, a significant negative effect was obtained when plants were grown under completely saline conditions of both soil and irrigation water. Percentage of N 2 -fixed (% Ndfa) was not negatively affected by saline conditions. However, our results clearly demonstrated that the effect of salinity in fababean was more evident on plant growth than on N 2 -fixing activity. Further studies are needed to obtain more salt tolerant faba bean genotypes in terms of growth and yield. This could be simultaneously improve yield and N 2 -fixation under sever saline conditions. (author)

  12. Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons.

    Science.gov (United States)

    Sun, Shanshan; Hu, Fangyuan; Wu, Jihong; Zhang, Shenghai

    2017-04-01

    Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury. In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD), a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen-glucose-deprivation/reperfusion (OGD/R) model in a mouse hippocampal neuronal cell line. CBD supplementation during reperfusion rescued OGD/R-induced cell death, attenuated intracellular ROS generation and lipid peroxidation, and simultaneously reversed the abnormal changes in antioxidant biomarkers. Using the Seahorse XF e 24 Extracellular Flux Analyzer, we found that CBD significantly improved basal respiration, ATP-linked oxygen consumption rate, and the spare respiratory capacity, and augmented glucose consumption in OGD/R-injured neurons. The activation of glucose 6-phosphate dehydrogenase and the preservation of the NADPH/NADP + ratio implies that the pentose-phosphate pathway is stimulated by CBD, thus protecting hippocampal neurons from OGD/R injury. This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Hydrogen-rich saline may be an effective and specific novel treatment for osteoradionecrosis of the jaw

    Directory of Open Access Journals (Sweden)

    Chen Y

    2015-10-01

    Full Text Available Yuanli Chen, Chunlin Zong, Yuxuan Guo, Lei Tian Department of Cranio-facial Trauma and Orthognathic Surgery Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi’an, People’s Republic of China Abstract: Hydrogen, a therapeutic medical gas, can exert antioxidant activity via selectively reducing cytotoxic reactive oxygen species such as hydroxyl radicals. Hydrogen-rich saline is an alternative form of molecular hydrogen that has been widely used in many studies, including metabolic syndrome, cerebral, hepatic, myocardial ischemia/reperfusion, and liver injuries with obstructive jaundice, with beneficial results. Osteoradionecrosis of the jaw is a serious complication following radiotherapy for head and neck cancers. It has long been known that most radiation-induced symptoms are caused by free radicals generated by radiolysis of H2O, and the hydroxyl radical is the most reactive of these. Reducing the hydroxyl radical can distinctly improve the protection of cells from radiation damage. We hypothesized that hydrogen-rich saline might be an effective and specific method of managing and preventing osteoradionecrosis of the jaw. Keywords: osteoradionecrosis, hydrogen, reactive oxygen species

  14. Water Quality Characteristics of Sembrong Dam Reservoir, Johor, Malaysia

    Science.gov (United States)

    Mohd-Asharuddin, S.; Zayadi, N.; Rasit, W.; Othman, N.

    2016-07-01

    A study of water quality and heavy metal content in Sembrong Dam water was conducted from April - August 2015. A total of 12 water quality parameters and 6 heavy metals were measured and classified based on the Interim National Water Quality Standard of Malaysia (INWQS). The measured and analyzed parameter variables were divided into three main categories which include physical, chemical and heavy metal contents. Physical and chemical parameter variables were temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), turbidity, pH, nitrate, phosphate, ammonium, conductivity and salinity. The heavy metals measured were copper (Cu), lead (Pb), aluminium (Al), chromium (Cr), ferum (Fe) and zinc (Zn). According to INWQS, the water salinity, conductivity, BOD, TSS and nitrate level fall under Class I, while the Ph, DO and turbidity lie under Class IIA. Furthermore, values of COD and ammonium were classified under Class III. The result also indicates that the Sembrong Dam water are not polluted with heavy metals since all heavy metal readings recorded were falls far below Class I.

  15. Purification and physical characteristics of a hemoglobin solution modified by coupling to 2-nor-2-formylpyridoxal 5‘-phosphate (NFPLP)

    NARCIS (Netherlands)

    van der Plas, J; de Vries-van Rossen, A; Koorevaar, JJ; Buursma, Anneke; Zijlstra, Willem; Bakker, JC

    1988-01-01

    Human stroma-free hemoglobin (Hb) was crosslinked with 2-nor-2- formylpyridoxal 5′-phosphate (NFPLP), purified over crosslinked dextran, and eluted with a linear salt gradient. The oxygen dissociation curve of this crosslinked hemoglobin appeared to be shifted to the right with a standard P50 of 49

  16. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity.

    Science.gov (United States)

    Maryoung, Lindley A; Lavado, Ramon; Bammler, Theo K; Gallagher, Evan P; Stapleton, Patricia L; Beyer, Richard P; Farin, Federico M; Hardiman, Gary; Schlenk, Daniel

    2015-12-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors.

  17. Overexpression of yeast ArDH gene in chloroplasts confers salinity tolerance in plants (abstract)

    International Nuclear Information System (INIS)

    Khan, M.S.; Kanwal, B.; Khalid, A.M.; Zafar, Y.; Malik, K.A.

    2005-01-01

    Water stress due to salinity and drought is the main limiting factor for plant growth, productivity and quality. A common response to water deficit is the accumulation of osmoprotectants such as sugars and amino acids. In yeast, arabitol dehydrogenase is found responsible for the production of arabitol from ribulose-5-phosphate. All plants synthesize ribulose-5-phosphate via pentose pathway in chloroplasts.. Therefore, osmotolerance of the plants could be enhanced through metabolic engineering of chloroplasts by introducing ArDH gene into the plastome, which is responsible for the conversion of ribulose-5- phosphate to arabitol. Here we report high-level expression of arabitol dehydrogenase (ArDH) in chloroplasts. Homoplasmic transgenic plants were recovered on spectinomycin-containing regeneration medium. Transformed tobacco plants survived whereas non-transformed were severely stressed or killed when two weeks old seedlings were exposed to NaCl (up to 400 mM), suggesting a role for arabitol in salt tolerance. Seedlings survived up to five weeks on medium containing high salt concentrations (350-400 mM). Nevertheless, seedlings remained green and grew normal on concentrations up to 350 mM NaCl for several weeks. Hypothesis that membranes are protected under stress conditions due to the arabitol accumulation in chloroplasts, seedlings were grown in liquid medium containing polyethylene glycol (PEG, up to 6%). Seedlings were tolerant to 6% PEG, suggesting that ArDH enzyme protects membranes integrity under stress. Therefore, it is concluded that ArDH gene could be expressed in crop plants to withstand abiotic stresses. (author)

  18. Dissolved Oxygen Availability on Traditional Pond Using Silvofishery Pattern in Mahakam Delta

    Directory of Open Access Journals (Sweden)

    Ismail Fahmy Almadi

    2013-06-01

    Full Text Available The development of aquaculture system should meet the community’s basic need economically by taking into account the carrying capacity and environmental sustainability. The development of the environmentally friendly system such as silvofishery is being promoted by government however its yield has not reached the target yet. Dissolved oxygen availability is an important indicator which determines the success of the aquaculture system. The objective of the research was to determine dissolved oxygen availability on traditional pond systems using silvofishery pattern. Time series data collection was conducted once in 14 days with 2 measuring times; in the morning (06.00 am and in the evening (06.00 pm for 112 days. The research was conducted at four different silvofishery pond patterns, Pond Pattern 1 (0% mangrove canopy covered, Pond Pattern 2 (35% mangrove canopy covered, Pond Pattern 3 (67% mangrove canopy covered, and Pond Pattern 4 (75% mangrove canopy covered. Measurement was observed openly in the pond (in situ with parameters: dissolved oxygen, temperature, Water pH, Salinity, Transparency, Wind Speed, and Depth of Water Table, while chlorofil-a was ex-situ measured. The result from each parameter was compared to optimum concentration rate for shrimp growth. From the experiment, Pond Pattern 1 showed the most satisfaction results. Its dissolved oxygen availability during the research was ≥ 4 mg/L which was 5.88 mg/L ±0.48 mg/L in the evening (06.00 pm and 4.33 mg/L ±1.24 mg/L in the morning (06.00 am. It was also supported by optimum condition of other parameters such as temperature, Water pH, Salinity, Wind Speed, and Depth of Water Table. However, it was not supported by fertility and transparency of water. Thus, the traditional pattern of conservation still needs additional technology to maintain adequate dissolved oxygen availability for optimum shrimp growth.

  19. Oceanographic profile plankton, Temperature Salinity and other measurements collected using bottle from various platforms in the South Pacific Ocean from 1997 to 1998 (NODC Accession 0014651)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen, nutrients, and other measurements found in the bottle dataset taken from the SNP-1, HUAMANGA (fishing boat) and other platforms in the...

  20. Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity

    Directory of Open Access Journals (Sweden)

    Cristiane J. da-Silva

    2017-10-01

    Full Text Available ABSTRACT High salinity affects plants due to stimulation of osmotic stress. Cell signaling triggered by nitric oxide (NO and hydrogen sulfide (H2S activates a cascade of biochemical events that culminate in plant tolerance to abiotic and biotic stresses. For instance, the NO/H2S-stimulated biochemical events that occur in plants during response to high salinity include the control of reactive oxygen species, activation of antioxidant system, accumulation of osmoprotectants in cytosol, induction of K+ uptake and Na+ cell extrusion or its vacuolar compartmentation among others. This review is a compilation of what we have learned in the last 10 years about NO participation during cell signaling in response to high salinity as well as the role of H2S, a new player in the mechanism of plant tolerance to salt stress. The main sources of NO and H2S in plant cells is also discussed together with the evidence of interplay between both signaling molecules during response to stress.

  1. Mechanisms of Contrast-Induced Nephropathy Reduction for Saline (NaCl and Sodium Bicarbonate (NaHCO3

    Directory of Open Access Journals (Sweden)

    W. Patrick Burgess

    2014-01-01

    Full Text Available Nephropathy following contrast media (CM exposure is reduced by administration before, during, and after the contrast procedure of either isotonic sodium chloride solution (Saline or isotonic sodium bicarbonate solution (IsoBicarb. The reasons for this reduction are not well established for either sodium salt; probable mechanisms are discussed in this paper. For Saline, the mechanism for the decrease in CIN is likely related primarily to the increased tubular flow rates produced by volume expansion and therefore a decreased concentration of the filtered CM during transit through the kidney tubules. Furthermore, increased tubular flow rates produce a slight increase in tubular pH resulting from a fixed acid excretion in an increased tubular volume. The mechanism for the decreased CIN associated with sodium bicarbonate includes the same mechanisms listed for Saline in addition to a renal pH effect. Increased filtered bicarbonate anion raises both tubular pH and tubular bicarbonate anion levels toward blood physiologic levels, thus providing increased buffer for reactive oxygen species (ROS formed in the tubules as a result of exposure to CM in renal tubular fluid.

  2. Nutrient composition and physicochemical characteristics in the destination sites of migratory water birds: a case study at the selected locations of seashores and lakes in southern India

    Directory of Open Access Journals (Sweden)

    Cyril Augustine

    2014-02-01

    Full Text Available The biodiversity in aquatic systems are indirectly controlled by their nutrient dynamics. The abundance of phytoplanktons and zooplanktons depends on the availability of nutrients such as nitrates, phosphates and silicates since these are the building blocks for their further growth. The phytoplanktons act as prey for the next higher trophic level including various fishes and other small organisms. One of the factors that enchant the migratory birds at some particular locations is the availability of the species of organisms that they prey on. In this paper a preliminary analysis is done to explore the nutrient dynamics of selected tropical aquatic systems in order to correlate the arrival of migratory birds at those locations. Water samples are collected from coastal region of Aleppey, Purakkad and Koonthankulam Bird Sancturay. The latter two sites are the important destination of many migratory water birds including Pallus Gull, Heuglins Gull, Bar-headed goose, Comb Duck and Spot Billed Pelican. The samples are analyzed chemically to trace the nutrient compositions and the related chemical parameters such as temperature, pH, conductivity, primary productivity, chloride, salinity, turbidity, nitrate, phosphate, dissolved oxygen and biochemical oxygen demand. Remarkable differences are observed mainly in the composition of phosphate, organic matter content and salinity. Finally, an attempt has been done to correlate the biodiversity of these locations with the chemical parameters and the prevailing nutrient compositions. DOI: http://dx.doi.org/10.3126/ije.v3i1.9943 International Journal of Environment Vol.3(1 2014: 68-77

  3. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress.

    Science.gov (United States)

    Hu, Longxing; Li, Huiying; Chen, Liang; Lou, Yanhong; Amombo, Erick; Fu, Jinmin

    2015-08-04

    Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.

  4. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Directory of Open Access Journals (Sweden)

    Caroline S Fortunato

    Full Text Available Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33, the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1 the taxonomy of the community changed strongly with salinity, 2 metabolic potential was highly similar across samples, with few differences in

  5. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Science.gov (United States)

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  6. Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions.

    Science.gov (United States)

    Gandolfi, Maria Giovanna; Taddei, Paola; Tinti, Anna; De Stefano Dorigo, Elettra; Rossi, Piermaria Luigi; Prati, Carlo

    2010-12-01

    The bioactivity of calcium silicate mineral trioxide aggregate (MTA) cements has been attributed to their ability to produce apatite in presence of phosphate-containing fluids. This study evaluated surface morphology and chemical transformations of an experimental accelerated calcium-silicate cement as a function of soaking time in different phosphate-containing solutions. Cement discs were immersed in Dulbecco's phosphate-buffered saline (DPBS) or Hank's balanced salt solution (HBSS) for different times (1-180 days) and analysed by scanning electron microscopy connected with an energy dispersive X-ray analysis (SEM-EDX) and micro-Raman spectroscopy. SEM-EDX revealed Ca and P peaks after 14 days in DPBS. A thin Ca- and P-rich crystalline coating layer was detected after 60 days. A thicker multilayered coating was observed after 180 days. Micro-Raman disclosed the 965-cm(-1) phosphate band at 7 days only on samples stored in DPBS and later the 590- and 435-cm(-1) phosphate bands. After 60-180 days, a layer approximately 200-900 μm thick formed displaying the bands of carbonated apatite (at 1,077, 965, 590, 435 cm(-1)) and calcite (at 1,088, 713, 280 cm(-1)). On HBSS-soaked, only calcite bands were observed until 90 days, and just after 180 days, a thin apatite-calcite layer appeared. Micro-Raman and SEM-EDX demonstrated the mineralization induction capacity of calcium-silicate cements (MTAs and Portland cements) with the formation of apatite after 7 days in DPBS. Longer time is necessary to observe bioactivity when cements are immersed in HBSS.

  7. Modulation of estrogenic exposure effects via alterations in salinity and dissolved oxygen in male fathead minnows, Pimephales promelas

    Science.gov (United States)

    Laboratory exposure data indicate that estrogens and estrogen mimics can cause endocrine disruption in male fathead minnows (Pimephales promelas). In the wild, conditions are not static as is often the case in the laboratory. Changes in water quality parameters, such as salinity influx due to road s...

  8. The role of NF-κB signaling pathway in polyhexamethylene guanidine phosphate induced inflammatory response in mouse macrophage RAW264.7 cells.

    Science.gov (United States)

    Kim, Ha Ryong; Shin, Da Young; Chung, Kyu Hyuck

    2015-03-04

    Polyhexamethylene guanidine (PHMG) phosphate is a competitive disinfectant with strong antibacterial activity. However, epidemiologists revealed that inhaled PHMG-phosphate may increase the risk of pulmonary fibrosis associated with inflammation, resulting in the deaths of many people, including infants and pregnant women. In addition, in vitro and in vivo studies reported the inflammatory effects of PHMG-phosphate. Therefore, the aim of the present study was to clarify the inflammatory effects and its mechanism induced by PHMG-phosphate in murine RAW264.7 macrophages. Cell viability, inflammatory cytokine secretion, nuclear factor kappa B (NF-κB) activation, and reactive oxygen species (ROS) generation were investigated in macrophages exposed to PHMG-phosphate. PHMG-phosphate induced dose-dependent cytotoxicity, with LC50 values of 11.15-0.99mg/ml at 6 and 24h, respectively. PHMG-phosphate induced pro-inflammatory cytokines including IL-1β, IL-6, and IL-8. In particular, IL-8 expression was completely inhibited by the NF-κB inhibitor BAY11-7082. In addition, PHMG-phosphate decreased IκB-α protein expression and increased NF-κB-mediated luciferase activity, which was diminished by N-acetyl-l-cystein. However, abundant amounts of ROS were generated in the presence of PHMG-phosphate at high concentrations with a cytotoxic effect. Our results demonstrated that PHMG-phosphate triggered the activation of NF-κB signaling pathway by modulating the degradation of IκB-α. Furthermore, the NF-κB signaling pathway plays a critical role in the inflammatory responses induced by PHMG-phosphate. We assumed that ROS generated by PHMG-phosphate were associated with inflammatory responses as secondary mechanism. In conclusion, we suggest that PHMG-phosphate induces inflammatory responses via NF-κB signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Radioactivity of phosphate ores from Karatas-Mazidag phosphate deposit of Turkey

    International Nuclear Information System (INIS)

    Akyuez, T.; Varinlioglu, A.; Kose, A.; Akyuez, S.

    2000-01-01

    The specific activities of 238 U, 226 Ra, 232 Th and 40 K in the composite samples of phosphate ores of type I (grey-coloured ore, with high P 2 O 5 (21-35%) and low calcite content) and of type II (grey coloured calcite ore, with low P 2 O 5 content (5-17%)) of Karatas-Mazidag phosphate deposit, Turkey, have been determined by gamma spectrometry together with phosphatic animal feed ingredients. The concentrations of 238 U, 226 Ra, 232 Th and 40 K were found to be up to 557, 625, 26 and 297 Bq x kg -1 , respectively. Radium equivalent activities of samples were calculated and compared with those given in the literature. Uranium concentration of the individual phosphate samples, from which composite samples of ores of type I and II have been prepared, were found to show and increasing trend with increasing P 2 O 5 and F concentrations. (author)

  10. Characterization of saline groundwater across the coastal aquifer of Israel as resource for desalination

    Science.gov (United States)

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yospeh; Oren, Yoram; Kasher, Roni

    2015-04-01

    In arid countries with access to marine water seawater desalination is becoming an important water source in order to deal with the water scarcity and population growth. Seawater reverse osmosis (RO) facilities use open seawater intake, which requires pretreatment processes to remove particles in order to avoid fouling of the RO membrane. In small and medium size desalination facilities, an alternative water source can be saline groundwater in coastal aquifers. Using saline groundwater from boreholes near the shore as feed water may have the advantage of natural filtration and low organic content. It will also reduce operation costs of pretreatment. Another advantage of using groundwater is its availability in highly populated areas, where planning of large RO desalination plants is difficult and expensive due to real-estate prices. Pumping saline groundwater underneath the freshwater-seawater interface (FSI) might shift the interface towards the sea, thus rehabilitating the fresh water reservoirs in the aquifer. In this research, we tested the potential use of saline groundwater in the coastal aquifer of Israel as feed water for desalination using field work and desalination experiments. Specifically, we sampled the groundwater from a pumping well 100 m from the shore of Tel-Aviv and sea water from the desalination plant in Ashqelon, Israel. We used an RO cross flow system in a pilot plant in order to compare between the two water types in terms of permeate flux, permeate flux decline, salt rejection of the membrane and the fouling on the membrane. The feed, brine and fresh desalinated water from the outlet of the desalination system were chemically analyzed and compared. Field measurements of dissolved oxygen, temperature, pH and salinity were also conducted in situ. Additionally, SDI (silt density index), which is an important index for desalination, and total organic carbon that has a key role in organic fouling and development of biofouling, were measured and

  11. Phosphate application to firing range soils for Pb immobilization: The unclear role of phosphate

    International Nuclear Information System (INIS)

    Chrysochoou, Maria; Dermatas, Dimitris; Grubb, Dennis G.

    2007-01-01

    Phosphate treatment has emerged as a widely accepted approach to immobilize Pb in contaminated soils and waste media, relying on the formation of the highly insoluble mineral pyromorphite as solubility-controlling phase for Pb. As such, phosphate treatment has been proposed as a Best Management Practice (BMP) for firing ranges where Pb occurs in its metallic forms and several other phases (carbonates, oxides). While pyromorphite thermodynamically has the potential to control Pb solubility at low levels, its formation is kinetically controlled by pH, the solubility of the phosphate source, and the solubility of Pb species. Treatability studies have shown that excess quantities of soluble and acidic phosphate sources, such as phosphoric acid, are necessary for successful in situ treatment. Even under these conditions, Extended X-ray Absorption Fine Structure (EXAFS), the only reliable method to identify and quantify Pb speciation, showed that Pb conversion to pyromorphite in in situ treated soils was less than 45% after 32 months. Furthermore, the use of lime (CaO) to restore soil pH in acidified soil treatments inhibited further conversion. Additionally, phosphate treatment is known to reduce bioavailability through pyromorphite formation in the intestinal tract, and the phytoaccumulation of Pb; both desirable effects for Pb-impacted areas. Given the costs of phosphate treatment, the use of biogenic phosphate sources, such as bone meal, may be a more environmentally sustainable approach toward this end. In the many studies focusing on phosphate treatment, the attendant P leaching and eutrophication have been largely overlooked, along with other issues such as the enhanced leaching of oxyanionic contaminants, such as Se, As and W. The success and sustainability of applying phosphate as a BMP in firing range soils therefore remain questionable

  12. Method of stripping plutonium from tributyl phosphate solution which contains dibutyl phosphate-plutonium stable complexes

    International Nuclear Information System (INIS)

    Ochsenfeld, W.; Schmieder, H.

    1976-01-01

    Fast breeder fuel elements which have been highly burnt-up are reprocessed by extracting uranium and plutonium into an organic solution containing tributyl phosphate. The tributyl phosphate degenerates at least partially into dibutyl phosphate and monobutyl phosphate, which form stable complexes with tetravalent plutonium in the organic solution. This tetravalent plutonium is released from its complexed state and stripped into aqueous phase by contacting the organic solution with an aqueous phase containing tetravalent uranium. 6 claims, 1 drawing figure

  13. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  14. Charge Localization in the Lithium Iron Phosphate Li3Fe2(PO4)3at High Voltages in Lithium-Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Loftager, Simon

    2015-01-01

    Possible changes in the oxidation state of the oxygen ion in the lithium iron phosphate Li3Fe2(PO4)3 at high voltages in lithium-ion (Li-ion) batteries are studied using experimental and computational analysis. Results obtained from synchrotron-based hard X-ray photoelectron spectroscopy...

  15. Phosphate control in dialysis

    Directory of Open Access Journals (Sweden)

    Cupisti A

    2013-10-01

    Full Text Available Adamasco Cupisti,1 Maurizio Gallieni,2 Maria Antonietta Rizzo,2 Stefania Caria,3 Mario Meola,4 Piergiorgio Bolasco31Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; 2Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, Milan, Italy; 3Territorial Department of Nephrology and Dialysis, ASL Cagliari, Italy; 4Sant'Anna School of Advanced Studies, University of Pisa, Pisa, ItalyAbstract: Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source

  16. Ammonia, silicate, phosphate, nitrite+nitrate, dissolved oxygen, and other variables collected from profile and discrete sample observations using CTD, nutrient autoanalyzer, and other instruments from NOAA Ship Delaware II, NOAA Ship Gordon Gunter, NOAA Ship Henry B. Bigelow, NOAA Ship Okeanos Explorer, and NOAA Ship Pisces in the Gulf of Maine, Georges Bank, and Mid-Atlantic Bight from 2009-11-03 to 2016-08-19 (NCEI Accession 0127524)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains nutrient concentrations, temperature, salinity, density and dissolved oxygen values measured by CTD profiles on the U.S. Northeast Continental...

  17. Effects of the Oxygen-Carrying Solution OxyVita C on the Cerebral Microcirculation and Systemic Blood Pressures in Healthy Rats

    Directory of Open Access Journals (Sweden)

    Rania Abutarboush

    2014-11-01

    Full Text Available The use of hemoglobin-based oxygen carriers (HBOC as oxygen delivering therapies during hypoxic states has been hindered by vasoconstrictive side effects caused by depletion of nitric oxide (NO. OxyVita C is a promising oxygen-carrying solution that consists of a zero-linked hemoglobin polymer with a high molecular weight (~17 MDa. The large molecular weight is believed to prevent extravasation and limit NO scavenging and vasoconstriction. The aim of this study was to assess vasoactive effects of OxyVita C on systemic blood pressures and cerebral pial arteriole diameters. Anesthetized healthy rats received four intravenous (IV infusions of an increasing dose of OxyVita C (2, 25, 50, 100 mg/kg and hemodynamic parameters and pial arteriolar diameters were measured pre- and post-infusion. Normal saline was used as a volume-matched control. Systemic blood pressures increased (P ≤ 0.05 with increasing doses of OxyVita C, but not with saline. There was no vasoconstriction in small (<50 µm and medium-sized (50–100 µm pial arterioles in the OxyVita C group. In contrast, small and medium-sized pial arterioles vasoconstricted in the control group. Compared to saline, OxyVita C showed no cerebral vasoconstriction after any of the four doses evaluated in this rat model despite increases in blood pressure.

  18. Salinity does not alter the effectiveness of menthol as an anesthetic and sedative during the handling and transport of juvenile fat snook (Centropomus parallelus

    Directory of Open Access Journals (Sweden)

    L. C. O.’R. Sepulchro

    Full Text Available Abstract The effectiveness of menthol as anesthetic and sedative for fat snook (Centropomus parallelus was tested at different salinities. In the first experiment, the fish were exposed to different concentrations of menthol (25, 37 and 50 mg L–1 in water at different salinities (0, 17 and 36 ppt. In the second experiment, the fish were transported for 10 hours in water with menthol at concentrations of 0, 3.7 and 7.4 mg L–1 under different salinities. Na+ and K+ ions from fish body and water were analyzed after transport. The optimal concentrations of menthol for a short handling period and surgical induction was 37 and 50 mg L–1, respectively, and these values were independent of salinity. After transport, neither mortality nor significant changes in ammonia or dissolved oxygen were observed between treatments at the different salinities. The nitrite levels were lower in freshwater than in brackish and saltwater, but did not change with mentol. The total body levels of Na+ increased with the salinity increase. Menthol is an effective anesthetic for handling of juvenile fat snook at different salinities. Menthol did not influence the measured water parameters and body ions, and it is not necessary for the transport of fat snook.

  19. Salinity does not alter the effectiveness of menthol as an anesthetic and sedative during the handling and transport of juvenile fat snook (Centropomus parallelus).

    Science.gov (United States)

    Sepulchro, L C O 'r; Carvalho, M A G; Gomes, L C

    2016-04-19

    The effectiveness of menthol as anesthetic and sedative for fat snook (Centropomus parallelus) was tested at different salinities. In the first experiment, the fish were exposed to different concentrations of menthol (25, 37 and 50 mg L-1) in water at different salinities (0, 17 and 36 ppt). In the second experiment, the fish were transported for 10 hours in water with menthol at concentrations of 0, 3.7 and 7.4 mg L-1 under different salinities. Na+ and K+ ions from fish body and water were analyzed after transport. The optimal concentrations of menthol for a short handling period and surgical induction was 37 and 50 mg L-1, respectively, and these values were independent of salinity. After transport, neither mortality nor significant changes in ammonia or dissolved oxygen were observed between treatments at the different salinities. The nitrite levels were lower in freshwater than in brackish and saltwater, but did not change with mentol. The total body levels of Na+ increased with the salinity increase. Menthol is an effective anesthetic for handling of juvenile fat snook at different salinities. Menthol did not influence the measured water parameters and body ions, and it is not necessary for the transport of fat snook.

  20. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    OpenAIRE

    Lílian Estrela Borges Baldotto; Marihus Altoé Baldotto; Fábio Lopes Olivares; Adriane Nunes de Souza

    2014-01-01

    Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i) to select and characterize diazotrophs abl...

  1. Effect of Salinity on Germination and Its Relationship with Vegetative growth in Bromus danthoniae Genotypes from Saline and Non-Saline Areas of Iran

    Directory of Open Access Journals (Sweden)

    M. Rezaei

    2018-02-01

    Full Text Available Bromus danthoniae Trin. is an annual grass species that is well adapted to harsh climates and could be considered as an important genetic resources for tolerance to environmental stresses such as salinity. In this study, 24 genotypes collected from Ilam, Kurdistan, Kermanshah (non-saline areas and West Azerbaijan (saline area: shores of Uremia Salt Lake provinces of Iran were investigated at the germination stage under salt treatments with concentrations of 0, 60, 120, 180, 240 and 300 mM sodium chloride. Germination percentage, germination rate index, seed vigor, root length, shoot length and seedling fresh and dry weights were measured. In addition, the relationship between the percentage of germination in 300 mM sodium chloride and the survival rate (% after four weeks in 350 mM sodium chloride at the vegetative stage was evaluated. The results of analysis of variance showed that salinity treatments caused significant reductions in all the studied traits. Genotypic variation and the interaction of genotype × salt treatments were also significant. Genotypes USLN3 and KER4 were found to be the most tolerant and sensitive genotypes to salinity stress, with 13% and 98% reduction in germination percentage at 300 mM NaCl, respectively. Cluster analysis divided the genotypes into three groups, with one group containing only tolerant genotypes from Uremia Salt Lake, another one comprising only sensitive genotypes from non-saline regions, and the third one containing genotypes from both regions. The correlation between the germination percentage and the survival rate at the vegetative stage was not significant, indicating that different mechanisms are, perhaps, responsible for salinity tolerance at the germination and vegetative stages in B. danthoniae.

  2. Uranium-phosphate relationship in phosphated chalks of the Mons and Picardie Bassins

    Energy Technology Data Exchange (ETDEWEB)

    Quinif, Y; Charlet, J M; Dupuis, C; Robaszynski, F [Faculte Polytechnique de Mons (Belgium)

    1981-11-30

    The lithological and geochemical conditions relative to the ''Senonian'' phosphatic chalks are relatively simple in the Basins of Mons (Belgium) and of Picardy (France). Their characteristics permit us to study chiefly the uranium-phosphate relation. It appears a very good linear correlation between the phosphate and the uranium. The coefficient U/P/sub 2/O/sub 5/ remains a constant from the bottom to the top of the same section, but changes in space for synchronic formations (lateral variation of geochemical facies) and in time for two separated basins.

  3. CO{sub 2} storage in saline aquifers; Stockage du CO{sub 2} dans les aquiferes salins

    Energy Technology Data Exchange (ETDEWEB)

    Bentham, M.; Kirby, G. [British Geological Survey (BGS), Kingsley Dunham Centre, Keyworth, Nottingham (United Kingdom)

    2005-06-01

    Saline aquifers represent a promising way for CO{sub 2} sequestration. Storage capacities of saline aquifers are very important around the world. The Sleipner site in the North Sea is currently the single case world-wide of CO{sub 2} storage in a saline aquifer. A general review is given on the specific risks for CO{sub 2} storage in saline aquifer. The regional distribution of CO{sub 2} storage potential is presented. Finally, the knowledge gaps and the future research in this field are defined. (authors)

  4. Uranium abundance in some sudanese phosphate ores

    International Nuclear Information System (INIS)

    Adam, A.A.; Eltayeb, M.A.H.

    2009-01-01

    This work was carried out mainly to analysis of some Sudanese phosphate ores, for their uranium abundance and total phosphorus content measured as P 2 O 5 %. For this purpose, 30 samples of two types of phosphate ore from Eastern Nuba Mountains, in Sudan namely, Kurun and Uro areas were examined. In addition, the relationship between uranium and major, and trace elements were obtained, also, the natural radioactivity of the phosphate samples was measured, in order to characterize and differentiate between the two types of phosphate ores. The uranium abundance in Uro phosphate with 20.3% P 2 O 5 is five time higher than in Kurun phosphate with 26.7% P 2 O 5 . The average of uranium content was found to be 56.6 and 310 mg/kg for Kurun and Uro phosphate ore, respectively. The main elements in Kurun and Uro phosphate ore are silicon, aluminum, and phosphorus, while the most abundant trace elements in these two ores are titanium, strontium and barium. Pearson correlation coefficient revealed that uranium in Kurun phosphate shows strong positive correlation with P 2 O 5 , and its distribution is essentially controlled by the variations of P2O5 concentration, whereas uranium in Uro phosphate shows strong positive correlation with strontium, and its distribution is controlled by the variations of Sr concentration. Uranium behaves in different ways in Kurun phosphate and in Uro phosphate. Uro phosphate shows higher concentrations of all the estimated radionuclides than Kurun phosphate. According to the obtained results, it can be concluded that Uro phosphate is consider as secondary uranium source, and is more suitable for uranium recovery, because it has high uranium abundance and low P 2 O 5 %, than Kurun phosphate. (authors) [es

  5. Uranium from phosphate ores

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant

  6. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  7. Administration of Oxygen Ultra-Fine Bubbles Improves Nerve Dysfunction in a Rat Sciatic Nerve Crush Injury Model

    Directory of Open Access Journals (Sweden)

    Hozo Matsuoka

    2018-05-01

    Full Text Available Ultra-fine bubbles (<200 nm in diameter have several unique properties and have been tested in various medical fields. The purpose of this study was to investigate the effects of oxygen ultra-fine bubbles (OUBs on a sciatic nerve crush injury (SNC model rats. Rats were intraperitoneally injected with 1.5 mL saline, OUBs diluted in saline, or nitrogen ultra-fine bubbles (NUBs diluted in saline three times per week for 4 weeks in four groups: (1 control, (sham operation + saline; (2 SNC, (crush + saline; (3 SNC+OUB, (crush + OUB-saline; (4 SNC+NUB, (crush + NUB-saline. The effects of the OUBs on dorsal root ganglion (DRG neurons and Schwann cells (SCs were examined by serial dilution of OUB medium in vitro. Sciatic functional index, paw withdrawal thresholds, nerve conduction velocity, and myelinated axons were significantly decreased in the SNC group compared to the control group; these parameters were significantly improved in the SNC+OUB group, although NUB treatment did not affect these parameters. In vitro, OUBs significantly promoted neurite outgrowth in DRG neurons by activating AKT signaling and SC proliferation by activating ERK1/2 and JNK/c-JUN signaling. OUBs may improve nerve dysfunction in SNC rats by promoting neurite outgrowth in DRG neurons and SC proliferation.

  8. Isolation of a halophilic bacterium, Bacillus sp. strain NY-6 for organic contaminants removal in saline wastewater on ship

    Science.gov (United States)

    Gao, Jie; Yu, Zhenjiang; Zhang, Xiaohui; Zhao, Dan; Zhao, Fangbo

    2013-06-01

    The objective of this research was to examine if certain strains of Bacillus bacteria, could survive in dry powder products and if so, could the bacteria degrade organic contaminants in saline wastewater on a ship. As part of the study, we isolated 7 domesticated strains named NY1, NY2,..., and NY7, the strain NY6 showed to have the best performance for organic matter degradation and could survive in dry powder more than 3 months. NY6 was identified as Bacillus aerius, based on the morphological and physic-chemical properties. Its optimal growth conditions were as follows: salinity was 2%; temperature was 37°C; pH was in 6.5-7.0; best ratio of C: N: P was 100:5:1. The capability of its dry powder for Chemical Oxygen Demand (COD) removal was 800mg COD/g in synthesized marine wastewater with 2% salinity. The spores in the dry powder were 1.972×108 g -1.

  9. Effects of salinity and pH on the activity and oxygen consumption of Brachionus plicatilis (rotatoria)

    Energy Technology Data Exchange (ETDEWEB)

    Epp, R.W.; Winston, P.W.

    1978-01-01

    Activity and respiratory rates of the rotifer, Brachionus plicatilis, were determined following exposure to pH values of 6.5, 7.5 and 8.5 and to concentrations of 10, 50 and 100 mosm. Changes in the hydrogen-ion concentration had no detectable effect on either activity or metabolism. Acute reduction in osmolarity of the medium resulted in a reduction in oxygen consumption and activity. Both activity and oxygen consumption increased upon acclimatization to osmolarities of 50 and 100 mosm.

  10. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  11. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    Science.gov (United States)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.

    2017-08-01

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.

  12. Identification of the mechanisms and origin of salinization of groundwaters in coastal aquifers by means of isotopic techniques

    International Nuclear Information System (INIS)

    Araguas, L. J.; Quejido, A. J.

    2007-01-01

    To study the origin of salinity and the mechanisms operating in coastal aquifers, a set of tools is available to determine the essential aspects of the hydrogeological behaviour of the system. these tools are based on the integrated use of hydrochemical parameters (major constituents and trace elements) and isotopic parameters (oxygen, hydrogen, sulfur, carbon, strontium and boron). In addition to the active intrusion of seawater, salinization in coastal areas may be influenced by various human activities that accelerate the degradation of water quality, such as concentrated pumping, intensive farming techniques with return of irrigation water, or reuse of urban and industrial waste water. Characterization of the dominant processes and mechanisms is required for suitable management of the resource and implementation of corrective measures. (Author)

  13. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay

    Science.gov (United States)

    Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.

    2017-01-01

    The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.

  14. Radiological impact of natural radioactivity in Egyptian phosphate rocks, phosphogypsum and phosphate fertilizers

    International Nuclear Information System (INIS)

    El-Bahi, S.M.; Sroor, A.; Mohamed, Gehan Y.; El-Gendy, N.S.

    2017-01-01

    In this study, the activity concentrations of the natural radionuclides in phosphate rocks and its products were measured using a high- purity germanium detector (HPGe). The obtained activity results show remarkable wide variation in the radioactive contents for the different phosphate samples. The average activity concentration of "2"3"5U, "2"3"8U, "2"2"6Ra, "2"3"2Th and "4"0K was found as (45, 1031, 786, 85 and 765 Bq/kg) for phosphate rocks, (28, 1234, 457, 123 and 819 Bq/kg) for phosphate fertilizers, (47, 663, 550, 79 and 870 Bq/kg) for phosphogypsum and (25, 543, 409, 54 and 897 Bq/kg) for single super phosphate respectively. Based on the measured activities, the radiological parameters (activity concentration index, absorbed gamma dose rate in outdoor and indoor and the corresponding annual effective dose rates and total excess lifetime cancer risk) were estimated to assess the radiological hazards. The total excess lifetime cancer risk (ELCR) has been calculated and found to be high in all samples, which related to high radioactivity, representing radiological risk for the health of the population. - Highlights: • Level of radioactivity of phosphate rocks and by-products samples. • The radiological health hazard parameters. • Radiological risk to the health of the population. • The excess lifetime cancer risk factor.

  15. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    International Nuclear Information System (INIS)

    Gustafsson, Bo G.

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m 3 /s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say ±1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m 3 /s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the shoreline

  16. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Bo G. [Oceanus Havsundersoekningar, Goeteborg (Sweden)

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m{sup 3}/s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say {+-}1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m{sup 3}/s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the

  17. Past 20,000-year history of Himalayan aridity: Evidence from oxygen isotope records in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.

    Late Quaternary climate history of the Himalayas is inferred from sea surface salinity (SSS) changes determined from the oxygen isotope in planktonic foraminifers, in a turbidity-free, 14C-dated core from the Bay of Bengal. The heaviest d18O...

  18. Statistical modelling of variability in sediment-water nutrient and oxygen fluxes

    Science.gov (United States)

    Serpetti, Natalia; Witte, Ursula; Heath, Michael

    2016-06-01

    Organic detritus entering, or produced, in the marine environment is re-mineralised to inorganic nutrient in the seafloor sediments. The flux of dissolved inorganic nutrient between the sediment and overlying water column is a key process in the marine ecosystem, which binds the biogeochemical sub-system to the living food web. These fluxes are potentially affected by a wide range of physical and biological factors and disentangling these is a significant challenge. Here we develop a set of General Additive Models (GAM) of nitrate, nitrite, ammonia, phosphate, silicate and oxygen fluxes, based on a year-long campaign of field measurements off the north-east coast of Scotland. We show that sediment grain size, turbidity due to sediment re-suspension, temperature, and biogenic matter content were the key factors affecting oxygen consumption, ammonia and silicate fluxes. However, phosphate fluxes were only related to suspended sediment concentrations, whilst nitrate fluxes showed no clear relationship to any of the expected drivers of change, probably due to the effects of denitrification. Our analyses show that the stoichiometry of nutrient regeneration in the ecosystem is not necessarily constant and may be affected by combinations of processes. We anticipate that our statistical modelling results will form the basis for testing the functionality of process-based mathematical models of whole-sediment biogeochemistry.

  19. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  20. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  1. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  2. Major mechanistic differences between the reactions of hydroxylamine with phosphate di- and tri-esters.

    Science.gov (United States)

    Medeiros, Michelle; Wanderlind, Eduardo H; Mora, José R; Moreira, Raphaell; Kirby, Anthony J; Nome, Faruk

    2013-10-07

    Hydroxylamine reacts as an oxygen nucleophile, most likely via its ammonia oxide tautomer, towards both phosphate di- and triesters of 2-hydroxypyridine. But the reactions are very different. The product of the two-step reaction with the triester TPP is trapped by the NH2OH present in solution to generate diimide, identified from its expected disproportionation and trapping products. The reaction with H3N(+)-O(-) shows general base catalysis, which calculations show is involved in the breakdown of the phosphorane addition-intermediate of a two-step reaction. The reactivity of the diester anion DPP(-) is controlled by its more basic pyridyl N. Hydroxylamine reacts preferentially with the substrate zwitterion DPP(±) to displace first one then a second 2-pyridone, in concerted S(N)2(P) reactions, forming O-phosphorylated products which are readily hydrolysed to inorganic phosphate. The suggested mechanisms are tested and supported by extensive theoretical calculations.

  3. 40 CFR 230.25 - Salinity gradients.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity...

  4. Hydrochemical Characteristics and Formation of the Saline or Salty Springs in Eastern Sichuan Basin of China

    Science.gov (United States)

    Zhou, X.

    2017-12-01

    Saline or salty springs provide important information on the hydrogeochemical processes and hydrology within subsurface aquifers. More than 20 saline and salty springs occur in the core of anticlines in the eastern Sichuan Basin in southwestern China where the Lower and Middle Triassic carbonates outcrop. Water samples of 8 saline and salty springs (including one saline hot spring) were collected for analyses of the major and minor constituents, trace elements and stable oxygen and hydrogen isotopes. The TDS of the springs range from 4 to 83 g/L, and they are mainly of Cl-Na type. Sr, Ba and Li are the predominant trace elements. The δ2H and δ18O of the water samples indicate that they are of meteoric origin. The source of salinity of the springs originates from dissolution of minerals in the carbonates, including halite, gypsum, calcite and dolomite. The formation mechanism of the springs is that groundwater receives recharge from infiltration of precipitation, undergoes shallow or deep circulation in the core of the anticline and incongruent dissolution of the salt-bearing carbonates occurs, and emerges in the river valley in the form of springs with relatively high TDS. The 8 springs can be classified into 4 springs of shallow groundwater circulation and 4 springs of deep groundwater circulation according to the depth of groundwater circulation, 7 springs of normal temperature and 1 hot spring according to temperature. There are also 2 up-flow springs: the carbonate aquifers are overlain by relatively impervious sandstone and shale, groundwater may flows up to the ground surface through the local portion of the overlying aquiclude where fractures were relatively well developed, and emerges as an up-flow spring. Knowledge of the hydrochemical characteristics and the geneses of the saline and salty springs are of important significance for the utilization and preservation of the springs.

  5. Calcium phosphates: what is the evidence?

    Science.gov (United States)

    Larsson, Sune

    2010-03-01

    A number of different calcium phosphate compounds such as calcium phosphate cements and solid beta-tricalcium phosphate products have been introduced during the last decade. The chemical composition mimics the mineral phase of bone and as a result of this likeness, the materials seem to be remodeled as for normal bone through a cell-mediated process that involves osteoclastic activity. This is a major difference when compared with, for instance, calcium sulphate compounds that after implantation dissolve irrespective of the new bone formation rate. Calcium phosphates are highly biocompatible and in addition, they act as synthetic osteoconductive scaffolds after implantation in bone. When placed adjacent to bone, osteoid is formed directly on the surface of the calcium phosphate with no soft tissue interposed. Remodeling is slow and incomplete, but by adding more and larger pores, like in ultraporous beta-tricalcium phosphate, complete or nearly complete resorption can be achieved. The indications explored so far include filling of metaphyseal fracture voids or bone cysts, a volume expander in conjunction with inductive products, and as a carrier for various growth factors and antibiotics. Calcium phosphate compounds such as calcium phosphate cement and beta-tricalcium phosphate will most certainly be part of the future armamentarium when dealing with fracture treatment. It is reasonable to believe that we have so far only seen the beginning when it comes to clinical applications.

  6. Turbidity and salinity affect feeding performance and physiological stress in the endangered delta smelt.

    Science.gov (United States)

    Hasenbein, Matthias; Komoroske, Lisa M; Connon, Richard E; Geist, Juergen; Fangue, Nann A

    2013-10-01

    Coastal estuaries are among the most heavily impacted ecosystems worldwide with many keystone fauna critically endangered. The delta smelt (Hypomesus transpacificus) is an endangered pelagic fish species endemic to the Sacramento-San Joaquin Estuary in northern California, and is considered as an indicator species for ecosystem health. This ecosystem is characterized by tidal and seasonal gradients in water parameters (e.g., salinity, temperature, and turbidity), but is also subject to altered water-flow regimes due to water extraction. In this study, we evaluated the effects of turbidity and salinity on feeding performance and the stress response of delta smelt because both of these parameters are influenced by water flows through the San Francisco Bay Delta (SFBD) and are known to be of critical importance to the completion of the delta smelt's life cycle. Juvenile delta smelt were exposed to a matrix of turbidities and salinities ranging from 5 to 250 nephelometric turbidity units (NTUs) and 0.2 to 15 parts per thousand (ppt), respectively, for 2 h. Best statistical models using Akaike's Information Criterion supported that increasing turbidities resulted in reduced feeding rates, especially at 250 NTU. In contrast, best explanatory models for gene transcription of sodium-potassium-ATPase (Na/K-ATPase)-an indicator of osmoregulatory stress, hypothalamic pro-opiomelanocortin-a precursor protein to adrenocorticotropic hormone (expressed in response to biological stress), and whole-body cortisol were affected by salinity alone. Only transcription of glutathione-S-transferase, a phase II detoxification enzyme that protects cells against reactive oxygen species, was affected by both salinity and turbidity. Taken together, these data suggest that turbidity is an important determinant of feeding, whereas salinity is an important abiotic factor influencing the cellular stress response in delta smelt. Our data support habitat association studies that have shown greater

  7. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.

    Science.gov (United States)

    Pancha, Imran; Chokshi, Kaumeel; Maurya, Rahulkumar; Trivedi, Khanjan; Patidar, Shailesh Kumar; Ghosh, Arup; Mishra, Sandhya

    2015-01-01

    Microalgal biomass is considered as potential feedstock for biofuel production. Enhancement of biomass, lipid and carbohydrate contents in microalgae is important for the commercialization of microalgal biofuels. In the present study, salinity stress induced physiological and biochemical changes in microalgae Scenedesmus sp. CCNM 1077 were studied. During single stage cultivation, 33.13% lipid and 35.91% carbohydrate content was found in 400 mM NaCl grown culture. During two stage cultivation, salinity stress of 400 mM for 3 days resulted in 24.77% lipid (containing 74.87% neutral lipid) along with higher biomass compared to single stage, making it an efficient strategy to enhance biofuel production potential of Scenedesmus sp. CCNM 1077. Apart from biochemical content, stress biomarkers like hydrogen peroxide, lipid peroxidation, ascorbate peroxidase, proline and mineral contents were also studied to understand the role of reactive oxygen species (ROS) mediated lipid accumulation in microalgae Scenedesmus sp. CCNM 1077. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Hemoglobin system of Sparus aurata: Changes in fishes farmed under extreme conditions

    International Nuclear Information System (INIS)

    Campo, Salvatore; Nastasi, Giancarlo; D'Ascola, Angela; Campo, Giuseppe M.; Avenoso, Angela; Traina, Paola; Calatroni, Alberto; Burrascano, Emanuele; Ferlazzo, Alida; Lupidi, Giulio; Gabbianelli, Rosita; Falcioni, Giancarlo

    2008-01-01

    In order to gain more knowledge on the stress responses of gilhead seabream (Sparus aurata) under extreme conditions, this study investigated the functional properties of the hemoglobin system and globin gene expression under hypoxia and low salinity. The oxygen affinity for the two hemoglobin components present inside the S. aurata erythrocyte was practically identical as was the influence of protons and organic phosphates (Root effect). The quantification of S. aurata hemoglobin fractions performed by HPLC and the data on gene expression of globin chains assayed by PCR indicate that under hypoxia and low salinity there is a change in the ratio between the two different hemoglobin components. The result indicating that the distinct hemoglobins present in S. aurata erythrocyte have almost identical functional properties, does not explain the adaptive response (expression change) following exposure of the animal to hypoxia or low salinity on the basis of their function as oxygen transporter. We hypothesize that other parallel biological functions that the hemoglobin molecule is known to display within the erythrocyte are involved in adaptive molecular mechanisms. The autoxidation-reduction cycle of hemoglobin could be involved in the response to particular living conditions

  9. The biogeochemistry of nutrients, dissolved oxygen and chlorophyll a in the Catalan Sea (NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Mariona Segura-Noguera

    2016-09-01

    Full Text Available Reference depth profiles of dissolved inorganic nutrients, dissolved oxygen and chlorophyll a are described for the Catalan Sea using quality controlled data. Phosphate, nitrate and silicate show typical nutrient profiles, with nutriclines at different depths. Maximums of nitrite, dissolved oxygen and occasionally ammonium are found within the photic zone, close to the deep chlorophyll maximum. In intermediate waters we found a minimum of dissolved oxygen coincident with maximum concentrations of phosphate and nitrate. Ammonium concentration is unexpectedly high in the mesopelagic zone, where there are still measurable nitrite concentrations. The origin of such high ammonium and nitrite concentrations remains unclear. We also identify and describe anomalous data and profiles resulting from eutrophication, western Mediterranean Deep Water formation and dense shelf water cascading. The N:P ratio in deep waters is 22.4, which indicates P limitation relative to the Redfield ratio. However, the N:P ratio above the deep chlorophyll maximum in stratified surface waters is < 4 (< 8 including ammonium. The depth profiles of key biogeochemical variables described in this study will be a useful reference for future studies in the Catalan Sea (NW Mediterranean Sea in order to validate data sampled in this area, to identify anomalous processes, and to study the evolution of the ecosystem following the undergoing global change.

  10. Increase of urban lake salinity by road deicing salt

    International Nuclear Information System (INIS)

    Novotny, Eric V.; Murphy, Dan; Stefan, Heinz G.

    2008-01-01

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds

  11. OPTIMUM, CRITICAL AND THRESHOLD VALUES FOR WATER OXYGENATION FOR MULLETS (MUGILIDAE AND FLATFISHES (PLEURONECTIDAE IN ONTOGENESIS

    Directory of Open Access Journals (Sweden)

    P. Shekk

    2014-12-01

    Full Text Available Purpose. To determine the optimum, critical, and threshold values of water oxygenation for embryos, larvae and fingerlings of mullets and flatfishes under different temperature conditions. Methodology. Oxygen consumption was studied in chronic experiments with «interrupted flow» method with automatic fixation of dissolved oxygen in water with the aid of an oxygen sensor and automatic, continuous recording of the obtained results. «Critical» (Pcrit., and the «threshold» (Pthr. oxygen tension in the water have been determined. Findings. Under optimum conditions, the normal embryogenesis of mullets and flatfish to the gastrulation stage, provided 90–130% oxygen saturation. The critical content was 80–85%, the threshold – 65–70% of the saturation. At the stage of «movable embryo» depending on water temperature and fish species, the optimum range of water oxygenation was within 70‒127.1%. The most tolerant to oxygen deficiency was flounder Platichthys luscus (Pcrit – 25.4–27,5; Pthr. – 20.5–22.5%, the least resistant to hypoxia was striped mullet Mugil серhalus (Pcrit. – 50–60; Pthr. – 35–40%. The limits of the critical and threshold concentration of dissolved oxygen directly depended on the temperature and salinity, at which embryogenesis occurred. An increase in water temperature and salinity resulted in an increase in critical and threshold values for oxygen tension embryos. Mullet and flatfish fingerlings in all stages of development had a high tolerance to hypoxia, which increased as they grew. They were resistant to the oversaturation of water with oxygen. The most demanding for the oxygen regime are larvae and fingerlings of striped mullet and Liza aurata. Hypoxia tolerance of Psetta maeoticus (Psetta maeoticus and flounder at all stages of development is very high. The fingerlings of these species can endure reduction of the dissolved oxygen in water to 2.10 and 1.65 mgO2/dm3 respectively for a long time

  12. In vitro test and application for guided bone regeneration of {beta}-tricalcium phosphate / poly-(lactide-glycolic acid-{epsilon}-caprolactone) composites

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M.; Tanaka, J. [National Inst. for Research in Inorganic Materials, Tsukuba (Japan); Koyama, Y.; Takakuda, K.; Miyairi, H. [Tokyo Medical and Dental Univ. (Japan). Inst. of Biomaterials and Bioengineering

    2001-07-01

    In order to realize easy handling films, novel composites of {beta}-tricalcium phosphate (TCP) and poly-(lactide-glycolic acid-{epsilon}-caprolactone) (PLGC) having a softening temperature of about 40 C were prepared by a heat-kneading method. The composite prepared could be easily formed into a cylindrical membrane at 40 C, and its tensile strength was greater than that of a pure PLGC. From Fourier-transformed infrared spectroscopy, it was shown that the chemical interaction formed between TCP and PLGC. Physiological saline soaking test indicated that TCP inhibited hydrolysis of PLGC by auto-controlling saline pH, resulting in almost constant tensile strength. Mandibular 2-wall bone defects 2 x 1 x 1 cm{sup 3} in size and tibia fully defects 2 cm in length of beagles were filled with new bone 12 weeks after guided bone regeneration (GBR) operation using the composite membrane, although a pure PLGC membrane could not repair such defects. The composite membrane was useful for the GBR membrane. (orig.)

  13. Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio).

    Science.gov (United States)

    Uliano, E; Cataldi, M; Carella, F; Migliaccio, O; Iaccarino, D; Agnisola, C

    2010-11-01

    Acute stress may affect metabolism and nitrogen excretion as part of the adaptive response that allows animals to face adverse environmental changes. In the present paper the acute effects of different salinities and temperatures on routine metabolism, spontaneous activity and excretion of ammonia and urea were studied in two freshwater fish: gambusia, Gambusia affinis and zebrafish, Danio rerio, acclimated to 27 degrees C. The effects on gill morphology were also evaluated. Five salinities (0 per thousand, 10 per thousand, 20 per thousand, 30 per thousand and 35 per thousand) were tested in gambusia, while four salinities were used in zebrafish (0 per thousand, 10 per thousand, 20 per thousand and 25 per thousand). Each salinity acute stress was tested alone or in combination with an acute temperature reduction to 20 degrees C. In gambusia, both salinity and temperature acute stress strongly stimulated urea excretion. Routine oxygen consumption was barely affected by acute salinity or temperature stress, and was reduced by the combined effects of temperature and high salinity. Gills maintained their structural integrity in all stressing conditions; hyperplasia and hypertrophy of mitochondria-rich cells were observed. In zebrafish, temperature and salinity acute changes, both alone and in combination, scarcely affected any parameter tested. The major effect observed was a reduction of nitrogen excretion at 20 degrees C-25 per thousand; under these extreme conditions a significant structural disruption of gills was observed. These results confirm the high tolerance to acute salinity and temperature stress in gambusia, and demonstrate the involvement of urea excretion modulation in the stress response in this species. Copyright 2010 Elsevier Inc. All rights reserved.

  14. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    Science.gov (United States)

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  15. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation.

    Science.gov (United States)

    Boestfleisch, Christian; Wagenseil, Niko B; Buhmann, Anne K; Seal, Charlotte E; Wade, Ellie Merrett; Muscolo, Adele; Papenbrock, Jutta

    2014-08-13

    Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal. To address this, we analysed a range of metabolites with antioxidant capacity (including total phenols, flavonoids, ascorbate, reduced/oxidized glutathione and reactive oxygen species scavenging enzymes) in seedlings and plants from different families (Amaranthaceae, Brassicaceae, Plantaginaceae and Rhizophoraceae) and habitats grown under different salt concentrations. We show that it is possible to manipulate the antioxidant capacity of plants and seedlings by altering the saline growing environment, the length of time under saline cultivation and the developmental stage. Among the species studied, the halophytes Tripolium pannonicum, Plantago coronopus, Lepidium latifolium and Salicornia europaea demonstrated the most potential as functional foods or nutraceuticals. Published by Oxford University Press on behalf of the Annals of Botany Company.

  16. Phosphate additives in food--a health risk.

    Science.gov (United States)

    Ritz, Eberhard; Hahn, Kai; Ketteler, Markus; Kuhlmann, Martin K; Mann, Johannes

    2012-01-01

    Hyperphosphatemia has been identified in the past decade as a strong predictor of mortality in advanced chronic kidney disease (CKD). For example, a study of patients in stage CKD 5 (with an annual mortality of about 20%) revealed that 12% of all deaths in this group were attributable to an elevated serum phosphate concentration. Recently, a high-normal serum phosphate concentration has also been found to be an independent predictor of cardiovascular events and mortality in the general population. Therefore, phosphate additives in food are a matter of concern, and their potential impact on health may well have been underappreciated. We reviewed pertinent literature retrieved by a selective search of the PubMed and EU databases (www.zusatzstoffe-online.de, www.codexalimentarius.de), with the search terms "phosphate additives" and "hyperphosphatemia." There is no need to lower the content of natural phosphate, i.e. organic esters, in food, because this type of phosphate is incompletely absorbed; restricting its intake might even lead to protein malnutrition. On the other hand, inorganic phosphate in food additives is effectively absorbed and can measurably elevate the serum phosphate concentration in patients with advanced CKD. Foods with added phosphate tend to be eaten by persons at the lower end of the socioeconomic scale, who consume more processed and "fast" food. The main pathophysiological effect of phosphate is vascular damage, e.g. endothelial dysfunction and vascular calcification. Aside from the quality of phosphate in the diet (which also requires attention), the quantity of phosphate consumed by patients with advanced renal failure should not exceed 1000 mg per day, according to the guidelines. Prospective controlled trials are currently unavailable. In view of the high prevalence of CKD and the potential harm caused by phosphate additives to food, the public should be informed that added phosphate is damaging to health. Furthermore, calls for labeling

  17. Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle

    DEFF Research Database (Denmark)

    Scheibye-Knudsen, Morten; Quistorff, Bjørn

    2008-01-01

    ADP is generally accepted as a key regulator of oxygen consumption both in isolated mitochondria and in permeabilized fibers from skeletal muscle. The present study explored inorganic phosphate in a similar regulatory role. Saponin permeabilized fibers and isolated mitochondria from type-I and type...

  18. Phosphate analysis of natural sausage casings preserved in brines with phosphate additives as inactivating agent - Method validation.

    Science.gov (United States)

    Wijnker, J J; Tjeerdsma-van Bokhoven, J L M; Veldhuizen, E J A

    2009-01-01

    Certain phosphates have been identified as suitable additives for the improvement of the microbial and mechanical properties of processed natural sausage casings. When mixed with NaCl (sodium chloride) and used under specific treatment and storage conditions, these phosphates are found to prevent the spread of foot-and-mouth disease and classical swine fever via treated casings. The commercially available Quantichrom™ phosphate assay kit has been evaluated as to whether it can serve as a reliable and low-tech method for routine analysis of casings treated with phosphate. The outcome of this study indicates that this particular assay kit has sufficient sensitivity to qualitatively determine the presence of phosphate in treated casings without interference of naturally occurring phosphate in salt used for brines in which casings are preserved.

  19. Characterization of a calcium phosphate cement based on alpha-tricalcium phosphate obtained by wet precipitation process

    International Nuclear Information System (INIS)

    Thurmer, M.B.; Diehl, C.E.; Vieira, R.S.; Coelho, W.T.G.; Santos, L.A.

    2012-01-01

    There are several systems of calcium phosphate cements being studied. Those based on alpha-tricalcium phosphate are of particular interest. After setting they produce calcium deficient hydroxyapatite similar to bone like hydroxyapatite. This work aims to obtain alpha-tricalcium phosphate powders by the wet precipitation process, using calcium nitrate and phosphoric acid as reagents. This powder was characterized by infrared spectroscopy, X-ray diffraction and particle size distribution. In order to prepare the calcium phosphate cement, the powder was mixed with an accelerator in an aqueous solution. The mechanical properties of the cement were assessed and it was evaluated by means of apparent density, X-ray diffraction and scanning electron microscopy. The described method produced crystalline alpha-tricalcium phosphate as the major phase. The calcium phosphate cement showed high values of compression strength (50 MPa). The soaking of the cement in a simulated body fluid (SBF) formed a layer of hydroxyapatite like crystals in the surface of the samples. (author)

  20. COMPARATIVE EFFICACY OF HYPERTONIC SALINE AND NORMAL SALINE SOLUTIONS IN EXPERIMENTALLY INDUCED ENDOTOXIC SHOCK IN DOGS

    Directory of Open Access Journals (Sweden)

    M. A. ZAFAR, G. MUHAMMAD, M. H. HUSSAIN, T. AHMAD, A. YOUSAF AND I. SARFARAZ

    2009-07-01

    Full Text Available This study was contemplated to determine the comparative beneficial effects of hypertonic saline solution and sterile saline solution in induced endotoxic shock in dogs. For this purpose, 12 healthy Mongrel dogs were randomly divided into two equal groups (A and B. All the animals were induced endotoxaemia by slow intravenous administration of Escherichia coli endotoxins 0111:B4. Group A was treated with normal saline solution @ 90 ml/kg BW, while group B was given hypertonic saline solution @ 4 ml/kg BW, followed by normal saline solution @ 10 ml/kg BW. Different parameters were observed for evaluation of these fluids including clinical and haematological parameters, serum electrolytes, mean arterial pressure, and blood gases at different time intervals up to 24 hours post treatments. After infusion of respective fluids, all parameters returned to baseline values in both the groups but group B showed better results than group A except bicarbonates, which better recovered in group A. Thus, it was concluded that a small-volume of hypertonic saline solution could be effectively used in reversing the endotoxaemia. Moreover, it provides a rapid and inexpensive resuscitation from endotoxic shock.

  1. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    Science.gov (United States)

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-07

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.

  2. Phosphate solubilization and multiple plant growth promoting ...

    African Journals Online (AJOL)

    Phosphate solubilizing efficiencies of the strains were analyzed using different insoluble phosphorus sources and the results show that most isolates released a substantial amount of soluble phosphate from tricalcium phosphate, rock phosphate and bone meal. Screening for multiple plant growth promoting attributes ...

  3. Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea

    NARCIS (Netherlands)

    Kraal, P.; Slomp, C.P.; Reed, D.C.; Reichart, G.-J.; Poulton, S.W.

    2012-01-01

    In this study, we investigate phosphorus (P) and iron (Fe) cycling in sediments along a depth transect from within to well below the oxygen minimum zone (OMZ) in the northern Arabian Sea (Murray Ridge). Pore-water and solid-phase analyses show that authigenic formation of calcium phosphate minerals

  4. Yield of radiation-induced DNA single-strand breaks in Escherichia coli and superinfecting phage lambda at different dose rates. Repair of strand breaks in different buffers

    International Nuclear Information System (INIS)

    Boye, E.; Johansen, I.; Brustad, T.

    1976-01-01

    Cells of E. coli K-12 strain AB 1886 were irradiated in oxygenated phosphate buffered saline at 2 0 C with electrons from a 4-MeV linear accelerator. The yield of DNA single-strand breaks was determined as a function of the dose rate between 2.5 and 21,000 krad/min. For dose rates over 100 krad/min the yield was found to be constant. Below 10 krad/min the yield of breaks decreases drastically. This is explained by rejoining of breaks during irradiation. Twenty percent of the breaks induced by acute exposure are repaired within 3 min at 2 0 C. Superinfecting phage lambda DNA is repaired at the same rate as chromosomal DNA. In contrast to the results obtained with phosphate-buffered saline, an increase in the number of breaks after irradiation is observed when the bacteria are suspended in tris buffer. It is suggested that buffers of low ionic strength facilitate the leakage through the membrane of a small-molecular-weight component(s) necessary for DNA strand rejoining

  5. Evaluation of intestinal phosphate binding to improve the safety profile of oral sodium phosphate bowel cleansing.

    Directory of Open Access Journals (Sweden)

    Stef Robijn

    Full Text Available Prior to colonoscopy, bowel cleansing is performed for which frequently oral sodium phosphate (OSP is used. OSP results in significant hyperphosphatemia and cases of acute kidney injury (AKI referred to as acute phosphate nephropathy (APN; characterized by nephrocalcinosis are reported after OSP use, which led to a US-FDA warning. To improve the safety profile of OSP, it was evaluated whether the side-effects of OSP could be prevented with intestinal phosphate binders. Hereto a Wistar rat model of APN was developed. OSP administration (2 times 1.2 g phosphate by gavage with a 12h time interval induced bowel cleansing (severe diarrhea and significant hyperphosphatemia (21.79 ± 5.07 mg/dl 6h after the second OSP dose versus 8.44 ± 0.97 mg/dl at baseline. Concomitantly, serum PTH levels increased fivefold and FGF-23 levels showed a threefold increase, while serum calcium levels significantly decreased from 11.29 ± 0.53 mg/dl at baseline to 8.68 ± 0.79 mg/dl after OSP. OSP administration induced weaker NaPi-2a staining along the apical proximal tubular membrane. APN was induced: serum creatinine increased (1.5 times baseline and nephrocalcinosis developed (increased renal calcium and phosphate content and calcium phosphate deposits on Von Kossa stained kidney sections. Intestinal phosphate binding (lanthanum carbonate or aluminum hydroxide was not able to attenuate the OSP induced side-effects. In conclusion, a clinically relevant rat model of APN was developed. Animals showed increased serum phosphate levels similar to those reported in humans and developed APN. No evidence was found for an improved safety profile of OSP by using intestinal phosphate binders.

  6. OXIDATIVE DEHYDROGENATION OF PROPANE BY RARE EARTH PHOSPHATES SUPPORTED ON AL-PILC

    Directory of Open Access Journals (Sweden)

    Carolina De Los Santos

    2012-12-01

    Full Text Available Catalytic activity in propane oxidative dehydrogenation of rare earth phosphates LnPO4 (where Ln = La, Ce, Pr, Nd, Sm and of the same supported by an aluminum pillared clay, of high specific surface area, is presented. The solids were characterized by TGA, XRD, nitrogen adsorption and immediate analysis after reaction in order to determine eventual carbon formation. Catalytic assays were performed at temperatures in the range 400oC-600oC, the reaction mixture was C3H8/O2/Ar = 10/10/80. All the catalysts were active. The reaction products were H2, CO, CO2, CH4, C2H4 and C3H6 and there were no organic oxygenated compounds detected. Although all the investigated systems were active, the Al-PILC supported catalysts presented a higher activity than the bulk materials. In this context, the samarium supported catalyst showed a propene yield increase from 4% to 10% compared with bulk samarium phosphate at 600°C. This effect was attributed to the increase in the specific surface area.

  7. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Rajnish Prakash Singh

    Full Text Available The present study demonstrates the plant growth promoting (PGP potential of a bacterial isolate CDP-13 isolated from 'Capparis decidua' plant, and its ability to protect plants from the deleterious effect of biotic and abiotic stressors. Based on 16S rRNA gene sequence analysis, the isolate was identified as Serratia marcescens. Among the PGP traits, the isolate was found to be positive for ACC deaminase activity, phosphate solubilization, production of siderophore, indole acetic acid production, nitrogen fixation, and ammonia production. CDP-13 showed growth at an increased salt (NaCl concentration of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. The inoculation of S. marcescens enhanced the growth of wheat plant under salinity stress (150-200 mM. It significantly reduced inhibition of plant growth (15 to 85% caused by salt stressors. Application of CDP-13 also modulated concentration (20 to 75% of different osmoprotectants (proline, malondialdehyde, total soluble sugar, total protein content, and indole acetic acid in plants suggesting its role in enabling plants to tolerate salt stressors. In addition, bacterial inoculation also reduced the disease severity caused by fungal infection, which illustrated its ability to confer induced systemic resistance (ISR in host plants. Treatment of wheat plants with the test organism caused alteration in anti-oxidative enzymes activities (Superoxide dismutase, Catalase, and Peroxidase under various salinity levels, and therefore minimizes the salinity-induced oxidative damages to the plants. Colonization efficiency of strain CDP-13 was confirmed by CFU count, epi-fluorescence microscopy, and ERIC-PCR-based DNA fingerprinting approach. Hence, the study indicates that bacterium CDP-13 enhances plant growth, and has potential for the amelioration of salinity stress in wheat plants. Likewise, the results also provide insights into biotechnological approaches to

  8. Phosphate and phosphate fertilizer sector: structure and future prospects. [Uranium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Zenaidi, B

    1981-12-01

    A statement of the past evolution of this sector's structure is given. Various prospective studies which have been made are reviewed and lead to the precision of the phosphate requirement in the year 2000 which is between 200 and 250 Mt. Only a small section p. 696-697 is devoted to recovery of uranium contained in phosphate and prospects in this field are given.

  9. Electrochemical oxidation of acid black 210 dye on the boron-doped diamond electrode in the presence of phosphate ions: Effect of current density, pH, and chloride ions

    International Nuclear Information System (INIS)

    Costa, Carla Regina; Montilla, Francisco; Morallon, Emilia; Olivi, Paulo

    2009-01-01

    The electrochemical oxidation of acid black 210 dye (AB-210) on the boron-doped diamond (BDD) was investigated under different pH conditions. The best performance for the AB-210 oxidation occurred in alkaline phosphate solution. This is probably due to oxidizing agents such as phosphate radicals and peroxodiphosphate ions, which can be electrochemically produced with good yields on the BDD anode, mainly in alkaline solution. Under this condition, the COD (chemical oxygen demand) removal was higher than that obtained from the model proposed by Comninellis. Electrolyses performed in phosphate buffer and in the presence of chloride ions resulted in faster COD and color removals in acid and neutral solutions, but in alkaline phosphate solution, a better performance in terms of TOC removal was obtained in the absence of chloride. Moreover, organochloride compounds were detected in all electrolyses performed in the presence of chloride. The AB-210 electrooxidation on BDD using phosphate as supporting electrolyte proved to be interesting since oxidizing species generated from phosphate ions were able to completely degrade the dye without producing organochloride compounds.

  10. In situ bioremediation under high saline conditions

    International Nuclear Information System (INIS)

    Bosshard, B.; Raumin, J.; Saurohan, B.

    1995-01-01

    An in situ bioremediation treatability study is in progress at the Salton Sea Test Base (SSTB) under the NAVY CLEAN 2 contract. The site is located in the vicinity of the Salon Sea with expected groundwater saline levels of up to 50,000 ppm. The site is contaminated with diesel, gasoline and fuel oils. The treatability study is assessing the use of indigenous heterotrophic bacteria to remediate petroleum hydrocarbons. Low levels of significant macro nutrients indicate that nutrient addition of metabolic nitrogen and Orthophosphate are necessary to promote the process, requiring unique nutrient addition schemes. Groundwater major ion chemistry indicates that precipitation of calcium phosphorus compounds may be stimulated by air-sparging operations and nutrient addition, which has mandated the remedial system to include pneumatic fracturing as an option. This presentation is tailored at an introductory level to in situ bioremediation technologies, with some emphasize on innovations in sparge air delivery, dissolved oxygen uptake rates, nutrient delivery, and pneumatic fracturing that should keep the expert's interest

  11. Better prospects for phosphate production

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The extraction of uranium as a by product of phosphate production is discussed. Techniques being commercially developed are described. The trend towards the wet process, in which sulphuric acid is used to dissolve the phosphate, producing phosphoric acid, is also the preferred method for uranium recovery. Recovery from a wet process phosphoric acid stream, integrated with phosphate fertilizer manufacture, is becoming increasingly commercially viable for the production of yellow-cake.

  12. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  13. Functional PEG-PAMAM-tetraphosphonate capped NaLnF₄ nanoparticles and their colloidal stability in phosphate buffer.

    Science.gov (United States)

    Zhao, Guangyao; Tong, Lemuel; Cao, Pengpeng; Nitz, Mark; Winnik, Mitchell A

    2014-06-17

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (M(n) = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (M(n) = 2000) and biotin-terminated PEG (M(n) = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000-PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir 2012, 28, 12861-12870) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline.

  14. Occurrence and functioning of phosphate solubilizing ...

    African Journals Online (AJOL)

    Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree ( Elaeis guineensis ) rhizosphere in Cameroon. ... While the use of soluble mineral phosphate fertilizers is the obvious best means to combat phosphate ... in order to improve agricultural production, using low inputs technology. Isolates ...

  15. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase

    Energy Technology Data Exchange (ETDEWEB)

    Miyaji, Akimitsu [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kohno, Masahiro [Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-G1-25 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Inoue, Yoshihiro [Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543 (Japan); Baba, Toshihide, E-mail: tbaba@chemenv.titech.ac.jp [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that {sup 1}O{sub 2} generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte. - Highlights: • Generation of singlet oxygen was observed during tyrosinase-catalyzed tyrosine oxidation. • The singlet oxygen generated when tyrosine was converted into dopachrome. • The amount of singlet oxygen is not sufficient for cell toxicity. • It decreased when the hydroxyl radicals and/or superoxide anions were trapped.

  16. The Effects of In-Hospital Intravenous Cold Saline in Postcardiac Arrest Patients Treated with Targeted Temperature Management.

    Science.gov (United States)

    Suppogu, Nissi; Panza, Gregory A; Kilic, Sena; Gowdar, Shreyas; Kallur, Kamala R; Jayaraman, Ramya; Lundbye, Justin; Fernandez, Antonio B

    2018-03-01

    Recent data suggest that rapid infusion of intravenous (IV) cold saline for Targeted Temperature Management (TTM) after cardiac arrest is associated with higher rates of rearrest, pulmonary edema, and hypoxia, with no difference in neurologic outcomes or survival when administered by Emergency Medical Services. We sought to determine the effects of IV cold saline administration in the hospital setting in postcardiac arrest patients to achieve TTM and its effect on clinical parameters and neurologic outcomes. A cohort of 132 patients who completed TTM after cardiac arrest in a single institution was retrospectively studied. Patients who did not receive cold saline were matched by age, gender, Glasgow coma scale, downtime, and presenting rhythm to patients who received cold saline. Demographics, cardiac rearrest, diuretic use, time to target temperature, and Cerebral Performance Category (CPC) scores were recorded among other variables. Patients who received cold saline achieved target temperature sooner (280 vs. 345 minutes, p = 0.05), had lower lactate levels on day 1 (4.2 ± 3.5 mM vs. 6.0 ± 4.9 mM, p = 0.019) and day 2 (1.3 ± 2.2 mM vs. 2.2 ± 3.2 mM, p = 0.046), increased incidence of pulmonary edema (51.5% vs. 31.8%, p = 0.006), and increased diuretic utilization (63.6% vs. 42.4%, p = 0.014). There was no significant difference in cardiac rearrest, arterial oxygenation, and CPC scores (ps > 0.05). Infusion of IV cold saline is associated with shorter time to target temperature, increased incidence of pulmonary edema, and diuretic use, with no difference in cardiac rearrest, survival, and neurologic outcomes.

  17. Method for measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1986-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)p 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is determined

  18. PHOSPHATE CRYSTALLURIA IN VARIOUS FORMS OF UROLITHIASIS AND POSSIBILITIES OF ITS PROGNOSTICATION IN PATIENTS WITH PHOSPHATE STONES

    Directory of Open Access Journals (Sweden)

    O. V. Konstantinova

    2017-01-01

    Full Text Available Purpose. Definition of types of crystalluria in various forms of urolithiasis and biochemical signs of phosphate crystals in the urine, while phosphate urolithiasis (infectious origin.Patients and methods. The study involved 144 patients with recurrent urolithiasis — 75 women and 69 men. Of these, 46 — diagnosed calculi with uric acid, 44 — calcium oxalate or mixed with a prevalence of calcium oxalate, in 54 — phosphate rocks (carbonate-apatite and/or struvite. The age of patients ranged from 21 to 74 years. 93 people have been under long-term, within 2–15 years, outpatient observation. The examination included the collection of anamnesis, general and microbiological analysis of urine, biochemical blood serum and urine on 10 indicators, reflecting renal function, state of the protein, water and electrolyte metabolism, uric acid metabolism, the chemical composition of the stone analysis.Results. It was found that in patients with calcium oxalate stones phosphaturia has been diagnosed in 2% of cases. And, along with calcium phosphate crystals they had oxalate crystals. In patients with phosphate urolithiasis phosphaturia observed in 96% of patients, in two patients (4% they determined except phosphates also oxalate salt in urine sediment. Patients with phosphate urolithiasis at occurrence of phosphate crystalluria have metabolic state changes: increased serum uric acid concentration from 0.322 ± 0.009 to 0.367 ± 0.018 mmol/l daily renal excretion of inorganic phosphate 23.94 ± 2.93 mmol/day to 32.12 ± 4.39 mmol/day, and reduced total calcium content in urine 6.61 ± 0.94 mmol/day to 3.37 ± 0.89 mmol/day. The results led to the following conclusion.Conclusion. Biochemical signs of occurrence of phosphate crystalluria in patients with stones of infectious origin can be: the approaching level of excretion in the urine of inorganic phosphates to 32,12 ± 4,39 mmol/day, serum uric acid concentration to 0,367 ± 0,018 mmol/l, and the

  19. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrão, Sónia

    2016-10-06

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.

  20. on association of trialkyl phosphates

    International Nuclear Information System (INIS)

    Petkovic, D.M.; Maksimovic, Z.B.

    1976-01-01

    The association constants of tri-n-butyl (TBP), tri-n-propyl (TPP) and triethyl phosphate (TEP) with chloroform, carbon tetrachloride and benzene were determined by dielectric constant, proton magnetic resonance and vapor pressure measurements. Correlation of the trialkyl phosphate-chloroform association constants, using the Hammett equation, showed their increase with the number of carbon atoms in the aliphatic radicals. The change of trialkyl phosphate reactivity with temperature was used to determine the thermodynamic quantities. (author)

  1. Microstrip Patch Sensor for Salinity Determination.

    Science.gov (United States)

    Lee, Kibae; Hassan, Arshad; Lee, Chong Hyun; Bae, Jinho

    2017-12-18

    In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS), and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under -20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of -35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF) tunable sensors for salinity determination.

  2. Bio-treatment of phosphate from synthetic wastewater using ...

    African Journals Online (AJOL)

    In this study, the efficient phosphate utilizing isolates were used to remove phosphate from synthetic phosphate wastewater was tested using batch scale process. Hence the objective of the present study was to examine the efficiency of bacterial species individually for the removal of phosphate from synthetic phosphate ...

  3. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  4. Physicochemical Characteristics of Pennar River, A Fresh Water Wetland in Kerala, India

    Directory of Open Access Journals (Sweden)

    P. V. Joseph

    2010-01-01

    Full Text Available Some physicochemical characteristics of a fresh water wetland were investigated. The analysis was carried out for a period of two years. Physical parameters such as colour, odour, temperature, electrical conductivity (EC total suspended solids (TSS total dissolved substances (TDS, total solids (TS, turbidity and chemical parameters such as pH, alkalinity, hardness, dissolved oxygen (DO, biochemical oxygen demand (BOD, chemical oxygen demand (COD, chloride, salinity, flouride, phosphate & nitrate were examined. Results of the study indicated that water in Pennar river is highly contaminated and not safe for drinking. Uncontrolled use of chemical fertilizers and pesticides, unscrupulous dumping of domestic wastes are the major causes of deterioration of water. Poor quality of drinking water was recorded as the major risk factor for the large-scale water-borne diseases in the area.

  5. Zur Biologie des Planktons des Königshafens (Nordsylter Wattenmeer)

    Science.gov (United States)

    Martens, P.

    1982-06-01

    From May 1979 on, the following parameters were measured at a station in the inlet of Königshafen near List (Island of Sylt): temperature, salinity, mesozooplankton (>76 µm), chlorophyll-a, seston dry weight, oxygen and phytoplankton-nutrients (NH4-N, NO2-N, NO3-N, PO4-P, SiO3-Si). A multiple regression analysis showed the interrelationships between the parameters measured. Tidal influences on zooplankton and seston dry weight could be observed. At low tide, the amount of zooplankton (not counting the harpacticoid copepods) declines and the number of harpacticoid copepods rises as does the seston dry weight too. The chlorophyll-a content is a function of the phytoplankton-nutrients. An increase in chlorophyll-a leads to a decrease in nitrogen and silicate concentrations. Phosphate, due possibly to a sewage inlet into the Königshafen, is not a limiting factor. The availability of nutrients is influenced by temperature, salinity and the tidal cycle. The amount of oxygen is dependent on water temperature and seston dry weight. High water temperatures and a high seston content lead to a decrease in oxygen concentrations.

  6. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean; TOPICAL

    International Nuclear Information System (INIS)

    Sabine, C.L.; Key, R.M.; Hall, M.; Kozyr, A.

    1999-01-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and radiocarbon (delta 14C), at hydrographic stations, as well as the underway partial pressure of CO2 (pCO2) during the R/V Thomas G. Thompson oceanographic cruise in the Pacific Ocean (Section P10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Suva, Fiji, on October 5, 1993, and ended in Yokohama, Japan, on November 10, 1993. Measurements made along WOCE Section P10 included pressure, temperature, salinity[measured by conductivity temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO2, TALK, delta 14C, and underway pCO2

  7. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Sabine, C.L.; Key, R.M.; Hall, M.; Kozyr, A.

    1999-08-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and radiocarbon (delta 14C), at hydrographic stations, as well as the underway partial pressure of CO2 (pCO2) during the R/V Thomas G. Thompson oceanographic cruise in the Pacific Ocean (Section P10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Suva, Fiji, on October 5, 1993, and ended in Yokohama, Japan, on November 10, 1993. Measurements made along WOCE Section P10 included pressure, temperature, salinity [measured by conductivity temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO2, TALK, delta 14C, and underway pCO2.

  8. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel

    International Nuclear Information System (INIS)

    Fernandes, Kirlene Salgado; Alvarenga, Evandro de Azevedo; Lins, Vanessa de Freitas Cunha

    2011-01-01

    Hopeite-type phosphate coatings in which zinc is partially replaced by other metals like manganese and nickel are of great interest for the automotive and home appliance industries. Such industries use phosphate conversion coatings on galvanized steels in association with cataphoretic electro painting. Zinc phosphates modified with manganese and nickel are isomorphic with the hopeite, and the phase identification using X-ray diffraction is difficult. In this paper, the phosphate coatings are identified using the Fourier transform infrared spectroscopy (FTIR). (author)

  9. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  10. Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.

    Science.gov (United States)

    Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A

    2018-06-22

    High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.

  11. Phosphate acquisition efficiency and phosphate starvation tolerance ...

    Indian Academy of Sciences (India)

    3Department of Genetics and Plant Breeding, College of Agriculture, Lembucherra, Tripura 799 ... vated in soil like red and lateritic or acid, with low soluble phosphate content. ..... activation of genes involved in the adaptation of Arabidopsis to.

  12. Most consumed processed foods by patients on hemodialysis: Alert for phosphate-containing additives and the phosphate-to-protein ratio.

    Science.gov (United States)

    Watanabe, Marcela T; Araujo, Raphael M; Vogt, Barbara P; Barretti, Pasqual; Caramori, Jacqueline C T

    2016-08-01

    Hyperphosphatemia is common in patients with chronic kidney disease (CKD) stages IV and V because of decreased phosphorus excretion. Phosphatemia is closely related to dietary intake. Thus, a better understanding of sources of dietary phosphate consumption, absorption and restriction, particularly inorganic phosphate found in food additives, is key to prevent consequences of this complication. Our aims were to investigate the most commonly consumed processed foods by patients with CKD on hemodialysis, to analyze phosphate and protein content of these foods using chemical analysis and to compare these processed foods with fresh foods. We performed a cross-sectional descriptive analytical study using food frequency questionnaires to rank the most consumed industrialized foods and beverages. Total phosphate content was determined by metavanadate colorimetry, and nitrogen content was determined by the Kjeldahl method. Protein amounts were estimated from nitrogen content. The phosphate-to-protein ratio (mg/g) was then calculated. Processed meat protein and phosphate content were compared with the nutritional composition of fresh foods using the Brazilian Food Composition Table. Phosphate measurement results were compared with data from the Food Composition Table - Support for Nutritional Decisions. An α level of 5% was considered significant. Food frequency questionnaires were performed on 100 patients (mean age, 59 ± 14 years; 57% male). Phosphate additives were mentioned on 70% of the product labels analyzed. Proteins with phosphate-containing additives provided approximately twice as much phosphate per gram of protein compared with that of fresh foods (p processed foods are higher than those of fresh foods, as well as phosphate-to-protein ratio. A better understanding of phosphate content in foods, particularly processed foods, may contribute to better control of phosphatemia in patients with CKD. Copyright © 2016 European Society for Clinical Nutrition and

  13. 31P-Nuclear Magnetic Resonance Determination of Phosphate Compartmentation in Leaves of Reproductive Soybeans (Glycine max L.) as Affected by Phosphate Nutrition 1

    Science.gov (United States)

    Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna

    1989-01-01

    Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705

  14. Modulating calcium phosphate formation using CO2 laser engineering of a polymeric material

    International Nuclear Information System (INIS)

    Waugh, D.G.; Lawrence, J.

    2012-01-01

    The use of simulated body fluid (SBF) is widely used as a screening technique to assess the ability of materials to promote calcium phosphate formation. This paper details the use of CO 2 laser surface treatment of nylon® 6,6 to modulate calcium phosphate formation following immersion in SBF for 14 days. Through white light interferometry (WLI) it was determined that the laser surface processing gave rise to maximum Ra and Sa parameters of 1.3 and 4.4 μm, respectively. The use of X-ray photoelectron spectroscopy (XPS) enabled a maximum increase in surface oxygen content of 5.6%at. to be identified. The laser-induced surface modifications gave rise to a modulation in the wettability characteristics such that the contact angle, θ, decreased for the whole area processed samples, as expected, and increased for the patterned samples. The increase in θ can be attributed to a transition in wetting nature to a mixed-state wetting regime. It was seen for all samples that calcium phosphate formed on each surface following 14 days. The largest increase in mass, Δg, owed to calcium phosphate formation, was brought about by the whole area processed sample irradiated with a fluence of 51 J cm −2 . No correlation between the calcium phosphate formation and the laser patterned surface properties was determined due to the likely affect of the mixed-state wetting regime. Strong correlations between θ, the surface energy parameters and the calcium phosphate formation for the whole area processed samples allow one to realize the potential for this surface treatment technique in predicting the bone forming ability of laser processed materials. - Highlights: ► Surface modifications brought about a modulation in the wetting of nylon 6,6. ► An increase in θ can be attributed to a mixed-state wetting regime. ► Laser surface treatment modulated the ability to promote apatite formation. ► Mixed-state wetting regime affected the promotion of uniform apatite formation.

  15. Pentose phosphates in nucleoside interconversion and catabolism.

    Science.gov (United States)

    Tozzi, Maria G; Camici, Marcella; Mascia, Laura; Sgarrella, Francesco; Ipata, Piero L

    2006-03-01

    Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway, or are supplied by nucleoside phosphorylases. The two main pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, are readily interconverted by the action of phosphopentomutase. Ribose-5-phosphate is the direct precursor of 5-phosphoribosyl-1-pyrophosphate, for both de novo and 'salvage' synthesis of nucleotides. Phosphorolysis of deoxyribonucleosides is the main source of deoxyribose phosphates, which are interconvertible, through the action of phosphopentomutase. The pentose moiety of all nucleosides can serve as a carbon and energy source. During the past decade, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. We review herein the experimental knowledge on the molecular mechanisms by which (a) ribose-1-phosphate, produced by purine nucleoside phosphorylase acting catabolically, is either anabolized for pyrimidine salvage and 5-fluorouracil activation, with uridine phosphorylase acting anabolically, or recycled for nucleoside and base interconversion; (b) the nucleosides can be regarded, both in bacteria and in eukaryotic cells, as carriers of sugars, that are made available though the action of nucleoside phosphorylases. In bacteria, catabolism of nucleosides, when suitable carbon and energy sources are not available, is accomplished by a battery of nucleoside transporters and of inducible catabolic enzymes for purine and pyrimidine nucleosides and for pentose phosphates. In eukaryotic cells, the modulation of pentose phosphate production by nucleoside catabolism seems to be affected by developmental and physiological factors on enzyme levels.

  16. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  17. Microstrip Patch Sensor for Salinity Determination

    Directory of Open Access Journals (Sweden)

    Kibae Lee

    2017-12-01

    Full Text Available In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS, and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under −20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of −35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF tunable sensors for salinity determination.

  18. Estimating Remineralized Phosphate and Its Remineralization Rate in the Northern East China Sea During Summer 1997: A Snapshot Study Before Three-Gorges Dam Construction

    Directory of Open Access Journals (Sweden)

    Hyun-Cheol Kim

    2016-01-01

    Full Text Available The northern East China Sea (a.k.a., “The South Sea” is a dynamic zone that exerts a variety of effects on the marine ecosystem due to Three-Gorges Dam construction. As the northern East China Sea region is vulnerable to climate forcing and anthropogenic impacts, it is important to investigate how the remineralization rate in the northern East China Sea has changed in response to such external forcing. We used an historical hydrographic dataset from August 1997 to obtain a baseline for future comparison. We estimate the amount of remineralized phosphate by decomposing the physical mixing and biogeochemical process effect using water column measurements (temperature, salinity, and phosphate. The estimated remineralized phosphate column inventory ranged from 0.8 to 42.4 mmol P m-2 (mean value of 15.2 ± 12.0 mmol P m-2. Our results suggest that the Tsushima Warm Current was a strong contributor to primary production during the summer of 1997 in the study area. The estimated summer (June - August remineralization rate in the region before Three-Gorges Dam construction was 18 ± 14 mmol C m-2 d-1.

  19. Meal phosphate variability does not support fixed dose phosphate binder schedules for patients treated with peritoneal dialysis: a prospective cohort study.

    Science.gov (United States)

    Leung, Simon; McCormick, Brendan; Wagner, Jessica; Biyani, Mohan; Lavoie, Susan; Imtiaz, Rameez; Zimmerman, Deborah

    2015-12-09

    Removal of phosphate by peritoneal dialysis is insufficient to maintain normal serum phosphate levels such that most patients must take phosphate binders with their meals. However, phosphate 'counting' is complicated and many patients are simply prescribed a specific dose of phosphate binders with each meal. Therefore, our primary objective was to assess the variability in meal phosphate content to determine the appropriateness of this approach. In this prospective cohort study, adult patients with ESRD treated with peritoneal dialysis and prescribed phosphate binder therapy were eligible to participate. Participants were excluded from the study if they were unable to give consent, had hypercalcemia, were visually or hearing impaired or were expected to receive a renal transplant during the time of the study. After providing informed consent, patients kept a 3-day diet diary that included all foods and beverages consumed in addition to portion sizes. At the same time, patients documented the amount of phosphate binders taken with each meal. The phosphate content of the each meal was estimated using ESHA Food Processor SQL Software by a registered dietitian. Meal phosphate and binder variability were estimated by the Intra Class Correlation Coefficient (ICC) where 0 indicates maximal variability and 1 indicates no variability. Seventy-eight patients consented to participate in the study; 18 did not complete the study protocol. The patients were 60 (± 17) years, predominately male (38/60) and Caucasian (51/60). Diabetic nephropathy was the most common cause of end stage kidney disease. The daily phosphate intake including snacks ranged from 959 ± 249 to 1144 ± 362 mg. The phosphate ICC by meal: breakfast 0.63, lunch 0.16; supper 0.27. The phosphate binder ICC by meal: breakfast 0.68, lunch 0.73, supper 0.67. The standard prescription of a set number of phosphate binders with each meal is not supported by the data; patients do not appear to be adjusting their

  20. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.

    Science.gov (United States)

    Morimoto, Shinji; Anada, Takahisa; Honda, Yoshitomo; Suzuki, Osamu

    2012-08-01

    The present study was designed to investigate the extent to which calcium phosphate bone substitute materials, including osteoconductive octacalcium phosphate (OCP), display cytotoxic and inflammatory responses based on their dissolution in vitro. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics, which are clinically used, as well as dicalcium phosphate dihydrate (DCPD) and synthesized OCP were compared. The materials were well characterized by chemical analysis, x-ray diffraction and Fourier transform infrared spectroscopy. Calcium and phosphate ion concentrations and the pH of culture media after immersion of the materials were determined. The colony forming rate of Chinese hamster lung fibroblasts was estimated with extraction of the materials. Proliferation of bone marrow stromal ST-2 cells and inflammatory cytokine TNF-α production by THP-1 cells grown on the material-coated plates were examined. The materials had characteristics that corresponded to those reported. DCPD was shown to dissolve the most in the culture media, with a marked increase in phosphate ion concentration and a reduction in pH. ST-2 cells proliferated well on the materials, with the exception of DCPD, which markedly inhibited cellular growth. The colony forming capacity was the lowest on DCPD, while that of the other calcium phosphates was not altered. In contrast, TNF-α was not detected even in cells grown on DCPD, suggesting that calcium phosphate materials are essentially non-inflammatory, while the solubility of the materials can affect osteoblastic and fibroblastic cellular attachment. These results indicate that OCP is biocompatible, which is similar to the materials used clinically, such as HA. Therefore, OCP could be clinically used as a biocompatible bone substitute material.

  1. Salinity stress effects on [14C-1]- and [14C-6]-glucose metabolism of a salt-tolerant and salt-susceptible variety of wheat

    International Nuclear Information System (INIS)

    Krishnaraj, S.; Thorpe, T.A.

    1996-01-01

    The effect of salt (sodium sulfate) on carbohydrate metabolism was studied in a salt-tolerant (Kharchia-65) variety and a salt-susceptible (Fielder) variety of wheat (Triticum aestivum L.) by comparing their responses under control and stress conditions. Leaf segments of Kharchia-65 showed increased activity through both the pentose phosphate pathway (PPP) and the glycolytic pathway of glucose oxidation, with the former being comparatively more active in response to salt. In Fielder, there was an increase in PPP activity at the expense of glycolytic pathway activity. Label from glucose was found in the lipid, neutral sugar, amino acid, organic acid, and phosphate ester fractions in all treatments. On the basis of the label distribution patterns, it appears that Fielder leaves incubated with [ 14 C-6]-glucose were not able to utilize glucose efficiently under saline conditions. This finding was further supported by decreased label incorporation into all the fractions, especially the amino acid and organic acid fractions. Adenosine phosphate and reduced pyridine nucleotide concentrations were consistent with these observations. We conclude therefore that the salt-tolerant variety had an enhanced metabolic activity compared with the salt-susceptible variety, which contributed to its ability to overcome the adverse effects of salt. (author)

  2. Salinity tolerance of the South African endemic amphipod ...

    African Journals Online (AJOL)

    Salinities were prepared using natural seawater and synthetic sea salt. Grandidierella lignorum tolerated all salinities, but showed highest survival at salinities of 7–42. Salinity tolerance was modified by temperature, with highest survival occurring between 10 and 25 °C. These represent the range of conditions at which ...

  3. Analyses of uranium in some phosphate commercial products

    International Nuclear Information System (INIS)

    Kamel, N.H.M.; Sohsah, M.; Mohammad, H.M.; Sadek, M.

    2005-01-01

    The raw materials used in manufacturing of phosphate fertilizer products were derived from rocks. Rocks contain a remarkable of natural radioactivity. Uranium and phosphorous were originally initiated at the same time of the initiated rocks. The purpose of this research is to investigate solubility of uranium phosphate species at the phosphate fertilizer samples, samples including; raw phosphate material, single super phosphates (SSP) granules and powdered, triple super phosphates (TSP) and phosphogypsum samples were obtained from Abu-Zabal factory in Egypt. Solubility of uranium phosphate species was estimated. It was found that, less than half of the uranium phosphate species are soluble in water. The soluble uranium may be enter into the food chains by plant. Therefore, restriction should be done in order to limit contamination of land and the public

  4. Triple oxygen isotope systematics of structurally bonded water in gypsum

    Science.gov (United States)

    Herwartz, Daniel; Surma, Jakub; Voigt, Claudia; Assonov, Sergey; Staubwasser, Michael

    2017-07-01

    The triple oxygen isotopic composition of gypsum mother water (gmw) is recorded in structurally bonded water in gypsum (gsbw). Respective fractionation factors have been determined experimentally for 18O/16O and 17O/16O. By taking previous experiments into account we suggest using 18αgsbw-gmw = 1.0037; 17αgsbw-gmw = 1.00195 and θgsbw-gmw = 0.5285 as fractionation factors in triple oxygen isotope space. Recent gypsum was sampled from a series of 10 ponds located in the Salar de Llamara in the Atacama Desert, Chile. Total dissolved solids (TDS) in these ponds show a gradual increase from 23 g/l to 182 g/l that is accompanied by an increase in pond water 18O/16O. Gsbw falls on a parallel curve to the ambient water from the saline ponds. The offset is mainly due to the equilibrium fractionation between gsbw and gmw. However, gsbw represents a time integrated signal biased towards times of strong evaporation, hence the estimated gmw comprises elevated 18O/16O compositions when compared to pond water samples taken on site. Gypsum precipitation is associated with algae mats in the ponds with lower salinity. No evidence for respective vital effects on the triple oxygen isotopic composition of gypsum hydration water is observed, nor are such effects expected. In principle, the array of δ18Ogsbw vs. 17Oexcess can be used to: (1) provide information on the degree of evaporation during gypsum formation; (2) estimate pristine meteoric water compositions; and (3) estimate local relative humidity which is the controlling parameter of the slope of the array for simple hydrological situations. In our case study, local mining activities may have decreased deep groundwater recharge, causing a recent change of the local hydrology.

  5. NOAA Average Annual Salinity (3-Zone)

    Data.gov (United States)

    California Natural Resource Agency — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...

  6. Autonomous observations of in vivo fluorescence and particle backscatteringin an oceanic oxygen minimum zone.

    Science.gov (United States)

    Whitmire, A L; Letelier, R M; Villagrán, V; Ulloa, O

    2009-11-23

    The eastern South Pacific (ESP) oxygen minimum zone (OMZ) is a permanent hydrographic feature located directly off the coasts of northern Chile and Peru. The ESP OMZ reaches from coastal waters out to thousands of kilometers offshore, and can extend from the near surface to depths greater than 700 m. Oxygen minimum zones support unique microbial assemblages and play an important role in marine elemental cycles. We present results from two autonomous profiling floats that provide nine months of time-series data on temperature, salinity, dissolved oxygen, chlorophyll a, and particulate backscattering in the ESP OMZ. We observed consistently elevated backscattering signals within low-oxygen waters, which appear to be the result of enhanced microbial biomass in the OMZ intermediate waters. We also observed secondary chlorophyll a fluorescence maxima within low-oxygen waters when the upper limit of the OMZ penetrated the base of the photic zone. We suggest that autonomous profiling floats are useful tools for monitoring physical dynamics of OMZs and the microbial response to perturbations in these areas.

  7. A Pacific hydrographic section at 88°W: Water-property distribution

    Science.gov (United States)

    Tsuchiya, Mizuki; Talley, Lynne D.

    1998-06-01

    Full-depth conductivity-temperature-depth (CTD)/hydrographic measurements with high horizontal and vertical resolution were made in February-April 1993 along a line lying at a nominal longitude of 88°W and extending from southern Chile (54°S) to Guatemala (14°N). It crossed five major deep basins (Southeast Pacific, Chile, Peru, Panama, and Guatemala basins) east of the East Pacific Rise. Vertical sections of potential temperature, salinity, potential density, oxygen, silica, phosphate, nitrate, and nitrite are presented to illustrate the structure of the entire water column. Some features of interest found in the sections are described, and an attempt is made to interpret them in terms of the isopycnal property distributions associated with the large-scale ocean circulation. These features include: various near-surface waters observed in the tropical and subtropical regions and the fronts that mark the boundaries of these waters; the possible importance of salt fingering to the downward salt transfer from the high-salinity subtropical water; a shallow thermostad (pycnostad) developed at 16°-18.5°C in the subtropical water; low-salinity surface water in the subantarctic zone west of southern Chile; large domains of extremely low oxygen in the subpycnocline layer on both sides of the equator and a secondary nitrite maximum associated with a nitrate minimum in these low-oxygen domains; high-salinity, low-oxygen, high-nutrient subpycnocline water that is carried poleward along the eastern boundary by the Peru-Chile Undercurrent; the Subantarctic Mode and Antarctic Intermediate waters; middepth isopycnal property extrema observed at the crest of the Sala y Gomez Ridge; influences of the North Pacific and the North Atlantic upon deep waters along the section; and the characteristics and sources of the bottom waters in the five deep basins along the section.

  8. Phosphate Reduction in Emulsified Meat Products: Impact of Phosphate Type and Dosage on Quality Characteristics.

    Science.gov (United States)

    Glorieux, Seline; Goemaere, Olivier; Steen, Liselot; Fraeye, Ilse

    2017-09-01

    Phosphate reduction is of important industrial relevance in the manufacturing of emulsified meat products because it may give rise to a healthier product. The effect of seven different phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP) and sodium tripolyphosphate (STPP) increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had little effect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06% TSPP was sufficient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsified meat products can be significantly reduced with minimal loss of product quality.

  9. Design of nanocoatings by in situ phosphatizing reagent catalyzed polysilsesquioxane for corrosion inhibition and adhesion promotion on metal alloys

    Science.gov (United States)

    Henderson, Kimberly B.

    When a metal reacts with oxygen and water, a redox reaction happens, which will cause corrosion. Current surface pretreatment for inhibiting corrosion on metal alloys is a phosphate conversion bath. The phosphate conversion bath will generate a phosphate-chromate layer to adhere strongly to a metal substrate. However, it is toxic and unfriendly to the environment. Our group proposed an innovative coating that contains a phosphate component (ISPR-In-situ Phosphatizing Reagent) within a protective coating. The ISPR coating will form a bound phosphate layer on the metal surface acting as the corrosion barrier and enhancing adhesion into the metal surface; moreover, it is low in cost and non-toxic. Within this dissertation, there are four projects that investigate design of ISPR nanocoatings for the use of corrosion inhibition and adhesion promotion. Surface modification and adjusting concentrations of materials with the different formulations are explored. The first project focuses on the adhesion enhancement of a coating created by modifying the surface of an aluminum panel. Secondly, the next project will discuss and present the use of three rare earth element formulations as a replacement for phosphate conversion coatings on magnesium alloy, AZ61. The third project is the design of a nanocoating by using heat dissipating materials to fill in small vacant spaces in the ISPR network coating on various metal alloys. The last project, studies the strategic selection of incorporating metal components into ISPR network by the reduction potential values on several different alloys. Many methods of analysis are used; SEM, TEM, ASTM B117, ASTM D1308, ASTM D3359, EIS, and thickness probe. It was found that the addition of ISPR in the nanocoatings dramatically improves the vitality of metal alloys and these results will be presented during this dissertation.

  10. Acetate and phosphate anion adsorption linear sweep voltammograms simulated using density functional theory

    KAUST Repository

    Savizi, Iman Shahidi Pour

    2011-04-01

    Specific adsorption of anions to electrode surfaces may alter the rates of electrocatalytic reactions. Density functional theory (DFT) methods are used to predict the adsorption free energy of acetate and phosphate anions as a function of Pt(1 1 1) electrode potential. Four models of the electrode potential are used including a simple vacuum slab model, an applied electric field model with and without the inclusion of a solvating water bi-layer, and the double reference model. The linear sweep voltammogram (LSV) due to anion adsorption is simulated using the DFT results. The inclusion of solvation at the electrochemical interface is necessary for accurately predicting the adsorption peak position. The Langmuir model is sufficient for predicting the adsorption peak shape, indicating coverage effects are minor in altering the LSV for acetate and phosphate adsorption. Anion adsorption peak positions are determined for solution phase anion concentrations present in microbial fuel cells and microbial electrolysis cells and discussion is provided as to the impact of anion adsorption on oxygen reduction and hydrogen evolution reaction rates in these devices. © 2011 Elsevier Ltd. All rights reserved.

  11. Study of radon-222 emanation from sedimentary phosphates and corresponding phosphogypsum. Temperature effect

    International Nuclear Information System (INIS)

    Boujrhal, F.M.

    1993-01-01

    The aim of this study is to examine the effect of temperature on radon emanation from the phosphates of various regions of Morocco, from corresponding phosphogypsum and from teeth fossilized of Youssoufia phosphate. The interpretation of obtained results was carried out by the physicochemical studies with various approaches; the X-ray diffraction analysis, the measurement of the specific surface area and porousness, the determination of the oxygen content by activation analysis with 14 MeV neutron. The thermal treatment between 100 and 900 degrees C conducted to the following points: - An increase of the radon degassing rate, which is first slow when the temperature increase from 20 to 600 degrees C, then becomes brutal beyond this temperature. We attributed this variation to the training effect ( transport effect ) of radon by the others gas susceptible to be released with thermal effect, particularly the CO sub 2. - The reduction of the radon emanation power versus temperature. We could demonstrate a linear correlation between the power emanation and the specific surface area. 122 refs., 102 figs., 20 tabs. (Author)

  12. Functional PEG–PAMAM-Tetraphosphonate Capped NaLnF4 Nanoparticles and their Colloidal Stability in Phosphate Buffer

    Science.gov (United States)

    2015-01-01

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (Mn = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (Mn = 2000) and biotin-terminated PEG (Mn = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000–PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir2012, 28, 12861−1287022906305) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline. PMID:24898128

  13. Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity.

    Science.gov (United States)

    Lastochkina, Oksana; Pusenkova, Ludmila; Yuldashev, Ruslan; Babaev, Marat; Garipova, Svetlana; Blagova, Dar'ya; Khairullin, Ramil; Aliniaeifard, Sasan

    2017-12-01

    Endophytic strain Bacillus subtilis (B. subtilis) 10-4, producing indole-3-acetic acid (IAA) and siderofores but not active in phosphate solubilization, exerted a protective effect on Triticum aestivum L. (wheat) plant grown under salinity (2% NaCl) stress. Exposure to salt stress resulted in an essential increase of proline (Pro) and malondialdehyde (MDA) level in the seedlings. At the same time the seedlings inoculated with B. subtilis 10-4 were characterized by decreased level of stress-induced Pro and MDA accumulation. It was revealed that both B. subtilis 10-4 and salinity caused increase in the content of endogenous salicylic acid (SA) in wheat seedlings as compared to SA content in the control, while B. subtilis 10-4 suppressed stress-induced SA accumulation. Water storage capacity (WSC) in leaf tissues was increased and stress-induced hydrolysis of statolite starch in root cap cells of the germinal roots was reduced by B. subtilis 10-4. The obtained data indicated that the activation of the defense reactions induced by B. subtilis 10-4 induced defense reactions may be connected with their ability to decrease the level of stress-induced oxidative and osmotic stress in seedlings and with the increase of endogenous SA level that can make a significant contribution to the implementation of the protective effect of B. subtilis 10-4 and is manifested in the improvement of plant growth, WSC of leaves and slowing down of the process of statolite starch hydrolysis under salinity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Salinity: Electrical conductivity and total dissolved solids

    Science.gov (United States)

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  15. [Phosphate-solubilizing activity of aerobic methylobacteria].

    Science.gov (United States)

    Agafonova, N V; Kaparullina, E N; Doronina, N V; Trotsenko, Iu A

    2014-01-01

    Phosphate-solubilizing activity was found in 14 strains of plant-associated aerobic methylobacteria belonging to the genera Methylophilus, Methylobacillus, Methylovorus, Methylopila, Methylobacterium, Delftia, and Ancyclobacter. The growth of methylobacteria on medium with methanol as the carbon and energy source and insoluble tricalcium phosphate as the phosphorus source was accompanied by a decrease in pH due to the accumulation of up to 7 mM formic acid as a methanol oxidation intermediate and by release of 120-280 μM phosphate ions, which can be used by both bacteria and plants. Phosphate-solubilizing activity is a newly revealed role of methylobacteria in phytosymbiosis.

  16. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  17. Isolation and identification of a phosphate solubilising fungus from soil of a phosphate mine in Chaluse, Iran

    Directory of Open Access Journals (Sweden)

    Raheleh Jamshidi

    2016-07-01

    Full Text Available Microbial solubilisation of phosphorus from insoluble phosphates is an environmental friendly and cost effective approach in sustainable soil management. Introducing the indigenous microorganisms to soil requires shorter adaptation period and causes fewer ecological distortions than exogenous microorganisms. This study was conducted to isolate and identify the indigenous fungi for phosphate solubilisation in Mazandaran, Iran. A potent phosphate solubilising fungus was isolated from an Iranian phosphate mine and selected for solubilisation of rock phosphate (RP. The identified fungus was characterised by calmodulin-based polymerase chain reaction method as Aspergillus tubingensis SANRU (Sari Agricultural Sciences and Natural Resources University. The phosphate solubilisation ability of the fungal strain was carried out in shake-flask leaching experiments containing various concentrations of RP (1%, 2%, 4%, or 8% w/v. The maximum P solubilisation rate of 347 mg/l was achieved at 1% of RP concentration on day 9. The regression analysis indicated that the P solubilised mainly through acidification. This study shows the possibility of using A. tubingensis SANRU for application in the management of P fertilisation.

  18. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli

    NARCIS (Netherlands)

    van Veen, H.W; Abee, T.; Kortstee, G.J J; Konings, W.N; Zehnder, A.J B

    1994-01-01

    P-i transport via the phosphate inorganic transport system (Pit) of Escherichia coil was studied in natural and artificial membranes. P-i uptake via Pit is dependent on the presence of divalent cations, like Mg2+, Ca2+, Co2+, or Mn2+, which form a soluble, neutral metal phosphate (MeHPO(4)) complex.

  19. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents

    KAUST Repository

    Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2014-01-01

    Several approaches to generate electrical power directly from salinity gradient energy using capacitive electrodes have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, we found that energy capture using synthetic river and seawater could be increased ∼65 times, and power generation ∼46 times. Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created an ionic flow field that enabled more effective passive charging of the capacitive electrodes and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. It can also be applied in industrial settings, as demonstrated using thermolytic solutions that can be used to capture waste heat energy as salinity gradient energy. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m -2 (capacitive electrode). © 2014 The Royal Society of Chemistry.

  20. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Uranium production from phosphates

    International Nuclear Information System (INIS)

    Ketzinel, Z.; Folkman, Y.

    1979-05-01

    According to estimates of the world's uranium consumption, exploitation of most rich sources is expected by the 1980's. Forecasts show that the rate of uranium consumption will increase towards the end of the century. It is therefore desirable to exploit poor sources not yet in use. In the near future, the most reasonable source for developing uranium is phosphate rock. Uranium reserves in phosphates are estimated at a few million tons. Production of uranium from phosphates is as a by-product of phosphate rock processing and phosphoric acid production; it will then be possible to save the costs incurred in crushing and dissolving the rock when calculating uranium production costs. Estimates show that the U.S. wastes about 3,000 tons of uranium per annum in phosphoric acid based fertilisers. Studies have also been carried out in France, Yugoslavia and India. In Israel, during the 1950's, a small plant was operated in Haifa by 'Chemical and Phosphates'. Uranium processes have also been developed by linking with the extraction processes at Arad. Currently there is almost no activity on this subject because there are no large phosphoric acid plants which would enable production to take place on a reasonable scale. Discussions are taking place about the installation of a plant for phosphoric acid production utilising the 'wet process', producing 200 to 250,000 tons P 2 O 5 per annum. It is necessary to combine these facilities with uranium production plant. (author)

  2. Are Low Salinity Waters the Remedy to Noctiluca scintillans Blooms in the Arabian Sea?

    Science.gov (United States)

    Gibson, J.

    2017-12-01

    Noctiluca scintillans (Noctiluca) is a mixotrophic, green dinoflagellate that for the past two decades has been producing problematic algal blooms in the Arabian Sea (AS). As a mixotroph, Noctiluca obtains energy from both consumption of phytoplankton as well as its intracellular photosynthesizing endosymbionts named, Pedinomonas noctilucae. It is this autotrophic and heterotrophic dual capability that has largely enabled Noctiluca to be a highly dominant species at the planktonic trophic layer in the AS. Exacerbated by non-point source/point-source pollution in the AS, ocean acidification, and intensified monsoons, Noctiluca currently algal blooms can be as big as three times the size of Texas. By depleting the AS of oxygen, clogging the gills of fish, and altering the AS food web, these algal blooms result in mass fish die offs. In turn this propagates financial and food insecurity issues in countless coastal communities. However, through satellite imaging over the years, it has been observed that the proliferation of Noctiluca is precluded or encounters a "wall" about mid-way along the west coast of India. It is theorized that this "wall" is due to a significant change in salinity. Snow from atop the Himalayan Mountains melts and adds fresh water to the Bay of Bengal (BB), and in winter the East Indian Coastal Current (EICC) carries this fresher water around the southern tip of India and towards the AS. It is believed that this dilution effect impedes the growth of Noctiluca further south. Ultimately, in this study the salinity gradient from the Bay of Bengal (BB) around the horn of India into the AS was replicated in six pairs of culture bottles. Noctiluca was grown in six different salinities including 26, 28, 30, 32, 34, and 38 psu. Algae grown in the 34 and 38 psu bottles, were healthier and 38 psu treated Noctiluca provided optimal conditions for its photosynthesizing endosymbionts. Noctiluca does not grow well at lower salinities, thus applications of low

  3. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  4. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study

    Science.gov (United States)

    Morrison, J. M.; Codispoti, L. A.; Gaurin, S.; Jones, B.; Manghnani, V.; Zheng, Z.

    nutrient concentrations. This PGW salinity maximum is associated with the suboxic portions of the Arabian Sea's oxygen minimum zone. The salinity maximum associated with Red Sea Water (RSW, core σθ=27.2) in the JGOFS study region is clearly evident at the southermost sampling site at 10'N (S-15). Elsewhere, this signal is weak or absent and salinity on the 27.2 σθ surface tends to increase towards the Persian Gulf, suggesting that the disappearance of this salinity maximum is due, at least in part, to the influence of the Persian Gulf outflow. Inorganic nitrogen-to-phosphate ratios were lower (frequently much lower) than the standard Redfield ratio of 15/1-16/1 (by atoms) at all times and all depths suggesting that inorganic nitrogen was more important than phosphate as a limiting nutrient for phytoplankton growth, and that the effects of denitrification dominated the effects of nitrogen fixation. The water upwelling off the Omani coast during the SW Monsoon has inorganic nitrogen to silicate ratios that were higher (˜2/1) than the ˜1/1 ratio often assumed as the ratio of uptake during diatom growth. The temporal evolution of inorganic nitrogen-to-silicate ratios suggests major alteration by diatom uptake only during the late SW Monsoon cruise (TN050) in August-September 1995. Widespread moderate surface layer nutrient concentrations occurred during the late NE Monsoon. A zone of high offshore nutrient concentrations was encountered during the SW Monsoon, but instead of being associated with offshore upwelling it may represent offshore advection from the coastal upwelling zone, the influence of an eddy, or both. Although our data do not contradict previous suggestions that the volume of subtoxic water may be reduced the SW Monsoon, they suggest a weaker re-oxygenation than indicated by some previous work. Similarly, they do not confirm results suggesting that secondary nitrite maxima may be common in waters with oxygen concentrations >5 μM.

  5. Hydrogen permeation resistant phosphate coatings

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal wherein the metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface thereof. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 0 7 . (author)

  6. Hydrogen permeation resistant phosphate coatings

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal is described. The metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 O 7 . (author)

  7. Transfer of Some Major and Trace Elements From Phosphate Rock to Super-Phosphate Fertilizers

    International Nuclear Information System (INIS)

    El-Reefya, H.I.; Bin-Jaz, A.A.; Zaied, M.E.; Badran, H.M.; Badran, H.M.

    2014-01-01

    This study assesses the transfer of some major and trace elements from phosphate rock (PR) to single (SSP) and triple (TSP) superphosphate fertilizers. Samples from a fertilizer plant and local market were collected and analyzed using inductively coupled plasma spectrometer. Cluster analysis indicated that the inner-relationship among the concentration of the elements in PR, SSP, and TSP are different. Only one element (Mo) has concentration in SSP higher than phosphate rock. The production process of these two types of superphosphate leads to transfer higher portion of Mn, B, Cu, Mo, Sr, and V present in the phosphate rock to SSP than TSP. The potentially hazardous element Cd is also transmitted more to SSP than TSP, and Cr is equally transferred to both types. The mean elemental concentrations normalized to the percentage of P 2 O 5 demonstrate that for most elements they are the higher concentrations in SSP are linked to the phosphate contents

  8. Phosphate vibrations as reporters of DNA hydration

    Science.gov (United States)

    Corcelli, Steven

    The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.

  9. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  10. Sonochemical precipitation of amorphous uranium phosphates from trialkyl phosphate solutions and their thermal conversion to UP2O7

    Czech Academy of Sciences Publication Activity Database

    Doroshenko, I.; Žurková, J.; Moravec, Z.; Bezdička, Petr; Pinkas, J.

    2015-01-01

    Roč. 26, SEP (2015), s. 157-162 ISSN 1350-4177 Institutional support: RVO:61388980 Keywords : Uranium * Phosphates * Sonochemistry * Nuclear waste * Trimethyl phosphate * Triethyl phosphate Subject RIV: CA - Inorganic Chemistry Impact factor: 4.556, year: 2015

  11. Cerebrospinal Fluid Phosphate in Delirium after Hip Fracture

    Directory of Open Access Journals (Sweden)

    Ane-Victoria Idland

    2017-09-01

    Full Text Available Aims: Phosphate is essential for neuronal activity. We aimed to investigate whether delirium is associated with altered phosphate concentrations in cerebrospinal fluid (CSF and serum. Methods: Seventy-seven patients with hip fracture were assessed for delirium before and after acute surgery. Prefracture dementia was diagnosed by an expert panel. Phosphate was measured in CSF obtained immediately before spinal anesthesia (n = 77 and in serum (n = 47. CSF from 23 cognitively healthy elderly patients undergoing spinal anesthesia was also analyzed. Results: Hip fracture patients with prevalent delirium had higher CSF phosphate concentrations than those without delirium (median 0.63 vs. 0.55 mmol/L, p = 0.001. In analyses stratified on dementia status, this difference was only significant in patients with dementia. Serum phosphate was ∼1 mmol/L; there was no association between serum phosphate concentration and delirium status. CSF phosphate did not correlate with serum levels. Conclusion: Patients with delirium superimposed on dementia have elevated phosphate levels.

  12. Impact of phosphate limitation on PHA production in a feast-famine process.

    Science.gov (United States)

    Korkakaki, Emmanouela; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2017-12-01

    Double-limitation systems have shown to induce polyhydroxyalkanoates (PHA) production in chemostat studies limited in e.g. carbon and phosphate. In this work the impact of double substrate limitation on the enrichment of a PHA producing community was studied in a sequencing batch process. Enrichments at different C/P concentration ratios in the influent were established and the effect on the PHA production capacity and the enrichment community structure was investigated. Experimental results demonstrated that when a double substrate limitation is imposed at a C/P ratio in the influent in a range of 150 (C-mol/mol), the P-content of the biomass and the specific substrate uptake rates decreased. Nonetheless, the PHA storage capacity remained high (with a maximum of 84 wt%). At a C/P ratio of 300, competition in the microbial community is based on phosphate uptake, and the PHA production capacity is lost. Biomass specific substrate uptake rates are a linear function of the cellular P-content, offering advantages for scaling-up the PHA production process due to lower oxygen requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    International Nuclear Information System (INIS)

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-01-01

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg

  14. Biochar mitigates salinity stress in potato

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, M.N.; Liu, Fulai

    2015-01-01

    capability of biochar. Results indicated that biochar was capable to ameliorate salinity stress by adsorbing Na+. Increasing salinity level resulted in significant reductions of shoot biomass, root length and volume, tuber yield, photosynthetic rate (An), stomatal conductance (gs), midday leaf water......A pot experiment was conducted in a climate-controlled greenhouse to investigate the growth, physiology and yield of potato in response to salinity stress under biochar amendment. It was hypothesized that addition of biochar may improve plant growth and yield by mitigating the negative effect...... potential, but increased abscisic acid (ABA) concentration in both leaf and xylem sap. At each salinity level, incorporation of biochar increased shoot biomass, root length and volume, tuber yield, An, gs, midday leaf water potential, and decreased ABA concentration in the leaf and xylem sap as compared...

  15. Does oxygen enhance the radiation: induced inactivation of penicillinase. Progress report, December 1, 1979-November 30, 1980

    International Nuclear Information System (INIS)

    Samuni, A.; Kalkstein, A.; Czapski, G.

    1980-01-01

    The radiation-induced inactivation of penicillinase in dilute aqueous solutions buffered with phosphate was studied, by examining enzyme radiosensitivity in the presence of various gases (He, O 2 , H 2 , N 2 O, N 2 O + O 2 ). The introduction of either N 2 O or O 2 was found to reduce the radiodamage. On the other hand H 2 or N 2 O + O 2 gas-mixture enhanced the radiosensitivity. In the presence of formate and oxygen, no enzyme inactivation was detected. The results indicated that the specific damaging efficiency of H atoms is almost four-fold higher than that of OH radical; therefore in phosphate buffer, where more than half of the free radicals are H atoms, it is the H radicals that are responsible for the majority of the damage. The superoxide radicals appeared to be completely inactive and did not contribute toward enzyme inactivation. Oxygen was shown to affect the radiosensitivity in two ways. On one side, it protected by converting e - /sub aq/ and H radicals into harmless O 2 - radicals. On the other side it increased the inactivation by enhancing the damage brought about by OH radicals (OER = 2.8). In the present case the oxygen effect of protection exceeded that of sensitization, thus giving rise to a moderate overall protection effect

  16. Investigation of Soil Salinity to Distinguish Boundary Line between ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Investigation of Soil Salinity to Distinguish Boundary Line between Saline and ... Setting 4 dSm-1 as the limit between saline and non-saline soils in kriging algorithms resulted in a .... number of sample points within the search window,.

  17. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T.R.; Govindaraj, R.; Govindan Kutty, K.V.; Vasudeva Rao, P.R.

    2014-01-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe 3+ /Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300–700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass

  18. Modulating calcium phosphate formation using CO{sub 2} laser engineering of a polymeric material

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, D.G., E-mail: Dwaugh@lincoln.ac.uk; Lawrence, J.

    2012-02-01

    The use of simulated body fluid (SBF) is widely used as a screening technique to assess the ability of materials to promote calcium phosphate formation. This paper details the use of CO{sub 2} laser surface treatment of nylon Registered-Sign 6,6 to modulate calcium phosphate formation following immersion in SBF for 14 days. Through white light interferometry (WLI) it was determined that the laser surface processing gave rise to maximum Ra and Sa parameters of 1.3 and 4.4 {mu}m, respectively. The use of X-ray photoelectron spectroscopy (XPS) enabled a maximum increase in surface oxygen content of 5.6%at. to be identified. The laser-induced surface modifications gave rise to a modulation in the wettability characteristics such that the contact angle, {theta}, decreased for the whole area processed samples, as expected, and increased for the patterned samples. The increase in {theta} can be attributed to a transition in wetting nature to a mixed-state wetting regime. It was seen for all samples that calcium phosphate formed on each surface following 14 days. The largest increase in mass, {Delta}g, owed to calcium phosphate formation, was brought about by the whole area processed sample irradiated with a fluence of 51 J cm{sup -2}. No correlation between the calcium phosphate formation and the laser patterned surface properties was determined due to the likely affect of the mixed-state wetting regime. Strong correlations between {theta}, the surface energy parameters and the calcium phosphate formation for the whole area processed samples allow one to realize the potential for this surface treatment technique in predicting the bone forming ability of laser processed materials. - Highlights: Black-Right-Pointing-Pointer Surface modifications brought about a modulation in the wetting of nylon 6,6. Black-Right-Pointing-Pointer An increase in {theta} can be attributed to a mixed-state wetting regime. Black-Right-Pointing-Pointer Laser surface treatment modulated the

  19. Calcium phosphates for biomedical applications

    Directory of Open Access Journals (Sweden)

    Maria Canillas

    2017-05-01

    Full Text Available The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies.

  20. Preparation of calcium phosphate paste

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Norzita Yaacob; Idris Besar; Che Seman Mahmood; Rusnah Mustafa

    2010-01-01

    Calcium phosphate paste were prepared by mixing between calcium sodium potassium phosphate, Ca 2 NaK (PO 4 ) 2 (CSPP) and monocalcium phosphate monohydrate, Ca(H 2 PO 4 ) 2 .H 2 O (MCPM). CSPP were obtained by reaction between calcium hydrogen phosphate (CaHPO 4 ), potassium carbonate (K 2 CO 3 ) and sodium carbonate (Na 2 CO 3 ) in solid state sintering process followed by quenching in air at 1000 degree Celsius. The paste was aging in simulated body fluid (SBF) for 0.5, 1, 3, 6, 12, 24, 48 hrs, 3, 7 and 14 days. The morphological investigation indicated the formation of apatite crystal were first growth after 24 hours. The obvious growth of apatite crystal was shown at 3 days. The obvious growth of apatite crystal was shown in 7 and 14 days indicated the prediction of paste would have rapid reaction with bone after implantation. (author)

  1. Calcium phosphates for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Pena, P.; Aza, A.H. de; Rodriguez, M.A.

    2017-07-01

    The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies. (Author)

  2. Conditions promoting and restraining agronomic effectiveness of water-insoluble phosphate sources, in particular phosphate rock (PR): I. Indices of phosphate rock use opportunity (PRUOIS) and of phosphate rock suitability for direct use (PRSIDU)

    International Nuclear Information System (INIS)

    Borlan, Z.; Gavriluta, I.; Soare, M.; Stefanescu, D.; Alexandrescu, A.

    2002-01-01

    Several issues of phosphate rock (PR) use are discussed in this paper. Maize for green fodder (Zea mays L) and ryegrass (Lolium multiflorum Lam.) were grown in 7 kg of dry soil and in small pots of 1.25 kg dry soil capacity, respectively, on several base unsaturated soils belonging to Hapludoll and Hapludalf soil groups. The amount of phosphate rock (PR) to apply was based on experimental data considering soil adsorbed acidity (Ah), humus content (H 2 ), cation exchange capacity (T), sum of exchangeable bases (SEB) and mobile (easily soluble) phosphate content (P A L) in the soil. The factors were combined in a rock phosphate use, opportunity index of the soil (PRUOIS): PRUOIS=(A h *H 2 *100)/SEB*10 0.0245*P AL Rock phosphate suitability for direct use was evaluated by means of the rate of PR-P dissolution (PRPRS) in a 0.6% ammonium heptamolybdate in 0.01M calcium chloride solution (ppm P) and by carbonate content (%CaCO 3 ) in PR. Both of these parameters combined provided a phosphate rock suitability index for direct use (PRSIDU): PRSIDU [ppmP/min]=PRPRS*(1-0.03*CaCO 3 ) Water insoluble P sources studied were PR from Kola-Russia, Morocco, Kneifiss-Siria, El Hassa-Jordan, Gafsa- Tunisia, North-Carolina (USA), and Arad-Israel. All PRs were compared with TSP applied at the same rate of P. Neither PRUOIS or PRSIDU considered separately could satisfactorily explain the variance of PR efficiency. An index obtained by multiplicative combination of PRUOIS x PRSIDU did correlate significantly with indices on the agronomic efficiency of PR. (author)

  3. Oxidative defense metabolites induced by salinity stress in roots of Salicornia herbacea.

    Science.gov (United States)

    Lee, Seung Jae; Jeong, Eun-Mi; Ki, Ah Young; Oh, Kyung-Seo; Kwon, Joseph; Jeong, Jae-Hyuk; Chung, Nam-Jin

    2016-11-01

    High salinity is a major abiotic stress that affects the growth and development of plants. This type of stress can influence flowering, the production of crops, defense mechanisms and other physiological processes. Previous studies have attempted to elucidate salt-tolerance mechanisms to improve plant growth and productivity in the presence of sodium chloride. One such plant that has been studied in detail is Salicornia, a well-known halophyte, which has adapted to grow in the presence of high salt. To further the understanding of how Salicornia grows and develops under high saline conditions, Salicornia herbacea (S. herbacea) was grown under varying saline concentrations (0, 50, 100, 200, 300, and 400mM), and the resulting phenotype, ion levels, and metabolites were investigated. The optimal condition for the growth of S. herbacea was determined to be 100mM NaCl, and increased salt concentrations directly decreased the internal concentrations of other inorganic ions including Ca 2+ , K + , and Mg 2+ . Metabolomics were performed on the roots of the plant as a systematic metabolomics study has not yet been reported for Salicornia roots. Using ethylacetate and methanol extraction followed by high resolution ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), 1793 metabolites were identified at different NaCl levels. Structural and functional analyses demonstrated that the concentration of 53 metabolites increased as the concentration of NaCl increased. These metabolites have been linked to stress responses, primarily oxidative stress responses, which increase under saline stress. Most metabolites can be classified as polyols, alkaloids, and steroids. Functional studies of these metabolites show that shikimic acid, vitamin K1, and indole-3-carboxylic acid are generated as a result of defense mechanisms, including the shikimate pathway, to protect against reactive oxygen species (ROS) generated by salt stress. This metabolite profiling

  4. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrã o, Só nia; Schmö ckel, S. M.; Tester, Mark A.

    2016-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making

  5. Understanding the Biocompatibility of Sintered Calcium Phosphate with Ratio of [Ca]/[P] = 1.50

    Directory of Open Access Journals (Sweden)

    Feng-Lin Yen

    2012-01-01

    Full Text Available Biocompatibility of sintered calcium phosphate pellets with [Ca]/[P] = 1.50 was determined in this study. Calcium pyrophosphate (CPP phase formed on the sintered pellets immersed in a normal saline solution for 14 d at 37∘C. The intensities of hydroxyapatite (HA reflections in the X-ray diffraction (XRD patterns of the pellets were retrieved to as-sintered state. The pellet surface morphology shows that CPP crystallites were clearly present and make an amorphous calcium phosphate (ACP to discriminate against become to the area of slice join together. In addition, the intensities of the CPP reflections in the XRD patterns were the highest when the pellets were immersed for 28 d. When the CPP powders were extracted from the pellets after immersion in the solution for 14 d, the viability of 3T3 cells remained above 90% for culture times from 1 to 4 d. The pellet surface morphology observed using optical microscopy showed that the cells did not adhere to the bottom of the sintered pellets when cultured for 4 d; however, some CPP phase precipitates were formed, as confirmed by XRD. In consequence, the results suggest that the sintered HA powders are good materials for use in biomedical applications because of their good biocompatibility.

  6. Impaired Phosphate Tolerance Revealed With an Acute Oral Challenge.

    Science.gov (United States)

    Turner, Mandy E; White, Christine A; Hopman, Wilma M; Ward, Emilie C; Jeronimo, Paul S; Adams, Michael A; Holden, Rachel M

    2018-01-01

    Elevated serum phosphate is consistently linked with cardiovascular disease (CVD) events and mortality in the setting of normal and impaired kidney function. However, serum phosphate does not often exceed the upper limit of normal until glomerular filtration rate (GFR) falls below 30 mL/min/m 2 . It was hypothesized that the response to an oral, bioavailable phosphate load will unmask impaired phosphate tolerance, a maladaptation not revealed by baseline serum phosphate concentrations. In this study, rats with varying kidney function as well as normo-phosphatemic human subjects, with inulin-measured GFR (13.2 to 128.3mL/min), received an oral phosphate load. Hormonal and urinary responses were evaluated over 2 hours. Results revealed that the more rapid elevation of serum phosphate was associated with subjects and rats with higher levels of kidney function, greater responsiveness to acute changes in parathyroid hormone (PTH), and significantly more urinary phosphate at 2 hours. In humans, increases in urinary phosphate to creatinine ratio did not correlate with baseline serum phosphate concentrations but did correlate strongly to early increase of serum phosphate. The blunted rise in serum phosphate in rats with CKD was not the result of altered absorption. This result suggests acute tissue deposition may be altered in the setting of kidney function impairment. Early recognition of impaired phosphate tolerance could translate to important interventions, such as dietary phosphate restriction or phosphate binders, being initiated at much higher levels of kidney function than is current practice. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  7. Phosphate Reduction in Emulsifi ed Meat Products: Impact of Phosphate Type and Dosage on Quality Characteristics

    Directory of Open Access Journals (Sweden)

    Seline Glorieux

    2017-01-01

    Full Text Available Phosphate reduction is of important industrial relevance in the manufacturing of emulsifi ed meat products because it may give rise to a healthier product. The eff ect of seven diff erent phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP and sodium tripolyphosphate (STPP increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had litt le eff ect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06 % TSPP was suffi cient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsifi ed meat products can be signifi cantly reduced with minimal loss of product quality.

  8. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  9. ( Phaseolus vulgaris L. ) seedlings to salinity stress

    African Journals Online (AJOL)

    The effect of salinity stress on five cultivars of common bean: Bassbeer, Beladi, Giza 3, HRS 516 and RO21 were evaluated on a sand/peat medium with different salinity levels (0, 50 and 100 mM NaCl) applied 3 weeks after germination for duration of 10 days. Salinity had adverse effects not only on the biomass yield and ...

  10. Oxygen isotope geochemistry of Laurentide ice-sheet meltwater across Termination I

    Science.gov (United States)

    Vetter, Lael; Spero, Howard J.; Eggins, Stephen M.; Williams, Carlie; Flower, Benjamin P.

    2017-12-01

    We present a new method that quantifies the oxygen isotope geochemistry of Laurentide ice-sheet (LIS) meltwater across the last deglaciation, and reconstruct decadal-scale variations in the δ18O of LIS meltwater entering the Gulf of Mexico between ∼18 and 11 ka. We employ a technique that combines laser ablation ICP-MS (LA-ICP-MS) and oxygen isotope analyses on individual shells of the planktic foraminifer Orbulina universa to quantify the instantaneous δ18Owater value of Mississippi River outflow, which was dominated by meltwater from the LIS. For each individual O. universa shell, we measure Mg/Ca (a proxy for temperature) and Ba/Ca (a proxy for salinity) with LA-ICP-MS, and then analyze the same O. universa for δ18O using the remaining material from the shell. From these proxies, we obtain δ18Owater and salinity estimates for each individual foraminifer. Regressions through data obtained from discrete core intervals yield δ18Ow vs. salinity relationships with a y-intercept that corresponds to the δ18Owater composition of the freshwater end-member. Our data suggest that from 15.5 through 14.6 ka, estimated δ18Ow values of Mississippi River discharge from discrete core intervals range from -11‰ to -21‰ VSMOW, which is consistent with δ18O values from both regional precipitation and the low-elevation, southern margin of the LIS. During the Bølling and Allerød (14.0 through 13.3 ka), estimated δ18Ow values of Mississippi River discharge from discrete core intervals range from -22‰ to -38‰ VSMOW. These values suggest a dynamic melting history of different parts of the LIS, with potential contributions to Mississippi River outflow from both the low-elevation, southern margin of the LIS and high-elevation, high-latitude domes in the LIS interior that were transported to the ablation zone. Prior to ∼15.5 ka, the δ18Owater value of the Mississippi River was similar to that of regional precipitation or low-latitude LIS meltwater, but the Ba

  11. Identification of the microbes mediating Fe reduction in a deep saline aquifer and their influence during managed aquifer recharge.

    Science.gov (United States)

    Ko, Myoung-Soo; Cho, Kyungjin; Jeong, Dawoon; Lee, Seunghak

    2016-03-01

    In this study, indigenous microbes enabling Fe reduction under saline groundwater conditions were identified, and their potential contribution to Fe release from aquifer sediments during managed aquifer recharge (MAR) was evaluated. Sediment and groundwater samples were collected from a MAR feasibility test site in Korea, where adjacent river water will be injected into the confined aquifer. The residual groundwater had a high salinity over 26.0 psu, as well as strong reducing conditions (dissolved oxygen, DOaquifer were found to be Citrobacter sp. However, column experiments to simulate field operation scenarios indicated that additional Fe release would be limited during MAR, as the dominant microbial community in the sediment would shift from Citrobacter sp. to Pseudomonas sp. and Limnohabitans sp. as river water injection alters the pore water chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2010-01-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe 3+ , which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  13. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  14. Larval tolerance to salinity in three species of Australian anuran: an indication of saline specialisation in Litoria aurea.

    Directory of Open Access Journals (Sweden)

    Brian D Kearney

    Full Text Available Recent anthropogenic influences on freshwater habitats are forcing anuran populations to rapidly adapt to high magnitude changes in environmental conditions or face local extinction. We examined the effects of ecologically relevant elevated salinity levels on larval growth, metamorphosis and survival of three species of Australian anuran; the spotted marsh frog (Limnodynastes tasmaniensis, the painted burrowing frog (Neobatrachus sudelli and the green and golden bell frog (Litoria aurea, in order to better understand the responses of these animals to environmental change. Elevated salinity (16% seawater negatively impacted on the survival of L. tasmaniensis (35% survival and N sudelli (0% survival, while reduced salinity had a negative impact on L. aurea. (16% seawater: 85% survival; 0.4% seawater: 35% survival. L. aurea tadpoles survived in salinities much higher than previously reported for this species, indicating the potential for inter-populations differences in salinity tolerance. In L. tasmaniensis and L. aurea, development to metamorphosis was fastest in low and high salinity treatments suggesting it is advantageous for tadpoles to invest energy in development in both highly favourable and developmentally challenging environments. We propose that this response might either maximise potential lifetime fecundity when tadpoles experience favourable environments, or, facilitate a more rapid escape from pond environments where there is a reduced probability of survival.

  15. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    International Nuclear Information System (INIS)

    Kim, Dae-Sung; Ryu, Bong-ki

    2017-01-01

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P 2 O 5 -CaO-Na 2 O-TiO 2 system with a high TiO 2 content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO 2 enters the network as (TiO 6 ), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO 2 content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  16. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Sung; Ryu, Bong-ki [Pusan National University, Busan (Korea, Republic of)

    2017-04-15

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P{sub 2}O{sub 5}-CaO-Na{sub 2}O-TiO{sub 2} system with a high TiO{sub 2} content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO{sub 2} enters the network as (TiO{sub 6}), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO{sub 2} content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  17. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    Science.gov (United States)

    Tuteja, Narendra; Banu, Mst Sufara Akhter; Huda, Kazi Md Kamrul; Gill, Sarvajeet Singh; Jain, Parul; Pham, Xuan Hoi; Tuteja, Renu

    2014-01-01

    The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum) and its novel function in salinity stress tolerance in plant. The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS) accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  18. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  19. The Effect of Moderate Dietary Protein and Phosphate Restriction on Calcium-Phosphate Homeostasis in Healthy Older Cats.

    Science.gov (United States)

    Geddes, R F; Biourge, V; Chang, Y; Syme, H M; Elliott, J

    2016-09-01

    Dietary phosphate and protein restriction decreases plasma PTH and FGF-23 concentrations and improves survival time in azotemic cats, but has not been examined in cats that are not azotemic. Feeding a moderately protein- and phosphate-restricted diet decreases PTH and FGF-23 in healthy older cats and thereby slows progression to azotemic CKD. A total of 54 healthy, client-owned cats (≥ 9 years). Prospective double-blinded randomized placebo-controlled trial. Cats were assigned to test diet (protein 76 g/Mcal and phosphate 1.6 g/Mcal) or control diet (protein 86 g/Mcal and phosphate 2.6 g/Mcal) and monitored for 18 months. Changes in variables over time and effect of diet were assessed by linear mixed models. A total of 26 cats ate test diet and 28 cats ate control diet. There was a significant effect of diet on urinary fractional excretion of phosphate (P = 0.045), plasma PTH (P = 0.005), and ionized calcium concentrations (P = 0.018), but not plasma phosphate, FGF-23, or creatinine concentrations. Plasma PTH concentrations did not significantly change in cats fed the test diet (P = 0.62) but increased over time in cats fed the control diet (P = 0.001). There was no significant treatment effect of the test diet on development of azotemic CKD (3 of 26 (12%) test versus 3 of 28 (11%) control, odds ratio 1.09 (95% CI 0.13-8.94), P = 0.92). Feeding a moderately protein- and phosphate-restricted diet has effects on calcium-phosphate homeostasis in healthy older cats and is well tolerated. This might have an impact on renal function and could be useful in early chronic kidney disease. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. Isolation of phosphatase-producing phosphate solubilizing bacteria from Loriya hot spring: Investigation of phosphate solubilizing in the presence of different parameters

    Directory of Open Access Journals (Sweden)

    Maryam Parhamfar

    2014-04-01

    Full Text Available Introduction: Biofertilizers are the microorganisms that can convert useless nutrient to usable compounds. Unlike fertilizer, cost of biofertilizer production is low and doesn’t produce ecosystem pollution. Phosphate fertilizers can be replaced by phosphate biofertilizer to produce improvement. So, it is necessary to screen the climate-compatible phosphate solubilizing bacteria. Materials and methods: In this project samples were picked up from Loriya hot spring, which are located in Jiroft. Samples were incubated in PKV medium for 3 days. Screening of phosphate solubilizing bacteria was performed on the specific media, based on clear area diameter. The best bacterium was identified based on 16s rDNA gene. Phosphate solubilizing activity of this strain was considered in different carbon, nitrogen, phosphate and pH sources. Results: Sequence alignment and phylogenetic tree results show that B. sp. LOR033 is closely related to Bacillus licheniformis, with 97% homology. In addition, results show that maximum enzyme production was performed after 2 days that incubation pH was decreased simultaneously when the time was increased. Carbon sources investigation show that glucose is the most appropriate in enzyme production and phosphate releasing. Furthermore, results show that the optimum initial pH for phytase production was pH5.0. Different phosphate sources show that tricalcium phosphate has the suitable effect on enzyme activity in three days of incubation. Discussion and conclusion: Phosphatase enzyme production capacity, growth in acidic pH and phosphate solubilizing potential in different salt and phosphate sources show that this strain has considerable importance as biofertilizers.

  1. Aqueous phosphate removal using nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Almeelbi, Talal; Bezbaruah, Achintya

    2012-01-01

    Nanoscale zero-valent iron (NZVI) particles have been used for the remediation of a wide variety of contaminants. NZVI particles have high reactivity because of high reactive surface area. In this study, NZVI slurry was successfully used for phosphate removal and recovery. Batch studies conducted using different concentrations of phosphate (1, 5, and 10 mg PO 4 3− -P/L with 400 mg NZVI/L) removed ∼96 to 100 % phosphate in 30 min. Efficacy of the NZVI in phosphate removal was found to 13.9 times higher than micro-ZVI (MZVI) particles with same NZVI and MZVI surface area concentrations used in batch reactors. Ionic strength, sulfate, nitrate, and humic substances present in the water affected in phosphate removal by NZVI but they may not have any practical significance in phosphate removal in the field. Phosphate recovery batch study indicated that better recovery is achieved at higher pH and it decreased with lowering of the pH of the aqueous solution. Maximum phosphate recovery of ∼78 % was achieved in 30 min at pH 12. The successful rapid removal of phosphate by NZVI from aqueous solution is expected to have great ramification for cleaning up nutrient rich waters.

  2. Research and engineering assessment of biological solubilization of phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.; Taylor, D.D.

    1993-03-01

    This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidation of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.

  3. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions of...

  4. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b...

  5. Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid.

    Science.gov (United States)

    Reyes-Carmona, Jessie F; Felippe, Mara S; Felippe, Wilson T

    2009-05-01

    Mineral trioxide aggregate (MTA) has been shown to be bioactive because of its ability to produce biologically compatible carbonated apatite. This study analyzed the interaction of MTA and white Portland cement with dentin after immersion in phosphate-buffered saline (PBS). Dentin disks with standardized cavities were filled with ProRoot MTA, MTA Branco, MTA BIO, white Portland cement + 20% bismuth oxide (PC1), or PC1 + 10% of calcium chloride (PC2) and immersed in 15 mL of PBS for 2 months. The precipitates were weighed and analyzed by scanning electron microscopy (SEM) and x-ray diffraction. The calcium ion release and pH of the solutions were monitored at 5, 15, 25, and 35 days. The samples were processed for SEM observations. Data were analyzed by using analysis of variance or Kruskall-Wallis tests. Our findings revealed the presence of amorphous calcium phosphate precipitates with different morphologies. The apatite formed by the cement-PBS system was deposited within collagen fibrils, promoting controlled mineral nucleation on dentin, observed as the formation of an interfacial layer with tag-like structures. All the cements tested were bioactive. The cements release some of their components in PBS, triggering the initial precipitation of amorphous calcium phosphates, which act as precursors during the formation of carbonated apatite. This spontaneous precipitation promotes a biomineralization process that leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface.

  6. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities

    International Nuclear Information System (INIS)

    Allen, D.E.; Strazisar, B.R.; Soong, Y.; Hedges, S.W.

    2005-01-01

    The ultimate capacity of saline formations to sequester carbon dioxide by solubility and mineral trapping must be determined by simulating sequestration with geochemical models. These models, however, are only as reliable as the data and reaction scheme on which they are based. Several models have been used to make estimates of carbon dioxide solubility and mineral formation as a function of pressure and fluid composition. Intercomparison of modeling results indicates that failure to adjust all equilibrium constants to account for elevated carbon dioxide pressures results in significant errors in both solubility and mineral formation estimates. Absence of experimental data at high carbon dioxide pressures and high salinities make verification of model results difficult. Results indicate standalone solubility models that do not take mineral reactions into account will underestimate the total capacity of aquifers to sequester carbon dioxide in the long term through enhanced solubility and mineral trapping mechanisms. Overall, it is difficult to confidently predict the ultimate sequestration capacity of deep saline aquifers using geochemical models. (author)

  7. Evaluation of salinity stress on morphophysiological traits of four salin tolarant wheat cultivars

    Directory of Open Access Journals (Sweden)

    leila yadelerloo

    2009-06-01

    Full Text Available For assessment the effects of salinity on morphophysiological traits of wheat an experiment with four caltivars (Karchia, Sorkh tokhm, Sholeh and Roshan and one line (1-66-22 in four salt concentrations(0, 60, 120, and 180 mM NaCl, were conducted by factorial analysis in a completely randomized design with three replications. The rate of leaf area were measured in four stages. In booting stage, relative chlorophyll content (SPAD meter, and in pollination phase the rate of Na+ and K+ iones in four leaves(up to down were assessed and finally stem length and total dry matter were measured. Results showed that salinity reduced leaf area, total dry matter stem length of plants and relative chlorophyll content. With increasing of salinity the rate of Na+ were increased but the rate of K+ iones were decreased. Also the salt exclusion was observed at nodes of stem that of 1-66-22 was spot form.

  8. [Proteomic analysis of curdlan-producing Agrobacterium sp. ATCC 31749 in response to dissolved oxygen].

    Science.gov (United States)

    Dai, Xiaomeng; Yang, Libo; Zheng, Zhiyong; Chen, Haiqin; Zhan, Xiaobei

    2015-08-04

    Curdlan is produced by Agrobacterium sp. ATCC 31749 under nitrogen limiting condition. The biosynthesis of crudlan is a typical aerobic bioprocess, and the production of curdlan would be severely restricted under micro-aerobic and anoxic conditions. Proteomic analysis of Agrobacterium sp. was conducted to investigate the effect of dissolved oxygen on the crucial enzymes involved in curdlan biosynthesis. Two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Agrobacterium sp. ATCC 31749 cultured under various dissolved oxygen levels (75%, 50%, 25% and 5%). In addition, a comparative proteomic analysis of the intracellular proteins expression level under various dissolved oxygen levels was done. Significant differently expressed proteins were identified by MALDI-TOF/TOF. Finally, we identified 15 differently expressed proteins involved in polysaccharide synthesis, fatty acid synthesis, amino acid synthesis pathway. Among these proteins, phosphoglucomutase and orotidine 5-phosphate decarboxylase were the key metabolic enzymes directing curdlan biosynthesis. Oxygen could affect the expression of the proteins taking charge of curdlan synthesis significantly.

  9. Removal mechanism of phosphate from aqueous solution by fly ash.

    Science.gov (United States)

    Lu, S G; Bai, S Q; Zhu, L; Shan, H D

    2009-01-15

    This work studied the effectiveness of fly ash in removing phosphate from aqueous solution and its related removal mechanism. The adsorption and precipitation of phosphate by fly ash were investigated separately in order to evaluate their role in the removal of phosphate. Results showed that the removal of phosphate by fly ash was rapid. The removal percentage of phosphate in the first 5min reached 68-96% of the maximum removal of phosphate by fly ash. The removal processes of phosphate by fly ash included a fast and large removal representing precipitation, then a slower and longer removal due to adsorption. The adsorption of phosphate on fly ash could be described well by Freundlich isotherm equation. The pH and Ca2+ concentration of fly ash suspension were decreased with the addition of phosphate, which suggests that calcium phosphate precipitation is a major mechanism of the phosphate removal. Comparison of the relative contribution of the adsorption and precipitation to the total removal of phosphate by fly ash showed that the adsorption accounted for 30-34% of the total removal of phosphate, depending on the content of CaO in fly ash. XRD patterns of the fly ash before and after phosphate adsorption revealed that phosphate salt (CaHPO4 x 2H2O) was formed in the adsorption process. Therefore, the removal of phosphate by fly ash can be attributed to the formation of phosphate precipitation as a brushite and the adsorption on hydroxylated oxides. The results suggested that the use of fly ash could be a promising solution to the removal of phosphate in the wastewater treatment and pollution control.

  10. SMAP Salinity Artifacts Associated With Presence of Rain

    Science.gov (United States)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  11. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    Science.gov (United States)

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to

  12. Isolation and screening phosphate solubilizers from composts as biofertilizer

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Khairuddin Abdul Rahim; Latiffah Norddin; Abdul Razak Ruslan

    2006-01-01

    Phosphate solubilizers are miroorganisms that able to solubilize insoluble inorganic phosphate compounds or hydrolyze organic phosphate to inorganic P. Therefore make the P to be available for plant and consequently enhance plant growth and yield. Recently, phosphate solubilizing microorganisms has been shown to play an important role in the biofertilizer industry. Fifty-one bacterial were isolated from eleven composts. Most of the phosphate solubilizers were isolated from natural farming composted compost and normal composting compost. This shows that both of these composts are more suitable to use for phosphate solubilizer isolation compare commercial composts. Fourteen of the isolates were found to be phosphate solubilizers. These isolates produced a clear zone on the phosphate agar plates, showing their potential as biofertilizer. AP3 was significantly produced the largest clear zone compared with other isolates. This indicates that isolate AP 3 could be a good phosphate solubilizer. Thus, their effectiveness in the greenhouse and field should be evaluated. (Author)

  13. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  14. Uranium endowments in phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Andrea E., E-mail: andrea.ulrich@env.ethz.ch [Institute for Environmental Decisions (IED), Natural and Social Science Interface, ETH Zurich Universitässtrasse 22, 8092 Zurich (Switzerland); Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland); Schnug, Ewald, E-mail: e.schnug@tu-braunschweig.de [Department of Life Sciences, Technical University of Braunschweig, Pockelsstraße 14, D-38106 Braunschweig (Germany); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Institute of Energy Technology, Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8092 Zurich (Switzerland); Frossard, Emmanuel, E-mail: emmanuel.frossard@usys.ethz.ch [Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland)

    2014-04-01

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured.

  15. Uranium endowments in phosphate rock

    International Nuclear Information System (INIS)

    Ulrich, Andrea E.; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-01-01

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured

  16. The density-salinity relation of standard seawater

    Science.gov (United States)

    Schmidt, Hannes; Seitz, Steffen; Hassel, Egon; Wolf, Henning

    2018-01-01

    The determination of salinity by means of electrical conductivity relies on stable salt proportions in the North Atlantic Ocean, because standard seawater, which is required for salinometer calibration, is produced from water of the North Atlantic. To verify the long-term stability of the standard seawater composition, it was proposed to perform measurements of the standard seawater density. Since the density is sensitive to all salt components, a density measurement can detect any change in the composition. A conversion of the density values to salinity can be performed by means of a density-salinity relation. To use such a relation with a target uncertainty in salinity comparable to that in salinity obtained from conductivity measurements, a density measurement with an uncertainty of 2 g m-3 is mandatory. We present a new density-salinity relation based on such accurate density measurements. The substitution measurement method used is described and density corrections for uniform isotopic and chemical compositions are reported. The comparison of densities calculated using the new relation with those calculated using the present reference equations of state TEOS-10 suggests that the density accuracy of TEOS-10 (as well as that of EOS-80) has been overestimated, as the accuracy of some of its underlying density measurements had been overestimated. The new density-salinity relation may be used to verify the stable composition of standard seawater by means of routine density measurements.

  17. Phosphate Salts

    Science.gov (United States)

    ... body. They are involved in cell structure, energy transport and storage, vitamin function, and numerous other processes ... Phosphate-containing foods and beverages include cola, wine, beer, whole grain cereals, nuts, dairy products and some ...

  18. Application of chitosan/polyacrylamide nanofibres for removal of chromate and phosphate in water

    Science.gov (United States)

    Nthumbi, Richard M.; Catherine Ngila, J.; Moodley, Brenda; Kindness, Andrew; Petrik, Leslie

    Water pollution is an intractable environmental problem in South Africa. Management of the water resource is vital in order to address the water scarcity issues. Research on remediation of contaminated water has focused mainly on the removal of heavy metals such as Pb, Cd, Zn, Hg and Cu and neglected other inorganic pollutants. In this work we focus on the removal of anions, namely chromate and phosphate. Chromium is extensively used in the textile, leather and metallurgy industries and contaminates surface water and groundwater when inadequately treated industrial effluents are discharged. Chromium has been associated with irregular sugar metabolism, nosebleeds and ulcers, and it is also carcinogenic. The phosphate ion is an essential micronutrient responsible for healthy plant growth. However, excess phosphate intake stimulates rapid growth of photosynthetic algae and cyanobacteria, resulting in eutrophication. This phenomenon (algal bloom) causes other organisms to die due to reduced oxygen in the water. In order to offer remediation measures, this study reports the use of electrospun nanofibres for the removal of chromate and phosphate anions. Adsorption experiments were carried out using nanofibres electrospun from chitosan and polyacrylamide polymer blends, cross-linked with glutaraldehyde. Quantification of chromium was done using ICP-OES while UV-Vis spectrophotometry was used for the determination of phosphates. Batch adsorption experiments were done to determine optimum adsorption parameters such as pH, contact time, temperature and initial analyte concentration. Removal of the ions using a flow-adsorption technique through a micro-column was performed. The experimental data obtained were analysed using Langmuir and Freundlich models to study the adsorption mechanisms. The nanofibres had an adsorption capacity for Cr(VI) and PO43- of 0.26 mg g-1 and 392 mg g-1, respectively, and removal efficiencies of 93% and 97.4%, in the same order, in synthetic water

  19. Synthesis of amorphous acid iron phosphate nanoparticles

    International Nuclear Information System (INIS)

    Palacios, E.; Leret, P.; Fernández, J. F.; Aza, A. H. De; Rodríguez, M. A.

    2012-01-01

    A simple method to precipitate nanoparticles of iron phosphate with acid character has been developed in which the control of pH allows to obtain amorphous nanoparticles. The acid aging of the precipitated amorphous nanoparticles favored the P–O bond strength that contributes to the surface reordering, the surface roughness and the increase of the phosphate acid character. The thermal behavior of the acid iron phosphate nanoparticles has been also studied and the phosphate polymerization at 400 °C produces strong compacts of amorphous nanoparticles with interconnected porosity.

  20. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data